Case 6:21-cv-00263-ADA Document 1-8 Filed 03/16/21 Page 1 of 21

Exhibit 8

DOCKET A L A R M Find authenticated court documents without watermarks at <u>docketalarm.com</u>.

Case 6:21-cv-00263-ADA Document 1-8 Filed 03/16/21 Page 2 of 21

U.S. Patent No. 7,917,680 ("'680 Patent")

Accused Products

Apple products including smartphones, tablets, and computers with Apple A-Series or M-Series SoCs ("A System") infringe at least Claim 1 of the '680 Patent.

Claim 1

Claim 1	Apple Ax/Mx System
1[pre]. A method for managing packet- based communications in a rules-based system, the method comprising:	To the extent the preamble is limiting, the Apple Ax/Mx System in for managing packet-based communications in a rules-based system For example, the Apple Ax/Mx System includes an ARM AMBA <i>A</i> similar, such as a PL301 fabric implementing ordering rules, includ limitation an "Apple Fabric." <i>See, e.g.</i> :

Claim 1	Apple Ax/Mx System
	Apple A11 Bionic: The fastest six-co
	processor around
	What's new? First, it's a six-core processor. "Exciting," you think, and indeed it is just remember that more cores on a phone isn't the same as more cores on yo laptop.
	There are two "performance" cores and four "high-efficiency cores" for a total of six. This chip design is similar to big.LITTLE, created by British company ARM. Without going too in-depth, this is known as 'heterogeneous computing', which effectively allows devices to run on processors that have cores of different specifications. This unlike a processor in your PC, where all the processor cores exactly the same.
	Compared to last year's A10 Fusion, Apple claims 25% better performance fror those all-important performance cores, while the four high-efficiency cores wil collectively be 70% faster for background tasks. What's more exciting is that th controller, which decides what cores get which tasks, now allows all six cores to work on the same task, allowing for 70% faster multi-threaded workloads.
	In terms of graphics performance, the GPU is said to be 30% faster than last ye while consuming half the power when working at the same rate as the A10. Th impressive and will help battery life when it comes to gaming.
	Big.LITTLE-like designs aren't unique to Apple's chip designs; the likes of the Samsung Exynos 8895 and the Qualcomm Snapdragon 835 SoC feature this architecture. But what's new here is the doubling of the number of lower-pow
	http://www.trustedreviews.com/news/apple-a11-processor-specs-pe benchmarks-3286346

Claim 1	Apple Ax/Mx System
	37 #define SWTCH FAB BASE ADDR (IO BASE + 0x000800000) // Switch Fabric Config
	38 39 #define CP COM BASE ADDR (IO BASE + 0x000D00000) // CP Common Registers
	40 #define CP_COM_INT_BASE_ADDR (CP_COM_BASE_ADDR + 0x10000) // CP Common Interrupt
	41 42 #define CP_0_DT_DBG_CA0_ADDR (IO_BASE + 0x000D40000) // Dup Tag Debug backdoor R
	43 #define CP_1_DT_DBG_CA0_ADDR (IO_BASE + 0x000E40000) // Dup Tag Debug backdoor R
	44 45 #define ACC BASE ADDR (IO BASE + 0x00200000) // Apple Compute Complex
	46 #define CCC_CPU0_SYS_BASE_ADDR (IO_BASE + 0x002000000) // Hurricane/Zephyr CPU0 Im
	47 #define CCC_CPU1_SYS_BASE_ADDR (IO_BASE + 0x002100000) // Hurricane/Zephyr CPU1 Im
	49 #define SOC BUSMUX BASE ADDR (IO BASE + 0x004000000) // AF SoC BusMux Config
	iboot-master\platform\t8010\include\platform\soc\hwregbase_t801
	22 #define CPU_Fabric_pl301WrapU_AMCRDRATELIMIT (0x0000) // AMC Read Rate Limit 23 #define CPU Fabric_pl301Wrap0_AMCWRALIMIT (0x0004) // AMC Write Rate Limit Rec
	23 #define CPU_Fabric_pl301Wrap0 AMCWRALIMIT (0x0004) // AMC Write Rate Limit Req 24 #define CPU Fabric pl301Wrap0 AMCRTRLIMIT (0x0008) // AMC Read Transactions Limit Req
	25 #define CPU_Fabric_pl301Wrap0_AMCWTRLIMIT (0x000c) // AMC Write Transactions I
	26 #define CPU_Fabric_pl301Wrap0_SPURDRATELIMIT (0x0040) // SPU Read Rate Limit
	27 #define CPU_Fabric_pl301Wrap0_SPUWRALIMIT (0x0044) // SPU Write Rate Limit Rec 28 #define CPU Fabric_pl301Wrap0_SPURTRLIMIT (0x0048) // SPU Read Transactions Li
	28 #define CPU_Fabric_pl301Wrap0_SPURTRLIMIT (0x0048) // SPU Read Transactions Li 29 #define CPU Fabric pl301Wrap0_SPUWTRLIMIT (0x004c) // SPU Write Transactions I
	30 #define CPU Fabric pl301Wrap0 SPUWGATHER (0x0050) // SPU Write Gather Register
	31 #define CPU Fabric pl301Wrap0 LIOWGATHER (0x0090) // LIO Write Gather Register
	32 #define CPU_Fabric_pl301Wrap0_AUERDRATELIMIT (0x00c0) // AUE Read Rate Limit
	33 #define CPU_Fabric_pl301Wrap0_AUEWRALIMIT (0x00c4) // AUE Write Rate Limit Rec
	34 #define CPU_Fabric_pl301Wrap0 AUERTRLIMIT (0x00c8) // AUE Read Transactions Li 35 #define CPU Fabric pl301Wrap0 AUEWTRLIMIT (0x00cc) // AUE Write Transactions I
	35 #define CPU_Fabric_pl301Wrap0 AUEWTRLIMIT (0x00cc) // AUE Write Transactions I 36 #define CPU Fabric pl301Wrap0 AUEWGATHER (0x00d0) // AUE Write Gather Register
	37 #define CPU Fabric p1301Wrap0 ANSRDRATELIMIT (0x0000) // ANS Read Rate Limit
	38 #define CPU_Fabric_p1301Wrap0_ANSWRALIMIT (0x0104) // ANS Write Rate Limit Rec
	39 #define CPU_Fabric_pl301Wrap0_ANSRTRLIMIT (0x0108) // ANS Read Transactions Li
	40 #define CPU_Fabric_pl301Wrap0_ANSWTRLIMIT (0x010c) // ANS Write Transactions I
	41 #define CPU_Fabric_pl301Wrap0 ANSWGATHER (0x0110) // ANS Write Gather Register 42 #define CPU_Fabric_pl301Wrap0 AXI0 ARCHANAREMI0 (0x0408) // Configured AR channed
	43
	44 // NRT Fabric Widget Registers (base address @ NRT FABRIC BASE ADDR)
	45 #define NRT_Fabric_pl301Wrap1_MCRDRATELIMIT (0x0000) // AMC Read Rate Limit
	46 #define NRT_Fabric_pl301Wrap1_MCWRALIMIT (0x0004) // AMC Write Rate Limit Reg 47 #define NRT Fabric pl301Wrap1 MCRTRLIMIT (0x0008) // AMC Read Transactions Limit Reg
	47 #define NRT Fabric pl301Wrap1 AMCRELIMIT (0x0006) // AMC Read Transactions L 48 #define NRT Fabric pl301Wrap1 AMCWTRLIMIT (0x000c) // AMC Write Transactions I
	49 #define NRT Fabric p1301Wrap1 (SRRDRATELIMIT (0x0040) // MSR Read Rate Limit
	50 #define NRT_Fabric_pl301Wrap1_4SRWRALIMIT (0x0044) // MSR Write Rate Limit Rec
	51 #define NRT_Fabric_pl301Wrap1_MSRTRLIMIT (0x0048) // MSR Read Transactions Li
	52 #define NRT_Fabric_pl301Wrap1_MSRWTRLIMIT (0x004c) // MSR Write Transactions I
	53 #define NRT_Fabric_pl301Wrap1_SDIORDRATELIMIT (0x0080) // SDIO Read Rate Limit 54 #define NRT_Fabric_pl301Wrap1 SDIOWRALIMIT (0x0084) // SDIO Write Rate Limit Red
	55 #define NRT Fabric pl301Wrap1 5D10WRADIMIT (0x0004) // SD10 Write Rate Himit Re 55 #define NRT Fabric pl301Wrap1 5D10RTRLIMIT (0x0088) // SD10 Read Transactions I
	56 #define NRT_Fabric_pl301Wrap1_6DIOWTRLIMIT (0x008c) // SDIO Write Transactions
	iboot-master\platform\t8002\include\platform\soc\miu.h

Claim 1	Apple Ax/Mx System
Claim 1	 Apple AX/MX System A master can use the AWID and ARID transaction IDs to indicate its ordering ordering of transactions are as follows: Transactions from different masters have no ordering restrictions. They can com Transactions from the same master, but with different ID values, have no orderin complete in any order. The data transfers for a sequence of read transactions with the same ARID value r in which the master issued the addresses, see <i>Read ordering</i>. The data transfers for a sequence of write transactions with the same AWID value r in which the master issued the addresses, see <i>Normal write ordering</i> and <i>AXT3 w</i> page A5-79. There are no ordering restrictions between read and write transactions using a cor ARID, see <i>Read and write interaction</i> on page A5-80.
1[a] in a packet processor, generating a protocol-based ordering configuration for passing packet data as a function of protocol compliance rules for the rules-based system, and	 Interconnect use of transaction identifiers on page A5-80 describes how the AX transaction ID values issued by AXI masters and slaves. AMBA AXI and ACE Protocol specification, Issue D, ARM, Oct. 7 The Apple Ax/Mx System includes a packet processor that implem protocol-based ordering configuration for passing packet data as a t compliance rules for the rules-based system. For example, the Apple Ax/Mx System orders AXI packet data cor according to rules set out in the AXI3, AXI4, PL301, and/or other not see, e.g.:

DOCKET A L A R M

Explore Litigation Insights

Docket Alarm provides insights to develop a more informed litigation strategy and the peace of mind of knowing you're on top of things.

Real-Time Litigation Alerts

Keep your litigation team up-to-date with **real-time alerts** and advanced team management tools built for the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal, State, and Administrative courts across the country.

Advanced Docket Research

With over 230 million records, Docket Alarm's cloud-native docket research platform finds what other services can't. Coverage includes Federal, State, plus PTAB, TTAB, ITC and NLRB decisions, all in one place.

Identify arguments that have been successful in the past with full text, pinpoint searching. Link to case law cited within any court document via Fastcase.

Analytics At Your Fingertips

Learn what happened the last time a particular judge, opposing counsel or company faced cases similar to yours.

Advanced out-of-the-box PTAB and TTAB analytics are always at your fingertips.

API

Docket Alarm offers a powerful API (application programming interface) to developers that want to integrate case filings into their apps.

LAW FIRMS

Build custom dashboards for your attorneys and clients with live data direct from the court.

Automate many repetitive legal tasks like conflict checks, document management, and marketing.

FINANCIAL INSTITUTIONS

Litigation and bankruptcy checks for companies and debtors.

E-DISCOVERY AND LEGAL VENDORS

Sync your system to PACER to automate legal marketing.