throbber
Edmund Optics(cid:15)(cid:3)(cid:44)(cid:81)(cid:70)(cid:17)(cid:3)
`(cid:40)(cid:91)(cid:75)(cid:76)(cid:69)(cid:76)(cid:87)(cid:3)(cid:20)(cid:19)10(cid:3)
`
`0001
`
`

`
`ELSEVIER SCIENCE B.V.
`
`Sara Burgerhartstraat 25
`P.O. Box 211, 1000 AE Amsterdam, The Netherlands
`
`First edition 1984
`
`Second impression 1985
`Third impression 1987
`Fourth impression 1996
`
`ISBN: 0-444-42360-5 (Vol. 6) (hardcoveri
`ISBN: 0-444-42834-8 (Vol. 6) (paperback)
`ISBN: 0-444-41903-9 (Series)
`
`© Elsevier Science B.V., 1984
`All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted
`in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior
`written permission of the publisher, Elsevier Science B.V., P.O. Box 521, 1000 AM Amsterdam, The Netherlands.
`
`Special regulations for readers in the USA. This publication has been registered with the Copyright Clearance
`Center Inc. (CCC), 222 Rosewood Drive Danvers, MA 01923. Information can be obtained from the CCC about
`conditions under which photocopies of parts of this publication may be made in the U.S.A. All other copyright
`questions, including photocopying outside of the USA, should be referred to the copyright owner, Elsevier
`Science B.V., unless otherwise specified.
`
`No responsibility is assumed by the publisher for any injury and/or damage to persons or property as a matter
`of products liability, negligence or otherwise, or from any use or operation of any methods, products, instruc-
`tions or ideas contained in the material herein.
`
`This book is printed on acid-free paper.
`
`Transferred to digital printing 2006 ‘
`
`.
`
`7'
`
`
`
`0002
`
`

`
`xiii
`
`v
`vii
`ix
`xi
`
`1
`
`5
`
`7
`
`I
`
`I
`
`I
`I
`
`I
`
`I
`
`I
`
`I
`
`I
`
`I
`
`I
`
`I
`
`I
`
`I
`
`I
`
`I
`
`I
`
`I
`
`TABLE OF CONTENTS
`
`I
`I
`I
`I
`I
`I
`DEDICATION I
`I
`I
`I
`I
`I
`I
`FOREWORD I
`I
`I
`I
`I
`I
`I
`PREFACE I
`I
`AUTHOR'S PREFACE I
`
`I
`I
`I
`I
`
`I
`I
`I
`
`I
`I
`I
`I
`
`I
`
`I
`I
`I
`
`I
`.
`I
`I
`
`I
`I
`I
`I
`
`I
`I
`I
`I
`
`Chapter 1
`
`INTRODUCTION AND HISTORY I
`
`References I
`
`I
`
`I
`
`I
`
`I
`
`I
`
`I
`
`I
`
`I
`
`I II
`
`I.
`
`I
`I
`I
`
`I
`
`I
`I
`I
`I
`
`I
`
`I
`I
`I
`I
`
`I
`
`I
`I
`I
`I
`
`I
`I
`I
`I
`
`I
`
`I
`I
`I
`
`I
`
`I
`
`I
`
`I
`I
`
`I
`I
`I
`
`I
`
`I
`
`I
`
`I
`I
`
`I
`
`I
`
`I
`
`I
`I
`
`I
`I
`
`II
`
`Chapter 2
`
`COMPOSITION, STRUCTURE AND PROPERTIES OF
`INORGANIC AND ORGANIC GLASSES
`
`KJ\J>bJl\):--
`
`I"I"!"!"‘\’!"“""
`
`I
`
`I
`
`I
`I
`
`I
`
`I
`I
`I
`
`I
`I
`I
`I
`
`I
`I
`
`I
`
`I
`
`Glass-Forming Inorganic Materials I
`Crystallite Theory I
`I
`I
`I
`I
`I
`I
`I
`I
`I
`I
`Random Network TheoryI I
`I
`I
`I
`I
`I
`Phase Separation, Devitrification I
`I
`I
`I
`I
`I
`I
`Glass Forming Organic Materials I
`Crystalline and Amorphous Behaviour of Polymers I
`Thermal Behaviour oflnorganic and Organic Glasses
`Mechanical Properties oflnorganic Glasses I
`I
`Chemical Properties oflnorganic and Organic Glasses
`Electrical Properties. I
`I
`I
`I
`I
`I
`I
`I
`I
`I
`I
`I
`I
`I
`I
`I
`Optical Properties I
`I
`I
`I
`I
`I
`Materials Transparent in Ultraviolet and Infrared
`Photochromic Glasses
`I
`I
`I
`I
`I
`I
`I
`I
`I
`Glass Ceramics
`II
`I
`II
`References I
`I
`I
`I
`I
`l
`
`I
`I
`
`I
`
`I
`
`I
`
`I
`
`I
`
`I
`
`NATURE OF A SURFACE
`
`I
`
`I
`
`I
`
`7
`8
`9
`10
`l
`l
`I2
`12
`I5
`15
`17
`19
`21
`24
`27
`32
`
`34
`
`34
`35
`36
`38
`39
`41
`44
`44
`45
`46
`49
`
`I
`
`I
`I
`
`I
`
`I
`
`I
`
`I
`I
`I
`
`I
`I
`
`I
`
`I
`
`I
`
`I
`I
`I
`I
`
`I
`
`I
`
`I
`
`I
`I
`I
`I
`I
`
`I
`I
`
`I
`
`I
`
`I
`I
`I
`I
`
`I
`
`I
`
`I
`
`I
`I
`I
`
`I
`
`I
`
`I
`I
`I
`I
`
`I
`
`I
`I
`
`I
`
`I
`I
`I
`I
`I
`I
`
`I
`
`I
`I
`I
`I
`
`I
`I
`
`I
`
`I
`I
`I
`
`I
`
`I
`
`I
`I
`
`I
`I
`
`I
`I
`
`I
`
`I
`
`I
`
`I
`
`I
`I
`
`I
`
`I
`
`I
`I
`
`I
`I
`
`I
`I
`
`I
`
`I
`
`I
`I
`
`I
`I
`
`I
`
`I
`Characterization ofa Surface I
`I
`Structure ofa Surface I
`I
`I
`I
`I
`I
`I
`Chemical Composition ofa Surface
`Energy ofa Surface I
`I
`I
`I
`I
`I
`I
`I
`I
`I
`I
`I
`Morphology ofa Surface. I
`I
`I
`I
`I
`Interactions Solid/Gas and Solid/Solid
`Production of Glass Surface
`I
`I
`I
`Drawing and Casting I
`I
`I
`Pressing and Moulding I
`Grinding and PolishingI I
`References I
`I
`I
`I
`I
`I
`I
`I
`I
`I
`I
`
`I
`
`I
`I
`I
`I
`
`I
`I
`
`I
`I
`
`I
`I
`
`I
`
`I
`
`I
`
`I
`
`I
`I
`
`I
`I
`I
`
`I
`I
`
`0003
`
`

`
`xiv
`
`Chapter 4
`
`CLEANING oF SUBSTRATE SURFACES .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`
`
`
`
`la;'~’:‘;.gs;r2;.;_.a.,32:;.2g...;.-r.
`
`-BUJIN)-‘
`
`‘ON-UI:J>-.La.).l\);—-:-L-L—L.
`
`:“:“:'=-.‘>:'>:“:‘>:".4>:'*‘.“:'>4>V.;)fi)n—-—-I-—n—-n—In-4n—n-un—In—:—u
`
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`Cleaning Procedures .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`Cleaning with Solvents .
`.
`.
`.
`.
`.
`Rubbing and Immersion Cleaning .
`.
`.
`.
`.
`.
`Vapour Degreasing .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`Ultrasonic Cleaning .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`Spray Cleaning .
`.
`.
`.
`.
`.
`_
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`Cleaning by Heating and Irradiation .
`Cleaning by Stripping Lacquer Coatings .
`Cleaning in an Electrical Discharge .
`.
`.
`.
`.
`Cleaning Cycles .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`Cleaning of Organic Glass .
`_
`.
`.
`.
`.
`.
`.
`.
`.
`.
`Methods to Control Surface Cleanliness
`.
`Maintenance of Clean Surfaces .
`.
`.
`,
`.
`.
`.
`References .
`.
`.
`.
`.
`_
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`,
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`Chapter 5
`
`GLASS AND THIN FILMS .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`5.1
`
`5.2
`5.2.1
`
`5.2.1.1
`
`5.2.1.2
`5.2.2
`5.2.2.1
`5.2.2.2
`
`5.2.3
`5.2.3.1
`
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`
`.
`
`.
`
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`
`.
`
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`
`.
`.
`.
`
`.°‘.°‘.°‘S3‘.°‘F".°‘.°‘.°‘.°‘
`
`t~.)t~)t~JI\)t\J_I\)t~)_-—_-—_-—.....~N__
`
`.
`
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`
`.
`
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`52
`
`53
`53
`53
`55
`55
`56
`56
`57
`58
`59
`60
`61
`62
`62
`
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`_
`.
`.
`.
`.
`.
`.
`.
`.
`_
`.
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`64
`
`Correlation between Glass and Thin Films .
`Adhesion between Substrate and Film .
`.
`.
`.
`_
`Methods of Adhesion Measurement
`.
`.
`.
`.
`.
`.
`.
`Mechanical Methods .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`Non-Mechanical Methods .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`Causes of Adhesion .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`Interface Layers .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`Types of Bonding .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`Parameter Influencing Adhesion .
`.
`.
`.
`.
`.
`.
`.
`.
`Coating and Substrate Materials .
`.
`.
`.
`.
`.
`.
`.
`.
`Substrate Preparation .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`Influence of the Coating Method .
`.
`.
`.
`.
`.
`.
`.
`.
`Aging .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`Practical Aspects of Adhesion Measurement
`Scotch Tape Test .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`Direct Pull-Off Method .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`Scratch Method .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`Final Comments to Adhesion .
`.
`,
`.
`.
`.
`.
`.
`.
`.
`References .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`,
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`_
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`5.2.3.2
`5.2.3.3
`
`5.2.3.4
`
`5.2.4
`
`5.2.4.1
`5.2.4.2
`
`5.2.4.3
`
`5.2.5
`
`Chapter 6
`
`FILM FORMATION METHODS.
`
`.°‘.°‘ iii
`
`Subtractive Methods
`Chemical Processes .
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`
`.
`.
`
`.
`
`.
`.
`
`.
`.
`
`.
`
`.
`.
`
`.
`
`.
`.
`
`.
`
`.
`.
`
`.
`
`.
`.
`
`.
`
`.
`.
`
`.
`
`.
`.
`
`.
`
`.
`.
`
`.
`
`.
`.
`
`.
`
`.
`.
`
`.
`
`.
`.
`
`.
`
`.
`.
`
`.
`
`.
`.
`
`.
`
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`
`.
`
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`,
`.
`.
`.
`
`.
`
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`_
`.
`.
`
`.
`
`.
`
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`
`.
`.
`
`.
`
`.
`.
`
`.
`.
`.
`,
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`
`.
`
`.
`.
`
`64
`66
`68
`69
`71
`73
`73
`75
`77
`77
`78
`78
`79
`79
`79
`80
`83
`88
`89
`
`92
`
`92
`92
`
`
`
`0004
`
`

`
`.
`.
`
`.
`.
`
`.
`.
`.
`
`s~»~—-
`
`6.2.1.4. l .l
`
`6.2. l .4. l .2
`
`6.2.1.4. l .2.l
`6.2. 1.4.1 .2.2
`
`6.2. l .4. 1 .3
`6.2.l.4.2
`
`6.2. 1 .4.2.l
`6.2.l.4.2.2
`
`6.2.l.5.2.l
`6.2.l.5.2.2
`
`6.2.l.5.2.3
`
`6.2.l.5.2.4
`
`6.2.l.5.2.5
`
`6.2.l.5.2.6
`
`6.2.l.5.2.7
`
`6.2.l.5.2.8
`6.2.1.5.3
`
`6.2. l .5.3.l
`
`6.2.l.5.3.2
`
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`,
`.
`.
`.
`.
`.
`.
`.
`Surface Leaching .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`,
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`Physical Processes .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`High Energy Particle Bombardment
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`Additive Methods
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`Chemical Film Formation Processes .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`Deposition of Metal Films from Solutions .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`Deposition of Oxide Films from Solutions .
`.
`.
`.
`.
`.
`. . .
`.
`.
`.
`,
`Immersion or Dip-Coating .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`Formation, Structure, Optical and Mechanical Properties .
`Coating Procedure .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`_
`.
`.
`.
`.
`.
`.
`.
`.
`Spin Coating .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`Deposition of Organic Films from Solutions .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`Chemical Vapour Deposition at Low Temperatures .
`.
`.
`.
`.
`.
`Atmospheric Pressure and Low Pressure CVD .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`Spray Coating _
`.
`.
`.
`.
`.
`.
`.
`_
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`Atmospheric Pressure CVD .
`.
`.
`.
`.
`.
`.
`.
`.
`_
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`Compound Films .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`,
`.
`.
`.
`Metal Films .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`Low Pressure CVD .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`Plasma Activated and Photon Activated CVD .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`Plasma Activated CVD .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`Photon Activated CVD .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`,
`.
`.
`.
`.
`.
`.
`.
`.
`Physical Vapour Deposition .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`Vacuum Technology .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`Vacuum Pumps .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`_
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`Mechanical Displacement Pumps .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`Diffusion Pumps .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`Molecular Pumps .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`Cryo Pumps .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`High Vacuum Process Systems .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`Film Deposition by Evaporation and Condensation in High
`Vacuum .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`Evaporation .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`Energy, Velocity and Directional Distribution of the
`Vapour Atoms and Thickness Uniformity of the Films
`.
`Efficiency of Energy and Mass
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`Evaporation Techniques .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`_
`.
`Transit of the Vapourized Species Through the Reduced
`Atmosphere .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`Condensation and Film Formation .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`Evaporation Materials .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`Evaporation Plants .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`Film Deposition by Cathode Sputtering .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`General Considerations .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`,
`.
`.
`.
`.
`.
`.
`.
`Sputtering Threshold and Sputtering Yield .
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`
`.
`
`.
`.
`
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`
`XV
`
`92
`93
`93
`94
`94
`94
`96
`96
`96
`109
`ll4
`115
`1 l7
`120
`120
`125
`127
`130
`134
`135
`I35
`139
`140
`141
`145
`l45
`l49
`152
`156
`158
`
`169
`l70
`
`l74
`189
`191
`
`198
`199
`203
`207
`213
`215
`218
`
`14
`Jl
`
`
`
`0005
`
`

`
`xvi
`
`6.2.l.5.3.3
`6.2.1.5.3.4
`6.2.l.5.3.5
`6.2.l.5.3.6
`6.2.l.5.3.7
`6.2.l.5.3.8
`6.2.1.5.3.9
`6.2.l.5.3.l0
`6.2.1.5.3.1l
`6.2.l.5.3.l2
`6.2.1.5.3.l3
`6.2.1.5.3.14
`6.2.l.5.4
`6.2.1.5.4.1
`6.2.l.5.4.2
`6.2.1.5.4.3
`6.2.l.5.5
`6.2.1.5.5.1
`6.2.l.5.5.2
`6.2.1.5.5.3
`6.2.1.5.5.4
`6.2.l.5.5.5
`6.2.l.5.6
`
`4
`
`4
`
`4
`
`4
`
`4
`4
`
`4
`
`Ejection ofother Particles and Emission of Radiation
`4
`Ion Implantation 4
`4
`4
`4
`4
`4
`4
`4
`.
`4
`4
`4
`4
`4
`4
`4
`4
`4
`4
`4
`Alterations in Surface Films, Diffusion and Dissociation
`Sputtering Rate 4
`.
`4
`.
`4
`4
`4
`4
`4
`4
`4
`4
`4
`4
`4
`4
`4
`4
`4
`4
`4
`4
`4
`Particles Velocity and Energy 4
`.
`4
`4
`4
`4
`4
`4
`4
`4
`4
`4
`4
`4
`4
`Angular Distribution 4
`4
`4
`.
`4
`4
`4
`4
`4
`4
`4
`4
`4
`Composition ofthe Sputtered Material
`4
`4
`4
`4
`4
`4
`4
`4
`4
`4
`4
`4
`The Gas Discharge. 4
`4
`4
`4
`4
`4
`4
`4
`4
`Thickness Uniformity and Mass Efficiency in Sputtering 4
`Sputtering Materials .
`4
`4
`4
`4
`4
`4
`4
`4
`4
`4
`4
`.
`4
`4
`4
`4
`4
`4
`4
`4
`4
`4
`Sputtering Plants 4
`4
`4
`4
`4
`4
`4
`4
`4
`4
`4
`4
`4
`4
`4‘ 4
`4
`4
`4
`4
`Comparison Evaporation — Sputtering
`Film Deposition by Ion Plating.
`4
`4
`4
`Characteristics oflon Plating 4
`4
`4
`Advantages oflon Plating. 4
`4
`4
`4
`4
`Applications oflon Plating 4
`4
`4
`Reactive Deposition Processes 4
`General Considerations
`4
`4
`4
`4
`Reactive Evaporation 4
`4
`Activated Reactive Evaporation
`Reactive Sputtering 4
`4
`4
`4
`Reactive lon Plating 4
`.
`4
`4
`Plasma Polymerization
`References 4
`4
`4
`4
`4
`
`4
`4
`
`4
`4
`4
`
`4
`4
`
`4
`4
`4
`
`4
`
`4
`4
`
`4
`
`4
`
`4
`4
`4
`
`4
`4
`
`4
`
`4
`4
`
`4
`4
`4
`4
`4
`4
`4
`.
`
`4
`
`4
`4
`4
`
`4
`
`4
`4
`
`223
`224
`224
`225
`226
`226
`227
`228
`239
`242
`244
`246
`247
`248
`250
`253
`256
`256
`258
`262
`268
`269
`270
`275
`
`8-3.1
`8.3.2
`8.4
`8.4.1
`8.4.2
`8.4.3
`8.5
`8.6
`8.7
`
`Chapter
`
`9.1
`9.2
`9.3
`9.3.1
`9.3.2
`9.3.3
`9.3.4
`9.3.5
`9.3.6
`9.4
`
`4
`
`.
`
`4
`4
`4
`
`4
`4
`
`4
`
`4
`4
`
`4
`
`4
`
`4
`
`4
`4
`4
`4
`
`4
`4
`
`4
`
`4
`
`4
`
`4
`
`4
`
`4
`4
`4
`
`4
`
`4
`4
`4
`
`4
`4
`4
`
`4
`4
`
`4
`4
`
`4
`
`4
`
`4
`4
`4
`
`4
`
`4
`
`4
`4
`4
`4
`4
`4
`
`4
`
`4
`4
`4
`
`4
`
`4
`4
`4
`4
`
`4
`
`4
`
`4
`4
`
`4
`
`4
`
`4
`4
`
`4
`
`_
`4
`
`4
`4
`
`4
`
`4
`
`4
`
`4
`
`4
`
`4
`
`4
`4
`4
`
`4
`
`4
`
`4
`
`4
`
`4
`4
`4
`
`4
`
`4
`
`Chapter 7
`
`FILM THICKNESS4
`
`4
`
`4
`
`4
`
`4
`
`4
`
`4
`
`4
`
`4
`
`4
`
`4
`
`4
`
`4
`
`4
`
`4
`
`4
`
`4
`
`4
`
`4
`
`4
`
`4
`
`4
`
`4
`
`4
`4
`4
`4
`4
`4
`4
`4
`General Considerations
`4
`4
`Methods Applicable to all Types ofFilms 4
`4
`4
`Interference Methods .
`4
`4
`4
`4
`4
`4
`4
`4
`4
`4
`4
`4
`4
`4
`Stylus Methods
`4
`4
`.
`4
`4
`4
`4
`4
`4
`4
`4
`4
`.
`4
`4
`4
`Methods Applicable to PVD Films 4
`Optical Reflectance and Transmittance Measurements
`Oscillating Quartz Crystal Microbalance 4
`4
`4
`4
`4
`4
`4
`Vapour Density Measurement by Mass Spectrometry 4
`Trendsin Monitoring Technology
`4
`4
`4
`4
`4
`4
`References 4
`4
`4
`4
`4
`.
`4
`4
`4
`4
`4
`
`4
`
`4
`
`4
`
`4
`
`4
`4
`
`4
`
`4
`4
`
`4
`
`4
`
`4
`
`4
`
`4
`
`4
`
`7.1
`7.2
`7.2.1
`7.2.2
`7.3
`7.3.1
`7.3.2
`7.3.3
`7.4
`
`Chapter 8
`8.1
`.
`8.3
`
`4
`
`4
`
`4
`4
`4
`4
`4
`4
`4
`
`4
`4
`4
`
`4
`
`4
`4
`
`4
`4
`
`4
`4
`4
`
`4
`
`4
`
`4
`
`4
`
`4
`
`4
`
`4
`.
`4
`
`287
`
`287
`291
`291
`292
`293
`293
`297
`304
`306
`308
`
`341
`311
`322
`
`4
`
`A
`
`_
`
`9.4.1
`
`9.4.2
`9.4.3
`
`9.4.4
`9.4.5
`9.4.6
`9.4.7
`9.4.8
`9.5
`9.5-1
`9-5-2
`95-2-1
`9-5-2-2
`9.6
`
`9.6.1
`
`9-6-4
`9-7
`
`PROPERTIES or THIN FILMS 4
`Structure 4
`4
`4
`4
`4
`4
`4
`4
`4
`.
`4
`4
`Microstructure 4
`4
`4
`4
`4
`4
`Chemical Composition. 4
`
`4
`4
`
`4
`4
`4
`
`4
`4
`4
`
`4
`4
`4
`
`4
`44
`
`4
`4
`4
`
`.
`
`4
`4
`4
`
`4
`4
`4
`
`4
`
`4
`
`4
`
`4
`4
`
`.
`4
`
`4
`4
`
`4
`
`4
`
`i
`
`0006
`
`

`
`223
`
`224
`224
`225
`
`226
`
`226
`227
`
`228
`
`239
`242
`
`244
`
`246
`
`247
`
`248
`250
`
`253
`
`256
`256
`
`258
`262
`268
`
`269
`
`270
`275
`
`287
`
`287
`291
`291
`
`292
`
`8.3.1
`
`8.3.2
`8.4
`
`8.4.1
`8.4.2
`
`8.4.3
`
`8.5
`
`8.6
`
`8.7
`
`Surface Analysis
`.
`Depth Profiling
`Mechanical Properties .
`Stress.
`.
`.
`.
`
`Hardness and Abrasion
`
`Density.....
`Chemical and Environmental Stability .
`Optical Properties ofThin Films .
`.
`Electro—Optical Materials and their Properties
`References
`
`Chapter 9
`
`APPLICATION OF COATINGS ON GLASS
`
`9.1
`
`9.2
`
`9.3
`
`9.3.1
`
`9.3.2
`9.3.3
`9.3.4
`9.3.5
`
`9.3.6
`9.4
`
`9.4.1
`
`9.4.2
`9.4.3
`
`9.4.4
`9.4.5
`9.4.6
`
`General Considerations
`
`.
`
`Calculation ofOptical Film Systems
`Antireflective Coatings .
`.
`.
`.
`Single Layer Antirellection Coatings
`Double Layer Antireflection Coatings .
`.
`Multilayer Antireflection Coatings
`.
`Antireflection Coatings at Oblique Incidence .
`Inhomogeneous Antireflection Coatings .
`.
`Applications ofAntireflection Coatings.
`.
`Rear Surface Mirrors, Surface Mirrors and Beam S
`Mirrors .
`.
`.
`.
`.
`.
`.
`
`plitter
`
`RearSurface Mirrors .
`
`..
`
`Metal Film Surface Mirrors
`
`Beam Splitter Mirrors
`Neutral Density Filters
`Dielectric Mirrors
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`xvii
`
`332
`
`335
`
`341
`342
`353
`356
`
`357
`
`359
`381
`
`384
`
`391
`
`391
`395
`
`399
`399
`401
`
`402
`
`405
`
`406
`406
`
`407
`409
`
`409
`414
`
`419
`419
`421
`
`
`
`
`
`
`
`
`
`zcééxéc~a%'-‘.14:.....:.'r;‘:.~:,;.<-i~".:»~;:.;.~:4-’:;_:‘;.;.:3';,~;.,‘->‘;-:.r'~.~«-;-v,~~»-;;~_«-W,~
`
`
`
`
`
`
`
`
`
`j
`
`9.4.7
`9.4.8
`9.5
`9.5.1
`9.5.2
`
`9.5.2.1
`
`9.5.2.2
`
`9.6
`9.6.1
`
`9.6.2
`
`9.6.3
`
`9.6.4
`9.7
`
`9.8
`
`Cold Light Mirrors and Heat Mirrors
`Laser C oatings
`Artificial Jewels .
`
`.
`
`.
`Separation ofLight by Filters .
`Low- and High-Pass Edge Filters
`Band Pass Interference Filters
`
`Narrow-Band Filters
`
`Broad—Band Filters .
`
`.
`
`.
`Absorptive Films .
`Eye Protection Films .
`Photo Masks .
`.
`
`.
`.
`
`.
`
`Scales, Reticles, Apertures
`Phase Plates .
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`
`.
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`Transparent Conductive Coatings .
`Energy Related Coatings .
`.
`.
`.
`.
`.
`.
`
`.
`
`.
`
`.
`.
`.
`
`.
`
`.
`.
`
`.
`
`.
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`
`.
`.
`
`.
`
`.
`
`.
`.
`
`.
`
`.
`
`.
`.
`
`424
`427
`428
`428
`
`433
`
`433
`436
`
`437
`
`437
`
`438
`
`440
`
`440
`441
`444
`
`%5
`
`3i
`
`1
`
`293
`293
`
`297
`304
`
`306
`
`308
`
`341
`
`311
`
`322
`
`332
`
`0007
`
`

`
`.
`.
`.
`.
`.
`.
`.
`.
`Solderable Coatings .
`.
`.
`.
`.
`.
`.
`.
`.
`Integrated Optics .
`.
`.
`Integrated Optics Components .
`Present Status and Trend .
`.
`.
`.
`.
`Scientific Applications .
`.
`.
`.
`t
`.
`References .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`
`.
`.
`.
`,
`.
`
`_
`.
`.
`.
`
`_
`i
`.
`.
`.
`
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`,
`
`.
`.
`,
`.
`t
`
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`
`.
`,
`.
`.
`.
`
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`
`445
`.
`445
`.
`. 447
`.
`451
`.
`454
`
`AUTHOR INDEX
`
`
`
`:_M,,,i..,.g~;~—-,-pp».-,,-1~,.~:.s»,«;,~.wVW.‘-.,,.,.,,V
`
`9%
`
`s
`
`0008
`
`

`
`428
`
`Artificial jewels of glass and plastic with vapour-deposited interference layer
`systems present a great variety of very appealing colour nuances. Even
`opalescence effects can be produced by deposition of all—dielectric or dielectric-
`metallic multilayers onto rough gem surfaces [119] which are achieved by wet
`chemical etching or sand blasting of the cut glass bodies. Generally, it can be stated
`that high quality coated artificial jewels are always made from cut glass bodies.
`The finish of the facets achieved by cutting is quite superior to that obtained by
`pressing. The Swarovski Company in Wattens, Tyrol (Austria) have developed
`special machines to out
`large quantities of glass jewels and to coat
`them
`economically. Swarovski thus became the most famous and important producer of
`coated artificial jewels in the world.
`
`9.5.
`
`SEPARATION OF LIGHT BY FILTERS
`
`Light separation by filters can be performed with coloured glass or dyed gelatine
`filters. The quality of separation and the thermal stability of the filters, however,
`have been improved considerably by the use of thin film interference systems, see
`[4, 5,
`l 15].
`
`9.5.1
`
`LOW- AND HIGH-PASS EDGE FILTERS
`
`These filters are characterized by producing an abrupt change between a
`region of rejection and a region of transmission. They are generally produced from
`all-dielectric multilayer systems with corrected side bands to increase transmit-
`tance on the short or long wavelength side, as is shown in Fig. 30, or on both sides
`of the rejection region. The filters are sometimes also combined with absorbing
`
` iili
`
`
`
`
`
`
`Transmittance(%)
`
`IOU100---ji---
`
`
`
`.4- OOC) 1500 2000 2500 3000 3500 4000 4500 5000
`Wavelength (nm)
`
`Fig. 30
`
`IR Iongwave pass filter and IR shortwave pass filter.
`
`
`
`C
`C
`e
`
`,"‘."'1(("}“/3
`
`
`
`TronevniOOan:-aI0/.\
`
`F
`L
`
`
`
`TranernifianraI04-»\
`
`2'3
`
`
`
`0009
`
`

`
`429
`
`coloured glasses to improve and/or extend the rejection zone. Another way to
`extend the rejection zone is to place a second stack in series with the first and to
`ensure that their rejection regions overlap.
`In this category belong blocking or transmitting filters for separation ofbroad
`spectral ranges in the ultraviolet, the visible and the near infrared range. Such
`blockers can be used for suppression of the unwanted higher or lower orders of
`various narrow and broad band interference filters, or to block disturbing uv
`radiation and to limit the sensitivity range of a receiver. Some examples are shown
`_
`,
`in Figs. 31 and 32.
`
`100
`
`90 —
`
`80
`
`E 70
`C
`8 60 g
`
`g 50
`40 _,
`E 30
`+-
`
`C ‘
`
`20
`
`10
`
`O
`
`
`
`300
`
`400
`
`500
`Wavelength (nm)
`
`.
`600
`
`Fig. 31
`UV blocking filter / Light source spectrum: Mercury lamp.
`
`700
`
`100
`
`'53:;
`:cmc_
`,y wet
`Stated
`OdieS_
`led by
`:1oped
`them
`lcer of
`
`:latine
`
`vever,
`IS, SCC
`
`een 3'
`1 from
`15r_mt'
`lS1d€S
`
`)rbing
`
`O
`
`90
`
`BO
`
`70
`60 (I)
`A
`50 5
`
`40 .-‘‘l
`30
`
`20
`
`10
`
`.3
`8
`C
`E
`

`
`C 9
`
`+-
`
`400
`
`500
`
`600
`
`900
`800
`700
`Wavelength (nm)
`
`1000 11001200
`
`Fig. 32
`MR blocking filter / Sensitivity of receivers: Silicon cell.
`
`
`
`0010
`
`

`
`greet
`greet
`prim
`cyan
`com!
`dens
`
`
`
`10C
`
`9c
`
`ac
`79
`2‘:
`6c
`‘”
`E 5c
`.33-
`4c
`5,
`5 so

`
`20
`10
`0
`
`Fig 35
`Com,
`(TL = d
`
`430
`
`Furthermore, the dichroic colour filters should be mentioned here. General—
`ly, additive filters of this type are produced in the three primary colours: blue,
`green and red. Through a combination of dielectric, mostly oxide, coatings with
`coloured glasses, colour filters achieve a complete suppression from the ultraviolet
`range to the near infrared without causing a noticeable loss oftansmittance in the
`passband region. Because the coloured glass and the cement are thermosensitive,
`the maximum thermal load is, for about 100°C, relatively small.
`lf, however,
`all-dielectric oxide systems are produced with the coatings deposited on both sides
`ofthe substrate, then the filter also has high transmittance in the pass band region
`and a broad suppression range in the visible. Cut—on and cut-off slopes are then
`relatively steep, with the result that colour outputs of high purity are achieved
`with these products. Basic designs of the red, the longwave pass, and blue, the
`shortwave pass, colour filters can be modified so that the cut-on and cut-off
`positions are shifted to other wavelengths. This change can be effected without
`altering colour filter spectral characteristics, namely its high transmission, broad
`blocking region, and steep slopes.
`Typical specifications of additive colour filters are given in Table 4.
`
`TABLE 4
`
`ADDITIVE COLOUR‘FlLTERS
`
`
`
`
`With coloured glass:
`T Z 65%
`l—j4;)O—450 nm
`
`
`T s
`
`505 - 760 nm
`
`
`
`Green
`
`T < 1%
`
`400-475 rim
`
`"
`
`T 2 75%
`
`525-550 nm
`
`
`400 - 575 nm
`
`T 2 80% J 625- 760 nm
`
`
`Subs1ratc:Coated glass laminated to coloured
`glass
`
`610-760nm
`
`Glass thickness: 2 -4 mm
`
`Thermal load:
`
`100°C maximum
`
`
`
`
`
`Blue
`
`l
`
`Green
`
`all dielectric:
`400—460 nm
`
`505 - 760 nm
`
`400 -485 nm
`
`530-555 nm
`
`590-760 nm
`
`l_l:ed
`
`
`400 - 575 nm
`
`630- 760 nm
`T 2 80%
`Substrate:Heat-resistant TEMPAX coated on
`both sides
`
`
`
`Glass thickness: I mm
`l"‘
`
`Thermal load: 400°C
`
`With such all-dielectric oxide systems, thermal loads up to about 400° C are
`readily feasible.
`Balzers subtractive colour filters are dielectric interference filters whose
`passbands extend over the spectral region of two primary colours: yellow over the
`
`0011
`
`

`
`431
`
`green and red regions, magenta over the blue and red, and cyan over blue and
`green. When subtractive colour filters are placed in the path of a light source, a
`primary colour results. Thus yellow and magenta filters yield red, yellow plus
`cyan produce green, and magenta and cyan provide blue. Through suitable
`combinations, the subtractive colour filters can produce every colour hue in any
`density to full saturation.
`Typical specifications of subtractive colour filters are given in Table 5.
`
`qeral-
`blue,
`;with
`violet
`in the
`sitive,
`vever,
`isides
`
`TABLE 5
`
`:
`i
`
`“gm”
`: then
`SUBTRACTIVE COLOUR FILTERS
`llCV€d
`e, the
`:ut-on‘
`T 2 80%
`530 — 760 nm
`’ h
`
`
`
` broad
`
`
`
`T > 75%
`
`400-460 nm
`
`
`
`
`
`
`650 — 730 nm
`
`420 — 565nm
`
`
`
`63°-Wm
`Substrate: Heat-resistant TEMPAX
`
`
`
`Glass thickness: l mm
`
`Thermal load:
`
`400°C maximum
`
`(%)
`
`Transmittance
`
`0
`
`D
`
`C are
`
`whose
`ver the
`
`400
`
`500
`
`600
`Wavelength (nm)
`
`700
`
`Fig. 33
`Colour temperature conversion filters TL/TK.
`(TL = day light, TK = artificial light)
`
`
`
`0012
`
`

`
`432
`
`
`
`
`
`
`
`Lightabsorbedoremitted,arbitraryunits.
`
`
`
`Absorption
`
`tck
`
`iflu
`the:
`
`in r
`
`ten.
`
`33:
`
`the
`
`ini
`
`fluc
`to a
`
`FIT
`rnu
`
`asc
`
`is n
`she
`
`laye
`tran
`
`star
`
`dem
`Ina»
`con
`
`9.5;
`
`tran
`
`I)ep
`narr
`
`9.5L
`
`ont
`
`nwo
`
`hafl
`vacu
`
`fihei
`
`evap
`thw
`
`Optii
`
`400
`
`450
`
`500
`
`550
`
`600
`
`Wavelength (nm)
`
`Fig. 34
`Absorption and emission of FITC-protein conjugate as function
`of wavelength.
`
`100
`
`10
`
`
`
`Transmittance(°/o)
`
`Fig. 35
`Excitation filter for FITC immuno—fluorescence.
`
`Wavelength (nm)
`
`
`
`0013
`
`

`
`
`
`433
`
`Applications for dichroic colour filters encompass TV cameras, film printers,
`telecine equipment, colour printers, colour enlargers, signal
`lighting, studio
`illumination, colour separating, and colour sorting. The stability and durability of
`these oxide coating products make them suitable for a wide range ofenvironments
`in manufacturing, the laboratory, and the photographic darkroom.
`As well as additive and subtractive colour filters, there are also colour-
`temperature conversion filters for natural and artificial light applications. Figure
`33 shows an example ofsuch filters.
`Generally, in many types of long- and shortwave-pass filters, the steepness of
`the edge is not ofcritical importance. It is important, however, with filters applied
`in fluorescence microscopy where the excitation and emission bands of special
`fluorescent tracers mayhave such a small spectral distance, that they do overlap
`to a certain degree. This happens, for example, with fluorescein-iso-thio-cyanate
`FITC, a fluorochrome used in immunofluorescence. For excitation, the maxi-
`mum absorption is at about 490 nm and the emission maximum is at 520-525 nm
`as can be seen in Fig. 34. When such an exceptional high degree of edge steepness
`is required, then the easiest way ofimproving it is to use more layers. Figure 35
`shows an example of an excitation filter consisting of more than 31 TiO2/SiO3
`layers inclusive the correcting layers in the stack. These filters show very high
`transmission of 80% minimum in the area of excitation. In the blocking area
`starting at 510 nm, the transmission in lower than 5xl0‘3. The transmission
`decreases towards longer wavelengths and is lower than lxl 0*‘ at the fluorescence
`maximum of /l: 520 nm. The red part of the spectrum is suppressed by
`combination with a special colour glass.
`
`'
`
`9.5.2 BAND PASS INTERFERENCE FILTERS
`
`Band pass filters are generally characterized by a region of possibly high
`transmission,
`limited on either side of the spectrum by regions of rejection.
`Depending on the width of the transmission region, one may distinguish between
`narrow-band and broad-band filters.
`
`9.5.2.1 NARROW-BAND FILTERS
`
`A typical narrow-band filter is the metal dielectric Fabry-Perot filter basing
`on the Fabry-Perot interferometer. An interference filter of this type consists of
`two highly reflecting but partially transmitting mirror films spaced optically one
`half wavelength apart [120-122, 4, 5]. For the production of such filters, the
`vacuum deposition method has proved most successful. In the simplest case, the
`filter is made by depositing first a silver film onto a plane glass substrate then
`evaporating a 1/ 2 or a multiple of an absorption-free dielectric material following
`this with another film of silver. For symmetry, protection and stabilization of
`optical properties of the arrangement, another plane glass is added using, for
`
`0014
`
`

`
`
`
`200
`
`300
`
`400
`
`500
`
`600
`
`700
`
`800
`
`900 1000
`
`Fig. 36
`Meta|—die|ectric interference filter FILTRAFLEX B-20 (Balzers).
`
`Wavelength (nm)
`
`example, a conventional optical cement. Figure 36 shows the spectral transmit-
`tance of a metal—dielectric F. P. Filter. The thickness of the dielectric intermediate
`
`or spacer layer determines the position of the transmission band within the
`spectrum and the degree of background transmission. The wavelength for which
`the internal multiple reflections in the forward direction are in phase will be
`strongly transmitted, other wavelengths are suppressed. First-order filters, that is,
`forward reflections differing in phase by only one wavelength, generally have a
`peak transmittance of 30 to 40% with a half width of the transmission curve of
`about 20 nm. Second-order filters, in which the forward reflections differ in phase
`by two wavelengths, may have the same peak transmittance as the first-order
`filters, but a half width of only about 10 nm. The undesired orders of the filter can
`be blocked by edge filters or coloured glasses.
`An extensive mathematical treatment was performed by Hadley and Den-
`nison [l2l, 122]. Only the most important formulae characterizing aFabry-
`Perot filter are given here
`The transmitted intensity IT is:
`
`IT = [(l+$—)2 +§r%sin2
`
`n5tscos((pS+6)}]
`
`-1
`
`The maximum transmittance Tm is:
`
`Tmax 7'' T2/(]"R)2
`
`The minimum transmission Tm.“ outside the transmittance curve is:
`
`Tmin = T/(l+R)2
`
`Finally the half width HW is given by:
`
`HW= (1-R)/X7z\/R
`
`'
`
`(12)
`
`(13)
`
`(14)
`
`(15)
`
`
`
`0015
`
`

`
`435
`
`In the equations, T = transmittance of a single mirror layer, R = reflectance of a
`single mirror layer, A=absorption of a single layer, X =order of interference,
`n,t,= optical thickness of the spacer layer and azangle of radiation within the
`layers.
`Examples of fields of application of such filters, producing monochromatic
`light, are in colourimeters, sensitometers, polarimeters, refractometers, interfero-
`meters, fluorimetrical measuring instruments, flash-photometers, microscopes,
`etc. Filters are manufactured for the near infrared and the visible range using Ag
`mirrors and for the ultraviolet using Al mirror films. The corresponding spacer
`layers are often made of cryolite, thorium fluoride, magnesium fluoride or lead
`fluoride. For infrared applications, materials such as germanium, silicon and
`tellurium and gold are also used. Most filters are designed for applications at room
`temperature and at normal
`incidence of light. Peak transmittance is shifted
`towards shorter wavelengths if either the temperature is decreased or the angle of
`incidence is increased e. g. [I23]. The angle of incidence of the light determines the
`wavelength at which transmission is maximum. In fact,
`/l,,,,,,,
`is shifted in the
`shorter wavelength direction with increasing angle of incidence and simultaneous~
`ly the transmission is slightly reduced. Inclination of the filter therefore offers the
`opportunity to move /1,,,,,, within a small range. For light beams of considerable
`convergence or divergence incident at an angle, the effect
`is to broaden the
`transmission band. Where light is polarized, the displacement varies, depending
`upon whether the polarization is parallel or normal to the plane of incidence.
`Fabry—Perot filters are also available commercially, with local continuously
`changing spectral transmittance. Such continuous filters are deposited on glass
`strips or on circular disks.
`Vital to the operation of an interference filter is a very high reflectance of the
`mirror coatings adjacent to the spacer layer. The absorption of the metal mirrors
`can be reduced and thus the maximum transmittance of the filter increased if both
`
`metal layers are increased in reflectance by additionally deposited high reflecting
`dielectric multilayers [I24]. In this way, with a first-order filter, a half width of
`2 nm and a transmittance maximum of 41 % can be obtained [I24].
`If, however,
`the metal mirrors are completely replaced by absorption-free all-dielectric high
`reflecting multilayers, one can achieve a peak transmittance of greater than 75 °/o
`with a half width of only 2 nm, which is considerably better than the usual
`metal-spacer~metal system. Figure 37 shows an example of an all dielectric
`NIR—interference filter. The relation between half width and tenth width in a
`
`Fabry—Perot filter is 1 :3. Such a transmission curve is not of ideal shape. To obtain
`a more rectangular shape of the transmittance band and to eliminate the
`disturbing influence ofabsorptions on the bandwidth, considerations analogous to
`coupling of tuned electric circuits led to acceptable results [125- I 3 I]. By coupling
`together tuned electric circuits, the resultant response curve is more rectangular
`than that of a single tuned circuit. This also happens when coupling together
`single Fabry—Perot
`filters. From the multiple half-wave filters the double
`half-wave (DHW) type of the form: // mirror / half wave spacer/ mirror / half
`wave spacer / mirror //
`is often fabricated. The filters may be either
`
`I3)
`
`14)
`
`15)
`
`
`
`0016
`
`

`
`436
`
`100
`
`90
`
`A
`‘~’\: 70
`§ 60
`g 50
`40
`C
`Q 30
`l‘
`
`‘0
`0
`
`,
`
`p
`
`i: 0°
`Substrate: BK
`-
`.
`g
`l
`g
`
`It
`5
`
`9
`
`.
`l
`i
`.'
`l
`
`‘
`‘t
`.50 % Trnax »
`=
`;
`i
`l
`4
`.
`.1
`,
`.
`1'
`~
`3
`
`Z
`'.
`T
`
`
`
`i1o°/Jr“...
`V
`.
`_
`]
`.
`.
`t
`]
`400 500 600 700 800 900 1000 1100 1200 1300
`
`t
`
`t
`
`l
`

`Ԥ

`Q
`
`C
`(3
`1-
`
`Fig
`'5;
`
`C(
`
`pi
`Ct
`st
`at
`
`9.
`
`al
`fi
`0
`5!
`at
`
`b a
`
`1
`
`a:
`fl
`
`o.
`
`n
`If
`
`9
`
`Wavelength (nm)
`
`Fig. 37
`All—die|ectric narrowband interference filter I. = 1064 nm.
`
`metal-dielectric or all-dielectric. The relation between halfwidth and tenth width
`
`in a DHW filter is better than l:l.8.
`When using an interference filter, the uncemented mirror surface must always
`face the light source. Where filters are to be used above 40°C, the time ofexposure
`should be kept as short as possible, and in no case should temperatures of 70° C be
`exceeded. Mechanical stresses and strains can destroy a filter. It is recommended
`that filters are stored in dry air at temperatures not exceeding 40°C, e.g. [l32,
`133]. For information on the influence of neutron bombardment ofinterference
`filters, see c. g. [I34]. Each filter is guaranteed by most manufacturers for a period
`of one year. Other more special types of monochromatic filters are rather seldom
`produced and will therefore not be discussed further here. Details are given in:
`reflection interference filters [I2l, 122, 124, l35, 136];
`frustrated total reflection filters [124, 135, 137];
`induc

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket