IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

BEFORE THE PATENT TRIAL AND APPEAL BOARD

GENOME & COMPANY, Petitioner,

 \mathbf{v}_{\bullet}

THE UNIVERSITY OF CHICAGO, Patent Owner.

Case No. PGR2019-00002 Patent No. 9,855,302

PATENT OWNER'S SECOND UPDATED EXHIBIT LIST

Exhibit	Description
2001	Kim et al., "Proteomic Analysis of Bifidobacterium longum subsp.
	infantis Reveals the Metabolic Insight on Consumption of Prebiotics
	and Host Glycans," 8(2) PLOS ONE e57535 (2013).
2002	Rodes et al., "Microencapsulated <i>Bifidobacterium longum</i> subsp.
	infantis ATCC 15697 Favorably Modulates Gut Microbiota and
	Reduces Circulating Endotoxins in F344 Rats," 2014 BioMed Res.
	Int'l 602832 (2014).
2003	Garrido et al., "Utilization of galatooligosaccarides by
	Bifidobacterium longum subsp. infantis isolates," 33 Food
	Microbiol. 262-70 (2013).
2004	Ménard et al., "Gnotobiotic Mouse Immune Response Induced by
	Bifidobacterium sp. Strains Isolated from Infants," 74(3) Appl.
	Environ. Microbiol. 660-66 (2008).
2005	Sivan et al., "Commensal Bifodobacterium promotes antitumor
	immunity and facilitates anti-PD-L1 efficacy," 350 Science 1084-89
	(2015).
2006	Scopus citation overview for Sivan et al., 350 Science 1084-89 (2015).
2007	Declaration of Sridhar Mani, M.D.
2008	Zou & Chen, Inhibitory B7-family molecules in the tumour
	microenvironment, Nature Reviews Immunology 8:467–477 (2008).
2009	Romagné et al., Preclinical characterization of 1-7F9, a novel human
	anti-KIR receptor therapeutic antibody that augments natural killer-
	mediated killing of tumor cells, <i>Blood</i> 114:2667–2677 (2009).
2010	Megaraj et al., Role of Hepatic and Intestinal P450 Enzymes in the
	Metabolic Activation of the Colon Carcinogen Azoxymethane in
	Mice, Clin. Res. Toxicol. 27:656-662 (2014).
2011	Kohrt et al., Anti- KIR antibody enhancement of anti-lymphoma
	activity of natural killer cells as monotherapy and in combination with
	anti-CD20 antibodies, <i>Blood</i> 123:678–686 (2014).
2012	Woo et al., Immune Inhibitory Molecules LAG-3 and PD-1
	Synergistically Regulate T-cell Function to Promote Tumoral Immune
	Escape, Cancer Res 72:917–927 (2012).
2013	Brignone et al., A Phase I Pharmacokinetic and Biological Correlative
	Study of IMP321, a Novel MHC Class II Agonist, in Patients with
	Advanced Renal Cell Carcinoma, Clin. Cancer Res. 15:6225–6231
	(2009).

2014	Le Mercier et al., VISTA Regulates the Development of Protective
2014	Antitumor Immunity, Cancer Res. 74:1933–1944 (2014).
2015	Sakuishi et al., Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity, <i>J. Exp. Med.</i> 207: 2187–2194 (2010).
2016	Beavis et al., Blockade of A _{2A} receptors potently suppresses the metastasis of CD73 ⁺ tumors, <i>PNAS</i> 110:14711-14716 (2013).
2017	Derré et al., BTLA mediates inhibition of tumor-specific CD8 ⁺ T cells that can be partially reversed by vaccination, <i>J. Clin. Investig.</i> 120(1):157–167 (2010)
2018	Loo et al., Development of an Fc-enhanced anti-B7-H3 monoclonal antibody with potent antitumor activity, <i>Clin. Cancer Res.</i> 18(14):3834–45 (2012).
2019	Curran et al., PD-1 and CTLA-4 combination blockade expands infiltrating T cells and reduces regulatory T and myeloid cells within B16 melanoma tumors, <i>PNAS</i> 107:4275–4280 (2010).
2020	Wolchok et al., Nivolumab plus Ipilimumab in Advanced Melanoma, <i>N. Engl. J. Med.</i> 369:122–133 (2013).
2021	Das et al., Combination therapy with anti-CTLA4 and anti-PD1 leads to distinct immunologic changes <i>in-vivo</i> , <i>J Immunol</i> . 194:950–959 (2015).
2022	O'Reilly et al., Durvalumab With or Without Tremelimumab for Patients With Metastatic Pancreatic Ductal Adenocarcinoma: A Phase 2 Randomized Clinal Trial, <i>JAMA Oncol.</i> , abstr. 2019.1588 (2019).
2023	Bahig et al., Phase I/II trial of Durvalumab plus Tremelimumab and stereotactic body radiotherapy for metastatic head and neck carcinoma, <i>BMC Cancer</i> 19:68 (2019).
2024	Butterfield et al., Chapter 24: Cancer and the Immune System. In: <i>Immunology, Infection, and Immunity</i> , Pier. G.B., Lyczak, J.B., and Wetzler, L. M. (eds.) 573–591 (2004).
2025	Vogelstein et al., Cancer Genome Landscapes, <i>Science</i> 339:1546–1558 (2013).
2026	Segal et al., Epitope Landscape in Breast and Colorectal Cancer, <i>Cancer Res.</i> 68:889–892 (2008).
2027	Coulie et al., Tumour antigens recognized by T lymphocytes: at the core of cancer immunotherapy, <i>Nature Reviews Cancer</i> 14: 135–146 (2014).
2028	Blankenstein et al., The determinants of tumour immunogenicity, <i>Nat. Rev. Cancer</i> 12:307–313 (2013).

-) -	
2029	Alexandrov et al., Signatures of mutational processes in human cancer, <i>Nature</i> 500:415–421 (2013).
2030	Schumacher and Schreiber, Neoantigens in cancer immunotherapy, <i>Science</i> 348:69–74 (2015).
2031	Vesely and Schreiber, Cancer Immunoediting: antigens, mechanisms and implications to cancer immunotherapy, <i>Ann. N.Y. Acad. Sci.</i> 1284:1–5 (2013).
2032	Brown et al., Neo-antigens predicted by tumor genome meta-analysis correlate with increased patient survival, <i>Genome Res.</i> 24:743–750 (2014).
2033	Transcript of Deposition of Jonathan Braun, M.D., Ph.D. (June 19, 2019).
2034	Shih et al., Clinical Impact of Checkpoint Inhibitors as Novel Cancer Therapies, <i>Drugs</i> 74:1993–2013 (2014).
2035	Sharma & Allison, The future of immune checkpoint therapy, <i>Science</i> 348: 56–61 (2015).
2036	Mellman et al., Cancer immunotherapy comes of age, <i>Nature</i> 480:480–489 (2011).
2037	Berger et al., Phase I Safety and Pharmacokinetic Study of CT-011, a Humanized Antibody Interacting with PD-1, in Patients with Advanced Hematologic Malignancies, <i>Clin. Cancer Res.</i> 14:3044–3051 (2008).
2038	Sampson et al., Preliminary safety and activity of nivolumab and its combination with ipilimumab in recurrent glioblastoma (GBM): CHECKMATE-143, <i>J. Clin. Oncol.</i> 33(15S):150s, abstr. 3011 (May 20, 2015).
2039	Schaff et al., Ipilimumab for recurrent glioblastoma (GBM), <i>J. Clin. Oncol.</i> 32 (suppl.; abstr. e13026) (2014).
2040	Le et al., Evaluation of Ipilimumab in combination with allogeneic pancreatic tumor cells transfected with a GM-CSF gene in previously treated pancreatic cancer, <i>J. Immunother</i> . 36:382-389 (2013).
2041	Lesokhin et al., Preliminary Results of a Phase I Study of Nivolumab (BMS-936558) in Patients with Relapsed or Refractory Lymphoid Malignancies, <i>Blood</i> 124:291 (2014).
2042	Slovin et al., Ipilimumab alone or in combination with radiotherapy in metastatic castration-resistant prostate cancer: results from an openlabel, multicenter phase I/II study, <i>Annals of Oncology</i> 24:1813–1821 (2013).

,)
2043	Hamanishi et al., Efficacy and Safety of Anti-PD-1 Antibody (Nivolumab: BMS-936558, ONO-4538) in Patients with Platinum-Resistant Ovarian Cancer, <i>J. Clin. Oncol.</i> 32:353s (suppl.; abstr. 5511) (2014).
2044	El-Khoueiry et al., Phase I/II Safety and Antitumor Activity of Nivolumab in Patients with Advanced Hepatocellular Carcinoma, <i>J Clin Oncol</i> 33:5s (suppl.; abstr. LBA101) (2015).
2045	Seiwert et al., Antitumor Activity of the Anti-PD-1 Antibody Pembrolizumab in Biomarker-Unselected Patients with R/M Head and Neck Cancer: Preliminary Results from KEYNOTE-012 Expansion Cohort, <i>J. Clin Oncol</i> 33 (suppl.; abstr. LBA6008) (2015).
2046	Segal 2015, Safety and efficacy of MEDI4736, an anti-PD-L1 antibody, in patients from a squamous cell carcinoma of the head and neck (SCCHN) expansion cohort, <i>J. Clin. Oncol.</i> 33(15S):150s, abstr. 3011 (May 20, 2015).
2047	Supplemental Data Table S3 to Exhibit 1031 (D. T. Le et al., PD-1 Blockade in Tumors with Mismatch-Repair Deficiency, <i>N. Engl. J. Med.</i> (2015)).
2048	Antonia et al., Phase I/II study of nivolumab with or without ipilimumab for treatment of recurrent small cell lung cancer, (<i>SCLC</i>): CA2019-032 (Oral Abst. Presented May 30, 2015)
2049	Powles et al., MPDL3280A (anti-PD-L1) treatment leads to clinical activity in metastatic bladder cancer, <i>Nature</i> 515:558–562 (2014).
2050	Antonia, Association of tumor PD-L1 expression and immune biomarkers with clinical activity in patients with non-small cell lung cancer (NSCLC) treated with nivolumab (Anti-PD-1; BMS-936558; ONO-4538), <i>J. Thoracic Oncol.</i> 8(Suppl. 2):S907-S908 (2013).
2051	Garon et al., Safety and clinical activity of MK-3475 in previously treated patients (pts) with non-small cell lung cancer (NSCLC), <i>J. Clin. Oncol.</i> 32(5s):511s (abstr. 8020) (2014).
2052	Hodi et al., Improved Survival with Ipilimumab in Patients with Metastatic Melanoma, <i>N. Engl. J. Med.</i> 363:713–723 (2010).
2053	Hamid et al., Safety and Tumor Responses with Lambrolizumab (Anti-PD-1) in Melanoma, <i>N. Engl. J. Med.</i> 369:134–144 (2013).
2054	Kefford et al., Clinical Efficacy and Correlation With Tumor PD-L1 Expression in Patients With Melanoma Treated With the Anti-PD-1 Monoclonal Antibody Pembrolizumab (MK-3475), <i>J. Clin Oncol</i> 32(5s):180s (abstr. 3005) (2014).

DOCKET A L A R M

Explore Litigation Insights

Docket Alarm provides insights to develop a more informed litigation strategy and the peace of mind of knowing you're on top of things.

Real-Time Litigation Alerts

Keep your litigation team up-to-date with **real-time** alerts and advanced team management tools built for the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal, State, and Administrative courts across the country.

Advanced Docket Research

With over 230 million records, Docket Alarm's cloud-native docket research platform finds what other services can't. Coverage includes Federal, State, plus PTAB, TTAB, ITC and NLRB decisions, all in one place.

Identify arguments that have been successful in the past with full text, pinpoint searching. Link to case law cited within any court document via Fastcase.

Analytics At Your Fingertips

Learn what happened the last time a particular judge, opposing counsel or company faced cases similar to yours.

Advanced out-of-the-box PTAB and TTAB analytics are always at your fingertips.

API

Docket Alarm offers a powerful API (application programming interface) to developers that want to integrate case filings into their apps.

LAW FIRMS

Build custom dashboards for your attorneys and clients with live data direct from the court.

Automate many repetitive legal tasks like conflict checks, document management, and marketing.

FINANCIAL INSTITUTIONS

Litigation and bankruptcy checks for companies and debtors.

E-DISCOVERY AND LEGAL VENDORS

Sync your system to PACER to automate legal marketing.

