throbber
PLAINTIFF'S INITIAL INFRINGEMENT CONTENTIONS CLAIM CHART
`
`
`This is a preliminary comparison, based on the information currently available to Continental of the claims of U.S. Patent No. 6,998,973
`and Schrader tire pressure monitoring sensor No. 20161 (“Schrader 20161”). Continental reserves the right to amend or supplement this
`disclosure as additional information becomes available through discovery, and/or the claims of the ‘973 Patent are construed by the Court. This
`chart should not be interpreted as providing Continental’s claim construction positions, which will be set forth in separate documents at the
`appropriate times according to the schedule provided by the Court.
`
`
`Claim 1
`A data transmission method for a
`tireͲpressure monitoring system
`(10) of a vehicle, said data being
`transmitted by wheel units (12) to
`a central computer (13) located in
`the vehicle, said method
`comprising:
`a data transmission phase in
`parking mode, over a first
`period; and
`
`a data transmission phase in
`running mode, over a second
`period shorter than the first
`period; said method being
`characterized in that:
`
`a natural time lag between
`various internal clocks with
`which each wheel unit (12) is
`equipped is used to prevent
`collisions between
`transmissions from the various
`wheel units of one and the
`same vehicle.
`
`A/74859929.1
`
`Schrader 20161
`The Schrader 20161 is a tire pressure monitoring sensor designed for installation in the wheel of
`a vehicle, and designed to, among other things, detect and air pressure drop in a tire . It
`transmits data wirelessly to a tire pressure monitoring receiver located in a vehicle. See
`generally Exhibit A, Figure A.
`
`The Schrader 20161 transmits data periodically when stationary (i.e., when the sensor is in a
`“parking mode”). Wireless data was collected from a stationary Schrader 20161 over the course
`of approximately 4 hours. Each transmission consisted of 4 data bursts of 8 data frames each,
`and occurred approximately every hour.
`The Schrader 20161 transmits data periodically when in motion (i.e., when the sensor is in a
`“running mode”). Wireless data was collected from a rotating Schrader 20161 operating over
`the course of approximately 2 minutes. Each transmission consisted of 4 data bursts of 4 data
`frames each, and occurred approximately every 30.9 seconds Ͳ 31.0 seconds. The period for this
`data transmission phase (30.9 seconds Ͳ 31.0 seconds) is shorter than the period for the data
`transmission phase in parking mode (approximately every hour).
`Testing of the Schrader 20161 showed that the sensor transmits asynchronously whether the
`sensor is stationary or rotating. Wireless data was collected from a stationary Schrader 20161
`operating over approximately 4 hours. The data shows that the time between the start of each
`transmission varied from 1 hour, 6.6 seconds to 1 hour, 6.8 seconds. Wireless data was
`collected from a rotating Schrader 20161 operating over approximately 2 minutes. The data
`shows that the time between the start of each transmission varied from 30.9 seconds Ͳ 31.0
`seconds. These variations in time enable the prevention of data collisions between
`transmissions from tire pressure monitoring system sensors installed in different wheels of a
`
`1
`
`Page 1002-1
`
`

`

`vehicle.
`
` U
`
`pon information and belief, the Schrader 20161 accomplishes these asynchronous transmission
`periods, at least in part, through the use of an internal clock with a natural time lag.
`
`
`
`Upon information and belief, the Schrader 20161 uses an RC oscillator to generate clock signals,
`and therefore that the internal time lag is determined by the precision of an RC oscillator,
`because only an RC oscillator would allow the Schrader 20161 to function properly while still
`meeting the service life requirements imposed by original equipment manufacturers.
`
`
`
`
`The Schrader 20161 transmits several frames during each transmission whether the sensor is
`stationary or rotating. Wireless data was collected from a stationary Schrader 20161 operating
`over approximately 4 hours. Each transmission consisted of 4 data bursts of 8 data frames each.
`Wireless data was collected from a rotating Schrader 20161 operating over approximately 2
`minutes. Each transmission consisted of 4 data bursts of 4 data frames each.
`
`
`
`The Schrader 20161 transmits at least three frames during each transmission whether the sensor
`is stationary or rotating. Wireless data was collected from a stationary Schrader 20161
`operating over approximately 4 hours. Each transmission consisted of 4 data bursts of 8 data
`frames each. Wireless data was collected from a rotating Schrader 20161 operating over
`approximately 2 minutes. Each transmission consisted of 4 data bursts of 4 data frames each. In
`each case, the Schrader 20161 transmitted 3 frames of data.
`
`
`
`
`2
`
`
`
`Claim 2
`The method as claimed in claim 1,
`characterized in that the
`internal time lag between the
`various clocks of each wheel
`unit is preferably determined
`by the precision of an RCͲtype
`oscillator mounted in each
`wheel unit.
`
`
`
`Claim 4
`The method as claimed in claim 1,
`characterized in that each
`wheel unit transmits several
`frames for each data item to
`be transmitted.
`
`
`
`Claim 5
`The method as claimed in claim 4,
`characterized in that three
`frames are transmitted for
`each data item to be
`transmitted.
`
`
`
`Claim 9
`The method as claimed in claim 2,
`
`A/74859929.1
`
`Page 1002-2
`
`

`

`characterized in that each
`wheel unit transmits several
`frames for each data item to
`be transmitted.
`
`The Schrader 20161 transmits several frames during each transmission whether the sensor is
`stationary or rotating. Wireless data was collected from a stationary Schrader 20161 operating
`over approximately 4 hours. Each transmission consisted of 4 data bursts of 8 data frames each.
`Wireless data was collected from a rotating Schrader 20161 operating over approximately 2
`minutes. Each transmission consisted of 4 data bursts of 4 data frames each.
`
`
`
`3
`
`A/74859929.1
`
`Page 1002-3
`
`

`

`
`
`EXHIBIT A
`
`
`
`EXHIBIT AEXHIBIT A
`
`Page 1002-4
`
`

`

`
`
`
`
`
`
`
`
`Figure A
`
`
`
`
`
`Figure AFigure A
`
`Page 1002-5
`
`

`

`For Outside Counsel Eyes Only 

`APPENDIX 1 ‐ PLAINTIFF'S AMENDED INFRINGEMENT CONTENTIONS CLAIM CHART (GEN 3 SENSORS) 


`This is a preliminary comparison, based on the information currently available to Continental of the asserted claims of U.S. Patent No. 
`6,998,973 (the “ ‘973 Patent”) and Schrader tire pressure monitoring system (“TPMS”) sensors with Gen Alpha or Gen 3 internal oscillator ASICs 
`(collectively “Gen 3 Sensors”). Continental reserves the right to amend or supplement this disclosure as additional information becomes 
`available through discovery and/or when the claim terms of the ‘973 Patent are construed by the Court. This chart should not be interpreted as 
`providing Continental’s claim construction positions, which will be set forth in separate documents at the appropriate times according to the 
`schedule provided by the Court.  

`
`Claim 1 
`A data transmission method for a 
`tire‐pressure monitoring system 
`(10) of a vehicle, said data being 
`transmitted by wheel units (12) to 
`a central computer (13) located in 
`the vehicle, said method 
`comprising: 
`a data transmission phase in 
`parking mode, over a first 
`period; and 
`a data transmission phase in 
`running mode, over a second 
`period shorter than the first 
`period; said method being 
`characterized in that: 
`a natural time lag between 
`various internal clocks with 
`which each wheel unit (12) is 
`equipped is used to prevent 
`collisions between 
`transmissions from the various 
`wheel units of one and the 
`
`Schrader Gen 3 Sensors 
`Gen 3 Sensors are designed for installation in the wheel of a vehicle and are designed to, among 
`other things, monitor and report air pressure in a tire.  They transmit data wirelessly to a tire 
`pressure monitoring receiver located in a vehicle.  See, e.g., SCH0001109 ‐ SCH0001133; 
`SCH0002510 ‐ SCH0002528; SCH0002972 ‐ SCH0003019; SCH0004358 ‐ SCH0004413; 
`SCH0004431 ‐ SCH0004443. 
`
`Gen 3 Sensors transmit data when stationary over a first period.  See, e.g., SCH0001109 ‐ 
`SCH0001133; SCH0002510 ‐ SCH0002528; SCH0002972 ‐ SCH0003019; SCH0004358 ‐ 
`SCH0004413.  
`Gen 3 Sensors transmit data when in motion over a period that is shorter than the transmission 
`period when the vehicle is stationary.  See, e.g., id. 
`
`Gen 3 Sensors use an internal oscillator (as opposed to a crystal oscillator) to control the timing 
`of RF transmissions.  See, e.g., SCH0001109 ‐ SCH0001133; SCH0002510 ‐ SCH0002528; 
`SCH0002972 ‐ SCH0003019; SCH0004358 ‐ SCH0004413; SCH0004431 ‐ SCH0004443.  The 
`imprecision of the internal oscillator results in a natural time lag that prevents collisions 
`between transmissions from the various wheel units of one and the same vehicle.  See, e.g., id.  

`For the avoidance of doubt, Continental does not contend that Schrader TPMS sensors having a 
`
`1 
`A/74941081.1 
`
`Page 1002-6
`
`

`

`same vehicle. 
`

`
`Claim 2 
`The method as claimed in claim 1,  
`characterized in that the 
`internal time lag between the 
`various clocks of each wheel 
`unit is preferably determined 
`by the precision of an RC‐type 
`oscillator mounted in each 
`wheel unit. 
`

`
`Claim 4 
`The method as claimed in claim 1,  
`characterized in that each 
`wheel unit transmits several 
`frames for each data item to 
`be transmitted.  
`

`
`Claim 5 
`The method as claimed in claim 4,  
`characterized in that three 
`frames are transmitted for 
`each data item to be 
`transmitted. 
`

`
`Claim 7 
`The method as claimed in claim 4,  
`characterized in that the 
`frames transmitting the same 
`
`For Outside Counsel Eyes Only 

`Gen 3 ASIC that uses a crystal oscillator as the sole timing reference to initiate RF transmissions 
`infringe the ‘973 patent.  An example of such an ASIC is described at SCH0002803 ‐ SCH0002809. 



`Gen 3 Sensors contain an RC‐type oscillator; the internal time lags between the various clocks of 
`each of the four Gen 3 Sensors on a vehicle are determined by the precision of the RC‐type 
`oscillator in each Gen 3 Sensor.  See, e.g., id. 
`



`Gen 3 Sensors transmit several frames during each block transmission whether the sensor is 
`stationary or rotating.  See, e.g., SCH0001109 ‐ SCH0001133; SCH0002510 ‐ SCH0002528; 
`SCH0002972 ‐ SCH0003019; SCH0004358 ‐ SCH0004413. 
`



`Gen 3 Sensors transmit three frames during each block transmission whether the sensor is 
`stationary or rotating.  See, e.g., id. 
`



`Gen 3 Sensors transmit frames for the same data item during a single wheel revolution.  See, 
`e.g., id. 
`
`2 
`A/74941081.1 
`
`Page 1002-7
`
`

`

`Chart Contains References to Highly Confidential and Source Code Subject to the Protection Order 
`For Outside Counsel Eyes Only 

`
`data item are transmitted 
`during a single wheel 
`revolution. 
`

`Claim 9 
`The method as claimed in claim 2,  
`characterized in that each 
`wheel unit transmits several 
`frames for each data item to 
`be transmitted. 

`
`Claim 11 
`The method as claimed in claim 5,  
`characterized in that the 
`frames transmitting the same 
`data item are transmitted 
`during a single wheel 
`revolution. 
`



`Gen 3 Sensors transmit several frames during each block transmission whether the sensor is 
`stationary or rotating.  See, e.g., id. 
`



`Gen 3 Sensors transmit three frames for the same data item during a single wheel revolution.  
`See, e.g., id. 
`

`
`3 
`A/74941081.1 
`
`Page 1002-8
`
`

`

`For Outside Counsel Eyes Only 

`APPENDIX 2 ‐ PLAINTIFF'S AMENDED INFRINGEMENT CONTENTIONS CLAIM CHART (GEN 4 SENSORS) 


`This is a preliminary comparison, based on the information currently available to Continental of the asserted claims of U.S. Patent No. 
`6,998,973 (the “ ‘973 Patent”) and Schrader tire pressure monitoring system (“TPMS”) sensors with Gen 4 internal oscillator ASICs (“Gen 4 
`Sensors”).  Continental reserves the right to amend or supplement this disclosure as additional information becomes available through discovery 
`and/or when claim terms of the ‘973 Patent are construed by the Court. This chart should not be interpreted as providing Continental’s claim 
`construction positions, which will be set forth in separate documents at the appropriate times according to the schedule provided by the Court.  

`
`Claim 1 
`A data transmission method for a 
`tire‐pressure monitoring system 
`(10) of a vehicle, said data being 
`transmitted by wheel units (12) to 
`a central computer (13) located in 
`the vehicle, said method 
`comprising: 
`a data transmission phase in 
`parking mode, over a first 
`period; and 
`
`a data transmission phase in 
`running mode, over a second 
`period shorter than the first 
`period; said method being 
`characterized in that: 
`a natural time lag between 
`various internal clocks with 
`which each wheel unit (12) is 
`equipped is used to prevent 
`collisions between 
`transmissions from the various 
`wheel units of one and the 
`
`A/74941101.1  
`
`Schrader Gen 4 Sensors 
`Gen 4 Sensors are designed for installation in the wheel of a vehicle and are designed to, among 
`other things, monitor air pressure in a tire.  They transmit data wirelessly to a tire pressure 
`monitoring receiver located in a vehicle.  See, e.g., SCH0001398 ‐ SCH0001425; SCH0001428 ‐ 
`SCH0001457; SCH0002460 ‐ SCH0002491; SCH0002529 ‐ SCH0002564; SCH0002810 ‐ 
`SCH0002853; SCH0003060 ‐ SCH0003098; SCH0003099 ‐ SCH0003135; SCH0004431 ‐ 
`SCH0004443. 
`
`Gen 4 Sensors transmit data when stationary over a first period.  See, e.g., SCH0001398 ‐ 
`SCH0001425; SCH0001428 ‐ SCH0001457; SCH0002460 ‐ SCH0002491; SCH0002529 ‐ 
`SCH0002564; SCH0002810 ‐ SCH0002853; SCH0003060 ‐ SCH0003098; SCH0003099 ‐ 
`SCH0003135. 
`Gen 4 Sensors transmit data when in motion over a period that is shorter than the transmission 
`period when the vehicle is stationary.  See, e.g., id. 
`
`Gen 4 Sensors use an internal oscillator (as opposed to a crystal oscillator) to control the timing 
`of RF transmissions.  See, e.g., SCH0001398 ‐ SCH0001425; SCH0001428 ‐ SCH0001457; 
`SCH0002460 ‐ SCH0002491; SCH0002529 ‐ SCH0002564; SCH0002810 ‐ SCH0002853; 
`SCH0003060 ‐ SCH0003098; SCH0003099 ‐ SCH0003135; SCH0004431 ‐ SCH0004443.  The 
`imprecision of the internal oscillator results in a natural time lag that prevents collisions 
`between transmissions from the various wheel units of one and the same vehicle.  See, e.g., id. 
`
`1 
`
`Page 1002-9
`
`

`

`same vehicle. 
`

`
`Claim 2 
`The method as claimed in claim 1,  
`characterized in that the 
`internal time lag between the 
`various clocks of each wheel 
`unit is preferably determined 
`by the precision of an RC‐type 
`oscillator mounted in each 
`wheel unit. 
`

`
`Claim 4 
`The method as claimed in claim 1,  
`characterized in that each 
`wheel unit transmits several 
`frames for each data item to 
`be transmitted.  
`

`
`Claim 5 
`The method as claimed in claim 4,  
`characterized in that three 
`frames are transmitted for 
`each data item to be 
`transmitted. 

`
`Claim 7 
`The method as claimed in claim 4,  
`characterized in that the 
`frames transmitting the same 
`data item are transmitted 
`
`A/74941101.1  
`
`For Outside Counsel Eyes Only 

`



`Gen 4 Sensors contain an RC‐type oscillator; the internal time lags between the various clocks of 
`each of the four Gen 4 Sensors on a vehicle are determined by the precision of the RC‐type 
`oscillator in each Gen 4 Sensor.  See, e.g., id. 
`



`Gen 4 Sensors transmit several frames during each block transmission whether the sensor is 
`stationary or rotating.  See, e.g., SCH0001398 ‐ SCH0001425; SCH0001428 ‐ SCH0001457; 
`SCH0002460 ‐ SCH0002491; SCH0002529 ‐ SCH0002564; SCH0002810 ‐ SCH0002853; 
`SCH0003060 ‐ SCH0003098; SCH0003099 ‐ SCH0003135. 



`Gen 4 Sensors transmits three frames during each block transmission whether the sensor is 
`stationary or rotating.  See, e.g., id. 
`



`Gen 4 Sensors transmit frames for the same data item during a single wheel revolution.  See, 
`e.g., id. 
`
`2 
`
`Page 1002-10
`
`

`

`Chart Contains References to Highly Confidential and Source Code Subject to the Protection Order 
`For Outside Counsel Eyes Only 

`
`during a single wheel 
`revolution. 
`

`
`Claim 9 
`The method as claimed in claim 2,  
`characterized in that each 
`wheel unit transmits several 
`frames for each data item to 
`be transmitted. 

`
`Claim 11 
`The method as claimed in claim 5,  
`characterized in that the 
`frames transmitting the same 
`data item are transmitted 
`during a single wheel 
`revolution. 
`



`Gen 4 Sensors transmit several frames during each block transmission whether the sensor is 
`stationary or rotating. See, e.g., id. 
`



`Gen 4 Sensors transmit three frames for the same data item during a single wheel revolution.  
`See, e.g., id. 
`

`
`3 
`
`A/74941101.1  
`
`Page 1002-11
`
`

`

`For Outside Counsel Eyes Only 

`APPENDIX 3 ‐ PLAINTIFF'S AMENDED INFRINGEMENT CONTENTIONS CLAIM CHART (GEN 5 SENSORS) 


`This is a preliminary comparison, based on the information currently available to Continental of the asserted claims of U.S. Patent No. 
`6,998,973 (the “ ‘973 Patent”) and Schrader tire pressure monitoring system (“TPMS”) sensors with Gen 5 internal oscillator ASICs and the 
`Schrader EZ Sensor (Schrader Part Nos. 33000 and 33100) (collectively “Gen 5 Sensors”).  Continental reserves the right to amend or supplement 
`this disclosure as additional information becomes available through discovery and/or when claim terms of the ‘973 Patent are construed by the 
`Court. This chart should not be interpreted as providing Continental’s claim construction positions, which will be set forth in separate documents 
`at the appropriate times according to the schedule provided by the Court.  

`
`Claim 1 
`A data transmission method for a 
`tire‐pressure monitoring system 
`(10) of a vehicle, said data being 
`transmitted by wheel units (12) to 
`a central computer (13) located in 
`the vehicle, said method 
`comprising: 
`a data transmission phase in 
`parking mode, over a first 
`period; and 
`a data transmission phase in 
`running mode, over a second 
`period shorter than the first 
`period; said method being 
`characterized in that: 
`a natural time lag between 
`various internal clocks with 
`which each wheel unit (12) is 
`equipped is used to prevent 
`collisions between 
`transmissions from the various 
`wheel units of one and the 
`
`A/74941103.1  
`
`Schrader Gen 5 Sensors 
`Gen 5 Sensors are designed for installation in the wheel of a vehicle and are designed to, among 
`other things, monitor air pressure in a tire.  They transmit data wirelessly to a tire pressure 
`monitoring receiver located in a vehicle.  See, e.g., SCH0002934 ‐ SCH0002971; SCH0004510 ‐ 
`SCH0004596. 
`
`Gen 5 Sensors transmit data when stationary over a first period.  See, e.g., id. 
`
`Gen 5 Sensors transmit data when in motion over a period that is shorter than the transmission 
`period when the vehicle is stationary.  See, e.g., id. 
`
`Gen 5 Sensors use an internal oscillator (as opposed to a crystal oscillator) to control the timing 
`of RF transmissions.  See, e.g., id.  The imprecision of the internal oscillator results in a natural 
`time lag that prevents collisions between transmissions from the various wheel units of one and 
`the same vehicle.  See, e.g., id.   
`
`1 
`
`Page 1002-12
`
`

`

`same vehicle. 
`

`
`Claim 2 
`The method as claimed in claim 1,  
`characterized in that the 
`internal time lag between the 
`various clocks of each wheel 
`unit is preferably determined 
`by the precision of an RC‐type 
`oscillator mounted in each 
`wheel unit. 
`

`
`Claim 4 
`The method as claimed in claim 1,  
`characterized in that each 
`wheel unit transmits several 
`frames for each data item to 
`be transmitted.  
`

`
`Claim 5 
`The method as claimed in claim 4,  
`characterized in that three 
`frames are transmitted for 
`each data item to be 
`transmitted. 

`
`Claim 7 
`The method as claimed in claim 4,  
`characterized in that the 
`frames transmitting the same 
`data item are transmitted 
`
`A/74941103.1  
`
`For Outside Counsel Eyes Only 

`



`Gen 5 Sensors contain an RC‐type oscillator; the internal time lags between the various clocks of 
`each of the four Gen 5 Sensors on a vehicle are determined by the precision of the RC‐type 
`oscillator in each Gen 5 Sensor.  See, e.g., id. 
`



`Gen 5 Sensors transmit several frames during each block transmission whether the sensor is 
`stationary or rotating.  See, e.g., id. 
`



`Gen 5 Sensors transmit three frames during each block transmission whether the sensor is 
`stationary or rotating.  See, e.g., id. 
`



`Gen 5 Sensors transmit frames for the same data item during a single wheel revolution.  See, 
`e.g., SCH0004510 ‐ SCH0004596. 
`
`2 
`
`Page 1002-13
`
`

`

`Chart Contains References to Highly Confidential and Source Code Subject to the Protection Order 
`For Outside Counsel Eyes Only 

`
`during a single wheel 
`revolution. 
`

`
`Claim 9 
`The method as claimed in claim 2,  
`characterized in that each 
`wheel unit transmits several 
`frames for each data item to 
`be transmitted. 

`
`Claim 11 
`The method as claimed in claim 5,  
`characterized in that the 
`frames transmitting the same 
`data item are transmitted 
`during a single wheel 
`revolution. 
`



`The Gen 5 Sensor transmits several frames during each block transmission whether the sensor is 
`stationary or rotating.  See, e.g., SCH0002934 ‐ SCH0002971; SCH0004510 ‐ SCH0004596. 
`



`Gen 5 Sensors transmit three frames for the same data item during a single wheel revolution.  
`See, e.g., SCH0004510 ‐ SCH0004596. 
`

`
`3 
`
`A/74941103.1  
`
`Page 1002-14
`
`

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket