
Exhibit 22 

Case 1:20-cv-00034-ADA   Document 50-6   Filed 04/10/20   Page 1 of 15

f 

 

Find authenticated court documents without watermarks at docketalarm.com. 

https://www.docketalarm.com/


Transparently

Abstract

Interposition Agents:

Interposing User Code at the System Interface

Michael B. Jones

Microsoft Research, Microsoft Corporation
One Microsoft Way, Building 9S/1047

Redmond, WA 98052
USA

Many contemporary operating systems utilize a system

call inter-ace between the operating system and its clients.

[ncreasing numbers of systems are providing low-level

mechanisms for intercepting and handling system calls in

user code. Nonetheless, they typically provide no higher-

level tools or abstractions for effectively utilizing these

mechanisms. Using them has typically required

reimplementation of a substantial portion of the system

interface from scratch, making the use of such facilities

unwieldy at best.

This paper presents a toolkit that substantially increases

the ease of interposing user code between clients and

instances of the system interface by allowing such code to

be written in terms of the high-level objects provided by

this interface, rather than in terms of the intercepted system

calls themselves. This toolkit helps enable new

interposition agents to be written, many of which would not

otherwise have been attempted.

This toolkit has also been used to construct several

agents including.” system call tracing tools, file reference

tracing tools, and customizable jdesystem views. Examples

of other agents that could be built include.” protected

environments for running untrusted binaries, iogical

devices implemented entirely in user space, transparent

data compression andlor encryption agents, transactional

software environments, and emulators for other operating

system environments.

Permission to copy without fee all or part of this material IS

granted provided that the copies are not made ordlstnbuted for

direct commercial advantage, the ACMcopyrlght notice and the

mle of the publicauon and Its date appear, and notice is given

that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requires a fee

and/or specific permission.

SIG 0PS’93/12/93/N. C., USA
@ 1993 ACM 0-89791 -632 -8/93 /0012 . ..$1 .50

1. Introduction

1.1. Terminology

Many contempomry operating systems provide an

interface between user code and the operating system

services based on special “system calls”. One can view

the system interface as simply a special form of structured

communication channel on which messages are sent,

allowing such operations as interposing programs that

record or modify the communications that take place on

this channel. In this paper, such a program that both uses

and provides the system interface will be referred to as a

“system interface interposition agent” or simply as an

“agent” for short.

1.2. Overview
This paper presents a toolkit that substantially increases

the ease of interposing user code between clients and

instances of the system interface by allowing such code to

be written in terms of the high-level objects provided by

this interface. rather than in terms of the intercepted system

calls themselves. Providing an object-oriented toolkit

exposing the multiple layers of abstraction present in the

system interface provides a useful set of tools and
interfaces at each level. Different agents can thus exploit

the toolkit objects best suited to their individual needs.

Consequently, substantial amounts of toolkit code are able

to be reused when constructing different agents.

Furthermore, having such a toolkit enables new system

interface implementations to be written, many of which

would not otherwise have been attempted.

Just as interposition is successfully used today to extend

operating system interfaces based on such communication-

based facilities as pipes, sockets, and inter-process

communication channels, interposition can also be

successfully used to extend the system interface. In this

way, the known benefits of interposition can also be

extended to the domain of the system interface.

1.3. Examples

The following figures should

system interface and interposition.

80

help clarify both the

Figure 1-1 depicts uses

Case 1:20-cv-00034-ADA   Document 50-6   Filed 04/10/20   Page 2 of 15

f 

 

Find authenticated court documents without watermarks at docketalarm.com. 

sseigel
Highlight

sseigel
Highlight

https://www.docketalarm.com/


of the system interface without interposition. In this view,

the kernell provides all instances of the operating system

interface. Figure 1-2 depicts the ability to transparently

interpose user code that both uses and implements the

operating system interface between an unmodified

application program and the operating system kernel.

Figure 1-3 depicts uses of the system interface with

interposition. Here, both the kernel and interposition

agents provide instances of the operating system interface.

Figure 1-4 depicts more uses of the system interface with

interposition. In this view agents, like the kernel, can share

state and provide multiple instances of the operating system

interface.

I Operating System Kernel II
Operating System /nterface J

~openo, r-eado, state, forko,
kilio, _exi to, signals, . . . )

Figure 1-1: Kernel provides instances of system interface

I Application Program
I

Your code here!

I Operating System Kernel II

I I
I

Operating System Interface J

Figure 1-2 User code interposed at system interface

1A. Motivation

Today, agents are regularly written to be interposed on

simple communication-based interfaces such as pipes and

sockets. Similarly, the toolkit makes it possible to easily

write agents to be interposed on the system interface.

Interposition can be used to provide programming

facilities that would otherwise not be available. In

‘The term ““kernel” is used throughout this paper to refer to the default
or lowest-level implementation of the operating system in qresti on. While

this implementation is often run in processor kernel space, this need not be

the case, as in the Mach 3.0 Unix Semer/Emulator [ 16].

emacs Untrusted
Binary

Compress/ Restrictedcsh Uncompress Environment

.%%%%-zm >27,-,-WJ2X’2XZ!I 1+2’.f.2W,zz//Z7i
) [

I Operating System Kernel
I

Figure 1-3: Kernel and agents provide
instances of system interface

HP-UX
Compiler

make HP-UX
Emulator

mail Agent Implementing
Customized Filesystem View

G2%2./f//////A_
1

v////////2z///A V///%5%A.////A
1

I Operating System Kernel
I

Figure 1-4: Agents can share state and provide
multiple instances of system interface

particular, it can allow for a multiplicity of simultaneously

coexisting implementations of the system call services,

which in turn may utilize one another without requiring

changes to existing client binaries and without modifying

the underlying kernel to support each implementation.

Alternate system call implementations can be used to

provide a number of services not typically available on

system call-based operating systems. Some examples

include:
. System Call Tracing and Monitoring Facilities:

Debuggers and program trace facilities can be
constructed that allow monitoring of a program’s use
of system services in a easily customizable manner.

. Emulation of Other Operating Systems: Alternate
system call implementations can be used to
concurrently run binaries from variant operating
systems on the same platform. For instance, it could
be used to run ULTRIX [13], HP-UX [10], or UNIX
System V [3] binaries in a Mach/BSD environment.

● Protected Environments for Running Untrusted
Binaries: A wrapper environment can be
constructed that allows untmsted, possibly malicious,
binaries to be run within a restricted environment that
monitors and emulates the actions they fake, possibly
without actually performing them, and limits the
resources they can use in such a way that the
untrusted binaries are unaware of the restrictions. A

81

Case 1:20-cv-00034-ADA   Document 50-6   Filed 04/10/20   Page 3 of 15

f 

 

Find authenticated court documents without watermarks at docketalarm.com. 

https://www.docketalarm.com/


wide variety of monitoring and emulating schemes
are possible from simple automatic resource
restriction environments to heuristic evaluations of
the target program’s behavior, possibly including
interactive decisions made by human beings during
the protected execution. This is particulady timely in
today’s environments of increased software sharing
with the potential for viruses and Trojan horses.

● Transactional Software Environments:
Applications can be constructed that provide an
environment in which changes to persistent state
made by unmodified programs can be emulated and
performed transactionally. For instance, a simple
“run transaction” command could be constructed

that runs arbitrm-y unmodified programs (e.g.,

/bin / csh) such that all persistent execution side
effects (e.g., filesystem writes) are remembered and
appem within the transactional environment to have
been performed normally, but where in actuality the
user is presented with a “commit” or “abort”
choice at the end of such a session. Indeed, one such
transactional program invocation could occur within
another, transparently providing nested transactions.

● Alternate or Enhanced Semantics: Environments
can be constructed that provide alternate or enhanced
semantics for unmodified binaries. One such

enhancement in which people have expressed interest
is the ability to “mount” a search list of directories
in the filesystem name space such that the union of
their contents appears to reside in a single directory.
This could be used in a software development
environment to allow distinct source and object
directories to appear as a single directory when
running make.

1.5. Problems with Existing Systems

Increasing numbers of operating systems are providing

low-level mechanisms for intercepting system calls.

Having these low-level mechanisms makes writing

interposition agents possible. For instance, Mach [1, 16]

provides the interception facilities used for this work,

SunOS version 4 [44] provides new pt race ( ) operations

used by the trace utility, and UNIX System V.4 [4]

provides new /proc operations used by the truss utility,

Nonetheless, they typically provide no higher-level tools or

abstractions for effectively utilizing these mechanisms,

making the use of such facilities unwieldy at best.

Part of the difficulty with writing system call

interposition agents in the past has been that no one set of
interfaces is appropriate across a range of such agents other

ihan the lowest level system call interception services.

Different agents interact with different subsets of the

operating system interface in widely different ways to do

different things. Building an agent often requires

implementation of a substantial portion of the system

interface. Yet, only the bare minimum interception

facilities have been available,

common denominator that

providing only the lowest

is minimally necessary.

Consequently, each agent has typically been constructed

completely from scratch. No leverage was gained from the

work done on other agents.

1.6. Key Insight

The key insight that enabled me to gain leverage on the

problem of writing system interface interposition agents for

the 4.3BSD [25] interface is as follows: while the 4.3BSD

system interface contains a large number of different

system calls, it contains a relatively small number of

abstractions whose behavior is largely independent. (In

4.3BSD, the primary system interface abstractions are

pathnames, descriptors, processes, process groups, files,

directories, symbolic links, pipes, sockets, signals, devices,

users, groups, permissions, and time.) Furthermore, most

calls manipulate only a few of these abstractions.

Thus, it should be possible to construct a toolkit that

presents these abstractions as objects in an object-oriented

programming language. Such a toolkit would then be able

to support the substantial commodities present in

different agents through code reuse, while also supporting

the diversity of different kinds of agents through

inheritance.

2. Research Overview

2.1. Design Goals

The four main goals of the toolkit were:
1. Unmodified System: Unmodified applications

should be able to be run under agents. Similarly,
the underlying kernel should not require changes to
support each different agent (although the kernel
may have to be modified once in order to provide

support for system call interception, etc. so that
agents can be written at all).

2. Completeness: Agents should be able to both use
and provide the entire system interface. This
includes not only the set of requests from
applications to the system (i.e., the system calls) but
also the set of upcalls that the system can make
upon the applications (i.e.. the signals).

3. Appropriate Code Size: The amount of new code
necessary to implement an agent using the toolkit
should only be proportional to the new functionality
to be implemented by the agent — not to the size of
the system interface. The toolkit should provide
whatever boilerplate and tools are necessary to
write agents at levels of abstraction that are
appropriate for the agent functionality. rather than
having to write each agent at the raw system call
level.

4. Performance: The performance impact of running
an application under an agent should be negligible.

2.2. Design and Structure of the Toolkit

I have designed and built a toolkit on top of the Mach

2.5 system call interception mechanism [1, 5, 16] that can

be used to interpose user code on the 4.3BSD [25] system

call interface. The toolkit currently runs on the Intel

82

Case 1:20-cv-00034-ADA   Document 50-6   Filed 04/10/20   Page 4 of 15

f 

 

Find authenticated court documents without watermarks at docketalarm.com. 

https://www.docketalarm.com/


386/486 and the VAX. The toolldt is implemented in C++

with small amounts of C and assembly language as

necessary. Multi-threaded hybrid 4,3BSD/Mach 2.5

programs are not currently supported.

As a consequence of using the Mach 2.5 system call

interception mechanism, which redirects system calls to

handler routines in the same address space, interposition

agents reside in the same address spaces as their client

processes. The lowest layers of the toolkit hides this Mach-

specific choice, allowing agents to be constructed that

could be located either in the same or different addresses

spaces as their clients.

This toolkit is structured in an object-oriented manner,

allowing agents to be written in terms of several different

layers of objects by utilizing inheritance. Abstractions

exposed at different toolkit layers currently include the

filesystem name space, pathnames, directories, file

descriptors and the associated descriptor name space, open

objects referenced by descriptors, and signals, as well as

the system calls themselves. (These abstractions are

discussed further in Section 2.3.) Support for additional

abstractions can be incrementally added as needed by

writing new toolkit objects that represent the new

abstractions and by using derived versions of the existing

toolkit objects that reference the new abstractions through

the new objects. Indeed, the current toolkit was

constructed via exactly this kind of stepwise refinement,

with useful toolkit objects being produced at each step.

The structure of the toolkit permits agents to be written in

terms of whatever system interface abstractions are

appropriate to the tasks they perform. Just as derived

objects are used to introduce new toolkit functionality,

interposition agents change the behavior of particular

system abstractions by using agent-specific derived

versions of the toolkit objects representing those

abstractions.

Different interposition agents need to affect different

components of the system call interface in substantially

different ways and at different levels of abstraction. For

instance, a system call monitoring/profding agent needs to

manipulate the system calls themselves, whereas an agent

providing alternate user filesystem views needs to

manipulate higher-level objects such as pathnames and

possibly file descriptors. The agent writer decides what

layers of toolkit objects are appropriate to the particular

task and includes only those toolkit objects. Default

implementations of the included objects provide the normal

behavior of the abstractions they represent. This allows

derived agent-specific versions of toolkit objects to inherit

this behavior, while adding new behavior in the

implementations of the derived objects. I believe that the

failure to provide such multi-layer interfaces by past system
call interception mechanisms has made them less useful

than they might otherwise have been.

2.3. Toolkit Layers
Figure 2-1 presents a diagmm of the primary classes

currently provided with the interposition toolklt. Indented

classes are subclasses of the classes above. Arrows

indicate the use of one class by another. Many of these

classes are explained in more detail in this section.

numeric_syscall

bsd_numeric_syscall

symbol ic_syscall

desc_symbol ic_syscall
/

/

path_ symbol ic_syscall

\

descriptor_ set pathname_set

I
open_descript or_set

descriptor
t

pathname

open_descriptor

open_object

directory

Figure 2-1: Primary interposition toolkit classes

The lowest layers of the toolkit perform such functions

as agent invocation, system call interception, incoming

signal handling, performing system calls on behalf of the

agent, and delivering signals to applications running under

agent code. Unlike the higher levels of the toolkit, these

layers are sometimes highly operating system specific and

also contain machine specific code. These layers hide the

mechanisms used to intercept system calls and signals,

those that are used to call down from an agent to the next

level system interface, and those that are used to send a

signal from an agent up to the application program. These

layers also hide such details as whether the agent resides in

the same address space as the application program or

whether it resides in a separate address space, These layers

are referred to as the boilerplate layers. These layers are

not normally used directly by interposition agents.

The lowest (or zeroth) layer of the toolkit which is

directly used by any interposition agents presents the

system interface as a single entry point accepting vectors of

untyped numeric arguments. It provides the ability to

register for specific numeric system calls to be intercepted

and for incoming signal handlers to be registered. This

layer is referred to as the numeric system call layer.

%3

Case 1:20-cv-00034-ADA   Document 50-6   Filed 04/10/20   Page 5 of 15

f 

 

Find authenticated court documents without watermarks at docketalarm.com. 

https://www.docketalarm.com/


Real-Time Litigation Alerts
	� Keep your litigation team up-to-date with real-time  

alerts and advanced team management tools built for  
the enterprise, all while greatly reducing PACER spend.

	� Our comprehensive service means we can handle Federal, 
State, and Administrative courts across the country.

Advanced Docket Research
	� With over 230 million records, Docket Alarm’s cloud-native 

docket research platform finds what other services can’t. 
Coverage includes Federal, State, plus PTAB, TTAB, ITC  
and NLRB decisions, all in one place.

	� Identify arguments that have been successful in the past 
with full text, pinpoint searching. Link to case law cited  
within any court document via Fastcase.

Analytics At Your Fingertips
	� Learn what happened the last time a particular judge,  

opposing counsel or company faced cases similar to yours.

	� Advanced out-of-the-box PTAB and TTAB analytics are  
always at your fingertips.

Docket Alarm provides insights to develop a more  

informed litigation strategy and the peace of mind of 

knowing you’re on top of things.

Explore Litigation 
Insights

®

WHAT WILL YOU BUILD?  |  sales@docketalarm.com  |  1-866-77-FASTCASE

API
Docket Alarm offers a powerful API 
(application programming inter-
face) to developers that want to 
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your 
attorneys and clients with live data 
direct from the court.

Automate many repetitive legal  
tasks like conflict checks, document 
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks 
for companies and debtors.

E-DISCOVERY AND  
LEGAL VENDORS
Sync your system to PACER to  
automate legal marketing.


