throbber
Packaging • Transporting • Storage
`
`Aseptic Filling of Glass and Plastic Containers
`
`Aseptic Filling of Glass and Plastic Containers
`
`nectars, yogurt, drinkable yogurt, salad
`sauces and dressings and stewed fruit.
`There is an interest in aseptic filling in
`the sector of pharmaceutical products as
`well.
`
`3. Advantages of aseptic packaging
`into glass and plastic containers
`
` higher quality: Several products can be
`produced at a higher quality level due to
`the gentle UHT presterilization process.
`This applies to citrus juices, too; in this
`case, however,
`the
`initial quality
`advantage gets lost after 8-10 weeks. In
`Germany,
`the
`turnaround
`time has
`dropped to approx. 6 weeks.
`In some cases,
`the aseptic process
`enables the production of specialities
`which was not possible hitherto.
`Saving energy: Energy can be saved at
`least in presterilizing products in the
`UHT process,
`compared
`to post-
`sterilizing in autoclaves or to hot-filling
`with recooling. The heat exchange in
`UHT processes amounts up to 90%,
`whereas it amounts to only 50% when
`sterilizing in autoclaves and to just under
`40% for hot-filling with.
`A far-reaching reduction of personnel
`can be achieved thanks to extensive
`automation
`of
`aseptic
`plants.
`Additionally, space can be saved as there
`is neither an autoclave, pasteurizer and
`recooler, nor the respective conveying
`system behind the filling plants.
`The lower thermal and pressure burden
`on
`the
`containers
`promotes
`a
`development towards light glass and
`simpler
`closures
`as well
`as
`the
`employment of thermally non-resistant
`plastic containers.
`4. Prerequisites for the containers
`One-way containers:
`
` A
`
`2. For what kinds of containers is
`aseptic filling interesting?
`
`Aseptic filling is interesting not only for
`one-way glass containers but also for
`products in multi-way packages, such as
`UHT milk. For any type of beverage, a
`new EC directive requires reusability of
`70% of all kinds of containers within the
`next three years and of 80% within six
`years. Reusability means
`refilling,
`melting or thermal exploitation of the
`waste. This will promote the use of
`multi-way bottles in the segment of milk
`and juices.
`There has been as brisk development in
`the segment of plastic bottles in various
`countries. Bottles made of various basic
`materials, for example PP, PC, and above
`all PET, have become quite gas-tight
`containers
`thanks
`to
`co-extruded
`additional layers of gas barrier materials.
`In addition to being increasingly used,
`PET-bottles are becoming ever more
`interesting in terms of cost. However, the
`most economical variant, which is not
`recrystallized,
`is able
`to withstand
`thermal stress only up to 74°C. These
`bottles can be processed in our process.
`Multi-way bottles made of plastics are a
`frequently discussed
`issue. We are
`confident that we are able to adapt our
`process correspondingly after having
`completed the design work for these
`bottles.
`Filling goods: There is a whole array of
`filling goods in the neutral or low-acid
`pH-range as well as in the high-acid pH-
`range which are candidates for aseptic
`filling due to various advantages. These
`include UHT milk and UHT milk drinks,
`milky coffee, cream, dietary milk
`products, baby food, isotonic drinks,
`vegetable juices, tomato products, sauces
`and ready-made meals, and from the
`high-acid pH-range fruit
`juices and
`

`N. Buchner, Waiblingen, Germany
`
`
`
`
`
`
`The following contribution presents a
`newly developed filling line which is
`able to fill plastic and glass containers
`and bottles under aseptic conditions. Low
`and high viscous liquids as well as foods
`containing particulates up to 12 mm can
`be processed. The sterilization of the
`containers is a combination of steam
`rinsing together with H2O2 condensation
`prior to sterile air rinsing. Decimal count
`reduction rates of 5D and even more are
`obtained. Under practically observed
`microbiological counts at the surface of
`the packaging material this leads to a
`final degree of non-sterility of 1:10,000
`to 1:100,000.
`Usually available closing elements can
`be handled, such as screw caps, twist offs,
`roll on and even heat-seal closures, the
`latter directly manufactured from a foil
`roll.
`The new equipment concept especially
`takes into consideration the expected
`trend towards returnable packagings for
`food and beverages.
`
`1. Introduction
`
`The aseptic packaging of beverages and
`food has reached considerable economic
`significance. At present, almost 2,000
`aseptic packaging plants may be in
`operation in Europe.
`In Europe, aseptic packaging started
`from the simplest task of degerminating
`webs of packaging material, which were
`then formed into packages. Later on,
`aseptic packaging was extended
`to
`degerminating preformed cups. The tasks
`are even more complex in degerminating
`preformed bottles
`and wide neck
`containers made of glass and plastic due
`to the various shapes. Therefore, this
`development was taken up even later.
`
`
`ZFL 41 (1990) Nr. 5 
`

`
`295 
`
`p. E1
`
`

`

`Packaging • Transporting • Storage
`
`1. Complete plant for the aseptic filling into glass bottles; left side: precleaning machine (special rinser); center: sterilization machine RQT for the glass bottles; half to the right:
`filling unit
`Glass has a hydrophilic surface which,
`however, does not hamper the removal of
`aqueous
`sterilizing
`agents
`in our
`experience. However, glass containers do
`not only consist of glass but of inorganic
`enhancers at the hot end and organic
`enhancers at the cold end. The sterilizing
`agent must
`take
`these
`different
`components into account.
`Glass containers are sterile during their
`production process but are passing
`through a long cooling process with air
`during which an infection cannot be
`avoided unless sterile air is used. Certain
`measures keep germination within
`narrow limits, however, precautionary
`measures are necessary in the field of
`packaging, too, in order to keep the
`germination low until the product is
`unpacked for processing. In particular,
`contacting
`the bottle mouth with
`germinated
`cover material
`like
`corrugated
`board,
`touching with
`unprotected hands and outdoor storage
`must be avoided. Under these conditions,
`germ numbers of only 0-4 germs/bottle
`were found in several tested batches.
`For the production of bottles, plastics are
`extruded or
`injection-molded, during
`
`which process they usually are sterile.
`The blast air employed may easily be
`kept sterile using degerminating filters.
`Since no additional cooling phase is
`necessary, the bottles may immediately
`be put into protective wrappings like
`large bags so that the low germ numbers
`may be maintained.
`Multi-way containers:
`Before aseptically refilling multi-way
`glass bottles, these have to be cleaned in
`the usual way and then examined for
`their integrity. Trials conducted by the
`Fraunhofer Institute of Food Technology
`and Packaging in Munich have resulted
`in a germination level typically below 10
`germs per bottle, even in previously
`heavily contaminated bottles.
`Our own cleaning tests using inoculated
`bottles with germ concentrations of 104 -
`106 resulted in an average germ number
`of 3 per bottle, with extreme values
`reaching almost 100, after the cleaning
`process using
` a commercial bottle
`cleaning plant. Such germinations can
`indeed be handled by our method.
`Inserting a rinser provides additional
`safety.
`
`
`5. Aseptic plants
`Figure 1 shows a complete plant as used
`for glass bottles. lt consists of:
`- a precleaner (rinser — not used for
`plastic bottles),
`- a sterilizer for the bottles,
`- a connecting tunnel,
`- a filler
`- a closing unit, and
`- a supply module for the required media.
`
`5.1 Sterilization of the containers
`
`After preheating, hydrogen peroxide
`vapor is condensed out of the hot air
`carrier onto all inner and outer surfaces
`of the containers, which will be dried off
`after a certain exposure time using sterile
`hot air. Figure 2 shows the procedure:
`The containers which are turned upside
`down are lifted up by a blast pipe so that
`the sterilizing agent may flow around all
`surfaces; during
`this process,
`the
`containers are kept in a chamber-like
`enclosure. The sterilizing conditions such
`as flow rate, temperature and peroxide
`concentration may be adapted to the
`requirements for different containers.
`Figure 3 shows the individual treatment
`
`2 Sterilization of the containers with vaporized hydrogen peroxide in sterile air; 1: rinsing
`nozzle immerses into bottle; 2: bottles is filled with sterilizing agent; 3. rinsing nozzle has
`lifted the bottle, so that it can be reached by the sterilizing agent from all sides (sterilizing
`agent is sucked off via the bottle) 
`296 
`

`
`3 Sterilizing machine RQT for the bottles; left side: bottle feeding conveyor, lift and input
`into the cells of a multi-lane cup chain; middle: treating stations - preheating - sterilizing -
`drying; right; output into the sterile tunnel for filling; top: suctioning off and catalysts for
`removal of the sterilizing agent from the exhaust air. 
`
`ZFL 41 (1990) Nr. 5 
`
`p. E2
`
`

`


`zones in the sterilizing machine.
`Very high sterilizing
`rates can be
`achieved. They will be adjusted in the
`working environment
`to
`the actual
`requirements
`to
`avoid unnecessary
`consumption so
`that
`the
`following
`minimum results will be achieved:
`- Sterilization of containers and lids:
`> 5D
`- Residual peroxide in the containers:
`< 0.5 ppm
`- Peroxide concentration in the working
`environment:
` < 1 ppm
`- Maximum of unsterility rate:
`
`1:10,000
`
`
`average
`realistic
`a
`Presuming
`germination level of the containers of
`below 10 germs per container (actually
`measured number: 0-4), a germ reduction
`of 5 decimal powers (5 D) theoretically
`guarantees a maximum of one unsterile
`container per 10,000. The fact that our
`trials were conducted by inoculating with
`the microorganism Bac. Subtilis, which
`is
`the most
`resistant
`to hydrogen
`peroxide, whereas practically occurring
`germs are less resistant, this process
`provides additional safety.
`As for the admissible residual peroxide
`in the containers, there is a limit of up to
`0.5 ppm only in the U.S. The maximum
`allowable concentration in the workplace
`of 1 ppm for H2O2, in contrast, is an
`international
`limit. The plants are
`adjusted so as
`to fall below both
`thresholds.
`The rinser with vapor treatment, which is
`arranged upstream in the case of glass
`bottles, offers additional safety
`for
`
`Packaging • Transporting • Storage
`
`4 Aseptic filling line for filling high-acid liquids
`such as fruit juice into bottles
`
`thermally sensitive microorganisms such
`as yeasts, molds, acid-forming bacteria
`and, most
`of
`all,
`pathogenic
`microorganisms. The latter cannot be
`over-emphasized, namely that a double
`barrier for pathogenic microorganisms is
`provided, which consists of vapor
`sterilization and H2O2-sterilization, both
`taking place independently.
`Table 1 shows the sterilizing results of
`the rinser alone as well as the combined
`effect of rinser and H2O2 treatment.
`
`Table 1: Sterilizing results for glass bottles
`Type of germ
`Decimal reduction
`Sterilization in upstream rinser
`- Yeasts (Sacch.
`cerevisiae)
`- Molds (Asp. niger)
`>6D
`- Streptococcus faecalis
`5.4 D
`2.9 D
`- Bac. cereus
`Total sterilization by rinser + H2O2-treatment
`- Streptococcus faecalis
`>9D
`- Bac. cereus
`>8D
`
`For high-acid filling goods at a pH <4.5,
`a more simple sterilizing procedure can
`
`>6D
`
`be made use of, which is derived from a
`sterilizing procedure developed for the
`"Hypa S" can (“Kombidose”), which was
`employed successfully. Thereby, these
`cans are degerminated with a mixture of
`streaming vapor and hot sterile air. Here,
`too, the mixture and conditions may be
`modified and adapted to the requirements
`for the different containers so that a
`degerminating
`rate of at
`least 5D
`(decimal powers) may be achieved for
`those microorganisms that are viable in
`this pH-range.
`Figure 4 shows an aseptically working
`plant for the filling of high-acid liquids
`into bottles at a maximum output of
`12,000 bottles/hour.
`
`5.2 Degermination of lids
`
`Depending on the purpose, two different
`processes are used:
`For thermally resistant lids, we use an
`UHT process with saturated vapor, for
`mechanically and thermally unstable lids
`
`5 Filling system with submerged pipes; right: empty bottles are transported below filling
`pipes; left: filling process with lifted bottles which are centered on the top 
`
`6 Example for oxygen protection in aseptically filling sensitive liquids; left side: rinsing nozzles are
`immersing into empty bottles and rinsing the bottles with sterile neutral gas; center: filling into pre-
`gassed bottles with submerged pipes; half-right: channel for head space gas flushing; right: fitting of Al-
`caps and sealing 
`
`ZFL 41 (1990) Nr. 5 
`

`
`297 
`
`p. E3
`
`

`

`such as foil sealing closures produced
`from webs of packaging material, in
`contrast, we use the condensation process
`of hydrogen peroxide described above.
`In both cases,
`the
`required high
`sterilizing rates of at least 5 D-values are
`achieved.
`
`5.3 Filling of the containers
`
`The employable filling systems are:
`- for low viscous liquids: flowmeters or
`weighing fillers. In case of filling
`goods which tend to foam, filling is
`performed with
`submerged pipes
`(Figure 5)
`- for higher viscous liquids and pastes:
`mechanically driven piston fillers
`- for
`liquids and pastes containing
`particulates: also mechanically driven
`piston fillers with a special design and
`special filling nozzles for splatter and
`drip-free
`dosing. Mixtures with
`particles up to 12 mm can be handled.
`The design work to expand this to a
`double particle size is at an advanced
`stage.
`
`
`5.4 Closing of the containers
`Prior to or at closing, the head space of
`the containers may be rinsed with a
`sterile protective gas or with vapor, if
`desired. For filling extremely sensitive
`filling goods, the containers can be pre-
`rinsed prior to filling (see Figure 6).
`The
`following closure variants are
`available: PT (is pressed on, but is
`screwable—Figure 7). Twist off (screw
`cap), roll-on caps, screwable, and heat
`sealing closures. As already mentioned,
`heat sealable caps may be produced from
`webs of packaging material directly in
`the machine.
`
`
`
`
`
`
`
`Packaging • Transporting • Storage
`
`7 Closing of glass bottles with metal lids (PT-closures); 1. Placing the sterilized lids with preheated compound ontothe bottles; 2. Lifting of the
`lids; 3. Blowing of vapor into the head space; 4. Pressing on of the lids. 
`6. Characteristics of the process and
`the plants
`
`This fully enclosed system, which is
`ventilated by sterile air at a slight
`overpressure, is free of unsterile transport
`media that may get into the system and
`works with packages and lids which are
`sterile on all sides;
`it provides a
`maximum of safety of sterility. All
`parameters important for sterility are
`monitored, and at a stop, whether
`triggered automatically or manually, the
`malfunction
`is
`displayed
`visually.
`Technicians can
`intervene at critical
`points using flanged gloves without any
`loss of sterility. The suctioned off
`peroxide vapors are rendered innoxious
`by catalysts. Pipes which are carrying
`filling goods and the filling systems can
`be automatically cleaned using CIP and
`automatically sterilized with saturated
`vapor using SlP. A rinsing plate locks the
`filling nozzles during this process. The
`type of filling good can be changed
`automatically without impairing sterility.
`In case of any problems the rinsing plate
`separates the filling system from the
`machine space so that one of the two
`
`systems may become unsterile in order to
`be able to eliminate the problem without
`impairing the sterility of the other. This
`allows short term resterilization.
`
`7. Actual plants built
`
`Until now, plants have been built for
`bottles made of glass, of plastics, of
`polypropylene base with a barrier layer
`and of polyester, for PT and heat sealing
`closures. The plants are used in Europe,
`the U.S. and in Japan. They have an
`output of 100/min.
`Plants in dual-line design for an output of
`200/min are in development. The range
`of application, which as yet has been that
`of flavored milk, dietary milk products
`and baby food, will be expanded by the
`range of fruit juices and UHT milk in
`multi-way bottles in the next plants to be
`installed.
`
`
`(Author: Prof. Dr.-Ing. Norbert Buchner,
`c/o Robert Bosch GmbH, Division of
`Packaging Machines, Central Pre-
`Development,
`7050
`Waiblingen,
`Germany)
`
`298 
`

`
`ZFL 41 (1990) Nr. 5 
`
`p. E4
`
`

`

`rl1
`
`TRANS PERFECT
`
`CERTIFICATE/DECLARATION OF TRANSLATION
`
`I, Wolf Grosskopf, hereby declare and state the following:
`
`I am well acquainted with the English and German languages and have in the past
`translated numerous English/German documents of legal and/or technical content.
`
`The attached English document is, to the best of my knowledge and belief, a true and
`accurate English translation of the attached German document
`"Buchner_ AseptischesFullen _ ZFL _ vol41 no5 _1990."
`
`All statements made in this CERTIFICATE/DECLARATION OF TRANSLATION of
`my own knowledge are true and all statements made on information and belief are believed to be
`true. My statements in this CERTIFICATE/DECLARATION OF TRANSLATION were made
`with the knowledge that willful false statements and the like are punishable by fme or
`imprisonment, or both (18 U.S.C. 1001).
`
`Date: 09/23/2013
`
`LANGUAGE AND TECHNOLOGY SOLUTIONS FOR GLOBAL BUSINESS
`THREE PARK AVENUE, 39TH FLOOR, NEW YORK, NY 10016 I T 212.689.5555 I F 212.689.1059 I WWW.TRANSPERFECT.COM
`OFFICES IN 75 CITIES WORLDWIDE
`
`p. E5
`
`

`

`Verpacken • Transportleren • Lagem
`
`N. Buchner, Waiblingen
`)
`
`Aseptisches FUllen von Behiltern
`aus Glas und Kunststoffen
`Aseptic Filling of Glass and Plastic Containers
`
`1m folgenden Beitrag wird eine
`neuentwickelte Beftill-Linie vorge(cid:173)
`stellt, auf der Behiilter und Fla(cid:173)
`schen aus Glas und Kunststoffen
`unter aseptischen Bedingungen
`abgeftillt werden konnen.
`Als Filllgut eignen sich niedrig(cid:173)
`und hoherviskose Medien ebenso
`wie Lebensmittelsuspensionen his
`zu einer Partikelgro.Be von 12 mrn.
`Die Sterilisierung der Behiilter
`sieht eine Kombination von Dampf(cid:173)
`spiilung und H20 2-Kondensation
`mit Sterilluftspiilung vor. Damit
`werden dezimale Keimzahlreduk(cid:173)
`tionen von mindestens 5 D er(cid:173)
`reicht. Unter praktischen Keimge(cid:173)
`haltsbedingungen fiir die Packmit(cid:173)
`tel bedeutet das eine Unsterilitats(cid:173)
`rate von 1:10000 his 1:100000.
`Als Deckelsysteme komrnen ne(cid:173)
`ben iiblichen Schraub-, Twist off(cid:173)
`und Anrollverschliissen auch
`HeiBsiegelverschliisse in Frage,
`die direkt von der Packstoffrolle
`gefertigt werden konnen.
`Die neue Anlagenkonzeption tragt
`insbesondere der zu erwartenden
`Entwicklung in Richtung Mehr(cid:173)
`weg-Verpackungen fiir Getranke
`und Lebensmittel Rechnung.
`
`In the following contribution a
`newly developped filling line is
`demonstrated, which is able to fill
`plastic and glass containers and
`bottles under aseptic conditions.
`Low and high viscous liquids as
`well as foods containing particula(cid:173)
`tes up to 12 mrn can be processed.
`The sterilisation of the containers
`consists of a combination of steam
`rinsing together with H20 2 conden(cid:173)
`sation prior to sterile air rinsing.
`Decimal count reduction rates of
`
`ZFL 41 (1990) Nr. 5
`
`5 D and even more are obtained.
`Under practically observed micro(cid:173)
`biological counts at the surface of
`the packaging material this leads
`to a final degree of unsterility of
`1: 10000 to 1: 100000.
`Usually available closing elements
`can be handled such as screw
`caps, twist offs, roll on and even
`heat-seal closures, the latter di(cid:173)
`rectly manufactured from a foil
`roll.
`The new concept of equipment
`especially takes into consideration
`the expected trend towards
`returnable packagings for food
`and beverages.
`
`1 Einleitung
`Das aseptische Verpacken von Getranken
`und Lebensmitteln hat eine betrachtliche
`wirtschaftliche Bedeutung erreicht. In Euro(cid:173)
`pa diirften derzeit fast 2000 aseptische Ver(cid:173)
`packungsanlagen betrieben werden.
`Das aseptische Verpacken begann in Eu(cid:173)
`ropa mit der Entkeimung von Packstoflbah(cid:173)
`nen - also der einfachsten Aufgabe - , die
`dann zu Packungen geformt werden. Spater
`griff das aseptische Verpacken auf die Ent(cid:173)
`keimung von vorgefertigten Bechem iiber.
`Noch schwieriger sind die Aufgaben bei der
`Entkeimung von vorgefertigten Flaschen und
`Weithalsbehaltem aus Glas und Kunststoff
`wegen iluer unterschiedlichen Formen. Des(cid:173)
`halb wurde diese Entwicklung noch spater
`aufgenommen.
`
`2 Fiir welche Behalter ist eine
`aseptische Befiillung interes(cid:173)
`sant?
`Aseptische Befiillung ist nicht nur fur Ein(cid:173)
`weg-Glasbehalter interessant, sondem auch
`fur Mehrweg-verpackte Produkte, z. B. fur H(cid:173)
`Milch. Eine neue EG-Direktive verlangt fur
`
`jede Getrankeart in dreijahren eine Wieder(cid:173)
`nutzung von 70% und in sechs Jahren eine
`solche von 80% aller Behaltnisse. Unter Wie(cid:173)
`derbenutzung wird Wiederbefiillung, Ein(cid:173)
`schrnelzen oder thermische Nutzung des Ab(cid:173)
`falls verstanden. Das wird die Mehrweg-Fla(cid:173)
`sche im Bereich Milch und Fruchtsaft fOr(cid:173)
`dem.
`Die Entwicklung bei Kunststoff-Flaschen
`ist international aufierordentlich rege. Fla(cid:173)
`schen unterschiedlicher Basismaterialien,
`z. B. PP, PC und vor allem PET, sind mit koex(cid:173)
`trudierten Zusatzschichten von Barrieremate(cid:173)
`rialien recht gasdichte Behalter geworden.
`Ober die verstarkte Anwendung werden
`PET-Flaschen kostenmaBig immer interes(cid:173)
`santer. D1e g(instigste Variante, nicht nach(cid:173)
`kristallisiert, ist thermisch allerdings nur bis
`74 •c belastbar. Nach unserem Verfahren
`sind diese Flaschen verarbeitbar.
`Mehrweg-Flaschen aus Kunststoff sind
`vielfach im Gesprach. Wir sind zuversicht(cid:173)
`lich, unser Verfahren nach Beendigung der
`Entwicklungen fur diese Flaschen anpassen
`zukonnen.
`Filllgiiter: Es gibt eine ganze Reihe von
`Filllgiitem aus dem neutralen bzw. schwach
`sauren pH-Bereich und auch aus dem sauren
`pH-Bereich, die wegen verschiedener Vor(cid:173)
`teile Kandidaten fur eine aseptische Abfill(cid:173)
`lung sind. Hierzu zahlen H-Milch und -Milch(cid:173)
`getranke, Milchkaffee, Sahne, diatetische
`Milchprodukte, Babynahrung, Sport-Getran(cid:173)
`ke, Gemo.sesafte, Tomatenprodukte, Saucen
`und Fertiggerichte sowie aus dem sauren
`pH-Bereich Fruchtsafte und -nektare, Jo(cid:173)
`ghurt, Trinkjoghurt, Salatsaucen und Dres(cid:173)
`sings und Fruchtkompott. Interesse an asep(cid:173)
`tischer AbfOllung besteht auch im Bereich
`der pharmazeutischen Produkte.
`
`3 Vorteile einer aseptischen
`Abpackung in Glas- und Kunst(cid:173)
`stoffbehilter
`HOhere Qualitat: Einige Produkte kOnnen
`aufgrund der schonenden UHT-Vorsterilisie(cid:173)
`rung mit hOherer Qualitat hergestellt wer(cid:173)
`den. Dies gilt auch fur Citrussafte, bei denen
`sich allerdings der anfangliche Qualitatsvor-
`
`295
`
`p. E6
`
`

`

`Verpacken · Transportieren · Lagem
`
`1 Gesamlllnlage filr die asepti9che AbfQDung in Glasllaschen; links; Vorreinlgungsmaschine (Spezialrinser); Mine: Sterilisationsma.schine ROT filr die Glasfla.schen; halb(cid:173)
`rechts: Filller; rechts: V erschlie11er
`
`teil nach etwa 8-10 Wochen verliert. In der
`Bundesrepublik 1St die Umschlagszeit auf et(cid:173)
`wa 6 Wochen abgesunken.
`In euugen Fallen erlaubt das asepUsche
`Verfahren dte bJ.Sher rucht mOgllche Herstel(cid:173)
`lung von Speztalltaten.
`Energieemsparung: Zummdest bet der
`Vorsterilisterung der Produkte tm UHT-Ver (cid:173)
`fahren kann gegenUber emer Nachsteriliste(cid:173)
`rung im Autoklaven oder emer HetBfilllung
`mtl Rilckkiihlung Energte emgespart wer(cid:173)
`den. Der Warmeaustausch bet UHT-Verfah(cid:173)
`ren geht biS 9096, bei der Sterilisterung tm
`Autoklaven )edoch nur biS knapp 5096 und
`bet HetBfilllung mtl Rilckkllhlung biS knapp
`4096.
`Wegen der wettgehenden AutomaiiSte(cid:173)
`rung aseptischer Anlagen wrrd eme weitret(cid:173)
`chende Emsparung von Personal erretcht.
`Darilber hmaus erztelt man eme Emsparung
`von Platz, da Autoklav, Pasteunsator und
`Ruckkiihler SOWle die entsprechenden For(cid:173)
`deranlagen hmter den Filllanlagen fehlen.
`Die germgere thermische und Druckbela(cid:173)
`stung der Behalter fOrdert dte EniWlcklung m
`Rtchtung Letchtglas und emfacherer Ver-
`
`sch!Osse SOWle dte Anwendung von ther(cid:173)
`mtSCh rucht belastbaren KunststoffueM!tem.
`
`4 Voraussetzungen fUr die
`Behalter
`
`Emwegbehalter:
`Glas hat eme hydroplu.le Oberflache, dte
`aber nach unserer Erfahrung dte Besettigung
`waBnger Sterilisterrruttel rucht erschwert.
`GlasbeM!ter bestehen aber rucht nur aus
`Glas, sondern auch aus anorgantSChen HetB(cid:173)
`end -Vergutungsrrutteln und organtSChen
`Vergl.ltungsrrutteln am kalten Ende Das Ste(cid:173)
`nliSterrruttel mull dtesen unterschtedllchen
`Bestandteilen Rechnung tragen.
`Glasbehalter smd bet der Herstellung ste(cid:173)
`ril, aber ste durchlaufen emen Iangen Kiihl(cid:173)
`prozeB mtl Luft, m dem eme Infekt:ton unver(cid:173)
`metdbar 1St, wenn rucht Stenlluft emgesetzt
`wrrd. Durch besttmmte MaBnahmen laBt stch
`aber dte Verketmung m engen Grenzen
`halten.
`Auch tm Beretch der Verpackung smd
`VorstchtsmaBnahmen notwendtg, urn dte
`Verketmung biS zum Auspacken ftlr dte Ver-
`
`arbettung medrtg zu halten. Insbesondere
`smd em Kontakt der Flaschenmilndung mit
`ketmbelastetem Abdeckmatenal, Wie Well(cid:173)
`pappe, Benihrung rrut ungeschutzten Han(cid:173)
`den und eme Lagerung un Freten zu ver(cid:173)
`metden.
`Unter dtesen Voraussetzungen wurden bet
`mehreren gepn1ften Chargen Keunzahlen
`von nur 0-4 Keimen/Flasche gefunden.
`KuriStstoff wird ftlr dte Flaschenherstellung
`extrudtert oder gespntzt und 1St tuerbet iib(cid:173)
`hcherwetSe steril. Dte emgesetzte B1asluft
`kann letcht iiber Entkeimungsfilter sterilge(cid:173)
`halten werden. Da anschheBend keme zu(cid:173)
`satzhche Kiihlphase notwendig 1St, kOnnen
`dte Flaschen sofort m schiltzende Umhilllun(cid:173)
`gen, Wie GroBbeutel, ge1angen, so daB der
`medrtge Keunpegel erhalten bletbt.
`Mehrwegbehalter:
`Mehrweg-Glasflaschen mOssen vor einer
`aseptiSChen Wtederbefiillung m
`iibhcher
`WeiSe geremtgt und darm auf lntegntat
`uberpriift werden. Versuche des Fraunhofer(cid:173)
`ftlr Lebensmitteltechnologte und
`lriStttuts
`Verpackung, Milnchen, zetgten, daB das
`Verkeunungsmveau iibhcherwetSe unter lO
`
`2 Sterilisierung der Behllter mit verdampftem Wasserstoffperoxid in Sterilluft;
`1: Spilldilse taucht in Flasche ein; 2: Flasche mit Sterilisierminel gefQDt; 3: SpilldOse
`hat Flasche angehoben, so dall sie allseitig von Sterilisierminel erreicht wird (Sterill(cid:173)
`sierrninel wird llber Flasche abgesaugt)
`
`3 Sterilisiermaschine RQT filr die Flaschen; links: Flaschenzutransport, -Lift und
`Eingabe in die Zellen einer mehrbahnigen Beche rlcene; Mine: Behandlungsstationen
`- Vorwlrmen - Sterilisieren - Troclcnen; rechts: Ausgabe in den Steriltunnel
`zwn Filllen; oben: Absaugung und Katalysatoren zur Beseitigung des Sterilisiermit(cid:173)
`tels aus der Abluft
`
`296
`
`ZFL 41 (1990) Nr. 5
`
`p. E7
`
`

`

`Verpacken · Transportleren • Lagem
`
`Keirnen pro Flasche liegt, auch bei vorher
`stark verschmutzten Flaschen.
`Eigene Reinigungsversuche mit einer
`kommerziellen Flaschenwaschanlage erga(cid:173)
`ben bei beirnpften Flaschen mit Keirnkon(cid:173)
`zentrationen von 104 -lOS nach der Reinigung
`eine mittlere Verkeirnung von 3 pro Flasche
`mit Extremwerten bis knapp 100. Solche Ver(cid:173)
`keirnungen sind von unserer Methode durch(cid:173)
`aus zu bewal.tigen. Die Zwischenschaltung ei(cid:173)
`nes Rinsers gibt zusatzliche Sicherheit.
`
`5 Aseptische Anlagen
`In Bild l wird eine Gesamtanlage gezeigt,
`wie sie filr Glasflaschen in Verwendung ist.
`Sie besteht aus
`- einem Vorreiniger (Rinser - entfallt bei
`Kunststoff-Flaschen),
`- einem Sterilisator filr die Flaschen,
`- Verbindungstunnel,
`- Fiiller,
`- Verschliefier und einem
`- Versorgungsmodul filr die benOtigten Me-
`dien.
`
`5.1 Sterilisation der Behlilter
`
`Auf sarntlichen lnnen- und AuBenflachen der
`Behalter wird nach einer Vorwarmung Was(cid:173)
`serstoffperoxiddampf aus dem Trager Hei.B(cid:173)
`luft kondensiert und dies wird nach einer ge(cid:173)
`wissen Einwirkungszeit durch sterile Hei.Bluft
`wieder abgetrocknet. Den Vorgang zeigt
`Bild 2: Die auf dem Kopf stehenden Behalter
`werden durch ein Blasrohr so angehoben,
`daB sarntliche Flachen vom Sterilisiermittel
`urnstromt werden kOnnen, wobei sich der
`Behalter in einer kamrnerartigen Umschlie(cid:173)
`Bung befindet. Die Sterilisationsbedingun(cid:173)
`gen, wie StrOmungsgeschwindigkeit, Tem(cid:173)
`peratur und Peroxidkonzentration, konnen
`den Bediirfnissen unterschiedlicher Behalter
`
`4 Aseptische Abfilllinie filr die Fl11luno von sauren Flilssiolceiten wie Fruchtsaft in Flaschen
`
`angepafit werden. Bild 3 zeigt die einzelnen
`in der Sterilisierma(cid:173)
`Behandlungszonen
`schine.
`Es lassen sich sehr hohe Sterilisierraten er(cid:173)
`zielen. Bei der praktischen Einstellung wer(cid:173)
`den sie zur Verrneidung unnOtiger Verbrau(cid:173)
`che auf den wirklichen Bedarf reduziert, so
`daB
`folgende Mmdestergebrusse erzielt
`werden:
`- Sterilisation der Behalter und
`Deckel:
`- Restperoxid in den Behaltem:
`- Peroxidkonzentration irn
`<lppm
`Arbeitsraum:
`l: 10000
`- Max. Unsterilitatsrate:
`Nachdem wir realistisch eine mittlere Ver(cid:173)
`keirnung der Behalter unter 10 pro Behalter
`(praktisch gemessen 0-4) voraussetzen, gibt
`eine Keimreduktion urn 5 Zehnerpotenzen
`(5 D) theoretisch die Gewahr filr maximal ei-
`
`>50
`<0,5ppm
`
`nen unsterilen Behalter von 10000. Da unsere
`Versuche durch Beirnpfen mit dem gegen(cid:173)
`iiber Wassersto!Iperoxid widerstandsfah.ig(cid:173)
`sten Mikroorganismus Bac. subtilis durchge(cid:173)
`fuhrt wurden und die praktisch vorkommen(cid:173)
`den Keirne weniger widerstandsfahig sind,
`ergibt sich eine zusatzliche Sicherheit.
`FUr das zulassige Restperoxid in den Be(cid:173)
`haltem besteht nur in den USA ein Grenz(cid:173)
`wert von maximal 0,5 ppm; die maxirnale Ar(cid:173)
`beitsplatzkonzentration von l ppm filr H20 2
`dagegen ist ein intemationaler Grenzwert.
`Die Anlagen werden so eingestellt, daB bei(cid:173)
`de Grenzwerte unterschritten werden.
`Der bei Glasflaschen vorgeschaltete Rin(cid:173)
`ser mit Dampfbehandlung bringt filr ther(cid:173)
`misch empfmdliche Mikroorganismen, wie
`Hefen, Schirnmelpilze, saurebildende Bakte(cid:173)
`rien und vor allem pathogene Mikroorganis(cid:173)
`men eine zusatzliche Sicherheit. Letzteres
`
`5 Filllsystem mit Tauchrohren; rechts: Leerllaschen werden unter Fl11lrohre trans-
`portiert; linb: Filllvorgang mit angehobenen Flaschen, die oben zentriert sind
`
`6 Beispiel filr Sauerstoffschutz bei der aseptischen Fl11lung emp6ndlicher Flilssig(cid:173)
`lceiten: linb: Spilldiisen tauchen in teerllaschen und spillen die Flaschen mit steri-
`lern Neutralgas; Mitte: Fl11lung in die vorbegasten Flaschen mit Tauchrohren; haJb.
`rechts: lranal filr Kopfraumbegasuno; rechts: Aufsetzen von Al-K.appen und Ver(cid:173)
`siegeln
`
`298
`
`ZFL 41 (1990) Nr. 5
`
`p. E8
`
`

`

`Verpacken • Transportleren • Lagem
`
`kann rucht zu sehr betont werden, namlich,
`daB fUr pathogene Mil<roorganismen eine
`doppelte Schranke emgebaut ist, unabMn(cid:173)
`gig vonemander Darnpfsterilisation und
`H20:!-Sten1J.sabon.
`The Sterilis1erergebrusse des Rinsers allei(cid:173)
`ne sowte die Kornbmationswirkung aus Rin(cid:173)
`ser- und H20 3-Behandlung zeigt Tabelle l.
`FOr saure FilllgOter mit pH <4,5 kann ein
`emfacheres Sterilisierverfahren eingesetzt
`werden, das s1ch von dem fUr die Kornbidose
`»Hypa-S• entwtckelten und erfolgreich an(cid:173)
`gewandten Sterilis1erverfahren ableitet. Dort
`werden die Kornb1dosen mit einem Gemisch
`aus strOmendem Dampf und hei.Ber Sterilluft
`entke1mt. Auch hier kOnnen Mischung und
`Bedingungen modif1Z1ert und den Bediirfnis(cid:173)
`sen der versch1edenen Behalter angepaBt
`werden, so daB Slch fUr die in diesem pH(cid:173)
`Bereich lebensfatugen Mil<roorganismen ei(cid:173)
`ne Entke1mungsrate von mindestens 5 D
`(Zehnerpotenzen) ernelen Uillt.
`Bild 4 ze1gt erne aseptlsch arbeitende An(cid:173)
`lage fUr d1e Fi.illung saurer Fliissigkeiten m
`Flaschen rrut emer maxunalen Ausbringung
`von 12000 Flaschenlh.
`5.2 Entkelmung der Deckel
`
`Je nach Zweckmafi1gke1t werden zwei ver(cid:173)
`scluedene Verfahren e

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket