throbber
US 6 423 570 B1
`10 Patent No.:
`12 United States Patent
`,
`,
`
`Ma et al.
`(45) Date of Patent:
`Jul. 23, 2002
`
`U5006423570B1
`
`(54) METHOD TO PROTECT AN
`ENCAPSULATED DIE PACKAGE DURING
`WW
`PMgRTalfilfilifiTlggngAYER AND DEVICES
`
`(75)
`
`Inventors: Qing Ma, San Jose; Xiao-Chun Mu,
`Saratoga; Quat T. Vu, Santa Clara, all
`of CA (US)
`
`(73) Assignee:
`
`£11323] Corporation, Santa Clara, CA
`
`( * ) Notice:
`
`Subject to any disclaimer, the term of this
`patent is extended or adjusted under 35
`U.S.C. 154(b) by 0 days.
`
`(21) Appl. No.: 09/691,738
`.
`(22) Flled
`OCt' 18’ 2000
`
`_
`(51)
`......................... H01L 21/44
`
`_
`....................... 438/106; 257/612; 257/712;
`(52)
`257/714. 257/720. 257/722
`’ 438/106"257/622
`""""""""""257/712 714’ 720 722’
`’
`’
`’
`
`(58) Field 0f Search
`
`(56)
`
`References Cited
`U.S. PATENT DOCUMENTS
`
`................. 29/840
`10/1994 Fillion et al.
`5,353,498 A
`6/1995 Marcinkiewicz et al.
`257/668
`5,422,513 A
`5,455,457 A * 10/1995 Kurokawa
`257/712
`5,497,033 A
`3/1996 Fillion et al.
`.. 257/723
`257/712
`5,514,906 A *
`5/1996 Love et al.
`
`.................. 438/107
`6/1996 Cole et a1.
`5,527,741 A
`12/1997 Wojnarowski et a1.
`...... 257/723
`5,703,400 A
`
`21333
`zigzag:
`5.1.1.
`~~~~~~~~~~~~~~432/122
`,
`,
`arney e a .
`.....
`*
`6,154,366 A * 11/2000 Ma et al.
`.................... 361/704
`6,184,570 B1 *
`2/2001 MacDonald, Jr. et al.
`.. 257/622
`
`FOREIGN PATENT DOCUMENTS
`
`JP
`JP
`
`11045955
`11312868
`
`2/1999
`11/1999
`
`* cited by examiner
`Primary Examiner—Son T. Dinh
`Assistant Examiner—Pho Luu
`(74) Attorney, Agent, or Firm—Robert G. Winkle
`(57)
`ABSTRACT
`
`A microelectronic package including a microelectronic die
`having an active surface and at least one side. An encapsu-
`lation material is disposed adjacent the microelectronic die
`side(s). A portion of the encapsulation material is removed
`to expose aback surface .of the m1croelectromc dre Wthh
`has a metallrzatron layer drsposed thereon. Aprotectrve layer
`is disposed on the metallization layer prior to encapsulation,
`such that When the portion of the encapsulation material is
`removed,
`the protective layer prevents the metallization
`layer from being damaged. After the portion of the encap-
`sulation material is removed, the protective layer is removed
`and the metallization layer is exposed. A heat spreader may
`then be attached to the microelectronic die by abutting the
`heat spreader against the metallization layer and reflowing
`the metallization layer.
`
`9 Claims, 20 Drawing Sheets
`
`170
`
`
`
`
`fie,”
`/
`M41]
`
`
`
`
`
`'2’]I I.
`'IIZ
`J Iii/Ill.A
`
`
`III/IA
`
`
`
`fly7'
`124
`,gfiggf’fl
`xxxi
`
`""""’77/'7/7""7/Z/////////
`
`
`
`
`136
`
`132
`
`126
`
`172
`
`112
`
`115
`
`117
`
`102
`
`124
`
`126
`
`118
`
`172
`
`
`108
`
`IVM 1008
`IPR of U.S. Pat. No. 7,566, 960
`
`

`

`US. Patent
`
`Jul. 23, 2002
`
`Sheet 1 0f 20
`
`US 6,423,570 B1
`
`
`
`
`/// //
`/// /// A
`
`
`
`
`
`
`
`
`'
`f
`
`TllllAlett‘AZIEZZEAWIIIA
`
`110
`
`146
`
`
`
`
`
`
`
`WWMW
`
`
`
`
`
`108
`
`102
`
`106
`
`115
`
`142
`
`FIG. 1
`
`

`

`US. Patent
`
`Jul. 23, 2002
`
`Sheet 2 0f 20
`
`US 6,423,570 B1
`
`Vllllllllll‘Vll/Ill‘f'll/[llllll’lll’lllll’lll‘
`
`
`
`115
`
`
`
`114
`108
`106
`104
`
`
`
`3W2; 102
`
`
`
`Vllllllllllllllllll‘
`Vllllllllllllllllll‘
`
`
`117
`
`FIG. 2
`
`

`

`US. Patent
`
`Jul. 23, 2002
`
`Sheet 3 0f 20
`
`US 6,423,570 B1
`
`114
`
`108
`
`106
`
`104
`
`’llllllllll‘Vll/IIIJIIIl/Illllllllllllllllll‘
`
`
`
`
`116 115
`117
`102
`
`116
`
`112
`
`
`
`FIG. 3
`
`

`

`US. Patent
`
`Jul. 23, 2002
`
`Sheet 4 0f 20
`
`US 6,423,570 B1
`
`108
`
`106
`
`110
`
`
`
`Wmf/fl
`
`
`
`112
`
`116 115
`
`117
`
`102
`
`116
`
`FIG. 4
`
`

`

`US. Patent
`
`Jul. 23, 2002
`
`Sheet 5 0f 20
`
`US 6,423,570 B1
`
`118
`
`108
`
`106
`
`110
`
`7%;2/2/2227”
`Mfi‘fififi‘ghW/I;
`
` 112
`
`
`
`
`116
`
`115
`
`117
`
`102
`
`116
`
`FIG. 5
`
`

`

`US. Patent
`
`Jul. 23, 2002
`
`Sheet 6 0f 20
`
`US 6,423,570 B1
`
`'75257'767‘
`
`//VIIIIIII/Illlll'lll‘W 112
`
`

`

`US. Patent
`
`Jul. 23, 2002
`
`Sheet 7 0f 20
`
`US 6,423,570 B1
`
`124
`124
`124
`124
`118
`
`I’ll
`7"”
`IIIIIA‘lIL/II/TEJIIIIIA
`
`
`MAW;6,” W
`//‘7%%%%%é{//
`112
`
`
`
`106
`108
`110
`
`FIG. 7
`
`

`

`US. Patent
`
`Jul. 23, 2002
`
`Sheet 8 0f 20
`
`US 6,423,570 B1
`
`124
`
`124
`
`124
`
`124
`
`
`
`V
`III/.444{jg/Iglflll/IA
`I ,
`.
`
`VIII/224:1}. 1M?" Mill/IA
`
`
`
`
`
`
`
`
`
`126
`
`118
`
`
`
`112
`
`
`106
`108
`110
`
`116
`
`115
`
`117
`
`

`

`US. Patent
`
`Jul. 23, 2002
`
`Sheet 9 0f 20
`
`US 6,423,570 B1
`
`128
`
`128
`
`128
`
`124/ 124/ \ 124 \124
`
`
`IIIIIAIQ‘I‘A"0‘"III
`
`WMW//"/2;
`112
`
`
`
`
`
`106
`108
`110
`
`126
`
`118
`
`
`
`
`
`FIG. 9
`
`

`

`US. Patent
`
`Jul. 23, 2002
`
`Sheet 10 0f 20
`
`US 6,423,570 B1
`
`134 132 V/ 134 132 124 132
`
`
`
`
`
`"ll! 7‘ Vlll’ 72
`'
`.
`'
`’
`Villa/Ammzm’mr/ I ,
`
`
`(114,... r A ,m 71’
`.727
`I,“
`
`mink/{zM" Zfifau'rlll .1
`7/WWQW WA
`
`
`
`
`
`
`132
`
`124
`
`
`
`126
`
`118
`
`112
`
`
`
`
`
`
`106
`
`108
`
`110
`
`

`

`US. Patent
`
`Jul. 23, 2002
`
`Sheet 11 0f 20
`
`US 6,423,570 B1
`
`136
`
`132
`
`
`
`124
`
`
`
`
`
`
`Il/{é/l’lfw’f'I/Ill, 14/4”
`
`"gum/Ill"”’51,";
`
`
`I’ll/Al!!!’a’fi/zzfillll‘
` 126
`
`
`
`I] AWA’QW 7/
`///§‘3‘%%%§‘%%/2
`
`
`124
`
`126
`
`118
`
`112
`
`
`
`
`
`
`
`
`106
`
`108
`
`110
`
`

`

`US. Patent
`
`Jul. 23, 2002
`
`Sheet 12 0f 20
`
`US 6,423,570 B1
`
`138
`138
`
`
`
`
`
`
`
`
`
`1Z5; 752;!fimfil‘lfifflillg
`minmbzwlfl 222%
`
`
`minajzajzefifzajmll.‘
`WWWW
`
` 112
`
`
`
`124
`
`126
`
`118
`
`106
`
`108
`
`110
`
`FIG. 12
`
`

`

`US. Patent
`
`Jul. 23, 2002
`
`Sheet 13 0f 20
`
`US 6,423,570 B1
`
`
`
`
` , W/A
`fl/ZA //'/2
`
`
`
`7122,1424!WI 12%
`
`
`WILMIIMZMMJIIIIIA
`
`
`
`
`
`
`
`
`
`
`124
`
`126
`
`118
`
`112
`
`108
`
`FIG. 13
`
`

`

`US. Patent
`
`Jul. 23, 2002
`
`Sheet 14 0f 20
`
`US 6,423,570 B1
`
`
`
`
`
`124
`
`I
`
` 136 II/{éagII4,4",
`
`
`[174,1] 4,,””vb/I 126
`III/”7%?”462,55
`
`
`111254 W”.;'>"’,':Z::'/IIT'?I/// 1(1):
`
`
`
`
`
`
`
`
`
`132
`
`
`
`
`
`
`
`
`144
`
`148
`
`FIG. 14
`
`

`

`US. Patent
`
`Jul. 23, 2002
`
`Sheet 15 0f 20
`
`US 6,423,570 B1
`
`N8\0:
`
`me
`
`oHH\&
`
`oHH
`
`oHH
`
`NoH
`
`3TH\\‘\
`\\\\\\
`\ww\\\\
`\\\\\\\\\
`‘!:~1“‘L\‘E‘!1:E
`\\\\\\\MM\W§VM§\\\
`‘fifi‘it‘\L‘EE‘.:E
`
`
`
`NHHonNHHNOHmHHNHH
`
`NHHNOHmHHNHH
`
`OH
`
`mH.DE
`
`
`
`
`

`

`US. Patent
`
`Jul. 23, 2002
`
`Sheet 16 0f 20
`
`US 6,423,570 B1
`
`136
`
`132
`
`126
`
`124
`
`
`
`
`
`138
`138
`
`
`
`
`
`nil/{élf/f?I/{4/91
`
`
`
`
`
`[lam/”1W?!”.21,
`III/IAQIJ’I’J‘IA.Z’IIIIIA
`
`
`
`
`
`
`//:éfi’i’gg/W
`//////////////."///////)/I/x‘g////////
`
`
`
`
`
`
`124
`
`126
`
`118
`
`172
`
`
`
`172
`
`
`
`112
`
`115
`
`117
`
`102
`
`108
`
`FIG. 16
`
`

`

`US. Patent
`
`Jul. 23, 2002
`
`Sheet 17 0f 20
`
`US 6,423,570 B1
`
`N2\0:M5
`
`o2\\\\\\\\\\
`
`s\“\\\in~u~ks-\s\\\\\thuuvnuun\\
`\\\<\\\\\\\\\xV
`02¢:\\ao:0:.EH\NoHmoH
`
`
`
`_NHH©oHNHHNOHmHHNHHNNH_NHHNHHNoHmHHNHH
`
`00H
`
`NH.DE
`
`

`

`US. Patent
`
`Jul. 23 2002
`
`Sheet 18 0f 20
`
`US 6,423,570 B1
`
`EN
`
`ma.DE
`
`._.w_<moan
`
`
`
`ommNE.$‘$‘§‘§‘$
`
`.VNNNMN
`
`\\\§§\\\\\\
`
`
`\\\\\\m§\\\-“§m\\
`fi‘is-§EN‘E§-§s-§
`
`
`mmm
`
`\\\\\\\k\\\\\\mm
`
`
`

`

`US. Patent
`
`Jul. 23, 2002
`
`Sheet 19 0f 20
`
`US 6,423,570 B1
`
`278
`
`
`
`f
`
`252
`
`268
`
`
`I,#114177;7”],'11‘14’1llglfil 258
`
`
`321.0'm:a’w“:
`VllllllllllllAVIIIIIIIIIIAIAVllllll//ll”l
`//III/I
`v’l/I/"l/II'II/////Z
` 264
`
`
`
`24
`
`262
`
`266
`
`256
`
`254 286
`
`FIG. 19
`
`PRIOR ART
`
`

`

`US. Patent
`
`Jul. 23, 2002
`
`Sheet 20 0f 20
`
`US 6,423,570 B1
`
`278
`
`
`274
`
`258
`
`262
`
`282
`
`
`272
`276
`
`
`
`
`268
`
` 252
`
`
`”ff/I, 7/, 7/2,-74.
`..-/mil/Aff."
`
`
`IIIII/IIIIIIAIIIIIIIIIIAIAAIIIIII/IIIII
` 264
`
`W
`
`288
`
`266256 254 286
`
`FIG. 20
`
`PRIOR ART
`
`

`

`US 6,423,570 B1
`
`1
`METHOD TO PROTECT AN
`ENCAPSULATED DIE PACKAGE DURING
`BACK GRINDING WITH A SOLDER
`METALLIZATION LAYER AND DEVICES
`FORMED THEREBY
`
`BACKGROUND OF THE INVENTION
`
`1. Field of the Invention
`
`The present invention relates to apparatus and processes
`for packaging microelectronic dice. In particular, the present
`invention relates to a packaging technology that encapsu-
`lates a microelectronic die with an encapsulation material
`and utilizes a metallization layer to attach a heat spreader to
`the microelectronic die.
`2. State of the Art
`
`Higher performance, lower cost, increased miniaturiza-
`tion of integrated circuit components, and greater packaging
`density of integrated circuits are ongoing goals of the
`computer industry. As these goals are achieved, microelec-
`tronic dice become smaller. Of course, the goal of greater
`packaging density requires that the entire microelectronic
`die package be equal to or only slightly larger (about 10%
`to 30%) than the size of the microelectronic die itself. Such
`microelectronic die packaging is called a “chip scale pack-
`aging” or “CSP”. However in such true CSP, the surface area
`provided by the microelectronic die active surface generally
`does not provide enough surface for all of the external
`contacts needed to contact
`the external component (not
`shown) for certain types of microelectronic dice (i.e., logic).
`Additional surface area can be provided through the use
`of an interposer, such as a substrate (substantially rigid
`material) or a flex component (substantially flexible
`material). FIG. 18 illustrates a substrate interposer 222
`having a microelectronic die 224 attached to and in electrical
`contact with a first surface 226 of the substrate interposer
`222 through small solder balls 228. The small solder balls
`228 extend between contacts 232 on the microelectronic die
`
`10
`
`15
`
`20
`
`25
`
`30
`
`35
`
`224 and conductive traces 234 on the substrate interposer
`first surface 226. The conductive traces 234 are in discrete
`
`40
`
`electrical contact with bond pads 236 on a second surface
`238 of the substrate interposer 222 through vias 242 that
`extend through the substrate interposer 222. External con-
`tacts 244 (shown as solder balls) are formed on the bond
`pads 236. The external contacts 244 are utilized to achieve
`electrical communication between the microelectronic die
`
`224 and an external electrical system (not shown).
`The use of the substrate interposer 222 requires number of
`processing steps. These processing steps increase the cost of
`the package. Additionally, even the use of the small solder
`balls 228 presents crowding problems which can result in
`shorting between the small solder balls 228 and can present
`difficulties in inserting underfilling between the microelec-
`tronic die 224 and the substrate interposer 222 to prevent
`contamination and provide mechanical stability.
`FIG. 19 illustrates a flex component
`interposer 252
`wherein an active surface 254 of a microelectronic die 256
`
`is attached to a first surface 258 of the flex component
`interposer 252 with a layer of adhesive 262. The microelec-
`tronic die 256 is encapsulated in an encapsulation material
`264. Openings are formed in the flex component interposer
`252 by laser abalation through the flex component interposer
`252 to contacts 266 on the microelectronic die active surface
`
`254 and to selected metal pads 268 residing within the flex
`component interposer 252. A conductive material layer is
`formed over a second surface 272 of the flex component
`interposer 252 and in the openings. The conductive material
`
`45
`
`50
`
`55
`
`60
`
`65
`
`2
`layer is patterned with standard photomask/etch processes to
`form conductive vias 274 and conductive traces 276. Exter-
`
`nal contacts are formed on the conductive traces 276 (shown
`as solder balls 278 surrounded by a solder mask material 282
`proximate the conductive traces 276).
`Another problem arising from the fabrication of a smaller
`microelectronic dice is that the density of power consump-
`tion of the integrated circuit components in the microelec-
`tronic dice has increased, which,
`in turn,
`increases the
`average junction temperature of the dice. If the temperature
`of the microelectronic die becomes too high, the integrated
`circuits of the semiconductor die may be damaged or
`destroyed. Furthermore, for microelectronic dice of equiva-
`lent size, the overall power increases which presents the
`same problem of increased power density.
`Thus, it may be necessary to attach a heat spreader to the
`microelectronic die. FIG. 20 illustrates a heat spreader 288
`attached to the microelectronic die 256 as shown in FIG. 19.
`
`However, prior to attaching the heat spreader 288 to the
`microelectronic 256, a back surface 286 of the microelec-
`tronic die 256 must be exposed. This is generally achieved
`by grinding away the back surface 284.(see FIG. 19) of the
`encapsulation material 264 which can damage the micro-
`electronic die 256.
`
`it would be advantageous to develop new
`Therefore,
`apparatus and techniques to expose the back surface of a
`microelectronic die for attachment of a heat spreader with
`potentially damaging the microelectronic die.
`BRIEF DESCRIPTION OF THE DRAWINGS
`
`While the specification concludes with claims particularly
`pointing out and distinctly claiming that which is regarded
`as the present invention, the advantages of this invention can
`be more readily ascertained from the following description
`of the invention when read in conjunction with the accom-
`panying drawings in which:
`FIG. 1 is a side cross-sectional view of an embodiment of
`
`a microelectronic package, according to the present inven-
`tion;
`FIGS. 2—14 are side cross-sectional views of an embodi-
`
`ment of a process of forming a microelectronic package,
`according to the present invention;
`FIG. 15 is a side cross-sectional view of plurality of
`microelectronic dice encapsulated in an encapsulation and
`an interconnect layer formed over thereon, according to the
`present invention;
`FIG. 16 is a side cross-sectional view of another embodi-
`
`ment of a microelectronic package that includes a micro-
`electronic package core, according to the present invention;
`FIG. 17 is a side cross-sectional view of plurality of
`microelectronic dice encapsulated in an encapsulation and a
`microelectronic package core, and an interconnect
`layer
`formed over thereon, according to the present invention;
`FIG. 18 is a cross-sectional view of a CSP of a micro-
`
`electronic device utilizing a substrate interposer, as known
`in the art;
`FIG. 19 is a cross-sectional view of a CSP of a micro-
`
`electronic device utilizing a flex component interposer, as
`known in the art; and
`FIG. 20 is a cross-sectional view of the CSP of FIG. 19
`
`having a heat spreader attached thereto, as known in the art.
`DETAILED DESCRIPTION OF THE
`ILLUSTRATED EMBODIMENT
`
`In the following detailed description, reference is made to
`the accompanying drawings that show, by way of
`
`

`

`US 6,423,570 B1
`
`3
`illustration, specific embodiments in which the invention
`may be practiced. These embodiments are described in
`sufficient detail to enable though skilled in the art to practice
`the invention. It is to be understood that the various embodi-
`ments of the invention, although different, are not necessar-
`ily mutually exclusive. For example, a particular feature,
`structure, or characteristic described herein, in connection
`with one embodiment, may be implement within other
`embodiments without departing from the spirit and scope of
`the invention. In addition,
`it is to be understood that the
`location or arrangement of individual elements within each
`disclosed embodiment may be modified without departing
`from the spirit and scope of the invention. The following
`detailed description is, therefore, not to be taken in a limiting
`sense, and the scope of the present invention is defined only
`by the appended claims, appropriately interpreted, along
`with the full range of equivalents to which the claims are
`entitled. In the drawings, like numerals refer to the same or
`similar functionality throughout the several views.
`The present invention relates to a packaging technology
`that fabricates interconnection layers on an encapsulated
`microelectronic die and on the encapsulation material that
`covers the microelectronic die. An exemplary microelec-
`tronic package includes a microelectronic die having an
`active surface and at
`least one side. An encapsulation
`material is disposed adjacent the microelectronic die side(s).
`Aportion of the encapsulation material is removed to expose
`a back surface of the microelectronic die which has a
`
`metallization layer disposed thereon. A protective layer is
`disposed on the metallization layer prior to encapsulation,
`such that when the portion of the encapsulation material is
`removed,
`the protective layer prevents the metallization
`layer from being damaged. After the portion of the encap-
`sulation material is removed, the protective layer is removed
`and the metallization layer is exposed. A heat spreader may
`then be attached to the microelectronic die by abutting the
`heat spreader against the metallization layer and reflowing
`the metallization layer.
`FIG. 1 illustrates an embodiment of the present invention
`comprising a microelectronic die 102 encapsulated in an
`encapsulation material 112. An interconnection layer 140 is
`disposed on a first surface 110 of the encapsulation material
`112 and an active surface 106 of the microelectronic die 102.
`
`A heat spreader 142 is attached to a back surface 114 of the
`microelectronic die 102 with a thermally conductive metal-
`lization layer 115. The heat spreader 142 may also be
`attached to a second surface 146 of the encapsulation
`material 112 with an adhesive layer 144.
`FIGS. 2—14 illustrate a process of forming the microelec-
`tronic package illustrated in FIG. 1. As shown in FIG. 2, a
`protective film 104 is abutted against the microelectronic die
`active surface 106 to protect the microelectronic die active
`surface 106 from any contaminants. The microelectronic die
`active surface 106 has at least one contact 108 disposed
`thereon. The contacts 108 are in electrical contact with
`
`integrated circuitry (not shown) within the microelectronic
`die 102. The microelectronic die 102 may be any known
`active or passive microelectronic device including, but not
`limited to,
`logic (CPUs), memory (DRAM, SRAM,
`SDRAM, etc.), controllers (chip sets), capacitors, resistors,
`inductors, and the like.
`The protective film 104 is preferably a substantially
`flexible material, such as Kapton® polyimide film (E. I. du
`Pont de Nemours and Company, Wilmington, Del.), but may
`be made of any appropriate material,
`including metallic
`films. The protective film 104 may have a weak adhesive,
`such as silicone or acrylic, which attaches to the microelec-
`
`10
`
`15
`
`20
`
`25
`
`30
`
`35
`
`40
`
`45
`
`50
`
`55
`
`60
`
`65
`
`4
`tronic die active surface 106. This adhesive-type film may be
`applied prior to placing the microelectronic die 102 in a
`mold, liquid dispense encapsulation system (preferred), or
`other such equipment used for the encapsulation process.
`The protective film 104 may also be a non-adhesive film,
`such as a ETFE (ethylene-tetrafluoroethylene) or Teflon®
`film, which is held on the microelectronic die active surface
`106 by an inner surface of the mold or other such equipment
`during the encapsulation process.
`The microelectronic die 102 further includes a metalliza-
`
`tion layer 115 disposed on the back surface 114 thereof. The
`metallization layer 115 is used to achieve a thermally
`conductive bond between microelectronic die 102 and a
`
`subsequently attached heat spreader 142 (shown in FIG. 1).
`The metallization layer 115 is preferably formed on a
`semiconductor wafer (not shown) prior to dicing the semi-
`conductor wafer into individual microelectronic dice 102
`
`and preferably comprises a solder material, including, but
`not limited to, material such as a lead, tin, indium, gallium,
`bismuth, cadmium, zinc, copper, gold, silver, antimony,
`germanium, and alloys thereof. The metallization layer 115
`may be disposed on the semiconductor wafer (or the indi-
`vidual microelectronic die 102) by any known technique,
`including but not limited to plating, sputter coating, plasma
`deposition, and the like. A protective layer 117 is disposed
`on the metallization layer 115. The purpose of the protective
`layer 117 will be subsequently discussed. The protective
`layer 117 is preferably disposed on the metallization layer
`115 prior to dicing the semiconductor wafer into individual
`microelectronic dice 102.
`
`As shown in FIG. 3, the microelectronic die 102 is then
`encapsulated with an encapsulation material 112, such as
`plastics,
`resins, epoxies, elastomeric (e.g.,
`rubbery)
`materials, and the like, that covers the back surface 114 and
`side(s) 116 of the microelectronic die 102. The encapsula-
`tion of the microelectronic die 102 may be achieved by any
`known process, including but not limited to transfer and
`compression molding, and dispensing (preferred). The
`encapsulation material 112 provides mechanical rigidity,
`protects the microelectronic die 102 from contaminants, and
`provides surface area for the build-up of trace layers.
`After encapsulation, the protective film 104 is removed,
`as shown in FIG. 4, to expose the microelectronic die active
`surface 106. As also shown in FIG. 4, the encapsulation
`material 112 is preferably molded or dispensed to form at
`least one first encapsulation material first surface 110 which
`is substantially planar to the microelectronic die active
`surface 106. The encapsulation material first surface 110 will
`be utilized in further fabrication steps as additional surface
`area for the formation of interconnection layers, such as
`dielectric material layers and conductive traces.
`A first dielectric layer 118, such as epoxy resin,
`polyimide, bisbenzocyclobutene, and the like, is disposed
`over the microelectronic die active surface 106, the contacts
`108, and the encapsulation material first surface 110, as
`shown in FIG. 5. The dielectric layers of the present inven-
`tion are preferably filled epoxy resins available from Ibiden
`U.S.A. Corp., Santa Clara, Calif. U.S.A. and Ajinomoto
`U.S.A., Inc., Paramus, NJ. U.S.A. The formation of the first
`dielectric layer 118 may be achieved by any known process,
`including but not limited to film lamination, spin coating,
`roll-coating and spray-on deposition.
`As shown in FIG. 6, a plurality of vias 122 are then
`formed through the first dielectric layer 118. The plurality of
`vias 122 may be formed any method known in the art,
`including but not limited to laser drilling, photolithography,
`
`

`

`US 6,423,570 B1
`
`5
`and, if the first dielectric layer 118 is photoactive, forming
`the plurality of vias 122 in the same manner that a photo-
`resist mask is made in a photolithographic process, as known
`in the art.
`
`Aplurality of conductive traces 124 is formed on the first
`dielectric layer 118, as shown in FIG. 7, wherein a portion
`of each of the plurality of conductive traces 124 extends into
`at least one of said plurality of vias 122 to make electrical
`contact with the contacts 108. The plurality of conductive
`traces 124 may be made of any applicable conductive
`material, such as copper, aluminum, and alloys thereof. As
`shown in FIG. 7, at least one conductive trace may extend
`adjacent
`the microelectronic die active surface 106 and
`adjacent said encapsulation material first surface 110.
`The plurality of conductive traces 124 may be formed by
`any known technique, including but not limited to semi-
`additive plating and photolithographic techniques. An exem-
`plary semi-additive plating technique can involve depositing
`a seed layer, such as sputter-deposited or electroless-
`deposited metal on the first dielectric layer 118. Aresist layer
`is then patterned on the seed layer, such as a titanium/copper
`alloy, followed by electrolytic plating of a layer of metal,
`such as copper, on the seed layer exposed by open areas in
`the patterned resist
`layer. The patterned resist
`layer is
`stripped and portions of the seed layer not having the layer
`of metal plated thereon is etched away. Other methods of
`forming the plurality of conductive traces 124 will be
`apparent to those skilled in the art.
`As shown in FIG. 8, a second dielectric layer 126 is
`disposed over the plurality of conductive traces 124 and the
`first dielectric layer 118. The formation of the second
`dielectric layer 126 may be achieved by any known process,
`including but not limited to film lamination, roll-coating and
`spray-on deposition.
`As shown in FIG. 9 a plurality of second vias 128 are then
`formed through the second dielectric layer 126. The plurality
`of second vias 128 may be formed any method known in the
`art, including but not limited to laser drilling and, if the
`second dielectric layer 126 is photoactive, forming the
`plurality of second vias 128 in the same manner that a
`photoresist mask is made in a photolithographic process, as
`known in the art.
`
`If the plurality of conductive traces 124 is not capable of
`placing the plurality of second vias 128 in an appropriate
`position, then other portions of the conductive traces are
`formed in the plurality of second vias 128 and on the second
`dielectric layer 126, another dielectric layer formed thereon,
`and another plurality of vias is formed in the dielectric layer,
`such as described in FIG. 7—9. The layering of dielectric
`layers and the formation of conductive traces can be
`repeated until the vias are in an appropriate position and
`sufficient electrical connectivity is established to enable the
`required electrical performance. Thus, portions of a single
`conductive trace be formed from multiple portions thereof
`and can reside on different dielectric layers.
`A second plurality of conductive traces 132 may be
`formed, wherein a portion of each of the second plurality of
`conductive traces 132 extends into at
`least one of said
`plurality of second vias 128. The second plurality of con-
`ductive traces 132 each include a landing pad 134 (an
`enlarged area on the traces demarcated by a dashed line
`130), as shown in FIG. 10.
`Once the second plurality of conductive traces 132 and
`landing pads 134 are formed,
`they can be used in the
`formation of conductive interconnects, such as solder
`bumps, solder balls, pins, and the like, for communication
`with external components (not shown). For example, a
`solder mask material 136 can be disposed over the second
`dielectric layer 126 and the second plurality of conductive
`
`10
`
`15
`
`20
`
`25
`
`30
`
`35
`
`40
`
`45
`
`50
`
`55
`
`60
`
`65
`
`6
`traces 132 and landing pads 134. Aplurality of vias is then
`formed in the solder mask material 136 to expose at least a
`portion of each of the landing pads 134. A plurality of
`conductive bumps 138, such as solder bumps, can be
`formed, such as by screen printing solder paste followed by
`a refiow process or by known plating techniques, on the
`exposed portion of each of the landing pads 134, as shown
`in FIG. 11, to form a microelectronic die package 150.
`Although the previous description discussed a build-up
`layer technique for forming the interconnection layer 140,
`the present invention is not so limited. It will be understood
`by one skilled in the art that any known technique, including
`a flex component
`interposer, could be used to from an
`interconnection layer.
`For the attachment of the heat spreader 142 (shown in
`FIG. 1), the metallization layer 115 must be exposed. Thus,
`a portion of the encapsulation material 112 must be removed
`to do so. This is preferably achieved by a grinding process.
`However, the grinding process can damage the metallization
`layer 115. A damaged metallization layer 115 may result in
`an inefficient thermal contact between the microelectronic
`die 102 and the heat spreader 142. Thus, the protective layer
`117 is utilized to prevent damage to the metallization layer
`1 15. The protective layer 117 is preferably a material that
`is easily removed. For example, the protective layer 117 may
`be a resist material, as known in the art, which can be easily,
`chemically dissolved. In another example,
`the protective
`layer 117 may be a polyimide film, such as Kapton® film
`having a silicone or acrylic adhesive, which can be peeled
`cleanly off the metallization layer 115.
`Thus, as shown in FIG. 12, a grinding process removes a
`portion of the encapsulation material 112 which does not
`completely remove the protective layer 117 (i.e., stops at or
`in the protective layer 117). The protective layer 117 is then
`removed to expose the metallization layer 115, as shown in
`FIG. 13.
`
`As shown in FIG. 14, the heat spreader 142 is then abutted
`against the metallization layer 115 and attached by refiowing
`the metallization layer 115. An adhesive layer 144 may also
`be used to attach a portion of the heat spreader 142 to the
`encapsulation material 112. The adhesive layer 144 is pref-
`erably pliable such that minimal thermal stress are induced
`on the encapsulation material 112. The heat spreader 142
`may have an elevated area 148 to compensate for the
`thickness of the protective film 117. The heat spreader 142
`is preferably a highly thermally conductive material, includ-
`ing but not limited to, copper, aluminum, and alloys thereof.
`It is, of course, understood that the microelectronic die
`package 150, as shown in FIG. 11, can be fabricated
`simultaneously with a number of other microelectronic die
`packages. FIG. 15 illustrates a plurality of microelectronic
`dice 102 encapsulated with encapsulation material 112. At
`least one interconnection layer is formed on the microelec-
`tronic dice active surfaces 106 and the encapsulation mate-
`rial first surface 110 in the manner previously discussed. The
`layer(s) of dielectric material and conductive traces com-
`prising the interconnection layer is simply designated
`together as interconnection layer 160 in FIG. 15. The
`individual microelectronic dice 102 are then singulated
`along lines 162 (cut) through the interconnection layer 160
`and the encapsulation material 112 to form at least one
`singulated microelectronic die package 150, as shown in
`FIG. 11. It is, of course, understood that the grinding process
`could be performed prior to singulating the individual
`microelectronic dice packages.
`It is further understood that the encapsulation material 112
`may include a microelectronic package core 172 surround-
`ing the microelectronic die 102 to provide mechanical
`stability, as shown in FIG. 16, to form a microelectronic die
`package 170, which is similar to the microelectronic die
`
`

`

`US 6,423,570 B1
`
`7
`package 150 of FIG. 11. The microelectronic package core
`172 is position adjacent to said microelectronic die 102,
`preferably substantially surrounding said microelectronic
`die 102. The encapsulation material 112 is disposed in the
`space between the microelectronic die 102 and the micro-
`electronic package core 172. The material used to fabricate
`the microelectronic package core 172 may include, but is not
`limited to, a Bismaleimide Triazine (“BT”) resin based
`laminate material, an FR4 laminate material (a flame retard-
`ing glass/epoxy material), various polyimide laminate
`materials, ceramic material, and the like, and metallic mate-
`rials (such as copper) and the like.
`It is yet further understood that the microelectronic die
`package 170, as shown in FIG. 16, can also be fabricated
`simultaneously with a number of other microelectronic die
`packages. FIG. 17 illustrates a plurality of microelectronic
`dice 102 encapsulated with encapsulation material 112
`within the microelectronic package core 172. Preferably, the
`microelectronic package core 172 includes a plurality of
`openings in which the microelectronic dice 102 reside. At
`least one interconnection layer is formed on the microelec-
`tronic dice active surfaces 106, the microelectronic package
`core first surface 174, and the encapsulation material first
`surface 110 in the manner previously discussed. The layer(s)
`of dielectric material and conductive traces comprising the
`interconnection layer is simply designated together as inter-
`connection layer 160 in FIG. 17. The individual microelec-
`tronic dice 102 are then singulated along lines 162 (cut)
`through the interconnection layer 160 and the microelec-
`tronic package core 172 to form at least one singulated
`microelectronic die package 170, as shown in FIG. 16. It is,
`of course, understood that the grinding process could be
`performed prior to singulating the individual microelec-
`tronic dice packages.
`Having thus described in detail embodiments of the
`present invention, it is understood that the invention defined
`by the appended claims is not to be limited by particular
`details set forth in the above description, as many apparent
`variations thereof are possible without departing from the
`spirit or scope thereof.
`What is claimed is:
`
`1. An intermediate microelectronic package, comprising:
`a microelectronic die having an active surface, a back
`surface, and at least one side;
`
`10
`
`15
`
`20
`
`25
`
`30
`
`35
`
`40
`
`8
`encapsulation material adjacent said at least one micro-
`electronic die side;
`a metallization layer disposed on said microelectronic die
`back surface; and
`a protective layer disposed on said metallization layer.
`2. The microelectronic package of claim 1, wherein said
`encapsulation material includes at least one surface substan-
`tially planar to said microelectronic die active surface.
`3. The microelectronic package of claim 2, further includ-
`ing a first dielectric material layer disposed on at least a
`portion of said microelectronic die active surface and said
`encapsulation material surface.
`4. The microelectronic package of claim 3, further includ-
`ing at
`least one conductive trace disposed on said first
`dielectric material layer and in electrical contact with said
`microelectronic die active surface.
`5. The microelectronic pa

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket