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1 What Is Discrete-Event Simulation (DES)?

Consider simulation of some system which evolves through time. There is a huge variety of such applica-
tions. One can simulate a weather system, for instance. A key point, though, is that in that setting, the events
being simulated would be continuous, meaning for example that if we were to graph temperature against
time, the curve would be continuous, no breaks.

By contrast, suppose we simulate the operation of a warehouse. Purchase orders come in and are filled,
reducing inventory, but inventory is replenished from time to time. Here a typical variable would be the
inventory itself, i.e. the number of items currently in stock for a given product. If we were to graph that
number against time, we would get what mathematicians call a step function, i.e. a set of flat line seg-
ments with breaks between them. The events here—decreases and increases in the inventory—are discrete
variables, not continuous ones.

DES involves simulating such systems.

2 World Views in DES Programming

Simulation programming can often be difficult—difficult to write the code, and difficult to debug. The
reason for this is that it really is a form of parallel programming, with many different activities in progress
simultaneously, and parallel programming can be challenging.

For this reason, many people have tried to develop separate simulation languages, or at least simulation
paradigms (i.e. programming styles) which enable to programmer to achieve clarity in simulation code.
Special simulation languages have been invented in the past, notably SIMULA, which was invented in the
1960s and has significance today in that it was the language which invented the concept of object-oriented
programmg that is so popular today. However, the trend today is to simply develop simulation libraries

which can be called from ordinary languages such as C++, instead of inventing entire new languages.1 So,
the central focus today is on the programming paradigms, not on language. In this section we will present
an overview of the three major discrete-event simulation paradigms.

Several world views have been developed for DES programming, as seen in the next few sections.

2.1 The Activity-Oriented Paradigm

Let us think of simulating a queuing system. Jobs arrive at random times, and the job server takes a ran-
dom time for each service. The time between arrivals of jobs, and the time needed to serve a job, will be
continuous random variables, possibly having exponential or other continuous distributions.

For concreteness, think of an example in which the server is an ATM cash machine and the jobs are cus-
tomers waiting in line.

Under the activity-oriented paradigm, we would break time into tiny increments. If for instance the mean
interarrival time were, say 20 seconds, we might break time into increments of size 0.001. At each time
point, our code would look around at all the activities, e.g. currently-active job servicing, and check for the
possible occurrence of events, e.g. completion of service. Our goal is to find the long-run average job wait

1These libraries are often called “languages” anyway, and I will do so too.
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time.

Let SimTime represent current simulated time. Our simulation code in the queue example above would look
something like this:

1 QueueLength = 0
2 NJobsServed = 0
3 SumResidenceTimes = 0
4 ServerBusy = false
5 generate NextArrivalTime // random # generation
6 NIncrements = MaxSimTime / 0.001
7 for SimTime = 1*0.001 to NIncrements*0.001 do
8 if SimTime = NextArrivalTime then
9 add new jobobject to queue

10 QueueLength++
11 generate NextArrivalTime // random # generation
12 if not ServerBusy then
13 ServerBusy = true
14 jobobject.ArrivalTime = SimTime
15 generate ServiceFinishedtime
16 currentjob = jobobject
17 delete head of queue and assign to currentjob
18 QueueLength--
19 else
20 if SimTime = ServiceFinishedtime then
21 NJobsServed++
22 SumResidenceTimes += SimTime - currentjob.ArrivalTime
23 if QueueLength > 0 then
24 generate ServiceFinishedtime // random # generation
25 delete currentjob from queue
26 QueueLength--
27 else
28 ServerBusy = false
29 print out SumResidenceTimes / NJobsServed

2.2 The Event-Oriented Paradigm

Clearly, an activity-oriented simulation program is going to be very slow to execute. Most time increments
will produce no state change to the system at all, i.e. no new arrivals to the queue and no completions of
service by the server. Thus the activity checks will be wasted processor time. This is a big issue, because
in general simulation code often needs a very long time to run. (Electronic chip manufacturers use DES for
chip simulation. A simulation can take days to run.)

Inspection of the above pseudocode, though, shows a way to dramatically increase simulation speed. Instead
of having time “creep along” so slowly, why not take a “shortcut” to the next event? What we could do is
something like the following:

Instead of having the simulated time advance via the code

1 for SimTime = 1*0.001 to NIncrements*0.001 do

we could advance simulated time directly to the time of the next event:
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