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1

TRACKING, AUTO-CALIBRATION, AND
MAP-BUILDING SYSTEM

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims the benefit of U.S. Provisional
Application No. 60/402,178, filed Aug. 9, 2002, titled
"Localization, Auto-Calibration, and Map-Building," the
contents of which are incorporated herein by reference.

BACKGROUND

This invention relates to tracking, navigation, pose
estimation, localization, auto-calibration, scene modeling,
structure-from-motion and/or map-building based on sensor
inputs.

Tracking or navigation systems often make use of mea-
surements from sensors to aid in determining a location
("localization") or an orientation (attitude and heading) or a
pose (position and orientation) of an object such as a person,
a vehicle or a robot as it navigates in an environment, such
as within the bounds of a building. A variety of types of
sensors are available for such systems, including sensors
that measure a relative location between a sensor and a
target. An example of such a sensor/target combination is an
acoustic emitter (target) and a microphone array (sensor)
that can determine a direction of arrival of an acoustic signal
broadcast from the emitter. Different types of sensors mea-
sure different aspects of the relative pose of a sensor and a
target, such as a range, direction, or relative orientation.
Different sensors may have different measurement charac-
teristics that affect the mapping between the relative pose of
a sensor and a target and the measurement values provided
by the sensor. These characteristics can include uncertainty
or noise characteristics of the measurement values.

Systems have been developed that use Kalman Filtering
techniques to incorporate information in sensor measure-
ments to track the position or orientation of an object,
typically also using information about the dynamic charac-
teristics of the object. The implementation of such Kalman
Filtering techniques is often complex, and typically requires
detailed knowledge of the measurement characteristics of
the specific sensors used in tracking the object.

Some navigation systems perform simultaneous localiza-
tion and mapping (SLAM), also known in the field of
computer vision as structure-from-motion (SfM). The map-
ping aspect relates to determining the locations of fixed
landmarks or beacons in the environment while at the same
time using sensor measurements from those fixed landmarks
to assist in localization of the object. As an example, when
a robot navigates an uncharted territory, such as in a Mars
rover mission, or in an underground mining or undersea
operation, the robot may determine its location relative to
the surrounding environment. If a complete map of the
terrain is not available in advance, the robot may observe 55
landmarks, build a map based on the landmark observations,
and determine its location on the map that it has constructed
so far. The landmarks may be man-made markers or natural
features of the terrain.
As another example, an automated factory may use robots 60

to move materials and products among different locations.
Beacons, such as ultrasound emitters, or graphic markers
having special patterns, may be placed at various locations
in the factory. The robots may have sensors, such as ultra-
sound receivers, laser range finders, cameras, or pattern 65
recognition devices, for determining their positions relative
to reference points in the factory environment. The locations

5

10

15

20

25

30

35

40

45

50

2
of the reference points may not be known in advance, so the
robots may update their maps of the factory based on inputs
from the sensors, and navigate through the factory based on
their updated maps.

It may be desirable to also perform automatic calibration
of sensors during the ongoing process of localization of the
object. For example, various types of sensors may have
different types of calibration parameters, such as measure-
ment biases and scale factors. Examples of calibration
parameters are focal lengths or distortion parameters of a
camera lens, or alignment of a camera relative to the vehicle
carrying it. The Kalman Filter implementation may estimate
the sensor calibration parameters using a common infra-
structure that is used to determine the location of the vehicle.
As with the localization and mapping approaches, the char-
acteristics of the calibration parameters are typically
reflected in the implementation of the Kalman Filter tech-
niques. Some systems combine localization, mapping, and
auto-calibration.

SUMMARY

In a general aspect, the invention features a navigation or
motion tracking system in which components associated
with particular sensors are decoupled from a tracking com-
ponent that takes advantage of information in the sensor
measurements. The architecture of this system enables
development of sensor-specific components independently
of the tracking component, and enables sensors and their
associated components to be added or removed without
having to re-implement the tracking component. In a soft-
ware implementation of the system, sensor-specific software
components may be dynamically incorporated into the sys-
tem and the tracking component is then automatically con-
figured to take advantage of measurements from the corre-
sponding sensors without having to modify the tracking
component.

In general, in one aspect, the invention features a method
for tracking an object that includes coupling a sensor sub-
system to an estimation subsystem. The sensor subsystem
enables measurement related to relative positions or orien-
tations of sensing elements. Configuration data is accepted
from the sensor subsystem, and the estimation system is
configured according to the accepted configuration data. The
method includes repeatedly updating a state estimate,
including accepting measurement information from the sen-
sor subsystem, and updating the state estimate according to
the accepted configuration data and the accepted measure-
ment data.
This and other aspects of the invention may include one

or more of the following features.
Coupling the sensor subsystem to the estimation sub-

system includes coupling software modules each associated
with one or more of the sensing elements.
Each of the software modules provides a software inter-

face for receiving information related to an expected sensor
measurement and providing measurement information that
depends on the received information.
Each of the software modules implements calculations

that are independent of a representation of the state in the
estimation subsystem.
The state estimate characterizes an estimate of a location

of the object.
The state estimate characterizes configuration information

for one or more sensing elements fixed to the object.

The configuration information for the one or more sensing
elements fixed to the object includes information related to
position or orientation of the sensing elements relative to the
object.

META-GNTX-00011491
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The configuration information for the one or more sensing
elements fixed to the object includes operational parameters
for the one or more sensing elements.

The state estimate characterizes configuration information
for one or more sensing elements fixed in an environment of
the object.

The configuration information for one or more sensing
elements fixed in the environment of the object includes a
map of the locations of the sensing elements.
Repeatedly updating the state further includes providing

to the sensor subsystems information related to an expected
sensor measurement, and wherein accepting the measure-
ment information from the sensor subsystem includes
accepting information related to an actual sensor measure-
ment.
Providing the information related to an expected sensor

measurement includes providing information related to a
relative geometric configuration of two of the sensing ele-
ments.
Providing information related to a relative geometric

configuration of the two of the sensing elements includes
providing information characterizing a relative location of
the sensing elements.
Accepting the information related to an actual sensor

measurement includes accepting information enabling the
estimation subsystem to calculate a difference between the
actual measurement and the expected measurement.
Accepting the information related to an actual sensor

measurement includes accepting information for correlating
measurements and geometric relationships between sensing
elements.

The information for correlating measurements and geo-
metric relationships between sensing elements includes a
mapping between a relative pose of the sensing elements and
a sensor measurement.
The mapping between the relative pose of the sensing

elements and the sensor measurement characterizes a linear
mapping.
Accepting the information related to an actual sensor

measurement includes accepting information characterizing
an uncertainty in the actual measurement.
The information characterizing the uncertainty in the

actual measurement includes parameters of a statistical
distribution of an error of the actual measurement.
Repeatedly updating the state further includes selecting a

pair of sensing elements for measurement, and providing an
identification of the selected pair to the sensing subsystem.
Selecting the pair of sensing elements includes selecting

the elements according to an expected utility of a measure-
ment associated with the elements to the updating of the
state.
Repeatedly updating the state further includes updating

the state according to the accepted information related to an
actual sensor measurement.
Repeatedly updating the state further includes updating

the state according to accepted measurements from inertial
sensors.
Updating the state estimate includes applying a Kalman

Filter approach.
Each of the sensing elements includes at least one of a

sensor and a target.

The target includes an active device that interacts with the
sensor.
The target includes at least one of a man-made signal

reflector and a natural feature of an environment.

5

4
The object is selected from a group consisting of a

vehicle, a robot, a person, a part of a person, a flying object,
a floating object, an underwater moving object, an animal, a
camera, a sensing apparatus, a helmet, a tool, a piece of

5 sports equipment, a shoe, a boot, an article of clothing, a
personal protective equipment, and a rigid object having a
dimension between 1 nanometer to 109 meters.
The state estimate includes information related to a posi-

tion or an orientation of the object relative to a reference

10 coordinate frame.
In general, in another aspect, the invention features a

tracking system includes an estimation subsystem, and a
sensor subsystem coupled to the estimation subsystem. The
sensor subsystem is configured to provide configuration data

is to the estimation subsystem and to provide measurement
information to the estimation subsystem for localizing an
object. The estimation subsystem is configured to update a
location estimate for the object based on configuration data
and measurement information accepted from the sensor

20 subsystem.
This and other aspects of the invention may include one

or more of the following features.
The sensor subsystem includes one or more sensor

modules, each providing an interface for interacting with a
25 corresponding set of one or more sensing elements.

The interface enables the sensor module to perform
computations independently of an implementation of the
estimation subsystem.
The interface enables the estimation subsystem to perform

30 computations independently of an implementation of the
sensor modules.
The tracking system also includes a navigation subsystem

to navigate the object in an environment based on the
location estimate for the object.

35 In general, in another aspect, the invention features a
sensor module that includes a sensor interface for commu-
nicating with a measurement sensor, and a communication
interface for communication with an estimation system. The
sensor module is configured to receive information related to

40 an expected sensor measurement over the communication
interface, receive a measurement signal over the sensor
interface, and provide measurement information based on
the measurement signal over the communication interface.
This and other aspects of the invention may include one

or more of the following features.

The sensor module is configured to provide information
over the communication interface related to an uncertainty
in the measurement information.

The received information related to an expected sensor50
measurement includes a predicted pose of a sensing element
relative to the measurement sensor.

In general, in another aspect, the invention features a
method that includes enumerating a set of sensing elements

55 available to a tracking system that includes an estimation
subsystem that estimates a position or orientation of an
object, and providing parameters specific to the set of
sensing elements to the tracking system to enable the
estimation subsystem to be configured based on the param-

60 eters specific to the subset of sensing elements.

This and other aspects of the invention may include one
or more of the following features.
The method includes generating a sequence of candidates

of pairs of sensing elements selected from the set of sensing
65 elements, the sequence based on an expected utility of a
measurement associated with the elements to the estimation
subsystem.

4
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The method includes selecting a pair of sensing elements
from the sequence of candidates, the selected pair of sensing
elements being ready to make a measurement at the time of
selection of the pair or at a predefined time after the time of
selection of the pair, the selected pair having a highest
expected utility of a measurement among the sequence of
candidates.

The set of sensing elements includes at least one sensor
and at least one target, the sensor making a measurement
with respect to the target.

The target includes a natural feature in an environment.

In general, in another aspect, the invention features a
method that includes computing an estimate of a pose of a
target element relative to a sensor element based on an
estimate of a pose of a tracked object relative to an envi-
ronment having affixed thereto either the sensor element or
the target element. The computing of the estimate of the pose
of the target element relative to the sensor element is also
based on an estimate of a pose of the affixed element relative
to the tracked object and the other element relative to the
environment. The method also includes computing an esti-
mate of a measurement of the target made by the sensor
based on the estimate of the pose of the target relative to the
sensor, making an actual measurement of the target by using
the sensor, computing a deviation between the actual mea-
surement and the estimated measurement, and generating a
new estimate of the pose of the tracked object based on the
deviation.

This and other aspects of the invention may include one
or more of the following features.

The method also includes computing a first observation
matrix that characterizes a linearized model of a function
relating the measurement made by the sensor to the pose of
the target relative to the sensor.

The method also includes computing a second observa-
tion matrix that characterizes a linearized model of a func-
tion relating the pose of the target relative to the sensor to the
estimate of the pose of the tracked object relative to the
environment.

The also includes computing an observation matrix that
characterizes a linearized model of a function relating the
measurement made by the sensor to the pose of the tracked
object relative to the environment by combining the first
observation matrix and the second observation matrix.

In general, in another aspect, the invention features a
method that includes estimating a first value associated with
a pose of a first sensing element relative to a second sensing
element. The first sensing element is fixed to an environment
and the second sensing element is fixed to an object being
tracked, One of the first and second sensing elements is a
sensor and the other is a target. The method includes
estimating a second value associated with a pose of the
second sensing element relative to the first sensing element,
determining which of the first and second sensing elements
is the sensor, and generating an innovation of a measurement
of the target made by the sensor based on the first value
when the second sensing element is the sensor.

This and other aspects of the invention may include one
or more of the following features.

The method also includes generating the innovation based
on the second value when the first sensing element is the
sensor.

Estimating the first value and estimating the second value
are performed by a process ignorant of which of the first and
second sensing elements is a sensor.

5

6
In general, in another aspect, the invention features a

method that includes estimating a calibration parameter of a
sensing element that is either a sensor or a target, the sensing
element being fixed either to an environment or to an object

5 being tracked. The method includes determining whether the
sensing element is the sensor or the target, assigning the
calibration parameter as a sensor calibration parameter when
the sensing element is a sensor, and generating an innovation
of a measurement of a target made by the sensing element

10 based in part on the sensor calibration parameter.

This and other aspects of the invention may include one
or more of the following features.

The method also includes assigning the calibration param-
eter as a target calibration parameter when the sensing

is element is a target, and generating an innovation of a
measurement of the sensing element made by a sensor based
in part on the target calibration parameter.

Estimating the calibration parameter is performed by a

20 
process ignorant of whether the sensing element is a sensor
or a target.

In general, in another aspect, the invention features a
method of using multiple sensors in a tracking system. The
method includes providing an estimation subsystem, cou-

25 pling one or more sensor modules to the estimation
subsystem, each associated with a different set of one or
more sensors. The method includes configuring the tracking
system, which includes providing configuration information
from each of the sensor modules to the estimation subsystem

30 regarding the characteristics of the sensors associated with
the sensor module, and configuring the estimation sub-
system using the provided configuration information. The
method includes maintaining estimates of tracking param-
eters in the estimation subsystem, including repeatedly

35 passing data based on the estimates of the tracking param-
eters from the estimation subsystem to one or more of the
sensor modules, receiving from the one or more sensor
modules at the estimation subsystem data based on mea-
surements obtained from the associated sensors, and the data

40 passed to the sensor modules, and combining the data
received from the one or more sensor modules and the
estimates of the tracking parameters in the estimation sub-
system to update the tracking parameters.

This and other aspects of the invention may include one
45 or more of the following features.

The data passed from the estimation subsystem to one or
more of the sensor modules includes an estimate of the pose
of a target relative to a sensor that was calculated by the
estimation subsystem using an estimate of the pose of a

50 tracked object relative to a frame of reference fixed to an
environment.

The data passed from the estimation subsystem to one or
more of the sensor modules does not include the estimate of
the pose of the tracked object relative to the frame of
reference fixed to the environment.

Providing the estimation subsystem includes providing a
module that is configurable to use different sets of sensor
modules coupled to it.

60 Maintaining estimates of the tracking parameters in the
estimation subsystem includes using a stochastic model in
the estimation subsystem.

Using a stochastic model includes implementing some or
all of a Kalman filter in the estimation subsystem.

65 Implementing some or all of the Kalman filter includes
updating error estimates using linearized models of the
sensor system.

5
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Implementing some or all of the Kalman filter includes
implementing a distributed Kalman filter, wherein each of a
plurality of components of the distributed Kalman filter is
associated with a different subset of the sensor modules.

One of the components of the distributed Kalman filter is
associated with a subset of sensor modules consisting of
sensor modules that are affixed to a tracked object.

One of the components of the distributed Kalman filter is
associated with a subset of sensor modules consisting of
sensor modules which are affixed to an environment.

One of the components of the distributed Kalman filter is
not associated with any sensor modules.

Implementing the distributed Kalman filter includes
implementing a Federated Kalman Filter.
Providing configuration information from the sensor

modules includes providing information characterizing a
type of a sensor associated with a sensor module.
Providing configuration information from the sensor

modules includes providing information characterizing a
position or an orientation of a sensor associated with a
sensor module.
Providing configuration information from the sensor

modules includes providing information characterizing one
or more calibration parameters of a sensor associated with a
sensor module.

In general, in another aspect, the invention features a
machine-accessible medium, which when accessed results in
a tracking or navigation system that tracks or navigates,
respectively, an object, performing operations that includes
enumerating a set of sensing elements available to the
tracking or navigation system, where the sensing elements
available to the tracking or navigation system includes at
least one of an inside-out sensor and an outside-in sensor.
The inside-out sensor is fixed to the object and makes
measurements with respect to a target fixed to an environ-
ment. The outside-in sensor is fixed to the environment and
makes measurements with respect to a target fixed to the
object. The machine-accessible medium, when accessed,
results in the tracking or navigation system configuring an
estimation module of the tracking or navigation system
based on an enumeration of the set of sensing elements
available to the tracking or navigation system so that the
estimation module can process measurement information
from either inside-out sensors, outside-in sensors, or a
combination of inside-out and outside-in sensors depending
on the sensors available. The machine-accessible medium,
when accessed, results in the tracking or navigation system
repeatedly updating an estimated pose of an object based on
measurements from the set of sensing elements available to
the tracking or navigation system.
This and other aspects of the invention may include one

or more of the following features.
The sensing elements available to the tracking or navi-

gation system include range sensors, and configuring the
estimation module includes configuring the estimation mod-
ule so that the estimation module can process measurement
information from either inside-out sensors, outside-in
sensors, range sensors, or any combination of the above
sensors.
The sensing elements available to the tracking or navi-

gation system include inertial sensors, and configuring the
estimation module includes configuring the estimation mod-
ule so that the estimation module can process measurement
information from either inside-out sensors, outside-in
sensors, inertial sensors, or any combination of the above
sensors.

8
The sensing elements available to the tracking or navi-

gation system include dead reckoning sensors, and config-
uring the estimation module includes configuring the esti-
mation module so that the estimation module can process

5 measurement information from either inside-out sensors,
outside-in sensors, dead reckoning sensors, or any combi-
nation of the above sensors.

In general, in another aspect, the invention features a
tracking or navigation method that includes receiving sensor

10 configuration information indicating a set of sensing ele-
ments available to a tracking or navigation system, and
configuring a data processing module of the tracking or
navigation system based on the sensor configuration infor-
mation to selectively perform one of (a) receiving data from

15 at least one inside-out bearing sensor, and updating an
estimated pose of an object based on data received from the
inside-out bearing sensor, (b) receiving data from at least
one outside-in bearing sensor, and updating an estimated
pose of an object based on data received from the outside-in

20 bearing sensor, and (c) receiving data from at least one
inside-out bearing sensor and at least one outside-in bearing
sensor, and updating an estimated pose of an object based on
data received from the outside-in bearing sensor and the
inside-out bearing sensor.

25 This and other aspects of the invention may include one
or more of the following features.

The tacking or navigation method also includes config-
uring the data processing module to selectively perform one

30 
of (d) receiving data from at least one range sensor, and
updating an estimated pose of an object based on data
received from the range sensor, (e) receiving data from at
least one range sensor and at least one inside-out bearing
sensor, and updating an estimated pose of an object based on
data received from the range sensor and the inside-out

35
bearing sensor, (f) receiving data from at least one range
sensor and at least one outside-in bearing sensor, and updat-
ing an estimated pose of an object based on data received
from the range sensor and the outside-in bearing sensor, and

40 
(g) receiving data from at least one range sensor, at least one
outside-in bearing sensor, and at least one inside-out bearing
sensor, and updating an estimated pose of an object based on
data received from the range sensor, the inside-out bearing
sensor, and the outside-in bearing sensor.

45 In general, in another aspect, the invention features an
apparatus that includes an estimation module to estimate a
pose of an object based on measurement data from sensing
elements, the estimation module configured to enable selec-
tive performance of (a) receiving data from at least one

50 inside-out bearing sensor, and updating an estimated pose of
an object based on the data received from the inside-out
bearing sensor, (b) receiving data from at least one outside-
in bearing sensor, and updating an estimated pose of an
object based on the data received from the outside-in bearing

55 sensor, and (c) receiving data from at least one inside-out
bearing sensor and at least one outside-in bearing sensor, and
updating an estimated pose of an object based on the data
received from the outside-in bearing sensor and the inside-
out bearing sensor.

60 In general, in another aspect, the invention features an
apparatus that includes an estimation module to estimate a
pose of an object based on measurement data from sensing
elements, the estimation module configured to enable selec-
tive performance of one of (a) updating an estimate of the

65 position or orientation of the object relative to an
environment, (b) updating an estimate of the position or
orientation, relative to the object, of at least one sensing
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element fixed to the object, and (c) updating an estimate of
the position or orientation, relative to the environment, of at
least one sensing element fixed in the environment.

In general, in another aspect, the invention features a
computer program that is capable of performing any com-
bination (i.e., one, two, three, four, five, . . . , etc.) of a set
of functions, and selects which function or functions to
perform at runtime based on configuration information. In
this aspect of the invention, the set of functions can feature
any subset of the following: (i) receive data from one or
more inside-out bearing sensors; (ii) receive data from one
or more outside-in bearing sensors; (iii) receive data from
one or more range sensors; (iv) receive data from one or
more inertial or dead reckoning sensors; (v) receive data
from one or more inside-out bearing sensors and one or more
outside-in bearing sensors; (vi) receive data from one or
more bearing sensors and one or more range sensors; (vii)
update an estimate of the position or orientation of a tracked
object relative to a reference coordinate frame; (viii) update
estimates of the position or orientation relative to the tracked
object of one or more sensors or targets affixed to the tracked
object; (ix) update estimates of the position or orientation
relative to the reference coordinate frame of one or more
sensors or targets fixed in the reference coordinate frame; (x)
update estimates of calibration parameters of one or more
sensors; and (xi) update estimates of size or color or ampli-
tude or frequency or pattern or category of one or more
targets.

Implementations of the invention may include one or
more of the following features.

The configuration information is obtained from configu-
ration files stored on a computer readable medium accessible
to the computer program.

The configuration information describing a particular
sensor is obtained from a nonvolatile electronic memory
device physically attached to said sensing device.

The computer program is capable of performing more
than one of the functions in groups (i) to (vi).

The computer program is capable of performing more
than one of the functions in groups (vii) to (xi).

The computer program is capable of simultaneously per-
forming more than one of the functions in groups (i) to (vi).

The computer program is capable of simultaneously per-
forming more than one of the functions in groups (vii) to
(xi).

The computer program is capable of simultaneously per-
forming one or more of the functions in groups (i) to (vi),
and one or more of the functions in groups (vii) to (xi).
Aspects of the invention may include one or more of the

following features.
The system is implemented in whole or in part in soft-

ware.

The system provides an application programming inter-
face to a software application that makes use of tracking or
mapping data.

The application programming interface to the application
does not necessarily expose the details of the sensor con-
figuration.

Sensor modules are implemented in software.
The sensor modules each provides an application pro-

gramming interface that is used by the system to commu-
nicate with the sensor modules.
The sensor module application programming interface

does not depend on the specific characteristics of the set of
sensors associated with that sensor module.

10

The sensor modules are implemented as dynamically
loaded software modules.

The sensor modules are automatically detected by the
system.

5 The sensor modules provide sensor parameters to a cen-
tral estimation subsystem.
The sensor parameters include parameters that identify a

basic type of a sensor, such as 2-D bearing, 1-D bearing,
range, etc.
The sensor parameters include parameters that identify a

specific type of a sensor, such as make and model, etc.

The sensor parameters are provided according to the IEEE
1451.2 Smart Transducer Interface standard.
The sensor module provides measurement related param-

eters for the sensors.
The measurement-related parameters include parameters

of an observation model.

The parameters of an observation model include an obser-
20 vation matrix suitable for a Kalman Filter.

The estimation subsystem automatically configures a Kal-
man Filter using the provided sensor parameters.
The estimation subsystem repeatedly provides state-

related information to the sensor modules.
25 The state-related information includes location informa-

tion.
The location information includes location information

related to a location of a target relative to a sensor.
The location information includes location information

related to a fixed location in an environment.
The state-related information includes bias parameter

information.
'The sensor modules repeatedly accept the state-related

information and combine that information with sensor mea-
surement information, and pass the combined information to
the estimation subsystem.
The combined information includes innovation data for

the Kalman Filter.

40 The estimation subsystem implements an Extended Kal-
man Filter.

The estimation subsystem implements a distributed Kal-
man Filter.
The distributed Kalman Filter includes separate compo-

45 nents associated with different sets of one or more sensing
elements.
The distributed Kalman Filter includes a Federated Kal-

man Filter.
The estimation subsystem includes a sensor fusing mod-

50 ule for combining information from different sets of sensors.

The estimation subsystem includes a localization filter.
The estimation subsystem includes a mapping filter.
The estimation subsystem includes a simultaneous local-

ization and mapping filter.
The estimation subsystem includes an auto-calibration

filter.

The estimation subsystem includes a simultaneous local-
ization and auto-calibration filter.

60 The estimation subsystem includes a simultaneous
localization, auto-calibration, and mapping filter.
The estimation subsystem includes a selector for selecting

one of the localization, and auto-calibration, and mapping
related filters.

65 The system independently switches between simulta-
neous tracking and auto-calibration, simultaneous tracking
and mapping, tracking only, etc.

5

5

1

3

3
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The estimation subsystem performs auto-calibration dur-
ing an initial interval.

The estimation subsystem performs auto-calibration
while in a pre-surveyed area for which map information is
available.

The estimation subsystem stops performing auto-
calibration after the initial interval, or after it leaves the
pre-surveyed area.

Aspects of the invention enable a framework in which a
user can rapidly implement a wide variety of user-
configurable multi-sensor fusion systems for tracking, auto-
calibration, auto-mapping, or any combination of the above.
Advantages of one or more aspects of the invention may
include one or more of the following:

Sensor versatility: The architecture allows use of various
combinations of types and qualities of sensors—inside-out,
outside-in, mixed, with or without inertial or dead-reckoning
sensors.

Plug and track functionality: The architecture allows users
to configure systems by plugging together self-identifying
and self-describing smart sensor modules.

Scalability: The architecture enables deployment of sys-
tems with large numbers of tracked vehicles and/or large
maps.

Flexibility: The architecture permits implementation of
systems with one on-board processor per vehicle, or tracking
systems in which a regional processor tracks all vehicles in
the area.

Algorithm versatility: The architecture defines interfaces
between modules to allow individual modules to be updated
to take advantage of the newest large-scale simultaneous
localization and mapping algorithms. The architecture
allows the use of sub-map partitioning.

Function versatility: The navigation system may switch
between simultaneous tracking and auto-calibration, simul-
taneous tracking and map-building, tracking only, or simul-
taneous tracking and map-building and auto-calibration.

Object-oriented design: The architecture facilitates reuse
of the modules (e.g., PSE drivers or update filter modules)
when the top-level navigation system design is changed.

Other features and advantages of the invention are appar-
ent from the following description, and from the claims.

DESCRIPTION OF DRAWINGS

FIG. 1 shows a vehicle navigating an environment.

FIGS. 2 and 3 are block diagrams of a navigation system.

FIG. 4 shows different frames of reference.

FIG. 5 shows an overall architecture of a navigation
system.

FIG. 6 is a block diagram of a measurement management
unit.

FIG. 7 is a block diagram of software modules of the
navigation system.

FIG. 8 shows a file directory structure used by the
navigation system.

FIG. 9 shows a flow diagram of logic performed by a
configuration manager program.

FIG. 10 shows a block diagram of an architecture for a
multiple vehicle navigation system.

FIG. 11 illustrates applications of the navigation system.

FIG. 12 shows a distributed Kalman filter.

12
DESCRIPTION

1 System Overview
Referring to FIGS. 1 and 2, a navigation system 90 tracks

or navigates a vehicle 100 in an environment (or "galaxy")
5 106, such as within a factory building. Navigation system 90
(see FIG. 2) includes sensors 103 that provide measurement
data and a data processing unit 190 that processes data
provided by the sensors. The navigation system 90 builds a
map of the environment, calibrates the sensors, and deter-

10 mines the location of the vehicle in the galaxy frame of
reference. The navigation system 90 tracks the position and
the orientation (together referred to as the 6-dimensional
"pose") of vehicle 100 based on both inertial measurements
as well as sensor measurements between sensing devices or

15 targets in the vehicle 100 and sensing devices or targets that
are fixed in the environment 106.
The terms "environment" and "galaxy" is used inter-

changeably in the description below. The environment can
be one, two, or three dimensional. For example, environ-

20 ment 106 may be a track that winds through a factory.
Environment 106 may be a land mass, an ocean floor, a
factory floor, a room, a building, a town, an airspace, an
ocean body, or an underground tunnel. Environment 106
may be moving relative to earth. For example, the environ-

25 ment may be the interior of an aircraft carrier or a space
surrounding a space shuttle orbiting the earth. Vehicle 100
may be, for example, a land vehicle, a water vehicle, an
aircraft, a spacecraft, a robot, a person, a part of a person, a
flying object, a floating object, an underwater moving

30 object, an animal, a camera, a weapon, a handheld object, a
sensing apparatus, a helmet, a tool, a medical instrument, a
display, a piece of sports equipment, a shoe, a boot, an article
of clothing, a personal protective equipment, or some other
object. The terms vehicle and navigation are used for

35 simplicity, but should not be construed to limit the scope of
the invention, which is equally intended for tracking any
object for any purpose. Therefore, the terms "navigation
system" and "tracking system" will be used interchangeably
in the description below, as will the terms "vehicle" and

40 "tracked object".
The pose of the vehicle is estimated in a fixed frame of

reference in environment 106, which is referred to as the
galaxy frame of reference or the navigation frame of refer-
ence ("N-frame"). In one version of the system, the galaxy

45 frame of reference is an inertial frame of reference. Inertial
sensors 104, which are part of an inertial measurement unit
(IMU), provide measurements for inertial tracking of the
vehicle by an inertial navigation subsystem.
Navigation system 90 makes use of two general classes of

50 sensor measurements. One class of sensor measurements,
called interoceptive measurements, are used for dead reck-
oning. Interoceptive measurements are made within the
vehicle, without reference to any elements external to the
vehicle. This class includes inertial measurements (e.g.,

55 from linear or angular accelerometers or from gyroscopes)
and relative displacement measurements (e.g., from wheel
encoders or optical flow sensors). In the discussion below,
one or more inertial measurement units (IMUs) provide the
dead-reckoning measurements to the navigation system.

60 However, the system architecture has been designed to
support the substitution of other interoceptive sensors, so the
abbreviation IMU may also be interpreted as "interoceptive
measurement unit" where the context permits.
A second class of sensor measurements, called exterocep-

65 tive measurements, provide measurements between ele-
ments on the vehicle and elements external to it. Within this
class, some measurements are relative to the reference frame
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("earth referenced" measurements), such as GPS, altimeter,
compass, and gravitometer measurements. Other sensor
measurements are related to pairs of sensors and targets that
are fixed to the vehicle and targets or sensors fixed in the
environment ("map-referenced" measurements).
The sensors and targets fixed to the vehicle or fixed in the

environment are collectively referred to as "pose sensing
elements" (PSEs). The PSEs fixed to the vehicle 100 are
referred to as "mobile" PSEs (MPSEs) 102 and the PSEs
fixed in the environment 106 are referred to as "fixed" PSEs
(FPSEs) 108. Sensor measurements generally relate to mea-
surements between pairs of PSEs (indicated by the dashed
lines), one MPSE and one FPSE, and depend on aspects of
the relative (6-dimensional) pose of the two PSEs.
As introduced above, PSEs generally fall into two groups:

sensors and targets. Examples of sensors include cameras
and microphones. Examples of targets include target images
(e.g., a bulls-eye) and acoustic beacons (sound emitters). It
is not necessary that the sensor PSEs be fixed to the vehicle
and targets fixed in the environment. For example, sensors
may also be fixed in the environment such as tracking
cameras fixed in a factory environment that track move-
ments of vehicles moving on the factory floor.
Targets may be active or passive. An example of an active

target is an ultrasound speaker that emits ultrasound signals.
An example of a passive target is a circular marking pasted
on the ceiling of a room, or a natural landmark such as a
corner of a building, or rocks in a terrain.
For earth-referenced sensors (such as a GPS receiver), the

sensor is an MPSE, with no specific target FPSE being
associated with measurements by that sensor.

In various vehicle configurations, a wide variety of sen-
sors and targets may be used. Navigation system 90 is
modularized and configurable such that different sensors and
targets can be selected for a particular vehicle without
necessarily having to re-implement and re-test the imple-
mentation of the navigation system. The architecture pro-
vides a "plug and track" capability in which sensors and
targets and their associated software drivers can be
"plugged" into the navigation system 90, which then makes
use of the sensors and targets in tracking the vehicle. For
example, an acoustic sensor such as a directional micro-
phone may be "plugged" into the navigation system, and
range and directionality characteristics of the microphones
are automatically used by the navigation system 90 in
tracking the vehicle 100.
Navigation system 90 also has the capability of automati-

cally determining values of PSEs' intrinsic calibration
parameters as well as estimating the extrinsic calibration
parameters (poses) of PSEs (and optionally the IMUs) in a
parent frame of reference (B-frame for MPSEs and N-frame
for FPSEs). Examples of sensor intrinsic calibration param-
eters are camera lens distortion parameters or additive biases
or scale factor error parameters in a range measuring system.
The term "auto-calibration" is generally used in the discus-
sion below to include estimating the intrinsic and/or extrin-
sic parameters of mobile sensors or targets relative to the
vehicle, while the term "mapping" is generally used in the
discussion below to include estimating the intrinsic or
extrinsic parameters of fixed sensors or targets relative to the
environment. This is slightly different from common usage,
in which estimating the calibration parameters of sensors,
even those fixed in the environment, would usually be called
calibration rather than mapping.
When an MPSE is installed on vehicle 100, the informa-

tion on the pose of the MPSE relative to the vehicle is not
necessarily provided to the system or may be manually

14
entered to limited accuracy by a user. While in auto-
calibration mode, as the navigation system processes sensor
inputs using that MPSE, the pose of the MPSE is updated.
Such updating can also compensate for changes in pose of

5 an MPSE, for example, because of a shifting of the MPSE
during use of the vehicle.
2 Pose Sensing Elements (PSEs)
The navigation system 90 supports a wide variety of types

of sensors to be used in tracking and navigation applications,
10 each sensor having a different performance, operating

environment, range, size, cost, update rate, and penetration
capability.
As introduced above, PSEs provide two types of mea-

surements. One type of measurements can be described as
15 "map-point-referenced discrete update observables." Such
measurements are made with respect to point references in
the environment, and contribute directly to the environment
mapping process. For example, ultrasonic sensors, Lidar
(Light Detection And Ranging), radar, and raw GPS "pseu-

zo dorange" data can be used to measure ranges. Laser
scanners, linear CCD (charge coupled device) sensors, and
phased array sensors can be used to measure one-
dimensional bearing angles. Imaging sensors, PSD (position
sensitive device) sensors, quadcells, and pan/tilt servos can

25 be used to measure two-dimensional bearing angles. Dop-
pler radar and phase-coherent acoustic sensors can be used
to detect range rates. TDOA (time difference of arrival) RF
or acoustic sensors and radar can be used to measure range
differences. Active source magnetic trackers and electric

30 field trackers can be used to measure dipole field compo-
nents.
A second type of measurements provided by PSEs can be

described as "earth-referenced discrete update observables."
Such measurements are made with respect to physical

35 properties of the environment. For example, processed GPS
signals and altimeters can be used to measure Cartesian
positions or aspects thereof. Magnetic compasses and gyro-
compasses can be used to measure headings. Magnetometers
and gravitometers can be used to measure fields that vary by

40 location in the environment.
In the description below, when performing a bearing angle

measurement, the "sensor" is defined as the device at the
fulcrum of the bearing angle, even if it is actually a source
rather than a detector of a signal. Thus, in the case where a

45 laser scanner (or other light projector) and a photodetector
are used to measure a bearing angle, the "sensor" is the laser,
and the "target" is the photodetector. For an "inside-out"
measurement, the sensor is attached to the vehicle and the
target is fixed in the environment. For an "outside-in"

so measurement, a sensor fixed in the environment observes a
target fixed to the moving vehicle.
For map-point referenced PSEs, a measurement

between a particular MPSE j and FPSE i depends on the
relative pose X of the sensor and the target. In general, this

55 relationship takes the form of a non-linear function
(Xi). In general, this function depends on the characteristics
of the sensor and may depend on the characteristics and/or
the identity of the target. The function h(Xi) is referred to
as the observation function of the sensor. The value is

60 measured in the sensor's frame of reference. This sensor-
target pose, Xq, depends on the poses of the MPSE relative
to the vehicle, the FPSE relative to the galaxy, and the
vehicle relative to the galaxy.
The pose Xi  can be expressed using a number of different

65 representations of the 6-degrees of freedom in the pose. In
the present version of the system, the Cartesian coordinates
x, y and z of the target in the sensor's frame of reference
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represent translation, and a 3x3 rotation matrix which trans-
forms vectors from the target's frame of reference to the
sensor's frame of reference represents orientation. Another
potentially useful representation of the pose Xi./ between the
ith FPSE and the ith MPSE is expressed as

Here Oi is the angle between the FPSE principal axis
and a line connecting the FPSE and the MPSE, and lii is the
length of the line. The azimuthal angle j of this line is
measured around the ith FPSE's principal axis (forward or
x-axis) using a right hand rule and the FPSE's y-axis as the
starting mark. Angles OA are a symmetrically defined
off-axis angle and azimuthal angle of the departing ray from
the ith MPSE. The final term, t1, is the twist of the imaginary
rigid pole connecting the centers of the two PSEs about a
swivel joint in the pole center, where the twist of each pole
half relative to its PSE is fixed by imagining that the pole
flattens out like a canoe paddle at the end, and the intersec-
tion of this blade with the PSE's y-z plane lies along the
y-axis. The advantage of this unusual pose representation is
that it is symmetrical—to reverse the direction of reference
and find the inverse pose, just switch indices i and j.

For earth-referenced sensors, such as GPS sensors, there
is no specific FPSE involved in the measurement. In this
case, the subscript i is ignored and the pose of the MPSE is
relative to a fixed point in the galaxy frame of reference.

To provide a simple example of a sensor measurement,
suppose a sensor measures a separation of the MPSE and
FPSE according to the equation zii=1,7-3. In this case, the
observation function takes the form hii((ei (i)i Di cj lii tii))=

More complex observation functions arise when the
sensor measurement depends on more than simply the
absolute separation of the sensor and target. Also, note that
in general, the observation zji is a vector-valued quantity.

The system makes use of an observation model in which
the measured observation is assumed to be corrupted by an
additive observation noise as zii=hii(Xii)+vii. When the
observation is vector-valued, the components of the obser-
vation noise v, may be correlated, and the covariance of this
noise is a matrix R(X) which, as is noted, may depend on
the relative pose of the sensor and the target.

In operation, it is useful to linearize the observation model
about an "operating point" (e.g., an estimated pose Xii) in the
form zii=Hii(X0Xii-Fvii. (With a 6-dimensional representation
of the pose, and an m-dimensional observation, the obser-
vation matrix has 6 columns and m rows.) It is also useful
to compute the difference between the expected measure-
ment based on the estimated pose, Zii=hii(Xii), and the actual
sensor measurement. This difference, oz=zii-2., is referred
to as the "innovation" in the measurement.

As discussed more fully below, a sensor and its associated
components are responsible for accepting an estimated pose

computing the matrices Hii(Xii) and Rii(Xii) that depend
on this estimated pose, making an actual measurement
and computing the innovation Note that these
operations and computations may be very specific to the
sensor, and the computations may involve considerations of
complex non-linear characteristics of the sensors.

As introduced above, the navigation system may also
estimate intrinsic calibration (bias) parameters for the PSEs.
In such a case, the observation function is extended to
include these arguments as zii=hii(Xii,ki,ki), where ki and kJ
are vectors of calibration parameters for the FPSE i and
MPSE j respectively. The observation model is extended to
include the calibration parameters:

5

16

A,

=[H- H-ki H-]ki ki

kj

+

3 Tracking System Architecture
Referring to FIG. 2, sensors 103 include PSE devices and

active targets 105 and IMU 104. Measurements by PSEs are
10 made between pairs of PSEs, one PSE functioning as a

sensor and the other PSE functioning as a target. In one
example, the PSE sensor is fixed on vehicle 100 and the PSE
target is fixed in the environment 106. In another example,
the PSE sensor is fixed in the environment 106 and the PSE

15 target is fixed on vehicle 100. In another example, where
multiple vehicles are used, the PSE sensor is fixed in one
vehicle and the PSE target is fixed in another vehicle.
Measurements by PSEs allow the navigation system 90 to
determine the vehicle's position relative to the environment

20 or relative to other vehicles.
The interoceptive sensors (inertial or other dead-

reckoning sensors) in IMU 104 make measurements without
reference to anything outside the vehicle. For instance,
integration of inertial measurements allows navigation sys-

25 tem 90 to determine the vehicle's position relative to the
vehicle's position at a prior time. If the vehicle's position in
the galaxy frame of reference is known at the prior time, then
the inertial measurements allow the navigation system 90 to
make an estimate of the current location of the vehicle 100

30 in the galaxy frame of reference. Thus, when measurements
between pairs of PSEs are not possible, such as when vehicle
100 navigates through a portion of the environment where
PSEs in the environment are all blocked by obstacles,
navigation system 90 can still keep track of the location

35 (including orientation, and possibly other state variables of
the vehicle such as velocity or rotation rate) of the vehicle
based on the inertial measurements.

In the data processing unit 190, sensor-specific modeling
is separated from the generic sensor fusion algorithms used

40 to update system states. Specifically, sensor specific com-
putations are isolated in PSE drivers 120. A meta-driver 122
provides an interface between the PSE drivers 120 and a
sensor fusion core 200, which does not need to include
sensor-specific aspects.

45 The PSE drivers 120 provide interfaces to PSE devices
105. PSE drivers 120 are software modules, which may be
written by manufacturers of PSE devices 105 independently
of the specific implementation of the sensor fusion core, and
are implemented as shared object library files, such as ".d11"

50 (dynamic link library) files under Windows or ".so" files
under Unix. As will be described in more detail below, PSE
drivers 120 include information and interfaces that are
specific to the PSE devices 105, and data and code needed
for computation of the linearized observation matrices,

55 observation noise covariance matrices, and expected sensor
measurements and/or innovations as described above.
Data processing unit 190 includes a sensor fusion core

(SFC) 200 that processes information from sensors 103.
SFC 200 includes a state update module 214 that updates a

60 vehicle state 202, a vehicle map 204, and an environment
map 206. The vehicle state includes estimates of the location
and/or orientation of vehicle 100, as well as other relevant
state variables for the vehicle, which is denoted as a vector
x. The vehicle map 204 includes a map (i.e., the poses) of

65 MPSEs in the vehicle's frame of reference (B-frame),
denoted as a vector M of the stacked pose vectors mi of the
individual MPSEs. The environment map 206 includes a
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map containing poses of FPSEs in the galaxy frame of
reference (N-frame), denoted as a vector F of the stacked
poses f, of the individual FPSEs. The overall state is denoted
as the stacked vector X-(xT,MT,Fi)T.

In versions of the system that estimate calibration param-
eters k for PSE„ each individual FPSE "vector" f, is
composed of a position, orientation, and intrinsic parameter
(bias) fields:

fi =

fP

f k

fix
k

5

10

where fix stands for the combined pose states and fik stands 15
for the bias state. Similar notation is used for MPSEJ.
The vehicle state 202, vehicle map 204, and environment

map 206 are stored in a memory. The term "vehicle state",
depending on context, will refer either to the state of the
vehicle or a portion of the memory storing the vehicle state. 20
Likewise, the term "vehicle map-, depending on context,
will refer either to a map of the MPSEs on the vehicle or a
portion of the memory storing the vehicle map. The term
"environment map", depending on context, will refer either
to a map of the FPSEs in the environment or a portion of the 25
memory storing the environment map.
Data processing unit 190 includes a meta-driver 122 that

is used as a bridge between PSE drivers 120 and SFC 200.
By dividing data processing unit 190 into portions specific
to PSE devices 105 and a portion specific to updating the 30
states of the navigation system 90, the navigation system can
be easily reconfigured depending on the latest versions of
device drivers and/or update algorithms. The meta-driver
122 allows PSE devices 105 and PSE drivers 120 to be
designed without knowledge of the inner workings of the 35
SFC 200, and SFC 200 can be designed without knowledge
of the specific details of the PSE devices 105 and PSE
drivers 120. The details of the meta-driver 122 will be
described below.
Referring to FIG. 3, the state update module 214 of the 40

SFC 200 includes a dynamic reference unit (DRU) 220 for
processing interoceptive measurement data and a sensor
processing module 222 for incorporating exteroceptive mea-
surement data. DRU 220 processes inertial and other dead-
reckoning measurements from IMU 104, while sensor pro- 45
cessing module 222 processes measurements from PSE
devices 105. The DRU 220 and sensor processing module
222 in combination updates the vehicle state 202, vehicle
map 204, and environment map 206 using an iterative
process. In operation, the DRU 220 may make use of 50
multiple measurements from the IMU 104 between uses of
measurements from the PSE devices 105. As described more
fully below, SFC 200 periodically (e.g., once each time an
exteroceptive measurement datum is available) uses a PSE
sensor measurement to update the state of the system. 55

DRU 220 processes inertial measurements from IMU 104
and maintains the vehicle state 202. Sensor processing
module 222 controls and processes PSE sensor measure-
ments based on an estimate of the vehicle's state from the
DRU 220, and determines adjustments to be made to the 60
vehicle state 202, based on measurements from PSE sensors
105, which it passes in a feedback arrangement back to the
DRU 220. The sensor processing module 222 maintains the
vehicle map 204 and the environment map 206 which it uses
in determining the amount of adjustment. 65

In navigation system 90, measurements from IMU 104
are made at constant intervals, e.g., 180 times per second.

18
Measurements from PSE devices 105 are made whenever
possible (i.e., when at least one measurement can be per-
formed between a pair of PSEs). At each iteration, zero or
one measurement requests between sensors and targets are
sent to the meta-driver, and during the same iteration, zero
or one PSE sensor measurements resulting from a previous
request may be received from the meta-driver and used to
update the state of the system. However, the limitation of
one request and one result received per cycle is not intrinsic
to the architecture, and may be increased to a larger number
in a future implementation.

In addition to maintaining an estimate of the vehicle state,
the DRU 220 calculates and provides the state transition
matrix (1),, and the process noise covariance matrix Q, to the
sensor processing module which uses them to update an
estimate of a covariance 13  of the estimation error of this
vehicle state estimate. The term 13  will be referred to as the
vehicle error covariance. The sensor processing module 222
uses the covariance and provides time updates to the cova-
riance based on the matrices (I), and Q on each iteration. It
also provides measurement updates to the covariance on
each iteration in which a measurement is received and
processed.
The sensor processing module 222 includes a measure-

ment management unit (MMU) 304 and an update filter 306.
MMU 304 selects pairs of PSEs for measurements by taking
into account the location of the vehicle, as well as a utility
of different measurements that might be made. For instance,
when the vehicle is at different locations, different pairs of
PSEs may be in range of one another and of the pairs of
PSEs that could be used, different pairs may be able to
provide more useful information based on the characteristics
of the sensors and/or the geometry of their relative locations.
MMU 304 communicates with PSE driver 120 through
meta-driver 122 to obtain the measurements from PSE
devices 105 and corresponding sensor parameters, and pro-
vides processed sensor measurements and sensor parameters
to the update filter 306.
When the navigation system 90 is powered up, MMU 304

or another component called sfShell, to be described later,
calls the meta-driver 122 and requests that the meta-driver
enumerate the sensing hardware. Meta-driver 122 loads
available PSE drivers, such as 308 and 309, from a driver
database 310. The PSE drivers are currently implemented as
".d11" files and assigned names having a format that allows
the meta-driver 122 to detect them. The term "PSE drivers
120" refers to the PSE drivers collectively.
Meta-driver 122 then requests that each PSE driver 120

enumerate the PSE devices 105 that are available to navi-
gation system 90 through that PSE driver and collect con-
figuration information from those sensors. One PSE driver
may control one or more than one PSE devices. Each PSE
driver may control one or more types of PSE devices. For
example, PSE driver 308 may control ultrasonic sensors and
emitters, and PSE driver 309 may control laser range finders.
Each PSE driver contains interfaces to, and possibly some
information about parameters related to the PSE devices.
The PSE devices may also store information about them-
selves. Meta-driver 122 receives the configuration informa-
tion from PSE drivers 120, compiles the information and
outputs a hardware configuration file "HW.cfg." The hard-
ware configuration file lists all of the PSE devices available
and their configuration information.

In one example, the PSE driver is written by the manu-
facturer of the PSE sensor associated with the PSE driver. A
PSE driver may also control PSE devices made by different
manufacturers.
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By using meta-driver 122 to enumerate the PSEs available
upon power-up of navigation system 90, the navigation
system is able to automatically reconfigure itself and con-
tinue to perform accurate map building and navigation when
PSE devices or IMUs are added or removed from the
system. This capability is referred to as "plug-and-track".
During initialization, navigation system 90 reserves states

in the state vectors processed by the update filter 306 to
accommodate the states of the PSE devices that are found
during the enumeration process. During active tracking,
navigation system 90 can also add new states (e.g., when
new PSE devices are found) or delete states (e.g., when PSE
devices are determined to be unavailable).
By using the meta-driver 122, even though the existence

of available PSE device 105 are relied upon in the calcula-
tion of inputs to update filter 306, the implementation of the
sensor fusion core 200 is separated from the implementation
of the devices 105, and thus it is possible to replace one type
of sensor 105 with another without the need to redesign any
components of the sensor fusion core 200. When the PSEs
are added or removed from the system, the meta-driver 122
enumerates the PSEs connected to the system, and the SFC
200 accommodates them automatically, even if the new
PSEs have structurally different measurement models or
triggering policies compared to previous ones.
When navigation system 90 starts the process of tracking

the location of vehicle 100, it first acquires an initial vehicle
pose estimate in a process called acquisition, to be described
later, and then enters tracking mode. In tracking mode,
MMU 304 communicates with meta-driver 120 to determine
which PSE pairs (including target and sensor) are available
to make measurements during the next measurement cycle.
MMU 304 selects a pair of PSEs from among the pairs of
PSEs that are available to make measurements. MMU 304
makes the selection based on an "information gain" that
represents the utility (or usefulness) of a measurement by the
pair of PSEs to navigation system 90.
After MMU 304 selects the pair of PSEs that can make a

measurement having the highest information gain, the MMU
sends a message to meta-driver 122 to cause a PSE driver to
trigger a measurement by the pair of PSEs. The actual
measurement is generally available after a number of cycles
due to the speed at which measurements can be made.

In choosing the pair of PSEs for making a measurement,
MMU 304 first generates a "wishlist" of pairs of PSEs. The
wishlist lists all of the pairs of PSEs consisting of a sensor
which is available to the MMU and ready and a target which
the MMU calculates to be within the sensing range of the
sensor.
The MMU 304 sends the wishlist to an arbiter that is part

of meta-driver 122. The arbiter identifies which pairs of
PSEs on the wishlist are available to initiate a measurement
in the next cycle. A particular pair may be marked by the
arbiter as unavailable either because the pair of PSEs are still
performing a measurement from a previous cycle or because
the sensor or target is shared with one or more other
vehicles. For shared devices, the arbiter tries to select a
sensor-target pair which provides the highest information
gain to as many of the requesting SFCs as possible. The
arbiter sends a message to each requesting MMU, indicating
that the MMU is allowed to request a measurement using
that chosen pair in the next cycle. In the next cycle, the
MMU sends a message to the meta-driver to cause a PSE
driver corresponding to the selected pair of PSEs to trigger
a measurement. The actual measurement may take many
cycles to complete. Therefore, in each cycle, the MMU
typically receives a measurement that it requested a number

20
of cycles earlier. The sensor processing module 222 includes
an update filter 306 to compute the amount of adjustment
that needs to be made to the vehicle state 202, vehicle map
204, and environment map 206 after each measurement is

5 made by a PSE sensor.
In the current version of the navigation system, the update

filter 306 implements a complementary extended Kalman
filter (CKF). The complementary extended Kalman filter
estimates errors in the underlying states. The underlying

10 states themselves are maintained outside of the CKF. Under-
lying states of the vehicle are maintained in the DRU.
Underlying states used for intrinsic and extrinsic parameters
of sensors and targets attached to the vehicle or to the galaxy
are maintained in a vehicle map management module and

15 galaxy map management module respectively. The CKF is
decomposed into several separable modules by making use
of a distributed Kalman filtering strategy called the Feder-
ated Kalman filter, which is modified to fit the complemen-
tary extended Kalman filter architecture.

20 The communication between sensor processing module
222 and meta-driver 122 is in the sensor's frame of refer-
ence. The sensor processing module 222 has available to it
the current vehicle state (including pose), the vehicle map
and environment map. The vehicle pose together with the

25 vehicle map determine the poses of the MPSEs in the global
frame of reference. Therefore, the sensor processing module
has sufficient information to compute the relative pose of
any pair of an MPSE and an FPSE.
The complementary extended Kalman filter computes

30 incremental updates SX of underlying system states X=(xT,
mT
) based on the innovations in the sensor measure-

ments. To perform the computation, update filter 306 uses
knowledge of the observation matrices that are linearized at
the "operating point" (i.e., estimated system state X) and the

35 observation noise covariance matrix R.
Navigation system 90 is designed so that linearization of

the non-linear measurement model equations are performed
by the PSE drivers 120, and sensor processing module 222
performs the linear computations associated with the CKF.

40 In this way, sensor processing module 222 can be imple-
mented without knowledge of the characteristics of the PSE
devices 105. The PSE devices can be designed without
knowledge of the specific details of the sensor processing
module 222. PSE devices 105 and drivers 120 also do not

45 have to know their positions and orientations relative to
vehicle 100 or the galaxy 106.
Navigation system 90 is designed so that update filter 222

performs computations with coordinates expressed in the
galaxy frame of reference, whereas PSE drivers 120 perform

50 computations with coordinates expressed in the PSE sensor
frame of reference. Update filter 306 operates in the galaxy
frame of reference allowing navigation system 90 to deter-
mine the location of vehicle 100 in the galaxy frame of
reference. In order to allow PSE devices 105 to be designed

55 independently, each PSE sensor 105 operates in its own
frame of reference. The MMU 304 provides the coordinate
transformations that are necessary to allow measurements
processed by PSE drivers 120 to be used by update filter 306,
and to allow pose predictions made by update filter 306 to

60 be used by PSE drivers 120. The following provides a more
detailed description of the coordinate transformations.
FIG. 4 shows relative poses among galaxy 106, vehicle

100, and PSEs 338. The figure shows a measurement
between a j-th MPSE (MPSE) 109 and an i-th FPSE (FPSE)

65 107. A galaxy frame of reference (N-frame) 330 is fixed
relative to galaxy 106. A vehicle frame of reference
(B-frame) 332 is fixed relative to vehicle 100. An MPSE
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frame of reference (j -frame) 334 is fixed relative to the
MPSEJ 109 and an FPSE frame of reference (i-frame) 336 is
fixed relative to the FPSE,. The pose of vehicle 100 relative
to the N-frame 330 is denoted as x. The pose of FPSE, 107
relative to the N-frame 330 is denoted t. The pose of MPSE,
109 relative to the B-frame 332 is denoted mi. The pose of
MPSEJ 109 relative to FPSE, 107 is denoted as X,J. The
measurement made between MPSEJ 109 and FPSE, 107 is
denoted zu.
So far we have discussed a measurement between the j-th

MPSE and the i-th FPSE without specifying which is the
sensor and which is the target. In the case of an inside-out
measurement, the MPSE is a sensor and the FPSE is a target.
In this case, the sensor frame or s-frame is the j-frame, and
the target frame or t-frame is the i-frame. In that case we
denote the pose of the target relative to the sensor, by 2\,=XJ,.
This pose may be represented, for example, by a translation
vector and rotation matrix { For an outside-in
measurement, the s-frame is the i-frame and the t-frame is
the j-frame, so X„=)=XJ,-1 where the inverse pose may be
calculated by inverting the rotation matrix to get Ci'=(C/)T
and reversing the translation vector and expressing it in the
i-frame: r ;=C;(-r /). For the symmetric 6-parameter
representation of relative pose described earlier, reversing
the pose referencing direction is achieved by switching the
indices i and j.
PSE drivers 120 are designed to make measurements of

targets relative to the S-frame of sensors, so that a PSE does
not have to know whether it is attached to the vehicle or the
galaxy, or know its pose relative to either one in order to
make a measurement. This simplifies the design of PSEs and
their drivers.
During tracking, MMU 304 computes a prediction of

the pose of FPSE, 107 relative to MPSEJ frame of reference
334. This involves combining the estimates of R, rhi, and t.
The MMU then inverts this pose if necessary in order to
obtain the sensor-target relative pose prediction X„ as
described in the previous paragraph. This is the sensor-target
pose prediction sent by the MMU to the PSE driver 120. The
PSE driver performs its computations in the sensor frame of
reference 334, ignorant of actual values or estimates of x, mi,
or t. The PSE driver 120 estimates the predicted measure-
ment 2„ (which is a function h of the relative pose prediction

Xs," the bias ks of the PSE sensor, and the bias kt of the PSE
target), and produces a measurement error covariance matrix
R which characterizes the expected degree of measurement
noise in the planned measurement. PSE driver 120 sends to
MMU 304 the predicted measurement Z,J,  and the
sensor-specific component of the observation matrix

HA
A

h(A)

MMU 304 then uses the chain rule to convert the partial
observation Jacobian IL, into the final observation matrices
H„, H,n, and Hf needed by the Kalman filter in the update
filter 306 to update x, m1, and t, respectively. Because of the
cross-correlation matrices Plum and PFF maintained in the
update filter, this also allows the navigation system to update
estimates for the poses of other sensors mi., j' j, and targets

MMU 304 then obtains an actual measurement from the
meta-driver 122, and passes the innovation, the R matrix,
and the final H matrices to the update filter 306 for process-
ing.
Some sensors function in a way that a prior knowledge of

the relative position of the target can make the measure-

22
ments more accurate. For example, when a camera is used
as a sensor, having knowledge of an estimate of the target
location allows the camera to be aimed at the target so that
the target is near the center of the camera's field of view

5 where there is less distortion, thus providing more accurate
information on the location of the target. The estimated pose
of the target relative to the camera sensor that is provided by
the MMU 304 to the PSE driver 120 can be used for such
adjustment of the field of view.

10 3.1 Meta-driver with Loadable Sensor Drivers
The meta-driver 122 provides uniform access for the SFC

200 to obtain information related to the PSEs. The meta-
driver 122 is implemented as an application programming
interface (API) that supports a number of function calls.

15 3.1.1 Discovery of Device Drivers and Devices
One function call (e.g., sfMetaEnumerate( )) invokes the

enumeration process and returns a list of PSEs available to
navigation system 90. The meta-driver 122 searches driver
database 310 and loads PSE drivers (e.g., 308 and 309).

20 Meta-driver 122 invokes each PSE driver to enumerate its
PSEs. Each PSE driver is responsible for managing a
particular type of PSEs (which can include different sub-
types of PSEs, and can be made by different manufactures).
The PSE drivers check the vehicle hardware to determine

25 which PSE devices of its particular type(s) are connected to
the vehicle. Each PSE driver reports back to the meta-driver
122, and the meta-driver 122 returns with a hardware
configuration list that lists all of the PSEs available to the
navigation system 90.

30 During enumeration, a handle which consists of a driver
ID number and device ID number) is given to each PSE. For
example, if there are 1000 PSEs on the ceiling of a room and
6 PSEs on the object being tracked, there would be 1006
handles. Meta-driver 122 would enumerate 1006 PSEs and

35 furnish as much information about them as it was able to
obtain from their respective PSE drivers 120.
3.1.2 Plug and Track Feature
A key feature of the navigation system 90 is the separation

of modules specific to PSEs and modules specific to updat-
40 ing the states and maps. A separation between the PSEs and

the update filters is desirable because there are different
kinds of PSEs, each having different measurement charac-
teristics. The measurement characteristics affect how the
measurements are used in the update process. Due to the

45 separation, PSEs can be designed without knowledge of the
updating process. The modules specific for updating can be
designed without knowledge of the PSE characteristics. A
new PSE can be "plugged" into the navigation system and
the navigation system will be able to recognize and use the

50 new PSE.
3.2 Overall Operation
At any given time, the tracking system 90 (or navigation

system) is in one of three primary modes of operation:
initialization, acquisition, or tracking. When system 90

55 powers up, it starts in initialization mode, which includes the
enumeration and self-configuration procedures described
above. Once a valid system configuration has been achieved
and stored in the requisite configuration files as described in
the software architecture section later, the system moves into

60 acquisition mode. In this mode, the goal is to find out the
approximate location or pose of the vehicle in the galaxy.
This initial pose estimate allows the system 90 to enter the
tracking update loop, which involves a recursive estimation
filter that uses an approximate initial guess of states.

65 When the acquisition procedures have found an initial
estimate of the vehicle pose, the estimate x(0) is transferred
into the DRU and the system enters tracking mode, in which
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it iteratively executes the tracking update loop. The system
90 remains in this tracking mode until some conditions
occur, such as when the vehicle loses track of its location or
pose information. This may happen when all of the extero-
ceptive measurements fail (for example, due to occlusion of
line-of-sight sensors, or because the vehicle is out of range
of all the FPSEs) for a prolonged period of time. If there is
a prolonged period of time without external measurements,
the vehicle pose estimate maintained in DRU 220 by dead-
reckoning may drift to the extent that it becomes unusable.
In that case, the system 90 returns to the acquisition mode.
The decision to re-acquire may be made automatically by

the MMU 304 based on the pose estimation error covariance
P„ or the recent history of measurement returns and
acceptance/rejection of measurement data or both.
Alternatively, a command may be sent by a user to the
system 90 to force it to re-acquire. The system 90 can
transmit the diagonal elements of P„ to a host application,
along with its pose estimates R. This allows the user to take
into account the system's own degree of uncertainty about
its current pose, along with other factors outside of the
system 90, in deciding to force the system to re-acquire.
3.2.1 Initialization

Initialization includes the plug-and-track procedures that
have already been discussed, by which the meta-driver
identifies the IMUs and PSE devices that are present and
stores configuration files that will be used by the SFC 200 to
govern its operation, including acquisition and tracking. The
details of how the configuration files are created, and how
the system obtains user input to fill in missing information
that could not be obtained by the meta-driver during
enumeration, are discussed more fully below in the section
on software architecture. Initialization occurs on power-up
of the system 90. A command can also be sent to force the
system 90 to re-initialize, such as in the event that PSE
devices are added or removed while the system 90 is
running.
3.2.2 Acquisition
During acquisition, a scheduler in the MMU 304 sends

requests for measurements to the meta-driver 122, and but
instead of instructing a sensor to make a measurement to a
specific target, MMU 304 asks the sensor to scan its oper-
ating volume and report all targets that it can identify. In one
example, the scheduler continues to send scan requests to
each sensor in turn until enough measurements are returned
to perform an acquisition. While this scanning sequence is in
process, each returned measurement is saved to a memory
stack inside of an acquisition module within the MMU 304.
On each cycle, an algorithm within the acquisition module
analyzes the set of measurements that have been returned
recently, and determines whether the set of measurements is
sufficient to solve for the vehicle pose.
For example, four 2D bearing measurements from inside-

out bearing sensors (such as cameras) on the vehicle to
known targets in the environment is sufficient to solve a
4-point pose-recovery algorithm (PRA) known in the com-
puter vision literature as the perspective n-point problem.
Alternatively, measurements from two outside-in cameras at
known poses in the environment to a single target on the
vehicle are sufficient to triangulate the position of that target.
If the position of three targets on the vehicle can be
measured (e.g., by using 3 measurements from each of two
outside-in cameras), then the orientation of the vehicle can
be deduced from the position of the three known MPSE
targets. In a similar example, three range measurements
from an acoustic emitter on the vehicle to three non-
collinear acoustic receivers on the ceiling can be used to

24
tri-laterate the position of the emitter MPSE. Also, combi-
nations may be used, such as one outside-in camera mea-
surement combined with one range measurement, or a
combination of inside-out and outside-in measurements.

5 Depending on the set of measurements returned, the
acquisition module invokes an appropriate PRA routine,
such as triangulation, trilateration, solution of the
perspective-n-point problem, or a combination algorithm.
The PRA routine returns a failure condition (e.g., because

10
the measurements given to the PRA routine were not suffi-
ciently consistent to produce a high-confidence pose
estimate), or returns a presumably valid initial vehicle pose
estimate x(0).

If the PRA routine fails to determine the pose of the target,
the MMU 304 remains in acquisition mode and continues to

15 scan for more measurements. If the PRA routine succeeds,
the MMU 304 sends the estimate x(0) to the DRU and
switches the system into tracking mode. In order to initialize
an complementary filter in update filter 306, the DRU 312
calculates an initial uncertainty for the vehicle state estimate,

20 P„(0), based on the confidence reported by the PRA routine,
and sends P„(0) to update filter 306. One example of
causing the update filter 306 to initialize its P„ to P„(0) is
to send a (.1)„ Q„) message to the update filter with (1)„ set
to a matrix of all zeros, and Q„ set to P„(0).

25 3.2.3 Tracking Update Loop
In the tracking mode, the navigation system 90 repeatedly

makes measurements and updates an estimate of a location
of vehicle 100 in an iterative process. Each iteration may
have a duration of, e.g., 1/180 second.
Within the primary system mode called tracking, the SFC

can operate in a number of tracking modes. In a first mode
of operation, navigation system 90 performs simultaneous
localization and map-building (SLAM), and updates vehicle
state 202 and environment map 206 in the iterative process.
In a second mode of operation, navigation system 90 per-

35 forms simultaneous localization and calibration (SLAC),
and updates vehicle state 202 and vehicle map 204 in the
iterative process. In a third mode of operation, navigation
system 90 performs simultaneous localization, mapping, and
calibration, and updates the vehicle state 202, vehicle map

40 204, and the environment map 206 in the iterative process.
In a fourth mode of operation, navigation system 90 per-
forms localization only (LO) by using existing vehicle map
204 and environment map 206, and does not update the
maps; only estimates of the vehicle state 202 are updated.
The update filter 306, DRU 220, and MMU 304 form a45

feedback loop for updating the system states, as summarized
in the following steps.

a) The DRU 220 updates and stores its estimate of the
vehicle state (x) using inputs from IMU 104. DRU 220

50
generates (1)„ and Q, which represent the error propa-
gation during a measurement cycle and sends them to
update filter 306.

b) The update filter 306 updates P„ based on (1)„ and Q,,
and sends P„ to MMU 304.

c) MMU 304 interacts with meta-driver 122 and receives55
a measurement z from which it forms innovation oz,
partial Jacobians H in the sensor frame of reference,
and R. MMU 304 converts the partial Jacobians into
observation matrices H in the galaxy frame of reference

60 and sends them along with R and the innovation to
update filter 306.

d) Update filter 306 generates an incremental update, 8X,
of the system state X based on Sz, H's, and R. Update
filter sends Ox to DRU 200.

65 e) The DRU 220 computes an updated estimate of the
vehicle state x.

f) etc.

3
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25
FIG. 5 summarizes the sensor fusion core architecture

described above. SFC 200 includes MMU 304, DRU 220, an
environment map manager 310 that maintains environment
map 206, a vehicle map manager 314 that manages the
vehicle map 204, and update filter 306. The update filter 306
may be a centralized complementary Kalman filter that
updates ox, OM, OF, Pxx P P P P P- - - - - FF, and PAIN/.
The underlying states of the navigation system 90 are

maintained by the DRU 220 (which maintains the vehicle
state x), the vehicle map manager 314 (which maintains the
vehicle map, M), and the environment map manager 310
(which maintains the environment map, F). The update filter
306 estimates errors in the underlying MPSE poses and
biases, and sends the corrections vector SM back to the
vehicle map manager 314, which applies the corrections to
the appropriate MPSE fields with appropriate translation of
orientation format.
The update filter 306 sends error correction vector OF

back to the environment map manager 310, which applies
the corrections to the appropriate FPSE fields. Update filter
306 sends error correction vector Ox to the DRU, which
applies the corrections to update the vehicle state x.
The following describes an example of the data that is

passed between the modules in a measurement cycle during
active tracking.
At the start of the measurement cycle, the IMU 104 sends

(660) a measurement to the DRU 220. DRU 220 may access
IMU data through the meta-driver 122, or through a separate
IMU meta-driver, or access directly. DRU 220 integrates the
measurement and updates the vehicle state x. The DRU 220
also calculates a state transition matrix (r.„ and process noise
matrix Q, which are sent (665) to the update filter 306.
Based on (1)„ and Qx, the update filter 306, updates the error
covariance P using Pxx(k+1)=.1)x(k)Pxx(k)(1)x(k)T-FQx(k),
where k represents the time step. Update filter 306 sends
(670) Pxx to MMU 304, which uses Pxx to calculate the
innovation covariance matrix S.
As will be described in detail below, measurement matri-

ces flx, H„, , and Hf are partitioned into generic and model-
specific parts, keeping the generic operations inside the
MMU 304 and pushing the sensor/target details out into the
PSE drivers 120. As a result, the architecture is extensible by
outside parties. A sensor manufacturer who understands its
own product and can model its output, but knows nothing of
Kalman filtering or SLAM theory, can follow some instruc-
tions and write a sensor driver that would enable the sensor
to work with the sensor fusion core and be optimally fused
with the inertial sensors and any other sensors that are
attached.
The MMU 304 exchanges a sequence of messages with

the meta-driver 122 (shown as 600, 605, 610, 615, 625, and
635, which will be described in more detail below in FIG. 6),
and eventually receives a measurement z from the meta-
driver 122. MMU 304 computes an innovation Sz, which is
the difference between the actual measurement z and the
measurement that the PSE driver 120 would have predicted
h(;.) based on the estimate of the relative pose 2'\‘, of the PSE
sensor and PSE target. The innovation may be the result of
a measurement request that was made several cycles earlier, 60
because a measurement may take several cycles to complete.
The MMU 304 also receives linearized measurement

Jacobians H, H, and Hk (which are linearized about the
operating points Xs,., ks, and lc.) and the noise covariance R
of the observation noise. MMU 304 converts fix, Hk, and
Hk, (which are in the sensor frame of reference) into fix, H„, ,
Hp fik, and fik (which are in the galaxy frame of reference).

26
MMU 304 sends (675) oz, H, H„, , Hp Hk, Hk and R to the
update filter 306.
Based on Oz, H, H„, , Hp Hk, Hk and R, the update filter

306 updates Sx, SM, M, Pxx, P„„, PA,,A,,, PmF, PF„,
5 Pkm, and PFF. The update filter 306 sends Ox to the DRU
220, sends OM and {P„ } to the vehicle map manager 314,
and sends SF and {P,} to the environment map manager
310. The notation {P -I refers to the set of {Pff fifl' f2f2, • • •
} each of which is an individual 3x3 (or 6x6 for Tull PSE

10 pose auto-calibration/auto-mapping) pose uncertainty of one
PSE. Based on OM, the vehicle map manager 314 updates
M. Based on SF, the environment map manager updates F.
Based on Ox, the DRU 220 updates the vehicle state x.
The sequence in which the matrices or variables are

updated is not critical. Each component of the SFC 200 uses
is the most current information it can get to update the vari-

ables that it maintains.
FIG. 6 shows a sequence of messages that are passed

among the update filter 306, MMU 304, meta-driver 122,
and PSE driver 120.

20 Step 600: MMU 304 makes a wishlist of PSE pairs based
on what PSEs are available and within range of each other.
MMU 304 calculates the information gain B for each PSE
pair based on an algorithm that determines the marginal
benefit of the measurement to the vehicle. For example, a

25 measurement having a lower measurement noise covariance
may have a higher information gain than a measurement
having a higher measurement noise covariance. In one
instance, a measurement from a laser range finder may have
a higher information gain than a measurement from an

30 ultrasonic range finder, because using a laser is intrinsically
more accurate than using ultrasound. In another instance,
where the ultrasonic range finder is much closer to its target
than the laser range finder to its corresponding target, the
measurement from the ultrasonic range finder may have a

35 higher information gain. In another instance, where naviga-
tion system 90 needs information about a range that is in the
forward direction of vehicle 100, a PSE sensor having a
lower accuracy and pointed in the forward direction may
produce a measurement having a higher information gain

40 than a measurement made by a more accurate sensor point-
ing in the sideways direction. Thus, the information gain
may depend on both the type of the sensor and the circum-
stances of the measurement.
The optimal selection of which sensor-target pair to

45 process on the current cycle is difficult to make indepen-
dently without considering all possible sequences of mea-
surements and comparing the results which would be
achieved at the end of the sequence. This results in a
complex scheduling problem. An example of a suboptimal

50 but efficient algorithm is to optimize the marginal benefit of
an individual selection assuming the past selections have
already been made, and the current selection will be the last.
The marginal benefit will be the decrease in some risk
function associated with the tracking quality, for example

55 the trace of the vehicle state estimation error covariance P .
This would require obtaining the measurement matrices H,
and R„ for each candidate sensor-target pair from the
meta-driver and calculating the benefit of that measurement
pair using:

= trace {P„HuT(H,JP„HuT +

Different choices of the risk function would lead to
65 different expressions for marginal benefit. To reduce the

amount of computation, some ad hoc or heuristic algorithm
may be used for the benefit function, such as giving higher
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benefit to sensor-target pairs that differ more from recently
used sensor-target pairs in terms of location, direction or
measurement model. Additionally the benefit score of each
sensor-target pair may be modified to take account of
detection probability, for example by down-weighting tar-
gets which recently failed to be detected or returned unus-
able measurements and which may therefore still be
occluded (or poorly lit, or inoperative). MMU 304 sends the
wishlist, including sensor and target device handles and
benefit score for each pair, to the arbiter 352 of the meta-
driver 122.
Step 605: If there is only one vehicle, the meta-driver 122

ignores gain B, and returns indicators showing which PSEs
are available.

If there are multiple vehicles, the arbiter 352 of the
meta-driver 122 looks at the requests for shared hardware

from all of the MMUs, and select a pair of PSEs that will
result in the highest information gain for all of the vehicles.
The meta-driver 122 returns an indicator showing which

shared PSE pair is available. The meta-driver 122 also marks
all the privately held PSE pairs available unless they are
busy.

Step 610: Based on the indicators sent back from the
arbiter 352, the MMU 304 selects an MPSE j and an FPSE
i to make the measurement (e.g., by selecting the pair on the
wishlist having the highest information gain among those

the arbiter indicated are available). MMU 304 makes an
estimate of the pose 2 based on estimates (R, iii7,fiX) of the
poses of the vehicle, MPSEi, and FPSEi.

The notations mix and fix refer to the poses of the MPSEi
and FPSEi, respectively. The notations int and fik refer to the
biases (or calibration parameters) of the MPSEi and FPSEi,
respectively.

Before MMU 304 sends the estimate of the pose (and
optionally, calibration vectors) to the library server 354,
MMU 304 uses the (i,j) tags which identify the measurement

pair in the SFC to look up the ("drvId," "devIdSensor," and
"devIdTarget") tags which identify the pair in the meta-
driver by determining which PSE driver (identified by the
"drvId" tag) will be controlling the measurement, which

PSE is the sensor (identified by the "devIdSensor" tag), and
which PSE is the target (identified by the "devIdTarget" tag).
MMU 304 then performs a switch process to convert

(relating to the pose of MPSEi with respect to FPSEi) into
(relating to the pose of the target relative to the sensor). By
using the MMU 304 to perform this switch process, the PSE
driver 120 can be designed without knowledge of whether
the measurement is inside-out or outside-in. The PSE driver
120 is designed to trigger a sensor to make a measurement
of a target. The PSE driver 120 can be ignorant of whether 55
the sensor is fixed to vehicle 100 and the target fixed to
environment 106, or whether the sensor is fixed to environ-
ment 106 and the target fixed to vehicle 100. This allows

greater flexibility in the design and deployment of the PSE
devices (and their associated hardware drivers).
MMU performs the switch process as follows. If FPSEi is

a sensor (such as in an outside-in measurement), then

f(s.=ik; f(t=risnik. It FPSEi is a target (such as in an inside-out
measurement), then ks=riiiik; MMU 304 also
computes the partial Jacobian components of the pose

X„(x,mix,fix) with respect to x, mix and fix

6

65

5

and

10

i.e., A, = ').c

As,

— a fix
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As,

which the MMU 304 saves in a stack in the memory to be
used later (in step 620 below). MMU 304 sends 2\  and the
(drvId, devIdSensor, devIdTarget) tags to the model library

is server 354 of the meta-driver 122. If auto-calibration or
auto-mapping is performed, the MMU 304 also sends ks and
kt to the meta-driver 122.
Step 615: Based on the drvId number, the model library

server 354 of the meta-server 122 calls the model lookup
20 function from the appropriate PSE driver 120 and passes in

X . Based on j‘\,,, the model lookup function of the PSE
driver 120 computes 2,, H, Hks, and 1-1,, using:

25

30

= h( st);

8h()
HA=  

A

h(A)
Hk =  

s 8k,

h(A)
Hk =  

t kt

; and

The model lookup function of PSE driver 120 also computes
the measurement noise matrix R(2\ ). These calculations

35 involve the specific nonlinear observation model h and noise
characteristics of the sensor device, and these calculations
are handled in the specific PSE driver written to deal with
that type of sensor device.
Model library server 354 receives 2,, 14,, Hks, Hk, and R

40 from the PSE driver 120 and returns them to the MMU 304.
The terms Hx, Hks, Hk, each represents portions of the
observation matrix in the sensor's frame of reference, and
each includes information on how the measurement will
depend on sensor-target pose, sensor biases, and target

45 biases, respectively (linearized in the vicinity of the current
estimates of those parameters).
Step 620: The values H, Ilk, Ilk, 2,, and R provided by

model library server 354 are associated with the (drvId,
devIdSensor, devIdTarget) tags. Also, the partial Jacobians

50 H, 11k' ilk, are in the sensor frame of reference. The MMU
304 converts flx, Hk, Hk, into the galaxy frame of reference
by using the chain rule to combine the partial Jacobians from
the model lookup with the saved Jacobians Ax, and
Afx), and using a second switch process:

if FPSE, is a sensor (outside-in measurement), then

Hp[11,d1MHAfxHks];

if FPSE, is a target (inside-out measurement), then

H],[117,1-0411ApRkj.

(The i, j subscripts were omitted in the above equations.)
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The MMU 304 then computes innovation covariance
matrix S using: S=14,13 11I+11P 11 T+11.1Pfill T+R. The
innovation covariance represents the degree of uncertainty
in how closely the actual measurement will match the
prediction, due to a combination of measurement noise (with
uncertainty R) and uncertainty in the prediction (resulting
from uncertainties Px, P„ and Pff in the vehicle pose,
MPSE pose and FPSE pose). It will be used in step 630 to
calculate a search window or a range about the estimated
measurement that the sensor should search for the target.
The MMU 304 places fix, H„„ Hf, and R and S (which

will be needed again for x2 acceptance testing when the
measurement result comes back, as described later) in the
stack along with (i,j) tags to keep track of which PSE pairs
are associated with the measurement matrices.
Step 622: A previous measurement z'„ of (sensor s' and

target t') is sent from a PSE driver 120 to the meta-driver
122, and queued by the meta-driver 122.
Step 625: The MMU 304 sends (drvId, devIdSensor,

devIdTarget) tags, innovation covariance matrix S, and
estimated measurement 2„ to the meta-driver 122 and
requests a measurement.

Step 630: The meta-driver 122 forwards the request for a
measurement by the PSE pair identified by the (drvId,
devIdSensor, devIdTarget) tags to the appropriate PSE
driver 120 as designated by the drvId value. It also sends the
predicted measurement 2„ and the innovation covariance S.
PSE driver 120 uses S to compute a measurement search
region about 2„, and then performs the measurement, return-
ing only targets within this search region.

Step 635: The meta-driver 122 sends the measurement
currently available, z' , along with its (drvId', devIdSensor',
devIdTarget) tags to the MMU 304. The measurement z can
sometimes represent a set of measurement results, because
a sensor may find several targets within the search area
(a.k.a. range gate), makes measurements with respect to
every one of them, and returns all of the measurement
results.
Step 640: The MMU 304 performs data association to

select the most probable measurement result from the set,
converts (s', t') to (i', j'), and matches the measurement z'i.j.
with the Hr', H H and R' and S' stored in the stack. The
MMU 304 also computes the innovation oz'i7.=2'iy.-2'i7.. And
it applies a x2 acceptance test to the innovation using the
innovation covariance S' to make sure the measurement is
not an outlier before feeding it to the update filter 306.
Step 645: The MMU sends (i', j') tags, innovation

measurement matrices K2, Hff, and noise covariance R'
to the update filter 306. Optionally, MMU 304 sends a
timestamp that represents when the measurement actually
occurred. The update filter 306 can use the timestamp to
effectively backtrack and apply the measurement in the
update filter 306 at the right moment in the recent past.
Step 650: A number of cycles after the meta-driver

requested a measurement from a PSE driver 120, the PSE
driver 120 sends back the measurement Z„, which is sub-
sequently sent to the MMU 304.
3.2.4 Dynamic Reference Unit
At initialization of navigation system 90, DRU 220 or

meta-driver 122 searches for interoceptive sensor drivers,
and invokes the interoceptive sensor drivers to determine
whether there are interoceptive sensors, such as inertial
sensors, wheel encoders and dead-reckoning sensors.
Based on the type of interoceptive sensors available, DRU

220 determines whether tracking is desired in two-
dimensional or three-dimensional space, and chooses an

30
appropriate integration algorithm and error model. DRU 220
then asks each inertial sensor driver for a number of standard
parameters appropriate to the integration model. Information
about an IMU may include, for example, white noise and

5 random walk amplitudes, root-mean-square initial uncer-
tainty estimates for gyro and acceleration biases, ramps,
misalignments, scale factors, nonlinearities, etc. Based on
the sizes of these initial uncertainties, the DRU 220 decides
whether to create estimable states in the state vector for each

10 parameter. If DRU 220 does create states, it will cause the
states to be estimated and corrected by update filter 306
simply by modeling their effects in the state transition matrix
(12.„ and process noise matrix Q, and setting appropriate
initial uncertainties for the states in P(0).

15 In one example, IMU 104 may use smart sensor modules
that are compatible with an IEEE 1451.2 interface, which
specifies a transducer electronic data sheet (TEDS) resident
in an EEPROM of the sensor that identifies to the sensor
driver the types of sensors present, and provides calibration

20 data. In this situation, DRU 220 queries the sensor driver to
obtain factory calibration data about the inertial sensor
stored in the TEDS. Based on this data, DRU 220 compen-
sates for sensor biases, scale factors, and misalignments.
When non-IEEE 1451.2 compliant inertial sensors are

25 used, the sensor driver emulates the TEDS with user-
supplied files.
4 Software Architecture and Multi-vehicle Tracking Support
The PSEs are represented by a class of PSE objects, which

may be sensors or targets. Each PSE object has the following
30 attributes:
(1) Pose (location and orientation) relative to the map of

the environment or vehicle to which the PSE is attached.
(2) Pose uncertainty.
(3) Bias parameters vector k. This is used in the auto-

35 calibration process.
(4) k-vector uncertainty.
(5) Basic type, which may be one of the following:

RS (range sensor)

RT (range sensor target)

2DBS (2-D bearing sensor)

2DBT (2-D bearing target)

1DBS (1-D bearing sensor)

1DBT (1-D bearing target)
45 RRS (range rate sensor)

RRT (range rate sensor target)

DS (dipole field component sensor).

DT (dipole target or source)
50 (6) Specific type, which includes the manufacturer name

and model number.
(This is used by the scheduler to look up information about
what other device types it can measure to, which ones it
cannot be used simultaneously with, max update rate,

55 response time, field of view (FOV) and range limitations,
approximate resolution, etc.).
(7) Unique identifier (such as a HW device serial number,
or barcode of a vision fiducial target)
(8) Color.

60 (9) Size. (Identifier, color, and size attributes may be used
differently by different specific types of devices. For
example, a fiducial may use the size field to represent the
diameter of the target, while a smart camera may use it to
represent the FOV, and an architectural corner feature may

65 ignore it.)
(10) Driver number (of the PSE driver that enumerated it

and controls or uses it).

4
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(11) Device handle (assigned by the driver on enumera-
tion and used to access this PSE through its PSE driver. This
is relevant for actively controlled hardware devices.)
(12) Status (ready, busy, etc.).
(13) Membership (attached to galaxy [0] or to a particular

vehicle [n])
In the present version of the system, SFC 200, meta-driver

122, and PSE drivers 120 shown in FIG. 2 are implemented
as software dynamic link library (".d11") files.
When a particular PSE is used in a measurement, function

calls are made to the ".d11" library corresponding to the
appropriate PSE driver 120.
FIG. 7 shows a block diagram of the software drivers of

the tracking/navigation system 90.
Sensor Fusion Shell ("sfShell.d11")
Tracking system 90 includes a sensor fusion shell

("sfShell.d11") 412 that provides a unified access API for an
application program 424 to obtain tracking data from one or
more sensor fusion cores ("sfCore.d11") 200. As an example,
application program 424 may use the outputs of navigation
system 90 to control the movements of vehicle 100. In this
example, the navigation system residing on the vehicle
requires data about the pose of a single vehicle (itself) and
needs to instantiate one sensor fusion core 200. In another
example, a tracking system 90 may be used to track the
poses of 15 limb segments on a human dancer for character
animation. Since this application requires tracking poses of
15 separate "vehicles", all on the same computer and all
reporting data to the same animation program, the sensor
fusion shell would invoke 15 separate instances of the sensor
fusion core .d11 200. The sensor fusion shell 412 also
provides a unified access for a configuration manager
("sfCfgMgr.exe") 416 (described in more detail below) to
control the configuration of the SFCs operating under a
given shell.

In describing the software modules, the terms "sensor
fusion core" and "sfCore.d11" will be used interchangeably.
The same applies to other software modules.
At start-up, the application program 424 opens the sensor

fusion shell 412. The sensor fusion shell 412 opens the
meta-driver ("sfMeta.d11") 122, and causes it to enumerate
all the sensor and target devices currently available. If
necessary, the sensor fusion shell 412 invokes the configu-
ration manager 416 to clarify the configuration of each SFC,
such as which sensor/target data will be controlled by and
available to which SFCs.
For hardware devices private to the SFCs, the sensor

fusion shell 412 passes pointers to the sfMeta.d11 functions
(122) into each SFC to allow the SFCs to directly access the
hardware drivers over which the SFCs have exclusive con-
trol. For shared hardware devices, the sensor fusion shell
412 passes pointers to shell functions that mediate between
SFCs and invoke the sfMeta.d11 functions in turn.
For a simple single-vehicle self-tracking configuration, an

SFC 200 may be operated stand-alone without any shell. In
this case, it invokes the meta-driver 122 directly instead of
through the shell 412. The meta-driver 122 provides hard-
ware arbitration functions to mimic those in the shell, so that
downward interfaces of the SFC 200 are identical whether
accessing the meta-driver 122 through shell functions or
directly. This option is reserved to allow future embedded
operation of the SFC 200 in mobile robots with limited
memory resources or which may not be running an operating
system which supports shared libraries like ".dlls".
Meta-driver
A meta-driver 122 provides a unified access API for

accessing device drivers 120. Device drivers 120 include

32
drivers that control PSEs or interoceptive measurement
units. As illustrated, a single device driver (e.g., 402) may
control both PSEs (e.g., 406) and IMUs (e.g., 408).
The meta-driver 122 communicates with two types of

5 drivers. One type of drivers control local hardware devices
that are used by vehicles (or equivalently SFCs) running on
the same computer on which the local device drivers reside.
This type of drivers are provided as dynamic link library
(".d11") files 402. Each .d11 file 402 may control a number of

10 PSEs 406 or a number of IMUS 408 or a combination.
Another type of drivers control hardware that is potentially
shared by SFCs running on remote computers. This type of
drivers are called regional hardware drivers 404, and are
provided as separate executable files, which may be running

15 on the local machine or on a remote machine. For regional
drivers, the meta-driver 122 communicates with the drivers
through a socket interface.
Local Drivers
Local drivers implemented as ".d11" files (402) provide

20 the mechanism to allow third-party developers to extend the
functionality of the tracking system by adding new devices
(sensors or active targets) to be fused with the IMU 104
and/or with other devices already supported. To support a
new device, the developer writes a ".d11" file conforming to

25 the application programming interface (API) described later
in this document, names it with a name in the format
"sfDryNNN*.d11", and places the driver in the appropriate
directory.

In this naming convention, "NNN" represents a three-
30 digit integer from 001 to 999, and is a number not already

in use. The author is responsible for checking the directory
for existing .d11 files and picking a driver number not already
taken. If the first 8 characters of a name are not
"sfDryNNN," then the file is ignored and not used as a

35 driver, even if it is a valid .d11 file. Extra characters after the
first 8 are ignored and may be used by the developer to add
a descriptive title to the driver, for example "sfDrv002
isenseSerialSmartCameras.d11."
Each driver may access one or more devices (i.e. sensor

40 or active target PSEs or IMUs). At startup, each driver is
asked to enumerate all of the devices that the driver controls,
and give each device a unique integer handle that will be
persistent from boot-up to boot-up. Then, for each listed
device, the meta-driver requests a hardware description

45 record which specifies as many of the PSE attributes as it
can. The PSE driver may try to obtain this information from
a transducer electronic data sheet (TEDS) or non-volatile
memory that is physically located in the hardware device, or
from a driver-specific configuration file or using any other

50 mechanism. It may be difficult to obtain some of the
attributes values. For example, pose relative to the vehicle or
the galaxy may only be available for factory assembled fixed
device clusters.
The meta-driver 122 compiles all the lists of information

55 about each device from each driver into one master list and
outputs it to a hardware configuration file "HW.cfg" 410.
The drivers provide a hardware abstraction layer so that

the SFC 200 does not need to know how the devices are
interfaced to the computer, or where the signal processing is

60 performed. For example, one driver may communicate with
a network of IEEE 1451.2 smart sensor modules over CAN
bus or Ethernet. Each of these modules contains its own
processor with nonvolatile memory that contains all the
self-descriptive information listed above. The driver imple-

65 ments the code to use the calibration data contained in the
transducer electronic data sheet (TEDS) to perform sensor
compensation. Another driver may access a few smart
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cameras through the serial ports. This driver is responsible
for checking on the available serial ports to see which if any
has a smart camera attached. The image processing and
sensor compensation may be performed in firmware on the
smart cameras.
As another example, consider a driver that controls a

network of acoustic emitter beacons through proprietary ISA
bus hardware. As yet another example, there may be a driver
that accesses a number of ordinary video cameras (e.g.,
cameras that do not process the images) over a firewire or
USB bus. This driver then includes all the image processing
and lens compensation code in its ".d11" file. For these
drivers, the meta-driver does not need to know which port
the hardware is physically attached to, or whether the
information describing the device originated from the device
or from a configuration file read by the driver. This is

34
5) Auto-mapped galaxy configuration file

("autoGalaxyPSEs.cfg").

6) System parameter configuration file ("sysPar.cfg").

5 7) Device type rule configuration file ("typeRules.cfg").

HW.cfg

The hardware configuration file ("HW.cfg") 410 is a flat
file that is output by the meta-driver 122 when it completes

10 initialization. "HW.cfg" 410 contains a compilation list with
one line for each device found. The line contains the driver
number and device number (to be used thereafter by the
meta-driver 122 to access the device) and other descriptive
information about the device arranged in the following
order:

Coil Col 2 Col 3 Col 4-6 Col 7-9 Col 10-18 Col 19-21 Col 22-31

Driver Device Status/ X, y, z X, y, z Rotation Rotation K

membership translation uncertainty matrix uncertainty parameters

32-41 Col 42 Col 43 Col 44 Col 45 Col 46

K param Basic Specific Serial number Color Size

uncertainty Type type

abstracted by the drivers and an integer device handle is
returned, so that each device after initialization can be
accessed using just a driver number and device number.
Sensor Fusion Core ("sfCore.d11")
Each SFC 200 makes function calls to the standard

function pointers passed in by the "sfShell.d11" 412 that will
be used by "sfShell.d11" 412 and/or "sfMeta.d11" file 122 to
initialize the hardware, lookup model information, initiate
measurements, retrieve measurement data, and perform
arbitration. During its measurement scheduling process,
each SFC 200 is required to provide "sfShell.d11" file 412
with a "wish list" of PSEs for its next scheduling cycle. That
list is used by the hardware mediator 418 to determine which
of the PSEs may actually be scheduled for update.
Meta Driver ("sfMeta.d11")
Meta driver 122 is the access point to all the hardware

devices, local and regional. The SFC 200 receives function
pointers from "sfShell.d11" 412 to enable the SFC 200 to
obtain data from hardware devices. Hardware devices are
marked exclusive or shared between SFCs. A regional
hardware is considered shared. If a hardware device is
exclusive, then SFC 200 will be able to obtain the data
directly from the meta driver 122 using the function pointer.
If a hardware device is shared, then is it the responsibility of
"sfShell.d11" 412 to obtain the data from meta driver 122.
Calls made from SFCs 200 simply retrieve the data from
"sfShell.d11" 412.

FIG. 8 shows an example of a directory structure of the
driver files and configuration files that will be described
below.
Configuration Files
The sensor fusion core 200 uses seven files to control its

operation:
1) Hardware configuration file ("HW.cfg").
2) Default vehicle PSE configuration file

(-defaultVehiclePSEs.cfg").
3) Default galaxy PSE configuration file

("defaultGalaxyPSEs.cfg").
4) Auto-calibrated vehicle configuration file

("autoVehiclePSEs.cfg").

5

If certain fields of information can not be obtained from
30 the device drivers, they are filled in with a question mark in

the "HW.cfg" file, which causes the configuration manager
program to prompt the user to fill in this missing data.

defaultVehiclePSEs.cfg & defaultGalaxyPSEs.cfg

Configuration files "defaultVehiclePSEs.cfg" 420 and
35 "defaultGalaxyPSEs.cfg" 420 are flat files in the same

format as "HW.cfg" 410. Files 420 show which PSEs belong
to the galaxy and which PSEs belong to the vehicle. Each
line from "HW.cfg" 410 is copied to one of files 420, and the
missing fields (indicated by"?") are filled in with valid data.

40 The files 420 do not change unless the hardware configu-
ration changes. Pose refinements or new PSEs discovered by
the SFC 200 while the SFC is running are saved to "autoVe-
hiclePSEs.cfg" and "autoGalaxyPSEs.cfg" files 422.

auto VehiclePSEs.cfg & autoGalaxyPSEs.cfg

Configuration files "autoVehiclePSEs.cfg" 422 and "auto-
GalaxyPSEs.cfg" 422 are flat files in the same format as
"defaultVehiclePSEs.cfg" 420 and "defaultGalaxyPSEs.cfg
420." Non-zero lines present in these files override the

50 
corresponding lines in the default files. If they do not
correspond to any lines in the default files, they are treated
as additional PSEs. The new information obtained by the
SFC 200 during auto-calibration or auto-mapping is saved
into the files 422. Thus, if something goes wrong with the
auto-mapping process, or the user wishes to start mapping

55
again in a different room, he may delete either or both of the
files 422, and the system will start tracking next time using
the defaults files 420, which still retain the original hardware
configuration information that was created by the "sfcfg-

60 
Mgr.exe" 416 program using data from the "HW.cfg" file
410 and user input if needed.

sysPar.cfg

A configuration file "sysPar.cfg" 422 is a text file con-
taining <name="value"> pairs, comments and section

65 delimiters. This file is used to override default system
parameters that govern how sfc.exe behaves. For example,
a user can add a line such as

4
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Startup GalaxyMap="defaultGalaxyPSEs. cfg"
to over-ride the normal behavior, which is to combine all the
lines of "defaultGalaxyPSEs.cfg" 420 and "autoGalax-
yPSEs.cfg" 422, using the values from the latter where there
is a conflict. Other parameters that may be set in this file 5

include prediction, perceptual post-filter modes, genlock
parameters, simulation modes, and parameters that govern
how the system decides when to switch between SLAC,
SLAM, and LO.
typeRules.cfg 10

A configuration file "typeRules.cfg" uses <name=
"value"> pairs and lists the rules associated with each
specificType of device that are needed by the scheduler to
schedule that type of device. Some of these rules are:

(1) basicType membership.

(2) Compatibility list (which specificTypes of targets are
detectable by a given specificType of sensor or vice
versa. Since the specificType identification numbers are
non-overlapping with the basicType numbers, one may
list a basicType, and that will tell the scheduler that all
specificTypes belonging to that basicType can be
scheduled.)

(3) Conflict list (which specificTypes or basicTypes can
not be scheduled at the same time as this specificType).

(4) Max repetition rate.
(5) FOV and or range limitations, or how to calculate

them from the identifier, color and size attribute fields.
(6) Approximate resolution (used by the scheduler to

decide which sensor/target pair will yield maximum
information gain). A more exact expression for resolu-
tion depending on the specific location of the target
relative to the sensor is implemented by the model
response function of the driver dll when it returns an R
matrix for use in the Kalman filter.

(7) Uncertainties of the 10 K-parameters.
(8) Formulas for how to apply the K-parameters to

compensate sensor biases.
SpecificTypes are intended to become officially registered

(e.g., through a registration web page that can be set up to 40
allow third party developers to submit a set of type rules for
a new specific type, and then receive a unique specificType
ID code that is not already used by anyone.) This allows a
developer to put a new device on the market and have it
become compatible with future users of the architecture (and 45
current users, who has to re-load the master "types-
Rules.cfg" file from the web-page in order to use the new
devices). This registration process allows a new device to
declare itself incompatible or compatible with certain older
devices that are already registered in the database. A small 50
number of user specificType codes are reserved so that a
developer can perform in-house testing of new device types
before registering them.
Operation of sfCfgMgr.exe and Interaction with Sensor
Fusion System 55

When the navigation system boots up, a sensor fusion
shell program "sfShell.d11" begins by asking the meta-driver
122 to query all the local drivers 402 and regional drivers
404 for status. The drivers go out and find all the connected
hardware (e.g., PSEs 406 and IMUs 408), and return enu- 60
merated lists of devices that the meta-driver 122 concat-
enates into a master list and outputs as the file "HW.cfg"
410. The program sfShell.d11 then invokes the configuration
manager program "sfCfgMgr.exe," which ensures that the
"default*.cfg" and "auto*.cfg" files are updated, consistent 65
with the actual hardware devices, and represent a viable
tracking configuration. When these criteria are met, program

15

20

25

30

35

36
"sfCfgMgr.exe" returns a success signal to the program
"sfShell.d11," which then proceeds to invoke the appropriate
number of instances of sfCore.d11 and cycle through them to
acquire measurements and track locations of vehicles 100. If
the criteria cannot be met, program "sfCfgMgr.exe" returns
a failure signal to abort the program sfShell.d11, and issues
an error message to the user to help with identification and
correction of the problem.
Note that sfCfgMgr.exe is drawn as a standalone execut-

able interfaced to sfShell.d11 through a socket interface. This
allows it to be invoked and run on a remote computer from
the sensor fusion system itself. This capability could be very
useful because the configuration manager 416 requires a
GUI to obtain from the user any missing configuration
information that could not be resolved by analyzing the
information in HW.cfg. Since the tracking system 90 data
processing unit 190 may be running on an embedded com-
puter with minimal or no user interface capabilities, the
ability to configure it from a remote computer such as a PC
would be very useful. Alternatively, part of the configuration
management logic could be implemented within the
sfShell.d11 program (or a .d11 loaded by it), and the user-
interface components of it may be implemented in a separate
program. This might allow the portion running in sfShell to
make its best guess about configuration if or when the user
cannot be consulted.
Referring to FIG. 9, a flow diagram illustrates a process

430 implemented by "sfCfgMgr.exe":
Step 431: the program "sfCfgMgr.exe" is started.
Step 432: the program "sfCfgMgr.exe" determines

whether "HW.cfg" has changed, as compared to the "last-
GoodHW.cfg." If not, skip to step 456.
Step 434: If "HW.cfg" has changed, then determine

whether any new lines have been added. If not, skip to step
446.
Step 436: If new lines have been added, then determine

whether the new lines match inactive PSE lines in "default-
VehiclePSEs.cfg" or "defaultGalaxyPSEs.cfg" or "autoVe-
hiclePSEs.cfg" or "autoGalaxyPSEs.cfg"? If yes, then in
step 438, re-activate the lines in the default configuration
files and/or the auto configuration files where they appear.
Then skip to step 446.
Step 440: If new lines do not match inactive PSE lines in

the default files, determine whether there is enough infor-
mation in the new lines to automatically assign the new lines
to a vehicle or the galaxy. If yes, then skip to step 444.
Step 442: If there is not enough information in the new

lines to automatically assign the new lines to a vehicle or the
galaxy, open a graphical user interface (GUI) to ask the user
to assign membership of new devices and fill in missing pose
or other information.
Step 444: Copy new lines to "defaultVehiclePSEs.cfg" or

"defaultGalaxyPSEs.cfg" depending on whether the new
PSE has been identified as belonging to the galaxy or to a
vehicle.
Step 446: Determine whether any lines have been sub-

tracted from "HW.cfg." If not, skip to step 450.
Step 448: If there are lines that have been subtracted from

"HW.cfg," set status inactive in default and auto configura-
tion files for any lines that were subtracted in "HW.cfg."
Step 450: Determine whether there are enough active

PSEs available in the default or auto configuration files to
track. If not, then in step 452, tell the user to add additional
hardware and abort with failure condition.
Step 454: Copy "HW.cfg" to "lastGoodHW.cfg."
Step 456: Return control to calling program with success

condition.
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When the system is used for the first time, there are
"sysPar.cfg" and "typeRules.cfg" configuration files. When
the program "sfShell.d11" starts, it asks its meta-driver 122 to
find all the existing "sfDryNNN*.d11" drivers 402, and in
turn ask each driver to enumerate all the hardware it can find
that is physically connected and responding. The complete
list is output to the file "HW.cfg" 410. The program
"sfShell.d11" then invokes the program "sfCfgMgr.exe."
Because "HW.cfg" 310 has changed (relative to the non-
existent or empty "lastGoodHW.cfg"), the "sfCfgMgr.exe"
program will attempt to automatically create the files
"defaultVehiclePSEs.cfg- and "defaultGalaxyPSEs.cfg,"
using information obtained from the drivers about how each
sensor or target device is disposed relative to the vehicle or
the galaxy (in general, this is possible when the user has
plugged in factory assembled stations that contain this
information in their EEPROM descriptors).

If the information in the devices is not sufficient, the
"sfCfgMgr.exe" program prompts the user to fill in the
required information, and then creates the default files. If the
resulting default configuration is deemed valid, the "sfCfg-
.Mgr.exe" program then passes control back to the calling
program. Since there are no auto files to override the default
files, the SFC 200 will begin tracking using the information
in the default files.
After the SFC starts tracking, the default files contain the

approved, fully-assembled hardware description for the con-
figuration. Typically, this information does not need to
change unless the user re-assembles the vehicle or the active
FPSEs in the galaxy. Information about passive fiducial
arrays (or natural features) is automatically generated by the
auto-mapping function of the SFC and stored in the "auto-
GalaxyPSEs.cfg" file without harming the default files. If
the user wishes to take the same vehicle to a new location
and begin auto-mapping, he can delete or rename the "auto-
GalaxyPSEs.cfg" file. Likewise, if he wishes to re-calibrate
the vehicle, he can delete the "autoVehiclePSEs.cfg" file.
5 Using the System for Simulation
An advantage of the described software system is that it

can be used to perform Monte Carlo simulation and cova-
riance analysis of a contemplated tracking configuration
before developing or installing any actual hardware. The
software can be used to decide what types of new devices to
develop and what performance specifications they require
for any given application and device layout.
A simulation is performed by using the following process:

(1) Add a line <mode="simulated"> in "sysPar.cfg" file.
(2) Add a line of the form <simIMUtype="imuIC2"> in
"sysPar.cfg" file.

(3) Manually construct the files "defaultVehiclePSEs.cfg"
and "defaultGalaxyPSEs.cfg" to represent the "true"
configuration of PSEs to be simulated. Unlike normal
operation where "defaultGalaxyPSEs.cfg" might con-
tain just a seed map, in simulation mode, it contains the
full list of the PSEs that might be used during the
course of the entire simulation. To inform the simula-
tion that only the first 4 PSEs are pre-known for an
auto-mapping experiment, give those 4 low covariance
values, and give the others high covariance values. The
covariances will be ignored by the sensor/target meta-
driver, which will treat the pose values in the default
files as absolute truth for the purpose of creating
simulated measurements. However, the SFC will add
random errors to the PSEs proportional to covariance
values when it initializes its internal data store maps,
and it will pay attention to the covariances in deciding
which PSEs it can schedule. As it adds new PSEs to the

38
"known" portion of the map, it will save the reduced
covariances and refined pose estimates into the "auto-
GalaxyPSEs.cfg" file, which can be compared after-
wards to the "defaultGalaxyPSEs.cfg" file to determine

5 how closely the auto-mapping process converged to the
true PSE positions.

(4) Copy a mat-file containing the desired simulated
trajectory data to the directory where the SFC resides
and name it "trajectory.mat."

10 The currently supported IMU types include, e.g.,
"imu100", "imuIC2," "imuIT2," "imuCommercial,"
"imuTactical," "imuNavigation," "imuStrategic,"
"imuPerfect," "imuNone," and "imuCustom." If "imuCus-
tom" is selected, then many additional parameters defining

15 simulated IMU performance are added to the "sysPar.cfg"
file. The non-custom types already contain pre-defined com-
binations of parameters (e.g. angle random walk, bias ran-
dom walk, initial bias uncertainty, scale factor uncertainty,
etc.) which are used to simulate the performance of different

20 grades of IMU.
In the simulation mode, the "sfShell.d11" program skips

the startup steps of asking the meta-driver to enumerate
hardware and output the concatenated list of devices to the
file "IIW.cfg" and invoking "sfCfgMgr.exe" file. Thus, it

25 proceeds immediately to acquisition and tracking using the
user-generated "default*.cfg" files. In the simulation mode,
if any hardware devices are connected, they are ignored. The
drivers are passed an exact sensor-target pose (which is
calculated in the MMU using vehicle pose data that comes

30 from the "trajectory.mat" file) and exact true poses of the
MPSE and FPSE (which come from the "defaultVehiclePS-
Es.cfg" and "defaultGalaxyPSEs.cfg" files respectively) and
told to provide simulated data (by adding biases and noise).

In the normal mode, the initial vehicle and galaxy PSE
35 maps are loaded into internal data store memory by first

reading in all lines from the default files, and then reading
in the auto files if they exist and overwriting the data from
the default files. Therefore, both auto files are deleted before
running a simulation, since they contain PSE pose values

40 which no longer match the truth values defined in the default
files. To simulate an ordinary tracking experiment with no
auto-mapping or auto-calibration, the PSE covariances in
the default files are set to zero.
6 Alternative System Architectures

45 Tracking system 90 can be used to track a single vehicle
or multiple vehicles. Multiple vehicles can be used to track
different parts of an object, such as body parts of a person.
Multiple vehicles may also be used to track a group of
people or robots or objects in a common environment.

50 Multiple vehicles can also increase the speed and accuracy
of map building since more data is available from the
sensors of multiple vehicles to collaboratively construct the
map.
Where multiple vehicles are tracked, the states of different

55 vehicles can be updated centrally or the processing may be
distributed between multiple SFCs running on the same data
processing unit or separate data processing units. In a
centralized multi-vehicle navigation system, one SFC
receives sensor inputs from all vehicles, performs tracking

60 and auto-calibration, and map building for all vehicles.
States of multiple vehicles are appended to the state vector
of the single SFC and propagated through the update filter to
create an optimal algorithm for collaborative mapping.
Referring to FIG. 10, in a fully distributed multi-vehicle

65 system, the navigation system utilizes multiple vehicles 470
in which each vehicle has its own data processing unit 190,
with its own hardware drivers 476 (which could include a
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meta-driver 122, local drivers 402 and/or regional drivers
404) and SFC 200 to perform its tracking and possibly
auto-calibration or auto-mapping. Each vehicle 470 builds
its own private environment map 474 representing the
portion of the environment 106 it sees. Each vehicle has
hardware drivers 476 that collect data from PSEs private to
the vehicle, and possibly also from PSEs that are shared
among vehicles through an infrastructural hardware driver
480 which communicates with each vehicle 470 during the
enumeration process to notify the vehicles what shared PSEs
are available.
Each vehicle 470 has a measurement scheduler 478 that

schedules which PSEs to use for each measurement cycle. A
regional scheduler mediator 482 communicates with the
measurement scheduler 478 of each vehicle to resolve
conflicts in utilizing shared PSEs.
The private environment maps 474 developed by one

vehicle 470 may or may not be shared or merged with the
private environment maps 474 developed by other vehicles
470. A regional map reconciliation filter 484 reconciles the
private environment maps based on a number of factors. For
example, if certain PSE position estimates from one vehicle
are known to be more accurate, either because its sensors are
more accurate or because it is located at a more favorable
geometric location with respect to certain targets, the private
environment map from that vehicle or a portion of the
private environment map relating to those certain targets
may be given more weight in the map-merging process. The
position estimates and associated covariances for a given
PSE provided by different vehicles may be fused using the
information fusion form of Kalman filter update equations,
such as given in section 2.4 of "Towards Generalized Sensor
Fusion Architecture for Distributed Real-time Tracking,
Auto-calibration and Environment Mapping" by Eric
Foxlin, attached to provisional application No. 60/402,178,
filed Aug. 9, 2002. If the fused map or portions of it are
redistributed to the vehicles after a merge, algorithms should
be designed to avoid potential filter divergence problems
that could result from violation of the Kalman filter assump-
tion of uncorrelated measurement noise.

In an alternative distributed system architecture, each
vehicle has its own SFC to update its own states, but
multiple SFCs are running on one data processing unit 190,
as illustrated in FIG. 7. This data processing unit may be
physically connected to one of the vehicles, or it may a
separate computer receiving data by equivalent connections
from all the vehicles.

In an alternative distributed system architecture, the
responsibility of central command may transfer from one
vehicle to another. Each vehicle independently stores the
system states, and under certain circumstances, such as
when the vehicle currently serving as central command
malfunctions or when it loses communication with other
vehicles, another vehicle takes over and assumes the respon-
sibility of the central command.

In an alternative distributed system architecture, each
vehicle has its own SFC and storage that stores the system
states. Depending on circumstances, one or more vehicles
may serve as central commands that actively receives sensor
inputs from other vehicles and updates the states for itself
and other vehicles. The vehicles not acting as central com-
mands pass their sensor inputs to the central commands,
receive the system states returned from the central
commands, and store the system states in a local storage.

Initially, when all of the vehicles are within communica-
tion range, one vehicle may serve as the central command.
As the vehicles navigate the environment and roam farther

40
and farther away from each other, one or more vehicles may
break off communication. When a vehicle breaks off com-
munication with the central command, the vehicle activates
its SFC and uses its own SFC to proceed with the task of

5 localization, calibration, and map building. The central
command, after noticing that a fellow vehicle has broken off
communication, can either treat the sensors from the fellow
vehicle as unavailable, or may reconfigure its update filter to
reflect the changes.

10 When the fellow vehicle regains communication with the
central command, a fusion process may be performed in
which the system states of the fellow vehicle is fused with
the system states of the central command, and then the
fellow vehicle cedes the responsibility of updating the

15 system states to the central command.
Because the navigation system implements an enumera-

tion process to determine availability of sensors and a
self-configuration process to set up the vehicle and environ-
ment maps according to sensor configurations, there is much

20 flexibility in how the multiple vehicles cooperate to obtain
the most accurate measurements. For example, the central
command may dispatch "sentries" to navigate closer to a
target in order to obtain more accurate measurements of the
target. The sentry may send back data to be fused with data

25 owned by the central command, or the sentry may simply
become another target that can be used as a navigation
reference point.

In this architecture, each vehicle has a sensor fusion core
(SFC) associated with it to perform its tracking and auto-

30 calibration, and to build its own private version of the part
of the map it sees, which may or may not be shared or
merged with map fragments developed by other vehicles.
The SFC may either be a dedicated processor running
onboard the vehicle, or just a process or thread running

35 inside a server somewhere. Each SFC has a DRU containing
the vehicle state, a vehicle map containing pointers to all the
PSEs attached to the vehicle, and an environment map
containing pointers to all the environment-fixed PSEs the
vehicle is currently using.

40 The following describes an example of how a multi-
vehicle navigation system determines which pair of PSEs to
use for measurement in each measurement cycle. In a first
scenario, only one measurement is made during each cycle.
Referring to FIGS. 3, 6, and 8, the MMUs 304 in all the

45 SFCs 200 send their wishlists to an arbiter 418, which can
be part of sfShell 412. For any hardware which is not under
the direct control of the local sfShell, the arbiter may in turn
consult a regional mediator 482 Having received wish lists
from all vehicles in the current cycle, the arbiter picks a pair

50 of PSEs that are available to make a measurement in the next
cycle so that the measurement will result in the highest
overall information gain to the navigation system 90, taking
all vehicles into consideration.
On the next cycle, the arbiter sends a message to the

55 MMU 304 in each of its SFCs, indicating that the MMU 304
is allowed to make a measurement using the selected pair of
PSEs. In turn, the MMU 304 sends a message to the
meta-driver to setup a PSE driver corresponding to the
selected pair of PSEs to perform a measurement. Once all

60 the SFCs have made a request to setup the same measure-
ment (as they have been directed to do by the arbiter) the
sfShell sends a trigger command to the meta-driver to
initiate the actual hardware measurement process. The
actual measurement may take many cycles to complete.

65 Therefore, in each cycle, the MMU 304 typically receives a
measurement that it requested a number of cycles earlier. For
shared measurements, the measurement is requested by

META-GNTX-00011510

Case 6:21-cv-00755-ADA   Document 45-4   Filed 02/28/22   Page 34 of 40



US 6,922,632 B2
41

multiple vehicles, completed once by the meta-driver, then
the same result is returned to all the requesting vehicles to
utilize in their respective update filters.

In the second scenario, different vehicles are allowed to
make different measurements simultaneously as long as the
measurement by one vehicle does not interfere with mea-
surements by other vehicles. Each MMU 304, in addition to
generating a wishlist of shared PSEs, also generates a
wishlist of private PSEs. The term "private" means that the
PSE is not shared by SFCs of other vehicles.
An example of a shared PSE is an ultrasound emitter

whose chirps can be received by microphones on multiple
vehicles. When there are multiple ultrasound emitters in
close range, typically only one emitter is allowed to chirp at
a time so as to prevent interference from the multiple
emitters. Each microphone has its own timer and can deter-
mine the distance to the emitter by measuring a time
difference between the trigger of the chirp and the reception
of the chirp.
When one or more PSE are shared among SFCs, it is

necessary to arbitrate among the needs of the SFCs to
determine which PSE will result in a measurement having
the highest overall benefit to the navigation system. For
example, when there are two ultrasound emitters, the first
emitter may be closer to a first vehicle but far away from a
second vehicle. The second emitter may be farther to the first
vehicle than the first emitter, but the average distance to both
vehicles may be smaller than that of the first emitter. Thus,
triggering the second emitter may result in a measurement
having a higher overall information gain to the navigation
system. Of course, the benefit of a measurement also
depends on the level of need in the vehicles, so if one vehicle
as a large pose estimation error covariance in a particular
direction, the arbiter may schedule a beacon in that
direction, even if there are other beacons which could
provide slightly higher information gain to a larger number
of vehicles.
The MMUs 304 send the shared and private wishlists to

the arbiter on each cycle. For each PSE pair on the private
wishlist, the arbiter immediately marks it available if it is not
busy, thus allowing it to be scheduled on the current cycle.
For the shared wishlist, however, it waits until it has
received the shared wishlists from all vehicles at the end of
the cycle, then makes a decision, and returns that decision to
the vehicles in the next cycle. Thus, on each cycle, the MMU
will be authorized to use any of its private PSEs that are not
busy, or to use the selected pair involving shared hardware
from what it requested last cycle. The MMU can choose
either one of its private PSE pairs or the shared pair,
whichever yields highest information gain for its own
vehicle. However, if the shared pair yields almost as much
gain as the best private pair, it may choose the shared pair
because it knows that opportunity will only be available for
a very limited time. The shared device will now be activated
as long as at least one vehicle decides to request a pair
involving it. On a given cycle, some vehicles may choose to
ignore the authorized shared measurement opportunity and
schedule private measurements using different non-
interfering sensors. Different vehicles can be making differ-
ent measurements using different sensors at the same time,
as long as they do not interfere with each other. The
arbitration process is designed to prevent vehicles from
scheduling measurements that may interfere.
As an example, a navigation system may be used to track

body parts of a person in a room where a number of
ultrasound speakers are installed on the ceiling. During the
tracking process, only one ultrasound speaker may be trig-

42
gered to chirp at a time. A first vehicle to be tracked may be
placed on the person's head, a second vehicle to be tracked
may be placed on the person's hand, and a third vehicle to
be tracked may be placed on the person's leg: The vehicles

5 contain microphones to measure the ultrasound chirps. The
MMU of each vehicle generates a wishlist of pairs of PSEs
(each pair including a speaker and a microphone). In gen-
erating the wish list, the MMU assigns a selfish information
gain value (i.e. the gain for its own vehicle) to every

10 combination of speaker-microphone pair.
At the kth cycle, the MMUs of the vehicles send their

wishlists to the arbiter 418. The arbiter responds by speci-
fying a pair of PSEs which includes a shared speaker that
was selected based on the wishlists submitted at the (k-1)th

15 cycle. During the kth cycle, the arbiter gathers the wishlists
from the MMUs and uses an algorithm to decide which
speaker will maximize the information gain of as many
vehicles as possible on the (k+1)th cycle. In this example,
only one speaker chirps, and one microphone in each vehicle

20 makes a measurement. At the (k+1)th cycle, the arbiter sends
messages to tell the MMUs which speaker will chirp and
which microphones have been granted permission to mea-
sure the chirp. After all of the MMUs send setup messages
to ultrasonic hardware driver preparing it to chirp the same

25 speaker and measure the time of flight to their different
respective microphones, the sfShell will send a trigger
message to the ultrasonic hardware driver. The driver then
simultaneously chirps the speaker and starts the counters in
all the microphones that have been setup for the measure-

30 ment. A number of cycles later, the ultrasonic hardware
driver returns the measurement results to the MMUs.
7 IMU and DRU Automatic Configuration
The DRU is responsible for predicting the estimate of

vehicle pose forward at each time step, and providing the
35 time varying linearized (1) and Q matrices to the update filter
306 that it will use to propagate forward the covariance
matrix P representing the uncertainty in the vehicle pose
estimate. The DRU may propagate the predicted pose based
on inputs from interoceptive sensors or without any sensor

40 inputs.
If there are no sensor inputs to the DRU, the pose

prediction will be based on some assumed dynamical pro-
cess model of the object being tracked. Two popular such
process models are the constant velocity model driven by

45 white-noise acceleration, or the constant acceleration model
driven by white-noise jerk.

If the enumeration process has identified the existence of
any interoceptive sensors, it will also obtain parameters
from the TEDS in the sensors describing what type of

50 sensors they are and what measurement characteristics they
possess, and save all these parameters into an IMU.cfg file.
This file is read by the DRU and allows it to configure itself
in an appropriate mode to perform the pose propagation by
integrating the measurements received from the sensors on

55 each cycle. The parameters describing the stochastic model
of the interoceptive sensors are used by the DRU to formu-
late the appropriate matrices (1) and Q. For example, if the
interoceptive sensors identify themselves as a standard IMU
providing measurements of AO and Av on each cycle, then

60 the DRU will implement inertial integration equations for
updating the pose estimate and implement for (1) a state
transition matrix representing the propagation of pose and
velocity errors as a result of inertial sensor errors, and it will
calculate Q based on such IMU parameters as gyro angle

65 random walk, bias random walk, initial bias uncertainty,
scale factor uncertainty, misalignment uncertainty, and all
the equivalent parameters for accels. On the other hand, for
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odometry sensors, there would be different integration equa-
tions implemented, a different state transition matrix
generated, and different stochastic parameters required to
generate the process noise matrix.
8 Applications of Tracking, Auto-calibration and Map-
building System
Referring to FIG. 11, navigation system 90 can be used in

many applications, such as to navigate a forklift 500 in a
factory environment, to track a helicopter 502 or a soldier
504 in a battle field, or to track a person 506 in an indoors
environment. An inside-out measurement can be used in
which a sensor 508 attached to person 506 makes a mea-
surement with respect to a target 510. An outside-in mea-
surement can be used in which a sensor 512 attached to the
environment makes a measurement with respect to a target
514 attached to a person 516.

In some applications, the primary goal of the system is to
provide a means of navigation or tracking. If auto-mapping
is used at all in such an application, it is done to provide a
reference map for the purpose of the tracking. The map may
be discarded after the tracking or navigation activity is
complete, or it may be saved for future tracking or naviga-
tion activities in that environment. These types of applica-
tions are frequently discussed in the robotics literature under
names like simultaneous localization and map-building
(SLAM) or concurrent mapping and localization (CML).

In other applications, the map itself may be the primary
product of interest. For example, a camera may be moved
through a building, finding existing natural features such as
corners and adding them to the map as PSEs. The map
representation could be augmented to include information
about lines connecting the corners together. Eventually a 3D
model of the building will be formed which can be converted
into a CAD model for as-built documentation and use in
architectural planning. If the camera captures images and
stitches together fragments of images to create texture maps
which can be associated with the polygons in the CAD
model, the result would be a virtual reality (VR) model of
the environment, created rapidly and either automatically or
semi-automatically with minimal user interaction. These
types of applications, where the goal is more to capture the
3D structure of the environment rather than track a vehicle's
motion, are often discussed in the computer vision literature
under names like structure-from-motion or scene modeling.
9 Alternative Embodiments

It is to be understood that the foregoing description is
intended to illustrate and not to limit the scope of the
invention, which is defined by the scope of the appended
claims. Other embodiments are within the scope of the
following claims.
For example, referring to FIG. 12, the update filter 306

can be a distributed Kalman filter, such as a Federated
Kalman filter, that includes a number of filter components.
Update filter 306 may include a SLAC filter (which stores
and updates ox, OM, P , P„,, and a SLAM filter
(which stores and updates Sx, SF, P , P  and PFF), and an
LO filter (which stores and updates Sx and P„).
The SLAC filter 364 estimates errors in the underlying

MPSE poses and biases, and sends the corrections vector SM
back to the vehicle map manager 314, which applies the
corrections to the appropriate MPSE fields with appropriate
translation of orientation format.
Similarly, the SLAM filter 362 sends error correction

estimates back to the environment map manager MO, which
applies the corrections to the appropriate FPSE fields with
appropriate translation of orientation format.
The LO filter 360 is used when the user or the navigation

system 90 decides that both auto-calibration and mapping

44
are done, and turns off the SLAC filter 364 and SLAM filter
362. Any one, two or three of the filters may be active at a
given time.
Because each of the three local filters in this federated

5 filter bank is a reduced-order Kalman filter which leaves out
certain states that were present in the full-order centralized
filter, techniques such as a Schmidt-Kalman filter algorithm
or just "bumping up" the noise assumed in the measurement
model should be used to assure stability and best perfor-

10 mance. To facilitate this, during the incorporation of a
measurement between FPSE, and MPSE,, the SLAM filter
362 sends Pf, (error covariance of FPSE) to LO filter 360
and SLAC filter 364 and the SLAC filter 364 sends P„,„,
(error covariance of MPSE) to LO filter 360 and SLAM

15 filter 362.
When more than one of the local filters 360, 362, and 364

are running in parallel, the fusion filter 366 is used after all
the local filters have completed their measurement updates
to fuse their individual estimates of vehicle pose error

20 (8xSLAM, P„SLAM), (8xSLAC, PSLAC), and (8xL0,
P LO) into a fused estimate (oxFused, P„Fused). Then
oxFused is sent to the DRU to correct the vehicle pose states,
and 13 Fused is sent back to each of the local filters to
perform the fusion reset equations of the federated filter

25 algorithm. The fusion reset equations in the SLAM filter
result in another correction OF being sent to the environment
map manager, and likewise for the SLAC filter. Further
details and references concerning the federated filter and
distributed Kalman filtering are in the article "Towards a

30 Generalized Sensor Fusion Architecture for Distributed
Real-time Tracking, Auto-calibration and Environment
Mapping," attached to provisional application No. 60/402,
178, filed Aug. 9, 2002.

In order to accommodate large galaxy maps, there may be
35 many SLAM filters within the distributed filter bank, each

responsible for updating a submap or portion of the entire
map. These submaps may be disjoint or overlapping. One,
several, or all of the SLAM submap filters may be active at
a given time. For example, the environment map could be

40 partitioned into rooms, and when the vehicle is in a particu-
lar room, only the SLAM filter which updates PSEs in that
room is active. When the robot transitions from one room to
another, the federated filter fusion reset equations are used to
transfer the vehicle state estimate covariance matrix into the

45 new room's SLAM filter, and update the stale PxF and PFF
matrices in the new filter based on the change in Pxx which
has occurred compared to the stale Pxx matrix left in the new
SLAM filter since the last time it was active. This map
transition process is similar in effect to the submap transition

50 algorithm of Leonard and Feder. For smoother transitions as
the robot moves between submaps, there may be several
submap SLAM filters around the robot active at any given
time, and as the robot moves forward, submaps behind it
de-activate and ones in front activate.

55 If there will be a maximum of N submap filters active at
any given time, then the bank of filters in the federated filter
implementation would only need to contain N SLAM filters.
When the vehicle moves, the SLAM filter corresponding to
the submap behind it de-activates first and transfers its latest

60 information into the environment map manager. Then, a
group of PSEs in the area the vehicle is approaching are
transferred from the environment map manager into the now
vacant SLAM filter memory store.
Data processing unit 190 can either reside in vehicle 100

65 or be located outside of vehicle 100. Measurements from
sensors 102 and IMU 104 may be transmitted wirelessly to
a server computer located at a base station, the server
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computer updates the vehicle states, vehicle maps, and
environment maps based on the measurements, and sends
the updated vehicle states, vehicle maps, and environment
maps back to vehicle 100 for storage in a memory in vehicle
100. The vehicle states, vehicle maps, and environment
maps may also be stored at the base station, so vehicle 100
has little onboard computation power, and only carries
sensors 102, IMU 104, communication devices, and perhaps
motor control mechanism for controlling the movement of
vehicle 100.
A vehicle with higher processing power may be used with

vehicles with less processing power. The vehicle with less
processing power sends measurement data to the vehicle
with higher processing power, which updates the vehicle
states, vehicle maps, and environment maps, and sends the
updated information back to the vehicle with less processing
power. In this way, lower cost navigation robots can be used
with a more expensive navigation robot to explore a terrain.
The term "vehicle" can mean any object, from as small as

an atom to as large as a planet. In a multi-vehicle system
used to track movements of a person, a vehicle can be a
tracker mounted on the person's head, and another vehicle
can be a second tracker mounted on the person's wrist.
The auto-calibration process may also refine calibration

parameters provided by the manufacturers of the sensors,
where the calibration parameters have limited accuracy.
The pose of a target relative to a sensor does not neces-

sarily have to be expressed as Xii=0„(p„Oi4j,100. Other
representations may be used as well. For example position
of target relative to sensor may be specified using Cartesian
or polar or other coordinate systems. Orientation may be
expressed with euler angles, quaternions, rotation matrices,
or rotation vectors. For some PSEs, orientation parameters
may not be important, in which case no corresponding filter
states need be allocated. For example, for a circular fiducial
mark, the orientation is only used to determine visibility, and
perhaps to calculate a centroid correction for perspective
distortion. It should suffice to enter an approximate orien-
tation and not update the orientation during the iterative
measurement cycles. By comparison, for a camera, because
the aim of camera lens is important, the orientation are
included in the state vector so that measurements from the
camera can be interpreted, and if auto-calibration is desired
the extended Kalman filter can refine the alignment.
The pose of the vehicle relative to the galaxy, the FPSEs

relative to galaxy, or the MPSEs relative to the vehicle may
also be expressed in different formats or with fewer than 6
degrees of freedom. For example, in 2D navigation prob-
lems it is common to express the robot pose using just x, y
and heading.
Various methods of auto-calibration may be used. In one

implementation, navigation system 90 gathers information
from a number of measurements from different sensors, and
determines whether measurement values from a particular
MPSE have a high percentage that are consistently offset
from an estimated measurement value computed based on
measurements from other sensors. The navigation system 90
calculates an estimate of the pose of the particular MPSE
relative to the vehicle so that, using the estimated pose, the
measurement values from that particular sensor more closely
match the estimated measurement values based on measure-
ments from other sensors. The auto-calibration parameters
may be initialized to very accurate values through precise
mechanical alignment fixtures, and then no auto-calibration
are performed, or they may be initialized to approximate
values and then refined by the real-time iterative auto-
mapping process described above. Alternatively, they may

46
be estimated by a batch process after collecting a certain
amount of data.
When an MPSE is first installed on vehicle 100, instead

of having a user manually enter the MPSE pose information,

5 the MPSE may communicate with other sensors upon ini-
tialization of the navigation system 90 to compute an initial
estimate of its pose relative to the vehicle. The initial pose
estimate is subsequently calibrated by the navigation system
90 using measurements from other sensors.

10 
The navigation system 90 may automatically calibrate

measurement biases inherent in the MPSEs. For example, a
specification sheet of an ultrasound range finder may specify
that readings from the range finder are to be deducted by a
preset value. Due to manufacturing tolerances, the readings
may actually have to be deducted by a different value. Such
biases may be calibrated using the method described above
for calibrating poses of the MPSEs.
What is claimed is:
1. A method for tracking an object comprising:

20 
coupling a sensor subsystem to an estimation subsystem,
said sensor subsystem enabling measurement related to
relative locations or orientations of sensing elements;

accepting configuration data from the sensor subsystem;
configuring the estimation system according to the

25 accepted configuration data;
repeatedly updating a state estimate, including

accepting measurement information from the sensor
subsystem, and

updating the state estimate according to the accepted
30 configuration data and the accepted measurement

data.
2. The method of claim 1 wherein coupling the sensor

subsystem to the estimation subsystem includes coupling
software modules each associated with one or more of the

35 sensing elements.
3. The method of claim 2 wherein each of the software

modules provides a software interface for receiving infor-
mation related to an expected sensor measurement and
providing measurement information that depends on said

40 received information.
4. The method of claim 3 wherein each of the software

modules implements calculations that are independent of a
representation of the state in the estimation subsystem.
5. The method of claim 1 wherein the state estimate

45 characterizes an estimate of a location of the object.
6. The method of claim 1 wherein the state estimate

characterizes configuration information for one or more
sensing elements fixed to the object.
7. The method of claim 6 wherein the configuration

so information for the one or more sensing elements fixed to the
object includes information related to position or orientation
of said sensing elements relative to the object.
8. The method of claim 6 wherein the configuration

information for the one or more sensing elements fixed to the
55 object includes operational parameters for the one or more

sensing elements.
9. The method of claim 1 wherein the state estimate

characterizes configuration information for one or more
sensing elements fixed in an environment of the object.

60 10. The method of claim 9 wherein the configuration
information for one or more sensing elements fixed in the
environment of the object includes a map of the locations of
said sensing elements.
11. The method of claim 1 wherein repeatedly updating

65 the state further includes:
providing to the sensor subsystems information related to

an expected sensor measurement; and

15
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wherein accepting the measurement information from the
sensor subsystem includes accepting information
related to an actual sensor measurement.

12. The method of claim 11 wherein providing the infor-
mation related to an expected sensor measurement includes
providing information related to a relative geometric con-
figuration of two of the sensing elements.
13. The method of claim 12 wherein providing informa-

tion related to a relative geometric configuration of the two
of the sensing elements includes providing information
characterizing a relative location of said sensing elements.
14. The method of claim 11 wherein accepting the infor-

mation related to an actual sensor measurement includes
accepting information enabling the estimation subsystem to
calculate a difference between the actual measurement and
the expected measurement.
15. The method of claim 11 wherein accepting the infor-

mation related to an actual sensor measurement includes
accepting information for correlating measurements and
geometric relationships between sensing elements.

16. The method of claim 15 wherein the information for
correlating measurements and geometric relationships
between sensing elements includes a mapping between a
relative pose of the sensing elements and a sensor measure-
ment.
17. The method of claim 16 wherein the mapping between

the relative pose of the sensing elements and the sensor
measurement characterizes a linear mapping.
18. The method of claim 11 wherein accepting the infor-

mation related to an actual sensor measurement includes
accepting information characterizing an uncertainty in the
actual measurement.
19. The method of claim 18 wherein the information

characterizing the uncertainty in the actual measurement
includes parameters of a statistical distribution of an error of
the actual measurement.
20. The method of claim 1 wherein repeatedly updating

the state further includes:
selecting a pair of sensing elements for measurement; and
providing an identification of the selected pair to the
sensing subsystem.

21. The method of claim 20 wherein selecting the pair of
sensing elements includes selecting said elements according
to an expected utility of a measurement associated with said
elements to the updating of the state.
22. The method of claim 11 wherein repeatedly updating

the state further includes:
updating the state according to the accepted information

related to an actual sensor measurement.
23. The method of claim 20 wherein repeatedly updating

the state further includes:
updating the state according to accepted measurements
from inertial sensors.

24. The method of claim 1 wherein updating the state
estimate includes applying a Kalman Filter approach.
25. The method of claim 1 wherein each of said sensing

elements comprises at least one of a sensor and a target.
26. The method of claim 25 wherein the target comprises

an active device that interacts with the sensor.
27. The method of claim 26 wherein the target comprises

at least one of a man-made signal reflector and a natural
feature of an environment.
28. The method of claim I wherein the object is selected

from a group consisting of a vehicle, a robot, a person, a part
of a person, a flying object, a floating object, an underwater
moving object, an animal, a camera, a sensing apparatus, a
helmet, a tool, a piece of sports equipment, a shoe, a boot,

5

5

5

48
an article of clothing, a personal protective equipment, a
rigid object having a dimension between 1 nanometer to 109
meters.
29. The method of claim 1 wherein the state estimate

5 comprises information related to a position or an orientation
of the object relative to a reference coordinate frame.
30. A sensor module comprising:

a sensor interface for communicating with a measurement
sensor;

10 a communication interface for communication with an
estimation system;

wherein the sensor module is configured to
receive information related to an expected sensor mea-
surement over the communication interface,

receive a measurement signal over the sensor interface,
provide measurement information based on the mea-
surement signal over the communication interface.

31. The sensor module of claim 30 wherein the sensor
module is configured to provide information over the com-
munication interface related to an uncertainty in the mea-
surement information.
32. The sensor module of claim 30 wherein the received

information related to an expected sensor measurement
includes a predicted pose of a sensing element relative to the
measurement sensor.
33. A method comprising:

enumerating a set of sensing elements available to a
tracking system that includes an estimation subsystem

30 
that estimates a position or orientation of an object;
providing parameters specific to the set of sensing
elements to the tracking system to enable the esti-
mation subsystem to be configured based on the
parameters specific to the set of sensing elements;
and

generating a sequence of candidates of pairs of sensing
elements selected from the set of sensing elements, the
sequence based on an expected utility of a measure-
ment associated with said elements to the estimation

40 subsystem.
34. The method of claim 33, further comprising selecting

a pair of sensing elements from the sequence of candidates,
the selected pair of sensing elements being ready to make a
measurement at the time of selection of the pair or at a

45 predefined time after the time of selection of the pair, the
selected pair having highest expected utility of a measure-
ment among the sequence of candidates.
35. The method of claim 33 wherein the set of sensing

elements comprises at least one sensor and at least one
50 target, the sensor making a measurement with respect to the

target.
36. The method of claim 35 wherein the target comprises

a natural feature in an environment.
37. A method comprising:

55 computing an estimate of a pose of a target element
relative to a sensor element based on an estimate of a
pose of a tracked object relative to an environment
having affixed thereto either the sensor element or the
target element,

60 the computing of the estimate of the pose of the target
element relative to the sensor element further based
on an estimate of a pose of the affixed element
relative to the tracked object and the other element
relative to the environment;

65 computing an estimate of a measurement of the target
made by the sensor based on the estimate of the pose of
the target relative to the sensor;

1
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making an actual measurement of the target by using the
sensor;

computing a deviation between the actual measurement
and the estimated measurement; and

generating a new estimate of the pose of the tracked object
based on the deviation.

38. The method of claim 37, further comprising comput-
ing a first observation matrix that characterizes a linearized
model of a function relating the measurement made by the
sensor to the pose of the target relative to the sensor.
39. The method of claim 38, further comprising comput-

ing a second observation matrix that characterizes a linear-
ized model of a function relating the pose of the target
relative to the sensor to the estimate of the pose of the
tracked object relative to the environment.
40. The method of claim 39, further comprising comput-

ing an observation matrix that characterizes a linearized
model of a function relating the measurement made by the
sensor to the pose of the tracked object relative to the
environment by combining the first observation matrix and
the second observation matrix.
41. A method comprising:

estimating a first value associated with a pose of a first
sensing element relative to a second sensing element,
the first sensing element fixed to an environment and
the second sensing element fixed to an object being
tracked, one of the first and second sensing elements
being a sensor and the other being a target;

estimating a second value associated with a pose of the
second sensing element relative to the first sensing
element;

determining which of the first and second sensing ele-
ments is the sensor; and

generating an innovation of a measurement of the target
made by the sensor based on the first value when the
second sensing element is the sensor.

42. The method of claim 41, further comprising generat-
ing the innovation based on the second value when the first
sensing element is the sensor.
43. The method of claim 41 wherein estimating the first

value and estimating the second value are performed by a
process ignorant of which of the first and second sensing
elements is a sensor.
44. A method comprising

estimating a calibration parameter of a sensing element
that is either a sensor or a target, the sensing element
being fixed either to an environment or to an object
being tracked;

determining whether the sensing element is the sensor or
the target; and

assigning the calibration parameter as a sensor calibration
parameter when the sensing element is a sensor, and
generating an innovation of a measurement of a target
made by the sensing element based in part on the sensor
calibration parameter.

45. The method of claim 44, further comprising assigning
the calibration parameter as a target calibration parameter
when the sensing element is a target, and generating an
innovation of a measurement of the sensing element made
by a sensor based in part on the target calibration parameter.
46. The method of claim 44 wherein estimating the

calibration parameter is performed by a process ignorant of
whether the sensing element is a sensor or a target.
47. A method of using multiple sensors in a tracking

system comprising:

50
providing an estimation module;
coupling one or more sensor modules to the estimation
module, each associated with a different set of one or
more sensors;

5 configuring the tracking system, including
providing configuration information from each of the
sensor modules to the estimation module regarding
the characteristics of the sensors associated with the
sensor module, and

10 configuring the estimation module using the provided
configuration information;

maintaining estimates of tracking parameters in the esti-
mation module, including repeatedly
passing data based on the estimates of the tracking
parameters from the estimation module to one or

15
more of the sensor modules,

receiving from said one or more sensor modules at the
estimation module data based on measurements
obtained from the associated sensors, and the data
passed to the sensor modules, and

20 combining the data received from said one or more
sensor modules and the estimates of the tracking
parameters in the estimation module to update the
tracking parameters.

48. The method of claim 47 wherein the data passed from
25 the estimation module to one or more of the sensor modules

includes an estimate of the pose of a target relative to a
sensor that was calculated by the estimation module using an
estimate of the pose of a tracked object relative to a frame
of reference fixed to an environment.

30 49. The method of claim 48 wherein the data passed from
the estimation module to one or more of the sensor modules
does not include the estimate of the pose of the tracked
object relative to the frame of reference fixed to the envi-
ronment.

35 50. The method of claim 47 wherein providing the esti-
mation module includes providing a module that is config-
urable to use different sets of sensor modules coupled to it.
51. The method of claim 47 wherein maintaining esti-

mates of the tracking parameters in the estimation module
40 includes using a stochastic model in the estimation module.

52. The method of claim 51 wherein using a stochastic
model includes implementing some or all of a Kalman filter
in the estimation module.
53. The method of claim 52 wherein implementing some

45 or all of the Kalman filter includes updating error estimates
using linearized models of the sensor system.
54. The method of claim 52 wherein implementing some

or all of the Kalman filter includes implementing a distrib-
uted Kalman filter, wherein each of a plurality of compo-

so nents of the distributed Kalman filter is associated with a
different subset of the sensor modules.
55. The method of claim 54 wherein one of the compo-

nents of the distributed Kalman filter is associated with a
subset of sensor modules consisting of sensor modules that

55 are affixed to a tracked object.
56. The method of claim 54 wherein one of the compo-

nents of the distributed Kalman filter is associated with a
subset of sensor modules consisting of sensor modules
which are affixed to an environment.

60 57. The method of claim 54 wherein one of the compo-
nents of the distributed Kalman filter is not associated with
any sensor modules.
58. The method of claim 54 wherein implementing the

distributed Kalman filter includes implementing a Federated
65 Kalman Filter.

59. The method of claim 47 wherein providing configu-
ration information from the sensor modules includes pro-
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viding information characterizing a type of a sensor asso-
ciated with a sensor module.
60. The method of claim 47 wherein providing configu-

ration information from the sensor modules includes pro-
viding information characterizing a position or an orienta-
tion of a sensor associated with a sensor module.
61. The method of claim 47 wherein providing configu-

ration information from the sensor modules includes pro-
viding information characterizing one or more calibration
parameters of a sensor associated with a sensor module.
62. A machine-accessible medium, which when accessed

results in a tracking or navigation system that tracks or
navigates, respectively, an object, performing operations
comprising:

enumerating a set of sensing elements available to the
tracking or navigation system, the sensing elements
available to the tracking or navigation system including
at least one of an inside-out sensor and an outside-in
sensor, the inside-out sensor being fixed to the object
and makes measurements with respect to a target fixed
to an environment, the outside-in sensor being fixed to
the environment and makes measurements with respect
to a target fixed to the object;

configuring an estimation module of the tracking or
navigation system based on an enumeration of the set
of sensing elements available to the tracking or navi-
gation system so that the estimation module can pro-
cess measurement information from either inside-out
sensors, outside-in sensors, or a combination of inside-
out and outside-in sensors depending on the sensors
available; and

repeatedly updating an estimated pose of an object based
on measurements from the set of sensing elements
available to the tracking or navigation system.

63. The machine-accessible medium of claim 62 in which
the sensing elements available to the tracking or navigation
system include range sensors, and configuring the estimation
module includes configuring the estimation module so that
the estimation module can process measurement informa-
tion from either inside-out sensors, outside-in sensors, range
sensors, or any combination of the above sensors.
64. The machine-accessible medium of claim 62 in which

the sensing elements available to the tracking or navigation
system include inertial sensors, and configuring the estima-
tion module includes configuring the estimation module so
that the estimation module can process measurement infor-
mation from either inside-out sensors, outside-in sensors,
inertial sensors, or any combination of the above sensors.
65. The machine-accessible medium of claim 62 in which

the sensing elements available to the tracking or navigation
system include dead reckoning sensors, and configuring the
estimation module includes configuring the estimation mod-
ule so that the estimation module can process measurement
information from either inside-out sensors, outside-in
sensors, dead reckoning sensors, or any combination of the
above sensors.
66. A method comprising:
receiving sensor configuration information indicating a
set of sensing elements available to a tracking or
navigation system;

configuring a data processing module of the tracking or
navigation system based on the sensor configuration
information to selectively perform one of
(a) receiving data from at least one inside-out bearing

sensor, and updating an estimated pose of an object
based on data received from the inside-out bearing 65
sensor,
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(b) receiving data from at least one outside-in bearing

sensor, and updating an estimated pose of an object
based on data received from the outside-in bearing
sensor, and

(c) receiving data from at least one inside-out bearing
sensor and at least one outside-in bearing sensor, and
updating an estimated pose of an object based on
data received from the outside-in bearing sensor and
the inside-out bearing sensor.

67. The method of claim 66 further comprising config-
uring the data processing module to selectively perform one
of

(d) receiving data from at least one range sensor, and

15 updating an estimated pose of an object based on data
received from the range sensor,

(e) receiving data from at least one range sensor and at
least one inside-out bearing sensor, and updating an
estimated pose of an object based on data received from

20 the range sensor and the inside-out bearing sensor,

(f) receiving data from at least one range sensor and at
least one outside-in bearing sensor, and updating an
estimated pose of an object based on data received from

25 the range sensor and the outside-in bearing sensor, and

(g) receiving data from at least one range sensor, at least
one outside-in bearing sensor, and at least one inside-
out bearing sensor, and updating an estimated pose of
an object based on data received from the range sensor,

30 the inside-out bearing sensor, and the outside-in bear-
ing sensor.

68. An apparatus comprising:

an estimation module to estimate a pose of an object based
on measurement data from sensing elements, the esti-
mation module configured to enable selective perfor-
mance of
(a) receiving data from at least one inside-out bearing

sensor, and updating an estimated pose of an object

40 based on the data received from the inside-out bear-
ing sensor,

(b) receiving data from at least one outside-in bearing
sensor, and updating an estimated pose of an object
based on the data received from the outside-in bear-

45 ing sensor, and
(c) receiving data from at least one inside-out bearing

sensor and at least one outside-in bearing sensor, and
updating an estimated pose of an object based on the
data received from the outside-in bearing sensor and

50 the inside-out bearing sensor.
69. An apparatus comprising:

an estimation module to estimate a pose of an object based
on measurement data from sensing elements, the esti-
mation module configured to enable selective perfor-
mance of one of:
(a) updating an estimate of the position or orientation of

the object relative to an environment,
(b) updating an estimate of the position or orientation,

60 relative to the object, of at least one sensing element
fixed to the object, and

(c) updating an estimate of the position or orientation,
relative to the environment, of at least one sensing
element fixed in the environment.
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