throbber
Dynamic Holography Using
`
`Ferroelectric Liquid Crystal on Silicon
`
`Spatial Light Modulators
`
`A dissertation submitted for the degree of
`
`Doctor of Philosophy
`
`at the University of Cambridge
`
`UNIVERSITY
`LIBRARY
`OAUBRIOG£
`
`Kim Leong Tan
`
`Wolfson College
`
`February 1999
`
`FINISAR 1006
`
`

`
`Declaration
`
`This dissertation contains the results of research undertaken by the author between October
`
`1995 and December 1998 at the Engineering Department of Cambridge University. No part
`
`of this dissertation is the result of work done in collaboration with others, except where
`
`explicitly described or cited within the text. The contents have not been submitted, in whole
`
`or in part, for any other University degree or diploma.
`
`Kim Leong Tan
`
`Cambridge, February 1999
`
`

`
`Keywords
`
`CMOS VLSI silicon backplane, computer generated holograms, diffraction efficiency,
`
`dynamic holography, ferroelectric liquid crystals, free-space holographic switch, multi-level
`
`phase holograms, spatial light modulators.
`
`11
`
`

`
`Summary
`
`Optical networking is expected to evolve from the current point-to-point photonic transport
`
`networks. Optical wavelength-
`
`and space-division
`
`interconnects allow for a fuller
`
`exploitation of the intrinsic bandwidths of optical fibres as the transmission medium. The use
`
`of costly electronic Time Division Multiplexing (TOM) switches
`
`in high bit-rate
`
`telecommunications systems can also be reduced/eliminated. These networks require
`
`dynamic and transparent Wavelength Division Multiplexing (WDM) filters and Optical
`
`Cross-Connects (OXC). Dynamic holograms recorded on reconfigurable ferroelectric liquid
`
`crystal (FLC) spatial light modulators (SLM) have the potential to meet these requirements.
`
`The research outlined in this dissertation relates to an original theoretical analysis, validated
`
`by numerical simulations and experimental measurements, of the performance of these
`
`routing holograms when used in 4f coherent optical systems. The principal analytical results
`
`demonstrated are the dependence of the hologram replay crosstalk on the clipping of the
`
`Gaussian beam by the hologram aperture and the predictability of the locations and
`
`intensities of the hologram replay peaks. The level of sidelobe ripple noise and the effects of
`
`phase quantisation, arrangement of phase elements, spatial quantisation and SLM pixel dead(cid:173)
`
`space are quantified within the valid regime of paraxial diffraction theory. The understanding
`
`of routing hologram replay has been exploited to devise a novel deterministic hologram
`
`generation algorithm and to determine the scalability of these switches as constrained by the
`
`switch path, temporal loss variations and optical bandwidths. It can be also used to design
`
`hologram configurations for a large free-space optical matrix switch.
`
`The first silicon backplane for driving a holographic SLM was designed and commercially
`
`fabricated during the course of this research. The emphasis of the backplane design and the
`
`SLM assembly was to obtain good optical modulation for coherent applications. The
`
`backplane contains a binary and a quaternary modulator array having 540 x 1 pixels. The
`
`silicon backplane and all assembled SLMs were fully tested and characterised. The binary(cid:173)
`
`phase SLM, with a high quality post-processed mirror array, was to be used in a collaborative
`
`free-space 1 x 8 optical switch demonstration . Several optical experiments were performed
`
`using a fixed intensity grating on glass and a reconfigurable binary-phase SLM with a view
`
`of verifying the crosstalk isolation and insertion loss aspects of routing hologram analyses .
`
`These experiments simulating infinite switch configurations gave > 50 dB crosstalk figures
`
`and insertion losses to within 3 dB of the theoretical values. Two hologram refresh schemes
`
`for maintaining a holographic interconnect over a long period were also evaluated.
`
`Ill
`
`

`
`Acknowledgements
`
`The work reported here owes much to the unique environment in the Photonics and Sensors
`
`Group. For that, I would like to thank Bill Crossland with the help of Caryn Wilkinson, for
`
`leading the group and providing the resources and interactions with fellow researchers from
`
`elsewhere in my chosen field of research. Many thanks are also due to Bill for sorting out my
`
`maintenance support. My gratitude is also extended to Mike Robinson at Sharp Labs. Europe
`
`for starting the ball rolling by suggesting work on analogue SLMs. I would like to thank
`
`Robert Mears, my supervisor at Cambridge, for his occasional but critical appraisals of my
`
`work and for the tremendous help in the preparation of papers and this dissertation.
`
`I would especially like to thank Tim for his help in SLM processing/fabrications and proof
`
`reading the draft dissertation; Steve for fruitful interactions on hologram analysis and replay;
`
`Maura for liquid crystal alignment work; llias for help in mounting the fibre on the quarter
`
`disc and optical system aligning; Ping Chiek for varied assistance throughout the two and a
`
`half years as well as encouragement when I have been frustrated and dispirited; James
`
`Collington for demonstrating the VLSI layout using Mentor Graphics; Ian Underwood and
`
`David Holburn for contributing to the chip design review; Mike Hands for loaning the
`
`stepper motor stages; Mike Bradley for helping with C-programrning; Mike Parker for
`
`discussions on quaternary hologram analysis; Sazzad Nasir at Wolfson college for numerous
`
`mid-night discussions on the wonderful world of physics and mathematics research; Tony
`
`Davey for his critical opinions on liquid crystals; Eddie, Sabesan, Cheng-Ruan, Karsten,
`
`Anna, Huan, Jeon, Clarence, Terence, Faheem, Louis, Niall, Adam, Brian, Mark and many
`
`others for friendship, help, comments, advice, etc.; Overseas Research Studentship,
`
`Cambridge Commonwealth Trust and Thomas Swan Co. Ltd. for providing financial
`
`assistance and making my existence at Cambridge possible!
`
`The support by the workshop technicians, Russell, Steve, Adrian and Mick is greatly
`
`appreciated. The Roses project with its industrial and university partners has provided many
`
`opportunities for interactions and the funding for the chip development. My sincere thanks to
`
`them all and especially to CRL for bonding the SLMs.
`
`Lastly, I am indebted to my wife, Sian, for her never ending love and support and in putting
`
`up with the inevitable maniacal work routines during the final stages of my Ph.D.
`
`Author's note: the image on the cover page is the fibre-scan intensity pattern of a grating replay, see §8.5.1.
`
`iv
`
`

`
`To Sim;
`To Sian
`
`(writ!
`and
`
`ourfamilies
`ourfimtifies
`
`v
`
`

`
`Contents
`
`List of figures
`
`List of tables
`
`CHAPTERl
`
`Introduction
`
`CHAPTER2
`
`Spatial light modulators: active devices for optical processing
`
`xii
`
`xviii
`
`1
`
`6
`
`2.1 Introduction ......... .. ... ........... ...... .. ........................................................ .... .... .................. 6
`
`2.2 SLMs for use in coherent optical processing systems .. .. ............................................... 7
`
`2.2.1 Nematic liquid crystal (NLC) modulators .......................................................... 8
`
`2.2.2 Photorefractive crystals ... .... .... .. ... .. .. .. .. ............ ..... ........ ... ......... ....... ................. ... 8
`
`2.3 Smart-pixel arrays for free-space optical interconnects (FSOI) .................................... 9
`
`2.3. l SEED modulators ..................................... .................. ... ....................................... 9
`
`2.3.2 Electro-absorption (EA) modulators ................ ...................... ................ ............ 10
`
`2.4 SLMs for use in free-space optical switches ............................................................... 11
`
`2.4.1 Opto-mechanical modulators ............................................................................. 13
`
`2.4.2 Magneto-optic modulators ........................ ............... .. ............ ... ......................... 13
`
`2.4.3 Si-PLZT modulators ......................................... ............... ................................... 13
`
`-
`
`

`
`CONTENTS
`
`vii
`
`2.4.4 Ferroelectric liquid crystal (FLC) modulators ...... ...... ... ........... ....... ... ............... 14
`
`2.4.5 Digital-micro-mirror-device (DMD) ..... .. ........ .. ..... .... ... ... .. ............ .... ................ 15
`
`2.5 Conclusions ........ .... ... .................... ...................... ....................... ...... ........................... 16
`
`CHAPTER3
`
`Analysis of fibre-to-fibre l:N switch coupling efficiency
`
`17
`
`3.1 Introduction ... .............. ............. ...................... .... ....... ................ ...... ..... ........ .. ............. 17
`
`3.2 Weakly-guiding approximation for the fundamental (HE 11 ) fibre mode .. ........ .. ...... .. 17
`
`3.3 Analysis of the replay field profile using Gaussian fibre mode description ........... .... 19
`
`3 .4 Analysis of the coupling intensity profile using Gaussian fibre mode description ..... 22
`
`3.4.1 Coupling intensity with lateral offsets (u,v) ... ................... ................. ................ 26
`
`3.4.2 Coupling intensity with angular tilts (Ox,(Jy) ...... .. ....... .... ... .... ...... ......... ..... ......... 30
`
`3.5 Numerical simulations of the replay field and coupling intensity profiles ... ....... ....... 32
`
`3 .5 .1 Approximate replay peak descriptions .... ............................ ..... .......................... 34
`
`3.5.2 Approximate coupling intensity with a 1-D lateral offset, u .. .... ....................... 36
`
`3.5.3 Coupling intensity with a 1-D angular tilt, Ox ............. .. ........... ..... .... ................. 38
`
`3.6 Conclusions ... .... .......................... ....... ... ..... .. ...... ........ ...... ....... .... ... .......... ....... ............ 40
`
`CHAPTER4
`
`Theory of the replay of routing holograms written onto a programmable SLM
`
`42
`
`4.1 Introduction .... ...... .......... .... ............... ..... ....... ........ ... ...... .. .... ... .. ... .. ........ ... ..... ...... ....... 42
`
`4.2 Phase quantisation and the distribution of quantised phase elements ............. ... ...... .. .43
`
`4.2.1 Fractional representation for the replay of routing holograms .. .... ........ ...... .. .. .. 44
`
`4.2.2 The replay intensities of grating holograms ........... ..... .... .... ..... ....... ........... .... .... 45
`
`4.2.3 The replay locations of general holograms .................................. ... ....... ............ 49
`
`4.3 The effect of pixellation and dead-space (spatial quantisation) .......... ..... ................... 52
`
`4.3. l Numerical simulations of 1-D hologram replay ....... ...... ... .. ...... ............... .... ...... 54
`
`4.3.2 The upper-bound of the replay efficiency of routing holograms ....... ........... ..... 58
`
`4.4 Inadequate phase modulation (phase mismatch) ............ ..... ... ..... ........ .. .. .......... ... ... ... . 59
`
`4.4.1 The zero orders for phase-mismatched holograms .......... ...... ............................ 60
`
`

`
`CONTENTS
`
`viii
`
`4.4.2 The replay of non-zero orders for phase-mismatched holograms ...................... 62
`
`4.5 Conclusions ...... ...................... ...... ............ .......... ......... .............. .... ........................... ... 63
`
`CHAPTERS
`
`Applications of coupling intensity and discrete hologram replay descriptions
`
`65
`
`5 .1 Introduction ................................................................................................................. 65
`
`5 .2 The design limitations of a large 1 :N holographic switch ............ .... ........ ..... .............. 65
`
`5.2.1 On-beam-axis coupling efficiency and off-beam-axis crosstalk power. ............ 67
`
`5.2.2 The number of hologram repeats for a l:N holographic switch ........................ 68
`
`5.2.3 Prospective 1 :N switch using a highly specified SLM ... ..... ......... ..................... 72
`
`5.3 Deterministic routing hologram generation ..................................................... ............ 75
`
`5.3.1 1-D hologram generation by choosing a combination of x 0 phase elements ..... 76
`
`5.3.2 Offsetting the 1-D combinations to provide 2-D routing patterns ..................... 78
`
`5.3.3 The advantages of the skip-rotate hologram generation technique ............ ........ 79
`
`5.4 Conclusions ................................................................................................................. 80
`
`CHAPTER 6
`
`FLC on CMOSNLSI Si spatial light modulators for holographic applications
`
`81
`
`6.1 Introduction ............................. ................. ... ..... .................. ............................ .... .... ..... 81
`
`6.2 Polarisation rotation as a means of phase modulation ........ ....................................... . 82
`
`6.2.1 Multi-level modulation .. ......... .. ................................. ... ..... ..... ......... ....... ... ..... ... 82
`
`6.2.2 Binary modulation .............................................................................................. 86
`
`6.3 Fast four-level phase-only modulation by polarisation rotation .................................. 88
`
`6.3 .1 Analysis of enhanced switching using a double-pass configuration ... .. ... .. ....... 89
`
`6.3 .2 Double-pass devices .. .......................... .......... ....... ............... ... .................... ... ..... 91
`
`6.4 Processing digital data input for analogue devices ................................. ... ... ......... ..... 93
`
`6.4.1 Global DA Cs .................. ........ .. .. ...... .. .................. ................. ............................. 94
`
`6.4.2 Column-select DA Cs ......................................................................................... 95
`
`6.4.3 Pixel-level DA Cs ............. ............................. .... ... .... ...... .... ..... ............ ......... .. .... 96
`
`6.4.4 Choice of DAC location for the demonstrator chip ........................................... 98
`
`6.5 Pixel design for coherent optical phase modulation ........ ... ...... ......... ...... ............... .... . 98
`
`

`
`CONTENTS
`
`ix
`
`6.5.1 Enhanced optical reflectors for the binary SLM .. ... .... ....................................... 98
`
`6.5.2 Transmissive pixels for quaternary SLM ........................................................... 99
`
`6.6 Semiconductor fabrication process ................... .......................................................... 99
`
`6.6.1 CBH lOV 2-µm CMOS process .... .. ... ............................................................. . 100
`
`6.6.2 CBY 50V 2-µm DMOS process ...................................................................... 103
`
`6.7 Conclusions ................................... .. ........................................... ........ ....... ................ 106
`
`CHAPTER 7
`
`Circuit design and layout of the Roses chip
`
`108
`
`7 .1 Introduction ..... ........................ .......................... ...... ................... ............. ... ... ............ 108
`
`7 .2 Specifications for the binary and quaternary modulators .......... .... ........ .. .................. 109
`
`7 .2.1 The reflective binary array .................................... ........ ................. ...... .... ........ 110
`
`7.2.2 The transmissive quaternary array ...... .... ... ...................................................... 111
`
`7 .3 Overall floor-plan ................................... ..... ........ ... ................................... ... ............. 111
`
`7.4 Features and simulated performance of the Roses chip ............................................ 113
`
`7 .5 Circuit design for binary modulation ..................................... ..... .............................. 116
`
`7.5 .1 Binary driver schematics and functionality ..................................................... 116
`
`7.5.2 Asynchronous global blanking ........ ........................................... ........... .......... . 118
`
`7.5.3 Standard geometry MOSFET design .................. ............................ .......... ....... 118
`
`7 .5 .4 Current-limiting in sizing level shifter transistors ........ ......... .......................... 118
`
`7 .5 .5 Speed versus current-limiting trade-off in sizing buffering transistors ........... 118
`
`7 .6 Layout of the binary backplane ............ ... ..... .. .. ..... ....................... .... .. ..... .................. 119
`
`7 .6.1 Standard geometry MOSFET layout.. .............................................................. 119
`
`7.6.2 Protecting supply lines from peak current effects .................... ........................ 119
`
`7 .6.3 Increasing the decoupling-capacitance of power lines ........................ ............ 120
`
`7 .6.4 Routing driver outputs to the pixel array .................. ....... ................................ 120
`
`7.6.5 Pixel tabs to contact MET3 pixels ............................ ......... ...... ........................ 120
`
`7.7 Circuit design for four-level modulation ...... ................................. .... ............... .... ..... 121
`
`7.7.1 Quaternary driver schematics and functionality .... ..... ............. ........................ 121
`
`7.7.2 Standard geometry MOSFET design ....................................... ... ............. ........ 123
`
`

`
`CONTENTS
`
`x
`
`7 .7.3 Converting drive voltages by digital selection of power rails ...... .. .. ...... ...... .. . 123
`
`7.7.4 Current limiting by sizing select transistors ............................ .. .. .... ............ .. ... 123
`
`7.8 Layout of the quaternary backplane .... .. .. .. ..................... ......... ......... .... .... .. ............... 124
`
`7 .8.1 Layout of the quaternary drivers ...................... .. ........ ............................... .. .. ... 124
`
`7 .8.2 Layout of the quaternary pixel array ........................ .. ............... .. ....... .. ........ .... 124
`
`7.9 Buffering of control signals ............ .. ... ....... .... ...... .... ... .. ... .. .. .. ........ .. .. ....................... 126
`
`7.10 Bonding pads ..... .... .... .. ........ ... ...... ... .. .... ..... ... ............... ..... ...... ........... ... .. ................ 126
`
`7 .11 Functionality tests .... ... .. .. ... .. ..... .... ... ..... .... .. ... ..... .. ..... ....... ...... .... .... ... ...................... 127
`
`7 .11.1 Test of the dynamic shift register data latching and shifting .. .. .. ........ ....... .... 127
`
`7.11.2 Test of frame update, level shifting and DIA conversion .......... ...... .. .. .. .. ...... 127
`
`7.12 Conclusions ...................................... .... ... ....... ... .................. .. ...... .... .. ....... ............... 129
`
`CHAPTERS
`
`Characterisation of fabricated Roses devices
`
`130
`
`8.1 Introduction ....................................... .. ........ .. ... ..... ..... ... ... ............... .. .... ...... .. ...... .. .... 130
`
`8.2 Initial tests of an unprocessed wafer .. ............ .. ............ .... ....... ....... .. ........ .. ....... .. .. .. .. 130
`
`8.2.1 Binary array .. .. .. ......................... .. ... .... ........ .. ... ..... .. .... .... .. .... .......... .. ................ 131
`
`8.2.2 Quaternary array .............. .. .......... ........ .. .......... .... .. .. ... .. ........ .... .... .. .. ...... .. .. ..... 133
`
`8.3 Processing silicon backplane devices and SLM assembly ................................ ........ 135
`
`8.3 .1 Optical quality mirror deposition ......... .. ..... .. ..................................... ....... .. .... . 135
`
`8.3 .2 Al-etch of protective mirror coating .... .. ...................... .. .... .. .. ... .... .............. .. ... 135
`
`8.3.3 Assembly of silicon backplane SLMs .... ... .... .. ................... .. .... .. .... .. .... ... ..... .... 135
`
`8.4 Tests of assembled SLMs ..... .... ..... .................. ............ ........ .... ................ ...... ...... ...... 136
`
`8.4.1 Initial optical inspection using the probe-station ...... ... .... ..... .... .. ..... .. .. .......... .. 136
`
`8.4.2 SLM interface and carrier design ... .. ........ .. .. .... ..... ..... .. .. .. ...... .. ... ..... .. .............. 139
`
`8.4.3 Imaging optical modulating using a polarising microscope ...... .. .. .... .... ... ... .... 140
`
`8 .5 Holographic SLM demonstrator ...... .. ...... .... .... .. ... .. ... .............. .. ... .. ........ .. .... .. ........... 143
`
`8.5.1 Replay field mapping using intensity modulation ... ... ... .. ..... .. .. ..... .................. 143
`
`8.5 .2 Reflective binary-phase holographic operation .... .... .. .... .. .. .. .. .. .. .. ................... 151
`
`8.6 Drive schemes issues for holographic applications ........................ .... .... .. .... .. .......... . 156
`
`

`
`CONTENTS
`
`xi
`
`8.6.1 Non-DC balanced refreshing to maintain holograms for long periods .......... .. 157
`
`8.6.2 DC-balanced refreshing to maintain holograms for long periods ..... ..... .... ...... 160
`
`8.7 Conclusions .... ....... .... ............. ............. .. ..... ........ ..... .... ...... ..... ... ........... ..................... 163
`
`CHAPTER9
`
`Conclusions and further work
`
`164
`
`9 .1 Conclusions ..... ... .............. .... .... ...... .... ... ............ ........... ......... ... .......... ............. ... ..... .. 164
`
`9 .2 Further work ....... .... ........... .... ...... ... ...... .. ....... .. ...... ........ ................. ... .... .. ............ ..... . 167
`
`9.2.1 Single discrete description for numerical hologram replay ....... ..... ..... ............ 167
`
`9.2.2 Single continuous description of optical hologram replay ..... .. ..... .................. 167
`
`9.2.3 Hologram synthesis for multiple replay fractions ..... ....... ... .... ........ ...... ........... 167
`
`9.2.4 Silicon design for a low dimension DMOS process ........... ..... .......... .. .. .... .. .... 167
`
`9.2.5 Hologram efficiency measurements ....... ......... ............ .... .... ...... ... ........... ...... ... 168
`
`9.2.6 Experiments using moderate and high number of phase levels ..... .... ........ ...... 168
`
`Bibliography
`
`APPENDIX A
`
`Derivation of the replay field approximation
`
`APPENDIXB
`
`DC undiffracted light for multi-level polarisation rotation
`
`APPENDIXC
`
`Associated publications
`
`APPENDIXD
`
`Glossary
`
`169
`
`179
`
`183
`
`187
`
`188
`
`D.1 Abbreviations and acronyms .... ..... ...... ......... ... ........ .......... ...... ... .. .... .... ...... .............. 188
`
`D.2 Holographic terminology .... .... ..... .. ...... ............. ...... ......... .... ....... .. ..... .. ... .. ....... ......... 189
`
`

`
`List of figures
`
`2.1: Basic arrangement for coherent optical filtering . .......... ............... ........... ... ........................ 6
`
`2.2: General structure of an SLM ............... ....... .......... ....... ............. ............... .................. ... ...... 7
`
`2.3: Generalised SEED device . .. ..... .. .................. ..... ................ ........... ..... ...... .......................... 10
`
`2.4: Schematic view of an electro-absorption modulator. ...... ... .. ... .. ........ .... ... ........ .... ..... .. .. ... 11
`
`2.5: Single-mode fibre to fibre free-space switch techniques ............... ........ ... ........... ............. 12
`
`2.6: Binary (bistable) ferroelectric liquid crystal orientations ...... ......... ................. ... .............. 14
`
`2.7: N x N free-space optical switching using DMDs ............................................. ....... ...... .... 15
`
`3.1: The replay of a blank hologram using a 4f coherent optical configuration . ....... ... ......... .. 20
`
`3.2: Asymptotic approximation of the replay field of a blank hologram illuminated by a
`Gaussian beam with w,. = 5.06 µm ... ........ ....... ...... .. ........ ... ......... .... ........ ............... .. ........ 21
`
`3.3: Power coupling of the blank hologram replay and the weakly-guiding fibre mode
`
`with an angular-tilt and a lateral-shift in a 4f holographic routing architecture ......... .... . 22
`
`3.4: Numerical integration of the coupling intensity into an output fibre with ID lateral
`
`offsets and angular tilts . ........ ........................ ........ ........ .... ............................................... 25
`
`3.5: 1-D coupling intensity profile using asymptotic approximation for w,. = 5.06 µm ......... . 27
`
`3.6: Coupling intensity for an output fibre with two-dimensional lateral offsets (u,v) for a
`symmetric truncation with ratio y = 2 and similar input/output fibre modes ........... ........ 29
`
`3.7: Absolute intensity error values incurred by including only one term in the asymptotic
`
`

`
`LIST OF FIGURES
`
`xiii
`
`series expansion for y = 2 and w,. = 5.06 µm ......................... .. ........................................ . 30
`
`3.8: Coupling intensity for tilted fibres .... .......... ...... ........ ................ .................... .......... ...... .... 31
`
`3.9: Coupling intensity profile for an output fibre with 2-D angular tilts, ( 8,JJy) ........ ........ .. . 32
`
`3.10: The field profiles at the (a) input, (b) hologram and (c) replay planes for
`
`numerical simulations .... .... .............. .. .............. .. .................... .... ...... .... ......... ........ ..... .... 34
`
`3.11: Approximate replay field magnitude using analytic expression and numerical
`!ft of the blank hologram field at the exit pupil ...... .......... ...................... .. .. ................ .. .. 35
`
`3 .12: Absolute errors of the replay field magnitude by using asymptotic approximation
`
`compared to numericalffi .. ................ ............................................... ..... .... .. ... .. .. .... .... .... 35
`
`3.13: Coupling intensity for an output fibre with a lateral offset u, Gaussian beam radius w, =
`5.06 µm and truncation ratio y= 2 ............... ...... .................. .... ...... ...... .................. .. .... .. 37
`
`3.14: Coupling intensity errors using the asymptotic approximation expression as
`
`compared to numerical results ....................................................... .... ............................. 37
`
`3 .15: Coupling intensity for an output fibre with an angular tilt ex for Gaussian beam
`radius w,. = 5.06 µm and truncation ratio y= 2 ..................................................... ......... 39
`
`3.16: Coupling intensity errors using the e1f and scaled Marcuse's expressions as
`
`compared to numerical results ................. ............................ ........................................... 39
`
`4.1: Higher orders overlap in the numerical replay grid of binary gratings .. .. .. ...................... .46
`
`4.2: Modulo-I shift-rule used to locate higher order replay peaks of quaternary replay
`fraction cr = 1/10 ... .......................... ....... ..... ... .... .. .......... ... ... ........ ... ...... ...... ... ......... .. .... .... 49
`
`4.3: Modulo-I shift-rule to locate higher orders of cr = 115 quaternary hologram replay ........ 51
`
`4.4: Pixel dimensions, transmittance and a 1-D cross-section of pixels .................................. 52
`
`4.5: Real holograms depicted by the 1-D convolution of each calculated hologram point
`
`with the pixel transmittance and multiplied by the finite hologram illumination ............ 52
`
`4.6: Composite effects of spatial and phase quantisation on the intensity of a phase-
`
`matched 3/8 quaternary replay fraction ................................. ....... ................................ .... 56
`
`4.7: Separating the hologram term (delta function plot) and the single pixel aperture
`
`term (dotted line) ........... .................. ............. .... .. ...... .... ... ................................ .... ..... ........ 56
`
`

`
`LIST OF FIGURES
`
`xiv
`
`4.8: Sine squared scaling due to 1-D spatial quantisation ... ....... ......... ....... .......... .... .......... ...... 57
`
`4.9: The ratio of pixellation scaling for p = 0.9 and 1.0 ... ......... ...................... .... .................... 57
`
`4.10: The intensity of the first order replay peaks within the central replication ............ ... ..... 59
`
`4.11: (a) The intensities of the central first and zero order replay peaks.
`
`(b) The intensities of the central zero order for phase-mismatched binary holograms .. 61
`
`4.12: Replay intensity for a phase-mismatched quaternary replay fraction cr = 3/8 ............. ... 63
`
`5 .1 : Coupling of holographic replay power into output fibres ......................... ... ....... .............. 66
`
`5.2: The dependence of coupling and replay intensity on the truncation ratio, y .... ........ ....... 67
`
`5.3: Crosstalk level at 30 µm offset due to the replay of a single beam .......... ........ ........ ........ 68
`
`5.4: (a) The largest x0 of a base hologram to adequately resolve the replay.
`
`(b) The corresponding hologram repeats for N = 1200 . ........ ................... ........ ............... 69
`
`5 .5: The coupling intensity profile at the replay plane for y = 6.15 and cr = 1/20 ................... 70
`
`5.6: The coupling intensity profile at the replay plane for y = 6.15 and cr = 91200 . ................ 71
`
`5.7: The coupling intensity profile at the replay plane for y = 3.07 and cr = 91200 . ................ 71
`
`5.8: (a) The largest beam steering angle using 'A= 1.55 µm.
`
`(b) The fraction of power loss due to a 1 µm dead-space .. .... .... ............. ..... .. .... ............ .. 73
`
`5.9: (a) The size of the central replay replication ford= 10 µm and 'A= 1.55 µm.
`
`(b) The corresponding focal length in order to achieve they values above .................... 73
`
`5.10: Modulo-x0 skip and rotate rule used for generating 1-D holograms . .. ...... ...................... ??
`
`5.11: Flowchart of the algorithm for generating determinstic multi-level phase-only
`
`routing holograms ............................. ......... .............................................. ....................... 79
`
`6.1: (a) m switched states of a CSLC cell
`
`(b) Two linear orthogonal polarisation components of the illuminating beam ............... 82
`
`6.2: Four-level polarisation rotation given an input polarisation and four CSLC states ......... 84
`
`6.3: Four-level phase modulation using optically active and isotropic media ... ................. .. ... 85
`
`6.4: Binary polarisation rotation given an input polarisation and two FLC states .................. 87
`
`6.5: The first order efficiencies of binary and quaternary phase-only holograms ................ ... 88
`
`

`
`LIST OF FIGURES
`
`xv
`
`6.6: Double-pass holographic optical element structure .............. .... .............. .... ...................... 90
`
`6.7: A silicon backplane SLM integrated with a thin-film A/4 wave plate .............................. 91
`
`6.8: A double-pass silicon backplane SLM with fused reactive monomers on glass .............. 91
`
`6.9: A double-pass silicon backplane SLM with a rigid solid crystal /..J4 wave plate ............. 92
`
`6.10: Approximation of the diffraction within a single pixel aperture ............................... ..... 93
`
`6.11 : A general layout of an SLM driven from global DACs .................................................. 94
`
`6.12: Column-select DIA conversion for CMOS/VLSI SLMs . ............................................... 95
`
`6.13: Combinational logic circuits for a column-select DAC .................................................. 96
`
`6.14: Pixel layout using a single DRAM transistor. .......... .. .................................................... 96
`
`6.15: Equivalent circuit components of a LC/DRAM pixel. ................................................... 97
`
`6.16: Six-transistor SRAM memory element. .................... ................ ........ ...... ........................ 97
`
`6.17: Transistor-level schematics of a complimentary n-fet/p-fet switch (transmission
`
`gate) and a CMOS inverter ............................................................................ .. ........ ..... 101
`
`6.18: 1-bit dynamic shift register with two non-overlapping clock signals ........................... 102
`
`6.19: 1-bit static shift register using positive feedback .......................................................... 102
`
`6.20: Level shifting from [O,VDD] to [O,VDDH] using cross-coupled p-fets ..............

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket