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Abstract

Background: The ability to predict antibody binding sites (aka antigenic determinants or B-cell
epitopes) for a given protein is a precursor to new vaccine design and diagnostics. Among the
various methods of B-cell epitope identification X-ray crystallography is one of the most reliable
methods. Using these experimental data computational methods exist for B-cell epitope prediction.
As the number of structures of antibody-protein complexes grows, further interest in prediction
methods using 3D structure is anticipated. This work aims to establish a benchmark for 3D
structure-based epitope prediction methods.

Results: Two B-cell epitope benchmark datasets inferred from the 3D structures of antibody-
protein complexes were defined. The first is a dataset of 62 representative 3D structures of protein
antigens with inferred structural epitopes. The second is a dataset of 82 structures of antibody-
protein complexes containing different structural epitopes. Using these datasets, eight web-servers
developed for antibody and protein binding sites prediction have been evaluated. In no method did
performance exceed a 40% precision and 46% recall. The values of the area under the receiver
operating characteristic curve for the evaluated methods were about 0.6 for ConSurf, DiscoTope,
and PPI-PRED methods and above 0.65 but not exceeding 0.70 for protein-protein docking
methods when the best of the top ten models for the bound docking were considered; the
remaining methods performed close to random. The benchmark datasets are included as a
supplement to this paper.

Conclusion: It may be possible to improve epitope prediction methods through training on
datasets which include only immune epitopes and through utilizing more features characterizing
epitopes, for example, the evolutionary conservation score. Notwithstanding, overall poor
performance may reflect the generality of antigenicity and hence the inability to decipher B-cell
epitopes as an intrinsic feature of the protein. It is an open question as to whether ultimately
discriminatory features can be found.

Background particular B-cell receptor of the immune system [1]. The
A B-cell epitope is defined as a part of a protein antigen =~ main objective of B-cell epitope prediction is to facilitate
recognized bv either a particular antibodv molecule or a___the design of a short peptide or other molecule that can be
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synthesized and used instead of the antigen, which in the
case of a pathogenic virus or bacteria, may be harmful to
a researcher or experimental animal [2]. A B-cell epitope
may be continuous, that is, a short contiguous stretch of
amino acid residues, or discontinuous, comprising atoms
from distant residues but close in three-dimensional space
and on the surface of the protein.

Synthetic peptides mimicking epitopes, as well as anti-
peptide antibodies, have many applications in the diag-
nosis of various human diseases [3-7]. Also, the attempts
have been made to develop peptide-based synthetic pro-
phylactic vaccines for various infections, as well as thera-
peutic vaccines for chronic infections and noninfectious
diseases, including autoimmune diseases, neurological
disorders, allergies, and cancers [8-10]. The immunoinfor-
matics software and databases developed to facilitate vac-
cine design have previously been reviewed [11,12].

During the last 25 years B-cell epitope prediction methods
have focused primarily on continuous epitopes. They
were mostly sequence-dependent methods based upon
various amino acid properties, such as hydrophilicity
[13], solvent accessibility [14], secondary structure [15-
18], and others. Recently, several methods using machine
learning approaches have been introduced that apply hid-
den Markov models (HMM) [19], artificial neural net-
works (ANN) [20], support vector machine (SVM) [21],
and other techniques [22,23]. Recent assessments of con-
tinuous epitope prediction methods demonstrate that
"single-scale amino acid propensity profiles cannot be
used to predict epitope location reliably" [24] and that
"the combination of scales and experimentation with sev-
eral machine learning algorithms showed little improve-
ment over single scale-based methods" [25].

As crystallographic studies of antibody-protein complexes
have shown, most B-cell epitopes are discontinuous. In
1984, the first attempts at epitope prediction based on 3D
protein structure was made for a few proteins for which
continuous epitopes were known [26-28]. Subsequently,
Thornton and colleagues [29] proposed a method to
locate potential discontinuous epitopes based on a pro-
trusion of protein regions from the protein's globular sur-
face. However, until the first X-ray structure of an
antibody-protein complex was solved in 1986 [30], pro-
tein structural data were mostly used for prediction of
continuous rather than discontinuous epitopes.

In cases where the three-dimensional structure of the pro-
tein or its homologue is known, a discontinuous epitope
can be derived from functional assays by mapping onto
the protein structure residues involved in antibody recog-
nition [31]. However, an epitope identified using an
immunoassay may be an artefact of measuring cross-reac-
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tivity of antibodies due to the presence of denatured or
degraded proteins [32,33], or due to conformational
changes in the protein caused by residue substitutions
that may even lead to protein mis-folding [34]. Therefore,
structural methods, particularly X-ray crystallography of
antibody-antigen complexes, generally identify B-cell
epitopes more reliably than functional assays [35].

B-cell epitopes can be thought of in a structural and func-
tional sense. Structural epitopes (also called antigenic
determinants) are defined by a set of residues or atoms in
the protein antigen contacting antibody residues or atoms
[33,36]. In contrast, a functional epitope consists of anti-
gen residues that contribute significantly to antibody
binding [36,37]. Functional epitopes are determined
through functional assays (e.g., alanine scanning muta-
genesis) or calculated theoretically using known struc-
tures of antibody-protein complexes [38,39]. Thus,
functional and structural epitopes are not necessary the
same. Functional epitopes in proteins are usually smaller
than structural epitopes; only three to five residues of the
structural epitope contribute significantly to the antibody-
antigen binding energy [40]. This work focuses on struc-
tural epitopes inferred from known 3D structures of anti-
body-protein complexes available in the Protein Data
Bank (PDB) [41].

Antibody-protein complexes can be categorized as inter-
mediate transient non-obligate protein-protein com-
plexes [40,42]. Non-obligate complexes, implying that
individual components can be found on their own in vivo,
are classified as either permanent or transient depending
on their stability under particular physiological and envi-
ronmental conditions [43]. For example, many enzyme-
inhibitor complexes are permanent non-obligate com-
plexes. Transient non-obligate complexes range from
weak (e.g., electron transport complexes), to intermediate
(e.g., signal transduction complexes), and to strong (e.g.,
bovine G protein forming a stable trimer upon GDP bind-
ing) [44]. Most antibodies demonstrate intermediate
affinity for their specific antigens [45]. Based on this clas-
sification, general methods for the prediction of interme-
diate transient non-obligate protein-protein interactions
have been applied to the prediction of structural epitopes
[40,42]. For example, Jones and Thornton, using their
method for predicting protein-protein binding sites [46],
successfully predicted B-cell epitopes on the surface of the
B-subunit of human chorionic gonadotropin (BhCG)
[47].

Since the number of available structures of antibody-pro-
tein complexes remains limited, thus far only a few meth-
ods, CEP (Conformational Epitope Prediction) [48] and
DiscoTope [49], for B-cell epitope prediction using a pro-
tein of a given three-dimensional structure have been
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developed. In the near future, with growth in the number
of available structures of antibody-protein complexes,
extensive development in this area is expected. Existing
and new methods for epitope prediction demand a
benchmark which will set the standard for the future com-
parison of methods. To facilitate the further development
of this standard, we have developed B-cell epitope bench-
mark datasets inferred from existing 3D structures of anti-
body-protein complexes. Further, using the benchmark
datasets, we evaluated CEP, DiscoTope, and six recently
developed publicly available web-servers for generalized
protein-protein binding site prediction using various
approaches: protein-protein docking (ClusPro [50], DOT
[51] and PatchDock [52]); structure-based methods
applying different principals and trained on different
datasets (PPI-PRED [53], PIER [54] and ProMate [55]),
and residue conservation (ConSurf [56]).

Results and discussion

Structural epitope definition

Three definitions of an epitope inferred from the X-ray
structures of antibody-protein complexes were consid-
ered: (1) The epitope consists of protein antigen residues
in which any atom of the residue looses more than 1A2 of
accessible surface area (ASA) upon antibody binding. ASA
was calculated using the program NACCESS [57]; (2) The
epitope consists of protein antigen residues in which any
atom of the epitope residue is separated from any anti-
body atom by a distance < 4A; (3) The epitope consists of
protein antigen residues in which any atom of the epitope
residue is separated from any antibody atom by a distance
< 5A. These three definitions were used for two reasons.
First, the methods evaluated in this work use one of these
three definitions, second, we wished to study how the
epitope definition influenced the results.

Results (not shown) indicated that the structural epitope
definition did not influence the outcome. Hence, unless
otherwise specified, results are based on the second
epitope definition.

Construction of the benchmark datasets

Two benchmark datasets were derived from the 3D struc-
tures of antibody-protein complexes available from the
PDB [41]:

e Dataset #1 - Representative 3D structures of protein
antigens with structural epitopes inferred from 3D struc-
tures of antibody-protein complexes. This dataset is
intended for the study of the antigenic properties of pro-
teins as well as for development and evaluation of the
methods based on protein structure alone, or protein-pro-
tein unbound docking methods, that is, if the structure of
the antibody is known or can be modeled. Here this data-
set was used for the evaluation of scale-based methods

DOCKET

_ ARM

http://www.biomedcentral.com/1472-6807/7/64

(DiscoTope, PIER, ProMate and ConSurf). The dataset
contains 62 antigens, 52 of which are one-chain antigen
proteins.

e Dataset #2 - Representative 3D structures of antibody-
protein complexes presenting different epitopes. This
dataset is useful for the study of the properties of individ-
ual epitopes as well as for development and evaluation of
protein-protein bound docking methods. Since the cur-
rent work attempts to compare the methods of different
types, including protein-protein docking methods, this
dataset was used to compare the performance of all meth-
ods to each other. The dataset contains 70 structures of
proteins in complexes with two-chain antibodies and 12
structures of proteins in complexes with one-chain anti-
bodies.

The flowchart describing the construction of the bench-
mark datasets is shown in Figure 1. Steps from 1 to 4 relate
to dataset #1; steps 1-6 relate to dataset #2.

Step 1 - crystal structures of protein antigens of length >30
amino acids at a resolution < 4A in complex with anti-
body fragments containing variable regions (Fab, VHH,
Fv, or scFv fragments) were collected from the Protein
Data Bank (PDB) [41]. Structures in which the antibody
binds antigen but involves no CDR residues have been
excluded from the analysis; there were four such structures
[PDB: 1MHH, 1HEZ, 1DEE, 1IGC]. If a structure con-
tained several complexes in one asymmetric unit and
there was no structural difference observed between these
complexes, only one complex was selected. In this way
166 structures containing 187 antibody-protein com-
plexes were selected: 24 complexes were formed by one-
chain antibody fragments and 163 complexes by two-
chain antibody fragments.

Step 2 - all antigen protein chains were structurally
aligned to one another using the CE algorithm [58]. Two
protein chains were considered similar if all the following
conditions applied: (i) rmsd <3A, (ii) z-score >4.0, (iii)
number of residue-residue matches relative to the length
of the longest chain >80%, (iv) sequence identity in the
structural alignment (not considering gaps) 280%. The z-
score takes into account overall structural similarity and
number of gapped positions. Two protein molecules were
considered similar if each chain in one protein had a sim-
ilar chain in another protein. Figure 2 demonstrates how
the last two parameters, number of matches and sequence
identity in the structural alignment, are defined.

The structural alignment rather than sequence alignment
was used because protein structure is more conserved than
sequence, and there can be expected regions in proteins
with low sequence similarity that cannot be aligned by

Find authenticated court documents without watermarks at docketalarm.com.



https://www.docketalarm.com/

BMC Structural Biology 2007, 7:64

http://www.biomedcentral.com/1472-6807/7/64

PDB: 3D structures of
antibody-protein complexes

STEP 1. Selection of structures with
antibody binding site located in CDR

STEP 2. All-against-all structural
alignment of antigen protein chains

Y

STEP 4. Mapping of epitopes inferred from 3D structures of antibody-
protein complexes onto the representative structure of the protein

STEP 3. Selection of a representative
(non-redundant) set of protein

A 4

STEP 5. Selection of similar (by number of

v

overlapping residues) epitopes for each protein

STEP 6. Selection of a representative structure of antibody-
protein complex for each group of similar epitopes

A

DATASET #1: 3D structures of protein antigens
with inferred structural epitopes

DATASET #2: 3D structures of antibody-protein
complexes representing different epitopes

Figure |
Flowchart for building benchmark datasets.

sequence alone. The structural alignment also avoids con-
sidering two proteins as similar if they have similar
sequences but different structures (possible over short
regions). The threshold values were chosen empirically
based on previous experience working with the CE algo-
rithm. As a result, the chosen threshold values separated
human and bird lysozymes (61% sequence identity) and
neuraminidases of different influenza virus strains, H3N2
and H11N9 (47% sequence identity).

Step 3 - 35 proteins were orphans represented by only one
3D structure. Of the remaining 27 proteins represented by
more than one 3D structure, the structure with the best
resolution was selected as the representative structure. The
final representative dataset contained 62 antigens [see
Additional file 1], 52 of which were one-chain antigen
proteins.

(A) AVCQ---YWC
(B) A-CYARTY-C

Figure 2

Hypothetical example of the structural alignment of
proteins (A) (sequence AVCQYWC) and (B)
(sequence ACYARTYC). Number of residue-residue
matches = 5, number of residue-residue matches relative to
the length the longest chain = 63% (5/8), sequence identity =
80% (4/5).
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Step 4 - for each protein, epitopes inferred from the 3D
structures of antibody-protein complexes were mapped
onto the representative structure of the protein. First,
epitope residues were calculated for each complex struc-
ture using one of the aforementioned epitope definitions.
Second, epitope residues defined for the represented
structures were mapped onto the representative structure
based on the structure alignments. For example, the
hemagglutinin HA1 chain of influenza A virus was repre-
sented by six 3D structures of the protein in complexes
with Fab fragments of antibodies HC45 [PDB:1QFU],
BH151 [PDB:1EO8], HC63 [PDB:1KEN], and HC19
[PDB:2VIR, 2VIS, 2VIT]. Figure 3 illustrates a representa-
tive structure [PDB:1EO8] of hemagglutinin HA1 upon
which epitopes are mapped having been inferred from six
complex structures. In this way, epitopes inferred from
187 structures of antibody-protein complexes were
mapped onto the 62 representative protein structures. The
resulting dataset is denoted dataset #1. Data on mapped
epitope residues are available upon request.

Step 5 - to study the properties of individual epitopes and
their prediction a dataset of representative epitopes, data-
set #2 derived from 3D structures of antibody-protein
complexes defining different epitopes was constructed. An
important question to consider is how to define individ-
ual epitopes yet avoid bias by over-presentation of partic-
ular epitopes? For example (Fig. 3), while HC45 (blue)
and BH151 (magenta) epitopes overlap, neither HC63
(green) nor HC19 (red) epitopes overlap, they are sepa-
rated on the protein surface. Nevertheless, HC45 and
BH151 epitopes share residues (orange in Fig. 3), as do
HC63 and HC19 epitopes (yellow in Fig. 3). Are HC45
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Figure 3

Two orthogonal views of a representative structure, influenza A virus hemagglutinin HAI chain [PDB:1 EO8].
Chain A is shown in light gray upon which are mapped epitope residues inferred from six protein structures in complexes with
antibody fragments: HC45 Fab [PDB: 1 QFU] (blue), BHI5I Fab [PDB:1EO8] (magenta), HC63 Fab [PDB:1KEN] (green), HCI9
Fab [PDB:2VIR, 2VIS, 2VIT] (red). The hemagglutinin HA2 chain is shown in cyan. Residues common to HC45 and BHI51
epitopes are shown in orange; residues common to HC63 and HCI9 epitopes are shown in yellow; residue Tyr98 which is a
part of HCI9 epitope inferred from structure 2VIR but not from 2VIS and 2VIT structures is shown in black; The HCI19
epitope residue Thrl31 which is mutated to lle in the 2VIS structure is shown in dark red. The HCI9 epitope residue Thr155

which is mutated to lle in 2VIT structure is shown in violet.

and BH151 epitopes similar or different? This question is
answered by considering the degree of overlap.

Two epitopes are deemed similar if, in addition to the
aforementioned criteria for epitope definition, they
belong to similar protein chains and have >75% residues
in common for both epitopes. A cut-off value of 75% for
epitope similarity was chosen empirically. Thus, the
HC45 and BH151 epitopes on influenza A virus hemag-
glutinin HA1 (Fig. 3) share 14 residues, that make up 74%
and 93% of the size of HC45 and BH151 epitopes, respec-
tively. A cut-off on epitope overlap of less than 75%
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would define HC45 and BH151 epitopes as similar even
though they are known to be different. HC45 and BH151
are antibodies from different germ-lines with variable
domains sharing only 56% sequence similarity, their H3
CDR regions adopt distinct conformations and these anti-
bodies are tolerant to different mutations in hemaggluti-
nin [59]. Another example, X5 and 17B epitopes of gp120
share 75% of their residues yet X5 and 17B antibodies are
from different genes [60]. A cut-off value for epitope sim-
ilarity equal to or less than 75% would erroneously define
X5 and 17B epitopes as similar. Conversely, a cut-off value
of 80% would make epitopes inferred from different
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