throbber
SEL EXHIBIT NO. 2012
`INNOLUX CORP. v. PATENT OF SEMICONDUCTOR ENERGY
`LABORATORY CO., LTD.
`
`IPR2013-00065
`
`

`
`ActiveMatrix
`Liquid crystal
`Displays
`
`Fundamentals and
`Applications
`
`Willem den Boer @
`
`Hewnes
`
`

`
`Copyflghted Hnttrlal
`
`H:-I113. H l.I'I|'|1I1|1I'I.I"|I'I.|I' H.121.-in-I’
`ill:-'”JIl'|'hH'HItI.' EHEC. 5.Ii-it 1W. HI.:II'lIvI'I.'II=II'l. H5 UIHIJ3. U5-.|"|.
`I.-l'l'|.I-i.'l'L‘ Hi-‘Elli. ]It|l'dfll'I HI-ll. I.‘-"lI:I.'II'Il (‘E1 HHE UK
`
`flfiflght I-‘I INS. Elle!-‘h-1 in-c. fill |:l.|;hI.I rrznud.
`
`Nu [nun Lflhin. ;-n.Hh:unm nu|.- he Iepru-du:.e1.L nun] in 1 ran-In-2|. swan-L. :r rmumlnul In my him
`-1 Fr-rvan'r n'u1u.¢Iucm=-I1-in". mrduninl. |1l'|-rim:-'In'ir=|:. new-nJi11:. nrnllirrvriic. I=iII'I-nut tht pin!-r
`1-I-m1:m p-Irmlli-:In-rHl1t .puI:rI|ihI:r.
`
`Prnuwalclru any but audit Illlflfllf Eru-rrl Ehavifli Sui-uI'u:1e -5: Tucluwl-3:; Ilu.|.hra Dlf|HTl'l|I'l.'|.l H1
`1.'J'n‘r|I1'.L UH: flair: It-H] [H5 H-H-|i}U..1I.I: 1-H-1-H IHE|5H‘:'—J'i'i-I-. l-rrmll: |11£n'IIIi|LH-hlrlsrl-II-r.:LnI.Il..
`"|"1.1I.I Inn‘; l1I:|'fll.ITI;|:|EI¢ '|'-.‘|I.I' h:qI.:n|:nI1-'I.iI1: tin H1: H-'Ir':r I'|n:Ir|1.I.1'rIq;:
`hf
`Iehdliiafi "l:I4.i.t1:|I:t " ur-I |'J1.:n "'CI:i|IiI'IlI:|g P'|.-I'rI1'I:h'.In."
`
`: H.-an-I.I::|1l:lr|a:I'ur |.|1l'|-|'|I:|'l'lBI'H.'l -It'|1mIt:rI'lnn'I'1'uI.' ha: hen |-lI'|l'l|:'-H. Elam-'|.:t pnrm |'.I::l|:hanh- an acid-1'mr
`pqa-:1 I-'1'u.'n-rvn [Ir-H-I"c~|u.
`
`l.£InII-gr u{CcI1|-nafiuulqhq-I-u-Pnflirflm Dun
`An-11:‘-nflm ad-urrrun-J.
`
`Brlliill HI:-rIr1' Cnlnlaglflnl-In-FI.|HiL':IflIu Dun
`H. alumni: and Fur thln hill: hp i'|'Bl]iHI.‘ fun III-r Hr-liifll I.I'unu1'.
`
`ISBN-1|} l'.'.|—'i"5[H5J'&I3-5
`IEEJ."-1-13:: '!J?fi,-D-EDS-TH-1]~I
`
`Fur h'I.rLI'I2fllIH.II nn lI|.Nr|-:15. [:1I.I'.'I'I:l!i'l'I
`v'rI-ir Ilur WEE Iil-r Ill HI'I'h'ru|I:.:II:vin'.r-In
`
`I2'EE'6ID1|'CE|fl‘JI1I1|}'i'1i?fli-{III
`
`Pl'I1'I|'.Eil I.I1Il'bE United 5I:II:|:I11F.I'|.I'r|-aria.
`
`‘fiinkin cc-gather I'D
`
`Iihmfiu ingvdzitlnping #l"E
`
`cnpyrlghted Haterlal
`
`

`
`Copyflghted Material
`
`Pilfiutl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II
`
`Contents
`
`Chapter Ella: l . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
`1.1 HifiIflfiC.E|lPE1'|ipeCti'-"E .
`. . . .
`. . .
`.
`. .
`.
`.
`.
`. . .
`. . .
`.
`.
`.
`.
`.
`.
`. . .
`.
`.
`.
`.
`. . .
`.
`.
`.
`.
`.
`. I
`1.1 Liu_uidCry-s:alPrupnrtins .
`.
`.
`. . .
`.
`. .
`.
`.
`.
`. . .
`. . .
`.
`.
`.
`. . .
`.
`.
`.
`.
`. . .
`.
`.
`.
`. ..'.-'
`1.3 Pnlatizatioti. Dichmisni. and l3iteFr:'mg:nr.e .
`. . .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`. I!
`1.4
`'l'l1e Twisted Hematit: Cell
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`. 14
`1.5 Limitntimis of Passive Matrix Addrmsing .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`. . . . . .
`.
`.
`.
`.
`. I?
`REFEIEIIIES .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`. 21
`
`.
`.
`.
`.
`
`.
`.
`.
`.
`
`.
`.
`.
`.
`
`fllapfiwfww D;¢In'¢tiq[Frfiu¢ipInnfA:h‘rI'Mnfl-ilLEDs ................... ...?3
`1.1
`'l'heCa5|: fur Arrive Matrix . . .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`. 23
`
`3.3 Rcquitetnenti fur Fictiw: Matrix Switching llcvitnes .
`2.3 Tl'u:ThJ‘n Film Tramismr
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`3.4 Thin Film Silicun Pniparties .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`1.5
`ifimntphnus Silictm TPT5 .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`2.5
`Piilyefiilictm TF|'s . . .
`.
`. . .
`.
`. . .
`2.? Basic Pixel Circuit and .Fs.|;I4;Ir|:fi1'ngI'I."IetI'11}t;I.Ii.
`1.3
`Ilindaaflased Displays
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`3.9 Plasltta-Addressed LED;
`.
`.
`.
`.
`.
`.
`.
`. . .
`.
`.
`.
`.
`.
`Rnlitrn-runes .
`.
`. . .
`. . .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`
`. _ .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`. . .
`.
`.
`.
`
`. _ . . .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`. . .
`.
`.
`.
`.
`.
`
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`
`_
`.
`.
`.
`.
`_
`.
`
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`
`. H
`. 2'9
`
`. 31'
`.
`. H
`.
`. 36
`.
`. . 3'33
`.
`. 43
`.
`. II?
`.
`. 43
`
`aupm mm: g nf'AMLCD:t . . . . . . . . . . . . . . .
`1|
`Basin: Strtictute HF FLMLCEJH .
`.
`.
`.
`. . .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`. . .
`.
`.
`
`. . . . . . . . . . . . 1!!
`.
`.
`.
`. . .
`.
`.
`.
`.
`.
`.
`.
`. -I9
`
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`3.1 Thin. Film Prucaasing .
`3.} Thin Film Prupcrties ................. .
`3.4 Amtnphnus Silicnn TFT Army Frricesses
`.
`.
`3.5
`I‘u'|'y-Si TFT Funny I'm-cefies .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`3.fi Colur Filter ._-‘Err;-,r Fruccsq.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`3.? LC Call H.-ssembly .
`.
`.
`.
`. . .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`3.3 Module Assembly .
`.
`.
`.
`. . .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`. . .
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`_
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`. . . . .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`,
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`
`.
`_
`.
`.
`.
`.
`.
`
`.
`_
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`
`. 5D
`.
`:51
`. I55
`. 5'9
`. T3
`. ?+
`. ‘F?
`
`vi
`
`cnpyrlghted hlatetial
`
`

`
`Cd-‘I'ulII'l'l:
`
`Copyflghted Material
`
`‘field ltnpruveutents arid Cnr'tsidr.-Iatiram .
`3.9
`3.1:) Trends in Manufacturing .
`. . .
`.
`. . . .
`.
`. . .
`
`.
`.
`.
`. . .
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`.
`. . .
`
`.
`.
`.
`. . .
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`.
`. . .
`
`. T"!
`. -B}
`
`fluptlr Four: An-{LCD Eflttntnits ............................... . . 3:?
`++l Drive in-’lt:thn$ . . + . . + . . . . .
`.
`. + . + + . + .
`. . + . . . . . . . . + .
`. . .
`. . . . .
`. + . . B7
`
`4.2 Raw Select and Culurnn Data Dn'w,-rs . . .
`. . .
`.
`.
`.
`.
`.
`.
`.
`-1-3 Timing Contmllcrs. Display Curntmllcts. and Interfaces
`£4 lntEgraIiunafElI:£tnJI1l£EflI1Gla55 .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`-L5 Eacltllghts .
`.
`.
`. . .
`. . .
`.
`.
`. . . . .
`. . .
`. . .
`.
`.
`. , .
`. . . . .
`.
`.
`-Ir,,II5 Pawn: l'.:.u1uumptitm . . .
`.
`.
`.
`.
`.
`. . .
`. . .
`.
`.
`. . .
`.
`.
`.
`.
`.
`.
`.
`llefiemruzes . . .
`.
`.
`.
`.
`.
`. . .
`.
`.
`.
`.
`.
`. . .
`.
`.
`.
`.
`.
`. . .
`.
`.
`.
`.
`.
`.
`.
`
`.
`
`.
`.
`.
`.
`.
`.
`.
`. . .
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`. . .
`.
`.
`.
`. . .
`.
`.
`.
`.
`.
`.
`
`. . .
`. . .
`.
`.
`.
`.
`.
`.
`. . .
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`
`. . .
`. 93-
`. + . . '99
`.
`.
`. Ifil
`.
`.
`. ID5
`.
`.
`. IDS‘
`.
`.
`. Iii)
`
`. ...................f‘.I'3
`. . . . . .
`aHp@'Fflfi Hfl .
`5.1 Easicsuffiuntmrteuyattdflnlufiwmtw .
`.
`.
`. . .
`.
`.
`. . .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`. .. Ii}
`1: Brightntfi and Cuntran: F-atin .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`. I 1?
`5.3 Viewing Angle: Eehmriot
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`. . .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`. £21
`5.4 C.':1lutandGta',rSca|e-Perfnnnancc .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`. H133-
`5.5 R.uspuns4:']'innca:tflFlicltcr
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`. H129
`5.-5 Flesnlutinn and Size .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`. I31
`
`.
`
`5.?
`
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`.
`. . .
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`. .. I3-l
`.
`.
`. 13'?
`
`ltttage flu-t'rl'-.tcI:.1
`Rzfiemtnas .
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`.
`. . .
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`Eiuphrfiirt bnpruwmmtuflmttgcgwflythfifllfifls . . . . . . . . . . . . . . .. 1'39
`ELI Brightness lmpmwzmenta.
`.
`.
`.
`.
`. . .
`. . .
`.
`_
`. . .
`_
`.
`.
`.
`.
`.
`.
`.
`.
`.
`_ . .
`. . .
`.
`.
`_
`.
`. I39
`-ELL!
`lrucrensati Cnlnr Filter Tmtumissitm .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`. HG
`vI5.L2 High-fitttrture Ratin [kaigns .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`III-D‘
`6.1.3 Altzmafive C-u:tlI:It' Fill:-er Ptrmngnmenll
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`Ill:-ll
`.
`vI5.l.‘lr Hriglttnms Enhanccntent Film .
`.
`. . .
`.
`. . .
`.
`.
`_
`.
`_
`.
`_ _ _
`_
`.
`.
`_
`.
`. - H5
`ti: Readability Untltat High. .P1.tr|l:Iient. Lighring Cundlriuns .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`. HE
`15.3 Cnlnr Ci-amut lmpntvemants .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`. H5‘
`63} with Viewing Angle Technulugics .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`. I50
`fi.*i.1 Cumpmsariun Films
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`. I51
`64.2
`in-Planeefiwitching M{!I.lE .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`. I51
`15.4.3
`'1.-‘art-ia:al.FLl.ignn:u:nt
`. .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`. 157
`15.‘-hi
`Pt 'C'umpari5v.m and Other ‘Jiewi-ng Finale
`.
`.
`Improvement Iiiiethucls
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`15.5 Enhancement Cd’ Video Ferlhnnance .
`.
`.
`.
`.
`.
`.
`.
`.
`. , .
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`. I-Ell
`. 166
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`.
`.
`.
`.
`H.ES['H:i['£5t;'. "Hm: Cnnrpensatintt .
`15.5.1
`6.5.2 Emulatiun t:-Fart In-apulsc-T-y1:re Display .
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`. 1-5?
`.
`].I5'3'
`
`IIW
`
`t‘:-npyrlghtect hlnterial
`
`

`
`Copyrighted Material
`
`cfll:|‘lIl‘I'l3
`
`fi.fi Large Size .
`F.efi:-aeneea .
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`.
`. . .
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`.
`. . .
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`.
`. . .
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`.
`. . .
`
`.
`.
`
`. .
`.
`. . .
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`. .. IT-'Ir.'
`. .. 1'.-‘I5
`
`Chlpteriniln: 5pddAHLCD . . . . . . . . . . . . . . . . . . . . . ..:l?'F
`‘H U|n'a-High-Rt-selutien l'|I'll.'!|l.':lll'i.I|I'§- and Improved Guy Scale . . . . .
`.
`.
`.
`. . . . 1??
`"L1 Refleetive nnui Tmrfillcttive Displays .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`. . .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`. . . 132
`‘L3
`Fli.".‘lIiIl'5f.'ql.l-El'lIlIlJ Curler L-CD5
`.
`.
`.
`. . .
`.
`. . .
`. . . .
`.
`. . .
`.
`. . .
`.
`. . . . . . .
`.
`.
`.
`. IE5
`.
`'.|'.+5I
`SIIEl'El.'1El:[lpiI2 5 .
`.
`.
`.
`.
`.
`.
`. . .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`. I3?
`'.|'.5 TeuehSca'eenTechne|ugies....- . . .
`.
`. .
`. . . . . . . . .
`. . . . . . .
`. ..l5i'lJ
`Referencfi .
`.
`. . .
`.
`.
`. . .
`. . .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`. . .
`. . .
`. . .
`. . . .
`.
`.
`. . .
`.
`IESIE
`
`. . .
`
`.
`
`.
`
`AItIruuIfiIeFlfltHeneJ'D£I,HuJrTl:hIrola_gi:t. . . . . . . . . . . . . ..I'§?'
`Plflfilflfl Displays .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`. . .
`. . .
`.
`. .
`.
`.
`.
`. . .
`. . . 19.9
`3.1
`Bl Elecuulumineseent Displays
`.
`.
`.
`.
`. . .
`.
`. . .
`.
`.
`.
`.
`.
`. . . .
`. . .
`. . . . .
`. . .
`. . . . EH1
`.
`3.1.]
`TFEL ll-Lsplayrs
`.
`. . .
`.
`.
`.
`.
`.
`. .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`. . .
`.
`.
`. . .
`.
`.
`.
`.
`.
`.
`. 192
`3.1.1 Chtganie LED ilispla-ya .
`.
`.
`.
`. .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`. . .
`. . .
`.
`.
`. . .
`.
`.
`.
`.
`.
`.
`. H13
`E..1..3- Pmiive Mani: Drgnnie LED Displays
`.
`.
`.
`. . . .
`. . .
`.
`.
`.
`.
`.
`.
`.
`.
`. . . . H35
`3.1.4
`riurtivc lhflatrix Organic LED Displajls . . .
`.
`. . . .
`. . .
`.
`. . . . .
`.
`.
`. . . . 1135
`3.} Electronic Paper anzl Flexible Displays
`. . .
`.
`.
`.
`.
`.
`. . .
`.
`. . .
`.
`.
`. . .
`.
`.
`.
`.
`. . . 399
`3.4 Clrganie Tlu'.n Film Tranaistnrs .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`. . .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`. 113
`E35 Frnnt mid Rear Projeerien llisplays . .
`.
`.
`.
`.
`. . . . .
`. . .
`.
`. . . .
`. . .
`.
`.
`.
`. . . . EH
`Eel‘;-renees .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`. . .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`. 121
`
`.
`.
`.
`
`Uurwrflfim: A:1'hIMlh'ilH'utPunll'bn@.5nlIer! . . . . . . . . . . . . . . . . ..2‘2'3
`9.1
`Flat Panel Image Ser.-am‘: . .
`.
`.
`.
`.
`.
`.
`. .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`. . .
`. . .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`. 11]-
`5|.1 Direct Ctmuerslnn lJ'etec:ms .
`.
`.
`.
`. . .
`.
`. . .
`. . .
`.
`.
`.
`. . . . . . . .
`.
`.
`.
`.
`. . .
`. . . 225
`9.3
`lnrlirrct Cmvueim DeI:e1:t::rI'.a
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`. .
`.
`. . .
`.
`.
`.
`.
`.
`.
`. . .
`.
`.
`. 223
`
`9.4 Applieatiire of Flat Panel X-Ear Se-risers .
`Eefetermes .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`. . .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`
`. . . . . . . .
`.
`.
`.
`.
`.
`. . .
`
`. . .
`.
`.
`.
`
`. . . . . .
`.
`.
`.
`.
`.
`.
`
`.
`.
`
`.
`.
`
`. . . . 113
`.
`. . . 13-III
`
`lfltllx. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`
`. . .
`
`. . . . . . . . . . . . . . 235
`
`in
`
`cepyrighted hlnteriel
`
`

`
`CHAPTER 2 Operating Principles of Active Matrix L CDs 2.1 The Case for Active Matrix
`
`Passive matrix LCDs are relatively easy to manufacture and do not require very large
`investments. An active matrix LCD, on the other hand, consists of thin film
`semiconductor circuitry on a glass substrate and shares some of the manufacturing
`complexity of integrated circuits on semiconductor wafers.
`The efficient production of active matrix LCDs requires large capital investments at the
`same level of wafer fabs for IC manufacturing. The incentive for an LCD producer to
`make this investment rather than sticking with passive matrix LCDs is simple: image
`quality, including resolution, maximum size, contrast ratio, viewing angle, gray scale, and
`video performance is much better in AMLCDs than in passive matrix LCDs. The
`resolution limitation of the passive matrix was addressed in the previous chapter.
`Another drawback of passive matrix addressing is that the capacitance of the select and
`data buslines increases with the square of the diagonal size of the LCD. Since the
`buslines in passive matrix LCDs consist of transparent conductors with relatively high
`resistance, the RC delays and power consumption in large passive LCDs become
`unmanageable.
`By adding a semiconductor switch at each pixel, the drawbacks of multiplexing in a
`passive matrix are eliminated. In the active matrix configuration, the voltage at each
`pixel and therefore its transmission and gray level can be accurately controlled.
`A conventional semiconductor process on crystalline Si wafers could, in principle, be
`used for AMLCDs. In fact, this has been successful in reflective microdisplays for
`projection and personal viewers and is commonly referred to as liquid crystal on silicon
`(LCOS).
`For larger displays, however, several factors preclude the use of crystalline silicon. First, it
`is opaque for visible light and is therefore not compatible with transmissive, backlit
`displays such as used in notebooks or desktop monitors. Secondly, processed silicon wafers
`
`23
`

`
`have a limited size (not exceeding 12 in.) and are too expensive. In the semiconductor
`industry there is a constant push for smaller and more compact circuitry by reducing
`design rules, which is not needed for AMLCD fabrication.
`In an AMLCD most of the viewing area consists of the transparent pixel electrodes. The
`semiconductor switch and address lines cover only a small fraction of the pixel area.
`There is no strong incentive to move to advanced submicron design rules since, for large
`displays with larger pixels, most features actually become larger. In other words, apart
`from the need for transparent substrates, the use of crystalline wafers would be overkill
`for the simple circuitry required in most AMLCDs.
`Thin film processing has come to the rescue; it allows simple circuitry to be
`manufactured on large glass substrates with relatively modest design rules and an
`acceptable, reduced number of process steps.
`In terms of operation, the AMLCD is comparable to dynamic random access memory
`(DRAM). Like the DRAM, the AMLCD consists of arrays of cells in which a voltage is
`stored. In the case of most LCDs this is not a digital voltage, but an analog voltage to
`represent different gray levels.
`The business model for AMLCD manufacturers also shows some resemblance to that of
`memory manufacturers. To a large degree, both products have become commodities with
`constant price pressure and their markets are cyclical in the sense that there are periods
`of excess supply and excess demand.
`
`The LC pixel in an LCD can, for all practical purposes, be treated as a low-leakage
`capacitor. This capacitance needs to be charged from the data voltage at one polarity to
`the data voltage of opposite polarity during each refresh cycle to obtain an AC voltage
`without a DC component across the LC pixel. In static images the amplitude of the data
`voltage across the LC pixels remains constant; only their polarity will change in every
`frame to prevent degradation of the LC cell. When the displayed information changes
`(as in video displays with moving images), the amplitude may change as well, so that the
`gray level can be varied according to the image data.
`for the pixel is shown. It is given by
`In Fig. 2.1 the geometry of the LC capacitance CLc
`the equation
`
`CLc ~o~cwl =
`
`d
`
`'
`
`(2.1)
`
`Active Matrix Liquid Crystal Displays
`2.2 Requirements for Active Matrix Switching Devices
`24
`

`
`Operating Principles of Active Matrix LCDs Figure 2.1" Geometry of the LC pixel capacitance.
`
`where e 0 is the permittivity constant in vacuum, eLc is the dielectric constant of the LC
`material, w and l are the side dimensions of the pixel electrode, and d is the LC layer
`thickness (also called the LC cell gap). Since the LC dielectric constant depends on the
`orientation of the molecules, the LC pixel capacitance varies significantly with applied
`voltage.
`For example, in a TN cell that uses LC fluid with a positive dielectric anisotropy, the LC
`director will be perpendicular to the electric field between the pixel electrodes for
`applied voltages below the threshold. Then, e(cid:127) should be substituted for eLc in Eq. 2.1.
`When 5-10 V AC is applied so that the LC molecules will line up along the electric field
`direction, ell should be substituted in Eq. 2.1. As a result, the capacitance can increase by
`a factor of two to three. For intermediate applied voltages there is a continuous variation
`of the effective dielectric constant of the LC layer from e(cid:127) to ell. LC pixel capacitances
`in practical LCDs are typically 1 pF or less.
`Figure 2.2 shows the circuit of four pixels in a passive matrix LCD. The solid lines
`represent the circuitry on one substrate, while the dotted lines represent the circuitry
`on the opposite substrate. In the passive matrix LCD, the LC pixel capacitors are
`simply formed where the striped transparent electrodes intersect (see also Fig. 1.13 in
`Chapter 1). The select and data lines are on opposite substrates.
`In a TFT-based AMLCD (Fig. 2.3), both select and data lines are on the active matrix
`substrate, along with the pixel electrode and storage capacitor. The counter-electrode of
`each LC pixel capacitor, indicated by the dotted line, is a single common transparent
`
`25
`

`
`Active Matrix Liquid Crystal Displays Data line Select line : - : A
`
`it"
`
`"
`
`i."
`
`"
`
`LC pixel ~,~ u (cid:12)9 u (cid:12)9 ! | (cid:12)9 , Passive matrix
`
`Figure 2.2" Circuit diagram for four
`
`pixels in a passive matrix LCD. Data line Storage capacitor Select line TFT ._1_ i" i ' -i i _.12 i"i ~r-_ : "3__ i --I-- : --- LC pixel ...................... Common Figure 2.3: Circuit diagram for four pixels in an active matrix LCD.
`
`electrode on the opposite substrate (which usually also has color filters). This common
`electrode is shared by all pixels in the array.
`After the LC pixel capacitance is charged up to the data voltage, the TFT is switched
`OFF and the pixel electrode on the active array is floating. The pixel capacitor should
`retain its data voltage for the remainder of the frame time until the next address time. As
`discussed in Sec. 1.2 in Chapter 1, the LC fluid needs to have a high resistivity to
`prevent leakage currents. The capacity to retain charge is often expressed in the voltage
`holding ratio (VHR), which is defined as
`
`V=s
`
`1
`
`V 2
`
`(2.2)
`
`(2.3)
`
`is the RMS voltage, V o~c is the peak voltage of the LC pixel waveform, and Tf
`where V
`is the frame time, as shown in Fig. 2.4.
`
`VHR - Vpeak ,
`V s- (oat,
`0
`26
`

`
`In addition to the LC pixel capacitance, most AMLCDs also have an auxiliary storage
`capacitance connected in parallel to the LC capacitance (as shown in Fig. 2.3). The
`storage capacitor uses a thin film dielectric with negligible leakage current and its
`capacitance value is voltage-independent. Therefore, the storage capacitor acts as a buffer
`to suppress the undesirable voltage dependence and potential leakage current in the LC
`capacitance. With a storage capacitor at each pixel it is easier to control the RMS
`voltage on the pixel and therefore its gray level.
`In Fig. 2.5 the generic, basic circuit for the switch at each pixel is shown. When one row is
`selected, all the switches on that row are turned ON and the data voltages are transferred to
`the pixel electrodes. Ideally, the ON resistance of the switch is zero and the OFF resistance is
`infinite. In practice, the requirements can be much relaxed. In a display with N rows and a
`refresh rate of 60 Hz, the frame time Tf~m e to refresh the entire display will be 16.6 msec and
`the line time T~n e to address one row will be T~me/N
`or less. In the case of an XGA display
`with 768 rows, this translates into a maximum line time of 21 btsec to select one row.
`The ON c u r r e n t
`of the switch should be sufficient to fully discharge the LC pixel
`capacitance and charge it to the opposite polarity voltage Von
`during the line time. This
`leads to
`
`2 (Cst"~- CLC ) Fog Ion > Wlin e (cid:12)9
`
`(2.4)
`
`::: :::: VLc(t) Vpeak Vrms Tframe ~t Figure 2.4: Voltage across LC versus time.
`
`RoB
`
`Roff Cic Cst I Figure 2.5: Basic switch configuration in an AMLCD pixel. 27
`
`Operating Principles of Active Matrix LCDs
`Ion
`

`
`The OFF current Iof f should be low enough to retain the charge on the pixel during the
`frame time
`
`(Cs,+ C~) AV
`
`(2.5)
`where AV is the maximum tolerable voltage loss from the pixel capacitance during the
`frame time.
`When realistic values for a 15-in. XGA display are substituted in Eqs. 2.4 and 2.5,
`Cs~ = 0.3 pF, CLc = 0.3 pF, and AV = 20 mV, we get
`
`(2.6)
`0.5 pA.
`In other words, the ON/OFF current ratio has to exceed six orders of magnitude. The
`current levels are quite low and can be achieved by transistors using thin film
`semiconductors such as amorphous silicon (a-Si).
`Since the pixels do not draw a current after being charged up during each refresh cycle,
`the power consumption in the LCD itself is low. Most of the power consumption in
`transmissive LCDs is usually in the backlight.
`Active matrix LCDs can be classified into direct-view displays and light valves (Fig. 2.6).
`Light valves or microdisplays are used for projection applications and as personal viewers
`and viewfinders. Microdisplays can be transmissive or reflective. Transmissive types use
`high-temperature poly-Si TFTs, while reflective types employ crystalline Si circuitry.
`Direct-view displays can be further categorized according to the type of switch used at
`on the market use a-Si or poly-Si thin film
`each pixel. The vast majority of AMLCDs
`Transistors (TFTs). Table 2.1 lists some of the pertinent properties of the various
`
`28
`
`Active Matrix Liquid Crystal Displays
`Io~<
`Wframe ,
`Ion > 1 gA and Io~<
`Figure 2.6: Classification of active matrix LCDs.
`

`
`Operating Principles of Active Matrix LCDs Table 2.1: Different types of switches for AMLCDs and their main applications Switching device a-Si TFT Mobility (cm2/Vsec) * 0.3-1 Highest processing temperature~ - 300~ (glass) Major applications Notebooks, flat panel monitors, LCD TVs High-T poly-Si TFT 100-300 -- 1000~ (quartz) Projection light valves, viewfinders Low-T poly-Si TFT 10-200 -- 500~ (glass) PDAs, notebooks, projection light valves, viewfinders Crystalline Si MOSFET 400 -- 1100~ (C-Si) Projection light valves, viewfinders Thin film diode < 300~ (glass) Handheld devices * Mobility determines the potential to integrate peripheral electronics. , Highest processing temperature determines substrate choice.
`
`switches, along with display applications in which they are common. The field effect
`mobility of the TFT (mostly a semiconductor material property) determines the
`feasibility of designing row and column drivers directly on the glass for a more integrated
`solution. The highest process temperature determines the type of substrate. For
`processing below 600~
`low-cost glass substrates can be used. If there is any process step
`exceeding 1000~
`as in high-temperature poly-Si LCDs, the substrate will be expensive
`quartz. High-temperature poly-Si TFTs are therefore used only in small displays for
`projection systems.
`Amorphous silicon TFTs have become dominant in large-area displays such as those used
`in notebook computers, flat panel desktop monitors, and LCD televisions. Low-
`temperature poly-Si-based LCDs are somewhat less common and are mostly applied in
`smaller devices, including mobile phones, PDAs, and projection light valves, where their
`higher processing cost is offset by integration of some of the peripheral electronics on the
`display glass.
`Thin film diodes with ON and OFF currents satisfying Eqs. 2.2 and 2.3 are suitable for
`LCDs as well. Thus far they have mostly been applied in displays with a limited number
`of gray levels, such as cell phones.
`
`Thin film transistors (TFTs) are cousins of the transistors used in semiconductor chips. In
`terms of switching speed and operating voltage, they are inferior to state-of-the-art MOS
`transistors in crystalline Si. However, they are quite adequate as a simple ON/OFF pixel
`
`2.3 The Thin Film Transistor
`29
`

`
`switch in AMLCDs with a 60-Hz refresh rate. In Fig. 2.7 the top view and cross section
`of a basic TFT are depicted. The TFT has three terminals: the gate, source, and drain.
`The gate is separated from the semiconductor film by a gate insulator layer, and the
`source and drain make contact to the semiconductor. One type of TFT, the N-channel
`TFT, operates similarly to a field-effect N-channel metal oxide semiconductor (NMOS)
`transistor in crystalline silicon. It is switched ON by applying a positive voltage on the
`gate. The insulator acts like a capacitor dielectric, so that in the semiconductor channel
`an opposing negative charge is induced (see Fig. 2.8). This negative charge creates a
`conductive channel for electrons flowing from the source to the drain. The magnitude of
`the current depends on the dimensions of the conductive channel (the channel length L
`on
`and the channel width W), on the capacitance of the gate insulator per unit area Cg,
`the properties of the semiconductor film, and on the applied gate voltage. When a
`negative voltage is applied to the gate, the channel is depleted of electrons and negligible
`current flows.
`
`Figure 2.8: Conductive channel formation and current flow in TFT. 30
`
`Active Matrix Liquid Crystal Displays
`

`
`The ON current Ias of the TFT can be described, in a first approximation, by the same
`equations used for traditional NMOS transistors in crystalline Si [1]"
`for VdsVg-- Vth
`
`(2.7)
`
`V,~) 2 for V~> Vg- V,h.
`
`(2.8)
`
`Here lit is the field effect mobility of the thin film semiconductor, a material property, and
`V,~ is the TFT threshold voltage, which depends on both the semiconductor and the gate
`insulator, and on their interface.
`Equations (2.7) and (2.8) describe, respectively, the linear and saturation regimes of
`operation for the TFT, as illustrated in Fig. 2.9.
`In the ON state of the TFT, when a data voltage is applied to the source, the drain with
`the LC load capacitance will charge up to the same voltage, thereby transferring the data
`
`Figure 2.9: Current-voltage characteristics of a-Si TFT. 31
`
`Operating Principles of Active Matrix LCDs
`I&- ~.~Cg w Vds(Vg-- Vth- 0.5Vds )
`Ias- I.tCg-~ Vas(Vg-
`

`
`signal from the data line to the pixel electrode. The TFT is turned OFF when applying a
`negative voltage to the gate. Since in the N-channel TFT the source and drain contacts
`block the injection of positive charge carriers (holes), there will be negligible current
`flow in the OFF state.
`Similar equations and considerations apply to P-channel TFTs, in which charge transport
`is by holes. They are switched ON by a negative gate voltage and switched off by a
`positive gate voltage.
`Many TFTs are of the staggered type, in which the source and the drain have an overlap
`region with the gate (as shown in Fig. 2.7). The overlap causes a parasitic capacitance
`that can have an impact on display performance unless the pixel is addressed by an
`appropriate drive scheme.
`The earliest TFTs for LCDs used CdSe semiconductor thin films. Since CdSe is not a
`standard material in the semiconductor industry, special deposition and etching processes
`needed to be developed to build CdSe-based TFT LCDs. Although CdSe TFTs showed
`good performance in AMLCDS, they have never been able to overcome the drawbacks
`of not being mainstream. They are now relegated to small research efforts.
`
`Silicon is a very familiar material in the semiconductor industry and is therefore the
`preferred choice for use in AMLCDs. Thin films of silicon on glass are, however, inferior
`in quality to crystalline silicon. This is illustrated in Fig. 2.10, where the atomic structure
`of c-Si, p-Si and a-Si are schematically compared. In c-Si, the Si atoms are all four-fold
`coordinated and constitute a perfect crystal lattice with long-range order of the Si atom
`
`o = Si atom (cid:12)9 = H atom Grain boundary Mobility > 500 Mobility = 10-400 Mobility = 0.3-1 (A) (g) (C) Figure 2.10: Atomic structure of crystalline silicon (A), poly-crystalline silicon (B) and amorphous silicon (C). 32
`
`Active Matrix LiquM Crystal Displays
`2.4 Thin Film Silicon Properties
`

`
`positions. As a result, electrons and holes can flow with high velocities V e and vp
`an electric field E is applied:
`
`when
`
`and vp- lapE.
`
`(2.9)
`
`The values of the mobilities }.l e for electrons and gp exceed 500 cm2/Vsec in crystalline
`silicon.
`Low-temperature poly-Si thin films are first deposited as amorphous films, and then
`crystallized by laser annealing or thermal annealing. The annealing temperature cannot
`exceed 600~ when low-cost glass substrates are used. Sometimes seed materials such as
`Ni or preferential crystal growth from certain locations are used. The quality of poly-Si
`varies greatly depending on deposition and crystallization methods, but invariably it has
`grain boundaries that reduce the mobility by creating barriers for the flow of electrons
`and holes (see Fig. 2.10B). Some improvement can be obtained by passivating the grain
`boundaries with hydrogen in a post-hydrogenation step. The grain size is important in
`determining TFT characteristics. Preferably, to maximize the mobility, there are no grain
`boundaries in the channel area of the TFT. A number of techniques have been
`developed to crystallize the silicon films, including excimer laser annealing (ELA),
`solid phase crystallization (SPC), sequential lateral solidification (SLS), and metal-
`induced lateral crystallization (MILC). They result in TFTs with mobilities ranging from
`10-400 cm2/Vsec, the electron mobility often being higher than the hole mobility.
`The concept of hydrogenation is important in amorphous silicon as well. The structure of
`amorphous silicon is more irregular, so that there is no long-range order and no crystal
`lattice. Nonetheless, since amorphous silicon films are deposited from the decomposition
`of Sill 4 gas, 5-10% hydrogen is automatically built in during film growth. The hydrogen
`acts to terminate dangling bonds in the loose a-Si network (Fig. 2.10C) and is essential
`to improve its electronic properties. The type of a-Si used in TFT LCDs is therefore often
`referred to as hydrogenated amorphous silicon or a-Si:H. The electron field effect
`mobility is only 0.3-1 cm2/Vsec in a-Si, but is adequate for pixel switches in TFT LCDs.
`The hole mobility is much lower, so that practical p-type TFTs are impossible in a-Si.
`Hydrogenated amorphous silicon, as used in LCDs, is a reddish-colored thin film with a
`thickness between 30 and 200 nm. It can be readily deposited on large glass surfaces by
`plasma-enhanced chemical vapor deposition. Some of its properties are listed in Table
`2.2. It has a band gap of 1.7 eV, (considerably larger than crystalline and poly-crystalline
`Si [1.1 eV]), a very low dark conductivity, and high photoconductivity. The low dark
`conductivity makes it relatively easy to obtain a low OFF current in the TFT. The
`high photoconductivity is an undesirable property of a-Si, since it can cause unwanted
`photo-leakage currents in the TFT. To prevent photo-leakage, the a-Si channel in TFTs
`
`33
`
`Operating Principles of Active Matrix LCDs
`Ve= ~e E
`

`
`Active Matrix Liquid Crystal Displays Table 2,2: Some properties of a-Si films a-Si film property Typical value Unit Hydrogen content 5-10 % Dark conductivity intrinsic film 10-1~ -9 (.Qcm) -1 Dark conductivity n + doped film 10-2-10 -1 (Q.cm) -1 Photoconductivity in sunlight 10 -4 (.Qcm) -1 Energy gap 1.75 eV Field effect mobility 0.3-1.0 cm2/Vsec
`
`is sandwiched between opaque layers to shield it as completely as possible from both
`ambient light and backlight in the LCD.
`Amorphous silicon can be easily

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket