
Exhibit 21

Case 1:20-cv-00034-ADA Document 50-5 Filed 04/10/20 Page 1 of 34

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

On Incremental File System Development
EREZ ZADOK, RAKESH IYER, NIKOLAI JOUKOV, GOPALAN SIVATHANU, AND
CHARLES P. WRIGHT

Developing file systems from scratch is difficult and error prone. Layered, or stackable, file
systems are a powerful technique to incrementally extend the functionality of existing file systems
on commodity OSes at runtime. In this paper, we analyze the evolution of layering from historical
models to what is found in four different present day commodity OSes: Solaris, FreeBSD, Linux,
and Microsoft Windows. We classify layered file systems into five types based on their functionality
and identify the requirements that each class imposes on the OS. We then present five major design
issues that we encountered during our experience of developing over twenty layered file systems on
four OSes. We discuss how we have addressed each of these issues on current OSes, and present
insights into useful OS and VFS features that would provide future developers more versatile
solutions for incremental file system development.

Categories and Subject Descriptors: D.2.7 [Software Engineering]: Distribution, Maintenance, and Enhance-
ment—Portability; D.2.13 [Software Engineering]: Reusable Software—Reuse models; D.4.3 [Operating Sys-
tems]: File Systems Management—File organization; D.4.7 [Operating Systems]: Organization and Design

General Terms: Design

Additional Key Words and Phrases: Layered File Systems, Stackable File Systems, VFS, Vnode,
I/O Manager, IRP, Extensibility

1. INTRODUCTION
Data management is a fundamental facility provided by the operating system (OS). File
systems are tasked with the bulk of data management, including storing data on disk (or
over the network) and naming (i.e., translating a user-visible name such as /usr/src
into an on-disk object). File systems are complex, and it is difficult to enhance them.
Furthermore, OS vendors are reluctant to make major changes to a file system, because
file system bugs have the potential to corrupt all data on a machine. Because file system
development is so difficult, extending file system functionality in an incremental manner
is valuable. Incremental development also makes it possible for a third-party software
developer to release file system improvements, without developing a whole file system
from scratch.

Originally, file systems were thoroughly integrated into the OS, and system calls di-
rectly invoked file system methods. This architecture made it difficult to add multiple file
systems. The introduction of a virtual node or vnode provided a layer of abstraction that
separates the core of the OS from file systems [Kleiman 1986]. Each file is represented in

Permission to make digital/hard copy of all or part of this material without fee for personal or classroom use
provided that the copies are not made or distributed for profit or commercial advantage, the ACM copyright/server
notice, the title of the publication, and its date appear, and notice is given that copying is by permission of the
ACM, Inc. To copy otherwise, to republish, to post on servers, or to redistribute to lists requires prior specific
permission and/or a fee.
c© 2006 ACM 1533-3077/2006/0000-0001 $5.00

ACM Transactions on Storage, Vol. 2, No. 2, May 2006, Pages 1–33.

Case 1:20-cv-00034-ADA Document 50-5 Filed 04/10/20 Page 2 of 34

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

2 · Zadok et al.

memory by a vnode. A vnode has an operations vector that defines several operations that
the OS can call, thereby allowing the OS to add and remove types of file systems at run-
time. Most current OSes use something similar to the vnode interface, and the number of
file systems supported by the OS has grown accordingly. For example, Linux 2.6 supports
over 30 file systems and many more are maintained outside of the official kernel tree.

Clearly defining the interface between the OS and file systems makes interposition pos-
sible. A layered, or stackable, file system creates a vnode with its own operations vector
to be interposed on another vnode. Each time one of the layered file system’s operations
is invoked, the layered file system maps its own vnode to a lower-level vnode, and then
calls the lower-level vnode’s operation. To add functionality, the layered file system can
perform additional operations before or after the lower-level operation (e.g., encrypting
data before a write or decrypting data after a read). The key advantage of layered file
systems is that they can change the functionality of a commodity OS at runtime so hard-to-
develop lower-level file systems do not need to be changed. This is important, because OS
developers often resist change, especially to file systems where bugs can cause data loss.

Rosenthal was among the first to propose layering as a method of extending file sys-
tems [Rosenthal 1990; 1992]. To enable layering, Rosenthal radically changed the VFS in-
ternals of SunOS. Each public vnode field was converted into a method; and all knowledge
of vnode types (e.g., directory vs. regular file) was removed from the core OS. Researchers
at UCLA independently developed another layering infrastructure [Heidemann and Popek
1991; 1994] that placed an emphasis on light-weight layers and extensibility. The original
pioneers of layering envisioned creating building blocks that could be composed together
to create more sophisticated and rich file systems. For example, the directory-name lookup
cache (DNLC) could simply be implemented as a file system layer, which returns results
on a cache hit, but passes operations down on a miss [Skinner and Wong 1993].

Layering has not commonly been used to create and compose building-block file sys-
tems, but instead has been widely used to add functionality rapidly and portably to existing
file systems. Many applications of layered file system are features that could be imple-
mented as part of the VFS (e.g., unification), but for practical reasons it is easier to develop
them as layered file systems. Several OSes have been designed to support layered file sys-
tems, including Solaris, FreeBSD, and Windows. Several layered file systems are available
for Linux, even though it was not originally designed to support them. Many users use lay-
ered file systems unknowingly as part of Antivirus solutions [Symantec 2004; Miretskiy
et al. 2004], and Windows XP’s system restore feature [Harder 2001]. On Unix, a null-
layer file system is used to provide support for accessing one directory through multiple
paths. When the layer additionally modifies the data, useful new functionality like encryp-
tion [Corner and Noble 2002; Halcrow 2004] or compression [Zadok et al. 2001] can be
added. Another class of layered file systems, called fan out, operates directly on top of
several lower-level file systems. For example, unification file systems merge the contents
of several directories [Pendry and McKusick 1995; Wright et al. 2006]. Fanout file systems
can also be used for replication, load-balancing, failover, snapshotting, and caching.

The authors of this paper have over fifteen years of combined experience developing
layered file systems on four OSes: Solaris, FreeBSD, Linux, and Windows. We have
developed more than twenty layered file systems that provide encryption, compression,
versioning, tracing, antivirus, unification, snapshotting, replication, checksumming, and
more.
ACM Transactions on Storage, Vol. 2, No. 2, May 2006.

Case 1:20-cv-00034-ADA Document 50-5 Filed 04/10/20 Page 3 of 34

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

On Incremental File System Development · 3

The rest of this paper is organized as follows. In Section 2 we survey alternative tech-
niques to enhance file system functionality. In Section 3 we describe four models of layered
file system development. We then proceed to describe five broad classes of layered file sys-
tems in Section 4. In Section 5 we describe five general problems and their solutions that
are useful for all types of layered file systems. We conclude in Section 6 with guiding
principles for future OS and layered file system developers.

2. RELATED WORK
In this section we describe alternatives to achieve the extensibility offered by layered file
systems. We discuss four classes of related works based on the level at which extensibility
is achieved: in hardware, in the device driver, at the system-call level, or in user-level
programs. We have a detailed discussion of layered file system infrastructures in Section 3.

Hardware level. Slice [Anderson et al. 2000] is a storage system architecture for high
speed networks with network-attached block storage. Slice interposes a piece of code
called a switching filter in the network hardware to route packets among a group of servers.
Slice appears to the upper level as a single block-oriented storage device. High-level con-
trol information (e.g., files) is unavailable to interposition code at the hardware level, and
therefore cannot perform optimizations for specific devices.

Semantically-Smart Disk Systems (SDSs) [Sivathanu et al. 2003] attempt to provide
file-system–like functionality without modifying the file system. Knowledge of a specific
file system is embedded into the storage device, and the device provides additional func-
tionality that would traditionally be implemented in the file system. Such systems are
relatively easy to deploy, because they do not require modifications to existing file system
code. Layered file systems share a similar goal in terms of reusing and leveraging existing
infrastructures. Unlike a layered file system, an SDS is closely tied to the format of the file
system running on top of it, so porting SDSs to new file systems is difficult.

Device-driver level. Software RAID and Logical Volume Managers (LVMs) introduce
another layer of abstraction between the storage hardware and the file system. They provide
additional features such as increased reliability and performance, while appearing to the
file system as a simple disk, which makes them easy to deploy in existing infrastructure.
For example, on Linux a Cryptoloop devices uses a loopback block driver to encrypt data
stored on a disk or in a file. A new file system is then created within the Cryptoloop device.
Any file system can run on top of a block device-driver extension. However, block device
extensions cannot exploit the control information (e.g., names) that is available at the file
system level.

System-call level. SLIC [Ghormley et al. 1998] is a protected extensibility system for
OSes that uses interposition techniques to enable the addition of a large class of untrusted
extensions to existing code. Several OS extensions can be implemented using SLIC such
as encryption file systems and a protected environment for binary execution. The Inter-
position Agents toolkit [Jones 1993], developed by Microsoft Research, allows a user’s
code to be written in terms of high-level objects provided by this interface. The toolkit
was designed to ease interposing code between the clients and the instances of the system
interface to facilitate adding new functionality like file reference tracing, customizable file
system views, etc. to existing systems. Similarly, Mediating Connectors [Balzer and Gold-
man 1999] is a system call (and library call) wrapper mechanism for Windows NT that

ACM Transactions on Storage, Vol. 2, No. 2, May 2006.

Case 1:20-cv-00034-ADA Document 50-5 Filed 04/10/20 Page 4 of 34

f

Find authenticated court documents without watermarks at docketalarm.com.

sseigel
Highlight

https://www.docketalarm.com/

4 · Zadok et al.

allows users to trap API calls.
System call interposition techniques rely on the communication channel between user-

space and the kernel, and hence cannot handle operations that bypass that channel (e.g.,
mmap operations and their associated page faults). Also, interposing at the system call
level results in overhead for all system calls even if only a subset of kernel components
(e.g., the file system) need to be interposed.

User level. Gray-box Information and Control Layers (ICL) [Arpaci-Dusseau and Arpaci-
Dusseau 2001] extend the functionality of OSes by acquiring information about their in-
ternal state. ICLs provide OS-like functionality without modifying existing OS code.
Dust [Burnett et al. 2002] is a direct application of ICLs that uses gray-box knowledge
of the OS’s buffer cache management policy to optimize application performance. For ex-
ample, if a Web server first services Web pages that are believed to be in the OS buffer
cache, then both average response time and throughput can be improved.

Blaze’s CFS is a cryptographic file system that is implemented as a user-level NFS
server [Blaze 1993]. The OS’s unmodified NFS client mounts the NFS server over the
loopback network interface. The SFS toolkit [Maziéres 2001] aims to simplify Unix file
system extensibility by allowing development of file systems at the user level. Using the
toolkit, one can implement a simple user-level NFS server and redirect local file system
operations into the user level implementation. The popularity of the SFS toolkit demon-
strates that developers have observed the complexity of modifying existing time-tested file
systems. SiRiUS [Goh et al. 2003], a file system for securing remote untrusted storage,
and Dabek’s CFS [Dabek et al. 2001], a wide area cooperative file system, were built using
the SFS toolkit.

Filesystem in Userspace [Szeredi 2005], or FUSE, is a hybrid approach that consists
of two parts: (1) a standard kernel-level file system which passes calls to a user-level
demon, and (2) a library to easily develop file-system–specific FUSE demons. Developing
new file systems with FUSE is relatively simple because the user-level demon can issue
normal system calls (e.g., read) to service a VFS call (e.g., vfs read). The main two
disadvantages of a FUSE file system are that (1) performance is limited by crossing the
user-kernel boundary, and (2) the file system can only use FUSE’s API, which closely
matches the VFS API, whereas kernel file systems may access a richer kernel API (e.g.,
for process and memory management).

Sun designed and developed Spring as an object-oriented microkernel OS. Spring’s
architecture allowed various components, including file systems, to be transparently ex-
tended with user libraries [Khalidi and Nelson 1993]. Spring’s design was radically differ-
ent from current commodity OSes. As it was research prototype, it was not deployed
in real systems. K42 [Appavoo et al. 2002] is a new OS under development at IBM
which incorporates innovative mechanisms and modern programming technologies. Vari-
ous system functionalities can be extended at the user level through libraries by providing
a microkernel-like interface. The Exokernel architecture [Engler et al. 1995] implements
minimal components in the kernel and allows user-level applications to customize OS func-
tionality using library OSes.

In general, user-level extensions are easy to implement, but their performance is not as
good as kernel extensions because the former involve data copies between the user level
and the kernel level, as well as additional context switches.
ACM Transactions on Storage, Vol. 2, No. 2, May 2006.

Case 1:20-cv-00034-ADA Document 50-5 Filed 04/10/20 Page 5 of 34

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
	� Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

	� Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
	� With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

	� Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
	� Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

	� Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

