
 
 
 

EXHIBIT B 
 
 

Case 1:20-cv-00034-ADA   Document 52-8   Filed 04/27/20   Page 1 of 16Case 1:20-cv-00034-ADA Document 52-8 Filed 04/27/20 Page 1 of 16

EXHIBIT B

f 

 

Find authenticated court documents without watermarks at docketalarm.com. 

https://www.docketalarm.com/


Towards Better Understanding of Black-box Auto-Tuning:
A Comparative Analysis for Storage Systems

Zhen Cao1, Vasily Tarasov2, Sachin Tiwari1, and Erez Zadok1

1Stony Brook University and 2IBM Research—Almaden

Appears in the Proceedings of the 2018 Annual USENIX Technical Conference (ATC’18)

Abstract
Modern computer systems come with a large num-

ber of configurable parameters that control their behav-
ior. Tuning system parameters can provide significant
gains in performance but is challenging because of the
immense number of configurations and complex, non-
linear system behavior. In recent years, several studies
attempted to automate the tuning of system configura-
tions; but they all applied only one or few optimization
methods. In this paper, for the first time, we apply and
then perform comparative analysis of multiple black-
box optimization techniques on storage systems, which
are often the slowest components of computing systems.
Our experiments were conducted on a parameter space
consisting of nearly 25,000 unique configurations and
over 450,000 data points. We compared these meth-
ods for their ability to find near-optimal configurations,
convergence time, and instantaneous system throughput
during auto-tuning. We found that optimal configura-
tions differed by hardware, software, and workloads—
and that no one technique was superior to all others.
Based on the results and domain expertise, we begin to
explain the efficacy of these important automated black-
box optimization methods from a systems perspective.

1 Introduction
Storage is a critical element of computer systems and
key to data-intensive applications. Storage systems
come with a vast number of configurable parameters that
control system’s behavior. Ext4 alone has around 60 pa-
rameters with whopping 1037 unique combinations of
values. Default parameter settings provided by vendors
are often suboptimal for a specific user deployment; pre-
vious research showed that tuning even a small subset
of parameters can improve power and performance effi-
ciency of storage systems by as much as 9× [66].

Traditionally, system administrators pick parameter
settings based on their expertise and experience. Due to
the increased complexity of storage systems, however,
manual tuning does not scale well [87]. Recently, sev-
eral attempts were made to automate the tuning of com-
puter systems in general and storage systems in particu-
lar [71, 78]. Black-box auto-tuning is an especially pop-
ular approach thanks to its obliviousness to a system’s
internals [86]. For example, Genetic Algorithms (GA)

were applied to optimize the I/O performance of HDF5-
based applications [5] and Bayesian Optimization (BO)
was used to find a near-optimal configuration for Cloud
VMs [3]. Other methods include Evolutionary Strate-
gies [62], Smart Hill-Climbing [84], and Simulated An-
nealing [21]. The basic mechanism behind black-box
auto-tuning is to iteratively try different configurations,
measure an objective function’s value—and based on the
previously learned information—select the next config-
urations to try. For storage systems, objective functions
can be throughput, energy consumption, purchase cost,
or even a formula combining different metrics [50, 71].
Despite some appealing results, there is no deep under-
standing how exactly these methods work, their efficacy
and efficiency, and which methods are more suitable for
which problems. Moreover, previous works evaluated
only one or few algorithms at a time. In this paper, for
the first time (to the best of our knowledge), we apply
and analytically compare multiple black-box optimiza-
tion techniques on storage systems.

To demonstrate and compare these algorithms’ ability
to find (near-)optimal configurations, we started by ex-
haustively evaluating several storage systems under four
workloads on two servers with different hardware and
storage devices; the largest system consisted of 6,222
unique configurations. Over a period of 2+ years, we ex-
ecuted 450,000+ experimental runs. We stored all data
points in a relational database for query convenience, in-
cluding hardware and workload details, throughput, en-
ergy consumption, running time, etc. In this paper, we
focused on optimizing for throughput, but our method-
ology and observations are applicable to other metrics
as well. We will release our dataset publicly to facilitate
more research into auto-tuning and better understanding
of storage systems.

Next, we applied several popular techniques to the
collected dataset to find optimal configurations under
various hardware and workload settings: Simulated An-
nealing (SA), Genetic Algorithms (GA), Bayesian Op-
timization (BO), and Deep Q-Networks (DQN). We
also tried Random Search (RS) in our experiments,
which showed surprisingly good results in previous re-
search [8]. We compared these techniques from vari-
ous aspects, such as the ability to find near-optimal con-
figurations, convergence time, and instantaneous sys-

1

Case 1:20-cv-00034-ADA   Document 52-8   Filed 04/27/20   Page 2 of 16

f 

 

Find authenticated court documents without watermarks at docketalarm.com. 

https://www.docketalarm.com/


tem throughput during auto-tuning. For example, we
found that several techniques were able to converge to
good configurations given enough time, but their effi-
cacy differed a lot. GA and BO outperformed SA and
DQN on our parameter spaces, both in terms of con-
vergence time and instantaneous throughputs. We also
showed that hyper-parameter settings of these optimiza-
tion algorithms, such as mutation rate in GA, could af-
fect the tuning results. We further compared the tech-
niques across three behavioral dimensions: (1) Explo-
ration: how much the technique searches the space ran-
domly. (2) Exploitation: how much the technique lever-
ages the “neighborhood” of the current candidate or pre-
vious search history to find even better configurations.
(3) History: how much data from previous evaluations
is kept and utilized in the overall search process. We
show that all techniques employ these three key concepts
to varying degrees and the trade-off among them plays
an important role in the effectiveness and efficiency of
the algorithms. Based on our experimental results and
domain expertise, we provide explanations of efficacy
of such black-box optimization methods from a storage
perspective. We observed that certain parameters would
have a greater effect on system performance than oth-
ers, and the set of dominant parameters depends on file
systems and workloads. This allows us to provide more
insights into the auto-tuning process.

Auto-tuning storage systems is fairly complex and
challenging. We made several necessary assumptions
and simplifications while collecting our exhaustive data,
which we detail in §3. Therefore, some of our observa-
tions might differ when applied to production systems.
However, the main purpose of this paper is not to pro-
vide a complete solution; rather, we focus on comparing
and understanding the efficacy of several popular opti-
mization techniques when applied to storage systems.
We believe this paves the way for practical auto-tuning
storage systems in real-time.

The rest of the paper is organized as follows. §2 ex-
plains the challenges of auto-tuning storage systems and
provides necessary background knowledge. §3 describes
our experimental methodology and environments. In §4
we applied multiple optimization methods and evaluated
and explained them from various aspects. §5 covers lim-
itations and future plans for our work. §6 lists related
work. We conclude and discuss future directions in §7.

2 Background
Storage systems are often a critical component of com-
puter systems, and are the foundation for many data-
intensive applications. Usually they come with a large
number of configurable options that could affect or even
determine the systems’ performance [12, 74], energy
consumption [66], and other aspects [47, 71]. Here

we define a parameter as one configurable option, and
a configuration as a combination of parameter val-
ues. For example, the parameter block size of Ext4
can take 3 values: 1K, 2K, and 4K. Based on this,
[journal mode=“data=writeback”, block size=4K, in-
ode size=4K] is one configuration with 3 specific pa-
rameters: journal mode, block size, and inode size. All
possible configurations form a parameter space.

When configuring storage systems, users often stick
with the default configurations provided by vendors be-
cause 1) it is nearly impossible to know the impact of
every parameter across multiple layers; and 2) vendors’
default configurations are trusted to be “good enough”.
However, previous studies [66] showed that tuning even
a tiny subset of parameters could improve the perfor-
mance and energy efficiency for storage systems by as
much as 9×. As technological progress slows down, it
becomes even more important to squeeze every bit of
performance out of deployed storage systems.

In the rest of this section we first discuss the chal-
lenges of system tuning (§2.1). Then, §2.2 briefly intro-
duces several promising techniques that we explore in
this paper. §2.3 explains certain methods that we deem
less promising. §2.4 provides a unified view of these
optimization methods.

2.1 Challenges
The tuning task for storage systems is difficult, due to
the following four challenges.
(1) Large parameter space. Modern storage systems
are fairly complex and easily come with hundreds or
even thousands of tunable parameters. One evaluation
for storage systems can take multiple minutes or even
hours, which makes exhaustive search impractical. Even
human experts cannot know the exact impact of every
parameter and thus have little insight into how to opti-
mize. For example, Ext4+NFS would result in a parame-
ter space consisting of more than 1022 unique configura-
tions. IBM’s General Parallel File System (GPFS) [64]
contains more than 100 tunable parameters, and hence
1040 configurations. From the hardware perspective,
SSDs [30, 53, 57, 65], shingled drives [1, 2, 32, 45], and
non-volatile memory [40, 83] are gaining popularity,
plus more layers (LVM, RAID) are added.
(2) Non-linearity. A system is non-linear when the
output is not directly proportional to the input. Many
computer systems are non-linear [16], including storage
systems [74]. For example, Figure 1 shows the aver-
age operation latency of GPFS under a typical database
server workload while changing only the value of the
parameter pagepool from 32MB to 128MB, and setting
all the others to their default. Clearly the average la-
tency is not directly proportional to the pagepool size.
In fact, through our experiments, we have seen many

2

Case 1:20-cv-00034-ADA   Document 52-8   Filed 04/27/20   Page 3 of 16

f 

 

Find authenticated court documents without watermarks at docketalarm.com. 

https://www.docketalarm.com/


 0

 10

 20

 30

 40

 0  30  60  90  120  150

A
v
g
. 
L

at
en

cy
 (

m
s)

pagepool Size (MB)

Figure 1: Storage systems are non-linear.

more parameters with similar behavior. Worse, the pa-
rameter space for storage systems is often sparse, irreg-
ular, and contains multiple peaks. This makes automatic
optimization even more challenging, as it has to avoid
getting stuck in a local optima [36].
(3) Non-reusable results. Previous studies have
shown that evaluation results of storage systems [12,66]
and databases [78] are dependent on the specific hard-
ware and workloads. One good configuration might per-
form poorly when the environment changes. Our evalu-
ation results in Section 4 show similar observations.
(4) Discrete and non-numeric parameters. Some
storage system parameters can take continuous real val-
ues, while many others are discrete and take only a lim-
ited set of values. Some parameters are not numeric
(e.g., I/O scheduler name or file system type). This adds
difficulty in applying gradient-based approaches.

Given these challenges, manual tuning of storage sys-
tems becomes nearly impossible while automatic tuning
merely difficult. In this paper we focus on automatic
tuning and treat it as an optimization problem.

2.2 Applied Methods
Several classes of algorithms have been proposed for
similar optimization tasks, including automated tuning
for hyper-parameters of machine learning systems [7, 8,
59] and optimization of physical systems [3, 78]. Ex-
amples include Genetic Algorithms (GA) [18, 34], Sim-
ulated Annealing (SA) [15, 41], Bayesian Optimization
(BO) [11,68], and Deep Q-Networks (DQN) [46,54,55].
Although these methods were proposed originally in dif-
ferent scholarly fields, they can all be characterized as
black-box optimizations. In this section we introduce
several of these techniques that we successfully applied
in auto-tuning storage systems.

Simulated Annealing (SA) is inspired by the anneal-
ing process in metallurgy, which involves the heating
and controlled cooling of a material to get to a state with
minimum thermodynamic free energy. When applied to
storage systems, a state corresponds to one configura-
tion. Neighbors of a state refer to new configurations
achieved by altering only one parameter value of the cur-
rent state. The thermodynamic free energy is analogous
to optimization objectives. SA works by maintaining the
temperature of the system, which determines the prob-

ability of accepting a certain move. Instead of always

Parent 1

Parent 2

Child 1

Child 2

Journal OptionBG FS

NilFS2

NilFS2

8

256

order=strict

order=relaxed

order=relaxed8NilFS2

order=strict256

NilFS2

Figure 2: Crossover in Genetic Algorithm (GA).

moving towards better states as hill-climbing methods
do, SA defines an acceptance probability distribution,
which allows it to accept some bad moves in the short
run, that can lead to even-better moves later on. The
system is initialized with a high temperature, and thus
has high probability of accepting worse states in the be-
ginning. The temperature is gradually reduced based on
a pre-defined cooling schedule, thus reducing the proba-
bility of accepting bad states over time.

Genetic Algorithms (GA) were inspired by the pro-
cess of natural selection [34]. It maintains a popula-
tion of chromosomes (configurations) and applies sev-
eral genetic operators to them. Crossover takes two par-
ent chromosomes and generates new ones. As Figure 2
illustrates, two parent Nilfs2 configurations are cut at
the same crossover point, and then the subparts after the
crossover point are exchanged between them to gener-
ate two new child configurations. Better chromosomes
will have a higher probability to “survive” in future se-
lection phases. Mutation randomly picks a chromosome
and mutates one or more parameter values, which pro-
duces a completely different chromosome.

Reinforcement Learning (RL) [72] is an area of ma-
chine learning inspired by behaviorist psychology. RL
explores how software agents take actions in an environ-
ment to maximize the defined cumulative rewards. Most
RL algorithms can be formulated as a model consisting
of: (1) A set of environment states; (2) A set of agent
actions; and (3) A set of scalar rewards. In case of stor-
age systems, states correspond to configurations, actions
mean changing to a different configuration, and rewards
are differences in evaluation results. The agent records
its previous experience (history), and makes it available
through a value function, which can be used to predict
the expected reward of state-action pairs. The policy de-
termines how the agent takes action, which maintains the
exploration-exploitation trade-off. The value function
can take a tabular form, but this does not scale well to
many dimensions. Function approximation is proposed
to deal with high dimensionality, which is still known
to be unstable or even divergent. With recent advances
in Deep Learning [28], deep convolutional neural net-
works, termed Deep Q-Networks (DQN), were proposed
to parameterize the value function, and have been suc-

3

Case 1:20-cv-00034-ADA   Document 52-8   Filed 04/27/20   Page 4 of 16

f 

 

Find authenticated court documents without watermarks at docketalarm.com. 

https://www.docketalarm.com/


cessfully applied in solving various problems [54, 55].
Many variants of DQN have been proposed [46].

Bayesian Optimization (BO) [11, 68] is a popular
framework to solve optimization problems. It models
the objective function as a stochastic process, with the
argument corresponding to one storage configuration. In
the beginning, a set of prior points (configurations) are
given to get a fair estimate of the entire parameter space.
BO works by computing the confidence interval of the
objective function according to previous evaluation re-
sults, which is defined as the range of values that the
evaluation result is most likely to fall into (e.g., with
95% probability). The next configuration is selected
based on a pre-defined acquisition function. Both confi-
dence intervals and the acquisition function are updated
with each new evaluation. BO has been successfully ap-
plied in various areas, including hyper-parameter opti-
mization [17] and system configuration optimization [3].
BO and its variants differ mainly in their form of prob-
abilistic models and acquisition functions. In this paper
we focus mainly on Gaussian priors and an Expected
Improvement acquisition function [68].

Other promising techniques include Tabu Search [27],
Particle Swarm Optimization [39], Ant Colony Opti-
mization [20], Memetic Algorithms [52], etc. Due to
space limits, we omit comparing all of them in this pa-
per (part of our future work). In fact, as detailed in §2.4,
most of these techniques actually share similar traits.

2.3 Other Methods
Although many optimization techniques have been pro-
posed, we feel that not all of them make good choices for
auto-tuning storage systems. For example, since many
parameters of storage systems are non-numeric, most
gradient-based methods (i.e., based on linear-regression)
are less suitable to this task [29].
Control Theory (CT). CT was historically used to
manage linear system parameters [19,37,44]. CT builds
a controller for a system so its output follows a desired
reference signal [33, 43]. However, CT has been shown
to have the following three problems: 1) CT tends to be
unstable in controlling non-linear systems [48, 49]. Al-
though some variants were proposed, they do not scale
well. 2) CT cannot handle non-numeric parameters; and
3) CT requires a lot of data during the learning phase,
called identification to build a good controller.
Supervised Machine Learning (ML). Supervised
ML has been successfully applied in various domains [9,
10, 56, 81]. However, the accuracy of ML models de-
pends heavily on the quality and amount of training
data [81], which is not available or impossible to collect
for large parameter spaces such as ours.

Therefore, we feel that neither CT nor supervised ML,
in their current state, are the first choice to directly and

efficiently apply for auto-tuning storage systems. That
said, they constantly evolve and new promising results
appear in research literature [4, 67, 69, 86]; we plan to
investigate them in the future.

2.4 Unified Framework
Most optimization techniques are known to follow the
exploration-exploitation dilemma [23, 46, 68, 79]. Here
we summarize the aforementioned methods by extend-
ing the unified framework with a third factor, the his-
tory. Our unified view thus defines three factors or di-
mensions: � (1) Exploration defines how the technique
searches unvisited areas. This often includes a com-
bination of pure random and also guided search based
on history. � (2) Exploitation defines how the tech-
nique leverages history to find next sample. � (3) His-
tory defines how much data from previous evaluations
is kept. History information can be used to help guide
both future exploration and exploitation (e.g., avoiding
less promising regions, or selecting regions that have
never been explored before). Table 1 summarizes how
the aforementioned techniques work by maintaining the
balance among these three key factors. For example,
GA keeps the evaluation results from the last genera-
tion, which corresponds to the concept of history. GA
then exploits the stored information, applying selection
and crossover to search nearby areas and pick the next
generation. Occasionally, it also randomly mutates some
chosen parameters, which is the idea of exploration. As
shown in §4, the trade-off among exploration, exploita-
tion, and history determines the effectiveness and effi-
ciency of these optimization techniques.

3 Experimental Settings
We now describe details of the experimental environ-
ments, parameter spaces, and our implementations of
optimization algorithms.

Hardware. We performed experiments on two sets of
machines with different hardware categorized as low-
end (M1) and mid-range (M2). We list the hardware
details in Table 3. We also use Watts Up Pro ES power
meters to measure the energy consumption [82].

Workload. We benchmarked storage configuration
with four typical macro-workloads generated by
Filebench [25, 75]. � (1) Mailserver emulates the I/O
workload of a multi-threaded email server. � (2) File-
server emulates the I/O workload of a server that hosts
users’ home directories. � (3) Webserver emulates the
I/O workload of a typical static Web server with a high
percentage of reads. � (4) Dbserver mimics the behav-
iors of Online Transaction Processing (OLTP) databases.
Before each experiment run, we formatted and mounted
the storage devices with the targeted file system.

4

Case 1:20-cv-00034-ADA   Document 52-8   Filed 04/27/20   Page 5 of 16

f 

 

Find authenticated court documents without watermarks at docketalarm.com. 

https://www.docketalarm.com/


Real-Time Litigation Alerts
  Keep your litigation team up-to-date with real-time  

alerts and advanced team management tools built for  
the enterprise, all while greatly reducing PACER spend.

  Our comprehensive service means we can handle Federal, 
State, and Administrative courts across the country.

Advanced Docket Research
  With over 230 million records, Docket Alarm’s cloud-native 

docket research platform finds what other services can’t. 
Coverage includes Federal, State, plus PTAB, TTAB, ITC  
and NLRB decisions, all in one place.

  Identify arguments that have been successful in the past 
with full text, pinpoint searching. Link to case law cited  
within any court document via Fastcase.

Analytics At Your Fingertips
  Learn what happened the last time a particular judge,  

opposing counsel or company faced cases similar to yours.

  Advanced out-of-the-box PTAB and TTAB analytics are  
always at your fingertips.

Docket Alarm provides insights to develop a more  

informed litigation strategy and the peace of mind of 

knowing you’re on top of things.

Explore Litigation 
Insights

®

WHAT WILL YOU BUILD?  |  sales@docketalarm.com  |  1-866-77-FASTCASE

API
Docket Alarm offers a powerful API 
(application programming inter-
face) to developers that want to 
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your 
attorneys and clients with live data 
direct from the court.

Automate many repetitive legal  
tasks like conflict checks, document 
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks 
for companies and debtors.

E-DISCOVERY AND  
LEGAL VENDORS
Sync your system to PACER to  
automate legal marketing.


