UNITED STATES PATENT AND TRADEMARK OFFICE

BEFORE THE PATENT TRIAL AND APPEAL BOARD

ALIGN TECHNOLOGY, INC. Petitioner

v.

3SHAPE A/S Patent Owner

Case No. PGR2018-00103 Patent No. 9,962,244

SECOND CORRECTED DECLARATION OF DR. CHANDRAJIT L. BAJAJ, PH.D. IN SUPPORT OF POST-GRANT REVIEW OF U.S. PATENT NO. 9,962,244

Mail Stop "PATENT BOARD"

Patent Trial and Appeal Board U.S. Patent and Trademark Office P.O. Box 1450 Alexandria, VA 22313-1450

DOCKET

TABLE OF CONTENTS

I.	Introduction			
II.	Qualifications and Expertise			
III.	Legal Understanding			
	A. My	Understanding of Claim Construction	10	
	B. Al	Person of Ordinary Skill in the Art	11	
	C. My	Understanding of Obviousness	12	
	D. My	Understanding of Written Description	14	
IV.	Backgro	ound of the Technologies Disclosed in the '244 Patent	15	
	A. Tee	chnical Overview of Intraoral Scanners	15	
	1.	Early Medical Imaging	15	
	2.	Image Stitching and Blending	17	
	3.	Image Processing	18	
	4.	3D Modeling	19	
	5.	Color 3D Modeling using Intraoral Scanners	21	
	B. Ov	erview of the '244 Patent	27	
V.	Claims 19, 25, and 32 lack support in the Provisional Applicati requiring PGR eligibility for the '244 Patent		30	
	A. Cla	nims 19 and 32	30	
	B. Cla	nim 25	32	
VI.	Claim Construction		34	
VII.	The combinations of (a) Fisker and Szeliski and (b) Fisker and Matsumoto render claims 1-5, 7-10, 15, 16, 18, 21, 22, 24, 26, and			
	28 obvious			
	A. Ov	erview of Fisker	34	
	B. Overview of Szeliski		36	
	C. Ov	erview of Matsumoto		
	D. Cla	um 1	39	
	1.	[1.P]: "A focus scanner for recording surface geometry and surface color of an object"	39	

2.	[1.1]: "a multichromatic light source configured for providing a multichromatic probe light for illumination of the object."
3.	[1.2]: "a color image sensor comprising an array of image sensor pixels for capturing one or more 2D images of light received from said object"
4.	[1.3.a]: "wherein the focus scanner is configured to operate by translating a focus plane along an optical axis of the focus scanner"
5.	[1.3.b]: "wherein the focus scanner is configured to operate bycapturing a series of the 2D images, each 2D image of the series is at a different focus plane position such that the series of captured 2D images forms a stack of 2D images"
6.	[1.4.a]: "a data processing system configured to derive surface geometry information for a block of said image sensor pixels from the 2D images in the stack of 2D images captured by said color image sensor"
7.	[1.4.b]: "the data processing system also configured to derive surface color information for the block of said image sensor pixels from at least one of the 2D images used to derive the surface geometry information"
8.	[1.5.a]: "wherein the data processing system further is configured to combining [sic] a number of sub-scans to generate a digital 3D representation of the object"
9.	[1.5.b]: "determining [sic] object color of a least one point of the generated digital 3D representation of the object from sub-scan color of the sub-scans combined to generate the digital 3D representation"
10.	[1.5.c]: "such that the digital 3D representation expresses both geometry and color profile of the object"53
11.	[1.6]: "wherein determining the object color comprises computing a weighted average of sub-scan color values derived for corresponding points in overlapping sub- scans at that point of the object surface."
	a) Fisker

	b)	Szeliski	57
	c)	Matsumoto	59
	d)	Motivation to Combine	62
E.	Claim 2: "T data proces of a part of information plurality of	The focus scanner according to claim 1, wherein the using system is configured for generating a sub-scan the object surface based on surface geometry and surface color information derived from a blocks of image sensor pixels."	70
F.	Claim 3: "T scanner sys configured light."	The focus scanner according to claim 1, where the stem comprises a pattern generating element for incorporating a spatial pattern in said probe	71
G.	Claim 4: "T deriving the information correlation captured by function, w information	The focus scanner according to claim 1, where e surface geometry information and surface color n comprises calculating for several 2D images a measure between the portion of the 2D image y said block of image sensor pixels and a weight where the weight function is determined based on n of the configuration of the spatial pattern."	72
H.	Claim 5: "T deriving the information identifying correspond	The focus scanner according to claim 4, wherein e surface geometry information and the surface color n for a block of image sensor pixels comprises the position along the optical axis at which the ing correlation measure has a maximum value."	75
I.	Claim 7: "T maximum of correlation and/or the h function for	The focus scanner according to claim 6, where the correlation measure value is the highest calculated measure value for the block of image sensor pixels highest maximum value of the correlation measure r the block of image sensor pixels."	76
J.	Claim 8: "T data proces color for a p color inform correlation correspond	The focus scanner according to claim 5, wherein the using system is configured for determining a sub-scan point on a generated sub-scan based on the surface mation of the 2D image in the series in which the measure has its maximum value for the ing block of image sensor pixels."	77

K.	Clair data j color color corre addit	n 9: "The focus scanner according to claim 8, wherein the processing system is configured for deriving the sub-scan of r a point on a generated sub-scan based on the surface information of the 2D images in the series in which the elation measure has its maximum value for the esponding block of image sensor pixels and on at least one ional 2D image."	80
L.	Clair data color deter	n 10: "The focus scanner according to claim 9, where the processing system is configured for interpolating surface information of at least two 2D images in a series when mining the sub-scan color."	82
M.	Clair color least wave throu	n 15: "The focus scanner according to claim 1, where the image sensor comprises a color filter array comprising at three types of colors filters, each allowing light in a known elength range, W1, W2, and W3 respectively, to propagate igh the color filter.".	83
N.	Clain surfa wave multi	n 16: "The focus scanner according to claim 15, where the ce geometry information is derived from light in a selected elength range of the spectrum provided by the ichromatic light source."	84
0.	Claim 18: "The focus scanner according to claim 16, wherein the selected wavelength range matches the W2 wavelength range."		85
P.	Claim 21: "The focus scanner according to claim 3, where the information of the saturated pixel in the computing of the pattern generating element is configured to provide that the spatial pattern comprises alternating dark and bright regions arranged in a checkerboard pattern."		85
Q.	Clair	n 22	86
	1.	[22.P]: "A method of recording surface geometry and surface color of an object"	87
	2.	[22.1]: "obtaining a focus scanner according to claim 1."	87
	3.	[22.2]: "illuminating the surface of said object with multichromatic probe light from said multichromatic light source".	88
		-	

DOCKET

Explore Litigation Insights

Docket Alarm provides insights to develop a more informed litigation strategy and the peace of mind of knowing you're on top of things.

Real-Time Litigation Alerts

Keep your litigation team up-to-date with **real-time** alerts and advanced team management tools built for the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal, State, and Administrative courts across the country.

Advanced Docket Research

With over 230 million records, Docket Alarm's cloud-native docket research platform finds what other services can't. Coverage includes Federal, State, plus PTAB, TTAB, ITC and NLRB decisions, all in one place.

Identify arguments that have been successful in the past with full text, pinpoint searching. Link to case law cited within any court document via Fastcase.

Analytics At Your Fingertips

Learn what happened the last time a particular judge, opposing counsel or company faced cases similar to yours.

Advanced out-of-the-box PTAB and TTAB analytics are always at your fingertips.

API

Docket Alarm offers a powerful API (application programming interface) to developers that want to integrate case filings into their apps.

LAW FIRMS

Build custom dashboards for your attorneys and clients with live data direct from the court.

Automate many repetitive legal tasks like conflict checks, document management, and marketing.

FINANCIAL INSTITUTIONS

Litigation and bankruptcy checks for companies and debtors.

E-DISCOVERY AND LEGAL VENDORS

Sync your system to PACER to automate legal marketing.

