Case 6:14-cv-00982-KNM Document 147-15 Filed 11/09/15 Page 1 of 4 PageID #: 1504

EXHIBIT 15

DOCKET A L A R M Find authenticated court documents without watermarks at <u>docketalarm.com</u>. Case 6:14-cv-00982-KNM Document 147-15 Filed 11/09/15 Page 2 of 4 PageID #: 1505

Inter Partes Review No.: <u>Unassigned</u> Petition For *Inter Partes* Review U.S. Patent No. 8,385,966

UNITED STATES PATENT AND TRADEMARK OFFICE

BEFORE THE PATENT TRIAL AND APPEAL BOARD

KYOCERA COMMUNICATIONS, INC. Petitioner

v.

CELLULAR COMMUNICATIONS EQUIPMENT LLC Patent Owner

Patent No. 8,385,966 Issue Date: February 26, 2013 Title: METHOD, APPARATUS AND COMPUTER PROGRAM FOR POWER CONTROL RELATED TO RANDOM ACCESS PROCEDURES

Inter Partes Review No. Unassigned

PETITION FOR *INTER PARTES* REVIEW UNDER 35 U.S.C. §§ 311-319 AND 37 C.F.R. § 42.100 *ET. SEQ*.

Inter Partes Review No.: <u>Unassigned</u> Petition For *Inter Partes* Review U.S. Patent No. 8,385,966

PUSCH_power = -RX_power + interference_correctoin +

offset_power + added_correction + power_ramp_up +

PC_correction + PUSCH_RACH_power_offset;

This rewritten equation shows that the transmit power for Message 3 is based on f(0), *i.e.*, the sum of the PC_correction (ΔP_{PC}) and the power_ramp_up value (ΔP_{rampup}). (Ex. 1002, ¶¶[0069]-[0071]).

The power_ramp_up variable is used as part of the preamble power and the calculation of f(0). This use of the power_ramp_up value is consistent with the '966 patent's use of the terms. (Ex. 1002, ¶¶[0073]-[0076]). Specifically, Claim 5 does not initially appear to be consistent with Claim 1. Specifically, Claim 1 notes that the initial transmit power is based on the "preamble power" and f(0). Claim 5 recites $P_{preamble}$ but does not expressly recite f(0). (Ex. 1002, ¶[0075]). As noted in the International Search Report of the corresponding PCT application, the equation in Claim 5 does not appear to be consistent with the wording of Claim 1. (*See*, Ex. 1013). In the PCT application, Claim 6 as originally filed is the same as Claim 5 in the '966 patent. (*See* Ex. 1014).

Claim 5 recites Δ_{PC_Msg3} , which as explained below is equal to Δ_{PC} when calculating the power for Message 3. The formula in Claim 5, however, does not expressly recite ΔP_{rampup} . f(0), therefore, is not found in the equation as written in Claim 5. The missing ΔP_{rampup} , however, can be found in Claim 5 as part of the

19

Inter Partes Review No.: <u>Unassigned</u> Petition For *Inter Partes* Review U.S. Patent No. 8,385,966

 $P_{preamble}$ calculation. ('966 patent, 6:18-26; Ex. 1002, ¶¶[0075]-[0076]). Just as above, the equation in Claim 5 can be rewritten with the $P_{preamble}$ variable expanded per Equation 3 from the '966 patent. When this is done, Claim 5 recites a formula for calculating a transmit power that depends on both $P_{preamble}$ and $f(0) = \Delta P_{PC}$ $+\Delta P_{rampup}$. (Ex. 1002, ¶¶[0074]-[0076]). Not allowing ΔP_{rampup} to be considered part of the preamble transmit power and f(0) leads to Claims 5 and 14 that cannot be reconciled with Claims 1 and 11, respectively. (Ex. 1002, ¶[0076]).

Qualcomm, therefore, teaches calculating an initial transmit power that depends on the "second power control adjustment state f(0)." (Ex. 1002, ¶¶[0073]-[0076]) Further, by calculating the sum of the PC_correction and the power_ramp_up value as part of calculating the RACH power, Qualcomm teaches initializing f(0). (Ex. 1002, ¶¶ [0069]-[0072]).

The '966 patent defines f(0) as both being calculated with $\Delta P_{PC} + \Delta P_{rampup}$ and reflecting an "open loop power control error." ('966 patent, Claim 1). Open loop power control error can be represented as $\Delta P_{PC} = P_{0_UE_PUSCH} + f(0) - \Delta P_{rampup}$. (Ex. 1002, ¶[0046] and ¶[0072]). This equation can be rewritten as $f(0) = \Delta P_{PC} +$ $\Delta P_{rampup} - P_{0_UE_PUSCH}$. (Ex. 1002, ¶[0046]). Accordingly, the ΔP_{PC} value that is part of f(0) reflects an "open loop power control error." (Ex. 1002, ¶[0046] and ¶[0072]). Qualcomm's use of the PC_correction value, therefore, also reflects an open loop power control error. (Ex. 1002, ¶[0071]-[0072]).

20