`
`Aseptic Filling of Glass and Plastic Containers
`
`Aseptic Filling of Glass and Plastic Containers
`
`nectars, yogurt, drinkable yogurt, salad
`sauces and dressings and stewed fruit.
`There is an interest in aseptic filling in
`the sector of pharmaceutical products as
`well.
`
`3. Advantages of aseptic packaging
`into glass and plastic containers
`
` higher quality: Several products can be
`produced at a higher quality level due to
`the gentle UHT presterilization process.
`This applies to citrus juices, too; in this
`case, however,
`the
`initial quality
`advantage gets lost after 8-10 weeks. In
`Germany,
`the
`turnaround
`time has
`dropped to approx. 6 weeks.
`In some cases,
`the aseptic process
`enables the production of specialities
`which was not possible hitherto.
`Saving energy: Energy can be saved at
`least in presterilizing products in the
`UHT process,
`compared
`to post-
`sterilizing in autoclaves or to hot-filling
`with recooling. The heat exchange in
`UHT processes amounts up to 90%,
`whereas it amounts to only 50% when
`sterilizing in autoclaves and to just under
`40% for hot-filling with.
`A far-reaching reduction of personnel
`can be achieved thanks to extensive
`automation
`of
`aseptic
`plants.
`Additionally, space can be saved as there
`is neither an autoclave, pasteurizer and
`recooler, nor the respective conveying
`system behind the filling plants.
`The lower thermal and pressure burden
`on
`the
`containers
`promotes
`a
`development towards light glass and
`simpler
`closures
`as well
`as
`the
`employment of thermally non-resistant
`plastic containers.
`4. Prerequisites for the containers
`One-way containers:
`
` A
`
`2. For what kinds of containers is
`aseptic filling interesting?
`
`Aseptic filling is interesting not only for
`one-way glass containers but also for
`products in multi-way packages, such as
`UHT milk. For any type of beverage, a
`new EC directive requires reusability of
`70% of all kinds of containers within the
`next three years and of 80% within six
`years. Reusability means
`refilling,
`melting or thermal exploitation of the
`waste. This will promote the use of
`multi-way bottles in the segment of milk
`and juices.
`There has been as brisk development in
`the segment of plastic bottles in various
`countries. Bottles made of various basic
`materials, for example PP, PC, and above
`all PET, have become quite gas-tight
`containers
`thanks
`to
`co-extruded
`additional layers of gas barrier materials.
`In addition to being increasingly used,
`PET-bottles are becoming ever more
`interesting in terms of cost. However, the
`most economical variant, which is not
`recrystallized,
`is able
`to withstand
`thermal stress only up to 74°C. These
`bottles can be processed in our process.
`Multi-way bottles made of plastics are a
`frequently discussed
`issue. We are
`confident that we are able to adapt our
`process correspondingly after having
`completed the design work for these
`bottles.
`Filling goods: There is a whole array of
`filling goods in the neutral or low-acid
`pH-range as well as in the high-acid pH-
`range which are candidates for aseptic
`filling due to various advantages. These
`include UHT milk and UHT milk drinks,
`milky coffee, cream, dietary milk
`products, baby food, isotonic drinks,
`vegetable juices, tomato products, sauces
`and ready-made meals, and from the
`high-acid pH-range fruit
`juices and
`
`
`N. Buchner, Waiblingen, Germany
`
`
`
`
`
`
`The following contribution presents a
`newly developed filling line which is
`able to fill plastic and glass containers
`and bottles under aseptic conditions. Low
`and high viscous liquids as well as foods
`containing particulates up to 12 mm can
`be processed. The sterilization of the
`containers is a combination of steam
`rinsing together with H2O2 condensation
`prior to sterile air rinsing. Decimal count
`reduction rates of 5D and even more are
`obtained. Under practically observed
`microbiological counts at the surface of
`the packaging material this leads to a
`final degree of non-sterility of 1:10,000
`to 1:100,000.
`Usually available closing elements can
`be handled, such as screw caps, twist offs,
`roll on and even heat-seal closures, the
`latter directly manufactured from a foil
`roll.
`The new equipment concept especially
`takes into consideration the expected
`trend towards returnable packagings for
`food and beverages.
`
`1. Introduction
`
`The aseptic packaging of beverages and
`food has reached considerable economic
`significance. At present, almost 2,000
`aseptic packaging plants may be in
`operation in Europe.
`In Europe, aseptic packaging started
`from the simplest task of degerminating
`webs of packaging material, which were
`then formed into packages. Later on,
`aseptic packaging was extended
`to
`degerminating preformed cups. The tasks
`are even more complex in degerminating
`preformed bottles
`and wide neck
`containers made of glass and plastic due
`to the various shapes. Therefore, this
`development was taken up even later.
`
`
`ZFL 41 (1990) Nr. 5
`
`
`
`295
`
`p. E1
`
`
`
`Packaging • Transporting • Storage
`
`1. Complete plant for the aseptic filling into glass bottles; left side: precleaning machine (special rinser); center: sterilization machine RQT for the glass bottles; half to the right:
`filling unit
`Glass has a hydrophilic surface which,
`however, does not hamper the removal of
`aqueous
`sterilizing
`agents
`in our
`experience. However, glass containers do
`not only consist of glass but of inorganic
`enhancers at the hot end and organic
`enhancers at the cold end. The sterilizing
`agent must
`take
`these
`different
`components into account.
`Glass containers are sterile during their
`production process but are passing
`through a long cooling process with air
`during which an infection cannot be
`avoided unless sterile air is used. Certain
`measures keep germination within
`narrow limits, however, precautionary
`measures are necessary in the field of
`packaging, too, in order to keep the
`germination low until the product is
`unpacked for processing. In particular,
`contacting
`the bottle mouth with
`germinated
`cover material
`like
`corrugated
`board,
`touching with
`unprotected hands and outdoor storage
`must be avoided. Under these conditions,
`germ numbers of only 0-4 germs/bottle
`were found in several tested batches.
`For the production of bottles, plastics are
`extruded or
`injection-molded, during
`
`which process they usually are sterile.
`The blast air employed may easily be
`kept sterile using degerminating filters.
`Since no additional cooling phase is
`necessary, the bottles may immediately
`be put into protective wrappings like
`large bags so that the low germ numbers
`may be maintained.
`Multi-way containers:
`Before aseptically refilling multi-way
`glass bottles, these have to be cleaned in
`the usual way and then examined for
`their integrity. Trials conducted by the
`Fraunhofer Institute of Food Technology
`and Packaging in Munich have resulted
`in a germination level typically below 10
`germs per bottle, even in previously
`heavily contaminated bottles.
`Our own cleaning tests using inoculated
`bottles with germ concentrations of 104 -
`106 resulted in an average germ number
`of 3 per bottle, with extreme values
`reaching almost 100, after the cleaning
`process using
` a commercial bottle
`cleaning plant. Such germinations can
`indeed be handled by our method.
`Inserting a rinser provides additional
`safety.
`
`
`5. Aseptic plants
`Figure 1 shows a complete plant as used
`for glass bottles. lt consists of:
`- a precleaner (rinser — not used for
`plastic bottles),
`- a sterilizer for the bottles,
`- a connecting tunnel,
`- a filler
`- a closing unit, and
`- a supply module for the required media.
`
`5.1 Sterilization of the containers
`
`After preheating, hydrogen peroxide
`vapor is condensed out of the hot air
`carrier onto all inner and outer surfaces
`of the containers, which will be dried off
`after a certain exposure time using sterile
`hot air. Figure 2 shows the procedure:
`The containers which are turned upside
`down are lifted up by a blast pipe so that
`the sterilizing agent may flow around all
`surfaces; during
`this process,
`the
`containers are kept in a chamber-like
`enclosure. The sterilizing conditions such
`as flow rate, temperature and peroxide
`concentration may be adapted to the
`requirements for different containers.
`Figure 3 shows the individual treatment
`
`2 Sterilization of the containers with vaporized hydrogen peroxide in sterile air; 1: rinsing
`nozzle immerses into bottle; 2: bottles is filled with sterilizing agent; 3. rinsing nozzle has
`lifted the bottle, so that it can be reached by the sterilizing agent from all sides (sterilizing
`agent is sucked off via the bottle)
`296
`
`
`
`3 Sterilizing machine RQT for the bottles; left side: bottle feeding conveyor, lift and input
`into the cells of a multi-lane cup chain; middle: treating stations - preheating - sterilizing -
`drying; right; output into the sterile tunnel for filling; top: suctioning off and catalysts for
`removal of the sterilizing agent from the exhaust air.
`
`ZFL 41 (1990) Nr. 5
`
`p. E2
`
`
`
`
`zones in the sterilizing machine.
`Very high sterilizing
`rates can be
`achieved. They will be adjusted in the
`working environment
`to
`the actual
`requirements
`to
`avoid unnecessary
`consumption so
`that
`the
`following
`minimum results will be achieved:
`- Sterilization of containers and lids:
`> 5D
`- Residual peroxide in the containers:
`< 0.5 ppm
`- Peroxide concentration in the working
`environment:
` < 1 ppm
`- Maximum of unsterility rate:
`
`1:10,000
`
`
`average
`realistic
`a
`Presuming
`germination level of the containers of
`below 10 germs per container (actually
`measured number: 0-4), a germ reduction
`of 5 decimal powers (5 D) theoretically
`guarantees a maximum of one unsterile
`container per 10,000. The fact that our
`trials were conducted by inoculating with
`the microorganism Bac. Subtilis, which
`is
`the most
`resistant
`to hydrogen
`peroxide, whereas practically occurring
`germs are less resistant, this process
`provides additional safety.
`As for the admissible residual peroxide
`in the containers, there is a limit of up to
`0.5 ppm only in the U.S. The maximum
`allowable concentration in the workplace
`of 1 ppm for H2O2, in contrast, is an
`international
`limit. The plants are
`adjusted so as
`to fall below both
`thresholds.
`The rinser with vapor treatment, which is
`arranged upstream in the case of glass
`bottles, offers additional safety
`for
`
`Packaging • Transporting • Storage
`
`4 Aseptic filling line for filling high-acid liquids
`such as fruit juice into bottles
`
`thermally sensitive microorganisms such
`as yeasts, molds, acid-forming bacteria
`and, most
`of
`all,
`pathogenic
`microorganisms. The latter cannot be
`over-emphasized, namely that a double
`barrier for pathogenic microorganisms is
`provided, which consists of vapor
`sterilization and H2O2-sterilization, both
`taking place independently.
`Table 1 shows the sterilizing results of
`the rinser alone as well as the combined
`effect of rinser and H2O2 treatment.
`
`Table 1: Sterilizing results for glass bottles
`Type of germ
`Decimal reduction
`Sterilization in upstream rinser
`- Yeasts (Sacch.
`cerevisiae)
`- Molds (Asp. niger)
`>6D
`- Streptococcus faecalis
`5.4 D
`2.9 D
`- Bac. cereus
`Total sterilization by rinser + H2O2-treatment
`- Streptococcus faecalis
`>9D
`- Bac. cereus
`>8D
`
`For high-acid filling goods at a pH <4.5,
`a more simple sterilizing procedure can
`
`>6D
`
`be made use of, which is derived from a
`sterilizing procedure developed for the
`"Hypa S" can (“Kombidose”), which was
`employed successfully. Thereby, these
`cans are degerminated with a mixture of
`streaming vapor and hot sterile air. Here,
`too, the mixture and conditions may be
`modified and adapted to the requirements
`for the different containers so that a
`degerminating
`rate of at
`least 5D
`(decimal powers) may be achieved for
`those microorganisms that are viable in
`this pH-range.
`Figure 4 shows an aseptically working
`plant for the filling of high-acid liquids
`into bottles at a maximum output of
`12,000 bottles/hour.
`
`5.2 Degermination of lids
`
`Depending on the purpose, two different
`processes are used:
`For thermally resistant lids, we use an
`UHT process with saturated vapor, for
`mechanically and thermally unstable lids
`
`5 Filling system with submerged pipes; right: empty bottles are transported below filling
`pipes; left: filling process with lifted bottles which are centered on the top
`
`6 Example for oxygen protection in aseptically filling sensitive liquids; left side: rinsing nozzles are
`immersing into empty bottles and rinsing the bottles with sterile neutral gas; center: filling into pre-
`gassed bottles with submerged pipes; half-right: channel for head space gas flushing; right: fitting of Al-
`caps and sealing
`
`ZFL 41 (1990) Nr. 5
`
`
`
`297
`
`p. E3
`
`
`
`such as foil sealing closures produced
`from webs of packaging material, in
`contrast, we use the condensation process
`of hydrogen peroxide described above.
`In both cases,
`the
`required high
`sterilizing rates of at least 5 D-values are
`achieved.
`
`5.3 Filling of the containers
`
`The employable filling systems are:
`- for low viscous liquids: flowmeters or
`weighing fillers. In case of filling
`goods which tend to foam, filling is
`performed with
`submerged pipes
`(Figure 5)
`- for higher viscous liquids and pastes:
`mechanically driven piston fillers
`- for
`liquids and pastes containing
`particulates: also mechanically driven
`piston fillers with a special design and
`special filling nozzles for splatter and
`drip-free
`dosing. Mixtures with
`particles up to 12 mm can be handled.
`The design work to expand this to a
`double particle size is at an advanced
`stage.
`
`
`5.4 Closing of the containers
`Prior to or at closing, the head space of
`the containers may be rinsed with a
`sterile protective gas or with vapor, if
`desired. For filling extremely sensitive
`filling goods, the containers can be pre-
`rinsed prior to filling (see Figure 6).
`The
`following closure variants are
`available: PT (is pressed on, but is
`screwable—Figure 7). Twist off (screw
`cap), roll-on caps, screwable, and heat
`sealing closures. As already mentioned,
`heat sealable caps may be produced from
`webs of packaging material directly in
`the machine.
`
`
`
`
`
`
`
`Packaging • Transporting • Storage
`
`7 Closing of glass bottles with metal lids (PT-closures); 1. Placing the sterilized lids with preheated compound ontothe bottles; 2. Lifting of the
`lids; 3. Blowing of vapor into the head space; 4. Pressing on of the lids.
`6. Characteristics of the process and
`the plants
`
`This fully enclosed system, which is
`ventilated by sterile air at a slight
`overpressure, is free of unsterile transport
`media that may get into the system and
`works with packages and lids which are
`sterile on all sides;
`it provides a
`maximum of safety of sterility. All
`parameters important for sterility are
`monitored, and at a stop, whether
`triggered automatically or manually, the
`malfunction
`is
`displayed
`visually.
`Technicians can
`intervene at critical
`points using flanged gloves without any
`loss of sterility. The suctioned off
`peroxide vapors are rendered innoxious
`by catalysts. Pipes which are carrying
`filling goods and the filling systems can
`be automatically cleaned using CIP and
`automatically sterilized with saturated
`vapor using SlP. A rinsing plate locks the
`filling nozzles during this process. The
`type of filling good can be changed
`automatically without impairing sterility.
`In case of any problems the rinsing plate
`separates the filling system from the
`machine space so that one of the two
`
`systems may become unsterile in order to
`be able to eliminate the problem without
`impairing the sterility of the other. This
`allows short term resterilization.
`
`7. Actual plants built
`
`Until now, plants have been built for
`bottles made of glass, of plastics, of
`polypropylene base with a barrier layer
`and of polyester, for PT and heat sealing
`closures. The plants are used in Europe,
`the U.S. and in Japan. They have an
`output of 100/min.
`Plants in dual-line design for an output of
`200/min are in development. The range
`of application, which as yet has been that
`of flavored milk, dietary milk products
`and baby food, will be expanded by the
`range of fruit juices and UHT milk in
`multi-way bottles in the next plants to be
`installed.
`
`
`(Author: Prof. Dr.-Ing. Norbert Buchner,
`c/o Robert Bosch GmbH, Division of
`Packaging Machines, Central Pre-
`Development,
`7050
`Waiblingen,
`Germany)
`
`298
`
`
`
`ZFL 41 (1990) Nr. 5
`
`p. E4
`
`
`
`rl1
`
`TRANS PERFECT
`
`CERTIFICATE/DECLARATION OF TRANSLATION
`
`I, Wolf Grosskopf, hereby declare and state the following:
`
`I am well acquainted with the English and German languages and have in the past
`translated numerous English/German documents of legal and/or technical content.
`
`The attached English document is, to the best of my knowledge and belief, a true and
`accurate English translation of the attached German document
`"Buchner_ AseptischesFullen _ ZFL _ vol41 no5 _1990."
`
`All statements made in this CERTIFICATE/DECLARATION OF TRANSLATION of
`my own knowledge are true and all statements made on information and belief are believed to be
`true. My statements in this CERTIFICATE/DECLARATION OF TRANSLATION were made
`with the knowledge that willful false statements and the like are punishable by fme or
`imprisonment, or both (18 U.S.C. 1001).
`
`Date: 09/23/2013
`
`LANGUAGE AND TECHNOLOGY SOLUTIONS FOR GLOBAL BUSINESS
`THREE PARK AVENUE, 39TH FLOOR, NEW YORK, NY 10016 I T 212.689.5555 I F 212.689.1059 I WWW.TRANSPERFECT.COM
`OFFICES IN 75 CITIES WORLDWIDE
`
`p. E5
`
`
`
`Verpacken • Transportleren • Lagem
`
`N. Buchner, Waiblingen
`)
`
`Aseptisches FUllen von Behiltern
`aus Glas und Kunststoffen
`Aseptic Filling of Glass and Plastic Containers
`
`1m folgenden Beitrag wird eine
`neuentwickelte Beftill-Linie vorge(cid:173)
`stellt, auf der Behiilter und Fla(cid:173)
`schen aus Glas und Kunststoffen
`unter aseptischen Bedingungen
`abgeftillt werden konnen.
`Als Filllgut eignen sich niedrig(cid:173)
`und hoherviskose Medien ebenso
`wie Lebensmittelsuspensionen his
`zu einer Partikelgro.Be von 12 mrn.
`Die Sterilisierung der Behiilter
`sieht eine Kombination von Dampf(cid:173)
`spiilung und H20 2-Kondensation
`mit Sterilluftspiilung vor. Damit
`werden dezimale Keimzahlreduk(cid:173)
`tionen von mindestens 5 D er(cid:173)
`reicht. Unter praktischen Keimge(cid:173)
`haltsbedingungen fiir die Packmit(cid:173)
`tel bedeutet das eine Unsterilitats(cid:173)
`rate von 1:10000 his 1:100000.
`Als Deckelsysteme komrnen ne(cid:173)
`ben iiblichen Schraub-, Twist off(cid:173)
`und Anrollverschliissen auch
`HeiBsiegelverschliisse in Frage,
`die direkt von der Packstoffrolle
`gefertigt werden konnen.
`Die neue Anlagenkonzeption tragt
`insbesondere der zu erwartenden
`Entwicklung in Richtung Mehr(cid:173)
`weg-Verpackungen fiir Getranke
`und Lebensmittel Rechnung.
`
`In the following contribution a
`newly developped filling line is
`demonstrated, which is able to fill
`plastic and glass containers and
`bottles under aseptic conditions.
`Low and high viscous liquids as
`well as foods containing particula(cid:173)
`tes up to 12 mrn can be processed.
`The sterilisation of the containers
`consists of a combination of steam
`rinsing together with H20 2 conden(cid:173)
`sation prior to sterile air rinsing.
`Decimal count reduction rates of
`
`ZFL 41 (1990) Nr. 5
`
`5 D and even more are obtained.
`Under practically observed micro(cid:173)
`biological counts at the surface of
`the packaging material this leads
`to a final degree of unsterility of
`1: 10000 to 1: 100000.
`Usually available closing elements
`can be handled such as screw
`caps, twist offs, roll on and even
`heat-seal closures, the latter di(cid:173)
`rectly manufactured from a foil
`roll.
`The new concept of equipment
`especially takes into consideration
`the expected trend towards
`returnable packagings for food
`and beverages.
`
`1 Einleitung
`Das aseptische Verpacken von Getranken
`und Lebensmitteln hat eine betrachtliche
`wirtschaftliche Bedeutung erreicht. In Euro(cid:173)
`pa diirften derzeit fast 2000 aseptische Ver(cid:173)
`packungsanlagen betrieben werden.
`Das aseptische Verpacken begann in Eu(cid:173)
`ropa mit der Entkeimung von Packstoflbah(cid:173)
`nen - also der einfachsten Aufgabe - , die
`dann zu Packungen geformt werden. Spater
`griff das aseptische Verpacken auf die Ent(cid:173)
`keimung von vorgefertigten Bechem iiber.
`Noch schwieriger sind die Aufgaben bei der
`Entkeimung von vorgefertigten Flaschen und
`Weithalsbehaltem aus Glas und Kunststoff
`wegen iluer unterschiedlichen Formen. Des(cid:173)
`halb wurde diese Entwicklung noch spater
`aufgenommen.
`
`2 Fiir welche Behalter ist eine
`aseptische Befiillung interes(cid:173)
`sant?
`Aseptische Befiillung ist nicht nur fur Ein(cid:173)
`weg-Glasbehalter interessant, sondem auch
`fur Mehrweg-verpackte Produkte, z. B. fur H(cid:173)
`Milch. Eine neue EG-Direktive verlangt fur
`
`jede Getrankeart in dreijahren eine Wieder(cid:173)
`nutzung von 70% und in sechs Jahren eine
`solche von 80% aller Behaltnisse. Unter Wie(cid:173)
`derbenutzung wird Wiederbefiillung, Ein(cid:173)
`schrnelzen oder thermische Nutzung des Ab(cid:173)
`falls verstanden. Das wird die Mehrweg-Fla(cid:173)
`sche im Bereich Milch und Fruchtsaft fOr(cid:173)
`dem.
`Die Entwicklung bei Kunststoff-Flaschen
`ist international aufierordentlich rege. Fla(cid:173)
`schen unterschiedlicher Basismaterialien,
`z. B. PP, PC und vor allem PET, sind mit koex(cid:173)
`trudierten Zusatzschichten von Barrieremate(cid:173)
`rialien recht gasdichte Behalter geworden.
`Ober die verstarkte Anwendung werden
`PET-Flaschen kostenmaBig immer interes(cid:173)
`santer. D1e g(instigste Variante, nicht nach(cid:173)
`kristallisiert, ist thermisch allerdings nur bis
`74 •c belastbar. Nach unserem Verfahren
`sind diese Flaschen verarbeitbar.
`Mehrweg-Flaschen aus Kunststoff sind
`vielfach im Gesprach. Wir sind zuversicht(cid:173)
`lich, unser Verfahren nach Beendigung der
`Entwicklungen fur diese Flaschen anpassen
`zukonnen.
`Filllgiiter: Es gibt eine ganze Reihe von
`Filllgiitem aus dem neutralen bzw. schwach
`sauren pH-Bereich und auch aus dem sauren
`pH-Bereich, die wegen verschiedener Vor(cid:173)
`teile Kandidaten fur eine aseptische Abfill(cid:173)
`lung sind. Hierzu zahlen H-Milch und -Milch(cid:173)
`getranke, Milchkaffee, Sahne, diatetische
`Milchprodukte, Babynahrung, Sport-Getran(cid:173)
`ke, Gemo.sesafte, Tomatenprodukte, Saucen
`und Fertiggerichte sowie aus dem sauren
`pH-Bereich Fruchtsafte und -nektare, Jo(cid:173)
`ghurt, Trinkjoghurt, Salatsaucen und Dres(cid:173)
`sings und Fruchtkompott. Interesse an asep(cid:173)
`tischer AbfOllung besteht auch im Bereich
`der pharmazeutischen Produkte.
`
`3 Vorteile einer aseptischen
`Abpackung in Glas- und Kunst(cid:173)
`stoffbehilter
`HOhere Qualitat: Einige Produkte kOnnen
`aufgrund der schonenden UHT-Vorsterilisie(cid:173)
`rung mit hOherer Qualitat hergestellt wer(cid:173)
`den. Dies gilt auch fur Citrussafte, bei denen
`sich allerdings der anfangliche Qualitatsvor-
`
`295
`
`p. E6
`
`
`
`Verpacken · Transportieren · Lagem
`
`1 Gesamlllnlage filr die asepti9che AbfQDung in Glasllaschen; links; Vorreinlgungsmaschine (Spezialrinser); Mine: Sterilisationsma.schine ROT filr die Glasfla.schen; halb(cid:173)
`rechts: Filller; rechts: V erschlie11er
`
`teil nach etwa 8-10 Wochen verliert. In der
`Bundesrepublik 1St die Umschlagszeit auf et(cid:173)
`wa 6 Wochen abgesunken.
`In euugen Fallen erlaubt das asepUsche
`Verfahren dte bJ.Sher rucht mOgllche Herstel(cid:173)
`lung von Speztalltaten.
`Energieemsparung: Zummdest bet der
`Vorsterilisterung der Produkte tm UHT-Ver (cid:173)
`fahren kann gegenUber emer Nachsteriliste(cid:173)
`rung im Autoklaven oder emer HetBfilllung
`mtl Rilckkiihlung Energte emgespart wer(cid:173)
`den. Der Warmeaustausch bet UHT-Verfah(cid:173)
`ren geht biS 9096, bei der Sterilisterung tm
`Autoklaven )edoch nur biS knapp 5096 und
`bet HetBfilllung mtl Rilckkllhlung biS knapp
`4096.
`Wegen der wettgehenden AutomaiiSte(cid:173)
`rung aseptischer Anlagen wrrd eme weitret(cid:173)
`chende Emsparung von Personal erretcht.
`Darilber hmaus erztelt man eme Emsparung
`von Platz, da Autoklav, Pasteunsator und
`Ruckkiihler SOWle die entsprechenden For(cid:173)
`deranlagen hmter den Filllanlagen fehlen.
`Die germgere thermische und Druckbela(cid:173)
`stung der Behalter fOrdert dte EniWlcklung m
`Rtchtung Letchtglas und emfacherer Ver-
`
`sch!Osse SOWle dte Anwendung von ther(cid:173)
`mtSCh rucht belastbaren KunststoffueM!tem.
`
`4 Voraussetzungen fUr die
`Behalter
`
`Emwegbehalter:
`Glas hat eme hydroplu.le Oberflache, dte
`aber nach unserer Erfahrung dte Besettigung
`waBnger Sterilisterrruttel rucht erschwert.
`GlasbeM!ter bestehen aber rucht nur aus
`Glas, sondern auch aus anorgantSChen HetB(cid:173)
`end -Vergutungsrrutteln und organtSChen
`Vergl.ltungsrrutteln am kalten Ende Das Ste(cid:173)
`nliSterrruttel mull dtesen unterschtedllchen
`Bestandteilen Rechnung tragen.
`Glasbehalter smd bet der Herstellung ste(cid:173)
`ril, aber ste durchlaufen emen Iangen Kiihl(cid:173)
`prozeB mtl Luft, m dem eme Infekt:ton unver(cid:173)
`metdbar 1St, wenn rucht Stenlluft emgesetzt
`wrrd. Durch besttmmte MaBnahmen laBt stch
`aber dte Verketmung m engen Grenzen
`halten.
`Auch tm Beretch der Verpackung smd
`VorstchtsmaBnahmen notwendtg, urn dte
`Verketmung biS zum Auspacken ftlr dte Ver-
`
`arbettung medrtg zu halten. Insbesondere
`smd em Kontakt der Flaschenmilndung mit
`ketmbelastetem Abdeckmatenal, Wie Well(cid:173)
`pappe, Benihrung rrut ungeschutzten Han(cid:173)
`den und eme Lagerung un Freten zu ver(cid:173)
`metden.
`Unter dtesen Voraussetzungen wurden bet
`mehreren gepn1ften Chargen Keunzahlen
`von nur 0-4 Keimen/Flasche gefunden.
`KuriStstoff wird ftlr dte Flaschenherstellung
`extrudtert oder gespntzt und 1St tuerbet iib(cid:173)
`hcherwetSe steril. Dte emgesetzte B1asluft
`kann letcht iiber Entkeimungsfilter sterilge(cid:173)
`halten werden. Da anschheBend keme zu(cid:173)
`satzhche Kiihlphase notwendig 1St, kOnnen
`dte Flaschen sofort m schiltzende Umhilllun(cid:173)
`gen, Wie GroBbeutel, ge1angen, so daB der
`medrtge Keunpegel erhalten bletbt.
`Mehrwegbehalter:
`Mehrweg-Glasflaschen mOssen vor einer
`aseptiSChen Wtederbefiillung m
`iibhcher
`WeiSe geremtgt und darm auf lntegntat
`uberpriift werden. Versuche des Fraunhofer(cid:173)
`ftlr Lebensmitteltechnologte und
`lriStttuts
`Verpackung, Milnchen, zetgten, daB das
`Verkeunungsmveau iibhcherwetSe unter lO
`
`2 Sterilisierung der Behllter mit verdampftem Wasserstoffperoxid in Sterilluft;
`1: Spilldilse taucht in Flasche ein; 2: Flasche mit Sterilisierminel gefQDt; 3: SpilldOse
`hat Flasche angehoben, so dall sie allseitig von Sterilisierminel erreicht wird (Sterill(cid:173)
`sierrninel wird llber Flasche abgesaugt)
`
`3 Sterilisiermaschine RQT filr die Flaschen; links: Flaschenzutransport, -Lift und
`Eingabe in die Zellen einer mehrbahnigen Beche rlcene; Mine: Behandlungsstationen
`- Vorwlrmen - Sterilisieren - Troclcnen; rechts: Ausgabe in den Steriltunnel
`zwn Filllen; oben: Absaugung und Katalysatoren zur Beseitigung des Sterilisiermit(cid:173)
`tels aus der Abluft
`
`296
`
`ZFL 41 (1990) Nr. 5
`
`p. E7
`
`
`
`Verpacken · Transportleren • Lagem
`
`Keirnen pro Flasche liegt, auch bei vorher
`stark verschmutzten Flaschen.
`Eigene Reinigungsversuche mit einer
`kommerziellen Flaschenwaschanlage erga(cid:173)
`ben bei beirnpften Flaschen mit Keirnkon(cid:173)
`zentrationen von 104 -lOS nach der Reinigung
`eine mittlere Verkeirnung von 3 pro Flasche
`mit Extremwerten bis knapp 100. Solche Ver(cid:173)
`keirnungen sind von unserer Methode durch(cid:173)
`aus zu bewal.tigen. Die Zwischenschaltung ei(cid:173)
`nes Rinsers gibt zusatzliche Sicherheit.
`
`5 Aseptische Anlagen
`In Bild l wird eine Gesamtanlage gezeigt,
`wie sie filr Glasflaschen in Verwendung ist.
`Sie besteht aus
`- einem Vorreiniger (Rinser - entfallt bei
`Kunststoff-Flaschen),
`- einem Sterilisator filr die Flaschen,
`- Verbindungstunnel,
`- Fiiller,
`- Verschliefier und einem
`- Versorgungsmodul filr die benOtigten Me-
`dien.
`
`5.1 Sterilisation der Behlilter
`
`Auf sarntlichen lnnen- und AuBenflachen der
`Behalter wird nach einer Vorwarmung Was(cid:173)
`serstoffperoxiddampf aus dem Trager Hei.B(cid:173)
`luft kondensiert und dies wird nach einer ge(cid:173)
`wissen Einwirkungszeit durch sterile Hei.Bluft
`wieder abgetrocknet. Den Vorgang zeigt
`Bild 2: Die auf dem Kopf stehenden Behalter
`werden durch ein Blasrohr so angehoben,
`daB sarntliche Flachen vom Sterilisiermittel
`urnstromt werden kOnnen, wobei sich der
`Behalter in einer kamrnerartigen Umschlie(cid:173)
`Bung befindet. Die Sterilisationsbedingun(cid:173)
`gen, wie StrOmungsgeschwindigkeit, Tem(cid:173)
`peratur und Peroxidkonzentration, konnen
`den Bediirfnissen unterschiedlicher Behalter
`
`4 Aseptische Abfilllinie filr die Fl11luno von sauren Flilssiolceiten wie Fruchtsaft in Flaschen
`
`angepafit werden. Bild 3 zeigt die einzelnen
`in der Sterilisierma(cid:173)
`Behandlungszonen
`schine.
`Es lassen sich sehr hohe Sterilisierraten er(cid:173)
`zielen. Bei der praktischen Einstellung wer(cid:173)
`den sie zur Verrneidung unnOtiger Verbrau(cid:173)
`che auf den wirklichen Bedarf reduziert, so
`daB
`folgende Mmdestergebrusse erzielt
`werden:
`- Sterilisation der Behalter und
`Deckel:
`- Restperoxid in den Behaltem:
`- Peroxidkonzentration irn
`<lppm
`Arbeitsraum:
`l: 10000
`- Max. Unsterilitatsrate:
`Nachdem wir realistisch eine mittlere Ver(cid:173)
`keirnung der Behalter unter 10 pro Behalter
`(praktisch gemessen 0-4) voraussetzen, gibt
`eine Keimreduktion urn 5 Zehnerpotenzen
`(5 D) theoretisch die Gewahr filr maximal ei-
`
`>50
`<0,5ppm
`
`nen unsterilen Behalter von 10000. Da unsere
`Versuche durch Beirnpfen mit dem gegen(cid:173)
`iiber Wassersto!Iperoxid widerstandsfah.ig(cid:173)
`sten Mikroorganismus Bac. subtilis durchge(cid:173)
`fuhrt wurden und die praktisch vorkommen(cid:173)
`den Keirne weniger widerstandsfahig sind,
`ergibt sich eine zusatzliche Sicherheit.
`FUr das zulassige Restperoxid in den Be(cid:173)
`haltem besteht nur in den USA ein Grenz(cid:173)
`wert von maximal 0,5 ppm; die maxirnale Ar(cid:173)
`beitsplatzkonzentration von l ppm filr H20 2
`dagegen ist ein intemationaler Grenzwert.
`Die Anlagen werden so eingestellt, daB bei(cid:173)
`de Grenzwerte unterschritten werden.
`Der bei Glasflaschen vorgeschaltete Rin(cid:173)
`ser mit Dampfbehandlung bringt filr ther(cid:173)
`misch empfmdliche Mikroorganismen, wie
`Hefen, Schirnmelpilze, saurebildende Bakte(cid:173)
`rien und vor allem pathogene Mikroorganis(cid:173)
`men eine zusatzliche Sicherheit. Letzteres
`
`5 Filllsystem mit Tauchrohren; rechts: Leerllaschen werden unter Fl11lrohre trans-
`portiert; linb: Filllvorgang mit angehobenen Flaschen, die oben zentriert sind
`
`6 Beispiel filr Sauerstoffschutz bei der aseptischen Fl11lung emp6ndlicher Flilssig(cid:173)
`lceiten: linb: Spilldiisen tauchen in teerllaschen und spillen die Flaschen mit steri-
`lern Neutralgas; Mitte: Fl11lung in die vorbegasten Flaschen mit Tauchrohren; haJb.
`rechts: lranal filr Kopfraumbegasuno; rechts: Aufsetzen von Al-K.appen und Ver(cid:173)
`siegeln
`
`298
`
`ZFL 41 (1990) Nr. 5
`
`p. E8
`
`
`
`Verpacken • Transportleren • Lagem
`
`kann rucht zu sehr betont werden, namlich,
`daB fUr pathogene Mil<roorganismen eine
`doppelte Schranke emgebaut ist, unabMn(cid:173)
`gig vonemander Darnpfsterilisation und
`H20:!-Sten1J.sabon.
`The Sterilis1erergebrusse des Rinsers allei(cid:173)
`ne sowte die Kornbmationswirkung aus Rin(cid:173)
`ser- und H20 3-Behandlung zeigt Tabelle l.
`FOr saure FilllgOter mit pH <4,5 kann ein
`emfacheres Sterilisierverfahren eingesetzt
`werden, das s1ch von dem fUr die Kornbidose
`»Hypa-S• entwtckelten und erfolgreich an(cid:173)
`gewandten Sterilis1erverfahren ableitet. Dort
`werden die Kornb1dosen mit einem Gemisch
`aus strOmendem Dampf und hei.Ber Sterilluft
`entke1mt. Auch hier kOnnen Mischung und
`Bedingungen modif1Z1ert und den Bediirfnis(cid:173)
`sen der versch1edenen Behalter angepaBt
`werden, so daB Slch fUr die in diesem pH(cid:173)
`Bereich lebensfatugen Mil<roorganismen ei(cid:173)
`ne Entke1mungsrate von mindestens 5 D
`(Zehnerpotenzen) ernelen Uillt.
`Bild 4 ze1gt erne aseptlsch arbeitende An(cid:173)
`lage fUr d1e Fi.illung saurer Fliissigkeiten m
`Flaschen rrut emer maxunalen Ausbringung
`von 12000 Flaschenlh.
`5.2 Entkelmung der Deckel
`
`Je nach Zweckmafi1gke1t werden zwei ver(cid:173)
`scluedene Verfahren e