| (19)                                | <u>)</u>                                                                                                                                           | Europäisches Patentamt<br>European Patent Office<br>Office européen des brevets | (11) EP 0 716 840 A2                                                                                                                            |  |
|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--|
| (12)                                | (12) EUROPEAN PATENT APPLICATION                                                                                                                   |                                                                                 |                                                                                                                                                 |  |
| (43)                                | <ol> <li>Date of publication:<br/>19.06.1996 Bulletin 1996/25</li> </ol>                                                                           |                                                                                 | (51) Int. Cl. <sup>6</sup> : <b>A61F 2/44</b>                                                                                                   |  |
| (21) Application number: 95119558.5 |                                                                                                                                                    |                                                                                 |                                                                                                                                                 |  |
| (22) Date of filing: 12.12.1995     |                                                                                                                                                    |                                                                                 |                                                                                                                                                 |  |
| (84)                                | Designated Contracting States:<br>DE ES FR GB IT                                                                                                   |                                                                                 | <ul> <li>Winslow, Charles J.</li> <li>Walnut Creek, CA 94595 (US)</li> <li>Jayne, Kirk</li> </ul>                                               |  |
| (30)                                | D) Priority: 12.12.1994 US 354364                                                                                                                  |                                                                                 | Alameda, CA 94501 (US)                                                                                                                          |  |
| (71)                                | Applicant: Surgical Dynamics, Inc.<br>Concord, Ca 94520 (US)<br>Inventors:<br>Pavlov, Paul W.,<br>Sint Maartenskliniek<br>NL-6522 JV Nijmegen (NL) |                                                                                 | <ul> <li>Klyce, Henry A.</li> <li>Piedmont, CA 94611 (US)</li> </ul>                                                                            |  |
| • •                                 |                                                                                                                                                    |                                                                                 | (74) Representative: Marsh, Roy David et al<br>Hoffmann Eitle & Partner<br>Patent- und Rechtsanwälte<br>Arabellastrasse 4<br>81925 München (DE) |  |

#### (54) Conically-shaped fusion cage and method of implantation

(57) A fusion cage 20 for vertebral body fusion is conically-shaped. A thread 40 is formed as part of the external conical surface of the fusion cage. Apertures 54 are defined through the fusion cage in order to provide for contact between the engaged vertebral bone struc-

P 0 716 840 A2

2

R

Μ

Δ

Δ

tures and bone growth inducing substances packed within the fusion cage. The fusion cage is introduced and maintains or increases the lordosis between adjacent vertebral bone structures.

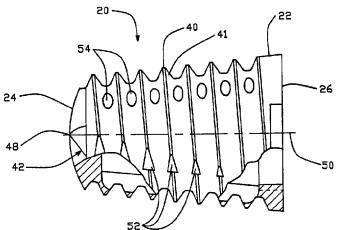



FIG.-1

10

#### Description

#### BACKGROUND

#### Field of the Invention

The present invention is directed to devices and methods for facilitating the fusing of bone structures and more particularly the fusing together of adjacent vertebral bodies or bone structures.

1

#### Background of the Invention

Technical literature and patent documents disclose a number of devices and methods for fusing bones 15 together. One such device which has proven to be successful is disclosed in U.S. Patent 4,961,740, entitled "V-THREAD FUSION CAGE AND METHOD OF FUSING A BONE JOINT," which patent has been assigned the present assignee and which patent is incorporated 20 herein by reference. The referenced patent discloses a fusion cage which is preferably cylindrical and has a thread formed as part of the external cylindrical surface. The fusion cage defines an internal cavity and apertures through the wall of the cage which communicate the 25 external cylindrical surface with the internal cavity. The apertures are formed in the valleys of the thread. Normally two such cages are used to stabilized and fuse together adjacent vertebral bodies or bone structures.

In practice, using a posterior approach, a patient's 30 vertebral bone structures are exposed and degenerate disk material located between the vertebral bone structures is removed. A threaded tap is used to tap a complementary thread in the upper and lower vertebral bone structures preparatory to the insertion of the above 35 fusion cage. Once such tapping has been accomplished, using an introduction tool, the fusion cage is screwed into the space between the adjacent vertebral bone structures. The thread bites into the bone of the upper and lower vertebral bone structures, stabilizing the bone 40 structures, and preventing the fusion cage from working out of this position due to patient movement. Generally two such fusion cages are applied using this technique. Once the two implants have been positioned, then bone growth inducing substances, such as bone chips, are 45 packed into the internal cavity of the fusion cages. These bone growth inducing substances come into immediate contact with the bone from the vertebral bone structures which project into the internal cavity through the apertures. Such projection of bone is due to the fact that the 50 apertures are formed in the valleys of the external thread of the fusion cage. Such immediate bone to bone contact between the vertebral bone structures and the bone pack within the fusion cages results in more rapid propagation of bone cells between the adjacent vertebral bone struc-55 tures and thus a more rapid fusion of the adjacent vertebral bone structures.

It is to be understood that in the above method, bone growth inducing substances can be prepacked into the

DOCKE.

cages before the cages are implanted between the vertebral body structures.

#### Summary of the Invention

The present invention is directed to a fusion cage which has been designed to be implanted using principally a posterior approach to the vertebral bone structures.

In a first embodiment of the present invention, the fusion cage includes a cage body having a proximal end and a distal end, said distal end having a diameter which is larger than the diameter of the proximal end. The distal end further is rounded with for example a bull nose in order to facilitate the insertion of the cage body relative to one or more bone structures. The distal end could alternatively have a snub nose with or without a starter turn of a thread. The snub nose has a starter diameter that is smaller than the diameter of the distal end. The cage body is preferably conically-shaped. This shape is particularly advantageous due to the fact that the normal lordosis of the vertebral bone structures defines a wedged-shape space for a vertebral disk between, for example, lumbar vertebrae. Accordingly, the conicallyshaped body cage can be sized and selected in order to maintain or enlarge upon the normal lordosis.

In a second embodiment of the present invention the cage body can include a cylindrically-shaped portion and a conically-shaped portion. The cylindrically-shaped portion is located adjacent to the distal end and the conically-shaped portion extends from the cylindrically-shaped portion and tapers toward the proximal end.

In a third embodiment of the present invention, a fusion cage includes a cage body having a proximal end and a distal end with the proximal end having a diameter which is smaller than the diameter of the distal end. The distal end has a flute formed therein. Additionally, the cage body has an outer surface and at least one flute formed in the outer surface. These flutes act as a relief much as the flute placed on self-tapping screws in order to facilitate the insertion of the fusion cage using a twisting motion between two vertebral bone structures.

In a fourth embodiment of the invention, a fusion cage includes a cage body having a proximal end and a distal end, the proximal end having a diameter which is smaller than the diameter of the distal end. The cage body has an outer surface and a thread formed as part of the outer surface. The thread aids the cage body in being inserted. As the cage is inserted, it gradually spreads apart the vertebral bone structures in order to regain or enlarge the natural lordosis of the adjacent vertebral bone structures. As with other embodiments of the present invention, flutes can be provided in the thread in order to allow for enhanced thread tapping by the cage and for a smoother insertion of the fusion cage between the vertebral bone structures. Preferably two or three flutes would be formed spaced about the fusion cage in order that one flute would be engaging with or adjacent to an upper vertebral bone structures with another flute

10

25

30

35

40

45

50

55

being engaging with or adjacent to a lower vertebral bone structure. Such a relationship maintains alignment of the fusion cage and prevent wandering as the fusion cage is introduced between the two vertebral bone structures. Without two or more flutes, wandering might occur due to the fact that the thread is only substantially engaged with the vertebral bone structures and not with the disk material between the vertebral bone structures, which disk material does not provide support to the thread.

In a further aspect of the invention, any of the above embodiments can be provided with a plurality of apertures through the fusion cage and an internal cavity with the apertures communicating between the internal cavity and the external surface of the fusion cage. Bone growth inducing substances, such as bone chips, can be packed into the internal cavity either before the fusion cage is inserted or after the fusion cage has reached a final insertion position, or packed in both before and after. The bone chips come in contact with the vertebral bone structures through the apertures in order to facilitate fusion 20 between the adjacent vertebral bone structures.

In another aspect of the invention which can be included in any of the above embodiments, the cage body can have a round or bull nose distal end with one or more flutes formed in the round or bull nose distal end in order to enhance the self-tapping nature of the fusion cage and to prevent the cage from wandering.

In yet another aspect of the invention, introduction tools allow the fusion cage to be accurately positioned between the vertebral bone structures. A preferred introduction tool allows for the cage to be implanted and thereafter allows an end cap of the cage to be conveniently removed, if desired, in order to place bone growth inducing substances in the cage.

The method of the present invention affords access to adjacent vertebral bone structures using an posterior approach and procedure. Such posterior approach and procedure can be performed percutaneously using a minimally invasive technique with an introduction set including cannulas. Such a procedure is minimally invasive as the tissues can be spread using a set of cannula of increasing size and a small opening thereby developed through which a fusion cage can be inserted. Such a procedure is less traumatic to the tissue than an alternate posterior approach and procedure, also known as an posterior lumbar interbody fusion, where an incision is made, through the tissues. It is to be understood however that either posterior approach and procedure can be used with the fusion cage and fall within the scope of the invention.

After such access, using preferably a minimally invasive technique, degenerate disk material can be removed and, using a cannula and insertion tool, an appropriately shaped fusion cage can be screwed into place between the vertebral bone structures in order to stabilize the vertebral bone structures and allow for fusion. Either preparatory to insertion of the fusion cage or after it has been inserted, bone chips or other bone growth inducing substances can be inserted into the

DOCKE.

fusion cage to promote bone to bone contact and subsequent fusion.

It is to be understood that although the aboveembodiments have been described with respect to the fusion of adjacent vertebral bodies or bone structures, that the present invention can be used (1) to fuse together a variety of bone structures, in addition (2) to being fused to one bone structure and used as, for example, a base for an implant or (3) to being used to reunite the pieces of a broken bone.

Other objects and advantages of the invention can be obtained through a review of the specification and the figures.

#### 15 Brief Description of the Figure

#### Anterior Fusion Cage:

Figure 1 is a partially sectional side view of an embodiment of the anterior fusion cage of the invention.

Figure 2 depicts a left end (distal end) view of the fusion cage of Figure 1.

Figure 3 depicts a right end (proximal end) view of the fusion cage of Figure 1.

Figure 4 depicts a view through line 4-4 of the fusion cage of Figure 1.

Figure 5 depicts the fusion cage of Figure 1 in conjunction with an introduction tool.

Figure 6 depicts an alternative embodiment of the introduction tool.

Figures 7, 8, and 9 depict progressive stages in the method of inserting the anterior fusion cage between adjacent vertebral bone structures.

Figure 10 depicts a side view of an alternative embodiment of the anterior fusion cage of the invention.

Figure 11 depicts the left end (distal end) view of the fusion cage of Figure 10.

Figure 12 depicts the right end (proximal end) view of the fusion cage of Figure 10.

Figure 13 depicts a side view of yet another embodiment of the anterior fusion cage of the present invention.

Figure 14 depicts a left distal end (distal end) view of the fusion cage of the invention of Figure 13.

Figure 15 depicts a right end (proximal end) view of the fusion cage of the invention of Figure 13.

Figure 16 depicts a sectional view taken through line 16-16 of Figure 13.

#### Posterior Fusion Cage:

Figure 17 is a partially sectional side view of an embodiment of the posterior fusion cage of the invention.

Figure 18 depicts a left end (distal end) view of the fusion cage of Figure 17.

Figure 19 depicts a right end (proximal end) view of the fusion cage of Figure 17.

Figure 20 depicts a view through line 20-20 of the fusion cage of Figure 17.

15

20

25

Figures 21, 22, and 23 depict progressive stages in the method of inserting the posterior fusion cage between adjacent vertebral bone structures using the cage depicted in Figure 25.

5

Figure 24 depicts a side view of an alternative *5* embodiment of the posterior fusion cage of the invention.

Figure 25 depicts a side view of another embodiment of the posterior fusion cage of the invention.

Figure 26 depicts a left end (distal end) view of the embodiment of the fusion cage of Figure 25.

Figure 27 depicts the fusion cage of Figure 25 in conjunction with a new preferred insertion tool that can preferably be used with the anterior fusion cages of Figure 1, 10 and 13, and with the posterior fusion cages of Figure 17 and 25.

Figure 28 depicts an end view of the insertion tool of Figure 27 along line 28-28.

Figure 29 depicts a partially broken away view of the fusion cage and the insertion tool of Figure 27 connected together.

Figure 30 depicts a perspective view of the end of the insertion tool depicted in Figure 28.

Figure 31 depicts a partially sectional view of the handle of the insertion tool of Figure 27.

#### Detailed Description of the Preferred Embodiment

#### Anterior Fusion Cage:

DOCKE.

With respect to the figures in a particular Figure 1, 30 a side view of the preferred embodiment of the fusion cage 20 is depicted. Fusion cage 20 includes a fusion cage body 22 which in this preferred embodiment is provided in the shape of a cone. Fusion cage 20 includes a distal end 24 and a proximal end 26. The distal end 24 35 in a preferred embodiment is rounded or bull nosed in order to facilitate the insertion of the fusion cage 20 relative to one or more bone structures. The proximal end 26 includes an opening 28 which communicates with an internal cavity 30 defined by the fusion cage 20. The 40 opening 28 in a preferred embodiment is threaded so that it can receive an end cap or plug 32 (Figure 5). End cap 32 is used to close off the proximal end 26 and retain bone growth inducing substances packed therein as described herein-below. As can be seen in Figure 5, end 45 cap 32 includes a threaded bore 34 which is designed to receive an insertion tool. The threaded bore 34 has an initial unthreaded, square or hex-shaped section 35 which can be used with a socket wrench to tightly position end cap 32 in opening 28 and which can be engaged 50 by a preferred insertion tool of Figure 27. Further the unthreaded portion of bore 34 could equally be cylindrical with an irregularity to allow for mating with an insertion tool, as well as having a variety of other shapes. The proximal end 26 further define first and second periph-55 eral indentations 36, 38. These peripheral indentations 36, 38 receive tangs from an insertion tool as described hereinbelow for facilitating the insertion of the fusion cage 20.

A thread 40 is defined as part of the outer cylindrical surface 41 of the body 22. It is to be understood that the thread can be replaced with a plurality of discrete threads or a plurality of projections, ridges, protrusions, barbs, or spurs and be within the spirit and scope of the invention.

The rounded distal end 24, and at least some of the turns of thread 40 defined flutes or relief grooves 42, 44, and 46. (Figures 1, 2.) In a preferred embodiment, flutes 42, 44, and 46 meet at a central point 48 of the distal end 24 on the longitudal axis 50 of the fusion cage 20. In other embodiments the flutes can be smaller and not extend all the way to the central point 48 on the longitude axis 50. Still in other embodiments, the flutes can be eliminated from the distal end 24 and such embodiments are still within the spirit and scope of the invention.

The flutes extend from the distal end 24 toward the proximal end 26 as shown in Figure 1 with respect to flute 42. These flutes are defined by the sections 52 which are removed from the thread. In a preferred embodiment, the flutes become narrower as they approach the proximal end 26 due to the fact that thread relief for purposes of self-tapping becomes less important as the cage reaches a final resting position. As shown in other embodiments, the flutes can be deeper and extend from the distal end completely to the proximal end. Still further in other embodiments the flutes can be confined to the first several turns of the thread adjacent to the distal end and/or to just the distal end.

As can be seen in Figures 1, 4, a plurality of apertures 54 are provided through wall 56 of the fusion cage 20. In a preferred embodiment, these apertures 54 are formed by broaching grooves 58 in the internal surface 60 of the internal cavity 30. The effect of such broaching is to remove material from the valleys between the turns of the thread 40, thus defining the aperture 54. The advantages of such an arrangement are taught by the above-referenced U.S. Patent No. 4,961,740, which patent is incorporated herein by reference and allows for immediate bone to bone contact between the vertebral bodies or bone structures and the bone packed within the internal cavity 30 of the fusion cage 20.

The apertures 54 in a preferred embodiment increase in size from smaller apertures closer to the distal end 24 to a larger aperture closer to the proximal end 26. This increase in size allows for more bone to bone contact. Alternatively in the embodiment as shown in Figure 1, all the apertures are of the same size.

As can be seen in Figure 4, the apertures are clustered about a transverse axis 51, both at the upper and lower end of the axis. This is so that in position, the apertures come into contact with the upper and lower vertebral bone structures (Figure 9) to encourage bone growth through the fusion cage from the vertebral bone structures. The lateral section of the fusion cage found along the other transverse access 53 do not have apertures in order to prevent growth of disk material which might interfere with the bone fusing process.

A preferred embodiment of the conically-shaped fusion cage 20 includes a fusion cage which is 23 mil-

10

15

20

25

30

35

40

45

50

55

limeters in length having a distal end 24 with a diameter of 14 millimeters and a proximal end 26 with a diameter of 18 millimeters. The cage body is a right circular cone. The thread has a pitch of 30° and there are ten turns per inch with a thread depth of .053 inches. Further the cage is made of a titanium metal or alloy such as Ti64. Preferably this and the other disclosed fusion cages disclosed are machined. However, the processes such as molding, casting, or sintering can be used to accomplished formation of the fusion cages.

The cage is inserted between vertebral bodies using an insertion tool 62 (Figure 5). Insertion tool 62 includes an inner handle 64 and an outer handle 66. The outer handle includes a bore 68 for receiving the inner handle 64. Handles 64, 66 include knobs 70, 72 respectively. The distal end of inner handle 64 defines a threaded shaft 74, having a reverse thread to facilitate easy removal, and the distal end of handle 66 define a cylindrical disk 76 which has first and second tangs 78, 80, projecting from the peripheral edge of the cylindrical disk 76. These tangs 78, 80 are designed to mate with the peripheral indentation 36, 38 of the fusion cage 20. For purposes of inserting the fusion cage between the vertebral bodies, the end cap 32 is inserted into the fusion cage 20 as shown in Figure 5. Then the threaded shaft 74 of the inner handle is introduced into the threaded bore 34 of the end cap 32. After this is accomplished, the outer handle 66 is slid over the inner handle 64 and the tangs 78, 80 are positioned into engagement with the indentations 36, 38. In this arrangement, the fusion cage 20 can be anteriorly inserted into the space between the vertebral body structure using the insertion tool 62.

An alternative embodiment of the insertion tool is shown in Figure 6. In this figure, insertion tool 82 includes a handle 84 with a knob 86. At the end of the insertion tool 82 distal from the knob 86 is a cylindrical disk 88 which has first and second tangs 90, 92, which have the same function as the above tangs 78, 80. Extending from the center of the cylindrical disk 88 along the centerline of the insertion tool 82 is a shaft 94 which has a ball detent 96. For use with insertion tool 82, the threaded bore 34 of the end cap 32 would be replaced with a bore having a lip which could engage with the ball detent 96 of the insertion tool 82.

It is to be understood that the insertion tool depicted in Figure 27 and described below is preferable to the above described insertion tools for both the anterior fusion cages and the below described posterior fusion cages.

The method for inserting the fusion cage 20 of Figure 1 using an anterior approach and procedure to the vertebral bodies is as follows. It is to be understood that although the focus of this discussion is on a laparoscopic procedure, that the anterior approach and procedure can also include a more invasive procedure where a long incision is made in the abdomen wall.

With an anterior approach, using an introduction set such as described by way of example only, in U.S. Patent 4,863,430, entitled "INTRODUCTION SET WITH FLEX-

DOCKE.

RM

IBLE TROCAR WITH CURVED CANNULA," which is incorporated by reference, but however with larger diameter instruments, an amount of disk material is removed between the two vertebral bodies or bone structures which are to be fused together. This procedure is accomplished through a cannula position adjacent to the vertebral bone structures. With the same or a larger diameter cannula, the fusion cage 20 can be introduced adjacent to the vertebral bone structures. In a first procedure, the fusion cage is packed with bone growth substances and the end cap 32 is affixed to the fusion cage 20. Insertion tool 62 is then secured to the fusion cage 20 and the fusion cage is guided through the cannula to a location adjacent to the upper and lower vertebral body such as presented schematically in Figures 7, 8, 9, by upper body 98 and lower body 100. In the initial position as shown in Figure 7, the fusion cage 20 is adjacent to the anterior surfaces 102, 104 of the vertebral bodies 98, 100. As the introduction tool is turned, the thread 40 of the fusion cage 20 bites into the vertebral bodies 98, 100. Further turning of the introduction tool causes the fusion cage to move through the position shown in Figure 8 to the final resting position shown in Figure 9, where the distal end 24 is moved adjacent to the posterior sections 106, 108 of the vertebral bone structures 98, 100. As this occurs, the fusion cage 20 increases the lordosis or spacing between the vertebral bodies, basically distracting the vertebral bodies and causing the vertebral bodies to pivot about the posterior sections 106, 108, with such posterior sections acting like a hinge. It is noted that most of the distraction occurs adjacent to the anterior sections, but that distractions also occur at the posterior sections where the hinged effect is exhibited. Preferably, the lordosis is increased over the normal lordosis in order to stabilize the vertebral bone structures prior to fusion occurring. Stabilization occurs due to the fact that increased lordosis places additional stress on the anterior longitudinal ligaments which are part of the anatomy holding the vertebral bodies in place.

Once the fusion cage 20 is appropriately positioned, the handle 64 of the insertion tool 62 is unscrewed from the cap 32 and the fusion handle 62 is pulled away from the fusion cage.

An alternative embodiment of a fusion cage 200 is shown in Figures 10, 11, and 12. Fusion cage 200 includes a distal end 202 and an a proximal end 204. Fusion cage 200 includes an internal cavity 206. End caps not shown can be used to close the ports 208, 210 of distal and proximal ends 202, 204. A thread 212 is defined on the external conical surface 214 of the fusion cage 200. Defined by the thread 212 are first and second flutes 216, 218, which in this embodiment extend from the distal end 202 to the proximal end 204. These flutes provide thread relief allowing the fusion cage 200 to be self-tapping.

The fusion cage 200 includes a plurality of elongated apertures 220 which are formed through the side walls of a fusion cage 200. The elongated apertures 202 are formed in such a way that the internal conical surface

## DOCKET A L A R M



# Explore Litigation Insights

Docket Alarm provides insights to develop a more informed litigation strategy and the peace of mind of knowing you're on top of things.

## **Real-Time Litigation Alerts**



Keep your litigation team up-to-date with **real-time alerts** and advanced team management tools built for the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal, State, and Administrative courts across the country.

## **Advanced Docket Research**



With over 230 million records, Docket Alarm's cloud-native docket research platform finds what other services can't. Coverage includes Federal, State, plus PTAB, TTAB, ITC and NLRB decisions, all in one place.

Identify arguments that have been successful in the past with full text, pinpoint searching. Link to case law cited within any court document via Fastcase.

## **Analytics At Your Fingertips**



Learn what happened the last time a particular judge, opposing counsel or company faced cases similar to yours.

Advanced out-of-the-box PTAB and TTAB analytics are always at your fingertips.

## API

Docket Alarm offers a powerful API (application programming interface) to developers that want to integrate case filings into their apps.

#### LAW FIRMS

Build custom dashboards for your attorneys and clients with live data direct from the court.

Automate many repetitive legal tasks like conflict checks, document management, and marketing.

#### FINANCIAL INSTITUTIONS

Litigation and bankruptcy checks for companies and debtors.

### E-DISCOVERY AND LEGAL VENDORS

Sync your system to PACER to automate legal marketing.