
Exhibit 4

Case 6:20-cv-00272-ADA Document 65-6 Filed 03/14/22 Page 1 of 16

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

INTERNATIONAL JOURNAL OF NETWORK MANAGEMENT
Int. J. Network Mgmt 2000; 10:261–275

An efficient and lightweight embedded Web server
for Web-based network element management

By Hong-Taek Ju,Ł Mi-Joung Choi and James W. Hong

An Embedded Web Server (EWS) is a Web server which runs on an
embedded system with limited computing resources to serve embedded
Web documents to a Web browser. By embedding a Web server into a
network device, it is possible to provide a Web-based management user
interface, which are user-friendly, inexpensive, cross-platform, and
network-ready. This article explores the topic of an efficient and
lightweight embedded Web server for Web-based network element
management. Copyright 2000 John Wiley & Sons, Ltd.

Introduction

A s the World-Wide Web (or Web) contin-
ues to evolve, it is clear that its under-
lying technologies are useful for much

more than just browsing the Web. Web browsers
have become the de facto standard user interface
for a variety of applications. This is because Web
browsers can provide a GUI interface to var-
ious client/server applications without a client
application. An increasing number of Web tech-
nologies can also be applied to network element
management.

Web-based network element management gives
an administrator the ability to configure and
monitor network devices over the Internet using a
Web browser. The most direct way to accomplish
this is to embed a Web server into a network
device and use that server to provide a Web-
based management user interface constructed
using HTML,5 graphics and other features common
to Web browsers.4 Information is provided to the
user by simply retrieving pages, and information
is sent back to the device using forms that the user
completes. Web-based management user interfaces
(WebMUIs) through embedded Web servers have

Hong-Taek Ju received his BS degree in computer science from Korea Advanced Institute of Science and Technology (KAIST) in 1989 and MS
degree in Computer Science and Engineering from Pohang University of Science and Technology (POSTECH) in 1991. From 1991 to 1997, he
worked at DAEWOO Telecom. Currently, he is a PhD candidate in the Department of Computer Science and Engineering, POSTECH. His
research interests include distributed processing and network management.

Mi-Joung Choi received her BS degree in computer science from Ewha Womans University. She is currently a graduate student in the Department
of Computer Science and Engineering, POSTECH. Her research interests include Web-based network management and policy-based network
management.

James W. Hong is an associate professor in the Department of Computer Science and Engineering, POSTECH, Pohang, Korea. He has been
with POSTECH since May 1995. Prior to joining POSTECH, he was a research professor in the Department of Computer Science, University
of Western Ontario, London, Canada. Dr Hong received BSc and MSc degrees from the University of Western Ontario in 1983 and 1985,
respectively, and PhD degree from the University of Waterloo, Waterloo, Canada in 1991. He has been very active as a participant, program
committee member and organizing committee member for IEEE CNOM sponsored symposiums such as NOMS, IM, DSOM and APNOMS.
For the last several years, he has been working on various research projects on network and systems management, which utilize Web, Java
and CORBA technologies. His research interests include network and systems management, distributed computing and traffic engineering and
planning. He is a member of IEEE, KICS, KNOM and KISS.

Ł
Correspondence to: Hong-Taek Ju, DPNM Laboratory, Department of Computer Science and Engineering, Pohang University of Science and

Technology, San 31, Hyojadong, Namgu, Pohang, Korea.
Email: juht@postech.ac.kr

Copyright 2000 John Wiley & Sons, Ltd.

Case 6:20-cv-00272-ADA Document 65-6 Filed 03/14/22 Page 2 of 16

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

262 H.-T. JU ET AL.

many advantages: ubiquity, user-friendliness, low
development cost and high maintainability.

Embedded Web Servers (EWSs)1 – 3 have different
requirements, such as low resource utility, high
reliability, security and portability, for which
general Web server technologies are unsuitable.
Above all, due to resource scarcity in embedded
systems it is important to make EWSs efficient
and lightweight. There are also design issues such
as HTTP6,7 and embedded application interface.
In embedded Web server usage, Java applets can
play an important role for making embedded Web
servers truly useful for management applications.

In this paper, we present our research to develop
an efficient and lightweight EWS for Web-based
network element management. We first propose
the architecture of an embedded Web server that
can provide a simple but powerful application
interface for network element management. We
then present the design and implementation of
POS-EWS, an embedded Web server that we
have developed for Web-based network element
management. Finally, we present the results of
POS-EWS’s performance and EWS optimization
methods for making an efficient and lightweight
EWS. There are many commercial EWS products
on the market for Web appliances, but our work is a
good example of making an efficient EWS suitable
for Web-based network element management.

The organization of the paper is as follows.
In the second section we present an overview
of EWSs, and describe the EWS-WebMUI and
EWS requirements. In the next two sections we
present the EWS design and implementation of
our proposed EWS architecture, respectively. In the
fifth section we evaluate POS-EWS’s performance
and explain our methods for optimizing POS-
EWS. In the sixth section we briefly investigate
the available offerings of EWS products focusing
on their features and the approximate code size
needed. In the final section we summarize our
work and discuss possible future work.

Embedded Web Servers and
Web-based Management User

Interface
In this section, we briefly overview embedded

Web servers, comparing them with general Web
servers. Also, we describe the EWS-WebMUI and

EWS requirements that we must consider during
development.

—Embedded Web Server—

General Web servers, which were developed for
general-purpose computers such as NT servers
or Unix and Linux workstations, typically require
megabytes of memory, a fast processor, a pre-
emptive multitasking operating system, and other
resources. A Web server can be embedded in a
device to provide remote access to the device from
a Web browser if the resource requirements of
the Web server are reduced. The end result of this
reduction is typically a portable set of code that can
run on embedded systems with limited computing
resources. The embedded system can be utilized
to serve the embedded Web documents, including
static and dynamic information about embedded
systems, to Web browsers. This type of Web server
is called an Embedded Web Server (EWS).1 – 3

EWSs are used to convey the state informa-
tion of embedded systems, such as a system’s
working statistics, current configuration and oper-
ation results, to a Web browser. EWSs are also
used to transfer user commands from a Web
browser to an embedded system. The state infor-
mation is extracted from an embedded system
application and the control command is imple-
mented through the embedded system application.
In many instances, it is advisable for embed-
ded Web software to be a lightweight version
of Web software. For network devices, such as
routers, switches and hubs, it is possible to place
an EWS directly in the devices without additional
hardware.

—EWS-WebMUI—

WebMUI and EWS-WebMUI—The rapid
proliferation of Web-based management makes
it clear that schemes using HTTP and standard
Web browsers provide benefits to both users and
developers. Most Web-based management appli-
cations provide an interface to the status reporting,
configuration, and control features of managed
objects. Several such Web management approaches
have been proposed thus far. Sun Micro-systems

Copyright 2000 John Wiley & Sons, Ltd. Int. J. Network Mgmt 2000; 10:261 –275

Case 6:20-cv-00272-ADA Document 65-6 Filed 03/14/22 Page 3 of 16

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

AN EMBEDDED WEB SERVER 263

is pushing its Java Management eXtension (JMX)8

and Microsoft, Compaq and Intel are touting Web-
based Enterprise Management (WBEM).9 How-
ever, both approaches are sufficiently complex that
many small network devices would find it very
difficult to implement them.

By embedding a Web server, Web documents
and management applications into an embedded
system, a Web-based Management User Interface
(WebMUI) can be provided directly to system
administrators (an EWS-WebMUI). Therefore, an
EWS-WebMUI is the direct result of embedding
a Web server, Web documents and management
applications into an embedded system. The Web
documents give a display form of management
information, a collection of manageable data that
is monitored or configured for managing an
embedded system.

B y embedding a Web server in a network
device, the device can serve up Web

documents to any Web browser.

Advantages of EWS-WebMUI—By embed-
ding a Web server in a network device, the device
can serve up Web documents to any Web browser.
These Web documents become the GUI inter-
face to the device. Consequently, few techniques
need to be learned for management interface of
the new device. Because Web documents can be
displayed directly from files that may be edited
with either ordinary text editors (for HTML) or
specialized authoring tools, it is easy to quickly
prototype the look and feel of a WebMUI. Alterna-
tives can be explored and reviewed without ever
actually embedding the interface into the system.
If the mechanisms used to embed the interface are
properly designed, changes made to the Web doc-
uments can be quickly imported to the embedded
system with little or no change to the management
application code. This translates into the potential
for better, more useful interfaces in less develop-
ment time.

EWS-WebMUIs also have the advantage of a
platform independent graphical user interface. The
SNMP10 management scheme usually consists of
an SNMP based Network Management System
(NMS). Most NMSs give users the option of using

a graphical interface based on MS-Windows or
X-Window as opposed to the command line inter-
face. Most NMS users demand specific platforms,
such as OS, or computer hardware in order to
install and execute the NMS. By contrast, an EWS-
WebMUI does not demand any specific platform
because Web browsers are available for virtually
all computers.

While the EWS-WebMUI concept appears stra-
ightforward and perhaps even commonplace, the
implications are deeper than first appears. By plac-
ing the GUI within the device itself, the device
is now self-contained and need not be matched
with a corresponding version of a user manage-
ment application program; the problems inherent
in providing separate user interface software dis-
appears; there is no risk of the user having an
old version of the user application software that
does not support all the features of latest devices;
and users can upgrade some systems to the latest
release without having to change the management
software they use because the necessary part of
upgrade is only the EWS-WebMUI. Consequently,
there are no porting or distribution efforts for the
user application program.

Additionally, it is usually possible to upload
Web documents to the embedded system so that a
device can receive an upgrade to its management
interface from a remote location on the network.
This feature makes it possible for developers to
upgrade all devices over the network from the one
point. High maintainability for EWS-WebMUI is a
direct result of ease of Web document development
and one point upgrade.

Design
In this section, we present our design result that

includes a functional architecture and a process
structure of EWS.

—EWS Architecture—

We have designed an EWS that consists of five
parts: an HTTP engine, an application interface
module, a virtual file system, a configuration
module, and a security module. The design
architecture of our EWS is illustrated in Figure 1.

The most important part of the EWS is an
HTTP engine, which serves a client’s request. The

Copyright 2000 John Wiley & Sons, Ltd. Int. J. Network Mgmt 2000; 10:261 –275

Case 6:20-cv-00272-ADA Document 65-6 Filed 03/14/22 Page 4 of 16

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

264 H.-T. JU ET AL.

Figure 1. EWS architecture

minimum requirement for an HTTP engine is that
it must be compliant with HTTP specifications.
Unlike general Web servers that start a new
thread or process whenever a new connection is
made, normally an HTTP engine supports multiple
simultaneous users while running as a single
process. The number of processes that the server
requires can impact on both RAM usage, due to
the stack space per task, and CPU usage. Next, we
explain an HTTP transaction process using a state
transition diagram.

In an EWS, the application interface module
enables developers to add new management func-
tionality. With any off-the-shelf Web authoring
tool, it can merge Web documents with manage-
ment application programs to generate specific
dynamic management information. This module
provides mechanisms for interacting with the
embedded application. Embedded Web server
software must provide mechanisms for the embed-
ded application to generate and serve Web pages
to the browser, and to process HTML form data
submitted by the browser. One possible solution
is modeled after the Common Gateway Interface
(CGI)15 found in many traditional Web servers.
In this model, each URL16 is mapped to a CGI
script that generates the Web page. In a typical
embedded system, the script would actually be
implemented by a function call to the embedded
application. The application could then send raw
HTML or other types of data to the browser by
using an interface provided by the embedded Web
server software.

Another solution is to use Server-Side Include
(SSI).5 With this approach, Web pages are first
developed and prototyped using conventional
Web authoring tools and browsers. Next, propri-
etary markup tags that define server-side scripts
are inserted into the Web pages. The marked-up
Web pages are then stored in the device. When
a marked-up Web page is served, the embedded
Web server interprets and executes the script to
interface with the embedded application. In order
to offload substantial Web server processing from
the embedded system at run time, a preproces-
sor tool can be used. The preprocessor enables
sophisticated dynamic Web-page capabilities by
performing complex tasks up front and generating
an efficient and tightly integrated representation
of the Web pages and interfaces in the embedded
system.

The virtual file system (VFS) provides the EWS
with virtual file services, which are file open for
opening the file, file read for reading the file, and
file close for closing the file after reading. The file
system has a data structure storing file information
such as file size, last modified date, etc. The data
structure for an HTML documents file needing
dynamic information must store the pointer of the
script and the function name called by the script.
To construct this VFS we need a Web compiler.
The Web compiler supports any format, such as
Java, GIF, JPEG, PDF, TIFF, HTML, text, etc. It
compiles these files into intermediate C-codes and
then compiles & links them with the Web Server
codes. The resulting structure does not require a

Copyright 2000 John Wiley & Sons, Ltd. Int. J. Network Mgmt 2000; 10:261 –275

Case 6:20-cv-00272-ADA Document 65-6 Filed 03/14/22 Page 5 of 16

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
 Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

 Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
 With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

 Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
 Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

 Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

