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Stomata are formed through a
series of differentiation events

mediated by a trio of basic-helix-

loop-helix (BHLH) proteins: SPEECH-
LESS (SPCH), MUTE, and FAMA.

Through characterization of a domi-
nant mutant, scream-D (serm-D),
which produces an epidermis con-

sisting entirely of stomata, Kanaoka
et al. (pages 1775-1785)identified

two paralogous Arabidopsis bHLH
proteins, SCRM and SCRMe2, that
partner with SPCH, MUTE, and
FAMA, to drive initiation, prolifer-
ation, and terminal differentiation
of stomata. The cover shows the

rosette leaf epidermis of a mute
serm-D double mutant, which is

composedof triangular stomatal
precursor cells called=meri-
stemoids and their sister cells.

Surprisingly, SCRM is ICE1, a
key upstream regulator of cold-
induced gene expression, there-
fore suggesting a link between the
transcriptional regulation of envi-
ronmental adaptation and devel-
opment.
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LETTER TO THE EDITOR

Eleven Golden Rules of Quantitative RT-PCR

Reverse transcription followed by quanti-
tative polymerase chain reaction analysis,
or qRT-PCR, is an extremely sensitive,
cost-effective method for quantifying gene
transcripts from plant cells. The availabil-

ity of nonspecific double-stranded DNA
(dsDNA) binding fluorophors, such as
SYBR Green, and 384-well-plate real-time
PCR machines that can measure fluores-

cenceat the end of each PCR cycle makeit
possible to perform qRT-PCR on hundreds
of genesor treatments in parallel. This has
facilitated the comparative analysis ofall
members of large gene families, such as
transcription factor genes (Czechowski
et al., 2004). Giventhe relatively low cost
of PCR reagents, and the precision, sensi-
tivity, flexibility, and scalability of GRT-PCR,
it is little wonder that thousandsof research
labs around the world have embracedit as

the method of choice for measuring tran-
script levels. However, despite its popular-
ity, we continue to see systematic errorsin
the application of methods for qRT-PCR
analysis, which can compromise the inter-
pretation ofresults. The letter to the editor

by Gutierrez et al. in this issue highlights
one of many common sources of error,
namely, the inappropriate choice of refer-

ence genesfor normalizing transcript levels
of test genes prior to comparative analysis
of different biological samples. The follow-
ing are 11 golden rules of qRT-PCR that,
when observed, should ensure reproduc:
ible and accurate measurements of tran-

script abundancein plant and other cells.
Theserulesarefor relative quantification of
RNA using two-step RT-PCR (where the
product of a single RT reaction is used as
template in multiple PCR reactions), SYBR
Green to detect gene-specific PCR prod-
ucts, and reference genes for normalizing
transcriptlevels of test genes before com-
paring samples. Further details can be
found elsewhere (Czechowski et al., 2004.
2005). Most of these rules also apply to
relative quantification methods that em-

www. plantcell.org/cgi/doi/10.1105/tpce.108.061143

ploy sequence-specific fluorescent probes,
such as TaqMan probes, and to absolute
quantification methods (http://www.gene-
quantification.info/).

(1) Harvest material from at least three
biological replicates to facilitate statistical

analysis of data, freeze immediately in
liquid nitrogen, and store at —80°C to

preservefull-length RNA.

(2) Use an RNAisolation procedure that
produces high-quality total RNA from all
samples to be analyzed. Check RNA qual-
ity using an Agilent 2100 Bioanalyzer (RNA
integrity number, RIN = 7 andideally > 9)
or by electrophoretic separation on a high-
resolution agarose gel (look for sharp
ethidium bromide-stained rRNA bands)
and spectrophotometry (Asgo/Asan = 1.8
and Azgo/Azan ~ 2.0). Quantify RNA using
Asgo Values.

(3) Digest purified RNA with DNase | to
remove contaminating genomic DNA,

which can act as template during PCR
and lead to spurious results. Subsequently,
perform PCR on the treated RNA, using
gene-specific primers, to confirm absence
of genomic DNA.

(4) Perform RT reactions with a robust re-

verse transcriptase with no RNaseH activity
(like SuperScriptill fromInvitrogen or Array-
Script from Ambion) to maximize cDNA
length and yield. Use ultraclean oligo(dT)
primer of high integrity. qRT-PCR gene
expression Measurements are comparable
only when the same priming strategy and
reaction conditions are usedin all experi
ments and reactions contain the sametotal
amount of RNA (Stahiberget al., 2004).

(5) Test cDNA yield and quality. Perform
qPCR onan aliquot of cDNA from each
sample, using primers to one or more ref-

erence genes that are known to be stably
expressed in the organ(s)/tissue(s) under
the range of experimental conditions tested.
Threshold cycle (Ct) values should be within
the range mean * 1 for each reference gene
across all samples to ensure similar cDNA
yield from each RT reaction, Quality of
cDNAcan be assessed using twopairs of

primers for a reference gene that are—1 kb
apart. Typically, the Ct value for the primer
pair at the 5'-end of a cDNAwill be higher

than the Ct value of the primer pair at the
3’-end, as reverse transcription begins at
the 3’ [poly(A)] end of the template mRNA

and doesnot always extendto the 5'-end of
the template. Ideally, the Ct value of the
5'-end primer pair should not exceedthatof
the 3'-end pair by more than one cycle
number.

(6) Design gene-specific PCR primers
using a standard set of designcriteria (e.g.,

primer T,, = 60 + 1°C, length 18 to 25
bases, GC content between 40 and 60%),

which generate a unique, short PCR prod-
uct (between 60 and 150 bp) of the ex-

pected length and sequence from a complex
cDNA sample in preliminary tests, to facili-
tate multiparallel GPCR using a standard
PCRprogram. The 3'-untranslated regionis
a good target for primer design becauseit
iS generally more unique than coding se-

quence andcloserto the RTstart site.
(7) Reduce technical errors in PCR re-

action setup by standardizing (robotize if
possible) and minimizing the number of
pipetting steps. Mix cDNA with qPCR
reagents, then aliquot a standard volume
of this ‘master mix’’ into each reaction well

containing a standard volume of specific

primers. Set up reactions in a clean envi-
ronment free of dust, preferably under a
positive airflow hood. Routinely check for

DNA contamination of primer and reagent
stocks by performing PCR reactions on no
template (water) controls,

(8) For relative quantification of transcript
levels, design and test gene-specific
primers for at least four potential reference

genes selected from the literature (e.g.,
Czechowski et al, 2005) or from your own

experience that are likely to be stably
expressed throughout all organs andtreat-
ments to be compared. Validate reference

genes in preliminary experiments on the
range of tissues andtreatments you wish

to compare using a foreign CRNA addedto
each RNA sample prior to RT-PCR to
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