United States Patent and Trademark Office

APPLICATION NO.		ISSUE DATE	PATENT NO.	ATTORNEY DOCKET NO.	CONFIRMATION NO.
14/259,011		04/26/2016	9326381	093814-0302	5037
20277	7590	04/06/2016			
MCDERMOT The McDermo 500 North Cap WASHINGTO	WIL Buil Str , DC	MERY LL .W. 1			

ISSUE NOTIFICATION

The projected patent number and issue date are specified above.
Determination of Patent Term Adjustment under 35 U.S.C. 154 (b)
(application filed on or after May 29, 2000)
The Patent Term Adjustment is 197 day(s). Any patent to issue from the above-identified application will include an indication of the adjustment on the front page.

If a Continued Prosecution Application (CPA) was filed in the above-identified application, the filing date that determines Patent Term Adjustment is the filing date of the most recent CPA.

Applicant will be able to obtain more detailed information by accessing the Patent Application Information Retrieval (PAIR) WEB site (http://pair.uspto.gov).

Any questions regarding the Patent Term Extension or Adjustment determination should be directed to the Office of Patent Legal Administration at (571)-272-7702. Questions relating to issue and publication fee payments should be directed to the Application Assistance Unit (AAU) of the Office of Data Management (ODM) at (571)-272-4200.

APPLICANT(s) (Please see PAIR WEB site http://pair.uspto.gov for additional applicants):
Byoung Hwa LEE, Suwon-Si, KOREA, REPUBLIC OF;
SAMSUNG ELECTRO-MECHANICS CO., LTD., Suwon-Si, KOREA, REPUBLIC OF;
Heung Kil PARK, Suwon-Si, KOREA, REPUBLIC OF;
Kyo Kwang LEE, Suwon-Si, KOREA, REPUBLIC OF;
Young Ghyu AHN, Suwon-Si, KOREA, REPUBLIC OF;
Sang Soo PARK, Suwon-Si, KOREA, REPUBLIC OF;
Soon Ju LEE, Suwon-Si, KOREA, REPUBLIC OF;

The United States represents the largest, most dynamic marketplace in the world and is an unparalleled location for business investment, innovation, and commercialization of new technologies. The USA offers tremendous resources and advantages for those who invest and manufacture goods here. Through SelectUSA, our nation works to encourage and facilitate business investment. To learn more about why the USA is the best country in the world to develop technology, manufacture products, and grow your business, visit SelectUSA.gov.

PART B - FEE(S) TRANSMITTAL

Complete and send this form, together with applicable fee(s), to: Mail Mail Stop ISSUE FEE Commissioner for Patents P.O. Box 1450
 Alexandria, Virginia 22313-1450
 or Fax (571)-273-2885

INSTRUCTIONS: This form should be used for transmitting the ISSUE FEE and PUBLICATION FEE (if required). Blocks 1 through 5 should be completed where appropriate. All further correspondence including the Patent, advance orders and notification of maintenance fees will be mailed to the current correspondence address as indicated unless corrected below or directed otherwise in Block 1, by (a) specifying a new correspondence address; and/or (b) indicating a separate "FEE ADDRESS" for maintenance fee notifications.

Note: A certificate of mailing can only be used for domestic mailings of the Fee(s) Transmittal. This certificate cannot be used for any other accompanying
CURRENT CORRESPONDENCE ADDRESS (Note: Use Block 1 for any change of address)

20277 01590 01/05/2016
MCDERMOTT WILL \& EMERY LLP
The McDermott Building
500 North Capitol Street, N.W.
WASHINGTON, DC 20001
papers. Each additional paper, such as an assignment or formal drawing, must have its own certificate of mailing or transmission.

Certificate of Mailing or Transmission
I hereby certify that this Fee(s) Transmittal is being deposited with the United States Postal Service with sufficient postage for first class mail in an envelope States Postal Service with sufficient postage for first class mail in an envelope
addressed to the Mail Stop ISSUE FEE address above, or being facsimile addressed to the Mail Stop ISSUE FEE address above, or being fact
transmitted to the USPTO (571) 273-2885, on the date indicated below.

	(Depositor's name)
(Signature)	
(Date)	

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
$14 / 259,011$	$04 / 22 / 2014$	Byoung Hwa LEE	$093814-0302$	

TITLE OF INVENTION: MULTILAYER CERAMIC CAPACITOR AND BOARD HAVING THE SAME MOUNTED THEREON

Page 2 of 3

Description	Fee Code	Quantity	Amount	Sub-Total in USD(\$)
Extension-of-Time:				
Miscellaneous:	Total in USD (\$)	960		

Payment information:

Submitted with Payment	yes
Payment Type	Deposit Account
Payment was successfully received in RAM	$\$ 960$
RAM confirmation Number	5296
Deposit Account	500417
Authorized User	AKHLAGHI, BABAK
The Director of the USPTO is hereby authorized to charge indicated fees and credit any overpayment as follows:	

File Listing:					
Document Number	Document Description	File Name	File Size(Bytes)/ Message Digest	Multi Part /.zip	Pages (if appl.)
1	Issue Fee Payment (PTO-85B)	0938140302issuefee.pdf	87056	no	1
Warnings:					
Information:					
2	Fee Worksheet (SB06)	fee-info.pdf	30606	no	2
			dd7b2a10ea398cb805559e337d2850e306 e86bc2		
Warnings:					
Information:					
Total Files Size (in bytes)			117662		
This Acknowledgement Receipt evidences receipt on the noted date by the USPTO of the indicated documents, characterized by the applicant, and including page counts, where applicable. It serves as evidence of receipt similar to a Post Card, as described in MPEP 503.					
New Applications Under 35 U.S.C. 111					
If a new application is being filed and the application includes the necessary components for a filing date (see 37 CFR 1.53(b)-(d) and MPEP 506), a Filing Receipt (37 CFR 1.54) will be issued in due course and the date shown on this Acknowledgement Receipt will establish the filing date of the application.					
National Stage of an International Application under 35 U.S.C. 371					
If a timely submission to enter the national stage of an international application is compliant with the conditions of 35 U.S.C. 371 and other applicable requirements a Form PCT/DO/EO/903 indicating acceptance of the application as a national stage submission under 35 U.S.C. 371 will be issued in addition to the Filing Receipt, in due course.					
New International Application Filed with the USPTO as a Receiving Office					
If a new international application is being filed and the international application includes the necessary components for an international filing date (see PCT Article 11 and MPEP 1810), a Notification of the International Application Number and of the International Filing Date (Form PCT/RO/105) will be issued in due course, subject to prescriptions concerning national security, and the date shown on this Acknowledgement Receipt will establish the international filing date of the application.					

United States Patent and Trademark Office

P.O. Box 1450
Alexandria, Vir
www.uspto.gov

Please find below and/or attached an Office communication concerning this application or proceeding.
The time period for reply, if any, is set in the attached communication.
Notice of the Office communication was sent electronically on above-indicated "Notification Date" to the following e-mail address(es):
ipdocketmwe@mwe.com

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number.

THIRD-PARTY		
SUBMISSION	Application Number	14259011
UNDER 37 CFR 1.290		

Receint date. $00 / 48 / 2015$ THIRD-PARTY	Application Number	$\begin{aligned} & 1425901 \text {-GAU: } 2848 \\ & 14259011 \end{aligned}$
SUBMISSION		
UNDER 37 CFR 1.290		

(The fee set forth in 37 CFR 1.290 (f) has been submitted herewith.

The fee set forth in 37 CFR 1.290(f) is not required because this submission lists three or fewer total items and, to the knowledge of - the person signing the statement after making reasonable inquiry, this submission is the first and the only submission under 35 U.S.C 122(e) filed in the above-identified application by the party making the submission or by a party in privity with the party.

This resubmission is being made responsive to a notification of non-compliance issued for an earlier filed third-party submission.
.... The corrections in this resubmission are limited to addressing the non-compliance. As such, the party making this resubmission: (1) requests that the Office apply the previously-paid fee set forth in 37 CFR 1.290 (f), or (2) states that no fee is required to accompany this resubmission as the undersigned is again making the fee exemption statement set forth in 37 CFR $1.290(\mathrm{~g})$.

| Signature | /Richard M. Moose/ | | |
| :--- | :--- | :--- | :--- | :--- |
| Name/Print | RICHARD M. MOOSE | Registration Number
 (if applicable) | 31226 |
| Examiner Signature | Nguyen Ha/ | Date Considered | $01 / 14 / 2016$ |

*EXAMINER: Signature indicates all documents listed above have been considered,except for citations through which a line is drawn. Draw line through citation if not considered. Include a copy of this form with next communication to applicant. 1. If known, enter kind of document by the appropriate symbols as indicated on the document under WIPO Standard ST.16. See MPEP 901.04(a). 2. Enter the country or patent office that issued the document, by two-letter code under WIPO standard ST.3. See MPEP 1851. 3. For Japanese patent documents, the indication of the year of the reign of the Emperor must precede the serial number of the patent document. 4. If known, enter the kind of document by the appropriate symbols as indicated on the document under WIPO Standard ST.16. See MPEP 901.04(a). 5. Check mark indicates translation attached. 6. Check mark indicates evidence of publication attached.

NOTICE OF ALLOWANCE AND FEE(S) DUE

20277
7590
01/05/2016
MCDERMOTT WILL \& EMERY LLP
The McDermott Building
500 North Capitol Street, N.W.
WASHINGTON, DC 20001

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
$14 / 259,011$	$04 / 22 / 2014$	Byoung Hwa LEE	$093814-0302$	
TITLE OF INVENTION: MULTILAYER CERAMIC CAPACITOR AND BOARD HAVING THE SAME MOUNTED THEREON				

APPLN. TYPE	ENTITY STATUS	ISSUE FEE DUE	PUBLICATION FEE DUE	PREV. PAID ISSUE FEE	TOTAL FEE(S) DUE	DATE DUE
nonprovisional	UNDISCOUNTED	$\$ 960$	$\$ 0$	$\$ 0$	$\$ 960$	$04 / 05 / 2016$

THE APPLICATION IDENTIFIED ABOVE HAS BEEN EXAMINED AND IS ALLOWED FOR ISSUANCE AS A PATENT. PROSECUTION ON THE MERITS IS CLOSED. THIS NOTICE OF ALLOWANCE IS NOT A GRANT OF PATENT RIGHTS. THIS APPLICATION IS SUBJECT TO WITHDRAWAL FROM ISSUE AT THE INITIATIVE OF THE OFFICE OR UPON PETITION BY THE APPLICANT. SEE 37 CFR 1.313 AND MPEP 1308.

THE ISSUE FEE AND PUBLICATION FEE (IF REQUIRED) MUST BE PAID WITHIN THREE MONTHS FROM THE MAILING DATE OF THIS NOTICE OR THIS APPLICATION SHALL BE REGARDED AS ABANDONED. THIS STATUTORY PERIOD CANNOT BE EXTENDED. SEE 35 U.S.C. 151. THE ISSUE FEE DUE INDICATED ABOVE DOES NOT REFLECT A CREDIT FOR ANY PREVIOUSLY PAID ISSUE FEE IN THIS APPLICATION. IF AN ISSUE FEE HAS PREVIOUSLY BEEN PAID IN THIS APPLICATION (AS SHOWN ABOVE), THE RETURN OF PART B OF THIS FORM WILL BE CONSIDERED A REQUEST TO REAPPLY THE PREVIOUSLY PAID ISSUE FEE TOWARD THE ISSUE FEE NOW DUE.

HOW TO REPLY TO THIS NOTICE:

I. Review the ENTITY STATUS shown above. If the ENTITY STATUS is shown as SMALL or MICRO, verify whether entitlement to that entity status still applies.
If the ENTITY STATUS is the same as shown above, pay the TOTAL FEE(S) DUE shown above.
If the ENTITY STATUS is changed from that shown above, on PART B - FEE(S) TRANSMITTAL, complete section number 5 titled "Change in Entity Status (from status indicated above)".
For purposes of this notice, small entity fees are $1 / 2$ the amount of undiscounted fees, and micro entity fees are $1 / 2$ the amount of small entity fees.
II. PART B $-\operatorname{FEE}(S)$ TRANSMITTAL, or its equivalent, must be completed and returned to the United States Patent and Trademark Office (USPTO) with your ISSUE FEE and PUBLICATION FEE (if required). If you are charging the fee(s) to your deposit account, section " $4 b$ " of Part B - Fee(s) Transmittal should be completed and an extra copy of the form should be submitted. If an equivalent of Part B is filed, a request to reapply a previously paid issue fee must be clearly made, and delays in processing may occur due to the difficulty in recognizing the paper as an equivalent of Part B.
III. All communications regarding this application must give the application number. Please direct all communications prior to issuance to Mail Stop ISSUE FEE unless advised to the contrary.

IMPORTANT REMINDER: Utility patents issuing on applications filed on or after Dec. 12 , 1980 may require payment of maintenance fees. It is patentee's responsibility to ensure timely payment of maintenance fees when due.

PART B - FEE(S) TRANSMITTAL

Complete and send this form, together with applicable fee(s), to: Mail Mail Stop ISSUE FEE Commissioner for Patents P.O. Box 1450
 Alexandria, Virginia 22313-1450
 or Fax (571)-273-2885

INSTRUCTIONS: This form should be used for transmitting the ISSUE FEE and PUBLICATION FEE (if required). Blocks 1 through 5 should be completed where appropriate. All further correspondence including the Patent, advance orders and notification of maintenance fees will be mailed to the current correspondence address as indicated unless corrected below or directed otherwise in Block 1, by (a) specifying a new correspondence address; and/or (b) indicating a separate "FEE ADDRESS" for maintenance fee notifications.

Note: A certificate of mailing can only be used for domestic mailings of the Fee(s) Transmittal. This certificate cannot be used for any other accompanying
CURRENT CORRESPONDENCE ADDRESS (Note: Use Block 1 for any change of address)

20277 7590 01/05/2016
MCDERMOTT WILL \& EMERY LLP
The McDermott Building
500 North Capitol Street, N.W.
WASHINGTON, DC 20001
papers. Each additional paper, such as an assignment or formal drawing, must have its own certificate of mailing or transmission.

Certificate of Mailing or Transmission
I hereby certify that this Fee(s) Transmittal is being deposited with the United States Postal Service with sufficient postage for first class mail in an envelope States Postal Service with sufficient postage for first class mail in an envelope
addressed to the Mail Stop ISSUE FEE address above, or being facsimile addressed to the Mail Stop ISSUE FEE address above, or being fact
transmitted to the USPTO (571) 273-2885, on the date indicated below.

	(Depositor's name)
(Signature)	
(Date)	

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
$14 / 259,011$	$04 / 22 / 2014$	Byoung Hwa LEE	$093814-0302$	

TITLE OF INVENTION: MULTILAYER CERAMIC CAPACITOR AND BOARD HAVING THE SAME MOUNTED THEREON

APPLN. TYPE	ENTITY STATUS	ISSUE FEE DUE	PUBLICATION FEE DUE	PREV. PAID ISSUE FEE	TOTAL FEE(S) DUE	DATE DUE
nonprovisional	UNDISCOUNTED	\$960	\$0	\$0	\$960	04/05/2016
	NER	ART UNIT	CLASS-SUBCLASS			
HA,	YEN T	2848	361-301400			
1. Change of correspondence address or indication of "Fee Address" (37 CFR 1.363). \square Change of correspondence address (or Change of Correspondence Address form $\mathrm{PTO} / \mathrm{SB} / 122$) attached. "Fee Address" indication (or "Fee Address" Indication form PTO/SB/47; Rev 03-02 or more recent) attached. Use of a Customer Number is required.			2. For printing on the patent front page, list (1) The names of up to 3 registered patent attorneys or agents OR, alternatively,			

3. ASSIGNEE NAME AND RESIDENCE DATA TO BE PRINTED ON THE PATENT (print or type)

PLEASE NOTE: Unless an assignee is identified below, no assignee data will appear on the patent. If an assignee is identified below, the document has been filed for recordation as set forth in 37 CFR 3.11. Completion of this form is NOT a substitute for filing an assignment.
(A) NAME OF ASSIGNEE
(B) RESIDENCE: (CITY and STATE OR COUNTRY)

Please check the appropriate assignee category or categories (will not be printed on the patent) : \quad Individual \square Corporation or other private group entity \square Government
4a. The following fee(s) are submitted:
Issue Fee

Page 2 of 3

Determination of Patent Term Adjustment under 35 U.S.C. 154 (b)

(Applications filed on or after May 29, 2000)
The Office has discontinued providing a Patent Term Adjustment (PTA) calculation with the Notice of Allowance.
Section 1(h)(2) of the AIA Technical Corrections Act amended 35 U.S.C. 154(b)(3)(B)(i) to eliminate the requirement that the Office provide a patent term adjustment determination with the notice of allowance. See Revisions to Patent Term Adjustment, 78 Fed. Reg. 19416, 19417 (Apr. 1, 2013). Therefore, the Office is no longer providing an initial patent term adjustment determination with the notice of allowance. The Office will continue to provide a patent term adjustment determination with the Issue Notification Letter that is mailed to applicant approximately three weeks prior to the issue date of the patent, and will include the patent term adjustment on the patent. Any request for reconsideration of the patent term adjustment determination (or reinstatement of patent term adjustment) should follow the process outlined in 37 CFR 1.705.

Any questions regarding the Patent Term Extension or Adjustment determination should be directed to the Office of Patent Legal Administration at (571)-272-7702. Questions relating to issue and publication fee payments should be directed to the Customer Service Center of the Office of Patent Publication at 1-(888)-786-0101 or (571)-272-4200.

OMB Clearance and PRA Burden Statement for PTOL-85 Part B

The Paperwork Reduction Act (PRA) of 1995 requires Federal agencies to obtain Office of Management and Budget approval before requesting most types of information from the public. When OMB approves an agency request to collect information from the public, OMB (i) provides a valid OMB Control Number and expiration date for the agency to display on the instrument that will be used to collect the information and (ii) requires the agency to inform the public about the OMB Control Number's legal significance in accordance with 5 CFR 1320.5(b).

The information collected by PTOL-85 Part B is required by 37 CFR 1.311. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 12 minutes to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, Virginia 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, Virginia 22313-1450. Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number.

Privacy Act Statement

The Privacy Act of 1974 (P.L. 93-579) requires that you be given certain information in connection with your submission of the attached form related to a patent application or patent. Accordingly, pursuant to the requirements of the Act, please be advised that: (1) the general authority for the collection of this information is 35 U.S.C. 2(b)(2); (2) furnishing of the information solicited is voluntary; and (3) the principal purpose for which the information is used by the U.S. Patent and Trademark Office is to process and/or examine your submission related to a patent application or patent. If you do not furnish the requested information, the U.S. Patent and Trademark Office may not be able to process and/or examine your submission, which may result in termination of proceedings or abandonment of the application or expiration of the patent.

The information provided by you in this form will be subject to the following routine uses:

1. The information on this form will be treated confidentially to the extent allowed under the Freedom of Information Act (5 U.S.C. 552) and the Privacy Act (5 U.S.C 552a). Records from this system of records may be disclosed to the Department of Justice to determine whether disclosure of these records is required by the Freedom of Information Act.
2. A record from this system of records may be disclosed, as a routine use, in the course of presenting evidence to a court, magistrate, or administrative tribunal, including disclosures to opposing counsel in the course of settlement negotiations.
3. A record in this system of records may be disclosed, as a routine use, to a Member of Congress submitting a request involving an individual, to whom the record pertains, when the individual has requested assistance from the Member with respect to the subject matter of the record.
4. A record in this system of records may be disclosed, as a routine use, to a contractor of the Agency having need for the information in order to perform a contract. Recipients of information shall be required to comply with the requirements of the Privacy Act of 1974, as amended, pursuant to 5 U.S.C. $552 \mathrm{a}(\mathrm{m})$.
5. A record related to an International Application filed under the Patent Cooperation Treaty in this system of records may be disclosed, as a routine use, to the International Bureau of the World Intellectual Property Organization, pursuant to the Patent Cooperation Treaty.
6. A record in this system of records may be disclosed, as a routine use, to another federal agency for purposes of National Security review (35 U.S.C. 181) and for review pursuant to the Atomic Energy Act (42 U.S.C. 218(c)).
7. A record from this system of records may be disclosed, as a routine use, to the Administrator, General Services, or his/her designee, during an inspection of records conducted by GSA as part of that agency's responsibility to recommend improvements in records management practices and programs, under authority of 44 U.S.C. 2904 and 2906. Such disclosure shall be made in accordance with the GSA regulations governing inspection of records for this purpose, and any other relevant (i.e., GSA or Commerce) directive. Such disclosure shall not be used to make determinations about individuals.
8. A record from this system of records may be disclosed, as a routine use, to the public after either publication of the application pursuant to 35 U.S.C. 122(b) or issuance of a patent pursuant to 35 U.S.C. 151. Further, a record may be disclosed, subject to the limitations of 37 CFR 1.14, as a routine use, to the public if the record was filed in an application which became abandoned or in which the proceedings were terminated and which application is referenced by either a published application, an application open to public inspection or an issued patent.
9. A record from this system of records may be disclosed, as a routine use, to a Federal, State, or local law enforcement agency, if the USPTO becomes aware of a violation or potential violation of law or regulation.

The present application, filed on or after March 16, 2013, is being examined under the first inventor to file provisions of the AIA.

DETAILED ACTION

Notice of Pre-AIA or AIA Status

The present application is being examined under the pre-AIA first to invent provisions.

Allowable Subject Matter

Claims 1-19 are allowed.
The following is an examiner's statement of reasons for allowance:
With respect to claims 1-7, the prior art alone or in combination does not teach the limitation of a multilayer ceramic capacitor, comprising: an active layer including a plurality of first and second internal electrodes disposed to face each other with at least one of the dielectric layers interposed therebetween and alternately exposed to the first or second side surface; upper and lower cover layers disposed on and below the active layer, respectively; and a first external electrode disposed on the first side surface of the ceramic body and electrically connected to the first internal electrodes and a second external electrode disposed on the second side surface and electrically connected to the second internal electrodes, wherein when a thickness of the ceramic body is defined as T and a width thereof is defined as $\mathrm{W}, 0.75 \mathrm{~W} \leq \mathrm{T} \leq 1.25 \mathrm{~W}$ is satisfied, when a gap between the first and second external electrodes is defined as $\mathrm{G}, 30 \mu \mathrm{~m} \leq \mathrm{G} \leq 0.9 \mathrm{~W}$ is satisfied, and an average number of dielectric grains in a single dielectric layer in a thickness direction thereof is 2 or greater.

With respect to claims 8-19, the prior art alone or in combination does not teach the limitation of a board having a multilayer ceramic capacitor mounted thereon, the board comprising: an active layer including a plurality of first and second internal electrodes disposed to face each other with at least one of the dielectric layers interposed therebetween and alternately exposed to the first or second side surface; upper and lower cover layers disposed on and below the active layer, respectively; and a first external electrode disposed on the first side surface of the ceramic body and electrically connected to the first internal electrode and a second external electrode disposed on the second side surface and electrically connected to the second internal electrode, when a thickness of the ceramic body is defined as T and a width thereof is defined as $\mathrm{W}, 0.75 \mathrm{~W} \leq \mathrm{T} \leq 1.25 \mathrm{~W}$ is satisfied, when a gap between the first and second external electrodes is defined as $\mathrm{G}, 30 \mu \mathrm{~m} \leq \mathrm{G} \leq 0.9 \mathrm{~W}$ is satisfied, and an average number of dielectric grains in a single dielectric layer in a thickness direction thereof is 2 or greater.

Any comments considered necessary by applicant must be submitted no later than the payment of the issue fee and, to avoid processing delays, should preferably accompany the issue fee. Such submissions should be clearly labeled "Comments on Statement of Reasons for Allowance."

Citation Relevant of Prior Art

The prior art made of record and not relied upon is considered pertinent to applicant's disclosure.
a. Kim et al. (US 9, 129,750).

Application/Control Number: 14/259,011
Art Unit: 2848
b. Milic et al. (US 9,009,240).
c. Kim et al. (US 8,737,037).
d. Kim et al. (US 8,437,115).
e. Yamaguchi et al. (US 8,383,535).
f. Dogan et al. (US 8,263,515).
g. Sekidou et al. (US 6,377,439).

Conclusion

Any inquiry concerning this communication or earlier communications from the examiner should be directed to NGUYEN T. HA whose telephone number is (571)2721974. The examiner can normally be reached on Monday-Friday from 8:30AM to 5:00PM.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Jenny L. Wagner can be reached on 571-272-5359. The fax phone number for the organization where this application or proceeding is assigned is 571-273-8300.

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see http://pair-direct.uspto.gov. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free). If you would like assistance from a

USPTO Customer Service Representative or access to the automated information system, call 800-786-9199 (IN USA OR CANADA) or 571-272-1000.

/NGUYEN T HA/

Primary Examiner, Art Unit 2848

Notice of References Cited	Application/Control No. 14/259,011	Applicant(s)/Patent Under Reexamination LEE ET AL.	
	Examiner NGUYEN T. HA	$\begin{aligned} & \hline \text { Art Unit } \\ & 2848 \end{aligned}$	Page 1 of 1

U.S. PATENT DOCUMENTS

$*$		Document Number Country Code-Number-Kind Code	Date MM-YYY	Name	CPC Classification	US Classification
$*$	A	US-9,129,750 B2	$09-2015$	Kim; Wi Heon	H01G4/1209	$1 / 1$
$*$	B	US-9,009,240 B2	$04-2015$	Milic-Frayling; Natasa	G06Q10/10	$370 / 432$
$*$	C	US-8,737,037 B2	$05-2014$	Kim; Jong Han	H01G4/0085	$361 / 305$
$*$	D	US-8,437,115 B2	$05-2013$	Kim; Sang Huk	H01G4/30	$361 / 305$
$*$	E	US-8,383,535 B2	$02-2013$	Yamaguchi; Katsuyoshi	C04B35/46	$361 / 321.4$
$*$	F	US-8,263,515 B2	$09-2012$	Dogan; Fatih	B82Y30/00	$501 / 127$
$*$	G	US-6,377,439 B1	$04-2002$	Sekidou; Hiroshi	H01G4/005	$361 / 303$
	H	US-				
	I	US-				
	J	US-				
	K	US-				
	L	US-				
	M	US-				

FOREIGN PATENT DOCUMENTS

$*$		Document Number Country Code-Number-Kind Code	Date MM-YYY	Country		Name
	N					
	O					
	P					
	Q					
	R					
	S					
	T					

NON-PATENT DOCUMENTS

$*$			
	U		
	V		

*A copy of this reference is not being furnished with this Office action. (See MPEP § 707.05(a).)
Dates in MM-YYYY format are publication dates. Classifications may be US or foreign.

INFORMATION DISCLOSURE STATEMENT BY APPLICANT (Not for submission under 37 CFR 1.99)	Application Number	
	Filing Date	2014-04-22
	First Named Inventor	Byoung Hwa LEE
	Art Unit	N/A
	Examiner Name	Not Yet Assigned
	Attorney Docket Number	er 093814-0302

U.S.PATENTS Remove											
Examiner Initial*	Cite No	Patent Number		Kind Code ${ }^{1}$	Issue Date		Name of Patentee or Applicant of cited Document		Pages,Columns,Lines where Relevant Passages or Relevant Figures Appear		
	1										
If you wish to add additional U.S. Patent citation information please click the Add button. Add											
U.S.PATENT APPLICATION PUBLICATIONS Remove											
Examiner Initial*	Cite No		Publication Number	Kind Code ${ }^{1}$	Publication Date		Name of Patentee or Applicant of cited Document		Pages,Columns,Lines where Relevant Passages or Relevant Figures Appear		
/ NH	1		20080310074	A1	2008-12-18		TOGASHI et al.		Corresponds to JP 2008-192757 A		
/ $\mathrm{NH} /$	2		20080310078	A1	2008-12-18		Lee et al.		Corresponds to KR$10-2008-0110180 \mathrm{~A}$		
If you wish to add additional U.S. Published Application citation information please click the Add button. Add											
FOREIGN PATENT DOCUMENTS Remove											
Examiner Initial*	Cite No	Fore Num	eign Document mber ${ }^{3}$	Country Code?		Kind Code	Publication Date	Name of Patentee or Applicant of cited Document		Pages,Columns,Lines where Relevant Passages or Relevant Figures Appear	T5
/ $\mathrm{NH} /$	1	2008	8-192757	JP		A	2008-08-21	TDK Corp		Corresponds to US 2008/0310074 A1	\square
NH	2	10-2	2008-0063680	KR		A	2008-07-07	Samsung ElectroMechanics Co., Ltd		wiEnglish Abstract	区

/ $\mathrm{NH} /$	3	10-2	KR	A	2008-12-18	Samsung ElectroMechanics Co., Ltd	Corresponds to US 2008/0310078 A1	\square
If you wish to add additional Foreign Patent Document citation information please click the Add button Ad								
NON-PATENT LITERATURE DOCUMENTS Remove								
Examiner Initials*	Cite No	Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the item (book, magazine, journal, serial, symposium, catalog, etc), date, pages(s), volume-issue number(s), publisher, city and/or country where published.						T5
	1							\square
If you wish to add additional non-patent literature document citation information please click the Add button Add								
EXAMINER SIGNATURE								
Examiner Signature			Nguyen $\mathrm{Ha} /$			Date Considered	12/21/2015	
*EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through a citation if not in conformance and not considered. Include copy of this form with next communication to applicant.								
${ }^{1}$ See Kind Codes of USPTO Patent Documents at www. USPTO.GOV or MPEP 901.04. ${ }^{2}$ Enter office that issued the document, by the two-letter code (WIPO Standard ST.3). ${ }^{3}$ For Japanese patent documents, the indication of the year of the reign of the Emperor must precede the serial number of the patent document. ${ }^{4}$ Kind of document by the appropriate symbols as indicated on the document under WIPO Standard ST. 16 if possible. ${ }^{5}$ Applicant is to place a check mark here if English language translation is attached.								

INFORMATION DISCLOSURE STATEMENT BY APPLICANT

(Not for submission under 37 CFR 1.99)

Application Number	$14259014-G A U: 2848$
Filing Date	$2014-04-22$
First Named Inventor	Byoung Hwa LEE
Art Unit	N/A
Examiner Name	Not Yet Assigned
Attorney Docket Number	$093814-0302$

CERTIFICATION STATEMENT

Please see 37 CFR 1.97 and 1.98 to make the appropriate selection(s):

That each item of information contained in the information disclosure statement was first cited in any communication from a foreign patent office in a counterpart foreign application not more than three months prior to the filing of the information disclosure statement. See 37 CFR 1.97(e)(1).

OR

That no item of information contained in the information disclosure statement was cited in a communication from a foreign patent office in a counterpart foreign application, and, to the knowledge of the person signing the certification after making reasonable inquiry, no item of information contained in the information disclosure statement was known to any individual designated in 37 CFR 1.56(c) more than three months prior to the filing of the information disclosure statement. See 37 CFR 1.97(e)(2).

See attached certification statement.
The fee set forth in 37 CFR 1.17 (p) has been submitted herewith.
A certification statement is not submitted herewith.

SIGNATURE

A signature of the applicant or representative is required in accordance with CFR $1.33,10.18$. Please see CFR 1.4(d) for the form of the signature.

Signature	IStephen A. Becker, P.C. I	Date (YYYY-MM-DD)	$2014-04-22$
Name/Print	Stephen A. Becker, P.C.	Registration Number	26527

This collection of information is required by 37 CFR 1.97 and 1.98. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 1 hour to complete, including gathering, preparing and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

Privacy Act Statement

The Privacy Act of 1974 (P.L. 93-579) requires that you be given certain information in connection with your submission of the attached form related to a patent application or patent. Accordingly, pursuant to the requirements of the Act, please be advised that: (1) the general authority for the collection of this information is 35 U.S.C. 2(b)(2); (2) furnishing of the information solicited is voluntary; and (3) the principal purpose for which the information is used by the U.S. Patent and Trademark Office is to process and/or examine your submission related to a patent application or patent. If you do not furnish the requested information, the U.S. Patent and Trademark Office may not be able to process and/or examine your submission, which may result in termination of proceedings or abandonment of the application or expiration of the patent.

The information provided by you in this form will be subject to the following routine uses:

1. The information on this form will be treated confidentially to the extent allowed under the Freedom of Information Act (5 U.S.C. 552) and the Privacy Act (5 U.S.C. 552a). Records from this system of records may be disclosed to the Department of Justice to determine whether the Freedom of Information Act requires disclosure of these record s.
2. A record from this system of records may be disclosed, as a routine use, in the course of presenting evidence to a court, magistrate, or administrative tribunal, including disclosures to opposing counsel in the course of settlement negotiations.
3. A record in this system of records may be disclosed, as a routine use, to a Member of Congress submitting a request involving an individual, to whom the record pertains, when the individual has requested assistance from the Member with respect to the subject matter of the record.
4. A record in this system of records may be disclosed, as a routine use, to a contractor of the Agency having need for the information in order to perform a contract. Recipients of information shall be required to comply with the requirements of the Privacy Act of 1974, as amended, pursuant to 5 U.S.C. 552a(m).
5. A record related to an International Application filed under the Patent Cooperation Treaty in this system of records may be disclosed, as a routine use, to the International Bureau of the World Intellectual Property Organization, pursuant to the Patent Cooperation Treaty.
6. A record in this system of records may be disclosed, as a routine use, to another federal agency for purposes of National Security review (35 U.S.C. 181) and for review pursuant to the Atomic Energy Act (42 U.S.C. 218(c)).
7. A record from this system of records may be disclosed, as a routine use, to the Administrator, General Services, or his/her designee, during an inspection of records conducted by GSA as part of that agency's responsibility to recommend improvements in records management practices and programs, under authority of 44 U.S.C. 2904 and 2906. Such disclosure shall be made in accordance with the GSA regulations governing inspection of records for this purpose, and any other relevant (i.e., GSA or Commerce) directive. Such disclosure shall not be used to make determinations about individuals.
8. A record from this system of records may be disclosed, as a routine use, to the public after either publication of the application pursuant to 35 U.S.C. 122(b) or issuance of a patent pursuant to 35 U.S.C. 151. Further, a record may be disclosed, subject to the limitations of 37 CFR 1.14, as a routine use, to the public if the record was filed in an application which became abandoned or in which the proceedings were terminated and which application is referenced by either a published application, an application open to public inspections or an issued patent.
9. A record from this system of records may be disclosed, as a routine use, to a Federal, State, or local law enforcement agency, if the USPTO becomes aware of a violation or potential violation of law or regulation.

EAST Search History

EAST Search History (Prior Art)

Ref \#	Hits	Search Query	DBs	Default Operator	Plurals	Time
L1	454	lee adj byoung adj hwa.in.	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	ON	$\begin{aligned} & 2015 / 12 / 16 \\ & 12: 31 \end{aligned}$
L2	11	1 and(thickness with ceramic adj body with dielectric adj grain\$1)	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	ON	$\int_{12: 32}^{2015 / 12 / 16}$
L3	256701	ho1g 4/30 and(thickness with ceramic adj body with dielectric adj grain\$1)	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	ON	$\int_{12: 36}^{2015 / 12 / 16}$
L4	21	h01g4/30 and(thickness with ceramic adj body with dielectric adj grain\$1)	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	ON	$\sqrt{2015 / 12 / 16}$
L5	22	ho1g4/ 12 and(thickness with ceramic adj body with dielectric adj grain\$1)	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM_TDB	OR	ON	$\sqrt{2015 / 12 / 16}$
L6	41	h01g4/12 and(thickness with ceramic adj body and dielectric adj grain\$1)	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	ON	$\int_{12: 40}^{2015 / 12 / 16}$
L7	37	h01g4/30 and(thickness with ceramic adj body and dielectric adj grain\$1)	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	ON	$\sqrt{2015 / 12 / 16}$
L8	9	h01g4/005 and(thickness with ceramic adj body and dielectric adj grain\$1)	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM_TDB	OR	ON	$\sqrt{2015 / 12 / 16}$
L9	1	"20130286539".PN.	US-PGPUB	OR	OFF	$\sqrt{2015 / 12 / 16} 1$
L10	1	"20120147518".PN.	US-PGPUB	OR	OFF	$\begin{aligned} & 2015 / 12 / 16 \\ & 13: 11 \end{aligned}$
L11	1	"8737037".PN.	USPAT; USOCR	OR	OFF	$\begin{aligned} & 2015 / 12 / 16 \\ & 13: 11 \end{aligned}$
L12	1	"8263515".PN.	USPAT; USOCR	OR	OFF	$\begin{aligned} & 2015 / 12 / 16 \\ & 13: 12 \end{aligned}$
L13	1	"6143109".PN.	USPAT; USOCR	OR	OFF	$\sqrt{2015 / 12 / 16}$
L14	1	"8383535".PN.	USPAT; USOCR	OR	OFF	${ }^{2015 / 12 / 16} 1$
L15	1	"6947276".PN.	USPAT; USOCR	OR	OFF	$\sqrt{2015 / 12 / 16} 1$
L16	7	h01g4/008 and(thickness with	US-PGPUB; USPAT;	OR	ON	2015/12/16

		ceramic adj body and dielectric adj grain\$1)	USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB			13:17		
L17	1	"20090067117".PN.	US-PGPUB	OR	OFF	$\begin{aligned} & 2015 / 12 / 16 \\ & 13: 18 \end{aligned}$		
L18	18	3 361/301.4 and(thickness with ceramic adj body and dielectric adj grain\$1)	$\begin{aligned} & \text { US-PGPUB; USPAT; } \\ & \text { USOCR; FPRS; EPO; } \\ & \text { JPB; DERWENT; } \\ & \text { BMM TDB } \\ & \hline \end{aligned}$	OR	ON	$\begin{aligned} & 2015 / 12 / 16 \\ & 13: 42 \end{aligned}$		
L19	1	"6947276".PN.	USPAT; USOCR	OR	OFF	$\sqrt{2015 / 12 / 16} 13: 48$		
L20	1	"6377439".PN.	USPAT; USOCR	OR	OFF	$1315 / 12 / 16$		
L21	1	"14259011"	USPGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	ON	3		
L22	17	\|" 200080310078 "	"82388116"		USPGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	ON	$=1315 / 12 / 16$
L23	0	22 and(thickness with ceramic adj body and dielectric adj grain\$1)	USPGPUB; USPAT; USOCR; FPRS: EPO; JPO; DERWENT; IBM TDB	OR	ON	$=13: 52$		
$\boxed{24}$	1	361/306.1-306.3 and(thickness with ceramic adj body and dielectric adj grain\$1)	USPGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	ON	$\frac{2015 / 12 / 16}{13: 57}$		
L25	1	"20050094351".PN.	USPGPUB	OR	OFF	$\begin{aligned} & 2015 / 12 / 16 \\ & 13: 59 \end{aligned}$		
L26	1	"7206187".PN.	USPAT; USOCR	OR	OFF	$\begin{aligned} & 2015 / 12 / 6 \\ & 13: 59 \end{aligned}$		
L27	1	"6437969".PN.	USPAT; USOCR	OR	OFF	$\sqrt{2015 / 12 / 16} 13: 59$		
L28	1	"6853536".PN.	USPAT; USOCR	OR	OFF	$\begin{aligned} & 2015 / 12 / 16 \\ & 13: 59 \end{aligned}$		
L29	4	361/303-305 and(thickness with ceramic adj body and dielectric adj grain\$1)	USPGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	ON	$\begin{aligned} & 2015 / 12 / 16 \\ & 14: 11 \end{aligned}$		

12/16/2015 2:25:56 PM

Issue Classification	Application／Control No． 14259011	Applicant（s）／Patent Under Reexamination LEE ET AL．
	Examiner NGUYEN T HA	Art Unit 2848

CPC					
Symbol				Type	Version
H05K	1	\＃	111	F	2013－01－01
H01G	4	\％	30	I	2013－01－01
H05K	3	\＃	3442	A	2013－01－01
H05K	2201	\％	09709	A	2013－01－01
H05K	2201	\％	0979	A	2013－01－01
H05K	2201	\＂	10015	A	2013－01－01
H05K	2201	§	2045	A	2013－01－01
H01G	4	K	12	A	2013－01－01
H01G	4	尔	1209	1	2013－01－01
H01G	4	そ，	232	I	2013－01－01
Y02P	70	K	611	A	2015－11－01
		K／			
		\＂			
		\％			
		\％			

CPC Combination Sets					
Symbol		Type	Set	Ranking	Version
	\}				
	亿．				

NONE		Total Claims Allowed：
（Assistant Examiner）	（Date）	
INGUYEN T HA Primary Examiner．Art Unit 2848 （Primary Examiner）	$12 / 16 / 2015$	O．G．Print Claim（s）

Issue Classification	Application/Control No. 14259011	Applicant(s)/Patent Under Reexamination LEE ET AL.
	Examiner NGUYEN T HA	Art Unit 2848

US ORIGINAL CLASSIFICATION						INTERNATIONAL CLASSIFICATION									
CLASS			SUBCLASS			CLAIMED						NON-CLAIMED			
361			301.4			H	0	0	1	G	4/30 (2006.01.01)				
CROSS REFERENCE(S)															
CLASS	SUBCLASS (ONE SUBCLASS PER BLOCK)														
361	303	305	306.1	306.3	321.1										

NONE		Total Claims Allowed:
(Assistant Examiner)	(Date)	
NGUYEN T HA/ Primary Examiner.Art Unit 2848 (Primary Examiner)	$12 / 16 / 2015$	O.G. Print Claim(s)
1	O.G. Print Figure	

Issue Classification	Application/Control No. 14259011	Applicant(s)/Patent Under Reexamination LEE ET AL.
	Examiner NGUYEN T HA	Art Unit 2848

区	Claims renumbered in the same order as presented by applicant							\square	CPA		\square т.D.	$\square \quad \mathrm{R}$.		R.1.47	
Final	Original														
	1		17												
	2		18												
	3		19												
	4														
	5														
	6														
	7														
	8														
	9														
	10														
	11														
	12														
	13														
	14														
	15														
	16														

NONE		Total Claims Allowed:
(Assistant Examiner)	(Date)	
NGUYEN T HA/ Primary Examiner.Art Unit 2848 (Primary Examiner)	$12 / 16 / 2015$	O.G. Print Claim(s)
1	O.G. Print Figure	

$\left.$| Search Notes | | |
| :--- | :--- | :--- |
| $\\|$ | 14259011 | Application/Control No. | | Applicant(s)/Patent Under |
| :--- |
| Reexamination |
| LEE ET AL. | \right\rvert\,

CPC- SEARCHED		
Symbol	Date	Examiner
H01G 4/30; H01G 4/06; H01G 4/12; H01G 4/005; H01G 4/008	$12 / 16 / 2015$	NH

CPC COMBINATION SETS - SEARCHED		
Symbol	Date	Examiner

US CLASSIFICATION SEARCHED			
Class	Subclass	Date	Examiner
361	$301.4,303-305,306.1,306.3,321.1,321.2$	$12 / 16 / 2015$	NH

SEARCH NOTES		
Search Notes	Date	Examiner
EAST SEARCHED (SEE SEARCH HISTORY)	$12 / 16 / 2015$	NH

INTERFERENCE SEARCH

US Class/ CPC Symbol	US Subclass / CPC Group	Date	Examiner
SAME AS ABOVE	SAME AS ABOVE	12/16/2015	NH

P.O. Box 1450

Alexandria, Virginia 22313-1450
www.uspto.gov

BIB DATA SHEET

CONFIRMATION NO. 5037

United States Patent and Trademark Office

Alexandria, Virginia 22313-1450
www.uspto.gov

Please find below and/or attached an Office communication concerning this application or proceeding.
The time period for reply, if any, is set in the attached communication.
Notice of the Office communication was sent electronically on above-indicated "Notification Date" to the following e-mail address(es):
mweipdocket@mwe.com

UNITED STATES DEPARTMENT OF COMMERCE
U.S. Patent and Trademark Office

Address: COMMISSIONER FOR PATENTS
P.O. Box 1450

Alexandria, Virginia 22313-1450

APPLICATION NO.I CONTROLNO.	FILING DATE	FIRST NAMED INVENTOR / PATENT IN REEXAMINATION		ATTORNEY DOCKET NO.
14/259,011 22 April, 2014		LEE ET AL.		093814-0302
			EXAMINER	
MCDERMOTT WILL \& EMERY LLP The McDermott Building 500 North Capitol Street, N.W. WASHINGTON, DC 20001			KARL TAMAI	
			ART UNIT	PAPER
			2800	20150617

DATE MAILED:

Please find below and/or attached an Office communication concerning this application or proceeding.

Commissioner for Patents

A third-party submission under 37 CFR 1.290 has been filed on $6 / 16 / 2015$, and is being entered in the above-identified application. Please allow a few days for the submission to be visible in the Patent Application Information Retrieval (PAIR) system.

Document 1

Patent No.:
Inventor:
Application No.:
Filed:
Application Publication Date:
Issue Date:

US Patent 8,238,116
Eggerding et al.
12/061,150
April 2, 2008
October 16, 2008
August 7, 2012

Concise Description:

Document 1 was published as an application and as a patent prior to the earliest possible priority date of June 14, 2013 for the subject Application USSN 14/259,011.

The subject Application USSN 14/259,011 is entitled "Multilayer Ceramic Capacitor and Board Having the Same Mounted Thereon." It relates in pertinent part to a particular capacitor arrangement which results in a reverse geometry capacitor having relatively low inductance.

Fig. 4 of subject application USSN 14/259,011 is exemplary (reproduced below):

FIG. 4
1 of 6

Examples from the specification of the subject Application USSN 14/259,011 regarding such reverse geometry feature arrangement and resulting relatively low inductance are recited below re application Paragraphs [0050], and [0056] through [0061] (emphasis added):
[0050] Referring to FIG. 1, in the multilayer ceramic capacitor according to an exemplary embodiment of the present disclosure, a 'length direction' refers to an 'L' direction, a 'width direction' refers to a 'W' direction, and a 'thickness direction' refers to a 'T' direction. Here, the 'thickness direction' may be the same as a stacking direction in which dielectric layers are stacked.
[0056] The first and second internal electrodes 121 and 122 may be disposed to face each other, having at least one of the dielectric layers 111 interposed therebetween, and may be alternately exposed to the first or second side surface S5 or S6.
[0057] The first and second internal electrodes 121 and 122 are alternately exposed to the first or second side surface S 5 or S 6 , such that a reverse geometry capacitor (RGC) or low inductance chip capacitor (LICC) may be obtained as described below.
[0058] In a general multilayer ceramic electronic component, external electrodes may be disposed on opposing end surfaces of the ceramic body in a length direction thereof.
[0059] In this case, when an alternative current (AC) voltage is applied to the external electrodes, a current path is relatively long, whereby an intensity of an induced magnetic field may be increased, resulting in an increase in inductance.
[0060] In order to solve this problem, the first and second external electrodes 131 and 132 in the exemplary embodiment of the present disclosure may be disposed on the first and second side surfaces S5 and S6 of the ceramic body 110 opposing each other in the width direction so as to reduce the current path.
[0061] In this case, since a distance between the first and second external electrodes 131 and 132 is relatively short, the current path may be reduced, ... resulting in a reduction in inductance.

Further exemplary information from the specification of the subject Application USSN 14/259, 011 relates to dielectric grain subject matter, as recited below re application Paragraphs [0087] and [0088] (emphasis added):
[0087] FIG. 5 is an enlarged view of part Z of FIG. 4.
[0088] Referring to FIG. 5, the average number of dielectric grains 111a present in a single dielectric layer 111 in a thickness direction thereof may be 2 or greater.

Such Fig. 5 of the USSN 14/259,011 is reproduced below:

Z
FIG. 5
Claim 1 of the subject Application USSN 14/259,011 relates to multilayered ceramic capacitor subject matter, and recites in pertinent part (bracketed comments added):

1. A multilayer ceramic capacitor, comprising:
a ceramic body [110] including dielectric layers [111] and having first and second main surfaces [S1, S2] opposing each other, first and second
side surfaces [S5, S6] opposing each other, and first and second end surfaces [S3, S4] opposing each other;
an active layer including a plurality of first and second internal electrodes $[121,122]$ disposed to face each other with at least one of the dielectric layers interposed therebetween and alternately exposed to the first or second side surface;
upper and lower cover layers [112, 113] disposed on and below the active layer, respectively; and
a first external electrode [131] disposed on the first side surface [S3] of the ceramic body and electrically connected to the first internal electrodes [121] and a second external electrode [132] disposed on the second side surface [S4] and electrically connected to the second internal electrodes [122],
wherein when a thickness of the ceramic body is defined as T and a width thereof is defined as $\mathrm{W}, 0.75 \mathrm{~W}$.Itoreq.T.Itoreq. 1.25 W is satisfied, when a gap between the first and second external electrodes is defined as G, 30 .mu.m.Itoreq.G.Itoreq.0.9W is satisfied \{Fig. 4], and an average number of dielectric grains in a single dielectric layer in a thickness direction thereof is 2 or greater [Fig. 5].

Independent claim 8 relates to a printed circuit board having at least two electrode pads, and such a multilayer ceramic capacitor mounted and soldered thereon.

Document 1 (D1) is entitled "Land Grid Feedthrough Low ESL Technology," and discloses subject matter pertinent to the subject Application USSN 14/259,011. See, for example, D1, Fig. 4a reproduced below and showing a reverse geometry multi-layer capacitor 400 mounted via traces 442 and 444 on printed circuit board 420:

4 of 6

Further, the D1 specification refers to reducing inductance in the context of both reverse geometry capacitors and low aspect ratio (length to width ratio). Both such features are pertinent to the subject Application USSN 14/259,011. See, for example, D1, specification Col. 1, lines 33-67 (emphasis added):

There may be several strategies for reducing equivalent series inductance, or ESL, of chip capacitors compared to standard multilayer chip capacitors. ... A first exemplary strategy for reducing ESL involves reverse geometry termination, such as employed in low inductance chip capacitor (LICC) designs. In such LICCs, electrodes are terminated on the long side of a chip instead of the short side. Since the total inductance of a chip capacitor is determined in part by its length to width ratio, LICC reverse geometry termination results in a reduction in inductance by as much as a factor of six from conventional MLC chips.

Interdigitated capacitors (IDCs) incorporate another strategy for reducing capacitor inductance [by] having a main portion and multiple tab portions that connect to respective terminations formed on the capacitor periphery.

A still further technology utilized for reduction in capacitor inductance involves [a] low inductance chip array (LICA) product, [which] achieves low inductance values by low aspect ratio of the electrodes....

Another aspect of D1 discloses the relationship between the gap between a pair of external electrodes (which creates a current path or loop) and the resulting inductance of such arrangement. See, D1, Fig. 2, per below and its related description:
"FIG. 2 provides a graphical comparison of general inductance trends for low inductance MLCC components especially depicting lumped ESL values versus cancellation loop width for multiple exemplary LGA capacitor embodiments of differing sizes;..."

FIG. 2

Thus, per the foregoing, at least the exemplary above-indicated disclosure of Document 1 subject matter as relates to lowering inductance for a multilayer ceramic capacitor is pertinent to the subject Application USSN 14/259,011.

Third Party Submission for Application USSN 14/259,011

Document 2

Patent No.:
Inventor:
Application No.:
Filed:
Application Publication Date:
Issue Date:

US Patent 7,414,857
Ritter et al.
11/588,104
October 26, 2006
May 3, 2007
August 19, 2008

Concise Description:

Document 2 was published as a patent prior to the earliest possible priority date of June 14, 2013 for the subject Application USSN 14/259, 011.

The subject Application USSN 14/259,011 is entitled "Multilayer Ceramic Capacitor and Board Having the Same Mounted Thereon." It relates in pertinent part to a particular capacitor arrangement which results in a reverse geometry capacitor having relatively low inductance.

Fig. 4 of subject application USSN 14/259,011 is exemplary (reproduced below):

FIG. 4

1 of 6

Examples from the specification of the subject Application USSN 14/259,011 regarding such reverse geometry feature arrangement and resulting relatively low inductance are recited below re application Paragraphs [0050], and [0056] through [0061] (emphasis added):
[0050] Referring to FIG. 1, in the multilayer ceramic capacitor according to an exemplary embodiment of the present disclosure, a 'length direction' refers to an 'L' direction, a 'width direction' refers to a 'W' direction, and a 'thickness direction' refers to a ' T ' direction. Here, the 'thickness direction' may be the same as a stacking direction in which dielectric layers are stacked.
[0056] The first and second internal electrodes 121 and 122 may be disposed to face each other, having at least one of the dielectric layers 111 interposed therebetween, and may be alternately exposed to the first or second side surface S5 or S6.
[0057] The first and second internal electrodes 121 and 122 are alternately exposed to the first or second side surface S 5 or S 6 , such that a reverse geometry capacitor (RGC) or low inductance chip capacitor (LICC) may be obtained as described below.
[0058] In a general multilayer ceramic electronic component, external electrodes may be disposed on opposing end surfaces of the ceramic body in a length direction thereof.
[0059] In this case, when an alternative current (AC) voltage is applied to the external electrodes, a current path is relatively long, whereby an intensity of an induced magnetic field may be increased, resulting in an increase in inductance.
[0060] In order to solve this problem, the first and second external electrodes 131 and 132 in the exemplary embodiment of the present disclosure may be disposed on the first and second side surfaces S5 and S6 of the ceramic body 110 opposing each other in the width direction so

as to reduce the current path.

[0061] In this case, since a distance between the first and second external electrodes 131 and 132 is relatively short, the current path may be reduced, ... resulting in a reduction in inductance.

Further exemplary information from the specification of the subject Application USSN 14/259, 011 relates to dielectric grain subject matter, as recited below re application Paragraphs [0087] and [0088] (emphasis added):
[0087] FIG. 5 is an enlarged view of part Z of FIG. 4.
[0088] Referring to FIG. 5, the average number of dielectric grains 111a present in a single dielectric layer 111 in a thickness direction thereof may be 2 or greater.

Such Fig. 5 of the USSN 14/259,011 is reproduced below:

Z
FIG. 5

Claim 1 of the subject Application USSN 14/259,011 relates to multilayered ceramic capacitor subject matter, and recites in pertinent part (bracketed comments added):

1. A multilayer ceramic capacitor, comprising:
a ceramic body [110] including dielectric layers [111] and having first and second main surfaces [S1, S2] opposing each other, first and second
side surfaces [S5, S6] opposing each other, and first and second end surfaces [S3, S4] opposing each other;
an active layer including a plurality of first and second internal electrodes $[121,122]$ disposed to face each other with at least one of the dielectric layers interposed therebetween and alternately exposed to the first or second side surface;
upper and lower cover layers [112, 113] disposed on and below the active layer, respectively; and
a first external electrode [131] disposed on the first side surface [S3] of the ceramic body and electrically connected to the first internal electrodes [121] and a second external electrode [132] disposed on the second side surface [S4] and electrically connected to the second internal electrodes [122],
wherein when a thickness of the ceramic body is defined as T and a width thereof is defined as $\mathrm{W}, 0.75 \mathrm{~W}$.Itoreq.T.Itoreq. 1.25 W is satisfied, when a gap between the first and second external electrodes is defined as G, 30 .mu.m.Itoreq.G.Itoreq. 0.9 W is satisfied \{Fig. 4], and an average number of dielectric grains in a single dielectric layer in a thickness direction thereof is 2 or greater [Fig. 5].

Independent claim 8 relates to a printed circuit board having at least two electrode pads, and such a multilayer ceramic capacitor mounted and soldered thereon.

Document 2 (D2) is entitled "Multilayer Ceramic Capacitor With Internal Current Cancellation and Bottom Terminals," and discloses subject matter pertinent to the subject Application USSN 14/259,011. See, for example, D2, Fig. 4 reproduced below and showing a ceramic multi-layer capacitor 42 mounted on printed circuit board 22 per vias and solder pads.

FIG. 4
4 of 6

Further, the D2 specification refers to reducing inductance in the context of both reverse geometry capacitors and low aspect ratio (length to width ratio). Both such features are pertinent to the subject Application USSN 14/259,011. See, for example, D2, specification Col. 1, lines 28-60 (emphasis added):

> The prior art includes several strategies for reducing equivalent series inductance, or ESL, of chip capacitors compared to standard multilayer chip capacitors. A first exemplary strategy involves reverse geometry termination, such as employed in low inductance chip capacitor (LICC) designs [which] are terminated on the long side of a chip instead of the short side. Since the total inductance of a chip capacitor is determined in part by its length to width ratio, LICC reverse geometry termination results in a reduction in inductance by as much as a factor of six from conventional MLC chips.

> Interdigitated capacitors (IDCs) incorporate a second known strategy for reducing capacitor inductance [by] having a main portion and multiple tab portions that connect to respective terminations formed on the capacitor periphery.

...

A still further known technology utilized for reduction in capacitor inductance involves [a] low inductance chip array (LICA) product, [which] achieves low inductance values by low aspect ratio of the electrodes....

Another aspect of D2 discloses the relationship between the gap between a pair of external electrodes (which creates a current path or loop) and the resulting inductance of such arrangement. See, D2, Fig. 3, per beiow and its reiated description:
"FIG. 3 provides a graphical illustration of a general inductance trend for low inductance chip capacitors, especially depicting lumped ESL values versus cancellation loop width for multiple exemplary capacitor embodiments of differing sizes;"

FIG. 3

Thus, per the foregoing, at least the exemplary above-indicated disclosure of Document 2 subject matter as relates to lowering inductance for a multilayer ceramic capacitor is pertinent to the subject Application USSN 14/259,011.

Document 3

Patent No.:
Inventor:
Application No.:
Filed:
Issue Date:

US Patent 5,134,540
Rutt
07/758,623
September 12, 1991
July 28, 1992

Concise Description:

Document 3 was published as a patent prior to the earliest possible priority date of June 14, 2013 for the subject Application USSN 14/259,011.

The subject Application USSN 14/259,011 is entitled "Multilayer Ceramic Capacitor and Board Having the Same Mounted Thereon." It relates in pertinent part to a particular capacitor arrangement which results in a reverse geometry capacitor having relatively low inductance.

Fig. 4 of subject application USSN 14/259,011 is exemplary (reproduced below):

FIG. 4

1 of 6

Examples from the specification of the subject Application USSN 14/259,011 regarding such reverse geometry feature arrangement and resulting relatively low inductance are recited below re application Paragraphs [0050], and [0056] through [0061] (emphasis added):
[0050] Referring to FIG. 1, in the multilayer ceramic capacitor according to an exemplary embodiment of the present disclosure, a 'length direction' refers to an 'L' direction, a 'width direction' refers to a 'W' direction, and a 'thickness direction' refers to a ' T ' direction. Here, the 'thickness direction' may be the same as a stacking direction in which dielectric layers are stacked.
[0056] The first and second internal electrodes 121 and 122 may be disposed to face each other, having at least one of the dielectric layers 111 interposed therebetween, and may be alternately exposed to the first or second side surface S5 or S6.
[0057] The first and second internal electrodes 121 and 122 are alternately exposed to the first or second side surface S5 or S6, such that a reverse geometry capacitor (RGC) or low inductance chip capacitor (LICC) may be obtained as described below.
[0058] In a general multilayer ceramic electronic component, external electrodes may be disposed on opposing end surfaces of the ceramic body in a length direction thereof.
[0059] In this case, when an alternative current (AC) voltage is applied to the external electrodes, a current path is relatively long, whereby an intensity of an induced magnetic field may be increased, resulting in an increase in inductance.
[0060] In order to solve this problem, the first and second external electrodes 131 and 132 in the exemplary embodiment of the present disclosure may be disposed on the first and second side surfaces S 5 and S6 of the ceramic body 110 opposing each other in the width direction so as to reduce the current path.
[0061] In this case, since a distance between the first and second external electrodes 131 and 132 is relatively short, the current path may be reduced, ... resulting in a reduction in inductance.

Further exemplary information from the specification of the subject Application USSN 14/259,011 relates to dielectric grain subject matter, as recited below re application Paragraphs [0087] and [0088] (emphasis added):
[0087] FIG. 5 is an enlarged view of part Z of FIG. 4.
[0088] Referring to FIG. 5, the average number of dielectric grains 111a present in a single dielectric layer 111 in a thickness direction thereof may be 2 or greater.

Such Fig. 5 of the USSN 14/259,011 is reproduced below:

Z
FIG. 5

Claim 1 of the subject Application USSN 14/259,011 relates to multilayered ceramic capacitor subject matter, and recites in pertinent part (bracketed comments added):

1. A multilayer ceramic capacitor, comprising:
a ceramic body [110] including dielectric layers [111] and having first and second main surfaces [S1, S2] opposing each other, first and second
side surfaces [S5, S6] opposing each other, and first and second end surfaces [S3, S4] opposing each other;
an active layer including a plurality of first and second internal electrodes [121, 122] disposed to face each other with at least one of the dielectric layers interposed therebetween and alternately exposed to the first or second side surface;
upper and lower cover layers $[112,113]$ disposed on and below the active layer, respectively; and
a first external electrode [131] disposed on the first side surface [S3] of the ceramic body and electrically connected to the first internal electrodes [121] and a second external electrode [132] disposed on the second side surface [S4] and electrically connected to the second internal electrodes [122],
wherein when a thickness of the ceramic body is defined as T and a width thereof is defined as $\mathrm{W}, 0.75 \mathrm{~W}$.Itoreq.T.Itoreq. 1.25 W is satisfied, when a gap between the first and second external electrodes is defined as G, 30 .mu.m.Itoreq.G.Itoreq. 0.9 W is satisfied \{Fig. 4], and an average number of dielectric grains in a single dielectric layer in a thickness direction thereof is 2 or greater [Fig. 5].

Independent claim 8 relates to a printed circuit board having at least two electrode pads, and such a multilayer ceramic capacitor mounted and soldered thereon.

Document 3 (D3) is entitled "Varistor or Capacitor and Method of Making Same," and discloses subject matter pertinent to the subject Application USSN 14/259,011.
See, for example, D3, Figs. 1 and 1A reproduced below and described as "FIG. 1. is a schematic sectional view through a capacitor or varistor in accordance with the invention. FIG. 1A is a magnified section of the circled component portion of FIG. 1.":

FIG. I

4 of 6

The D3 specification refers to features 13, 14, and 15 as dielectric layers, and enlarged Fig. 1A shows grains 24 and 25 regarding one illustrated exemplary grain boundary. See, for example, D3, specification Col. 3, lines 47-56 and Col. 4, lines 3140.

The D3 Abstract states in pertinent part:

In accordance with the method the ceramic layers of the varistor are formed by providing at least two strata separated by a boundary layer which resists grain growth thereacross. ... By this method the ceramic layers have a predictable number of grain boundaries between adjacent electrodes.

Since those of ordinary skill in the art understand that grain boundaries are around grains, plural "boundaries" clearly implies plurality of grains.

Another aspect of D3 discloses more explicitly that the more grains, the higher the break down voltage, while a singular grain is not favorable. See, D3, Col. 1, lines 57-69:

It has been experimentally determined that the breakdown voltage of a varistor-ceramic formulation is a function of the number of grain boundaries of the ceramic grains intervening between adjacent electrode layers. The greater the number of boundaries between adjacent layers, the higher the break down voltage necessary to provide a conductive path.

5 of 6

Conversely, in the event of a grain size such that grains of ceramic directly span the distance between adjacent electrodes, the device will exhibit break down or pass current at extremely low voltages.

As stated further in D3, Col. 3, lines 15-17: "In this manner, there may be formed a ceramic layer wherein the number of grains taken in a depth-wise direction may be accurately controlled."

Also, D3, claim 3 states in pertinent part: "3. In a monolithic ceramic ... capacitor comprising at least one ceramic dielectric layer, ... said layer being comprised of at least two discrete strata, each of said strata being comprised of grains of ceramic material,"

Therefore, the average number of dielectric grains is 2 or greater.
Thus, per the foregoing, at least the exemplary above-indicated disclosure of Document 3 subject matter as relates to grain related features for a ceramic capacitor is pertinent to the subject Application USSN 14/259,011.

Document 4

Patent No.:
Inventor:
Application No.:
Filed:
Issue Date:

US Patent 5,952,040
Yadav et al.
08/730,661
October 11, 1996
September 14, 1999

Concise Description:

Document 4 was published as a patent prior to the earliest possible priority date of June 14, 2013 for the subject Application USSN 14/259,011.

The subject Application USSN 14/259,011 is entitled "Multilayer Ceramic Capacitor and Board Having the Same Mounted Thereon." It relates in pertinent part to a particular capacitor arrangement which results in a reverse geometry capacitor having relatively low inductance.

Fig. 4 of subject application USSN 14/259,011 is exemplary (reproduced below):

FIG. 4

1 of 5

Examples from the specification of the subject Application USSN 14/259,011 regarding such reverse geometry feature arrangement and resulting relatively low inductance are recited below re application Paragraphs [0050], and [0056] through [0061] (emphasis added):
[0050] Referring to FIG. 1, in the multilayer ceramic capacitor according to an exemplary embodiment of the present disclosure, a 'length direction' refers to an 'L' direction, a 'width direction' refers to a 'W' direction, and a 'thickness direction' refers to a 'T' direction. Here, the 'thickness direction' may be the same as a stacking direction in which dielectric layers are stacked.
[0056] The first and second internal electrodes 121 and 122 may be disposed to face each other, having at least one of the dielectric layers 111 interposed therebetween, and may be alternately exposed to the first or second side surface S5 or S6.
[0057] The first and second internal electrodes 121 and 122 are alternately exposed to the first or second side surface S 5 or S 6 , such that a reverse geometry capacitor (RGC) or low inductance chip capacitor (LICC) may be obtained as described below.
[0058] In a general multilayer ceramic electronic component, external electrodes may be disposed on opposing end surfaces of the ceramic body in a length direction thereof.
[0059] In this case, when an alternative current (AC) voltage is applied to the external electrodes, a current path is relatively long, whereby an intensity of an induced magnetic field may be increased, resulting in an increase in inductance.
[0060] In order to solve this problem, the first and second external electrodes 131 and 132 in the exemplary embodiment of the present disclosure may be disposed on the first and second side surfaces S 5 and S6 of the ceramic body 110 opposing each other in the width direction so as to reduce the current path.
[0061] In this case, since a distance between the first and second external electrodes 131 and 132 is relatively short, the current path may be reduced, ... resulting in a reduction in inductance.

Further exemplary information from the specification of the subject Application USSN 14/259,011 relates to dielectric grain subject matter, as recited below re application Paragraphs [0087] and [0088] (emphasis added):
[0087] FIG. 5 is an enlarged view of part Z of FIG. 4.
[0088] Referring to FIG. 5, the average number of dielectric grains 111a present in a single dielectric layer 111 in a thickness direction thereof may be 2 or greater.

Such Fig. 5 of the USSN 14/259,011 is reproduced below:

Z
FIG. 5

Claim 1 of the subject Application USSN 14/259,011 relates to multilayered ceramic capacitor subject matter, and recites in pertinent part (bracketed comments added):

1. A multilayer ceramic capacitor, comprising:
a ceramic body [110] including dielectric layers [111] and having first and second main surfaces [S1, S2] opposing each other, first and second
side surfaces [S5, S6] opposing each other, and first and second end surfaces [S3, S4] opposing each other;
an active layer including a plurality of first and second internal electrodes [121, 122] disposed to face each other with at least one of the dielectric layers interposed therebetween and alternately exposed to the first or second side surface;
upper and lower cover layers $[112,113]$ disposed on and below the active layer, respectively; and
a first external electrode [131] disposed on the first side surface [S3] of the ceramic body and electrically connected to the first internal electrodes [121] and a second external electrode [132] disposed on the second side surface [S4] and electrically connected to the second internal electrodes [122],
wherein when a thickness of the ceramic body is defined as T and a width thereof is defined as $\mathrm{W}, 0.75 \mathrm{~W}$.Itoreq.T.Itoreq. 1.25 W is satisfied, when a gap between the first and second external electrodes is defined as G, 30 .mu.m.Itoreq.G.Itoreq. 0.9 W is satisfied \{Fig. 4], and an average number of dielectric grains in a single dielectric layer in a thickness direction thereof is 2 or greater [Fig. 5].

Independent claim 8 relates to a printed circuit board having at least two electrode pads, and such a multilayer ceramic capacitor mounted and soldered thereon.

Document 4 (D4) is entitled "Passive Electronic Components From NanoPrecision Engineered Materials," and discloses subject matter pertinent to the subject Application USSN 14/259,011. In particular, D4 relates in part to ceramic layers coated with electrodes as part of passive electronic components.

See, for example, D4, specification Col. 6, lines 44-48 (emphasis added):

Therefore, according to the foregoing objectives, one aspect of this invention involves the use of nanostructured precursors (narrowly distributed nanosize powders with mean grain size preferably less than 100 nm and standard deviation preferably less than 25 nm) to form the ceramic layers, electrode layers, or both, in passive electronic components.

Another aspect of D4 discloses the benefit of using multiple grains, indicating that the strength is better, and that the resulting electrical parameters are improved.

See, D4, Col. 8 lines 52 through Col. 9, line 10 (emphasis added):

A primary aspect of this invention lies in the recognition that a standing barrier to markedly improved technology in the manufacture of passive electronic components exists in the limitations inherent with the grain size of the ceramic and electrode material used. ... Since precursor powders are not ductile, the films of ceramic material have to be packed several grains thick and sintered to ensure that there are no pin-holes in the resulting ceramic and electrode layers. Thus, even though the theoretical limit with existing materials and manufacturing technology on the thickness of the ceramic layer is in the 2 to 5 .mu.m range, current passive electronic components are routinely made with 5 to 20 .mu.m thick ceramic layers. Attempts to reduce this thickness to the theoretical limit have resulted in problems of electrical, thermal, mechanical, or chemical breakdown with consequent reliability issues. Thus, it is clear that the minimum thickness of ceramic and electrode layers attainable with conventional processes is limited by the grain size of the precursor ceramic and electrode material.

In "Example 1 - Capacitor", the subject layer was about 8 to 9 grains thick. See, D4, Col. 15, lines 62-65.

Thus, per the foregoing, at least the exemplary above-indicated disclosure of Document 4 subject matter as relates to grain thickness for dielectric layers of a ceramic capacitor is pertinent to the subject Application USSN 14/259,011.

Third Pary Submission for Application USSN $14 / 259,011$

Document

DesignCon Eas 2005

The:
Subject:

Presenters: Joseph M. Hock et al.
Paper Publication Year: 2005

Concise Description:

Documem 5 was published as a paper in 2005 prior to the eaniest possible prionty date of June $\$ 4,2013$ for the subject Application USSN $14 / 259,011$.

The subject Application USSN 14259,011 is entited "Mutiayer Ceramic Capacitor and Board Having the Same Mounted Thereon." It relates in peninent part to a paricular capacitor arrangement which results in a reverse geometry capachor having relahvely low inductance.

Fig. 4 of subject application USSN 14259,0 I is exemplary (reproduced below):

Fic. 4
Page 1 of 7

Examples from the specification of the subject Application USSN
$14 / 259,011$ regarding such reverse geometry feature arrangement and resulting relatively low inductance are recited below re application Paragraphs [0050, and [0050] through 10061 \} (emphasis added):
[0050] Refering to FIG. 1 , in the muthayer ceramic capacitor according to an exemplay embodiment of the present disclosure, a 'length direction' refers to an 'L'direction, a 'widh direction' refers to a "W drection, and a thickness direction' reters to a 'T direction. Here, the thickness direction' may be the same as a stacking direction in which dielectric layers are stacked.
$10056]$ The first and second internal electrodes 121 and 122 may be disposed to face each oher, having at leas one of the dielectre layers 111 interposed therebeheen, and may be altemately exposed to the first or second side sumace $\$ 5$ or 56 .
[0057] The first and second intemal electrodes 121 and 122 are altematey exposed to the first or second side sutace 55 or S 6 , such that a reverse geometry capacitor (RGC) or low inductance chie capacitor ILICCImay be obtamed as described below.
[0058] In a general multilayer ceramic electronic component, extemal electrodes may be disposed on opposing end sumaces of the ceramic body in a ength direction thereof.

100591 In this case, when an atternative current (AC) voltage is appled to the extemal electrodes, a curren path is relatively long, whereby an intensity of an induced magneti field may be increased, resulting in an increase in inductance.
[0060] [m order to solve this problem, the first and second extemal electrodes 131 and 132 in the exemplary embodment of the present disclosure may be disposed on the first and second side suraces 55 and S 6 of the ceramic body $\$ 10$ opposing each other in the width drection so as to reduce the current path.
[0061] In this case, since a distance between the first and second extermat electrodes 131 and 132 is relatively short, the current path may be reduced, axeathing in a reduction im inductance.

Futher exemplary information from the specification of the subject Application USSN 14259,011 relates to dielectric grain subject matter, as recited below re application Paragraphs [0087] and [0088\} (emphasis added):
[0087] FiG. 5 is an enlarged view of pan 2 of FiG. A.
[0088] Referng to Fi6. 5, the average number of dielectric grans 11 a present in a single dielectric layer 111 in a thickness direction thereof may be 2 or greater.

Such Fig. 5 of the USSN 14/259,011 is reproduced below:

z
FIG. 5
Clam I of the subject Application USSN 14259,011 rebates to muthayered ceramic capacitor subject matter, and reckes in pertinem part foracketed comments added):

1. A multiayer ceramic capacitor, comprising:
a ceramic body [110] including dielectric layers [111] and having first and second main surfaces [S1, S2] opposing each other, firet
and second side surfaces [S5, S6] opposing each other, and frst and second end surfaces [53,54$]$ opposing each other;
an actue layer including a pharaity of first and second internat electrodes $[2\}, 122]$ disposed to tace each other with at least one of the dielectric layers interposed therebeween and altemately exposed to the first or second side surtace; upper and lower cover layers [112, 113] disposed on and below the active layer, respectively; and
a first extemal electrode [131] disposed on the first side surface [S3] of the ceramic body and electrcally connected to the first intemal electrodes [121] and a second extemal electrode [132] disposed on the second side surace [S4] and electrically connected to the second intemal electrodes [122].
wheren when a thickness of the ceramic body is defned as t and a width thereof is defined as $\mathrm{W}, 0.75 \mathrm{~W}$ horeq. Thtoreq. 1.25 W is satisfied, When a gap between the frst and second extemal electrodes is detined as $\mathrm{G}, 30$. mu.m.itoreq. Gitoreq. 0.3 W is satisfied [Fig, 4], and an average number of dielectric grains in a single dielectric layer in a thickness direction thereof is 2 or greater [Fig. 5].

Independent cam 8 relates to a printed circut board having at least two electrode pads, and such a multiayer ceramic capacitor mounted and soldered thereon.

Document 5 (D5) is entited "inductance of Bypass Capacitors; How to Define, How to Measure, How to Simulate," and discloses subject matter pentnent to the subject Applicalion USSK 14259,011 . See, for example, DS, page 13, and related disclosure, in part reproduced below and relating to the use of both reverse geometry and lowered aspect ratio for reducing inductance in a capacitor (emphasis added):

The aspect raxio limitation

There is a immation to how low of an inductance can be achieved with the reverse geometry approach. If we consider the aspect ratio AR of the device as the ratio of the fength divided by the width. the aseect ratio for the reverse geometry nam greviously

Page 4 of 7
discussed goes from 2 to 0.5 (1206 to 0612). Using the effects established with that conversion, it follows that the reduction of 50% in ESL should decay another 50% for each having of the aspect ratio.

Limitation of lower AR

hower An reduces phat 2.

эpиmama AR - - 92

Thus, \mathbf{D} shows that it is kown that both reverse geomety practices and lowered aspect rato features reduce montance in the capactor context.

D5 also illustrated and commented on inductance in the context of a reverse geometry capactor having respective extemal electrodes which have a gap between their respective pair. See, D5, pages 18 and 19 thereof, including Fig. 12 as follows:

ESL changes with Frequency

Figure 12. Two diskot ESts are apparent if measuring at sebresonance and well above this frequency.

See also 05 , page 39 , regarding geometry relative to inductance for a muinlayer ceramic capacitor (emphasis added):

Problem definition

A simple equivalent circuit for bypass capacitors has three major elements that users need to consider (Figure 1): Capacitance (C), Equivalent Series Resistance (ESR) and Equvalent Series Inductance (ESL). C and ESR are primariy detemined by the capacitor itself, bu since inductance is a loop property. 5 SL strongly degends on the geometry of application (Figure 2). The ilustration shows a mblth-layer ceramic capacitor inhlec mounted to a plane pair in the printed-circut board (PCE). where the imbuctarce parameter may be of the highest importance to the user. The vertical cross-section sketch shows the MLCC part soldered to pads and connected to planes with through holes.

Figure 1. Simple RLC equivalent circuit of a capaciror.

Figure 2. Vertical cross section of an MLCC momnted to PCB planes.

Thus, per the toregoing, at least the exemplary above-indicated disclosure of Document 5 subject mater as relates to lowering inductance for a multayer ceramic capackor is pertnent to the subject Application USSN $14259,011$.

Page 7 of 7

Third Party Submission for Application USSN 14/259,011

Document 6

Title:	High Frequency Performance of Multilayer Ceramic Capacitors
Authors:	Sakabe et al.
Publication:	1995 IEEE document 0569-5503/95/0000 Pages 0234-0240

Concise Description:

Document 6 was published in 1995, prior to the earliest possible priority date of June 14, 2013 for the subject Application USSN 14/259, 011.

The subject Application USSN 14/259,011 is entitled "Multilayer Ceramic Capacitor and Board Having the Same Mounted Thereon." It relates in pertinent part to a particular capacitor arrangement which results in a reverse geometry capacitor having relatively low inductance.

Fig. 4 of subject application USSN 14/259,011 is exemplary (reproduced below):

FIG. 4
Examples from the specification of the subject Application USSN 14/259,011 regarding such reverse geometry feature arrangement and resulting relatively low

1 of 5
inductance are recited below re application Paragraphs [0050], and [0056] through [0061] (emphasis added):
[0050] Referring to FIG. 1, in the multilayer ceramic capacitor according to an exemplary embodiment of the present disclosure, a 'length direction' refers to an 'L' direction, a 'width direction' refers to a 'W' direction, and a 'thickness direction' refers to a ' T ' direction. Here, the 'thickness direction' may be the same as a stacking direction in which dielectric layers are stacked.
[0056] The first and second internal electrodes 121 and 122 may be disposed to face each other, having at least one of the dielectric layers 111 interposed therebetween, and may be alternately exposed to the first or second side surface S5 or S6.
[0057] The first and second internal electrodes 121 and 122 are alternately exposed to the first or second side surface S5 or S6, such that a reverse geometry capacitor (RGC) or low inductance chip capacitor (LICC) may be obtained as described below.
[0058] In a general multilayer ceramic electronic component, external electrodes may be disposed on opposing end surfaces of the ceramic body in a length direction thereof.
[0059] In this case, when an alternative current (AC) voltage is applied to the external electrodes, a current path is relatively long, whereby an intensity of an induced magnetic field may be increased, resulting in an increase in inductance.
[0060] In order to solve this problem, the first and second external electrodes 131 and 132 in the exemplary embodiment of the present disclosure may be disposed on the first and second side surfaces S 5 and S6 of the ceramic body 110 opposing each other in the width direction so as to reduce the current path.
[0061] In this case, since a distance between the first and second external electrodes 131 and 132 is relatively short, the current path may be reduced, ... resulting in a reduction in inductance.

Further exemplary information from the specification of the subject Application USSN 14/259,011 relates to dielectric grain subject matter, as recited below re application Paragraphs [0087] and [0088] (emphasis added):
[0087] FIG. 5 is an enlarged view of part Z of FIG. 4.
[0088] Referring to FIG. 5, the average number of dielectric grains 111a present in a single dielectric layer 111 in a thickness direction thereof may be 2 or greater.

Such Fig. 5 of the USSN 14/259,011 is reproduced below:

Z
FIG. 5
Claim 1 of the subject Application USSN 14/259,011 relates to multilayered ceramic capacitor subject matter, and recites in pertinent part (bracketed comments added):

1. A multilayer ceramic capacitor, comprising:
a ceramic body [110] including dielectric layers [111] and having first and second main surfaces [S1, S2] opposing each other, first and second side surfaces [S5, S6] opposing each other, and first and second end surfaces [S3, S4] opposing each other;
an active layer including a plurality of first and second internal electrodes [121, 122] disposed to face each other with at least one of the
dielectric layers interposed therebetween and alternately exposed to the first or second side surface;
upper and lower cover layers [112, 113] disposed on and beiow the active layer, respectively; and
a first external electrode [131] disposed on the first side surface [S3] of the ceramic body and electrically connected to the first internal electrodes [121] and a second external electrode [132] disposed on the second side surface [S4] and electrically connected to the second internal electrodes [122],
wherein when a thickness of the ceramic body is defined as T and a width thereof is defined as $\mathrm{W}, 0.75 \mathrm{~W}$.Itoreq.T.Itoreq. 1.25 W is satisfied, when a gap between the first and second external electrodes is defined as G, 30 .mu.m.Itoreq.G.Itoreq. 0.9 W is satisfied \{Fig. 4], and an average number of dielectric grains in a single dielectric layer in a thickness direction thereof is 2 or greater [Fig. 5].

Independent claim 8 relates to a printed circuit board having at least two electrode pads, and such a multilayer ceramic capacitor mounted and soldered thereon.

Document 6 (D6) is entitled "High Frequency Performance of Multilayer Ceramic Capacitors," and discloses subject matter pertinent to the subject Application USSN 14/259,011. See, for example, D6, Fig. 1 reproduced below and showing pertinent multi-layer capacitor structure:

MLC DESIGN AND EQUIVALENT CIRCUIT

The internal construction of the MLC chip is shown in figure 1

Figure 1: Cross-section of MLC Construction

In addition, D6 indicated a variety of structural configurations which were considered, including a so-called "Cube" structure as illustrated in "Table 3" of D6, reproduced hereafter:

Table 3 Samples to be measured

Temperature Characteristic	COG Characteristics$\left(0 \pm 60 \mathrm{ppm} /{ }^{\circ} \mathrm{C},-55 \sim 125^{\circ} \mathrm{C}\right)$	
Capacitance	100 pF	
Type	Multi Use	High Frequency
Name	GRM39 COG 101J50	GRHH10 COG 101J 50
Use	General Circuit	HF Power Circuit
Dimensions	EIA 0603 (Units: mm)	
Temperature Characteristic	$\begin{aligned} & \text { Y5V (F) Characteristic } \\ & \left(+30 \% /-80 \%,-30-85^{\circ} \mathrm{C}\right) \end{aligned}$	
Capacitance	$0.01 \mu \mathrm{~F}$	
Type	Ultra Compact	Ultra High Speed
Name	GRM36F 103Z 25	GRB606 F 103Z 25
Use	Ultra High Density Circuit	High Frequency Digital Circuit
Dimensions		

Such subject matter overlaps with low aspect ratio configurations of the subject application USSN 14/259,011. Thus, per the foregoing, at least the exemplary aboveindicated disclosure of Document 6 subject matter as relates to structural configurations for a multilayer ceramic capacitor is pertinent to the subject Application USSN 14/259,011.

Doc Code: 3P.RELEVANCE

U.S. PATENT APPLICATION PUBLICATION		
Cite No	Publication Number	Concise Description of Relevance

FOREIGN PATENT DOCUMENTS		
CiteNo	Foreign Document Number	Concise Description of Relevance

NON-PATENT PUBLICATIONS		
Cite No	Reference	
1	Joseph M. Hock et al.; TecForum TF-MP2, Inductance of Bypass Capacitors How to Define, How to Measure, How to Simulate, DesignCon East 2005	See Attached

2	Yukio Sakabe et al.; High Frequency Performance of Multilayer Ceramic Capacitors, Document No. 0569-5503/95/0000, pages 234-240, 1995 IEEE	See Attached

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number.

THIRD-PARTY		
SUBMISSION		
UNDER 37 CFR 1.290		

THIRD-PARTY		
SUBMISSION	Application Number	14259011
UNDER 37 CFR 1.290		

THIRD-PARTY		
SUBMISSION UNDER 37 CFR 1.290	Application Number	14259011

(The fee set forth in 37 CFR 1.290 (f) has been submitted herewith.

The fee set forth in 37 CFR 1.290(f) is not required because this submission lists three or fewer total items and, to the knowledge of - the person signing the statement after making reasonable inquiry, this submission is the first and the only submission under 35 U.S.C 122(e) filed in the above-identified application by the party making the submission or by a party in privity with the party.

This resubmission is being made responsive to a notification of non-compliance issued for an earlier filed third-party submission.
… The corrections in this resubmission are limited to addressing the non-compliance. As such, the party making this resubmission: (1) requests that the Office apply the previously-paid fee set forth in 37 CFR 1.290 (f), or (2) states that no fee is required to accompany this resubmission as the undersigned is again making the fee exemption statement set forth in 37 CFR $1.290(\mathrm{~g})$.

Description	Fee Code	Quantity	Amount	Sub-Total in USD(\$)
Extension-of-Time:				
Miscellaneous:	Total in USD (\$)	180		

Electronic Acknowledgement Receipt	
EFS ID:	22641515
Application Number:	14259011
International Application Numb	
Confirmation Number:	5037
Title of Invention:	
First Named Inventor/Applicant \mathbf{N}	
Correspondence Address:	
Filer:	Richard M. Moose/Christine Stanfield
Filer Authorized By:	Richard M. Moose
Attorney Docket Number:	
Receipt Date:	16-JUN-2015
Filing Date:	
Time Stamp:	16:57:08
Application Type:	

Payment information:

Submitted with Payment	yes
Payment Type	Credit Card
Payment was successfully received in RAM	$\$ 180$

RAM confirmation Number		4037			
Deposit Account					
Authorized User					
The Director of the USPTO is hereby authorized to charge indicated fees and credit any overpayment as follows:					
File Listing:					
Document Number	Document Description	File Name	File Size(Bytes)/ Message Digest	Multi Part /.zip	Pages (if appl.)
1	Non Patent Literature	HIGH_FREQUENCY_PERFORMA NCE.pdf	9348602	no	7
Warnings:					
Information:					
2	Non Patent Literature	DesignCon_East_2005_scanne d__Part_1.pdf	19614266	no	23
Warnings:					
Information:					
3	Non Patent Literature	DesignCon_East_2005_scanne d_Part_2.pdf	18447317	no	23
			bf3947bbed 1 1e5b45556262542429b6743		
Warnings:					
Information:					
4	Concise Description of Relevance	USP_8238116_CONCISE_DES CRIPTION.pdf	351733	no	6
			ced 250 e 1 f 2 a 2 c 12 e 213 c 7 c 4 cf 92856486 dae 2556		
Warnings:					
Information:					
5	Concise Description of Relevance	USP_7414857_CONCISE_DES CRIPTION.pdf	338451	no	6
			a4d 37519724 a 03 d 3 b 6 f 2 cf 3 f 58 ddb 50 dae 9 c 3 d 55		
Warnings:					
Information:					
6	Concise Description of Relevance	USP_5134540_CONCISE_DES CRIPTION.pdf	329805	no	6
Warnings:					
Information:					

7	Concise Description of Relevance	USP_5952040_CONCISE_DES CRIPTION.pdf	306717 9d13d25d94e81a9bbbb8de858877c9fed9 6d66 be	no	5
Warnings:					
Information:					
8	Concise Description of Relevance	DESIGNCON_EAST_2005__CON CISE_DESCRIPTION.pdf	6552495 $\substack{\text { dc1 lfoffo8 1442 2a45a837ace60ib477ce7a453e } \\ \text { d1b }}$	no	7
Warnings:					
Information:					
9	Concise Description of Relevance	HIGH_FREQ_PERFORMANCE CONCISE_DESCRIPTION.pdf	$\frac{328834}{\substack{\text { 58eaba 1702ecc75c15757da668657ba34099 } \\ \text { a9c3d }}}$	no	5
Warnings:					
Information:					
10	Concise Description of Relevance	Concise-description-generated pdf	$\frac{34962}{\substack{\text { d683 15d69b4ffad7844054817 } 3 \text { c302ael a86 } \\ 3 \text { ff5a }}}$	no	4
Warnings:					
Information:					
11	Third-Party Submission Under 37 CFR 1.290	Third-party-preissuancesubmission.pdf	$\frac{48188}{\substack{\text { e32a700066de22dfdeoftabbddffíbef66dt } \\ \text { ebca }}}$	no	3
Warnings:					
Information:					
12	Request for Notification of Noncompliant Third-Party Submission	Third-party-notificationrequest.pdf		no	1
Warnings:					
Information:					
13	Fee Worksheet (SB06)	fee-info.pdf		no	2
Warnings:					
Information:					
Total Files Size (in bytes):			55750412		

This Acknowledgement Receipt evidences receipt on the noted date by the USPTO of the indicated documents, characterized by the applicant, and including page counts, where applicable. It serves as evidence of receipt similar to a Post Card, as described in MPEP 503.

New Applications Under 35 U.S.C. 111

If a new application is being filed and the application includes the necessary components for a filing date (see 37 CFR 1.53(b)-(d) and MPEP 506), a Filing Receipt (37 CFR 1.54) will be issued in due course and the date shown on this Acknowledgement Receipt will establish the filing date of the application.

National Stage of an International Application under 35 U.S.C. 371

If a timely submission to enter the national stage of an international application is compliant with the conditions of 35 U.S.C. 371 and other applicable requirements a Form PCT/DO/EO/903 indicating acceptance of the application as a national stage submission under 35 U.S.C. 371 will be issued in addition to the Filing Receipt, in due course.

New International Application Filed with the USPTO as a Receiving Office

If a new international application is being filed and the international application includes the necessary components for an international filing date (see PCT Article 11 and MPEP 1810), a Notification of the International Application Number and of the International Filing Date (Form PCT/RO/105) will be issued in due course, subject to prescriptions concerning national security, and the date shown on this Acknowledgement Receipt will establish the international filing date of the application.

United States Patent and Trademark Office
UNTEDSTATMS DRPARTMENT OF COMMRRCE
United States Patent and Trademark Office Address: COMMISSIONER FOR PATENTS

PO. Box 1450
yinia 22313-1450
Alexandria, Virg
wwwusptogov
 500 North Capitol Street, N.W. WASHINGTON, DC 20001

Title:MULTILAYER CERAMIC CAPACITOR AND BOARD HAVING THE SAME MOUNTED THEREON
Publication No.US-2014-0367152-A1
Publication Date:12/18/2014

NOTICE OF PUBLICATION OF APPLICATION

The above-identified application will be electronically published as a patent application publication pursuant to 37 CFR 1.211, et seq. The patent application publication number and publication date are set forth above.

The publication may be accessed through the USPTO's publically available Searchable Databases via the Internet at www.uspto.gov. The direct link to access the publication is currently http://www.uspto.gov/patft/.

The publication process established by the Office does not provide for mailing a copy of the publication to applicant. A copy of the publication may be obtained from the Office upon payment of the appropriate fee set forth in 37 CFR 1.19(a)(1). Orders for copies of patent application publications are handled by the USPTO's Office of Public Records. The Office of Public Records can be reached by telephone at (703) 308-9726 or (800) 972-6382, by facsimile at (703) 305-8759, by mail addressed to the United States Patent and Trademark Office, Office of Public Records, Alexandria, VA 22313-1450 or via the Internet.
In addition, information on the status of the application, including the mailing date of Office actions and the dates of receipt of correspondence filed in the Office, may also be accessed via the Internet through the Patent Electronic Business Center at www.uspto.gov using the public side of the Patent Application Information and Retrieval (PAIR) system. The direct link to access this status information is currently http://pair.uspto.gov/. Prior to publication, such status information is confidential and may only be obtained by applicant using the private side of PAIR.

Further assistance in electronically accessing the publication, or about PAIR, is available by calling the Patent Electronic Business Center at 1-866-217-9197.

This is to certify that the following application annexed hereto is a true copy from the records of the Korean Intellectual
Property Office

출 원 번 호 : 10-2013-0068498
Application Number

출 원 년 월 일 : 2013년 06월 14일
Filing Date JUN. 14, 2013

출 원 인: 삼성전기주식회사
Applicant(s) SAMSUNG ELECTRO-MECHANICS CO., LTD.

2014년 12월 03일

【서류명】	특허출원서
【참조번호】	007
【출원구분】	특허출원
【촐원인】	
【명칭】	삼성전기 주식회사
【출원인코드】	$1-1998-001806-4$
【대리인】	특허법인 씨엔에스
【명칭】	9－2003－100065－1
【대리인코드】	손원，함상준 ，김태휘
【지정된변리사】	2006－044433－9
【포괄위임등록번호】	
【발명의 국문명칭】	적총 세라믹 커패시터 및 그 실장 기판
【발명의 영문명칭】	Multi－layered ceramic capacitor and board for mount ing
	the same

【발명자】

【성명】
【성명의 영문표기】
【주민등록번호】
【우편번호】
【주소】
【국 적】
【발명자】

【성명】

【성명의 영문표기】
【주민등록번호】

이병화
LEE，Byoung Hwa 691024－1XXXXXX

443－743
경기도 수원시 영통구 매탄3동 삼성전기
KR

$$
n
$$

【우편번호】	$443-743$
【주소】	경기도 수원시 영통구 매탄3동 삼성전기
【국적】	KR

【발명자】

【성명】	이교광
【성명의 영문표기】	LEE，Kyo Kwang
【주민등록번호】	$750811-1$ XXXXXX
【우편번호】	$443-743$
【주소】	경기도 수원시 영통구 매탄3동 삼성전기
【국적】	KR

【발명자】

【성명】	안영규
【성명의 영문표기】	AHN，Young Ghyu
【주민등록번호】	$710313-1$ XXXXXX
【우편번호】	$443-743$
【주소】	경기도 수원시 영통구 매탄3동 삼성전기
【국적】	KR

【발명자】

【성명】	박상수
【성명의 영문표기】	PARK，Sang Soo
【주민등록번호】	$721024-1 \times X X X X X$
【우편번호】	$443-743$
【주소】	경기도 수원시 영통구 매탄3동 삼성전기
【국적】	KR

【발명자】
【성명】 0 운주

【성명의 영문표기】	LEE，Soon Ju
【주민등록번호］	$860912-1 \mathrm{XXXXXX}$
【우편번호】	$443-743$
【주소】	경기도 수원시 영통구 매탄3동 삼성전기
【국적】	KR

【춰지】 위와 같이 특허청장에게 제촐합니다．
대리인 특허법인 씨엔에스 (서명 또는 인)
［수수료］

【출원료】	0	면	38,000	원
【가산촐원료】	50	면	0	원
【우선권주장료】	0	건	0	원
【심사청구료】	0	항	0	원
【합계】	38,000	원		

［명세서】

【발명의 명칭】

적층 세라믹 커패시터 및 그 실장 기판\｛Multi－layered ceramic capacitor and board for mount ing the same\}
［기술분야】
＜1＞본 발명은 적층 세라믹 커패시터 및 그 실장 기판에 관한 것이다．

【배경기술】

〈2＞최근 전자 제품의 소형화，고용량화됨에 따라 전자 제품에 사용되는 전자 부 품도 소형화，고용량화가 요구되고 있다．이에 따라 적층형 세라믹 전자 부품에 대 한 수요가 증대되고 있다．
＜3＞적층 세라믹 커패시터의 경우 등가 직렬 인덕턴스（Equivalent Series Inductance，이하＂ESL＂）가 커지면 전자 제품의 성능이 저하될 수 있으며，전자 부품이 소형화，고용량화 될수록 ESL의 증가가 전자 부품의 성능 저하에 미치는 영 향은 상대적으로 커진다．
＜4＞소위＂LICC（Low Inductance Chip Capacitor）＂는 외부 단자 간의 거리를 감 소시켜 전튜 흐름의 경로를 잠소시키고 이로 인하여 커패시터의 인덕틴스를 줄이기 위한 것이다．
$<5>$
한편, 상기 적층 세라믹 커패시터는 복수의 유전체층과, 상기 유전체층 사이 에 서로 다른 극성의 내부 전극이 번갈아 적층된 구조를 가질 수 있다.
<6> 이러한 유전체총은 압전성 및 전왜성을 갖기 매문에, 적층 세라믹 커패시터 에 직류 또는 교류 전압이 인가될 매 상기 내부 전극들 사이에서 압전 현상이 발생 하여 진동이 나타날 수 있다.
<7> 이러한 진농은 적층 세라믹 커패시터의 솔더를 통해 상기 적층 세라믹 커패 시퇴가 실장된 인쇄회로기판으로 전달되어 상기 인좨회로기판 전최가 음향 방사면 이 되면서 잡음이 되는 진동음을 발생시키게 된다.
<8> 상기 진동음은 사람에게 불쾌감을 주는 20 내지 20000 Hz 영역의 가청 주퐈 수에 해당될 수 있으며, 이렇게 사람에게 불쾌감을 주는 진농음을 어쿠스틱 노이즈 (acoustic noise)라고 한다.

9> 상기 어쿠스틱 노이즈를 감소하기 위한 적충 세라믹 커패시터에 대한 연구는 여전히 요구되는 실정이다.
［발명의 내용］

【해결하려는 과제】

＜11＞본 발명은 적층 세라믹 커패시터 및 그 실장 기판에 관한 것이다．
【퐈제의 해결 수단】

본 발명의 일 실시형태는 유전체층을 포함하며，서로 마주보는 제1，제 2 주 면 $(\mathrm{S} 1, \mathrm{~S} 2)$ ，서로 마주보는 제 1 ，제 2 측면 $(\mathrm{S} 5, \mathrm{~S} 6)$ 및 서로 마주보는 제1，제2 단 면 $(\mathrm{S} 3, \mathrm{~S} 4)$ 을 가지는 세라믹 본체；상기 유전체충을 사이에 두고 서로 대향하도록 배치되며，상기 제 1 측면（S5）또는 제 2 측면（S6）으로 교대로 노출되는 복수의 제1 및 제2 내부 전극을 포함하여 용량이 형성되는 액티브충；상기 액티브충의 상부 및 하부에 형성된 상부 및 하부 커버충；및 상기 세라믹 본체의 제1 측면（S5）에 형성 되고，상기 제 1 내부전극과 전기적으로 연결되는 제 1 외부전극과 제2 측면（S6）에 형성되고，상기 제 2 내부전극과 전기적으로 연결되는 제 2 외부전극；을 포함하고， 상기 세라믹 본체의 두께를 T ，폭을 W라 하면， $0.75 \mathrm{~W} \leq T \leq 1.25 \mathrm{~W}$ 를 만족하고， 상기 제1 외부전극과 상기 제2 외부전극 사이의 간격을 G 라고 하면， $30 \mu \mathrm{~m} \leq \mathrm{G} \leq$ $0.9 W$ 를 만족하며，상기 유전체층의 수직 방향으로 층당 평균 유전체 그레인 수가 2

개 이상을 만족하는 적층 세라믹 커패시터를 제공한다.
<13> 상기 하부 커버층의 두께는 $10 \mu \mathrm{~m}$ 내지 $100 \mu \mathrm{~m}$ 일 수 있다.
<14> 상기 세라믹 본체의 두께는 상기 제1 주면(S1) 및 제2 주면(S2) 사이의 거리 이고, 상기 세라믹 본체의 폭은 상기 제 1 외부전극이 형성된 상기 제 1 측면(S5)퐈 상기 제2 외부전극이 형성된 상기 제2 측면(S6) 사이의 거리이고, 상기 세라믹 본 체의 길이는 상기 제1 단면(S3)과 상기 제2 단면(S4) 사이의 거리인 경우, 상기 세 라믹 본체의 폭은 상기 세라믹 본체의 길이보다 짧거나 동일할 수 있다.

상기 세라믹 본체의 길이를 L 및 폭을 W 라 하면, $0.5 \mathrm{~L} \leq \mathbb{W} \leq \mathrm{L}$ 을 만족할 수 있다.

상기 유전체 그레인은 평균 입경이 50 nm 이상 500 nm 이하일 수 있다.

상기 제1 및 제2 내부 전극은 상기 세라믹 본체의 제1 및 제2 단면 (S3, S4) 으로부터 일정거리 이격하여 형성될 수 있다.

상기 제1 및 제2 외부전극은 상기 세라믹 본체의 제1 및 제2 주면에 연장하 여 형성될 수 있다.

본 발명의 다른 실시형태는 상부에 둘 이상의 전극 패드를 갖는 인쇄회로기

판;

상기 인쇄회로기판 위에 설치된 적층 세라믹 커패시터; 및

제출 일자 : 2013-06-14
<21>
상기 전극 패드와 상기 적층 세라믹 커패시터를 연결하는 솔더링;을 포함하 며, 상기 적층 세라믹 커패시터는 유전체층을 포함하며, 서로 마주보는 제1, 제2 주면 (S1, S2), 서로 마주보는 제1, 제2 측면(S5, S6) 및 서로 마주보는 제1, 제2 단면 $(\mathrm{S} 3, \mathrm{~S} 4)$ 을 가지는 세라믹 본체와 상기 유전체층을 사이에 두고 서로 대향하도 록 배치되며, 상기 제 1 측면(S5) 또는 제2 측면(S6)으로 교대로 노출되는 복수의 제1 및 제2 내부 전극을 포함하여 용량이 형성되는 액티브층, 상기 액티브층의 상 부 및 하부에 형성된 상부 및 하부 커버층 및 상기 세라믹 본체의 제1 측면(S5)에 형성되고, 상기 제1 내부전극과 전기적으로 연결되는 제1 외부전극과 제2 촉면(S 6)에 형성되고, 상기 제 2 내부전극과 전기적으로 연결되는 제2 외부전극을 포함하 고, 상기 세라믹 본체의 두께를 T , 폭을 W라 하면, $0.75 \mathrm{~W} \leq \mathrm{T} \leq 1.25 \mathrm{~W}$ 를 만족하 고, 상기 제1 외부전극과 상기 제2 외부전극 사이의 간격을 G라고 하면, $30 \mu \mathrm{~m} \leq$ $G \leq 0.9 W$ 를 만족하며, 상기 유전체층의 수직 방향으로 층당 평균 유전체 그레인 수가 2개 이상을 만족하는 적층 세라믹 커패시터의 실장 기판을 제공한다.
<22> 상기 하부 커버층의 두께는 $10 \mu \mathrm{~m}$ 내지 $100 \mu \mathrm{~m}$ 일 수 있다.

상기 세라믹 본체의 두께는 상기 제1 주면(S1) 및 제2 주면(S2) 사이의 거리 이고, 상기 세라믹 본제의 폭은 상기 제 1 외부전극이 형성된 상기 제 1 측면(S5)퐈 상기 제2 외부전극이 형성된 상기 제2 촉면(S6) 사이의 거리이고, 상기 세라믹 본 체의 길이는 상기 제1 단면 $(\mathrm{S} 3)$ 과 상기 제 2 단면 $(\mathrm{S} 4)$ 사이의 거리인 경우, 상기 세 라믹 본체의 폭은 상기 세라믹 본체의 길이보다 짧거나 동일할 수 있다.
<24> 상기 세라믹 본체의 길이를 L 및 폭을 \mathbb{W} 라 하면, $0.5 \mathrm{~L} \leq \mathbb{W} \leq \mathrm{L}$ 을 만족할 수 있다.
<25> 상기 유전체 그레인은 평균 입경이 50 nm 이상 500 nm 이하일 수 있다.

상기 제1 및 제2 내부 전극은 상기 세라믹 본체의 제1 및 제2 단면 (S3, S4) 으로부터 일정거리 이격하여 형성될 수 있다.

상기 제1 및 제2 외부전극은 상기 세라믹 본체의 제1 및 제2 주면에 연장하 여 형성될 수 있다.
<28> 상기 솔더링은 상기 적층 세라믹 커패시터의 제1 및 제2 외부전극의 일부에 형성될 수 있다.

49>
상기 솔더링은 상기 적층 세라믹 커패시터의 제1 및 제2 외부전극의 중앙부 에 형성될 수 있다.
$<30>$
상기 전극 패드는 상기 적층 세라믹 커패시터의 제1 및 제2 외부전극과 각각 연결되는 제1 및 제2 전극 패드로 이루어질 수 있다.
<31> 상기 제1 및 제2 전극 패드는 상기 적흥 세라믹 커패시터의 폭 방향으로 서 로 오프셋 (offset)될 수 있다.
<32> 상기 전극 패드는 상기 적층 세라믹 커패시터의 제1 외부전극과 연결되는 제 1 및 제2 전극 패드와 제2 외부전극과 연결되는 제3 및 제4 전극 패드로 이루어질 수 있다.

【발명의 효과】

＜33＞
본 발명에 따르면 외부전극 사이의 길이가 짧아서 적충 세라믹 커패시터에서 발생된 진동의 기판 전달이 저하되어，어쿠스딕 노이즈（acoustic noise）를 감소시 킬 수 있다．
＜34＞또한，본 발명에 따른 적충 세라믹 커패시터를 기판에 실장시 실장 면적을 줄일 수 있는 효과가 있다．

【도면의 간단한 설명】
＜35＞
도 1 은 본 발명의 일 실시형태에 따른 적층 세라믹 커패시터를 나타내는 사 시도이다．

도 2는 본 발명의 일 실시 형태에 따른 세라믹 본체를 나타낸 도식도이다．

도 3 은 도 2 의 분해 사시도이다．

도 4 는 도 1 의 $\mathrm{A}^{-} \mathrm{A}^{\prime}$ 을 따른 단면도이다．

도 5 는 도 4 의 Z 영역의 확대도이다．

도 6 은 도 1 의 적층 세라믹 커패시터가 인쇄회로기판에 실장된 모습을 도시 한 사시도이다．

도 7은 도 6의 평면도이다．

도 8 은 도 6 의 다른 실시형태에 따른 평면도이다．

도 9 는 도 6 의 또 다른 실시형태에 따른 평면도이다.

【발명을 실시하기 위한 구체적인 내응】
<36>
본 발명의 실시형태는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 이하 설명하는 실시형태로 한정되는 것은 아니다. 또한, 본 발명의 실시형 태는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 더욱 완전하게 설명하기 위해서 제공되는 것이다. 따라서, 도면에서의 요소들의 형상 및 크기 등은 보다 명 확한 설명을 위해 과장될 수 있으며, 도면상의 동일한 부호로 표시되는 요소는 동 일한 요소이다.

명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.
<38> 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분 은 생략하고, 여러 층 및 영역을 명확하게 표현하기 위하여 두께를 확대하여 나타 내었으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙이 도록 한다.
<39> 적층 세라믹 커패시터

이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시형태를 설명한다.
$<41>$

시도이다.
<42> 도 2 는 본 발명의 일 실시 형태에 따른 세라믹 본체를 나타낸 모식도이다.
<43)
$<44>$
<45>
도 1 내지 도 4 를 참조하면, 본 발명의 일 실시형태에 따른 적층 세라믹 커 패시터(100)는 유전체층(111)을 포함하며, 서로 마주보는 제 1 , 제2 주면 ($\mathrm{S} 1, \mathrm{~S} 2$), 서로 마주보는 제 1 , 제 2 측면 $(\mathrm{S} 5, \mathrm{~S} 6)$ 및 서로 마주보는 제 1 , 제2 단면 $(\mathrm{S} 3, \mathrm{~S} 4)$ 을 가지는 세라믹 본체(110); 상기 유전체층(111)을 사이에 두고 서로 대향하도록 배 치되며, 상기 제1 측면(S5) 또는 제2 측면 $(\mathrm{S} 6)$ 으로 교대로 노출되는 복수의 제1 및 제2 내부 전극 $(121,122)$ 을 포함하여 용량이 형성되는 액티브층(A); 상기 액티브층 (A)의 상부 및 하부에 형성된 상부 및 하부 커버총(112, 113); 및 상기 세라믹 본 체(110)의 제 1 측면(S5)에 형성되고, 상기 제 1 내부전극(121)과 전기적으로 연결되 는 제1 외부전극(131)과 제2 측면(S6)에 형성되고, 상기 제2 내부전극(122)과 전기 적으로 연결되는 제2 외부전극(132);을 포함하고, 상기 세라믹 본체(110)의 두께를 T , 폭을 W라 하면, $0.75 \mathrm{~W} \leq \mathrm{T} \leq 1.25 \mathrm{~W}$ 를 만족하고, 상기 제 1 외부전극(131)과 상

기 제2 외부전극 (132) 사이의 간격을 G 라고 하면, $301 \mathrm{~m} \leq \mathrm{G} \leq 0.9 \mathrm{p}$ 를 만족하며, 상기 유전체층(111)의 수직 방향으로 층당 평균 유전체 그레인(111a) 수가 2개 이 상을 만족할 수 있다.
46. 이하에서는 본 밭명의 일 실시형태에 따른 적층 세라믹 전자부품을 설명하되, 특히 적층 세라믹 커패시터로 설명하지만 이에 제한되는 것은 아니다.
<47> 도 1 을 참조하면, 본 발명의 일 실시형태에 따른 적층 세라믹 커패시터에 있 어서, '길이 방향'은 도 1 의 'L' 방향, '폭 방향'은 'W' 방향, '두께 방향'은 'T' 방향으로 정의하기로 한다. 여기서 '두께 방향'은 유전체층을 쌓아 올라는 방향 즉 '적층 방향'과 동일한 개념으로 사용할 수 있다.
<48> 도 2를 참조하면, 본 발명의 일 실시형태에서, 세라믹 본체(110)는 서로 대 향하는 제 1 주면(S1) 딫 제2주면(S2)퐈 상기 제1주면 및 제2 주면을 연결하는 제1 측면(S5), 제2 측면(S6), 제1 단면(S3) 및 제2 단면(S4)을 가질 수 있다. 상기 세 라믹 본체(110)의 형상에 특별히 제한은 없지만, 도시된 바와 같이 육면체 형상일 수 있다.

제출 일자 : 2013-06-14
을 얻을 수 있는 한 특별히 제한되지 않으며, 예를 들어, 터탄산바륨 $\left(\mathrm{BaTiO}_{3}\right)$ 분말 일 수 있다.
$<50>$
상기 유전체층(111)을 형성하는 재료는 티탄산바를 $\left(\mathrm{BaTi}_{3}\right)$ 등의 파우더에 본 발명의 목적에 따라 다양한 세라믹 첨가제, 유기용제, 가소제, 결합제, 분산제 등이 첨가될 수 있다.
<51>
상기 유전체층(111) 형성에 사용되는 세라믹 분말의 평균 입경은 특별히 제 한되지 않으며, 본 발명의 목적 달성을 위해 조절될 수 있으나, 예를 들어, 400 nm 이하로 조절될 수 있다.

52> 상기 제1 및 제2 내부전극(121, 122)을 형성하는 재료는 특별히 제한되지 않 으며, 예를 들어, 팔라듬 (Pd), 퐐라듬-은 $(\mathrm{Pd}-\mathrm{Ag})$ 합금 둥의 궈금속 재료 및 니켈 (Ni), 구리 (Cu) 중 하나 이상의 물질로 이루어진 도전성 페이스트를 사용하여 형정 될 수 있다.
<53> 상기 제1 내부전극 및 제2 내부전극(121, 122)은 상기 유전체층(111)을 사이 에 두고 서로 대향하도록 배치되며, 상기 제1 측면(S5) 또는 제2 측면(S6)으로 교 대로 노출될 수 있다.
$<54>$

2 측면(S6)으로 교대로 노출됨으로써, 후술하는 바와 같이 RGC (Reverse Geometry Capacitor) 또는 LICC (Low Inductance Chip Capacitor)를 구현할 수 있다.
<55> 일반적인 적층 세라믹 전자 부품은 세라믹 본체의 길이 방향으로 서로 마주 보는 단면에 외부 전극이 배치되어 있을 수 있다.
<66> 이 경우 외부 전극에 교류 인가시 전류의 경로가 길기 때문에 전류 루프가 더 크게 형성될 수 있으며, 유도 자기장의 크기가 커져 인덕턴스가 증가할 수 있다.
<57> 상기의 문제를 해결하기 위하여, 본 발명의 일 실시형태에 따르면 전류의 경 로를 감소시키기 위하여 세라믹 본체(110)의 폭 방향으로 저로 마주 보는 측면(S5, S6)에 제1 및 제2 외부 전극(131,132)이 배치될 수 있다.
<58>
이 경우, 제 1 및 제 2 외부 전극 $(131,132)$ 간의 길이가 작기 때문에 전류 경 로가 작아지고, 이로 인하여 전류 루프가 감소하여 인덕턴스를 감소시킬 수 있다.

상술한 바와 같이 상기 제1 및 제2 외부전극(131, 132)이 상기 세라믹 본쳬 (110)의 폭 방향으로 서로 마주 보는 측면 $(\mathrm{S} 5, \mathrm{~S} 6)$ 에 형성될 수 있으며, 정전 용량 형성을 위하여 상기 제 1 및 제2 내부전극 $(121,122)$ 과 전기적으로 연결될 수 있다.
<60> 상기 제1 및 제2 외부전극(131, 132)은 상기 제1 및 제2 내부전극(121, 12 2)과 동일한 재질의 도전성 물질로 형성될 수 있으나 이에 제한되지는 않으며, 예 를 들어, 구리(Cu), 은 (Ag), 니켈 (Ni) 등으로 형성될 수 있다.
<61> 상기 제1 및 제2 외부전극(131, 132)은 상기 금속 분말에 글라스 프릿을 첨 가하여 마련된 도전성 페이스트를 도포한 후 소성함으로썽 형성될 수 있다.

상기 세라믹 본체(110)의 폭(W)은 상기 제1 외부전극(131)이 형성된 상기 제 1 측면(S5)과 상기 제2 외부전극(132)이 형성된 상기 제2 측면(S6) 사이의 거리이 고, 상기 세라믹 본체(110)의 길이(L)는 상기 제1 단면(S3)과 상기 제2 단면(S4) 사이의 거리일 수 있다.

본 발명의 일 실시형태에 따르면, 상기 제1 및 제2 외부전극(131, 132)이 각 각 형성된 제1 및 제2 측면 $(\mathrm{S} 5, \mathrm{~S} 6)$ 사이의 폭 (W) 은 제 1 단면 $(\mathrm{S} 3)$ 과 상기 제2 단면 (S4) 사이의 질이(L)보다 짧기나 동일할 수 있다.

이로 인하여 제1 및 제2 외부전극 $(131,132)$ 간의 거리가 작아지기 때문에 전류 경로가 작아지고, 이로썺 전류 루프가 감소하여 인덕턴스를 감소시킬 수 있다.

이처럼 제1 및 제2 외부전극(131, 132)을 세라믹 본체(110)의 제1 및 제2 측 면(S5, S6)에 형성하여, 상기 세라믹 본체(110)의 폭(W)이 상기 세라믹 본체(10)의

길이(L)보다 짧거나 동일한 적층 세라믹 전자 부품을 RGC (Reverse Geometry Capacitor) 또는 LICC (Low Inductance Chip Capacitor)라 할 수 있다.
<66> 도 4를 참조하면, 상기 세라믹 본체(110)는 커패시터의 용량 형성에 기여하 는 부분으로서의 액티브층(A)과, 상하 마진부로서 액티브층(A)의 상하부에 각각 형 성된 상부 및 하부 커버층 $(112,113)$ 으로 구성될 수 있다.

상기 액티브층(A)은 유전체층(111)을 사이에 두고 복수의 제1 및 제2 내부 전극 $(121,122)$ 을 반복적으로 적총하여 형성될 수 있다.
<68> 한편, 본 발명의 일 실시형태에 따른 적층 세라믹 커패시터에 있어서 상기 세라믹 본체(110)의 두께를 T , 폭을 W라 하면, $0.75 \mathrm{~W} \leq \mathrm{T} \leq 1.25 \mathrm{~W}$ 를 만족할 수 있다.
<69> 상기 세라믹 본체(110)의 두께(T) 와 폭(W)이 $0.75 W \leq T \leq 1.25 W$ 의 범위를 만족하도록 조절함으로써, 어쿠스틱 노이즈를 저감할 수 있다.

상기 세라믹 본체(110)의 두께(T)가 0.75 W 미만의 경우에는 적층 세라믹 커 패시터의 정전 용량을 구현할 수 없다.

$$
54-17
$$

<71> 상기 세라믹 본체(110)의 두께(T)가 $1,25 \mathrm{~N}$ 를 초과하는 경우에는 적층 세라믹 커패시터를 기판에 실장시 상기 커패시터가 기울어져서 실장 불량이 발생할 수 있 다.
472. 한편, 상기 제1 외부전극(131)과 상기 제2 외부전극(132) 사이의 간격을 G라 고 하면, $30 \mathrm{\mu m} \leq \mathrm{G} \leq 0.9 \mathrm{~W}$ 를 만족할 수 있다.
<73> 상기 제1 외부전극(131)퐈 상기 제2 외부전극(132) 사이의 간격(G)을 $30 \mu \mathrm{~m}$ $\leq G \leq 0.9 W$ 의 범위로 조절함으로써, 어쿠스틱 노이즈를 저감할 수 있다.

상기 제 1 외부전극(131)과 상기 제 2 외부전극(132) 사이의 간격(G)이 $30 \mu \mathrm{~m}$ 미만일 경우에는 상기 제1 외부전극(131)과 상기 제2 외부전극(132) 사이의 간격 (G)이 너루 좁아, 쇼트 불량이 발생할 수 있다.

상기 제1 외부전극(131)퐈 상기 제2 외부전극(132) 사이의 간격(G)이 0.9 N 를 초퐈하는 경우에는 상기 제1 외부전극(131)과 상기 제2 외부전극(132)의 폭이 감소 하여 기판과의 실장 면적이 줄어들게 됨으로써, 고착 강도 불량을 유발할 수 있다.
<76> 또한, 상기 세라믹 본체(110)의 길이를 L 및 폭을 \mathbb{W} 라 하면, $0.5 \mathrm{~L} \leq \mathbb{W} \leq \mathrm{L}$ 을 만족할 수 있으나 이에 제한되는 것은 아니다.
<77> 상기와 같이 $0.5 \mathrm{~L} \leq \mathbb{W} \leq \mathrm{L}$ 를 만족하도록 상기 세라믹 본체의 길이 및 폭을 조절함으로써, 적층 세라믹 커패시터의 인덕턴스를 감소시킬 수 있다.

48>ㅐ라서, 본 발명의 일 실시형태에 따른 적층 세라믹 전자부품은 저 인덕턴스 를 구현할 수 있어, 전기적 성능이 향상될 수 있다.

한편, 본 발명의 일 실시형태에 따르면 상기 하부 커버층(113)의 두께는 10 $\mu \mathrm{m}$ 내지 $100 \mu \mathrm{~m}$ 일 수 있다.
<80> 상기 하부 커버층(113)의 두께를 $10 \mu \mathrm{~m}$ 내지 $100 \mu \mathrm{~m}$ 로 조절함으로성, 어쿠스 틱 노이즈를 저감핱 수 있으며, 신뢰성이 우수한 적층 세라믹 커패시터를 구현할 수 있다.

상기 하부 커버층(113)의 두께가 $10 \mu \mathrm{~m}$ 미만일 경우에는 커버층의 두께가 너 무 얇아 내습 불량이 발생할 수 있다.

상기 하부 커버층 (113)의 두께가 $100 \mu \mathrm{~m}$ 를 초과하는 경우에는 하부 커버층의

변위에 의해 어쿠스틱 노이즈가 급격하게 증가할 수 있다.
<83>
상기 상부 커버층(112)의 두께는 특별히 제한되지 않으며, 상기 하부 커버층 (113)과 동일하거나 유사한 두께를 가질 수 있고, 내습 불량을 막을 수 있는 범위 내에서 제한 없이 적용될 수 있다.
<84> 도 5 는 도 4 의 Z 영역의 확대도이다.
<85> 레인(111a) 수가 2개 이상을 만족할 수 있다.

상기 유전체층(111)의 수직 방향으로 충당 평균 유전체 그레인(111a) 수가 2 개 이상을 만족함으로썻, 어쿠스틱 노이즈를 저감할 수 있다.
<87>
상기 유전체층(111)의 수직 방향으로 충당 평균 유전체 그레인(111a) 수가 2 개 미만일 경우, 즉 1 개일 경우에는 그레인 바운더러(grain boundary) 수의 감소로 내부전극에 전압 인가시 유전체층의 변위량이 증가하게 되고, 결국 적층 세라믹 커 패시터의 변위량을 증가시켜 궁극적으로 어쿠스틱 노이즈를 증가시키게 된다.
<88>
한편, 상기 유전체 그레인(11a)은 평균 입경이 50 nm 이상 500 nm 이하일 수 있다.
<89>
상기 유전체 그레인(11a)의 평균 입경을 50 nn 이상 500 nm 이하로 조절함으로 써, 어쿠스틱 노이즈를 저감할 수 있다.
<90ㄱ상기 유전체 그레인(11a)의 평균 입경이 50 nm 미만일 경우에는 유전체 그레 인의 입경이 너무 작아 유전율이 저하될 수 있으며, 이로 인하여 전원단에서 필요 로 하는 적층 세라믹 커패시터의 정전 용량을 구현할 수 없다.
-91> 상기 유전체 그레인(11a)의 평균 입경이 500 nm 를 초퐈하는 경우에는 유전체 그레인의 입경이 너무 커서, 유전체층 1 층당 1 개의 유전체 그레인이 형성되는 영역 이 증가하게 되고 이로 인하여 결국 어쿠스틱 노이즈가 증가하게 된다.

92ㄱ상기 유전체층(111)의 수직 방향으로 흥당 평균 유전체 그레인(111a) 수와 유전체 그레인(11a)의 평균 입경을 측정하는 방법은 특별히 제한되지 않으나, 도 4 와 같이 세라믹 본체(110)의 폭 방향 단면을 주사전자현미경(SEM, Scanning Eletron Microscope)으로 이미지를 스캔하여 측정할 수 있다.

예를 들어, 도 2 와 같이 세라믹 본체(110)의 길이(L) 방향의 중앙부에서 절

단한 폭 및 두께 방향(W-T) 단면을 주사전자현미경(SEM, Scanning Eletron Microscope)으로 스캔한 이미지에서 추출된 임의의 유전체층에 대해서, 길이 방향 으로 등간격인 30개의 지점에서 총당 평균 유전체 그레인(111a) 수 및 유전체 그레 인(11a)의 평균 입경을 측정할 수 있다.
-94상기 등간격인 30 개의 지점은 제1 및 제 2 내부전극충 $(121,122)$ 이 서로 중첩 되는 영역을 의미하는 액티브층(A)에서 측정될 수 있다.
<95> 상기 제1 및 제2 내부 전극 $(121,122)$ 은 상기 세라믹 본체(110)의 제1 및 제 2 단면(S3,S4)으로부터 일정거리 이격하여 형성될 수 있으나, 이에 제한되는 것은 아니다.
<96> 한편, 상기 제1 및 제2 외부전극(131, 132)은 상기 세라믹 본체(110)의 제1 및 제2 주면(S1,S2)에 연장하여 형성될 수 있으나, 이에 제한되는 것은 아니다.

이하에서는 본 발명의 일 실시형태에 따른 적충 세라믹 커패시터의 제조방법 에 대하여 설명하나, 이에 제한되는 것은 아니다.
<98>
본 발명의 일 실시형태에 따른 적층 세라믹 커패시터의 제조 방법은 우선,
티탄산바률 $\left(\mathrm{BaTiO}_{3}\right)$ 등의 파우더를 포함하여 형성된 슬러리를 캐리어 필름(carrier
film)상에 도포 및 건조하여 복수 개의 세라믹 그린 시트를 마련하며, 이로쎠 유전 체 층을 형성할 수 있다.
<99> 상기 세라믹 그린시트는 세라믹 분말, 바인더, 용제를 혼합하여 슬러리를 제 조하고, 상기 슬러리를 닥터 블레이드 법으로 수 11 m 의 두께를 갓는 시트(sheet)형 으로 제작할 수 있다
<100> 다음으로, 니켈 입자 평균 크기가 0.1 내지 $0.2 \mu \mathrm{~m}$ 이며, 40 내지 50 중량부 의 니켈 분말을 포함하는 내부전곡용 도전성 페이스트를 마련하였다.

상기 그린시트 상에 상기 내부전극용 도전성 폐이스트를 스크린 인쇄공법으 로 도포하여 내부전극을 형성한 후 400 내지 500 층 적층하여 액터브층을 형성하고, 상기 액티브층의 상면 또는 하면에 세라믹 그린시트를 적층하여 커버층을 형정함으 로섯, 서로 마주보는 제1, 제2 주면, 서로 마주보는 제1, 제 2 측면 및 서로 마주보 는 제1, 제2 단면을 갖는 세가믹 본체를 만들었다.
<103>
이하, 실시예를 들어 본 발명을 더욱 상세히 설명하지만, 본 발명이 이에 의 해 제한되는 것은 아니다.
<104> 실험뎨
<105> 본 발명의 실시 예와 비교 예에 따른 적층 세라믹 커패시터는 하기와 같이 제작되었다.
<106> 티탄산바륨 $\left(\mathrm{BaTiO}_{3}\right)$ 등의 파우더를 포함하여 형성된 슬러리를 캐리어 필름
(carrier film) 상에 도포 및 전조하여 1.8 fm 의 두께로 제조된 복수 개의 세라믹 그린 시트를 마련한다.

다음으로, 상기 세라믹 그린 시트 상에 스크린을 이용하여 니켈 내부 전극용 도전성 페이스트를 도포하여 내부 전극을 형성한다.

상기 세라믹 그린 시트를 약 200 층으로 적층하되, 내부 전극이 형성되지 않

은 세라믹 그린 시트를 내부 전극이 형성된 세라믹 그린 시트의 하부에서 상부보다

더 많이 적층을 하였다. 이 적층체를 $85{ }^{\circ} \mathrm{C}$ 에서 $1000 \mathrm{kgf} / \mathrm{cm}^{2}$ 압력 조건으로 둥압

압축성형(isostatic pressing) 하였다.

압착이 완료된 세라믹 적층체를 개별 칩의 형태로 절단하였고. 절단된 칩은

대기 분위기에서 $230^{\circ} \mathrm{C}, 60$ 시간 유지하여 탈바인더를 진행하였다.
<110>
이후, $1200{ }^{\circ} \mathrm{C}$ 에서 내부 전극이 산화되지 않도록 $\mathrm{Ni} / \mathrm{NiO}$ 평형 산소 분압 보

다 낮은 10^{-11} 내지 10^{-10} atm의 산소분압하 환원분위기에서 소성하였다. 소성 후 적 층 칩 커패시터의 칩 사이즈는 길이 \times 폭 $(\mathrm{L} \times W)$ 은 약 $1.0 \mathrm{~mm} \times 0.5 \mathrm{~mm}(\mathrm{~L} \times W, 1005$ 사이즈)이었다. 여기서, 제작 공차는 길이×폭 $(\mathrm{L} \times W)$ 으로 $\pm 0.1 \mathrm{~mm}$ 내의 범위로 정 하였고, 이를 만족하면서 실험하여 어쿠스턱 노이즈, 내습부하 테스트, 실장 불량 여부 및 고착 강도 테스트를 실시하였다.
<111>
아래 표 1 내지 표 3에서는 적총 세라믹 커패시터의 폭(W) 대비 두께(T)의 비율(T/W)파 하부 커버층 두께에 따른 어쿠스턱 노이즈 촉정값, 내습 부하 판정 및 실장 불량 여부를 나타내었다.

이 경우, 유전체층의 수직 방향으로 층당 평균 유전체 그레인의 수는 약 2개

인 상태에서 실험을 진행하였다.
<113> [표 1]

<114> \times : 불량율 50% 이상
<115> \triangle : 불량율 $1 \% \sim 50 \%$
<116; : 불량율 $0.01 \% \sim 1 \%$
<117> ©: 불량율 0.01% 미만
<118> [표 2】

$=4$	FWitw	12aturemer	Wivan	
	5	207	x	\% 0
	10	21.4	0	\bigcirc
4	3	225	0	0
	3	224	\bigcirc	\bigcirc
	4	28.3	0	9 -
	30	23.	6	0
1.25	3	242	\bigcirc	\bigcirc
	70	257	6	\bigcirc
	3	239	0	6
	4	26	6	0 -
	10	27.	6	6
	120	334	\bigcirc	0
	15	341	\bigcirc	\bigcirc

$<119>$	$\times:$ 불량율 50% 이상
$<120>$	\triangle : 불량율 $1 \%-50 \%$
$<121>$	O: 불량율 $0.01 \% \sim 1 \%$
$<122>$	〇: 불량율 0.01% 미만

<123> 【표 3]

$<124>$	$\times:$ 불량율 50% 이상
$<125>$	$\triangle:$ 불량율 $1 \% \sim 50 \%$
$<126>$	$\bigcirc:$ 불량율 $0.01 \% \sim 1 \%$
$<127>$	(0) 불량율 0.01% 미만

<128상기 표 1 내지 표 3 을 참조하면, 상기 세라믹 본체의 투께(T)와 폭(W)이
$0.75 \mathrm{~W} \leq \mathrm{T} \leq 1.25 \mathrm{~W}$ 를 만족하는 경우에 어쿠스턱 노이즈가 저감되는 것을 알 수

있다.
<129> 라믹 커패시터를 기퐌에 실장시 기울어지는 실장 불량 문제가 발생함을 알 수 있다.
<130>
또한, 표 1 내지 표 3 을 참조하면, 하부 커버층의 두께가 $10 \mu \mathrm{~m}$ 내지 $100 \mu \mathrm{~m}$ 를 만족하는 경우에 어쿠스틱 노이즈 저감의 효과가 있으며, 신뢰성도 우수함을 앝 수 있다.
<131> 하부 커버층의 두께가 상기 수치 범위를 벗어나저, $5 \mu \mathrm{~m}$ 인 경우에는 내습 불 량에 따른 신되성에 문제가 있으며, 120 및 1501 m 인 경우에는 어쿠스틱 노이즈가 증가함을 앝 수 있다
<132>
아래 표 4에서는 유전체층의 수직 방향으로 층당 평균 유전체 그레인의 수가 1개인 경우에 적충 세라믹 커패시터의 폭(W) 대비 두께(T)의 비율(T/W)과 하부 커 버층 두께에 따른 어쿠스틱 노이즈 측정값, 내습 부하 판정 및 실장 불량 여부를 나타내었다.
＜133＞【표 4】

$\begin{array}{ll}<134> & \times: \text { 불량율 } 50 \% \text { 이상 } \\ <135> & \triangle: \text { 불량율 } 1 \% \sim 50 \% \\ <136> & \bigcirc: \text { 불량율 } 0.01 \% \sim 1 \% \\ <137> & \text { 〇：불량율 } 0.01 \% \text { 미만 }\end{array}$
＜138＞상기 표 4를 참조하면，상기 유전체층의 수직 방향으로 층당 평균 유전체 그 레인（111a）수가 1 개일 경우에는 그레인 바운더리（grain boundary）수의 감소로 내

부전극에 전압 인가시 유전체충의 변위량이 증가하게 되고, 결국 적충 세라믹 커패 시터의 변위량을 증가시켜 궁극적으로 어쿠스틱 노이즈를 증가함을 알 수 있다.
<139>
아래 표 5 에서는 적층 세라믹 커패시터의 폭(W)과 제 1 외부전극과 상기 제 2 외부전극 사이의 간격(G)에 따른 어쿠스턱 노이즈 측정값, 실장 불량 및 고착 강도 불량 여부를 나타내었다.
<140>【표 5】

Nin		4	arimed	cy frixu	$7 \mathrm{za}=$
651	4.	04	117	χ	¢
650	30.	0.5	22.0	0	0
1.650	40.	106	221.	0	0
650	50	012	225	\bigcirc	0
-650	60.	418	21	9	9
650	120	125	236	0	0.
650	188.	332.4	24.5	9	9
650	20	040	24.	0	0
655°	260	148	252^{2}	9	0
650	310	055	25.8	0	0
650	450	969	259	0	0
650	550	985	25.9	0	0
659	589	${ }^{39}$	(-262)	9.	0.
650	624	495	255.	0	8

$<141>$	$\times:$ 불량율 50% 이상
$<142>$	$\triangle:$ 불량율 $1 \% \sim 50 \%$
$<143>$	○: 불량율 $0.01 \% \sim 1 \%$
$<144>$	(〇) 불량율 0.01% 미만

<145> 상기 표 5 를 참조하면, 상기 제 1 외부전극과 상기 제 2 외부전극 사이의 간격 (G)이 $30 \mu \mathrm{~m} \leq \mathrm{G} \leq 0.9$ ㅐㅐㄹㄹ 만족할 경우에 어쿠스틱 노이즈가 저감되고 신뢰성이 우수함을 알 수 있다.
<146> 상기 제1 외부전극과 상기 제2 외부전극 사이의 간격(G)이 $30 \mu \mathrm{~m}$ 미만, 즉 $25 \mu \mathrm{~m}$ 인 경우에는 쇼트 불량이 발생할 수 있음을 알 수 있다.
<147> 과하는 경우, 즉 0.95 W 인 경우에는 적충 세라믹 커패시터를 기판에 실장시 고착 강도가 낮아 불량이 발생함을 알 수 있다.
<148> 적층 세라믹 커패시터의 실장 기판

도 6 은 도 1 의 적충 세라믹 커패시터가 인쇄회로기판에 실장된 모습을 도시 한 사시도이다.
<150>
도 7은 도 6의 평면도이다.
<151>
<152>
<153>

의 실장 기판(200)은 적층 세라믹 커패시터(100)가 수평하도록 실장되는 인纟ㅙ회로 기판(210)퐈, 인쇄회로기판(210)의 상면에 서로 이격되게 형성된 둘 이상의 전극 패드(221, 222)를 포함한다.

상기 전극 패드는 상기 적층 세라믹 커패시터의 제1 및 제2 외부전극(131, $132)$ 과 각각 연결되는 제1 및 제2 전극 패드 $(221,222)$ 로 이루어질 수 있다.

이때, 적층 세라믹 커패시터(100)는 하부 커버층(113)이 하측에 배치되며 제 1 및 제2 외부 전극 $(131,132)$ 이 각각 제1 및 제2 전극 패드 $(221,222)$ 위에 접촉 되게 위치한 상태에서 솔더링(230)에 의해 인쇄회로기판(210)과 전기적으로 연결될 수 있다.

456> 본 발명의 다른 실시형태에 따른 적층 세라믹 커패시터(100)의 실장 기판 (200)에 있어서, 상기 솔더링(230)은 상기 적층 세라믹 커패시터(100)의 제1 및 제 2 외부전극 $(131,132)$ 의 일부에 형성될 수 있으나, 이에 제한되는 것은 아니다.

특히, 도 6 및 도 7 을 참조하면, 상기 솔더링(230)은 상기 적층 세라믹 커패 시터(100)의 제1 및 제2 외부전극(131, 132)의 중앙부에 형성될 수 있다.
<158> 위와 같이 적충 세라믹 커패시터(100)가 인쇄회로기판(210)에 실장된 상태에 서 전압을 인가하면 어쿠스틱 노이즈가 발생핱 수 있다.
<159> 라믹 커패시터 (100) 의 양 측면에 형성된 제1 및 제2 외부 전극 $(131,132)$ 에 극성이 다른 전압이 인가되면, 유전체층(111)의 역압전성 효과(Inverse piezoelectric effect)에 의해 세라믹 본체(110)는 두쩨 방향으로 팽창가 수축을 하게 되고, 제1 및 제2 외부 전극(131, 132)의 양 측면부는 포아송 효과(Poisson effect)에 의해 세라믹 본체(110)의 두께 방향의 팽창과 수축과는 반대로 수축과 팽창을 하게 된다.

상기 수축퐈 팽창은 구체적으로, 적층 세라믹 커패시터의 두께 방향으로 약

20 nm 의 변위로 발생하며, 길이 방향으로 약 4 nm 및 폭 방향으로 약 2 nm 의 변위 로 발생하게 된다.
<162> 여기서, 본 발명의 일 실시형태에 따른 적층 세라믹 커패시터는 제1 및 제2 외부전극이 적층 세라믹 커패시터의 폭 방향인 세라믹 본체의 앙 측면에 형성되기 때문에, 수축 및 팽창의 변위가 최소가 되어, 어쿠스틱 노이즈를 저감핱 수 있게 된다.
<163>
도 8을 참조하면, 본 발명의 다른 실시형태로서, 상기 전극 배드는 상기 적 층 세라믹 커패시터(100)의 제1 외부전극(131)퐈 연결되는 제1 및 제2 전극 패드 (221', 222^{\prime})와 제2 외부전극(132)과 연결되는 제3 및 제4 전극 패드(223', 224') 로 이루어질 수 있다.
<164> 상기 도 8에 따른 본 발명의 다른 실시형태에 따르면, 동일한 외부전극에 대 하여 이격된 2 개의 전극 패드를 형성함으로써, 수축 딫 팽창 변위의 차이를 줄일 수 있어 어쿠스틱 노이즈의 저감 효과는 더욱 우수할 수 있다.
<165>
도 9 를 참조하면, 본 발명의 또 다른 실시형태로서, 상기 제1 및 제2 전극 패드(221'', 222'')는 상기 적충 세라믹 커패시터의 폭 방향으로 서로 오프셋
(offset)될 수 있다.
<166>
상기 도 9 에 따른 본 발명의 다른 실시형태에 따르면, 상기 제 1 및 제 2 전극 패드(221'', $222^{\prime \prime}$)가 상기 적층 세라믹 커패시터의 폭 방향으로 서로 오프싯 (offset)되어 수축 및 팽창의 상쇄 작용이 생길 수 있어 어쿠스턱 노이즈의 저감 효퐈는 더욱 우수할 수 있다.
<167> 본 발명은 상술한 실시형태 및 첨부된 도면에 의해 한정되는 것이 아니며, 첨부된 청구범위에 의해 한정하고자 한다. 따라서, 청구범위에 기재된 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 당 기술분야의 통상의 지식을 가진 자에 의해 다양한 형태의 치환, 변형 및 변경이 가능할 것이며, 이 또한 본 발명의 범위 에 속한다고 할 것이다.

【부호의 설명】
<168> 100 ; 적충 세라믹 커패시터 110 ; 세라믹 본체

제출 일자 : 2013-06-14
131, 132 ; 제 1 및 제 2 외부 전극 200 ; 실장 기판

210 ; 인쇄회로기판
221. $222,221^{\prime}, 222^{\prime}, 223^{\prime}, 224^{\prime}, 221^{\prime} ', 222^{\prime \prime}$; 제1 내지 제4 전극 패드 230 ; 솔더링

【특허청구범위】

【청구항 1】

유전체층을 포함하며，서로 마주보는 제 1 ，제 2 주면 $(\mathrm{S} 1, \mathrm{~S} 2)$ ，서로 마주보는 제 1 ，제 2 측면 $(\mathrm{S} 5, \mathrm{~S} 6)$ 및 서로 마주보는 제 1 ，제 2 단면 $(\mathrm{S} 3, \mathrm{~S} 4)$ 을 가지는 세라믹 본쳬；

상기 유전쳬충을 사이에 두고 서로 대향하도록 배치되며，상기 제 1 측면（S5） 또는 제 2 측면（ S 6 ）으로 교대로 노출되는 복수의 제 1 및 제 2 내부 전극을 포함하여 용량이 형성되는 액티브층；

상기 액티브층의 상부 및 하부에 형성된 상부 및 하부 커버층；및

상기 세라믹 본체의 제 1 측면（S5）에 형성되고，상기 제 1 내부전극콰 전기적 으로 연결되는 제 1 외부전극과 제 2 측면（S6）에 형성되고，상기 제 2 내부전극과 전 기적으로 연결되는 제2 외부전극；을 포함하고，

상기 세라믹 본체의 두께를 T ，폭을 W라 하면， $0.75 \mathrm{~W} \leq \mathrm{T} \leq 1.25 \mathrm{~W}$ 를 만족 하고，상기 제 1 외부전극과 상기 제 2 외부전극 사이의 간격을 G라고 하면， 30 pm $\leq \mathrm{G} \leq 0.9$ W를 만족하며，상기 유전체충의 수직 방향으로 층당 평균 유전체 그레 인 수가 2 개 이상을 만족하는 적층 세라믹 커패시터．

【청구항 2】

제 1 항에 있어서，

상기 하부 커버층의 두께는 $10 \mu \mathrm{~m}$ 내지 $100 \mu \mathrm{~m}$ 인 적층 세라믹 커패시터．
［청구항 3］

제1항에 있어서，

상기 세라믹 본체의 두께는 상기 제1 주면 $(\mathrm{S} 1)$ 및 제2 주면 $(\mathrm{S} 2)$ 사이의 거리 이고，상기 세라믹 본체의 폭은 상기 제1 외부전극이 형성된 상기 제1 측면（S5）퐈 상기 제2 외부전극이 형성된 상기 제2 측면（S6）사이의 거리이고，상기 세라믹 본 체의 길이는 상기 제1 단면（S3）과 상기 제2 단면（S4）사이의 거리인 경우，상기 세 라믹 본체의 폭은 상기 세라믹 본체의 길이보다 쫇거나 동일한 적층 세라믹 커패시 터。

【청구항 4】

제3항에 있어서，

상기 세라믹 본체의 길이를 L 및 폭을 W 라 하면， $0.5 \mathrm{~L} \leq W \leq \mathrm{L}$ 을 만족하는 적층 세라믹 커패시터．

【청구항 5］

제1항에 있어서，

상기 유전체 그레인은 평균 입경이 50 nm 이상 500 nm 이하인 적층 세라믹 커

패시터．

【청구항 6】

제1항에 있어서，

상기 제1 및 제2 내부 전극은 상기 세라믹 본체의 제1 및 제2 단면（S3，S4） 으로부터 일정거리 이격하여 형성된 적충 세라믹 커패시터．

【청구항 7］

제1항에 있어서

상기 제1 및 제 2 외부전극은 상기 세라믹 본체의 제1 및 제 2 주면에 연장하 여 형성되는 적층 세라믹 커패시터．

【청구항 8】

상부에 둘 이상의 전곡 패드를 갖는 인쇄회로기퐌；

상기 인쇄회로기판 위에 설치된 적층 세라믹 커패시터；및

상기 전극 패드와 상기 적층 세라믹 커패시터를 연결하는 솔더링；을 포함하 며，상기 적층 세라믹 커패시터는 유전체층을 포함하며，서로 마주보는 제1，제2 주면（S1，S2），서로 마주보는 제 1 ，제 2 측면（S5，S6）및 서로 마주보는 제1，제2 단면 $(\mathrm{S} 3, \mathrm{~S} 4)$ 을 가지는 세라믹 본체와 상기 유전체층을 사이에 두고 서로 대향하도

록 배치되며, 상기 제1 측면(S5) 또는 제2 측면(S6)으로 교대로 노출되는 복수의 제1 및 제2 내부 전극을 포함하여 용량이 형성되는 액티브층, 상기 액티브층의 상 부 및 하부에 형성된 상부 및 하부 커버충 및 상기 세라믹 본체의 제1 측면(S5)에 형성되고, 상기 제1 내부전극과 전기적으로 연결되는 제1 외부전극과 제2 측면 $(\mathrm{S}$ 6)에 형성되고, 상기 제2 내부전극과 전기적으로 연결되는 제2 외부전극을 포함하 고, 상기 세라믹 본체의 두께를 T , 폭을 W라 하면, $0.75 \mathrm{~W} \leq \mathrm{T} \leq 1.25 \mathrm{~W}$ 를 만족하 고, 상기 제 1 외부전극과 상기 제2 외부전극 사이의 간격을 G 라고 하면, $30 \mu \mathrm{~m} \leq$ $G \leq 0.9 W$ 를 만족하며, 상기 유전체층의 수직 방향으로 층당 평균 유전체 그레인 수가 2 개 이상을 만족하는 적층 세라믹 커패시터의 실장 기판.

[청구항 9]

제8항에 있어서,

상기 하부 커버층의 두께는 $10 \mu \mathrm{~m}$ 내지 $100 \mu \mathrm{~m}$ 인 적층 세라믹 커패시터의 실 장 기퐌.

【청구항 10】

제8항에 있어서,

상기 세라믹 본체의 두께는 상기 제1 주면(S1) 및 제2 주면(S2) 사이의 거리 이고, 상기 세라믹 본체의 폭은 상기 제 1 외부전극이 형성된 상기 제 1 측면(S5)퐈

상기 제2 외부전극이 형성된 상기 제2 측면（S6）사이의 거리이고，상기 세라믹 본 체의 길이는 상기 제 1 단면（S3）과 상기 제2 단면（S4）사이의 거리인 경우，상기 세 라믹 본체의 폭은 상기 세라믹 본체의 길이보다 짧거나 동일한 적층 세라믹 커패시 터의 실장 기판．

【청구항 11】

제 10 항에 있어서，

상기 세라믹 본체의 길이를 L 및 폭을 W 라 하면， $0.5 \mathrm{~L} \leq W \leq \mathrm{L}$ 을 만족하는 적충 세라믹 커패시터의 실장 기판．

【청구항 12】

제8항에 있어서，

상기 유전체 그레인은 평균 입경이 50 nm 이상 500 nm 이하인 적층 세라믹 커 패시터의 실장 기판．

【청구항 13】

제8항에 있어서，

상기 제1 및 제 2 내부 전극은 상기 세라믹 본체의 제 1 및 제 2 단면 $(\mathrm{S} 3, \mathrm{~S} 4)$ 으로부터 일정거리 이격하여 형성된 적층 세라믹 커패시터의 실장 기판．

【청구항 14】

제8항에 있어서，

상기 제1 및 제2 외부전극은 상기 세라믹 본체의 제1 및 제2 주면에 연장하 여 형성되는 적층 세라믹 커패시터의 실장 기판．

【청구항 15】

제8항에 있어서，

상기 솔더링은 상기 적층 세라믹 커패시터의 제1 및 제2 외부전극의 일부에 형성된 적층 세라믹 커패시터의 실장 기판．

【청구항 16】

제8항에 있어서，

상기 솔더링은 상기 적충 세라믹 커패시터의 제1 및 제2 외부전극의 중앙부 에 형성된 적층 세라믹 커패시터의 실장 기판．

【청구항 17】

제8항에 있어서，

상기 전극 패드는 상기 적층 세라믹 커패시터의 제1 및 제2 외부전극과 각각

연결되는 제 1 밎 제 2 전극 패드로 이루어진 적층 세라믹 커패시터의 실장 기판.

【청구항 18】

제17항에 있어저,

상기 제1 및 제2 전극 패드는 상기 적충 세라믹 커패시터의 폭 방향으로 서 로 오프셋(offset)된 적충 세라믹 커패시터의 실장 기판.
[청구항 19]

제8항에 있어서,

상기 전극 패드는 상기 적층 세라믹 커패시터의 제 1 외부전극과 연결되는 제 1 및 제2 전극 패드와 제 2 외부전극과 연결되는 제3 및 제4 전극 패드로 이루어진 적충 세라믹 거패시터의 실장 기판.

［요약서】

【오약】

본 발명은 유전체층을 포함하며，서로 마주보는 제1，제2 주면（S1，S2），서 로 마주보는 제 1 ，제 2 측면 $(\mathrm{S} 5, \mathrm{~S} 6)$ 및 서로 마주보는 제 1 ，제 2 단면 $(\mathrm{S} 3, \mathrm{~S} 4)$ 을 가 지는 세라믹 본체；상기 유전체총을 사이에 두고 서로 대향하도록 배치되며，상기 제1 측면（S5）또는 제 2 측면（S6）으로 표대로 노출되는 복수의 제1 및 제2 내부 전 극을 포함하여 용랑이 형성되는 액티브층；상기 액티브층의 상부 및 하부에 형성된 상부 및 하부 커버층；및 상기 세라믹 본체의 제1 측면（S5）에 형성되고，상기 제1 내부전극과 전기적으로 연결되는 제1 외부전극과 제2 측면（S6）에 형성되고，상기 제2 내부전극과 전기적으로 연결되는 제2 외부전극；을 포함하고，상기 세라믹 본체 의 두께를 T ，폭을 W라 하면， $0.75 \mathrm{~W} \leq \mathrm{T} \leq 1.25 W$ 를 만족하고，상기 제 1 외부전극 과 상기 제2 외부전극 사이의 간격을 G 라고 하면， $30 \mu \mathrm{~m} \leq \mathrm{G} \leq 0.9$ W를 만족하며， 상기 유전체충의 수직 방향으로 충당 평균 유전체 그레인 수가 2개 이상을 만족하 는 적층 세라믹 커퐤시터를 제공한다．

【대표도】

도 4

【도면】
[도 1]

【도 2】

54-47

【도 3】

【도 4】

【도 5】

【도 6】

[도 7]

【도 8】

[도 9]

United States Patent and Trademark Office
UNTTED STATES DEPARTMENT OF COMMERCE United States Patent and Trademark Office Address COMMISSIONER FOR PATENTS

Alexandria, Virginia 22313-1450
Alexandiria, Vis
 500 No

Date Mailed: 07/15/2014

NOTICE OF ACCEPTANCE OF POWER OF ATTORNEY

This is in response to the Power of Attorney filed 07/10/2014.
The Power of Attorney in this application is accepted. Correspondence in this application will be mailed to the above address as provided by 37 CFR 1.33 .
/ctuazon/

Office of Data Management, Application Assistance Unit (571) 272-4000, or (571) 272-4200, or 1-888-786-0101

POWER OF ATTORNEY TO PROSECUTE APPLICATIONS BEFORE THE USPTO

I hereby revoke all provious powers of attomey given in the application identifed in the attached statement under 37 CFR 3.7310$)$
I hercby appoint:

As attoneyc) or agente) to represent ine undersigned before the United States Patent and Trademark offce (USPTO in connection with any and all patem applications assigned only the undersigned acoodng to the USPTO assigment records or assighments documents attachen the fom in accodance with 3 ? CFR 3.7310 .

Assigee Name and Address: SAMSUNG ELECTRO-MECHANICS CO., LTD. Maeyoung-Ro 150
(Maetan-Dong), Youngtong-Gu, Suwon-Si, Gyeongi-Do, REPUBLIC OF KOREA
A copy of this form, together with a statement under 37 CFR 3.73 (C) (Form PTO/AlA/96 or equivalent) is required to be Filed in each application in which this form is used. The statement under 37 CFR 3.73 (c) may be completed by one of The practitioners appointed in this form, and must identify the application in which this Power of Attomey is to be filed.

SICNATURE of Assignee of Record The indivdual whose signature and tite is supplied below is authorizad to act on behall of the assignee		
Signature		Date
Name	11	Telephone

 FORHS TOTHS $4 D O R E S$ SEND TO: Commissioner for Patens, F O. Box 1450. Alexandra, VA 22343-1450.

STATEMENT UNDER 37 CFR 3.73(c)

Applicant/Patent Owner: SAMSUNG ELECTRO-MECHANICS CO., LTD.
Application No./Patent No.: 14/259,011 Filed/Issue Date: April 22, 2014
Titled: MULTILAYER CERAMIC CAPACITOR AND BOARD HAVING THE SAME MOUNTED THEREON
SAMSUNG ELECTRO-MECHANICS CO., LTD. , a
Corporation
(Name of Assignee)
(Type of Assignee, e.g., corporation, partnership, university, government agency, etc.)
states that, for the patent application/patent identified above, it is (choose one of options 1, 2, 3 or 4 below):

1. \square The assignee of the entire right, title, and interest.
2.An assignee of less than the entire right, title, and interest (check applicable box): \square The extent (by percentage) of its ownership interest is \qquad $\%$. Additional Statement(s) by the owners holding the balance of the interest must be submitted to account for 100% of the ownership interest.There are unspecified percentages of ownership. The other parties, including inventors, who together own the entire right, title and interest are:

Additional Statement(s) by the owner(s) holding the balance of the interest must be submitted to account for the entire right, title, and interest.
3. \square The assignee of an undivided interest in the entirety (a complete assignment from one of the joint inventors was made).

The other parties, including inventors, who together own the entire right, title, and interest are:

Additional Statement(s) by the owner(s) holding the balance of the interest must be submitted to account for the entire right, title, and interest.
4. \square The recipient, via a court proceeding or the like (e.g., bankruptcy, probate), of an undivided interest in the entirety (a complete transfer of ownership interest was made). The certified document(s) showing the transfer is attached.

The interest identified in option 1,2 or 3 above (not option 4) is evidenced by either (choose one of options A or B below):
A. \qquad An assignment from the inventor(s) of the patent application/patent identified above. The assignment was recorded in the United States Patent and Trademark Office at Reel 032731 , Frame 0575 , or for which a copy thereof is attached.
B.A chain of title from the inventor(s), of the patent application/patent identified above, to the current assignee as follows:

1. From: \qquad To: \qquad
The document was recorded in the United States Patent and Trademark Office at
Reel \qquad Frame \qquad or for which a copy thereof is attached.
2. From: \qquad To: \qquad
The document was recorded in the United States Patent and Trademark Office at
Reel \qquad Frame \qquad , or for which a copy thereof is attached.

[Page 1 of 2]

This collection of information is required by 37 CFA 3.73 (b). The information is required to obtain or retain a benefit by the public which is to fite (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.11 and 1.14 . This collection is estimated to take 12 minutes to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450 , Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

If you need assistance in completing the form, call 1-800-PTO-9199 and select option 2.

STATEMENT UNDER 37 CFR 3.73(c)

3. From: \qquad To: \qquad
The document was recorded in the United States Patent and Trademark Office at Reel \qquad Frame \qquad or for which a copy thereof is attached.
4. From: \qquad To: \qquad
The document was recorded in the United States Patent and Trademark Office at Reel \qquad Frame \qquad , or for which a copy thereof is attached.
5. From: \qquad To: \qquad The document was recorded in the United States Patent and Trademark Office at Reel \qquad , Frame \qquad or for which a copy thereof is attached.
6. From: \qquad To: \qquad The document was recorded in the United States Patent and Trademark Office at Reel \qquad Frame \qquad or for which a copy thereof is attached.Additional documents in the chain of titie are listed on a supplemental sheet(s).
\square As required by 37 CFR $3.73(\mathrm{c})(1)(\mathrm{i})$, the documentary evidence of the chain of title from the original owner to the assignee was, or concurrently is being, submitted for recordation pursuant to 37 CFR 3.11.
[NOTE: A separate copy (i.e., a true copy of the original assignment document(s)) must be submitted to Assignment Division in accordance with 37 CFR Part 3 , to record the assignment in the records of the USPTO. See MPEP 302.08]

The undersigned (whose title is supplied below) is authorized to act on behalf of the assignee.

/Bernard P. Codd/	July 9, 2014
Signature	Date
Bernard P. Codd	46,429
Printed or Typed Name	Title or Registration Number

[Page 2 of 2]

Privacy Act Statement

The Privacy Act of 1974 (P.L. 93-579) requires that you be given certain information in connection with your submission of the attached form related to a patent application or patent. Accordingly, pursuant to the requirements of the Act, please be advised that: (1) the general authority for the collection of this information is 35 U.S.C. 2(b)(2); (2) furnishing of the information solicited is voluntary; and (3) the principal purpose for which the information is used by the U.S. Patent and Trademark Office is to process and/or examine your submission related to a patent application or patent. If you do not furnish the requested information, the U.S. Patent and Trademark Office may not be able to process and/or examine your submission, which may result in termination of proceedings or abandonment of the application or expiration of the patent.

The information provided by you in this form will be subject to the following routine uses:

1. The information on this form will be treated confidentially to the extent allowed under the Freedom of Information Act (5 U.S.C. 552) and the Privacy Act (5 U.S.C 552a). Records from this system of records may be disclosed to the Department of Justice to determine whether disclosure of these records is required by the Freedom of Information Act.
2. A record from this system of records may be disclosed, as a routine use, in the course of presenting evidence to a court, magistrate, or administrative tribunal, including disclosures to opposing counsel in the course of settlement negotiations.
3. A record in this system of records may be disclosed, as a routine use, to a Member of Congress submitting a request involving an individual, to whom the record pertains, when the individual has requested assistance from the Member with respect to the subject matter of the record.
4. A record in this system of records may be disclosed, as a routine use, to a contractor of the Agency having need for the information in order to perform a contract. Recipients of information shall be required to comply with the requirements of the Privacy Act of 1974, as amended, pursuant to 5 U.S.C. $552 \mathrm{a}(\mathrm{m})$.
5. A record related to an International Application filed under the Patent Cooperation Treaty in this system of records may be disclosed, as a routine use, to the International Bureau of the World Intellectual Property Organization, pursuant to the Patent Cooperation Treaty.
6. A record in this system of records may be disclosed, as a routine use, to another federal agency for purposes of National Security review (35 U.S.C. 181) and for review pursuant to the Atomic Energy Act (42 U.S.C. $218(\mathrm{c})$).
7. A record from this system of records may be disclosed, as a routine use, to the Administrator, General Services, or his/her designee, during an inspection of records conducted by GSA as part of that agency's responsibility to recommend improvements in records management practices and programs, under authority of 44 U.S.C. 2904 and 2906. Such disclosure shall be made in accordance with the GSA regulations governing inspection of records for this purpose, and any other relevant (i.e., GSA or Commerce) directive. Such disclosure shall not be used to make determinations about individuals.
8. A record from this system of records may be disclosed, as a routine use, to the public after either publication of the application pursuant to 35 U.S.C. 122 (b) or issuance of a patent pursuant to 35 U.S.C. 151. Further, a record may be disclosed, subject to the limitations of 37 CFR 1.14 , as a routine use, to the public if the record was filed in an application which became abandoned or in which the proceedings were terminated and which application is referenced by either a published application, an application open to public inspection or an issued patent.
9. A record from this system of records may be disclosed, as a routine use, to a Federal, State, or local law enforcement agency, if the USPTO becomes aware of a violation or potential violation of law or regulation.

United States Patent And Trademark Office

Inder Secretary of Commerce for Intellectual Property and
Director of the United States Patentand Trademark Office

APRIL 23, 2014
PTAS

MCDERMOTT WILL \& EMERY LLP
THE MCDERMOTT BUILDING

502778093

500 NORTH CAPITOL STREET, N.W. WASHINGTON, DC 20001

> UNITED STATES PATENT AND TRADEMARK OFFICE NOTICE OF RECORDATION OF ASSIGNMENT DOCUMENT

THE ENCLOSED DOCUMENT HAS BEEN RECORDED BY THE ASSIGNMENT RECORDATION BRANCH OF THE U.S. PATENT AND TRADEMARK OFFICE. A COMPLETE COPY IS AVAILABLE AT THE ASSIGNMENT SEARCH ROOM ON THE REEL AND FRAME NUMBER REFERENCED BELOW.

PLEASE REVIEW ALL INFORMATION CONTAINED ON THIS NOTICE. THE INFORMATION CONTAINED ON THIS RECORDATION NOTICE REFLECTS THE DATA PRESENT IN THE PATENT AND TRADEMARK ASSIGNMENT SYSTEM. IF YOU SHOULD EIND ANY ERRORS OR HAVE QUESTIONS CONCERNING THIS NOTICE, YOU MAY CONTACT THE ASSIGNMENT RECORDATION BRANCH AT 571-272-3350. PLEASE SEND REQUEST FOR CORRECTION TO: U.S. PATENT AND TRADEMARK OFFICE, MAIL STOP: ASSIGNMENT RECORDATION BRANCH, P.O. BOX 1450, ALEXANDRIA, VA 22313.

RECORDATION DATE: $04 / 22 / 2014$	REEL/FRAME: $032731 / 0575$
BRIEF: ASSIGNMENT OF ASSIGNORS INTEREST	(SEE DOCUMENT FOR DETAILS).
DOCKET NUMBER: $093814-0302$	
ASSIGNOR:	
LEE, BYOUNG HWA	DOC DATE: $03 / 25 / 2014$
ASSIGNOR:	
PARK, HEUNG KIL,	DOC DATE: $03 / 25 / 2014$
ASSIGNOR:	
LEE, KYO KWANG	DOC DATE: $03 / 25 / 2014$
ASSIGNOR:	
AHN, YOUNG GHYU	DOC DATE: $03 / 25 / 2014$
ASSIGNOR:	
PARK, SANG SOO	DOC DATE: $03 / 25 / 2014$
ASSIGNOR:	

```
ASSIGNEE:
    SAMSUNG ELECTRO-MECHANICS CO., LTD.
    MAEYOUNG-RO 150 (MAETAN-DONG),
        YOUNGTONG-GU
    SUWON-SI, GYEONGGI-DO, KOREA,
        REPUBLIC OF
APPLICATION NUMBER: 14259011 FILING DATE:
PATENT NUMBER: ISSUE DATE:
TITLE: MULTILAYER CERAMIC CAPACITOR AND BOARD HAVING THE SAME MOUNTED
        THEREON
```

ASSIGNMENT RECORDATION BRANCH
PUBLIC RECORDS DIVISION

Electronic Acknowledgement Receipt	
EFS ID:	19538683
Application Number:	14259011
International Application Number:	
Confirmation Number:	5037
Title of Invention:	MULTILAYER CERAMIC CAPACITOR AND BOARD HAVING THE SAME MOUNTED THEREON
First Named Inventor/Applicant Name:	Byoung Hwa LEE
Customer Number:	20277
Filer:	Bernard P. Codd
Filer Authorized By:	
Attorney Docket Number:	093814-0302
Receipt Date:	10-JUL-2014
Filing Date:	22-APR-2014
Time Stamp:	16:26:12
Application Type:	Utility under 35 USC 111(a)

Payment information:

Submitted with	ment	no			
File Listing:					
Document Number	Document Description	File Name	File Size(Bytes)/ Message Digest	Multi Part /.zip	Pages (if appl.)
1		$\begin{gathered} \text { 2014-07-10-POA- } \\ \text { Stmt373b-093814-0302.pdf } \end{gathered}$		yes	6

United States Patent and Trademark Office
UNTTED STATES DEPARTMENT OF COMMERCE United States Patent and Trademark Office address COMMISSIONER FOR PATENTS

PO. Box 1450
Alexandria, Virginia 22313-1450
APPLICATION

14/259,011
FILING OR 371(C) DATE Marzant FIRST NAMED APPLICANT
Byoung Hwa LEE
ATTY. DOCKET NO./TITLE
$093814-0302$

CONFIRMATION NO. 5037
20277
IMPROPER CPOA LETTER
MCDERMOTT WILL \& EMERY LLP
The McDermott Building 500 North Capitol Street, N.W. WASHINGTON, DC 20001

Date Mailed: 05/09/2014

NOTICE REGARDING POWER OF ATTORNEY

This is in response to the power of attorney filed 04/22/2014. The power of attorney in this application is not accepted for the reason(s) listed below:

- The revocation is not signed by the applicant, the assignee of the entire interest, or one particular principal attorney having the authority to revoke.
/tpnguyen/

Office of Data Management, Application Assistance Unit (571) 272-4000, or (571) 272-4200, or 1-888-786-0101

United States Patent and Trademark Office
United States Patent and Trademark Office Address: COMMISSIONER FOR PATENTS

Alexandria, Virginia 22313-1450
Alexandria, Virg
www:uspto gov

APPLICATION NUMBER	FILING or 371 (c) DATE	GRP ART UNIT	FIL FEE RECD	ATTY.DOCKET.NO	TOT CLAIMS	IND CLAIMS
$14 / 259,011$	$04 / 22 / 2014$	1784	1600	$093814-0302$	19	2

CONFIRMATION NO. 5037
20277
MCDERMOTT WILL \& EMERY LLP
The McDermott Building
500 North Capitol Street, N.W.
WASHINGTON, DC 20001
Date Mailed: 05/09/2014

Receipt is acknowledged of this non-provisional patent application. The application will be taken up for examination in due course. Applicant will be notified as to the results of the examination. Any correspondence concerning the application must include the following identification information: the U.S. APPLICATION NUMBER, FILING DATE, NAME OF APPLICANT, and TITLE OF INVENTION. Fees transmitted by check or draft are subject to collection. Please verify the accuracy of the data presented on this receipt. If an error is noted on this Filing Receipt, please submit a written request for a Filing Receipt Correction. Please provide a copy of this Filing Receipt with the changes noted thereon. If you received a "Notice to File Missing Parts" for this application, please submit any corrections to this Filing Receipt with your reply to the Notice. When the USPTO processes the reply to the Notice, the USPTO will generate another Filing Receipt incorporating the requested corrections

Inventor(s)
Byoung Hwa LEE, Suwon-Si, KOREA, REPUBLIC OF;
Heung Kil PARK, Suwon-Si, KOREA, REPUBLIC OF;
Kyo Kwang LEE, Suwon-Si, KOREA, REPUBLIC OF;
Young Ghyu AHN, Suwon-Si, KOREA, REPUBLIC OF;
Sang Soo PARK, Suwon-Si, KOREA, REPUBLIC OF;
Soon Ju LEE, Suwon-Si, KOREA, REPUBLIC OF;
Applicant(s)
SAMSUNG ELECTRO-MECHANICS CO., LTD., Suwon-Si, KOREA, REPUBLIC OF
Assignment For Published Patent Application
SAMSUNG ELECTRO-MECHANICS CO., LTD., Suwon-Si, KOREA, REPUBLIC OF
Power of Attorney: None
Domestic Applications for which benefit is claimed - None.
A proper domestic benefit claim must be provided in an Application Data Sheet in order to constitute a claim for domestic benefit. See 37 CFR 1.76 and 1.78.

Foreign Applications (You may be eligible to benefit from the Patent Prosecution Highway program at the USPTO. Please see http://www.uspto.gov for more information.)
REPUBLIC OF KOREA 10-2013-0068498 06/14/2013

Permission to Access - A proper Authorization to Permit Access to Application by Participating Offices (PTO/SB/39 or its equivalent) has been received by the USPTO.

Request to Retrieve - This application either claims priority to one or more applications filed in an intellectual property Office that participates in the Priority Document Exchange (PDX) program or contains a proper Request to Retrieve Electronic Priority Application(s) (PTO/SB/38 or its equivalent). Consequently, the USPTO will attempt to electronically retrieve these priority documents.

If Required, Foreign Filing License Granted: 05/07/2014
The country code and number of your priority application, to be used for filing abroad under the Paris Convention, is US $14 / 259,011$

Projected Publication Date: 12/18/2014
Non-Publication Request: No
Early Publication Request: No
Title
MULTILAYER CERAMIC CAPACITOR AND BOARD HAVING THE SAME MOUNTED THEREON
Preliminary Class
428
Statement under 37 CFR 1.55 or 1.78 for AIA (First Inventor to File) Transition Applications: No PROTECTING YOUR INVENTION OUTSIDE THE UNITED STATES

Since the rights granted by a U.S. patent extend only throughout the territory of the United States and have no effect in a foreign country, an inventor who wishes patent protection in another country must apply for a patent in a specific country or in regional patent offices. Applicants may wish to consider the filing of an international application under the Patent Cooperation Treaty (PCT). An international (PCT) application generally has the same effect as a regular national patent application in each PCT-member country. The PCT process simplifies the filing of patent applications on the same invention in member countries, but does not result in a grant of "an international patent" and does not eliminate the need of applicants to file additional documents and fees in countries where patent protection is desired.

Almost every country has its own patent law, and a person desiring a patent in a particular country must make an application for patent in that country in accordance with its particular laws. Since the laws of many countries differ in various respects from the patent law of the United States, applicants are advised to seek guidance from specific foreign countries to ensure that patent rights are not lost prematurely.

Applicants also are advised that in the case of inventions made in the United States, the Director of the USPTO must issue a license before applicants can apply for a patent in a foreign country. The filing of a U.S. patent application serves as a request for a foreign filing license. The application's filing receipt contains further information and guidance as to the status of applicant's license for foreign filing.

Applicants may wish to consult the USPTO booklet, "General Information Concerning Patents" (specifically, the section entitled "Treaties and Foreign Patents") for more information on timeframes and deadlines for filing foreign patent applications. The guide is available either by contacting the USPTO Contact Center at 800-786-9199, or it can be viewed on the USPTO website at http://www.uspto.gov/web/offices/pac/doc/general/index.html.

For information on preventing theft of your intellectual property (patents, trademarks and copyrights), you may wish to consult the U.S. Government website, http://www.stopfakes.gov. Part of a Department of Commerce initiative, this website includes self-help "toolkits" giving innovators guidance on how to protect intellectual property in specific
countries such as China, Korea and Mexico. For questions regarding patent enforcement issues, applicants may call the U.S. Government hotline at 1-866-999-HALT (1-866-999-4258).

LICENSE FOR FOREIGN FILING UNDER
Title 35, United States Code, Section 184
Title 37, Code of Federal Regulations, 5.11 \& 5.15

GRANTED

The applicant has been granted a license under 35 U.S.C. 184 , if the phrase "IF REQUIRED, FOREIGN FILING LICENSE GRANTED" followed by a date appears on this form. Such licenses are issued in all applications where the conditions for issuance of a license have been met, regardless of whether or not a license may be required as set forth in 37 CFR 5.15. The scope and limitations of this license are set forth in 37 CFR 5.15(a) unless an earlier license has been issued under 37 CFR 5.15 (b). The license is subject to revocation upon written notification. The date indicated is the effective date of the license, unless an earlier license of similar scope has been granted under 37 CFR 5.13 or 5.14.

This license is to be retained by the licensee and may be used at any time on or after the effective date thereof unless it is revoked. This license is automatically transferred to any related applications(s) filed under 37 CFR 1.53(d). This license is not retroactive.

The grant of a license does not in any way lessen the responsibility of a licensee for the security of the subject matter as imposed by any Government contract or the provisions of existing laws relating to espionage and the national security or the export of technical data. Licensees should apprise themselves of current regulations especially with respect to certain countries, of other agencies, particularly the Office of Defense Trade Controls, Department of State (with respect to Arms, Munitions and Implements of War (22 CFR 121-128)); the Bureau of Industry and Security, Department of Commerce (15 CFR parts 730-774); the Office of Foreign AssetsControl, Department of Treasury (31 CFR Parts 500+) and the Department of Energy.

NOT GRANTED

No license under 35 U.S.C. 184 has been granted at this time, if the phrase "IF REQUIRED, FOREIGN FILING LICENSE GRANTED" DOES NOT appear on this form. Applicant may still petition for a license under 37 CFR 5.12, if a license is desired before the expiration of 6 months from the filing date of the application. If 6 months has lapsed from the filing date of this application and the licensee has not received any indication of a secrecy order under 35 U.S.C. 181, the licensee may foreign file the application pursuant to 37 CFR 5.15(b).

SelectUSA

The United States represents the largest, most dynamic marketplace in the world and is an unparalleled location for business investment, innovation, and commercialization of new technologies. The U.S. offers tremendous resources and advantages for those who invest and manufacture goods here. Through SelectUSA, our nation works to promote and facilitate business investment. SelectUSA provides information assistance to the international investor community; serves as an ombudsman for existing and potential investors; advocates on behalf of U.S. cities, states, and regions competing for global investment; and counsels U.S. economic development organizations on investment attraction best practices. To learn more about why the United States is the best country in the world to develop
technology, manufacture products, deliver services, and grow your business, visit http://www.SelectUSA.gov or call +1-202-482-6800.

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information uniess it displays a valid OMB control number.

UTILITY
 PATENT APPLICATION TRANSMITTAL

Attorney Docket No.		O93814-0302
First Named Inventor		Byoung Hwa LEE
Title	MULTILAYER CERAMIC CAPACITOR AND BOARD HAVING THE SAME MOUNTED THEREON	

37 CFR $1.53(B)$)
Commissioner for Patents

Under the Paperwork Reduction Act of 1995 , no person are required to respond to a collection of information uniless it displays a valid OMB controi number

FEE TRANSMITTAL			Complete if known	
			Application Number Filing Date	Not Yet Assigned April 22, 2014
			First Named Inventor	Byoung Hwa LEE
Applicant asserts small entity status. See 37 CFR 1.27 Applicant certifies micro entity status. See 37 CFR 1.29. Form $\mathrm{PTO} / \mathrm{SB} / 15 \mathrm{~A}$ or B or equivalent must either be enclosed or have been submitted previously			Examiner Name	Not Yet Assigned
			Art Unit	Not Yet Assigned
			Practitioner Docket No.	093814-0302

METHOD OF PAYMENT (check all that apply)

\square	Check $\quad \square$	\square Credit Card $\quad \square$	\square Money Order	\square
x	None	\square Other (please identify):		
	Deposit Account Number:	$50-0417$	Deposit Account Name: McDermott Will \& Emery LLP	

For the above-identified deposit account, the Director is hereby authorized to: (check all that apply)

\times	Charge fee(s) indicated below		Charge fee(s) indicated below, excep
\times	Charge any additional fee(s) or underpayment of fee(s) under 37 CFR 1.16 and 1.17	X	Credit any overpayment of fee(s)

WARNING: Information on this form may become public. Credit card information should not be included on this form. Provide credit card information and authorization on PTO-2038.
FEE CALCULATION

1. BASIC FILING, SEARCH, AND EXAMINATION FEES ($U=$ undiscounted fee; $S=$ small entity fee; $M=$ micro entity fee)

	FILING FEES			SEARCH FEES			EXAMINATION FEES			
Application Type	$\underline{U}(\$)$	S(\$)	M (\$)	U(\$)	S(\$)	M (\$)	$\underline{U(\$)}$	S(\$)	M (\$)	Fees Paid (\$)
Utility	280	140*	70	600	300	150	720	360	180	1,600.00
Design	180	90	45	120	60	30	460	230	115	
Plant	180	90	45	380	190	95	580	290	145	
Reissue	280	140	70	600	300	150	2,160	1,080	540	
Provisional	260	130	65					0	0	

*The $\$ 140$ small entity status filing fee for a utility application is further reduced to $\$ 70$ for a small entity status applicant who files the application via EFS-Web.

2. EXCESS CLAIM FEES

TRANSMITTAL FOR POWER OF ATTORNEY TO ONE OR MORE REGISTERED PRACTITIONERS

NOTE: This form is to be submitted with the Power of Attorney by Applicant form (PTO/AIA/82B or equivalent) to identify the application to which the Power of Attorney is directed, in accordance with 37 CFR 1.5. If the Power of Attorney by Applicant form is not accompanied by this transmittal form or an equivalent, the Power of Attorney will not be recognized in the application.

POWER OF ATTORNEY BY APPLICANT

Please recognize or change the correspondence address for the application identified in the attached transmittal letter to:

The adcress associated with the above-mentiones Customer Number.

\square inventor or Joint Inventor
\square Legal Representative of a Deceased or Legally Incapacitated Inventor
\square Assignee or Person to Whom the Inventor is Under an Obligation to Assign \square Person Who Otherwise Shows Sufficient Proprietary Interest (e g. a petition SIGNATURE of Applicant for Patent

SIGNATURE of Applicant for Patent			
Signature	Tin motek Cati	Date	$0660,20 / 2$
Name	Jin Wook CHOI	Telephane	000,2012
Tite and Company Leader of inelfectual Property Grup (SAMSUNG ELECTRO-MECHANICS CO. LTD.)	Leader ofindelfectual Property Group (SAMSUNG ELECTRO-MECHANICS CO. LTD.)		
nOIE Signature - This form must be signed by the applicant in accordance with 37 CFR 1.33. See 37 CFR 1.4 for signature requirements and certifications. Submit miltipie forms for more than one slgnature, see below*			
\square Total of	forms are submited.		

This collection of information is required by 37 CFR $1.31,1.32$ and 1.33 . The information is required to obtain or ratain a benefit by the puntio whlct is to flle (and by the USPTO to piocess) an application, Confidentiaity is govemed by 35 U.S.C. 122 and 37 CFR 1.11 and 1.14 . This collection is estinated to take 3 minutas to complete. including gathering, prepating, and subriting the completed application form to the USFTO. Time will vary depending upon the inctuddual case. Any coriments on The amouni of time you require to complete this fom andor suggestions for reductig this burtien, should be sent to the chief Infomation Officer. U.S. Patent and Trademark Office, US Deparment of Commerce, P.O. Box 1450 , Alexandria. VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORAS TO THIS ADORESS. SEND TO: Commissioner for Patents, P.O. Box 1450. Alexandrla, VA 22313-1450

If you need assistance in completing the form, call $1-800$-pro-9199 and select option 2.

Application Data Sheet 37 CFR 1.76		Attorney Docket Number	093814-0302
		Application Number	
Title of Invention	MULTILAYER CERAMIC CAPACITOR AND BOARD HAVING THE SAME MOUNTED THEREON		
The application data sheet is part of the provisional or nonprovisional application for which it is being submitted. The following form contains the bibliographic data arranged in a format specified by the United States Patent and Trademark Office as outlined in 37 CFR 1.76. This document may be completed electronically and submitted to the Office in electronic format using the Electronic Filing System (EFS) or the document may be printed and included in a paper filed application.			

Secrecy Order 37 CFR 5.2

Portions or all of the application associated with this Application Data Sheet may fall under a Secrecy Order pursuant to 37 CFR 5.2 (Paper filers only. Applications that fall under Secrecy Order may not be filed electronically.)

Inventor Information:

Mailing Address of Inventor:

Mailing Address of Inventor:

Address 1		SAMSUNG ELECTRO-MECHANICS CO., LTD.		
Address 2		Maeyoung-Ro 150 (Maetan-Dong), Youngtong-Gu		
City	Suwon-Si, Gyeonggi-Do	State/Province		
Postal Code		Country i	KR	
Inventor 3				Remove
Legal Name				

Application Data Sheet 37 CFR 1.76		Attorney Docket Number	$093814-0302$
	Application Number		
Title of Invention	MULTILAYER CERAMIC CAPACITOR AND BOARD HAVING THE SAME MOUNTED THEREON		

Mailing Address of Inventor:

Mailing Address of Inventor:

Address 1	SAMSUNG ELECTRO-MECHANICS CO., LTD. Address 2 Maeyoung-Ro 150 (Maetan-Dong), Youngtong-Gu			
City	Suwon-Si, Gyeonggi-Do	State/Province		
Postal Code		Country i	KR	

Application Data Sheet 37 CFR 1.76		Attorney Docket Number	$093814-0302$
	Application Number		
Title of Invention	MULTILAYER CERAMIC CAPACITOR AND BOARD HAVING THE SAME MOUNTED THEREON		

Correspondence Information:

Enter either Customer Number or complete the Correspondence Information section below. For further information see 37 CFR 1.33(a).

An Address is being provided for the correspondence Information of this application.

Customer Number	20277		
Email Address	ipdocketmwe@mwe.com	Add Email	Remove Email

Application Information:

Title of the Invention	MULTILAYER CERAMIC CAPACITOR AND BOARD HAVING THE SAME MOUNTED THEREON		
Attorney Docket Number	$093814-0302$	Small Entity Status Claimed $\quad \square$	
Application Type	Nonprovisional		
Subject Matter	Utility		
Total Number of Drawing Sheets (if any)	5	Suggested Figure for Publication (if any)	

Publication Information:

Request Early Publication (Fee required at time of Request 37 CFR 1.219)
Request Not to Publish. I hereby request that the attached application not be published under $\square 35$ U.S.C. 122(b) and certify that the invention disclosed in the attached application has not and will not be the subject of an application filed in another country, or under a multilateral international agreement, that requires publication at eighteen months after filing.

Representative Information:

Application Data Sheet 37 CFR 1.76		Attorney Docket Number	$093814-0302$
	Application Number		
Title of Invention	MULTILAYER CERAMIC CAPACITOR AND BOARD HAVING THE SAME MOUNTED THEREON		

Representative information should be provided for all practitioners having a power of attorney in the application. Providing
this information in the Application Data Sheet does not constitute a power of attorney in the application (see 37 CFR 1.32).
Either enter Customer Number or complete the Representative Name section below. If both sections are completed the customer
Number will be used for the Representative Information during processing.
:---
Please Select One:
Customer Number

Domestic Benefit/National Stage Information:

This section allows for the applicant to either claim benefit under 35 U.S.C. 119(e), 120, 121, or 365(c) or indicate National Stage entry from a PCT application. Providing this information in the application data sheet constitutes the specific reference required by 35 U.S.C. 119(e) or 120, and 37 CFR 1.78.

Prior Application Status		Remove	
Application Number	Continuity Type	Prior Application Number	Filing Date (YYYY-MM-DD)
Additional Domestic Benefit/National Stage Data may be generated within this form by selecting the Add button.	Add		

Foreign Priority Information:

This section allows for the applicant to claim priority to a foreign application. Providing this information in the application data sheet constitutes the claim for priority as required by 35 U.S.C. 119 (b) and 37 CFR 1.55 (d). When priority is claimed to a foreign application that is eligible for retrieval under the priority document exchange program (PDX) 'ithe information will be used by the Office to automatically attempt retrieval pursuant to 37 CFR $1.55(\mathrm{~h})(1)$ and (2). Under the PDX program, applicant bears the ultimate responsibility for ensuring that a copy of the foreign application is received by the Office from the participating foreign intellectual property office, or a certified copy of the foreign priority application is filed, within the time period specified in 37 CFR $1.55(\mathrm{~g})(1)$.

Application Number	Country i	Filing Date (YYYY-MM-DD)	Access Code ${ }^{\text {i }}$ (if applicable)
$10-2013-0068498$	KR	2013-06-14	
Additional Foreign Priority Add button.			

Application Data Sheet 37 CFR 1.76		Attorney Docket Number	$093814-0302$
	Application Number		
Title of Invention	MULTILAYER CERAMIC CAPACITOR AND BOARD HAVING THE SAME MOUNTED THEREON		

Statement under $\mathbf{3 7}$ CFR 1.55 or 1.78 for AIA (First Inventor to File) Transition Applications

This application (1) claims priority to or the benefit of an application filed before March 16, 2013 and (2) also contains, or contained at any time, a claim to a claimed invention that has an effective filing date on or after March 16, 2013.

Authorization to Permit Access:

Authorization to Permit Access to the Instant Application by the Participating Offices

If checked, the undersigned hereby grants the USPTO authority to provide the European Patent Office (EPO),
the Japan Patent Office (JPO), the Korean Intellectual Property Office (KIPO), the World Intellectual Property Office (WIPO), and any other intellectual property offices in which a foreign application claiming priority to the instant patent application is filed access to the instant patent application. See 37 CFR 1.14(c) and (h). This box should not be checked if the applicant does not wish the EPO, JPO, KIPO, WIPO, or other intellectual property office in which a foreign application claiming priority to the instant patent application is filed to have access to the instant patent application.

In accordance with 37 CFR 1.14(h)(3), access will be provided to a copy of the instant patent application with respect to: 1) the instant patent application-as-filed; 2) any foreign application to which the instant patent application claims priority under 35 U.S.C. 119 (a)-(d) if a copy of the foreign application that satisfies the certified copy requirement of 37 CFR 1.55 has been filed in the instant patent application; and 3) any U.S. application-as-filed from which benefit is sought in the instant patent application.

In accordance with 37 CFR 1.14(c), access may be provided to information concerning the date of filing this Authorization.

Applicant Information:

Providing assignment information in this section does not substitute for compliance with any requirement of part 3 of Title 37 of CFR to have an assignment recorded by the Office.

Application Data Sheet 37 CFR 1.76	Attorney Docket Number	$093814-0302$
	Application Number	
Title of Invention	MULTILAYER CERAMIC CAPACITOR AND BOARD HAVING THE SAME MOUNTED THEREON	

If applicant is the legal representative, indicate the authority to file the patent application, the inventor is:			
Name of the Deceased or Legally Incapacitated Inventor :			
If the Applicant is an Organization check here. 区			
Organization Name	SAMSUNG ELECTRO-MECHANICS CO., LTD.		
Mailing Address Information:			
Address 1	Maeyoung-Ro 150 (Maetan-Dong), Youngtong-Gu		
Address 2			
City	Suwon-Si, Gyeonggi-Do	State/Province	
Country i KR		Postal Code	
Phone Number		Fax Number	
Email Address			
Additional Applicant Data may be generated within this form by selecting the Add button.			Add

Non-Applicant Assignee Information:

Providing assignment information in this section does not subsitute for compliance with any requirement of part 3 of Title 37 of CFR to have an assignment recorded by the Office.

Assignee 1

Complete this section only if non-applicant assignee information is desired to be included on the patent application publication in accordance with 37 CFR 1.215 (b). Do not include in this section an applicant under 37 CFR 1.46 (assignee, person to whom the inventor is obligated to assign, or person who otherwise shows sufficient proprietary interest), as the patent application publication will include the name of the applicant(s).

				Remove If the Assignee is an Organization check here. \square Prefix Given Name Middle Name				Family Name	Suffix

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number

Application Data Sheet 37 CFR 1.76		Attorney Docket Number	$093814-0302$
	Application Number		
Title of Invention	MULTILAYER CERAMIC CAPACITOR AND BOARD HAVING THE SAME MOUNTED THEREON		

Mailing Address Information:			
Address 1			
Address 2		State/Province	
City		Postal Code	
Country i		Fax Number	
Phone Number			
Email Address			
Additional Assignee Data may be generated within this form by selecting the Add button.	Add		

Signature:

Remove
NOTE: This form must be signed in accordance with 37 CFR 1.33. See 37 CFR 1.4 for signature requirements and certifications

Signature	Stephen A. Becker, P.C./			Date (YYYY-MM-DD)	2014-04-22
First Name	Stephen	Last Name	Becker	Registration Number	26527
Additional Signature may be generated within this form by selecting the Add button.					

This collection of information is required by 37 CFR 1.76. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 23 minutes to complete, including gathering, preparing, and submitting the completed application data sheet form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

Privacy Act Statement

The Privacy Act of 1974 (P.L. 93-579) requires that you be given certain information in connection with your submission of the attached form related to a patent application or patent. Accordingly, pursuant to the requirements of the Act, please be advised that: (1) the general authority for the collection of this information is 35 U.S.C. 2(b)(2); (2) furnishing of the information solicited is voluntary; and (3) the principal purpose for which the information is used by the U.S. Patent and Trademark Office is to process and/or examine your submission related to a patent application or patent. If you do not furnish the requested information, the U.S. Patent and Trademark Office may not be able to process and/or examine your submission, which may result in termination of proceedings or abandonment of the application or expiration of the patent.

The information provided by you in this form will be subject to the following routine uses: and the Privacy Act (5 U.S.C. 552a). Records from this system of records may be disclosed to the Department of Justice to determine whether the Freedom of Information Act requires disclosure of these records.
2. administrative tribunal, including disclosures to opposing counsel in the course of settlement negotiations
3. A record in this system of records may be disclosed, as a routine use, to a Member of Congress submitting a request involving an individual, to whom the record pertains, when the individual has requested assistance from the Member with respect to the subject matter of the record.

A record in this system of records may be disclosed, as a routine use, to a contractor of the Agency having need for the information in order to perform a contract. Recipients of information shall be required to comply with the requirements of the Privacy Act of 1974, as amended, pursuant to 5 U.S.C. 552a(m)

A record related to an International Application filed under the Patent Cooperation Treaty in this system of records may be disclosed, as a routine use, to the International Bureau of the World Intellectual Property Organization, pursuant to the Patent Cooperation Treaty.
6. A record in this system of records may be disclosed, as a routine use, to another federal agency for purposes of National Security review (35 U.S.C. 181) and for review pursuant to the Atomic Energy Act (42 U.S.C. 218(c)).
7. A record from this system of records may be disclosed, as a routine use, to the Administrator, General Services, or his/her designee, during an inspection of records conducted by GSA as part of that agency's responsibility to recommend improvements in records management practices and programs, under authority of 44 U.S.C. 2904 and 2906. Such disclosure shall be made in accordance with the GSA regulations governing inspection of records for this purpose, and any other relevant (i.e., GSA or Commerce) directive. Such disclosure shall not be used to make determinations about individuals.
8. A record from this system of records may be disclosed, as a routine use, to the public after either publication of the application pursuan to 35 U.S.C. 122(b) or issuance of a patent pursuant to 35 U.S.C. 151. Further, a record may be disclosed, subject to the limitations of 37 CFR 1.14, as a routine use, to the public if the record was filed in an application which became abandoned or in which the proceedings were terminated and which application is referenced by either a published application, an application open to public inspections or an issued patent.

A record from this system of records may be disclosed, as a routine use, to a Federal, State, or local law enforcement agency, if the USPTO becomes aware of a violation or potential violation of law or regulation.

MULTILAYER CERAMIC CAPACITOR AND

BOARD HAVING THE SAME MOUNTED THEREON

CROSS-REFERENCE TO RELATED APPLICATION

[0001] This application claims the benefit of Korean Patent Application No. 10-2013-0068498 filed on June 14, 2013, with the Korean Intellectual Property Office, the disclosure of which is incorporated herein by reference.

BACKGROUND
[0002] The present disclosure relates to a multilayer ceramic capacitor and a board having the same mounted thereon.
[0003] In accordance with the recent trend toward miniaturization and high capacitance of electronic products, electronic components used in the electronic products are required to have a small size and high capacitance. Therefore, a demand for a multilayer ceramic electronic component has been increased.
[0004] In the case of a multilayer ceramic capacitor, as equivalent series inductance (hereinafter, referred to as "ESL") increases, performance of an electronic product may deteriorate. In addition, in a case in which an electronic component is miniaturized and capacitance thereof is increased, the influence of an increase in ESL on deterioration in performance of the electronic product has relatively increased.

Page 1
[0005] A so-called "low inductance chip capacitor (LICC)" is to decrease inductance by decreasing a distance between external terminals to shorten a current flow path. [0006] Meanwhile, the multilayer ceramic capacitor may have a structure in which a plurality of dielectric layers and internal electrodes having opposite polarities and having at least one of the dielectric layers interposed therebetween are alternately stacked.
[0007] Since the dielectric layers have piezoelectric and electrostrictive properties, when direct current (DC) or alternating current (AC) voltage is applied to the multilayer ceramic capacitor, a piezoelectric phenomenon may occur between the internal electrodes, causing vibrations.
[0008] Such vibrations may be transferred to a printed circuit board on which the multilayer ceramic capacitor is mounted through a solder, such that the entire printed circuit board may become an acoustic reflection surface to transmit the sound of vibrations as noise.
[0009] Vibration noise may have a frequency corresponding to an audio frequency within a range of 20 to 20000 Hz , potentially causing listener discomfort. The vibration noise causing listener discomfort, as described above, is known as acoustic noise.
[0010] Research into a technology of reducing the acoustic noise in a multilayer ceramic capacitor is still demanded.

SUMMARY

[0011] An aspect of the present disclosure may provide a multilayer ceramic capacitor and a board having the same mounted thereon.
[0012] According to an aspect of the present disclosure, a multilayer ceramic capacitor may include: a ceramic body including dielectric layers and having first and second main surfaces opposing each other, first and second side surfaces opposing each other, and first and second end surfaces opposing each other; an active layer configured to form capacitance by including a plurality of first and second internal electrodes disposed to face each other with at least one of the dielectric layers interposed therebetween and alternately exposed to the first or second side surface; upper and lower cover layers disposed on and below the active layer, respectively; and a first external electrode disposed on the first side surface of the ceramic body and electrically connected to the first internal electrodes and a second external electrode disposed on the second side surface and electrically connected to the second internal electrodes, wherein when a thickness of the ceramic body is defined as T and a width thereof is defined as $W, 0.75 \mathrm{~W} \leq \mathrm{T} \leq 1.25 \mathrm{~W}$ may be satisfied, when a gap between the first and second external electrodes is defined as G, $30 \mu \mathrm{~m} \leq$ $G \leq 0.9 \mathrm{~W}$ may be satisfied, and an average number of dielectric
grains in a single dielectric layer in a thickness direction thereof may be 2 or greater.
[0013] The lower cover layer may have a thickness of $10 \mu \mathrm{~m}$ to $100 \mu \mathrm{~m}$.
[0014] When the thickness of the ceramic body is a distance between the first and second main surfaces, the width of the ceramic body is a distance between the first side surface on which the first external electrode is formed and the second side surface on which the second external electrode is formed, and a length of the ceramic body is a distance between the first and second end surfaces, the distance between the first and second side surfaces may be shorter than or equal to the distance between the first and second end surfaces.
[0015] When the length and the width of the ceramic body are defined as L and W, respectively, $0.5 \mathrm{~L} \leq W \leq \mathrm{L}$ may be satisfied. [0016] An average grain size of the dielectric grains may be 50 nm to 500 nm .
[0017] The first and second internal electrodes may be spaced apart from the first and second end surfaces of the ceramic body by a predetermined distance.
[0018] The first and second external electrodes may be extended to portions of the first and second main surfaces of the ceramic body.
[0019] According to another aspect of the present disclosure, a board having a multilayer ceramic capacitor mounted thereon
may include: a printed circuit board having two or more electrode pads formed thereon; the multilayer ceramic capacitor mounted on the printed circuit board; and a solder connecting the electrode pads and the multilayer ceramic capacitor, wherein the multilayer ceramic capacitor may include: a ceramic body including dielectric layers and having first and second main surfaces opposing each other, first and second side surfaces opposing each other, and first and second end surfaces opposing each other; an active layer configured to form capacitance by including a plurality of first and second internal electrodes disposed to face each other with at least one of the dielectric layers interposed therebetween and alternately exposed to the first or second side surface; upper and lower cover layers disposed on and below the active layer, respectively; and a first external electrode disposed on the first side surface of the ceramic body and electrically connected to the first internal electrodes and a second external electrode disposed on the second side surface and electrically connected to the second internal electrodes, wherein when a thickness of the ceramic body is defined as T and a width thereof is defined as $W, 0.75 \mathrm{~W} \leq T \leq 1.25 \mathrm{~W}$ may be satisfied, when a gap between the first and second external electrodes is defined as $G, 30 \mu \mathrm{~m} \leq \mathrm{G} \leq 0.9 \mathrm{~W}$ may be satisfied, and an average number of dielectric grains in a single dielectric layer in a thickness direction thereof may be 2 or greater.
[0020] The lower cover layer may have a thickness of $10 \mu \mathrm{~m}$ to $100 \mu \mathrm{~m}$.
[0021] When the thickness of the ceramic body is a distance between the first and second main surfaces, the width of the ceramic body is a distance between the first side surface on which the first external electrode is formed and the second side surface on which the second external electrode is formed, and a length of the ceramic body is a distance between the first and second end surfaces, the distance between the first and second side surfaces may be shorter than or equal to the distance between the first and second end surfaces.
[0022] When the length and the width of the ceramic body are defined as L and W, respectively, $0.5 \mathrm{~L} \leq W \leq$ L may be satisfied. [0023] An average grain size of the dielectric grains may be 50 nm to 500 nm .
[0024] The first and second internal electrodes may be spaced apart from the first and second end surfaces of the ceramic body by a predetermined distance.
[0025] The first and second external electrodes may be extended to portions of the first and second main surfaces of the ceramic body.
[0026] The solder may be disposed around portions of the first and second external electrodes of the multilayer ceramic capacitor.
[0027] The solder may be disposed around central portions of
the first and second external electrodes of the multilayer ceramic capacitor.
[0028] The electrode pads may include first and second electrode pads connected to the first and second external electrodes of the multilayer ceramic capacitor, respectively. [0029] The first and second electrode pads may be offset to each other in a width direction of the multilayer ceramic capacitor.
[0030] The electrode pads may include first and second electrode pads connected to the first external electrode of the multilayer ceramic capacitor and third and fourth electrode pads connected to the second external electrode of the multilayer ceramic capacitor.

BRIEF DESCRIPTION OF DRAWINGS

[0031] The above and other aspects, features and other advantages of the present disclosure will be more clearly understood from the following detailed description taken in conjunction with the accompanying drawings, in which:

FIG. 1 is a perspective view showing a multilayer ceramic capacitor according to an exemplary embodiment of the present disclosure;

FIG. 2 is a view showing a ceramic body according to an exemplary embodiment of the present disclosure;

FIG. 3 is an exploded perspective view of FIG. 2;

FIG. 4 is a cross-sectional view taken along line A-A' of FIG. 1;

FIG. 5 is an enlarged view of part Z of FIG. 4;
FIG. 6 is a perspective view showing a structure in which the multilayer ceramic capacitor of FIG. 1 is mounted on a printed circuit board;

FIG. 7 is a plan view of FIG. 6;
FIG. 8 is a plan view of FIG. 6 according to another exemplary embodiment of the present disclosure; and

FIG. 9 is a plan view of FIG. 6 according to another exemplary embodiment of the present disclosure.

DETAILED DESCRIPTION

[0032] Exemplary embodiments of the present disclosure will now be described in detail with reference to the accompanying drawings.
[0033] The disclosure may, however, be embodied in many different forms and should not be construed as being limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the disclosure to those skilled in the art.
[0034] In the drawings, the shapes and dimensions of elements may be exaggerated for clarity, and the same reference numerals will be used throughout to designate the same or like elements.

Multilayer Ceramic Capacitor

[0035] FIG. 1 is a perspective view showing a multilayer ceramic capacitor according to an exemplary embodiment of the present disclosure.
[0036] FIG. 2 is a view showing a ceramic body according to an exemplary embodiment of the present disclosure.
[0037] FIG. 3 is an exploded perspective view of FIG. 2.
[0038] FIG. 4 is a cross-sectional view taken along line $A-A^{\prime}$ of FIG. 1.
[0039] Referring to FIGS. 1 through 4, a multilayer ceramic capacitor 100 according to an exemplary embodiment of the present disclosure may include a ceramic body 110 including dielectric layers 111 and having first and second main surfaces S1 and S2 opposing each other, first and second side surfaces S5 and S6 opposing each other, and first and second end surfaces S3 and S4 opposing each other; an active layer A configured to form capacitance by including a plurality of first and second internal electrodes 121 and 122 disposed to face each other, having at least one of the dielectric layers 111 interposed therebetween, and alternately exposed to the first or second side surface S5 or S6; upper and lower cover layers 112 and 113 formed on and below the active layer A; and a first external electrode 131 formed on the first side surface S5 of the ceramic body 110 and electrically connected to the first internal electrode 121 and a second external electrode 132 formed on the
second side surface S6 and electrically connected to the second internal electrode 122, wherein when a thickness of the ceramic body 110 is defined as T and a width thereof is defined as W, T and W satisfy $0.75 \mathrm{~W} \leq \mathrm{T} \leq 1.25 \mathrm{~W}$, when a gap between the first and second external electrodes 131 and 132 is defined as G, the gap G satisfies $30 \mu \mathrm{~m} \leq \mathrm{G} \leq 0.9 \mathrm{~W}$, and the average number of dielectric grains llla present in a single dielectric layer in a thickness direction thereof is 2 or greater.
[0040] Hereinafter, a multilayer ceramic electronic component according to an exemplary embodiment of the present disclosure will be described. Particularly, a multilayer ceramic capacitor will be described, but the present disclosure is not limited thereto.
[0041] Referring to FIG. 1, in the multilayer ceramic capacitor according to an exemplary embodiment of the present disclosure, a 'length direction' refers to an 'L' direction, a 'width direction' refers to a 'W' direction, and a 'thickness direction' refers to a 'T' direction. Here, the 'thickness direction' may be the same as a stacking direction in which dielectric layers are stacked.
[0042] Referring to FIG. 2, in the exemplary embodiment of the present disclosure, the ceramic body 110 may have the first and second main surfaces S1 and S2 opposing each other, and the first and second side surfaces S5 and S6 and the first and second end surfaces $S 3$ and $S 4$ that connect the first and second main
surfaces S1 and S2 to each other. A shape of the ceramic body 110 is not particularly limited, but may be a hexahedral shape as shown.
[0043] Referring to FIG. 3, a raw material forming the dielectric layers 111 is not particularly limited as long as sufficient capacitance may be obtained, but may be, for example, barium titanate $\left(\mathrm{BaTiO}_{3}\right)$ powder.
[0044] The material forming the dielectric layer 111 may further contain various ceramic additives, organic solvents, plasticizers, binders, dispersing agents, or the like, according to intended use of the capacitor, in addition to ceramic powder such as barium titanate $\left(\mathrm{BaTiO}_{3}\right)$ powder, or the like.
[0045] An average particle size of the ceramic powder used to form the dielectric layers 111 is not particularly limited and may be controlled, for example, to be 400 nm or less.
[0046] A material for the first and second internal electrodes 121 and 122 is not particularly limited. For example, the first and second internal electrodes 121 and 122 may be formed of a conductive paste including at least one of a noble metal material such as palladium (Pd), a palladium-silver (Pd-Ag) alloy, or the like, nickel (Ni), and copper (Cu).
[0047] The first and second internal electrodes 121 and 122 may be disposed to face each other, having at least one of the dielectric layers 111 interposed therebetween, and may be
alternately exposed to the first or second side surface S5 or S6.
[0048] The first and second internal electrodes 121 and 122 are alternately exposed to the first or second side surface S5 or $S 6$, such that a reverse geometry capacitor (RGC) or low inductance chip capacitor (LICC) may be obtained as described below.
[0049] In a general multilayer ceramic electronic component, external electrodes may be disposed on opposing end surfaces of the ceramic body in a length direction thereof.
[0050] In this case, when an alternative current (AC) voltage is applied to the external electrodes, a current path is relatively long, whereby an intensity of an induced magnetic field may be increased, resulting in an increase in inductance. [0051] In order to solve this problem, the first and second external electrodes 131 and 132 in the exemplary embodiment of the present disclosure may be disposed on the first and second side surfaces S5 and S6 of the ceramic body 110 opposing each other in the width direction so as to reduce the current path.
[0052] In this case, since a distance between the first and second external electrodes 131 and 132 is relatively short, the current path may be reduced, the current path may be reduced, resulting in a reduction in inductance.
[0053] As described above, the first and second external electrodes 131 and 132 may be formed on the first and second
side surfaces $S 5$ and $S 6$ of the ceramic body 110 opposing each other in the width direction and may be electrically connected to the first and second internal electrodes 121 and 122 in order to form capacitance.
[0054] The first and second external electrodes 131 and 132 may be formed of the same conductive material as that of the first and second internal electrodes 121 and 122 but are not limited thereto. For example, the first and second external electrodes 131 and 132 may be formed of a metal powder including copper (Cu), silver (Ag), nickel (Ni), or the like.
[0055] The first and second external electrodes 131 and 132 may be formed by applying a conductive paste prepared by adding glass frits to the metal powder and then sintering the applied conductive paste.
[0056] A width W of the ceramic body 110 may be a distance between the first side surface S 5 on which the first external electrode 131 is formed and the second side surface $S 6$ on which the second external electrode 132 is formed, and a length L of the ceramic body 110 may be a distance between the first and second end surfaces S3 and S4.
[0057] According to the exemplary embodiment of the present disclosure, the distance between the first and second side surfaces 5 and 6 on which the first and second external electrodes 131 and 132 are formed, respectively, may be less than or equal to the distance between the first and second end
surfaces 3 and 4.
[0058] Since the distance between the first and second external electrodes 131 and 132 is shortened, the current path may be shortened, resulting in a reduction in inductance.
[0059] As described above, the multilayer ceramic capacitor, in which the first and second external electrodes 131 and 132 are formed on the first and second side surfaces 5 and 6 of the ceramic body 110, may be a reverse geometry capacitor (RGC) or low inductance chip capacitor (LICC).
[0060] Referring to FIG. 4, the ceramic body 110 may include the active layer A contributing to forming capacitance of the capacitor and the upper and lower cover layers 112 and 113 formed on and below the active layer A, respectively, as upper and lower margin parts.
[0061] The active layer A may be formed by repeatedly stacking the plurality of first and second internal electrodes 121 and 122, having at least one of the dielectric layers 111 interposed therebetween.
[0062] Meanwhile, in the multilayer ceramic capacitor according to the exemplary embodiment of the present disclosure, when the thickness and the width of the ceramic body 110 are defined as T and W, respectively, $0.75 W \leq T \leq 1.25 W$ may be satisfied.
[0063] Acoustic noise may be reduced by controlling the thickness T and the width W of the ceramic body 110 to satisfy
$0.75 \mathrm{~W} \leq \mathrm{T} \leq 1.25 \mathrm{~W}$.
[0064] In the case in which the thickness T of the ceramic body is less than 0.75 W , target capacitance may not be generated in the multilayer ceramic capacitor.
[0065] In the case in which the thickness T of the ceramic body 110 is greater than 1.25 W , the multilayer ceramic capacitor may be inclined when being mounted on a board, , whereby a mounting defect may occur.
[0066] Meanwhile, when the gap between the first and second external electrodes 131 and 132 is defined as $G, 30 \mu \mathrm{~m} \leq \mathrm{G} \leq 0.9 \mathrm{~W}$ may be satisfied.
[0067] Acoustic noise may be reduced by controlling the gap G between the first and second external electrodes 131 and 132 to satisfy $30 \mu \mathrm{~m} \leq \mathrm{G} \leq 0.9 \mathrm{~W}$.
[0068] In the case in which the gap G between the first and second external electrodes 131 and 132 is less than $30 \mu \mathrm{~m}$, the G between the first and second external electrodes 131 and 132 is excessively narrow, such that a short circuit may occur. [0069] In the case in which the gap G between the first and second external electrodes 131 and 132 is greater than 0.9 W , a width of the first and second external electrodes 131 and 132 may be reduced to thereby reduce a mounting area when being mounted on the board, causing a defect resulting from poor adhesive strength.
[0070] Further, when the length and width of the ceramic body

110 are defined as L and W, respectively, $0.5 \mathrm{~L} \leq W \leq L$ may be satisfied. However, the present disclosure is not limited thereto.
[0071] Inductance of the multilayer ceramic capacitor may be reduced by controlling the length and the width of the ceramic body to satisfy $0.5 \mathrm{~L} \leq W \leq \mathrm{L}$.
[0072] Therefore, low inductance may be implemented in the multilayer ceramic electronic component according to the exemplary embodiment of the present disclosure, whereby electric performance may be improved.
[0073] Meanwhile, according to the exemplary embodiment of the present disclosure, the thickness of the lower cover layer 113 may be $10 \mu \mathrm{~m}$ to $100 \mu \mathrm{~m}$.
[0074] When the thickness of the lower cover layer 113 is controlled to be $10 \mu \mathrm{~m}$ to $100 \mu \mathrm{~m}$, acoustic noise may be reduced and excellent reliability may be implemented in the multilayer ceramic capacitor.
[0075] In the case in which the thickness of the lower cover layer 113 is less than $10 \mu \mathrm{~m}$, such an excessively thin cover layer may result in the occurrence of a moisture resistance defect. [0076] In the case in which the thickness of the lower cover layer 113 is greater than $100 \mu \mathrm{~m}$, acoustic noise may be rapidy increased due to displacement of the lower cover layer.
[0077] A thickness of the upper cover layer 112 is not particularly limited, and may be equal to or similar to that
of the lower cover layer 113. The thickness of the upper cover layer 112 may be within a range preventing the occurrence of the moisture resistance defect.
[0078] FIG. 5 is an enlarged view of part Z of FIG. 4.
[0079] Referring to FIG. 5, the average number of dielectric grains 111a present in a single dielectric layer 111 in a thickness direction thereof may be 2 or greater.
[0080] Acoustic noise may be reduced by controlling the average number of dielectric grains lla present in the single dielectric layer in the thickness direction thereof to be 2 or greater.
[0081] In the case in which the average number of dielectric grains 111a in the single dielectric layer 111 in the thickness direction thereof is less than 2, the number of grain boundaries is reduced, and when voltage is applied to the internal electrodes, a displacement of the dielectric layer may be increased, resulting in an increase in a displacement of the multilayer ceramic capacitor, whereby acoustic noise may be increased.
[0082] Meanwhile, an average grain size of the dielectric grains 111a may be 50 nm to 500 nm .
[0083] Acoustic noise may be reduced by controlling the average grain size of the dielectric grains 111a to be 50 nm to 500 nm . [0084] In the case in which the average grain size of the dielectric grains 111a is less than 50 nm , such an excessively
small grain size may cause a reduction in permittivity, whereby target capacitance of the multilayer ceramic capacitor required by a power terminal may not be generated.
[0085] In the case in which the average grain size of the dielectric grains 111a is greater than 500 nm , such an excessively large grain size may increase a region in which a single dielectric grain occupies in a single dielectric layer, whereby acoustic noise may be increased.
[0086] A method of measuring the average number of the dielectric grains 111a in the single dielectric layer in the thickness direction thereof and the average grain size of the dielectric grains 111 is not particularly limited, but the average number and the average grain size of the dielectric grains 11la may be measured from an image obtained by scanning a cross-section of the ceramic body 110 in the width direction thereof using a scanning electron microscope (SEM) as shown in FIG. 4.
[0087] For example, as shown in FIG. 4, with respect to any dielectric layer randomly selected from an image obtained by scanning a cross-section of the ceramic body 10 in width-thickness (W-T) directions thereof after being cut in a central portion of the ceramic body 10 in the length (L) direction thereof, using a scanning electron microscope (SEM), the average number of the dielectric grains 111a in the single dielectric layer and the average grain size of the dielectric
grains 11a may be measured at thirty equidistant points thereof. [0088] The thirty equidistant points may be disposed in the active layer A, in which the internal electrodes 121 and 122 are overlapped with each other.
[0089] The first and second internal electrodes 121 and 122 may be spaced part from the first and second end surfaces 53 and S4 of the ceramic body 110 by a predetermined distance, but are not limited thereto.
[0090] Meanwhile, the first and second external electrodes 131 and 132 may be extended to portions of the first and second main surfaces $S 1$ and $S 2$ of the ceramic body, but are not limited thereto.
[0091] Hereinafter, a method of manufacturing a multilayer ceramic capacitor according to an exemplary embodiment of the present disclosure will be described, but is not limited thereto.
[0092] In the method of manufacturing the multilayer ceramic capacitor according to the exemplary embodiment of the present disclosure, first, slurry containing powder such as barium titanate (BaTiO_{3}) powder, or the like, may be applied to carrier films and dried to prepare a plurality of ceramic green sheets, thereby forming dielectric layers.
[0093] The ceramic green sheet may be manufactured by mixing the ceramic powder, a binder, and a solvent to prepare the slurry and forming the prepared slurry as sheets having a thickness
of several $\mu \mathrm{m}$ by a doctor blade method.
[0094] Next, a conductive paste for internal electrodes may be prepared to contain 40 to 50 parts by weight of nickel powder, in which an average particle size of nickel powder is $0.1 \mu \mathrm{~m}$ to $0.2 \mu \mathrm{~m}$.
[0095] After the conductive paste for internal electrodes is applied to the green sheets through a screen printing method to form internal electrodes, 400 to 500 green sheets on which the internal electrodes have been formed may be stacked to form an active layer, and then the ceramic green sheets may be stacked on and below the active layer to form cover layers, thereby forming a ceramic body having first and second main surfaces opposing each other, first and second side surfaces opposing each other, and first and second end surfaces opposing each other.
[0096] Then, first and second external electrodes may be formed on the first and second side surfaces of the ceramic body. [0097] Hereafter, although the present disclosure will be described in detail with reference to Inventive Examples, the present inventive concept is not limited thereto.

Experimental Example

[0098] Multilayer ceramic capacitors according to Inventive Examples and Comparative Examples were manufactured as follows. [0099] Slurry containing powder such as barium titanate (BaTiO_{3}), or the like, was applied to carrier films and dried
to prepare a plurality of ceramic green sheets having a thickness of $1.8 \mu \mathrm{~m}$.
[00100] Next, a nickel conductive paste for internal electrodes was applied to the ceramic green sheets using a
screen to form internal electrodes.
[00101] About 200 ceramic green sheets were stacked to form a multilayer body. Here, the number of ceramic green sheets having no internal electrode disposed at a lower portion of the multilayer body below the stacked ceramic green sheets having the internal electrodes formed thereon was greater than the number of ceramic green sheets having no internal electrode disposed at an upper portion of the multilayer body above the stacked ceramic green sheets having the internal electrodes formed thereon. Isostatic pressing was performed on the multilayer body at $85^{\circ} \mathrm{C}$ and $1000 \mathrm{kgf} / \mathrm{cm}^{2}$.
[00102] The pressed ceramic multilayer body was cut into individual chips, and each chip was subjected to a de-binding process by being maintained at $230^{\circ} \mathrm{C}$ for 60 hours under air atmosphere.
[00103] Then, the chip was sintered at $1200^{\circ} \mathrm{C}$ under reduction atmosphere having oxygen partial pressure of 10^{-11} atm to $10^{-10} \mathrm{~atm}$ lower than $\mathrm{Ni}-\mathrm{NiO}$ equilibrium oxygen partial pressure so that the internal electrodes were not oxidized. After sintering, a size of the multilayer chip capacitor was about $1.0 \mathrm{~mm} \times 0.5 \mathrm{~mm}$ (Length \times Width (L×W), 1005 size). Here,
a manufacturing tolerance was within a range of $\pm 0.1 \mathrm{~mm}$ (Length \times Width $(L \times W)$), and experiments were performed on samples satisfying such a tolerance range to test acoustic noise, moisture resistance, mounting defects and adhesion strength of ceramic capacitor and a thickness of a lower cover layer. [00105] Here, the experiments were performed in a state in which the average number of dielectric grains in a single dielectric layer in a thickness direction thereof was about 2.
[Table 1]

T/W	THICKNESS OF LOW COVER LAYER[$\mu \mathrm{m}]$	ACOUSTIC NOISE[dB]	MOISTURE RESISTANCE DEFECT	MOUNTING OEFECT
	5	21.5	\times	0
	10	22.6	0	0
	20	23.1	0	0
	30	23.7	0	0
	40	23.8	0	0
	50	24.2	0	0
1.0	60	25.3	0	0
	70	26.1	0	0
	80	26.6	0	0
	90	26.9	0	0
	100	27.6	0	0
	120	33.2	0	0
	150	36.4	0	0

15
\triangle : Defect Rate of 1% to 50%
o: Defect Rate of 0.01% to 1%
(0): Defect Rate less than 0.01\%

5
[Table 2]

T/W	THICKNESS OF LOW COVER LAYER[$\mu \mathrm{mi}]$	ACOUSTIC NOISE[dB]	MOISTURE RESISTANCE DEFECT	MOUNTING DEFECT
	5	20.7	\times	0
	10	21.4	0	0
	20	22.5	0	0
	30	22.9	0	0
	40	22.9	0	0
	50	23.9	0	0
1.25	60	24.2	0	0
	70	25.7	0	0
	80	25.9	0	0
	90	26.2	0	0
	100	27.9	0	0
	120	33.4	0	0
	150	34.1	0	0

x : Defect Rate of 50% or greater
\triangle : Defect Rate of 1% to 50%
$0:$ Defect Rate of 0.01% to 1%
(O): Defect Rate less than 0.01%
[Table 3]

Page 23

T/W	THICKNESS OF LOW COVER LAYER[$\mu \mathrm{n}]$	ACOUSTIC NOISE[dB]	MOISTURE RESISTANCE DEFECT	MOUNTING DEFECT
	5	20.4	X	X
	10	21.5	0	X
	20	22.7	0	X
	30	23.1	0	X
	40	23.7	0	X
	50	24.5	0	X
1.30	60	24.9	0	X
	70	25.2	0	X
	80	25.6	0	X
	90	25.9	0	X
	100	27.7	0	X
	120	33.7	0	X
	150	36.1	0	X

x : Defect Rate of 50% or greater
\triangle : Defect Rate of 1% to 50%
o: Defect Rate of 0.01% to 1%
(0): Defect Rate less than 0.01%
[00106] Referring to Tables 1 through 3, it can be seen that in the case in which the thickness T and the width W of the ceramic body satisfied $0.75 \mathrm{~W} \leq \mathrm{T} \leq 1.25 \mathrm{~W}$, acoustic noise was reduced. [00107] Particularly, it can be seen from Table 3 that in the case in which the thickness T of the ceramic body was 1.30 W , the mounting defect that the multilayer ceramic capacitor was inclined when being mounted on a board occurred.
[00108] Further, referring to Tables 1 through 3, it can be seen that in the case in which the thickness of the lower cover layer was $10 \mu \mathrm{~m}$ to $100 \mu \mathrm{~m}$, acoustic noise was reduced and reliability was excellent.
[00109] It can be seen that in the case in which the thickness of the lower cover layer was $5 \mu \mathrm{~m}$, which was out of the above-mentioned numerical range, there was a problem in reliability due to the moisture resistance defect, and in the cases in which the thickness of the lower cover layer was 120 μm or $150 \mu \mathrm{~m}$, acoustic noise was increased.
[00110] The following Tables 4 shows an acoustic noise measurement value, the occurrence of moisture resistance defects, and the occurrence of mounting defects according to aratio (T/W) of a thickness T to a width W of a multilayer ceramic capacitor and a thickness of a lower cover layer, in the case in which the average number of dielectric grains in a single dielectric layer in a thickness direction thereof was less than 2.
[Table 4]

T/W	THCKNESS OF LOW COVER LAYER[$\mu n]$	ACOUSTIC NOISE[dB]	MOISTURE RESISTANCE DEFECT	MOUNTING DEFECT
	5	26.7	x	0
	10	27.1	0	0
	20	27.7	0	0
	30	28.5	0	0
	40	28.8	0	0
	50	29.1	0	0
1.0	60	30.6	0	0
	70	31.3	0	0
	80	31.6	0	0
	90	32.3	0	0
	100	32.5	0	0
	120	38.1	0	0
	150	40.0	0	0

x : Defect Rate of 50% or greater
\triangle : Defect Rate of 1% to 50%
o: Defect Rate of 0.01% to 1%
(O) Defect Rate less than 0.01%
[00111] Referring to Table 4, it can be seen that in the case in which the average number of the dielectric grains 111a in a single dielectric layer in the thickness direction thereof was less than 2, the number of grain boundaries was reduced, and when voltage was applied to the internal electrodes, a displacement of the dielectric layer was increased, resulting in an increase in a displacement of the multilayer ceramic capacitor, whereby acoustic noise was increased.
[00112] The following Table 5 shows an acoustic noise measurement value, and the occurrence of mounting defects and adhesion strength defect according to the width w of the multilayer ceramic capacitor and a gap G between first and second external electrodes.
[Table 5]

W[m]	GAP(G) BETWEEN EXTERNAL ELECTRODES	G/W	ACOUSTIC NOISE[CB]	MOUNTING DEFECT(SHORT)	ADHESION STRENGTH
650	25	0.04	21.7	\times	0
650	30	0.05	22.0	0	0
650	40	0.08	22.1	0	0
650	50	0.12	22.5	0	0
650	80	0.18	23.1	0	0
650	120	0.25	23.6	0	0
650	160	0.32	24.5	0	0
650	210	0.40	24.9	0	0
650	260	0.48	25.2	0	0
650	310	0.55	25.6	0	0
650	450	0.69	25.9	0	0
650	550	0.85	25.9	0	0
650	580	0.89	26.2	0	0
650	620	0.95	26.5	0	0

x : Defect Rate of 50% or greater
\triangle : Defect Rate of 1% to 50%
0 : Defect Rate of 0.01% to 1%
(0): Defect Rate less than 0.01%
[00113] Referring to Table 5, it can be seen that in the case in which the gap G between the first and second external electrodes satisfied $30 \mu \mathrm{~m} \leq \mathrm{G} \leq 0.9 \mathrm{~W}$, acoustic noise was reduced and reliability was excellent.
[00114] It can be seen that in the case in which the gap G between the first and second external electrodes was less than $30 \mu \mathrm{~m}$, that is, the gap G was $25 \mu \mathrm{~m}$, the short defect occurred. [00115] Meanwhile, it can be seen that in the case in which the gap G between the first and second external electrodes was greater than 0.9 W , that is, the gap G was 0.95 W , adhesion
strength was low when the multilayer ceramic capacitor was mounted on a board, resulting in a defect.

Board Having Multilayer Ceramic Capacitor Mounted Thereon

[00116] FIG. 6 is a perspective view showing a structure in which the multilayer ceramic capacitor of FIG. 1 is mounted on a printed circuit board.
[00117] FIG. 7 is a plan view of FIG. 6.
[00118] FIG. 8 is a plan view of FIG. 6 according to another exemplary embodiment of the present disclosure.
[00119] FIG. 9 is a plan view of FIG. 6 according to another exemplary embodiment of the present disclosure.
[00120] Referring to FIGS. 6 and 7, a board 200 having the multilayer ceramic capacitor 100 mounted thereon according to this exemplary embodiment may include a printed circuit board 210 on which the multilayer ceramic capacitor 100 is horizontally mounted, and two or more electrode pads 221 and 222 formed on the printed circuit board 210 to be spaced apart from each other.
[00121] The electrode pads may include first and second electrode pads 221 and 222 connected to the first and second external electrodes 131 and 132 of the multilayer ceramic capacitor 100 , respectively.
[00122] In this case, the multilayer ceramic capacitor 100 may be electrically connected to the printed circuit board 210 by a solder 230 in a state in which the lower cover layer 113
is disposed downwards and the first and second external electrodes 131 and 132 are positioned to contact the first and second electrode pads 221 and 222 , respectively.
[00123] In the board 200 having the multilayer ceramic capacitor 100 mounted thereon according to another exemplary embodiment of the present disclosure, the solder 230 may be formed on portions of the first and second external electrodes 131 and 132 of the multilayer ceramic capacitor 100 , but is not limited thereto.
[00124] Particularly, referring to FIGS. 6 and 7, the solder 230 may be disposed around central portions of the first and second external electrodes 131 and 132 of the multilayer ceramic capacitor 100.
[00125] When voltage is applied in a state in which the multilayer ceramic capacitor 100 is mounted on the printed circuit board 210 as described above, acoustic noise may be generated.
[00126] Here, sizes of the first and second electrode pads 221 and 222 may become an indicator for determining an amount of the solder 230 connecting the first and second external electrodes 131 and 132 of the multilayer ceramic capacitor 100 to the first and second electrode pads 221 and 222, and a level of the acoustic noise may be controlled according to the amount of the solder 230.
[00127] When voltages having different polarities are
applied to the first and second external electrodes 131 and 132 formed on both side surfaces of the multilayer ceramic capacitor 100 in a state in which the multilayer ceramic capacitor 100 is mounted on the printed circuit board 210 , the ceramic body 110 may be expanded and contracted in a thickness direction by an inverse piezoelectric effect of the dielectric layers 111, and both side portions of the ceramic body 110 having the first and second external electrodes 131 and 132 formed thereon may be contracted and expanded by a poisson effect as opposed to the expansion and contraction of the ceramic body 110 in the thickness direction.
[00128] More specifically, the contraction and expansion of the ceramic body may occur with a displacement of about 20 nm in the thickness direction of the multilayer ceramic capacitor, a displacement of about 4 nm in the length direction thereof, and a displacement of about 2 nm in the width direction thereof. [00129] Here, in the multilayer ceramic capacitor according to the exemplary embodiment of the present disclosure, since the first and second external electrodes are formed on both side surfaces of the ceramic body in the width direction of the multilayer ceramic capacitor, displacement in contraction and expansion may be significantly decreased, whereby acoustic noise may be reduced.
[00130] Referring to FIG. 8, in another exemplary embodiment of the present disclosure, the electrode pads may include first
and second electrode pads 221^{\prime} and 222^{\prime} connected to the first external electrode 131 of the multilayer ceramic capacitor 100 and third and fourth electrode pads 223^{\prime} and 224^{\prime} connected to the second external electrode 132.
[00131] According to the exemplary embodiment of the present disclosure shown in FIG. 8, two electrode pads for the same external electrode are spaced apart from each other, so that a difference in displacement of contraction and expansion may be decreased, whereby an effect of reducing acoustic noise may be further excellent.
[00132] Referring to FIG. 9, according to another exemplary embodiment of the present disclosure, first and second electrode pads $221^{\prime \prime}$ and $222^{\prime \prime}$ may be offset to each other in the width direction of the multilayer ceramic capacitor.
[00133] According to the exemplary embodiment of the present disclosure shown in FIG. 9, since the first and second electrode pads $221^{\prime \prime}$ and $222^{\prime \prime}$ may be offset to each other in the width direction of the multilayer ceramic capacitor, contraction and expansion may be offset to each other, such that an effect of reducing acoustic noise may be further excellent.
[00134] As set forth above, according to exemplary embodiments of the present disclosure, since a gap between external electrodes is relatively short, an amount of vibrations generated in a multilayer ceramic capacitor transferred to a board may be reduced, whereby acoustic noise
may be reduced.
[00135] Further, when the multilayer ceramic capacitor is mounted on the board, a mounting area may be reduced.
[00136] While exemplary embodiments have been shown and described above, it will be apparent to those skilled in the art that modifications and variations could be made without departing from the spirit and scope of the present disclosure as defined by the appended claims.

What Is Claimed Is:

1. A multilayer ceramic capacitor, comprising:
a ceramic body including dielectric layers and having first and second main surfaces opposing each other, first and second side surfaces opposing each other, and first and second end surfaces opposing each other;
an active layer including a plurality of first and second internal electrodes disposed to face each other with at least one of the dielectric layers interposed therebetween and alternately exposed to the first or second side surface;
upper and lower cover layers disposed on and below the active layer, respectively; and
a first external electrode disposed on the first side surface of the ceramic body and electrically connected to the first internal electrodes and a second external electrode disposed on the second side surface and electrically connected to the second internal electrodes,
wherein when a thickness of the ceramic body is defined as T and a width thereof is defined as $\mathrm{W}, 0.75 \mathrm{~W} \leq \mathrm{T} \leq 1.25 \mathrm{~W}$ is satisfied,
when a gap between the first and second external electrodes is defined as $G, 30 \mu \mathrm{~m} \leq \mathrm{G} \leq 0.9 \mathrm{~W}$ is satisfied, and an average number of dielectric grains in a single dielectric layer in a thickness direction thereof is 2 or greater.
2. The multilayer ceramic capacitor of claim 1, wherein the lower cover layer has a thickness of $10 \mu \mathrm{~m}$ to $100 \mu \mathrm{~m}$.
3. The multilayer ceramic capacitor of claim 1 , wherein when the thickness of the ceramic body is a distance between the first and second main surfaces, the width of the ceramic body is a distance between the first side surface on which the first external electrode is formed and the second side surface on which the second external electrode is formed, and a length of the ceramic body is a distance between the first and second end surfaces, the distance between the first and second side surfaces is shorter than or equal to the distance between the first and second end surfaces.
4. The multilayer ceramic capacitor of claim 3, wherein when the length and the width of the ceramic body are defined as L and W, respectively, $0.5 L \leq W \leq L$ is satisfied.
5. The multilayer ceramic capacitor of claim 1 , wherein an average grain size of the dielectric grains is 50 nm to 500 nm.
6. The multilayer ceramic capacitor of claim 1, wherein the first and second internal electrodes are spaced apart from
```
the first and second end surfaces of the ceramic body by a
predetermined distance.
```

7. The multilayer ceramic capacitor of claim 1 , wherein the first and second external electrodes are extended to portions of the first and second main surfaces of the ceramic body .
8. A board having a multilayer ceramic capacitor mounted thereon, the board comprising:
a printed circuit board having two or more electrode pads formed thereon;
the multilayer ceramic capacitor mounted on the printed circuit board; and
a solder connecting the electrode pads and the multilayer ceramic capacitor,
wherein the multilayer ceramic capacitor includes:
ceramic body including dielectric layers and having first and second main surfaces opposing each other, first and second side surfaces opposing each other, and first and second end surfaces opposing each other;
an active layer including a plurality of first and second internal electrodes disposed to face each other with at least one of the dielectric layers interposed therebetween and alternately exposed to the first or second side surface;
upper and lower cover layers disposed on and below the active layer, respectively; and
a first external electrode disposed on the first side surface of the ceramic body and electrically connected to the first internal electrode and a second external electrode disposed on the second side surface and electrically connected to the second internal electrode,
when a thickness of the ceramic body is defined as T and a width thereof is defined as $W, 0.75 \mathrm{~W} \leq T \leq 1.25 \mathrm{~W}$ is satisfied, when a gap between the first and second external electrodes is defined as $G, 30 \mu \mathrm{~m} \leq \mathrm{G} \leq 0.9 \mathrm{~W}$ is satisfied, and an average number of dielectric grains in a single dielectric layer in a thickness direction thereof is 2 or greater.
9. The board of claim 8, wherein the lower cover layer has a thickness of $10 \mu m$ to $100 \mu \mathrm{~m}$.
10. The board of claim 8, wherein when the thickness of the ceramic body is a distance between the first and second main surfaces, the width of the ceramic body is a distance between the first side surface on which the first external electrode is formed and the second side surface on which the second external electrode is formed, and a length of the ceramic body is a distance between the first and second end surfaces, the
distance between the first and second side surfaces is shorter than or equal to the distance between the first and second end surfaces.
11. The board of claim 10, wherein when the length and the width of the ceramic body are defined as L and W, respectively, $0.5 L \leq W \leq L$ is satisfied.
12. The board of claim 8, wherein an average grain size of the dielectric grains is 50 nm to 500 nm .
13. The board of claim 8, wherein the first and second internal electrodes are spaced apart from the first and second end surfaces of the ceramic body by a predetermined distance.
14. The board of claim 8, wherein the first and second external electrodes are extended to portions of the first and second main surfaces of the ceramic body.
15. The board of claim 8, wherein the solder is disposed around portions of the first and second external electrodes of the multilayer ceramic capacitor.
16. The board of claim 8, wherein the solder is disposed around central portions of the first and second external
```
electrodes of the multilayer ceramic capacitor.
```

17. The board of claim 8, wherein the electrode pads include first and second electrode pads connected to the first and second external electrodes of the multilayer ceramic capacitor, respectively.
18. The board of claim 17, wherein the first and second electrode pads are offset to each other in a width direction of the multilayer ceramic capacitor.
19. The board of claim 8, wherein the electrode pads include:
first and second electrode pads connected to the first external electrode of the multilayer ceramic capacitor; and third and fourth electrode pads connected to the second external electrode of the multilayer ceramic capacitor.

ABSTRACT

A multilayer ceramic capacitor may include: a ceramic body including dielectric layers and having first and second main surfaces opposing each other, first and second side surfaces opposing each other, and first and second end surfaces opposing each other; an active layer configured to form capacitance by including first and second internal electrodes facing each other with one dielectric layer therebetween and alternately exposed to the first or second side surface; upper and lower cover layers disposed on and below the active layer; and a first external electrode disposed on the first side surface and a second external electrode disposed on the second side surface. Thickness T and width W of the ceramic body satisfy $0.75 \mathrm{~W} \leq \mathrm{T} \leq 1.25 \mathrm{~W}$, gap G between the first and second external electrodes satisfies $30 \mu \mathrm{~m} \leq \mathrm{G} \leq 0.9 \mathrm{~W}$, and an average number of dielectric grains in a single dielectric layer in a thickness direction thereof is 2 or greater.

FIG. 2

FIG. 3
$3 / 5$

FIG. 4

Z
FIG. 5

FIG. 6

FIG. 7

FIG. 8

FIG. 9
\qquad

COMBINED DECLARATION AND ASSIGNMENT FOR PATENT APPLICATION

As a below named inventor, I hereby declare that:
I believe I am the original or an original joint inventor of a claimed invention in the application for which a patent is sought on the invention entitled:

MULTILAYER CERAMIC CAPACITOR AND

BOARD HAVING THE SAME MOUNTED THEREON

* attached, or
\qquad
United States application number or PCT intemational application
number fized on .

The above-identified application was made or authorized to be made by me.
In the event that the filing date and/or application number are not entered above at the time I execute this document, and if such information is deemed necessary, I hereby authorize and request the registered practitioners of DeBermott Win \& Emery LLE P, associated with the Customer Number 20277, to insert above the filing date and/or application number of the application.

I hereby acknowledge that any willful false statement made in this declaration is punishable under 18 U.S.C. 100 by fine or imprisonment of not more than five (5) years, or both.
\qquad

ASSIGNMENT

For good and valuable consideration, the receipt and sufficiency of which is hereby acknowledged, I hereby assign to

SAMSUNG ELECTRO-MECHANICS CO., LTD.

having an address at Maeyoung.Ro 150 (Maetan-Dong), Youngtong-Gu, Suwon-Si, Gyeonggi-Do, Republic of Korea (hereinafter designated as the Assignee), the entire (100%) right, title and interest for the United States as defined in 35 USC $\S 100$, in the invention described in the application identified in this document.

I hereby confirm any prior assignment to Assignee, and to the extent that I have not already done so, agree to assign, and hereby do, sell, assign and transfer unto Assignee and its successors in interest, the full and exclusive right, title and interest in the United States of America, including the right to claim priority under the laws of the United States, the Paris Convention, and any foreign countries, to the inventions as described in the aforesaid application, to the aforesaid application itself, and all divisions, continuations, continuations-in-part, or other applications claiming priority directly or indirectly from the aforesaid application, and any United States or foreign Letters Patent, utility model, or other similar rights which may be granted thereon, including reissues, reexaminations and extensions thereof, and all copyright rights in the aforesaid application and the subject matter disclosed therein, these rights, title and interest to be held and enjoyed by Assignee to the full end of the term for which the Letters Patent, utility model, or other similar rights, are granted and any extensions thereof as fully and entirely as the same would have been held by the undersigned had this assignment and sale not been made, and the right to sue for, and recover for past infringements of, or liabilities for, any of the rights relating to any of the applications, patents, utility models, or other similar rights, resulting therefrom, and the copyright rights;

I hereby covenant and agree to execute all instruments or documents required or requested for the making and prosecution of any applications of any type for patent, utility model, or other similar rights, and for copyright, in the United States and in all foreign countries including, but not limited to, any provisional, continuation, continuation-in-part, divisional, renewal or substitute thereof, and as to letters patent any reissue, re-examination, or extension thereof, and for litigation regarding, or for the purpose of protecting title and to the said invention, the United States application for patent, or Letters Patent therefor, and to testify in support thereof, for the benefit of Assignee without further or other compensation than that above set forth;

I hereby covenant that no assignment, sale, license, agreement or encumbrance has been or will be entered into which would conflict with this Assignment.
\qquad

| Legal name of first inventor |
| :--- | :--- |
| LEE, Byoung Hwa |
| Frist inventor's signatare |

Legal name of second inventor PARK, Heung Kil Second inventrrs signature 7	Date

Legal name of third inventor	
LEE, Kyo Kwang	
Third inventar'sysgnature	Date

Legal name of fourth inventor	
AlN, Young Ghyu	
Fourth inventor'/ signature	Date
S/4.	$201 \leqslant 4.3 .25$

Legal name of fifth investor	
PARK, Sang Soo	
Fith Enventor's signaturc	Date

| Legai name of sixth inventor
 LEE, Soon Ju |
| :--- | :--- | :--- |
| Sixth inventor's signature |
$y / 23$	\quad	

INFORMATION DISCLOSURE STATEMENT BY APPLICANT (Not for submission under 37 CFR 1.99)	Application Number	
	Filing Date	2014-04-22
	First Named Inventor	Byoung Hwa LEE
	Art Unit	N/A
	Examiner Name	Not Yet Assigned
	Attorney Docket Number	er 093814-0302

U.S.PATENTS Remove											
Examiner Initial*	Cite No	Patent Number		Kind Code ${ }^{1}$	Issue Date		Name of Patentee or Applicant of cited Document		Pages,Columns,Lines where Relevant Passages or Relevant Figures Appear		
	1										
If you wish to add additional U.S. Patent citation information please click the Add button. Add											
U.S.PATENT APPLICATION PUBLICATIONS Remove											
Examiner Initial*	Cite No		Publication Number	Kind Code	Publication Date		Name of Patentee or Applicant of cited Document		Pages,Columns,Lines where Relevant Passages or Relevant Figures Appear		
	1		20080310074	A1	2008-12-1		TOGASHI et		Corr	sponds to JP 2008-192757	7 A
	2		20080310078	A1	2008-12-18		Lee et al.		Corresponds to KR 10-2008-0110180 A		
If you wish to add additional U.S. Published Application citation information please click the Add button. Add											
FOREIGN PATENT DOCUMENTS Remove											
Examiner Initial*	Cite No	Foreign Document Number ${ }^{3}$		Country Code²		Kind Code ${ }^{4}$	Publication Date	Name of Patentee or Applicant of cited Document		Pages,Columns,Lines where Relevant Passages or Relevant Figures Appear	T5
	1	2008	8-192757	JP		A	2008-08-21	TDK Corp		Corresponds to US 2008/0310074 A1	\square
	2	10-2	-2008-0063680	KR		A	2008-07-07	Samsung ElectroMechanics Co., Ltd		w/English Abstract	区

INFORMATION DISCLOSURE STATEMENT BY APPLICANT (Not for submission under 37 CFR 1.99)	Application Number	
	Filing Date	2014-04-22
	First Named Inventor ${ }^{\text {B }}$	Byoung Hwa LEE
	Art Unit	N/A
	Examiner Name	Not Yet Assigned
	Attorney Docket Number	093814-0302

INFORMATION DISCLOSURE STATEMENT BY APPLICANT (Not for submission under 37 CFR 1.99)	Application Number	
	Filing Date	2014-04-22
	First Named Inventor ${ }^{\text {B }}$	Byoung Hwa LEE
	Art Unit	N/A
	Examiner Name \quad N	Not Yet Assigned
	Attorney Docket Number	093814-0302

CERTIFICATION STATEMENT

Please see 37 CFR 1.97 and 1.98 to make the appropriate selection(s):

That each item of information contained in the information disclosure statement was first cited in any communication from a foreign patent office in a counterpart foreign application not more than three months prior to the filing of the information disclosure statement. See 37 CFR 1.97(e)(1).

OR

That no item of information contained in the information disclosure statement was cited in a communication from a foreign patent office in a counterpart foreign application, and, to the knowledge of the person signing the certification after making reasonable inquiry, no item of information contained in the information disclosure statement was known to any individual designated in 37 CFR 1.56(c) more than three months prior to the filing of the information disclosure statement. See 37 CFR 1.97(e)(2).

See attached certification statement.
The fee set forth in 37 CFR 1.17 (p) has been submitted herewith.
A certification statement is not submitted herewith.

SIGNATURE

A signature of the applicant or representative is required in accordance with CFR $1.33,10.18$. Please see CFR 1.4(d) for the form of the signature.

Signature	/Stephen A. Becker, P.C.I	Date (YYYY-MM-DD)	$2014-04-22$
Name/Print	Stephen A. Becker, P.C.	Registration Number	26527

This collection of information is required by 37 CFR 1.97 and 1.98. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 1 hour to complete, including gathering, preparing and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

Privacy Act Statement

The Privacy Act of 1974 (P.L. 93-579) requires that you be given certain information in connection with your submission of the attached form related to a patent application or patent. Accordingly, pursuant to the requirements of the Act, please be advised that: (1) the general authority for the collection of this information is 35 U.S.C. 2(b)(2); (2) furnishing of the information solicited is voluntary; and (3) the principal purpose for which the information is used by the U.S. Patent and Trademark Office is to process and/or examine your submission related to a patent application or patent. If you do not furnish the requested information, the U.S. Patent and Trademark Office may not be able to process and/or examine your submission, which may result in termination of proceedings or abandonment of the application or expiration of the patent.

The information provided by you in this form will be subject to the following routine uses:

1. The information on this form will be treated confidentially to the extent allowed under the Freedom of Information Act (5 U.S.C. 552) and the Privacy Act (5 U.S.C. 552a). Records from this system of records may be disclosed to the Department of Justice to determine whether the Freedom of Information Act requires disclosure of these record s.
2. A record from this system of records may be disclosed, as a routine use, in the course of presenting evidence to a court, magistrate, or administrative tribunal, including disclosures to opposing counsel in the course of settlement negotiations.
3. A record in this system of records may be disclosed, as a routine use, to a Member of Congress submitting a request involving an individual, to whom the record pertains, when the individual has requested assistance from the Member with respect to the subject matter of the record.
4. A record in this system of records may be disclosed, as a routine use, to a contractor of the Agency having need for the information in order to perform a contract. Recipients of information shall be required to comply with the requirements of the Privacy Act of 1974, as amended, pursuant to 5 U.S.C. 552a(m).
5. A record related to an International Application filed under the Patent Cooperation Treaty in this system of records may be disclosed, as a routine use, to the International Bureau of the World Intellectual Property Organization, pursuant to the Patent Cooperation Treaty.
6. A record in this system of records may be disclosed, as a routine use, to another federal agency for purposes of National Security review (35 U.S.C. 181) and for review pursuant to the Atomic Energy Act (42 U.S.C. 218(c)).
7. A record from this system of records may be disclosed, as a routine use, to the Administrator, General Services, or his/her designee, during an inspection of records conducted by GSA as part of that agency's responsibility to recommend improvements in records management practices and programs, under authority of 44 U.S.C. 2904 and 2906. Such disclosure shall be made in accordance with the GSA regulations governing inspection of records for this purpose, and any other relevant (i.e., GSA or Commerce) directive. Such disclosure shall not be used to make determinations about individuals.
8. A record from this system of records may be disclosed, as a routine use, to the public after either publication of the application pursuant to 35 U.S.C. 122(b) or issuance of a patent pursuant to 35 U.S.C. 151. Further, a record may be disclosed, subject to the limitations of 37 CFR 1.14, as a routine use, to the public if the record was filed in an application which became abandoned or in which the proceedings were terminated and which application is referenced by either a published application, an application open to public inspections or an issued patent.
9. A record from this system of records may be disclosed, as a routine use, to a Federal, State, or local law enforcement agency, if the USPTO becomes aware of a violation or potential violation of law or regulation.
（11）特許出願公開番号
特開2008－192757 （P2008－192757A）
（43）公開日平成20年8月21日（2008．8．21）

（54）【発明の名称】積層コンテンサ
（57）【要約】
【課題】誘電特性のある素体の端子電極付近での電歪効果による機械的歪みを抑制することが可能な積層コンデ ンサを提供すること。
【解決手段】積層コンデンサのコンデンサ素体L1には誘電体層10を挟んで対向するように第1及び第2の内部電極20，30か配置されている。第1の内部電極 $20 は, ~ ス リ ッ ト 丬 犬$ の非容量形成領域28と容量形成領域26a，26bとを含む主電極部分22と，引き出し電極部分 24 とを有する。非容量形成領域 28 と引き出 し電極部分 24 とは，第1の方向から見たときに，非容量形成領域28と引き出し電極部分24とが，コンデン サ素体L1の第1の側面に平行で且つ第10方向に直交 する第2の方向で重なりを有するように設定されている
［選択図］図2

【特許請求の範囲】
【請求項1】
誘電特性を有する素体と，
前記素体の少なくとも一部を挟んで第10）方向に対向するように該素体に配置された第
1 及び第2の内部電極と，
前記素体の外表面のうち前記第1の方向に平行な第1の面に配置されると共に，前記第
1 の内部電極に接続される第1の端子電極と，
前記素体の外表面に配置されると共に，前記第2の内部電極に接続される第2の端子電極と，を備え，

前記第1の内部電棑が，静電容量の形成に寄与しない非容量形成領域と前枵第2の内部電極と協働して静電容量を形成する容量形成領域とを含む主電極部分と，該主電極部分を前記第1の端子電極に接続する引き出し電極部分と，を有し，

前記第1の面に平行で且つ前記第1の方向に直交する第2の方向に打いて，前記第1の
部分の長さが前記主電極部分の長さに比して小さく設定されて招り，

前記非容量形成領域と前記引き出し電極部分との位置は，前記第1の方向から兒たとき に，前記非容量形成領域と前記引き出し電極部分とが前記第 2 の方向で重なりを有するよ うに設定されていることを特徴とする積層コンデンサ。
【䝼求項2】
前記第 1 の内部電極において，前記主電極部分と前記引き出し電極部分とが接しており
前記非容量形成領域が，前記主電極部分と前記引き出し電極部分との境界部に接するよ うに配置されることを特徴とする請求項1記載の積層コンデンサ。
【請求項3】
前記非容量形成領域が，前記第1の内部電極の前記主電極部分に開口部状に形成されて いることを特徴とする請求項1又は2記載の積層コンデンサ。
【淂求項 4】
前記非容量形成領域が，前記第 1 の内部電極の前記主電極部分にスリット状に形成され ていることを特徴とする請求項1又は2記載の積層コンデンサ。
【請求項5】
前記第2の端子電板は，前記素体の外表而のうち前觖第1の方向に平行な第2の而に配置され，

前記第2の内部電極が，静電容量の形成に寄与しない非容量形成領域と前記第1の内部電極と協働して静電容量を形成する容量形成領域とを含む主電極部分と，該主電極部分を前記第2の端子電極に接続する引き出し電極部分と，を有し，

前記第2の面に平行で且つ前記第1の方向に直交する第3の方向において，前記第2の端子電極の長さが前記第2の面の長さに比して小さく設定されると共に前記第2の内部電極の前記引き出し電極部分の長さが前記第 2 の内部電極の前記主電極部分の長さに比して小さく設定されておす。

前記第2の内部電極の前記非容量形成領域と前記第2の内部電極の前記引き出し電極部分との位置は，前記第1の方向から見たときに，前記非容量形成領域と前記引き出し電極部分とが前記第3の方向で重なりを有するように設定されていることを特徴とする請求項 $1 ~ 40$ 何れか一項記載の積層コンデンサ。
【請求項6】
前記第1の内部電極の前記非容量形成領域と前記第2の内部電極の前記非容量形成領域 とが前記素体の前記少なくとも一部を续んで対向するようた，前記第1及び第2の内部電橄が配置されることを特徴とする静求項 5 記載の積展コンデンサ。
【請求項7】
前記第 1 及び第 2 の内部電極は，前記第 1 の方向に沿つて，それぞれ複数ずつ交互に配置されており，

前記第 1 及び第 2 の内部電極のうち前記第 1 の方向で最も外側に配置された内部電極と荄内部電極に対向する前記素体の外表面との閫隔に対する前記第2の方向に括ける前記第 1の端子電極の長さの比が，0．4より大きく且つ8．0より小さいことを特徴とする請求項 1 ～6 の何れか一項記載の積層コンデンサ。
【発明の詳細な説明】
【技術分野】
【0 0001 1】
本発明は，積層コンデンサに関するものである。
【背景技術】

〔0002】

【0 0004 】
 により素体に印加電圧に応じた大きさの機械的歪みが生じてしまうという問題がある。特 に，交流電圧を印加した場合，積屬コンデンサには振動が生じてしまう。積層コンデンサ を基板等に実装した場合に，こうした機械的歪みが発生すると，歪みによる振動の伝播に より，基板において音鳴りが発生してしまう。
【0005】
そこで，本発明者は，積層コンデンサを基板等に実装した際に発生する音鳴りを低減す ることについて鋭意検討を行った。その結果，本発明者は，音鳴りは積層コンデンサを実装する基板等と積膡コンデンサとの接触部分，すなわち基板のランド電極等と積層コンデ ンサの熣子電板との接触部分で発生するとの知見を得るに至つた。本発明当は，当該知見 に基づきさらなる娭討を重ねた結果，素体の端子電極近傍の領域に加わる電界を抑制（す なわち，電圧を抑制）することで，電歪効果による素体の機械的歪みの端子電極への影響 が抑制されるとの新たな事実を見出すに至った。
【0006】
このような検討結果を踏まえ，本発明による積層コンデンサは，誘電特性を有する素体 と，素体の少なくとも一部を挟んで第1の方向に対向するように該素体に配置された第1及び第2の内部電極と，素体の外表面のうち第1の方向に平行な第1の面に配置されると共に，第1 の内部電極に接続される第1 の端子電極と，素体の外表面に配置されると共に ，第2の内部電極に接続される第2の端子電極と，を備え，第1の内部電極が，静電容量 の形成に寄与しない非容量形成領域と第2の内部電極と協働して静電容量を形成する容量形成領域とを含む主電極部分と，該主電極部分を第1 0端子電極に接続する引き出し電極部分と，を有し，第1の面に平行で且つ第1の方向に直交する第2の方向において，第1 の端子電極の長さが第1の面の長さに比して小さく設定されると共に引き出し電極部分の長さが主電㴍部分の長さに比して小さく設定されており，非容量形成領域と引き出し電極部分との位置は，第1の方向から㫕たときに，非容量形成領域と引き出し電倳部分とが第 2の方向で重なりを住するように設定されていることを特徴とする。
〔0007】
本発明に係る積層コンデンサでは，第1の内部電極の主電極部分が非容量形成領域を含 み，当該非容量形成領域は，第1の方向から見たときに，引き出し電極部分と第2の方向

で重なりを有するような位置に配置されている。電歪効果は電圧が加えられた誘電体領域 において発生する。したがって，引き出し電極部分に影響する電栤の効果は非容量形成領域の分だけ小さくなる。これにより，素体の電歪効果によって第1の端子電極が受ける影響が低減され，この積層コンデンサでは第1 の端子電極付近での電歪効果による機械的歪 みを抑制することが可能となる。また，この積層コンデンサでは，第2の方向において，第1の端子電極の長さが第1の面の長さに比して小さく設定されている。このため，電歪効果によって歪んだ素体に第1の端子電極が引っ張られたとしても，コンデンサを実装す る基板等に影響を与える面積を小さくできる。さらに，第2の方向において，第1 の端子電極に接続する引き出し電極部分の長さが主電極部分の長さに比して小さく設定されてい る。これにより，第1の端子電極の第2の方向における長さを小さくすることが可能とな る。
［00008］
第1 の内部電極に打いて，主電極部分と引き出し電極部分とが接しており，非容量形成領域が，主電梖部分と引き出し電極部分との境界部に接するように配置されることが好ま しい。非容量形成領域が引き出し電極部分に近いほど，素体の電歪効果によって第1の竡子電極が受ける影響が低減される。その結果，積層コンデンサでは第1の端子電極付近で の電歪効果による機械的歪みをさらに抑制することが可能となる。
【0009】
 あるいは，非容量形成領域が，第1の内部電極の主電極部分にスリット状に形成されてい てもよい。
【00110】
第2の端子電極は，素体の外表面のうち第1の方向に平行な第2の面に配䓢され，第2 の内部電極が，静電容量の形成に寄与しない非容量形成領域と第1の内部電極と協働して静電容量を形成する容量形成領域とを含む主電極部分と，該主電極部分を第2の端子電極 に接続する引き出し電極部分と，を有し，第2の面に平行で目つ第1の方向に直交する第 3の方向において，第2の端子電極の長さが第2の面の長さに比して小さく設定されると共に第2の内部電極の引き出し電極部分の長さが第2の内部電極の主電極部分の長さに比 して小さく設定されており，第2の内部電極の非容量形成領域と第2の内部電極の引き出 し電極部分との位置は，第1の方向から見たときに，非容量形成領域と引き出し電極部分 とが第3の方向で重なりを有するように設定されていることが好ましい。
［ $\begin{array}{llll}0 & 0 & 1\end{array}$ ］
この場合，素体の電歪効果によつて第2の端子電極が受ける影響も低減され，第19端子電極付近だけでなく第2の端子電極付近での電歪効果による機械的歪みをも抑制するこ とが可能となる。
〔0012】
また，この場合，第1の内部電極の非容量形成領域と第2の内部電極の非容量形成領域 とが素体の少なくとも一部を挟んで対向するように，第1及び第2の内部電極が配置され ることが好ましい。
〔0013］
このように一方の内部電極の非容量形成領域が他方の内部電極の非容量形成領域と対向 することで，積層コンデンサの静電容量が低減してしまうことを効率良く抑制することが できる。
【 0 0 1 14】
第1及び第2の内部電極は，第1 の方向に沿って，それぞれ複数ずつ交互に配置されて おり，第1及び第2の内部電極のうち第1の方向で最も外側に配置された内部電極と該内部電極に対向する素体の外表面との間隔に対する第2の方向にすける第1 の端子電極の長 さの比が，0，4より大きく目つ8．0より小さいことが好ましい。
【 $\left.\begin{array}{llll}0 & 0 & 1 & 5\end{array}\right]$
この場合，素体において，第1 の方向で最も外側に配置された内部電極と，該内部電極

に対向する素体の外表面との間の領域には，第1及び第2の内部電極によって電正が加え られない。そのため，この領域では，第1及び第2の内部電機によって加えられる電圧に起因した電歪効果が発生しない。そして，第1の方向で最も外側に配置された内部電極と該内部電極に対向する素体の外表面との間の間隔と，第1の端子電極の第2の方向におか る長さとの関係が，比によって規定されている。そのため，積層コンデンサの機械的歪み が実装基板等に伝搬することを好適に抑制することができる。
【発明の効果】
【 00116 〕
本発明によれば，誘電特性のある素体の端子電極付近での電歪効果による機械的歪みを抑制することが可能な積埥コンデンサを提供することができる。
【発明を実施するための最良の形態】
〔 0017 7）
以下，添付図面を参照して，好適な実施形態について詳細に説明する。な打，説明にお いて，同一要素又は同一機能を有する要素には，同一符号を用いることとし，重複する説明は省略する。
（第1実施形態）
〔00181）
図1～図4及び図11に基づいて，第1実施形態に係る積層コンデンサC1 の構成につ いて説明する。図1は，本実施形態に係る積甬コンデンサの斜視図である。図2は，本実施形態に係る積層コンデンサに含まれる素体の分解斜視図である。図3は，本実施形態に係る積層コンデンサの断面構成を説明するための図である。図4は，本実施形態に係る積層コンデンサの断面構成を説明するための図である。図11は，本実施形態に係る積層コ ンデンサ断面構成を説明するための図である。なお，図3及び図4において，断面のハッ チングは省略している。
〔00119】
積蕒コンデンサC1は，図1に示すように，直方体状をしたコンデンサ素体 L 1 と，コ ンデンサ素体L1 O外表面に眍置された第1 の端子電板1及び第2の端子電板2とを備え る。コンデンサ素体L1は，相対向する長方形状の第1の主面L1a及び第2の主面L1 bと，相対する第1の側面（第 1 の面）L 1 c 及 び第 2 の側面（第2の面）L 1 d と，相対向する第 3 の側面L 1 e及び第 4 の側面L 1 f とを含んでいる。第 1 及び第 2 の側面 L 1 c，L 1 dは，第1及び第2の主面L1 a，L1 b閏を連結するように第1及び符2の主面 L 1 a ，L1 b の長辺方向に伸びている。第 3 及び第4 の側面L 1 e ，L 1 f は，第 1 及び第 2 の主面L 1 a，L 1 b 間を連結するように第1及び第2の主面L1a，L1 b の短辺方向に伸びている。
〔0020】
コンデンサ素体L1の第1の側面L1cには，第1 の端子電極1 が配置されている。コ ンデンサ素体 L 1 の第 2 の側面 L 1 d には，第 2 の端子電極 2 が配置されている。第 1 及 び第 2 の端子電極 1 ，2は，例えば，導電性金属粉末及びガラスフリットを含む導電性ペ一ストをコンデンサ素体L1 の対応する外表面の付与し，焼き付けることによって形成さ れる。必要に応じて，焼き付けられた電極の上にめっき層が形成されることもある。
【0021〕
コンデンサ素体 L 1 は，図2に示されるように，複数（本実施形態では5 層）の誘電体
 2層）の第2の内部電極30とを有している。したがって，コンデンサ素体L1は，誘電特性を有する。
〔0022）
各誘電体層10は，第1及び筑2の主面L1 a ，L1 bに平行な方向に伸びており，第 1 及び第 2 の主面 L 1 a ，L 1 b の対向方向に積層されている。各誘電体層 1 0 は，例え ば誘電体セラミックを含むセラミックグリーンシートの焼結体から構成される。実際の積層コンデンサC1では，各誘電体層10は，誘電体層10の間の境界が視認できない程度

に一体化されている。
【0 0 2 3 〕
第1 の内部電極 2 0 と第 2 の内部電極 3 0 とは，コンデンサ素体L 1 の一部である一つ の誘電体層10を挟んで第1の方向に対向するように配置されている。すなわち，第1の内部電極 20 と第 2 の内部電極 3 0 とは，コンデンサ素体L1において，誘電体層 1 0 の積層方向，すなわち第 1 及び第 2 の主面 L 1 a ，L 1 b の対向方向に誘電体層10を間に挟んで交互に配置されている。
【0 024 】
したがって，第1の端子電極1が配置された第1 の側面L1 c，及び第2の端子電極2
 る方向，すなわち第1の方向に平行である。
【0 0 2 5】
第 1 の内部電極 20 は，主電極部分 22 と，引き出し電極部分 24 とを含んでいる。主電極部分 22 は，容量形成領域 $26 \mathrm{a}, ~ 26 \mathrm{~b}$ と非容量形成領域 28 とを含む。第 1 の内部電極20は，導電性ペーストの焼結体から構成される。
【0026】
容量形成領域26a，26bは，それぞれ長方形状を呈しており，第1及び第2の主面 L1a，L1bo長辺方向に沿って並んで配列されている。
［10027］
非容量形成領域 28 は，主電極部分 22 において第 2 の側面 L 1 d 側から第 1 の側面 L 1 C 側に向かって伸び，容量形成領域26aと容量形成領域26bとを二分するスリット状に形成されている。非容量形成頜域 2 8 は，主電極部分 2 2 の第1及び第2 の主面 L 1 a，L1bの長辺方向における中央付近に位置している。また，スリット状に形成された非容量形成領域 28 には導電性ペーストの焼結体は存在せず，非容量形成領域 28 は静電容量の形成に寄与しない。
【0 0 2 8 】
第1の側面L1 c まで引き出されている。引き出し電極部分 24 は，第 1 の端子電極 1 に電気的且つ物理的に接続されている。これにより，主電極部分 22 は，そして第 1 の内部電極 2 0 は，第1 の端子電極1に電気的に接続されることとなる。
【0 02 9 〕
引き出し電極部分 24 は，主電極部分 22 の容量形成頒域 26 a ， 26 b 及び非容量形成領域 28 のすべてと接している。非容量形成領域 28 は，主電極部分 22 の容量形成領域 26 a ， 26 b と引き出し電極部分 24 との境界部に接するように配置されている。
$\left[\begin{array}{llll}0 & 0 & 3 & 0\end{array}\right]$
第2の内部電極 3 0 は，主電極部分 3 2 と，引き出し電極部分 3 4 とを含んでいる。主電極部分 32 は，容量形成領域 $36 \mathrm{a}, ~ 36 \mathrm{~b}$ と非容量形成領域 38 とを含む。第 2 の内部電極30は，導電性ペーストの焼結体から構成される。
［0031】
容量形成領域 $36 \mathrm{a}, ~ 36 \mathrm{~b}$ は，それぞれ長方形状を呈して打り，第1及び第2の主面 L1a，L1bの長辺方向に沿って並んで配列されている。
［10032】
 1 d 側に向かって伸び，容量形成領域 36 a と容量形成領域 36 b とを二分するスリット状に形成されている。非容量形成領域 38 は，主電極部分 32 の第 1 及び第 2 の主面L 1 a，L1 b の長边方向における中央付近に位置している。また，スリット状に形成された非容量形成領域 38 には導雨性ペーストの恠結体は存在せず，非容量形成領域 38 は静電容量の形成に寄与しない。
【0 0 3 3 】
引き出し電極部分 34 は，主電極部分 3 2 から第2 の側面L1dに向けて伸びており，

第2の側面L1dまで引き出されている。引き出し電極部分34は，第2 の端子電極2に毛気的 11 つ物理的に接続をれている。これにより，主電樌部分 32 は，そして第 2 の内部電極30は，第2の端子電極2に電気的に接続されることとなる。
〔0 034 〕
引き出し電極部分 34 は，主電極部分 32 の容量形成領域 36 a ， 36 b 及び非容量形成領域 38 のすべてと接している。非容量形成領域 38 は，主電極部分 32 の容告形成頜域 3 6 a ，36bと引き出し電極部分 34 との境界部に接するように配置されている。
【0 0 3 5 〕
第1及び第2の内部電極20，30は，第1の内部電極20の容量形成領域26aと第 2 の内部電板 30 の容量形成領域 36 a とが，さらに第 1 の内部電極 200 容量形成領域 26 b と第 2 の内部電極 30 の容量形成領域 36 b とが何れも，コンデンサ素体 L 1 の少 なくとも一部である1つの誘電体層10を挟んで対向するように配置されている。したが つて，第1の内部電極 20 の容量形成領域 $26 \mathrm{a}, ~ 26 \mathrm{~b}$ と第2の内部電極 30 の容量形成領域 36 a ， 36 b とは協働して静電容量を形成する。
［0036］
さらに，第1及び第2の内部電㥛20，30は，第1の内部電極20の非容量形成領域 28 と第 2 の内部電極 30の非容量形成領域 38 とがコンデンサ素体 L 1 の少なくとも一部である1つの誘電体層10を挟んで対向するように配置されている。
【0 0 3 7 〕
ここで，第1の側面L1 ck平行で且つ第1の方向に直交する方向を第2の方向とする。図3では，第2の方向をx方向として表す。図3は，図1の積層コンデンサの111－III矢印断面を模式的に表す図であり，第1 の内部電極20の上面と誘電体層10とが積層を れている箇所で切断した図である。
〔0038）
図3に示すように，第2の方向における第1の端子電極1の長さd11は，第2の方向 における第 1 の側面L 1 c の長さd，2に比して小さく設定されている。すなわち，d ，
 20 の引き出し電極部分 2 4 の長さd13は，第20方向における第1の内部電極20の
 が成立する。また，本実施形態では，d13＜d11＜d14＜d12 が成立している。【0 0 3 9】
また，第1の内部電極20において，非容量形成領域28と引き出し電極部分24との位置は，第1の方向から見たときに，すなわち図3の断面図において，非容量形成領域2 8 と引き出し電極部分 24 とが第2の方向（x方向）で重なりを有するように設定されて いる
【0 0440 】
第2の側面L1dに平行で且つ第1の方向に直交する方向を第3 の方向とする。図4で は，第3の方向をy方向として表す。図4は，図1の積層コンデンサのIVーIV矢印断面図 であり，第10内部電板20の上面と誘電体首10とが積屏されている徐所で切断した図 である。
【0 041 1】
図4に示すように，第3の方向における第2の端子電極2の長さdz1は，第3の方向
 $1<\mathrm{d}_{2} \mathrm{Z}_{2}$ が成立する。さらに，図4に示すように，第3 の方向に扫ける第2の内部電極 30 の引き出し電極部分 3 4 の長さ $\mathrm{d}_{2} 3$ は，第 3 0方向に括ける第2の内部電極30の主電極部分 320 長を d 24 k比して小さく設定をれている。すなわち，d $23<\mathrm{C}_{2} 4$ が成立する。また，本実施形態では， $\mathrm{d}_{2} \mathrm{~B}_{3}<\mathrm{d}_{2} 1<\mathrm{d}_{2} \mathrm{~A}_{1}<\mathrm{d}_{2} 2$ が成立している。
【0 04 2】
また，第2の内部電極30において，非容量形成領域 3 8 と引き出し電極部分 34 との位置は，第1 の方向から見たときに，すなわち図4の断面図において，非容量形成領域3

8 と引き出し電極部分 34 とが第 3 の方向（ y 方向）で重なりを有するように設定されて いる。
【 $\begin{array}{lllll}0 & 0 & 4 & 3\end{array}$
図11は，図1の積層コンデンサのXI－XI矢印断面図である。コンデンサ素体L1は，第1の方向において，複数の第1及び第2の内部電極20，30の外側に第1及び第2の外層部 1 1 ，1 2 を有する。第 1 の外屠部 1 1 は，第 1 の方向のうち第2 の主面 L 1 b 側 に位置する。第2の外層部12は，第1の方向のうち第1の主面L1a側に位置する。
【0 0 4 4】
具体的には，第1の外層部11は，コンデンサ素体L1において，複数の第1及び第2 の内部電板 20，30のうち最も第2の主面L1b側に位闐する第2の内部電極30の第 1 の方向での位置から第2の主面L1bに至るまでの領域に相当する。したがって，第1 の外層部11の第1の方向に扔ける長さは，複数の第1及び第2の内部電極20，30の うち第1の方向の第2の主面L1 b側で最も外側に配置された内部電極である第2の内部
主面 L 1 bとの間隔d 15 に相当する。
［10045】
積層コンデンサC1では，第1の外層部11の第1の方向での長さd15に対する第2 の方向（図11 に招けるx方向）に打ける第1の端子電極1 の長さd11 の比は，0．4 より大きく月つ8．0より小さい。すなわち，以下の式（1）で表される関係が成り立つ。

【0046】
また，第 2 の外層部 1 2 は，コンデンサ素体L 1 において，複数の第 1 及び第 2 の内部電極20，30のうち最も第1の主面L1a側に位置する第1の内部電極20の第1の方向での位置から第1の主面L1 aに至るまでの領域に相当する。したがって，第2の外層部12の第1の方向における長さは，複数の第1及び第2の内部電極20，300うち第
 0 と，該第 1 の内部電極 20 に対向するコンデンサ素体L1の外表面である第 1 の主面 L 1 aとの間隔d，6に相当する。

$$
\left\lfloor\begin{array}{llll}
0 & 0 & 4 & 7
\end{array}\right]
$$

積直コンデンサC1では，第2の外層部12の第1の方向での长さd16に対する第2 の方向（図11に打けるx方向）に怙ける第1の端子電極1の長さd11 の比は，0．4 より大きく且つ8．0より小さい。すなわち，以下の式（2）で表される関係が成り立つ。

〔0 048 】
積層コンデンサC1では，第1の内部電極20の主電極部分22が非容量形成領域28 を含む。電歪効果は電圧が加えられた誘電体領域において発生する。したがって，端子電極1，2を基板のランド電極等に接続して積層コンデンサに䒜圧をかけ，第1及び第2の内部電極 $20, ~ 30$ 間に電圧が加わる場合であっても，主電極部分 22 にスリット状に形成された非容量形成領域 28 に加わる電圧は抑制される。その上，この非容量形成領域 2 8 は，第1の方向から見たときに，引き出し電極部分 24 と第 2 の方向（図 3 の x 方向） で重なりを有するような位置に配闐されている。以上のことから理解されるように，引き出し電極部分 24 に影響するコンデンサ素体 L 1 の電歪の効果は非容量形成領域 28 の分 だけ小さくなる。その結果，コンデンサ素体L1の電歪効果によって第1の端子電極1 が受ける影響が低減され，積層コンデンサC1では第1の端子電極1付近での電歪効果によ る機械的查みを抑制することが可能となる。
【0 0 4 4 9】
さらに，積層コンデンサC1では，第2の内部電極30の主電極部分 32 も非容量形成領域 38 を含み，この非容量形成領域 3 8 は，第 1 の方向から見たときに，引き出し電極

部分 3 4 と第 3 の方向（図 4 のy方向）で重なりを有するような位置に配置されている。 そのため，コンデンサ素体L1 O電歪効果によって第2の端子電㮽2が受ける影響も低減 され，積層コンデンサC1では第2の端子電極2付近での電歪効果による機械的歪みを抑制することも可能となる。
【0050】
したがって，積層コンデンサC1を基板等に実装し，電圧を加えた場合であっても，基板等において発生する音鳴りは抑制される。
【0 051 1】
非容量形成領域が引き出し電極部分に近いほど，コンデンサ素体の電歪効果によって端子電板が受ける影響は低減される。これに対し，積層コンデンサC1では，第1の内部電極20において，主電極部分 22 と引き出し電極部分 24 とが接しており，非容量形成領域 2 8 は，主電極部分 2 2 と引き出し電極部分 2 4 との境界部に接するように配置されて いる。そのため，積層コンデンサC1では第1の端子電極1付近での電歪効果による機械的歪みをより一層抑制することが可能となる。
【0052】
さらに，積層コンデンサC1では，第2の内部電極30に扔いても，主電極部分32と引き出し電極部分 34 とが接して打り，非容量形成領域 38 は，主電極部分 32 と引き出 し電極部分 3 4 との境界部に接するように配置されている。そのため，積層コンデンサC 1 では第2の端子電極 2 付近での電香効果による機械的査みをも，より一層抑制すること が可能である。
【0053】
また，積㯰コンデンサC1では，第1及び第2の内部電極20，30が，第1の内部電極20の非容量形成領域28と第2の内部電極30の非容量形成領域38とが誘電体首1 0 を挟んで対向するように配置されている。非容量形成領域が容量形成領域と対向してし まうと，容量形成領域のうち非容量形成領域と対向する部分において静電容量の形成に寄与できなくなってしまう。したがって，積層コンデンサC1のように，各内部電極20， 30 の非容量形成領域 2 8，38同士が対向することで，積庴コンデンサC1 の静電容量 の低減を効率良く抑制することができる。
〔 0054 4］
加えて，誘電体層10がセラミックグリーンシートの焼結体からなり，内部電極20， 30 が導電性ペーストの絖結体からなる場合，誘電体層10と内部電椣20，30とが積層された箇所より，誘電体層 1 0 同士が積層された箇所の方が密着度が高くなる。そのた め，誘電体層10が露出するように非容量形成領域28，38が形成されている積層コン デンサC1では，非容量形成領域 2 8 ，38同士が対向するように積層されていることに よって，第1及び第2の内部電極20，30と誘電体層10との層間の密着性が良好にな る。
【0 05 5 〕
また，コンデンサ素体L1における層間の密着性が高まると，コンデンサ素体L1内で の機械的查みの伝達が抑制される。そのため，積層コンデンサC1では，コンデンサ素体 L1全体の機械的歪みを抑制するとともに，第1及び第2の端子電極1，2付近での機械的歪みをより一層抑制することが可能である。
【0 056 〕
また，積展コンデンサC1では，第2の方向に打いて，第1の端子電極1の辰さd11 が第 1 の側面 L 1 c の長さd， d に比して小さく設定されている。このため，電歪効果に よって歪んだコンデンサ素体L1に第1の端子電極1 が引つ張られたとしても，積層コン デンサC1を実装する基板等に影蔧を与える面積を小さくすることがてきる。
〔0057】
また，積展コンデンサC1では，第2の方向において，第1の端子電槧1に接続する引 き出し電極部分 24 の長さ $\mathrm{d}_{1}{ }^{2}$ が主電極部分 22 の長さd14に比して小さく設定され ている。これにより，第1の端子電極1の第2の方向における長さd！！を小さくするこ

とが可能となる。
【0 0 5 8】
さらに，積層コンデンサC1では，第3の方向において，第2の端子電極2の長さ d_{2} 1 が第2の側面 L 1 d の長さ d 2.2 に比して小さく設定されている。このため，電歪効果 によって歪んだコンデンサ素体L1に第2の端子電極2が引っ張られたとしても，積層コ ンデンサC1を実装する基板等に影響を与える面積を小さくすることができる。
【0 0 5 9 】
また，積層コンデンサC1では，第3の方向において，第2の端子電極2に接続する引 き出し電極部分 34 の長さ $\mathrm{d}_{2} 3_{3}$ が主電㥛部分 32 の長さ $\mathrm{d}_{2}{ }_{4}$ に比して小さく設定され ている。これにより，第2の端子電槧2の筛3 の方向における長さd2 ，を小さくするこ とが可能となる。
【0060】
積層コンデンサC1では，第1の外層部11が，第1の方向で，コンデンサ素体L1に合まれる複数の第1及び第2の内部電極20，30の外側に位羅する。したがって，第1 の外層部 1 1 には，第 1 及 び第2 の内部電極 2 0 ，30によって電圧が加えられない。そ のため，第1 の外層部 1 1 では，第1 及び第2 の内部電極によって加えられる電压に起因 した電歪効果が発生しない。そして，積層コンデンサC1では，式（1）を満たすような
 15 が確保される。このように，積層コンデンサC1は，電丕効果によって発生するコン デンサ素体の第1 の外層部11と第2の外層部12との間での振動を吸収するのに十分な長さの第1 の外層部11を有している。そのため，例えば第2の主面L1 b が基板等に接 するように積層コンデンサC1を基板等に実装する場合であっても，第1及び第2 の内部電板20，30によって加えられる電圧に起因するコンデンサ素体L1 の電杰効果の影響 が，実装基板等に伝搬することが好適に抑制される。したがって，積層コンデンサC1を基板等に実装し，電圧を加兄た場合であっても，基板等において発生する音鳴りは好適に抑制される。
〔00611］
 1 の端子電極 1 の第2の方向での長さd1．が規定されている。そのため，電歪効果によ つて歪んだコンデンサ素体L1に第1 の端子電極1が引つ張られたとしても，積層コンデ ンサC1を実装する基板等に影響を与える面積を小さくすることができる。その結果，積層コンデンサC1 では，電歪効果の影響で振動等する場合であっても，実装基板等にその振動が伝わることが好適に抑制されている。
【0 062 2
 1の端子電極1の第2の方向での長さdi，が規定されている。そのため，積層コンデン サC1では，積層コンデンサC1で発生する電歪効果の影響が実装基板等に伝搬すること を抑制しつつ，第1の端子電極1と基板等との好適な接続を実現することが可能である。 これにより，積首コンデンサC1では，第1 の端子電板1 と完装基板等との間で接続不良 が発生することが抑制される。
【0063】
また，積層コンデンサは一般にその大きさが規格によって規定されているため，内部電極を含まない外層部の大きさが大きくなるとその分だけ静電容量が低滅してしまう。これ
 の外層部11の第1の方向における長さd15が規定されている。そのため，積層コンデ ンサC1では，第1の外屠部11の大きさによる静電容量の低減が好適に抑制されている

【10 0664 〕
また，積層コンデンサC1では，第2の外層部12が，コンデンサ素体L1に含まれる複数の第1及び第2の内部電極20，30の外側に位置する。したがって，第2の外層部

12には，第1及び第2の内部電極20，30によって電圧が加えられない。そのため，
 ）を満たすような（すなわち，d1：／d 6 が 8.0 より小さくなるような）第 2 の外層部12の長さd，6が確保される。このように，積層コンデンサC1は，電歪効果によ つて発生するコンデンサ素体の第1の外層部11と第2の外層部12との間での振動を吸収するのに十分な长さの第2の外層部12を有している。そのため，例えば第10主面L 1 aが基板等に接するように積層コンデンサC1を実装する場合であっても，第1及び第 2の内部電極 2 0 ，30によって加えられる電圧に起因するコンデンサ素体 L 1 の電歪効果の影響が，実装基板等に伝搬することを好適に抑制することができる。したがって，積層コンデンサC1を基板等に実装し，電圧を加えた場合であっても，基板等において発生 する音鳴りは好適に抑制される。
【0 065 5 〕
さらに，積層コンデンサC1では，d11／d16が8．0より小さくなるように，第 1の端子電棑1の第2の方向での長さd11が規定されている。そのため，電歪効果によ つて歪んだコンデンサ素体 L 1 に第1 の端子電極1 が引つ張られたとしても，積層コンデ ンサC1を実装する基板等に影響を与える面積を小さくすることができる。その結果，積層コンデンサC1では，電歪効果の影響で振動等する場合であっても，実装基板等にその振動が伝わることが好適に抑制されている。
【0066】
加えて，積層コンデンサC1では， $\mathrm{d}_{1} 1 / \mathrm{d}_{1}$ 。が0．4より大きくなるように，第 1 の端子電極1の第2の方向での長さd11が規定されている。そのため，積層コンデン サC1では，積層コンデンサC1 で発生する電歪効果の影響が実装基板等に伝搬すること を抑制しつつ，第1の端子電極1と基板等との好適な接続を実現することが可能である。 これにより，積層コンデンサC1 では，第1 の端子電極1と実装基板等との間で接続不良 が発生することが抑制される。
【0067】
また，積層コンデンサは一般にその大きさが規格によって規定されているため，内部電極を含まない外層部の大きさが大きくなるとその分だけ静電容量が低減してしまう。これ に対し，積層コンデンサC1では，d11／d16が0．4より大きくなるように，第2 の外層部120第1の方向における長さd16が規定されている。そのため，積層コンデ ンサC1では，第2の外置部12の大きさによる静電容量の低減が好適に抑制されている

【0 068 〕
なお，本実施形態では，第1の外層部11が式（1）を，第2の外層部12が式（2） を満たしているが，式（1）又は式（2）の何れか一方のみが満たされていても，あるい は双方ともが満たされていなくてもよい。
【0 0 6 9 】
また，複数の第1及び第2の内部電極20，30のうち第1の方向の第2の主面L1b側で最も外侧に配置された内部電板である第2の内部電極30と絯第2の内部電板30に対向するコンデンサ素体L1の外表面である第2の主面L1 b との間隔に対する，第2の方何における第2の端子電極2の長さの比が，0．4より大きく且つ8．0より小さいこ とがより好ましい。また，複数の第1及び第2の内部電極 2 0，300うち第1の方向の
 の内部電極 2 0 に対向するコンデンサ素体L1の外表面である第1の主面L1 aとの間隔 に対する，第2の方向に打ける第2の端子電極2の長さの比が，0．4より大きく且つ8 －0より小さいことがより好ましい。この場合，コンデンサ素体L1の電政効果による機械的歪みが第2 0 端子電極2を介して実装基板等に伝搬することを好適に抑制することが可能となる。
（第2実施形態）
【0 070 〕

図5を参照して，第2実施形態に係る積屠コンデンサについて説明する。第2実施形態 に係る積層コンデンサは，第1及び第2の内部電極の主電極部分に含まれる非容量形成䫀域の形状の点で第1実施形態に係る積層コンデンサC1と相違する。図5は，第2実施形態に係る積層コンデンサに含まれるコンデンサ素体の分解斜視図である。
【0 071 1】
第2実施形態に係る積層コンデンサは，その図示を省略するが，第1実施形態に係る積層コンデンサC1と同じく，コンデンサ素体L1と，第1の端子電極1と，第2の端子電極2とを備える。コンデンサ素体L1は，図5に示されるように，複数（本実施形態では ， 5 層）の誘電体層 10 と，複数（本実施形態では 2 層）の第 1 の内部電極 2 0 と，複数 （本実施形態では 2 層）の第2の内部電極 30 とを有している。
【0072】
第1の内部電極20は，主電極部分22と，引き出し電極部分24とを含んでいる。主電極部分 22 は，容量形成領域 26 と複数（本実施形態では，2つ）の非容量形成領域2 $8 \mathrm{a}, ~ 28 \mathrm{~b}$ とを含む。2つの非容量形成領域28a，28bは，第10側而L1 c と第 2 の側面L1dとの対向方向に沿って，並んで配置されている。
【0 073 〕
容量形成領域 26 は，略長方形状を呈している。非容量形成領域 28 aは，第 1 の内部電極200主電極部分22に長方形状の開口部として形成されている。非容量形成領域2 8 a は，主電檄部分 22 の引き出し電極部分 24 との境界部から，第 1 及び第 2 の主面 L 1a，L1 b の短辺方向に打ける容量形成領域26の中央付近にまで伸びるように形成さ れている。
【0074】
非容量形成領域 28 b は，スリット状に形成されている。非容量形成領域 28 b は，主電極部分 22 において第 2 の側面L 1 d側から第 1 の側面L1 c側に向かって伸びるよう に形成されている。ただし，非容量形成領域28bのスリットは，非容量形成領域28a にまでは達しない。非容量形成領域 28 a ， 28 b は何れも，主電極部分 22 の第 1 及び第2の主面L1a，L1 bの長辺方向における中央付近に位置している。
【0075】
引き出し電極部分 2 4 は，主電極部分 2 2 から第1 の側面 L 1 c に向けて伸びており，第 1 の側面 L 1 c まで引き出されている。引き出し電極部分 2 4 は，第1 の端子電極1に我気的月つ物㻦的に接統されている。これにより，主電椴部分 22 は，そして第 1 の内部電極20は，第1 の端子電極1に電気的に接続されることとなる。引き出し電極部分24 は，主電極部分 22 の容量形成領域 26 及び非容量形成領域 28 a の双方と接している。【0 076 〕】
第2の内部電棑 3 0 は，主電杪部分 3 2 と，引き出し電板部分 3 4 とを令んでいる。主電極部分 32 は，容量形成領域 36 と複数（本実施形態では，2つ）の非容量形成領域3 8 a，38bとを含む。
【0 077 】
容量形成領域 36 は，略長方形状を呈している。非容量形成領域 38 aは，第 2 の内部電極30の主電極部分 32 に長方形状の開口部として形成されている。非容量形成領域 3 8 aは，主電極部分 32 の引き出し電極部分 34 との境界部から，第 1 及び第 2 の主面 L 1 a，L1bの短辺方向における容量形成領域 36 の中央付近にまで伸びるように形成さ れている。
〔0078】
非容量形成領域 38 bは，スリット状に形成されている。非容量形成領域 38 b は，主電極部分 3 2 において第1 の側面LIC側から第ての側面L1d側に向かつで伸びるよう に形成されている。ただし，非容量形成領域38bのスリットは，非容量形成頜域38a にまでは達しない。非容量形成領域 $38 \mathrm{a}, ~ 38 \mathrm{~b}$ は何れも，主電根部分 32 の第 1 及び第2の主面L1a，L1 b の長辺方向に扔ける中央付近に位置している。
【0 079 】

引き出し電極部分 3 4 は，主電極部分 3 2 から第2の側面L1dに向けて伸びて打り，第2の僛面 L 1 dまで引き出されている。引き出し電軗部分 3 4 は，第2 の端子電槁2に電気的且つ物理的に接続されている。これにより，主電極部分 32 は，そして第 2 の内部電極 30 は，第 2 の端子電極 2 に電気的に接続されることとなる。引き出し電極部分 34 は，主電極部分 320 容量形成領域 36 及び非容量形成領域 38 a の双方と接している。【0 0880 〕
第1及び第2の内部電極 2 0，30は，第1の内部㢣極20の容量形成領域26と第2 の内部電極30の容量形成領域36とが，コンデンサ素体L1の少なくとも一部である1 つの誘電体層10を挟んで対向するように配置されている。したがって，第1 の内部電極 20 の容量形成領域 26 と第 2 の内部電極 30 の容量形成領域 36 とは協働して静電容量 を形成する。
［10081］
さらに，第1及び第2の内部電極20，30は，第1の内部電極20の非容量形成領域 28 a と第2の内部電橄 300 の非容量形成領域 38 b とが，さらに第 10 内部電極 2000非容量形成領域 28 b と第 2 の内部電極 30 の非容量形成領域 38 a とが，それぞれコン デンサ素体 L 1 の少なくとも一部である1つの誘電体層 1 0 を挟んで対向するように配置 されている。
【0082】
第2央施形態に係る積用コンデンサでは，第1の似而し1 ck平行で11つ第10方向に直交する第 2 の方向において，第1 の端子電極1の長さは第2の方向における第1の側面 L1 C の長さに比して小さく設定されている。さらに，第2の方向に打ける第10内部電極 2 0 の引き出し電極部分 2 4 の長さは，第 2 の方向における第 1 の内部電極 2 0 0 主電極部分 22 の㙊さに比して小さく設定されている。
【0 0 （ 8 3】
また，第1の内部電極20において，非容量形成領域28a，28bと引き出し電極部分 24 との位置は，第 1 の方向から見たときに，非容量形成領域 2 8 a，28bと引き出 し電極部分 24 とが第 2 の方向で重なりを有するように設定されている。
［0084］
第2実施形態に係る積層コンデンサでは，第2の側面L1dに平行で且つ第1の方向に直交する第30方向に打いて，第2の端子電極2の長さは，第30方向における第2側面 L1dの長さに比して小さく設定されている。さらに，第3の方向における第2の内部電極30の引き出し電極部分 3 4 の長さは，第3の方向における第20内部電極30の主電極部分 32 の長さに比して小さく設定されている。
【 $\left.\begin{array}{llll}0 & 0 & 8 & 5\end{array}\right]$
また，第2の内部電極30において，非容量形成頜域 3 8 a，38bと引き出し電板部分 34 との位置は，第 1 の方向から見たときに，非容量形成領域 $38 \mathrm{a}, ~ 38 \mathrm{~b}$ と引き出 し電極部分 34 とが第 3 の方向で重なりを有するように設定されている。
【0 086 】
第2実施形態に係る積層コンデンサでは，第1の内部電極200主電㮴部分22が非容量形成領域 28 a ， 28 b を含み，この非容量形成領域 28 a ， 28 b は，第 1 の方向か 5見たときに，引き出し電極部分 24 と第 2 の方向で重なりを有するような位置に配置さ れている。そのため，コンデンサ素体L1の電歪効果によって第1の端子電極1が受ける影響が低滅され，第2実施形態に係る䅡屑コンデンサでは第1 の端子電顛1付近での電查効果による機械的歪みを抑制することも可能となる。

〔0087］

をらに，第2実施形態に係る積層コンデンサては，第2の内部電極30の主電極部分3 2 も非容量形成領域 38 a， 38 bを含み，この非容量形成領域 38 a， 38 bは，第 1 の方向から見たときに，引き出し電板部分 34 と第 30 方向で重なりを何するような位情 に配置されている。そのため，コンデンサ素体L1の電柾効果によって第2の端子電極2 が受ける影響も低減され，第2実施形態に係る積層コンデンサでは第2の端子電極2付近

での電歪効果による機械的歪みを抑制することも可能となる。
【0 088 8】
したがつて，第2実施形態に係る積層コンデンサを基板等に実装し，電圧を加えた場合 でありても，基板等において発生する音鳴りは抑制される。
〔0089）
第2実施形態に係る積層コンデンサでは，第1の内部電極20において，主電極部分2 2と引き出し電極部分 24 とが接して打り，非容量形成領域 28 aは，主電極部分 22 と引き出し電極部分24との境界部に接するように配置されている。そのため，第2実施形態に係る積層コンデンサでは第1の端子電極1付近での電歪効果による機械的歪みをより一居抑制することが可能となる。
【009 0 〕
さらに，第2実施形態に係る積層コンデン゙サでは，第2の内部電極30においても，主電極部分 32 と引き出し電極部分 34 とが接しており，非容量形成䫀域 38 aは，主電極部分 32 と枵き出し電極部分 34 と0境界部に接するように配置されている。そのため，第2実施形態に係る積層コンデンサでは第2の端子電極2付近での電歪効果による機械的歪みをも，より一層抑制することが可能である。
【00911】
また，第2実施形態に係る積層コンデンサでは，第1及び第2の内部電極20，30が ，第1 の内部電極20の非容量形成領域28 aと第2の内部電極300非容量形成領域3 8 b とが，さらに第1 の内部電極20の非容量形成領域28bと第2の内部電極30の非容量形成頒域38aとが，誘電体層10を挟んで対向するように配置されている。したが つて，第2実施形態に係る積層コンデンサでは，静電容量の低減を効率良く抑制すること ができる。
〔0092］
加えて，誘電体層10が露出するように非容量形成領域2 8 a，28b，38a，38 bが形成されている第2実施形態に係る積層コンデンサでは，非容量形成钼域28a，3 8 b 同士及び非容量形成領域 28 b ， 38 a 同士が対向するように積居されている。その ため，第2実施形態に係る積層コンデンサでは，第1及び第2の内部電極20，30と誘電体層10との層間の密着性が良好になる。
【0093】
また，コンデンサ素体L1における得間の密着性が高まることにより，第2実施形態に係る積層コンデンサでは，コンデンサ素体L1全体の機械的歪みを抑制するとともに，第 1 及び第2の端子電極1，2付近での機械的歪みをより一層抑制することが可能となる。【0 0094 4］ また，第2夹施形態に係る積首コンデンサでは，第2の方向において，第1 の端子電極 1 の長さが第1の側面L1cの長さに比して小さく設定さ扟ている。このため，電歪効果 によって歪んだコンデンサ素体L1に第1の端子電極1が引つ張られたとしても，第2実施形態に係る積層コンデンサを実装する基板等に影響を与える面積を小さくすることがで きる。
【 00095 〕
また，第2実施形態に係る積層コンデンサでは，第2の方向において，第1 の端子電極 1 に接続する引き出し電極部分 2 4 の長さが主電極部分 2 2 の長さに比して小さく設定さ れている。これにより，第1 の端子電醽1の第2の方向における長さを小さくすることが可能となる。
【0 0 9 6】
をらに，第2責施形態に係る積層コンデンサでは，第3の方向に初いて，第2の端子電極2の長さが銊2の側面L1dの長さに比して小さく設定されている。このため，電歪効
実施形態に係る積層コンデンサを実装する基板等に影響を与える面積を小さくすることが できる。

【 00097 〕
また，第2実施形態に係る積層コンデンサでは，第3の方向において，第2の端子䨨橄 2に接続する引き出し電極部分 3 4 の長さが主電極部分 3 2 の長さに比して小さく設定さ れている。これにより，第2の端子電極2 の第3 の方向における長さを小さくすることが可能となる。
【0 0 9 9 8
続いて，図6に基づいて，本実施形態の変形例について説明する。第2実施形態の変形例においては，第1及び第2の内部電極の主電極部分に含まれる非容量形成領域の数の点 で，第2実施形態に係る積層コンデンサと相違する。図6は，本実施形態の変形例に係る積層コンデンサに含まれるコンデンサ素体の分解斜視図である。
【0099】
本実施形態の変形例に係る積層コンデンサは，その図示を省略するが，上述した第1実施形態に係る積層コンデンサC1と同じく，コンデンサ素体 L 1 と，第1 の端子電極 1 と ，第2の端子電極2とを備える。コンデンサ素体 1 は，図 6 に示されるように，複数の誘電体層10と，複数の第1の内部電極20と，複数の第2の内部電極30とを有している
$\left[\begin{array}{llll}0 & 1 & 0 & 0\end{array}\right]$
第2実施形態の変形例に係る積層コンデンサの第10内部電極200主電極部分22は ，容量形成領域26と4つの非容暈形成領域28a，28b，28c，28dとを含む。 4 つの非容量形成領域 $28 \mathrm{a}, ~ 28 \mathrm{~b}, ~ 28 \mathrm{c}, ~ 28 \mathrm{~d}$ は，第1 の側面L 1 c と第2の側面L1dとの対向方向に沿って，この順に第1の側面L1 c側から並んで配置されている。非容量形成領域 $28 \mathrm{a}, ~ 28 \mathrm{~b}, ~ 28 \mathrm{c}, ~ 28 \mathrm{~d}$ は何れも，主電極部分 22 の第 1 及び第2の主南L1a，L1bの長辺方向における中央付近に位置している。
【0101】
非容量形成領域 28 a は，第1の内部電極20の主電極部分22に四角形状の開口部と して形成されている。非容量形成領域 28 a は，主電極部分 22 の引き出し電極部分 24 との境界部から第2の側面L1d側に向かって伸びている。
〔0102】
非容量形成領域 28 b は，第10内部電極20の主電極部分 22 に四角形状の開口部と して形成されている。非容量形成領域 28 b は，非容量形成領域 28 a より第 2 の側面 L 1 d 侧に形成されている。
【0103】
非容量形成領域 28 c は，第 1 の内部電極 20 の主電極部分 22 に四角形状の開口部と して形成されている。非容量形成領域28cは，非容量形成領域28a，28bより第2 の側面L1d側に形成されている。

非容量形成領域 28 d は，スリット状に形成されている。非容量形成領域 28 d は，主電極部分 22 において第 2 の側面L1d側から第1の側面L1 c側に向かって伸びるよう に形成されている。ただし，非容量形成領域 28 d のスリットは，非容量形成領域 28 c にまでは達しない。
【0105】

電気的且つ物理的に接続されている。これにより，主電極部分 22 は，そして第 1 の内部電極 20 は，第 10 の端子電極 1 に電気的に接続されることとなる。引き出し電極部分 24 は，主電極部分 2 2 の容量形成領域26及で非容量形成領域289の双方と接している。【0 1006 】
容量形成領域 36 と 4 つの非容量形成領域 $38 \mathrm{a}, ~ 38 \mathrm{~b}, ~ 38 \mathrm{c}, ~ 38 \mathrm{~d}$ とを含む。 4 つの非容量形成頜域 $38 \mathrm{a}, ~ 38 \mathrm{~b}, ~ 38 \mathrm{c}, ~ 38 \mathrm{~d}$ は，第1の側面 L 1 c と第 2 の側

面L1dとの対向方向に沿って，この順に第2の側面L1d側から並んで配置されている －非容量形成頜域 $38 \mathrm{a}, ~ 38 \mathrm{~b}, ~ 38 \mathrm{c}, ~ 38 \mathrm{~d}$ は何れも，主電椒部分 320 第 1 及び第2 の主面L1a，L1bの長辺方向における中央付近に位置している。
【0107】
非容量形成領域38aは，第2の内部電極30の主電極部分32に四角形状の開口部と して形成されている。非容量形成領域 3 8 aは，主電祭部分 32 の引き出し電橄部分 34 との境界部から第1の側面L1c側に向かって伸びている。
【0108】
非容量形成領域 38 b は，第 2 の内部電極 30 の主電極部分 32 に四角形状の開口部と して形成されている。非容量形成領域 38 bは，非容量形成領域 38 aより第 1 の側面 L 1 c側に形成されている。
【0 1009 〕
非容量形成領域 38 c は，第2の内部電極30の主電極部分 32 に四角形状の開口部と して形成されている。非容量形成領域 38 c は，非容量形成䫀域 38 a ， 38 b より第1 の側面し1 c側に形成されている。
【 $\left.\begin{array}{llll}0 & 1 & 1 & 0\end{array}\right]$
非容量形成領域 38 d は，スリット状に形成されている。非容量形成領域 38 d は，主電極部分 3 2 において第1 の側面Llc側から第2の側面Lld側に向かって伸びるよう に形成されている。ただし，非容量形成領域 38 d のスリットは，非容量形成領域 38 c にまでは達しない。
【 $\begin{array}{llll}011\end{array}$ 〕
引き出し電極部分 34 は，主電極部分 32 から第 2 の側面L1dに向けて伸びて扔り，第2の側面L1dまで引き出されている。引き出し電極部分 34 は，第 2 の新子電極 2 に電気的且つ物理的に接続されている。これにより，主電極部分 32 は，そして第 2 の内部電極30は，第2の端子電極2に電気的に接続されることとなる。引き出し電極部分34 は，主電極部分 32 の容量形成領域 36 及び非容量形成領域 38 a の双方と接している。
【 $\left.\begin{array}{llll}0 & 1 & 1 & 2\end{array}\right]$
第2実施形態の変形例に係る積層コンデンサの第1及び第2の内部電極20，30は，第1の内部電極20の非容量形成領域28aと第2の内部電極30の非容量形成領域38 dとが，さらに第1の内部電極20の非容量形成領域28bと第2の内部電極30の非容量形成領域 38 c とが，さらに第 10 の内部電極 200 非容量形成領域 28 c と第 2 の内部電極 3 0 の非容量形成領域 38 b とが，さらに第19内部電極20の非容量形成領域28 dと第2の内部電極30の非容量形成領域 38 aとが，それぞれコンデンサ素体L1 の少 なくとも一部である1つの誘電体層10を挟んで対向するように配置されている。
【0113】
また，第1の内部電極20に打いて，非容量形成領域28a，28b，28c，28d と引き出し電極部分 24 との位置は，第 1 の方向から見たときに，非容量形成領域 28 a ， 28 b，28c，28dと引き出し電極部分24とが第2の方向で重なりを有するよう に設定されている。
〔 $\left.\begin{array}{llll}0 & 1 & 1 & 4\end{array}\right]$
また，第2の内部電極30において，非容量形成領域38a，38b，38c，38d と引き出し電極部分 34 との位置は，第 1 の方向から見たときに，非容量形成領域 38 a ， 38 b ， 38 c ， 38 d と引き出し電板部分 34 とが第 30 方向で重なりを付するよう に設定されている。
【0115】
第2実施形態の変形列に係る積層コンデンサでも，第1の端子電極1付近ての電柾効果 による機械的歪みを抑制することも可能となる。さらに，第2 0 端子電棷 2 付近での電秀効果による機械的歪みを墹制することも可能である。
【 $\begin{array}{llll}0 & 1 & 1\end{array}$ 〕
また，第2実施形態の変形例に係る積層コンデンサでは，第1及び第2の内部電極20
， 30 が，第 10 内部電極 200 非容量形成領域 28 a ， $28 \mathrm{~b}, ~ 28 \mathrm{c}, ~ 28 \mathrm{~d}$ と第2 の内部電椣 300 非容量形成領域 $38 \mathrm{~d}, ~ 38 \mathrm{c}, ~ 38 \mathrm{~b}, ~ 38 \mathrm{a}$ とが，誘電体習10を挟んで対向するように配置されている。そのため静電容量の低減を効率良く抑制すると共 に，第1及び第2の内部電極20，30と誘電体層10との層間の密着性を良好にするこ とが可能となる。
［ $\begin{array}{llll}0 & 1 & 1\end{array}$ ］
特に，第1及び第2の側面L1 c，L1 dの対向方向における第10内部電極20の非容量形成領域 $28 \mathrm{a}, ~ 28 \mathrm{~b}, ~ 28 \mathrm{c}, ~ 28 \mathrm{~d}$ 間の容量形成領域 26 は，第 2 の内部電極 30 の容量形成領域 3 6 と誘電体層1 0 を介して対向している。さらに，第1及び第2の側面L1 C，L1dの対向方向における第2の内部電棑30の非容量形成領域38a，3 $8 \mathrm{~b}, ~ 38 \mathrm{c}, ~ 38 \mathrm{~d}$ 間の容量形成領域36は，第1 の内部電極20の容量形成領域26 と誘電体層10を介して対向している。そのため，第2実施形態の変形例に係る積層コン デンサでは，静電容量の低減をより一層効率良く抑制することが可能である。

〔0118】

また，第2実施形態の変形例に係る積層コンデンサでは，電歪効果によって歪んだコン デンサ素体L1 に第1又は第2の端子電極1，2が引つ張られたとしても，当該第1又は第2の端子電極1，2によって実装する基板等に影響を与える面積を小さくすることがで きる。
【 $\left.\begin{array}{llll}0 & 1 & 1 & 9\end{array}\right]$
また，第2実施形態に係る積層コンデンサでは，第1の端子電極1の第2の方向におけ る長さ，及び第 2 の端子電極 2 の第 3 の方向における長さを小さくすることが可能となる。
（第3实施形態）

図7～図10に基づいて，第3実施形態に係る積層コンデンサC2の構成について説明 する。図7は，本実施形態に係る積層コンデンサの斜視図である。図8は，本実施形態に係る積層コンデンサに含まれる素体の分解斜䘽図である。図9は，本実施形態に係る積莌 コンデンサの断面構成を說明するための図である。図10は，本実施形態に係る積層コン デンサの断面構成を説明するための図である。なお，図9及び図10において，断面のハ ッチングは省略している。
〔 $\left.\begin{array}{llll}0 & 1 & 2 & 1\end{array}\right]$
積層コンデンサC2は，図7に示すように，直方体状をしたコンデンサ素体L2と，コ ンデンサ素体L2の外表面に配置された第1の端子電極1 A ，1 B ，1 C ，1 D 及 び第2 の端子電極 2 A ， 2 B 。 $2 \mathrm{C}, ~ 2 \mathrm{D}$ とを備える。コンデンサ素体 L 2 は，相対向する長方形奖の第1の主而L2a及び第2の主面L2bと，相対する第1 の側面（第1 の面）L 2 c及び第 2 の側面L 2 dと，相対向する第3 の側面L 2 e及び第4の側面L 2 fとを含ん でいる。第1及び第2の側面L2 C，L2dは，第1及び第2の主面L2 a，L2b間を連結するように第1及び第2 の主面L2a，L2bの長辺方向に伸びている。第3及び第
及び第2の主面L2a，L2bの短辺方向に伸びている。
【0122】
コンデンサ素体L2の第10側面L2cには，第1の端子電極1 A～1 D が配置されて いる。第1 O端子電掼1 A～1 Dは，第1の側面L 2 c 上において，第3 の側面L 2 e 側 からこの順で配置されている。第1の端子電極1Aは第1の側面L2cの第3の側面L2 e側の端部に，第1の端子電極 1 D は第1の側面L 2 c の第4 の側面L 2 f 側の端部に， それぞれ㥢置されている。
【0123】
コンデンサ素体L2の第2の側面L2dには，第2の端子電極2A～2Dが配置されて いる。第2の端子電極 2 A ～2 Dは，第2の側面L2d上に扔いて，第3 の側面L 2 e 側 からこの順で配置されている。第2の端子電極2Aは第2の側面L2dの第3の側面L2
e側の端部に，第2の端子電極 2 Dは第 2 の側面L 2 d の第 4 の側面L 2 f側の端部に， それぞれ配闐されている。
【0124】
第1及び第2の端子電極1 A～1D，2A～2Dは，例えば，導電性金属粉末及びガラ スフリットを含む導電性ペーストをコンデンサ素体L2の対応する外表面の付与し，焼き付けることによって形成される。必要に応じて，焼き付けられた電橄の上にめっき層が形成されることもある。
【0125】
コンデンサ素体L2は，図8に示されるように，複数（本実施形態では5層）の誘電体庴10と，複数（本実施形態では 2 層）の第 1 の内部電極 40 と，複数（本実施形腎では 2層）の第2の内部電極50とを有している。したがって，コンデンサ素体 L 2 は，誘電特性を有する。
【 $\left.\begin{array}{llll}0 & 1 & 2 & 6\end{array}\right]$
第1の内部電極40と第20内部電極50とは，コンデンサ素体L2の一部である一つ の誘電体層10を挟んで対向するように配置されている。第1の端子電極1 A～1 D が配置された第1の側面L2C，及び第2の端子電極2A～2Dが配置された第2の側面L2 dは，第1の内部電極 4 0 と第2 の内部電極 5 0 とが対向する方向，すなわち第 1 の方向 に平行である。
【0127］
第 1 の内部電極 40 は，主電極部分 42 と，引き出し電極部分 $44 \mathrm{a}, ~ 44 \mathrm{~b}, ~ 44 \mathrm{c}$ ，44dとを含んでいる。主電極部分 42 は，容量形成領域 $46 \mathrm{a}, ~ 46 \mathrm{~b}, ~ 46 \mathrm{c}$ と非容量形成領域 48 a ， 48 b とを含む。第 1 の内部電極 40 は，導電性ペーストの焼結体 から構成される。

【0 1	0	8

容量形成領域46a～46cは，それぞれ長方形状を呈しており，第1及び第2の主面 L2a，L2bの長辺方向に沿って並んで配列されている。
【 01212 〕
非容量形成領域 48 a は，主電極部分 42 において第 2 の側面 L 2 d 側から第 1 の側面 L 2 c側に向かって伸び，容量形成領域 46 aと容量形成領域 46 bとの間に位置するス リットとして形成されている。非容量形成領域 48 bは，主電極部分 42 において第 2 の側面L2d側から第1の側面L2c側に向かって伸び，容量形成領域46bと容量形成領域 46 cとの間に位置するスリットとして形成されている。
【0130】
スリット状に形成された非容量形成領域 $48 \mathrm{a}, ~ 48 \mathrm{~b}$ には導電性ペーストの焼結体は存在せず，非容量形成領域 $48 \mathrm{a}, ~ 48 \mathrm{~b}$ は静電容量の形成に答与しない。
【0131】
引き出し電極部分 44 aは，主電極部分 42 の容量形成領域 46 a から第 1 の側面 L 2 cに向けて伸びており，第1 の側面L 2 c まで引き出されている。引き出し電極部分 44 aは，第1 の藤子電極1 Aに電気的Hつ物理的に接続されている。これにより，主電棑部分 4 2 の容量形成領域 4 6 aは，そして第1 の内部電極 4 0 は，第1 の端子電極 1 Aに電気的に接続されることとなる。
［0132］
引き出し電極部分 44 bは，主電顺部分 42 の容罿形成領域 46 a ， 46 b 及び非容量形成領域 48 aから第 1 の側面 L 2 ck向けて伸びておる，第 1 の側面 L 2 c まで引き出 されている。引き出し電極部分 44 b は，第 1 の端子電極 1 B に電気的且つ物理的に接続 されている。これにより，主電極部分 42 の容量㷕成領域 46 a， 46 bは，そして第1 の内部電極 40 は，第 1 の端子電極 1 Bに電気的に接続されることとなる。
$\left[\begin{array}{llll}0 & 1 & 3 & 3\end{array}\right]$
引き出し電極部分 44 c は，主電極部分 42 の容量形成領域 46 b ， 46 c 及び非容量形成領域 48 bから第1の側面L2ck向けて伸びておる，第1の側面L2c韦2゙引き出

されている。引き出し電極部分 44 c は，第1 の端子電極1Cに電気的目つ物理的に接続 されている。これにより，主電極部分 42 の容量形成領域 46 b ， 46 c は，そして第 1 の内部電極 4 0 は，第1 の端子電極 1 C に電気的に接続されることとなる。
【 $\begin{array}{llll}0 & 1 & 3 & 4\end{array}$ 〕
引き出し電極部分 44 d は，主電極部分 42 の容量形成領域 46 d から第 1 の側面 L 2 cに向けて伸びており，第1の僛面L2cまで引き出されている。引き出し電極部分 4 4 dは，第1 の端子電極1 Dに電気的且つ物理的に接続されている。これにより，主電極部分 4 2 の容量形成頒域 4 6 dは，そして第1の内部電極 4 0 は，第1 の端子電極1 Dに電気的に接続されることとなる。
【0135】
引き出し電極部分 44 a は，主電極部分 42 の容量形成領域 46 a と接している。引き出し電極部分 44 b は，主電極部分 42 の容量形成頜域 $46 \mathrm{a}, ~ 46 \mathrm{~b}$ 及び非容量形成領域48aのすべてと接している。引き出し電極部分 44 c は，主電極部分 42 の容量形成領域 46 b ， 46 c 及び非容量形成領域 48 b のすべてと接している。引き出し電極部分 44 d は，主電極部分 42 の容量形成領域 46 c と接している。
【 $\begin{array}{lll}0 & 1 & 3\end{array}$ 〕
非容量形成領域 48 a は，主電極部分 42 の容量形成領域 46 a ， 46 b と引き出し電極部分 44 bとの境界部に接するように配置されている。非容量形成領域 48 bは，主電極部分 42 の容量形成領域 $46 \mathrm{~b}, ~ 46 \mathrm{c}$ と引き出し電㮴部分 44 c との境界部に接する ように配置されている。
【0137】
第 20 内部電極 50 は，主電極部分 52 と，引き出し電極部分 $54 \mathrm{a}, ~ 54 \mathrm{~b}, ~ 54 \mathrm{c}$ ， 54 d とを令んでいる。主電棑部分 52 は，容量形成領域 $56 \mathrm{a}, ~ 56 \mathrm{~b}$ ， 56 c と非容量形成領域 58 a， 58 bとを含む。第 2 の内部電極 50 は，導電性ペーストの燒結体 から構成される。
【0138】
容量形成領域 $56 \mathrm{a} ~ 56 \mathrm{c}$ は，それぞれ辰方形状を呈しており，第1及び第2の主面 L2a，L2bの長辺方向に沿って並んで配列されている。
【 $\left.\begin{array}{llll}0 & 1 & 3 & 9\end{array}\right]$
非容量形成領域 58 a は，主電極部分 52 に打いて第 2 の側面 L 2 d 側から第2の側面 L2d側に向かって伸び，容量形成領域56aと容量形成領域56bとの間に位置するス リットとして形成されている。非容量形成領域 58 bは，主電極部分 52 に扔いて第 2 の側面L2d側から第2の側面L2d側に向かって伸び，容量形成領域56bと容量形成領域 56 c との間に位置するスリットとして形成されている。
【0140】
スリツト状に形成された非容量形成領域 58 a， 58 bには導電性ペースト存在せず，非容量形成領域 $58 \mathrm{a}, ~ 58 \mathrm{~b}$ は静電容量の形成に寄与しない。
〔0141】
 dに向けて伸でており，第2 の側面L 2 d まで引き出されている。引き出し電極部分 54 aは，第2の端子電極 2 A A電気的且つ物理的に接続されている。これにより，主電極部分 52 の容量形成領域 56 a は，そして第2の内部電極 50 は，第2の端子電極2 Aに電気的に接続されることとなる。
【 0142 〕
引き出し電極部分 54 b は，主電極部分 52 の容量形成領域 56 a ， 56 b 及び非容量形成領域 58 a から第2の側面L2dに南けて伸びており，第2の働面L2dまで引き出 されている。引き出し電極部分 54 b は，第 2 の端子電棳 2 B に電気的目つ物理的に接続 されている。これにより，主電極部分 52 の容量形成領域 56 a， 56 bは，そして筛 2 の内部電極 50 は，第 2 の端子電極2 Bに電気的に接続されることとなる。
【 $\left.\begin{array}{llll}0 & 1 & 4 & 3\end{array}\right]$

引き出し電極部分 54 c は，主電極部分 52 の容量形成領域 56 b ， 56 c 及び非容量形成領域 58 b から第2の側面L2dに向けて伸びており，第2の側面L2dまで引き出 されている。引き出し電極部分 54 c は，第 2 の端子電極 2 C に電気的且つ物理的に接続 されている。これにより，主電極部分 52 の容量形成領域 $56 \mathrm{~b}, ~ 56 \mathrm{c}$ は，そして第2 の内部電極 50 は，第 2 の端子電極 2 C に電気的に接続されることとなる。
［10144］
引き出し電極部分 54 d は，主電極部分 52 の容量形成領域 56 d から第 2 の側面 L 2 dに向けて伸でており，第2の側面L2dまで引き出されている。引き出し電極部分54 dは，第2の端子電極 2 D に電気的且つ物理的に接続されている。これにより，主電極部分 52 の容量形成領域 56 d は，そして第2の内部電板 50 は，第2の端子電極2Dに電気的に接続されることとなる。
［ $\left.\begin{array}{llll}0 & 1 & 4 & 5\end{array}\right]$
引き出し霜極部分 54 aは，主電極部分 52 の容量形成領域 56 aと接している。引き出し電板部分 54 bは，主電極部分 52 の容量形成領域 56 a ， 56 b 及び非容量形成頜域 58 a のすべてと接している。引き出し電極部分 54 c は，主電極部分 52 の容量形成領域 56 b， 56 c 及び非容量形成領域 58 b のすべてと接している。引き出し電極部分 54 d は，主電極部分52の容量形成領域56cと接している。
［ $\left.\begin{array}{llll}0 & 1 & 4 & 6\end{array}\right]$
非容量形成頜域 58 a は，主電極部分 52 の容量形成領域 56 a ， 56 b と引き出し電極部分 54 b との境界部に接するように配置されている。非容量形成領域 58 b は，主電極部分 52 の容量形成領域 56 b ， 56 c と引き出し電極部分 54 c との境界部に接する ように配置されている。
【0147】
第1及び第2の内部電極40，50は，第1の内部電極40の容量形成領域46aと第 2 の内部電極 50 の容量形成領域 56 a とが，さらに第1 の内部電極 40 の容量形成領域 46 b と第 2 の内部電極 50 の容量形成領域 56 b とが，さらに第 1 の内部電極 400 容量形成頜域 46 c と第 2 の内部電板 500 容量形成領域 56 c とが，何れも，コンデンサ素体L2の少なくとも一部である1つの誘電体層10を抰んで対向するように配置されて いる。したがって，第1 の内部電極 4 0 の容量形成領域 4 6a～46cと第2 の内部電極 50 の容量形成領域 $56 \mathrm{a} ~ 56 \mathrm{c}$ とは協働して静電容量を形成する。

【0148】

さらに，第1及び第2の内部電極 4 0 ，50は，第1 の内部電極 4 0 0 非容量形成領域 48 aと第2の内部電極50の非容量形成領域58aとが，さらに第1の内部電極40の非容量形成領域 48 b と第 2 の内部電極 500 非容量形成領域 58 b とが，それぞれコン デンサ素体L2 O少なくとも一部である1つの誘電体層10を挟んで対向するように配置 されている。
【0149】
ここで，第1 の側面L 2 c に平行で且つ第1の方向に直交する方向を第2の方向とする。図9では，第2の方向をx方向として表す。図9は，図7の積莌コンデンサのIX－IX矢印断面を模式的に表す図であり，第1 の内部電極40の上面と誘電体層10とが積層され ている䈏所で切断した図である。
〔0150〕
図9に示すように，第2の方向に打ける第1 0端子電極1 A，1B，1 C，1 Dそれぞ れの長さ d 1 1 A ，d 1 1 R ，d 1 1 C ，d 1 D D は，第2 の方向における第1 の側面L 2 c の長さd12に比して小さく設定されている。すなわち，d11 x（11 x＝1 1 A

電極 40 の主電極部分 42 の長さ $d_{1} 4$ に比して小さく設定されている。すなわち，d

［ $\left.\begin{array}{llll}0 & 1 & 5 & 1\end{array}\right]$
また，第10内部電極 4 0 において，非容量形成領域 4 8 aと引き出し電板部分 4 4 b との位置は，第1の方向から見たときに，すなわち図9の断面図に扔いて，非容量形成領域 48 aと引き出し電極部分 44 b とが第2の方向（x方向）で重なりを有するように設定されている。さらに，第1 の内部電極40において，非容量形成領域48bと引き出し電槧部分 4 4 c との位置は，第1 の方向から見たときに，非容量形成領域 48 b と引き出 し電極部分 44 c とが第2の方向（ x 方向）で重なりを有するように設定されている
［lllll $\left.\begin{array}{lll}0 & 1 & 5\end{array}\right]$
第2の側面L2dに平行で且つ第1の方向に直交する方向を第3の方向とする。図10 では，第3の方向をy方向として表す。図10は，図7の積層コンデンサのXーx矢印断面図であり，第 1 の内部電極 4 0 の上面と誘電体屠1 0 とが積層されている箇所で切断した図である。
〔0153］
図10に示すように，第30方向における第2の端子電極2A，2B，2C，2Dそれ ぞれの長さ d 2 1 A ，d2 1 B ，d 2 1 C ，d 2 1 D は，第 3 の方向における第2 の側面

 の方向における第2の内部電極50の引き出し電極部分54a，54b，54c，54d
内部電極 50 の主電極部分 52 の長さ $\mathrm{d}_{2} 4$ に比して小さく設定されている。すなわち， d23x（23x＝23A，23B，23C，23D）＜d24が成立する。
【 $\left.\begin{array}{llll}0 & 1 & 5 & 4\end{array}\right]$
また，第2の内部電板50において，非容量形成領域58aと引き出し電極部分54b との位置は，第1の方向から見たときに，すなわち図10の断面図において，非容量形成領域 58 a と引き出し電極部分 54 b とが第 3 の方向（ y 方向）で重なりを有するように設定されている。さらに，第20内部電極50において，非容量形成領域58bと引き出 し電極部分 54 c との位置は，第1の方向から見たときに，非容量形成領域 58 a と引き出し電極部分 54 b とが第 3 の方向（ y 方向）で重なりを有するように設定されている。【 015 5
積層コンデンサC2では，第10内部電極40の主電極部分42が非容量形成領域48 a，48bを含む。したがって，端子電極1A～1 D，2A～2Dを基板のランド電梗等 に接続して積層コンデンサC2に電圧をかけ，第1及び第2の内部電極40，50間に電圧を加える場合であっても，主電極部分 42 にスリット状に形成された非容量形成領域 4 $8 \mathrm{a}, ~ 48 \mathrm{~b}$ に加わる電圧は抑制される。その上，この非容量形成領域48a，48bは ，第1の方向から見たときに，引き出し電板部分 44 b ， 44 c と第2の方向（図 9 の x方向）でそれぞれ重なりを有するような位置に配置されている。以上より，引き出し電極部分 $44 \mathrm{a} ~ 44 \mathrm{~d}$（特に引き出し電極 44 b ， 44 c ）に影響するコンデンサ素体 L 2 の電歪の効果は非容量形成領域 48 a ， 48 b の分だけ小さくなる。その結果，コンデン サ素体L20電楽効果によって第1 の端子電極1 A～1 Dが受ける影響が低蔵され，積屑 コンデンサC2では第1の端子電極付近での電歪効果による機械的歪みを抑制することが可能となる。
【 $\begin{array}{lll}0 & 1 & 5\end{array}$ 〕
さらに，積首コンデンサC2では，第20内部電極50の主電極部分52も非容䍜形成領域 58 a ， 58 b を含み，この非容量形成領域 58 a ， 58 b は，第 1 の方向から兒た ときに，引き出し電極部分 54 b ， 54 c と第 3 の方向（図 100 y 方向）でそれぞれ重 なりを有するような位置に配置されている。そのため，コンデンサ素体しての電歪効采に よつて第20端子電榑2A～2Dが受ける影響も低減され，積暇コンデンサC2では第2 の端子電㯹付近での電歪効果による機械的查みを抑制することも可能となる。
【 $\left.\begin{array}{lll}0 & 1 & 5\end{array}\right]$
したがって，樻層コンデンサC2を基板等に実装し，電圧を加えた場合であっても，基

板等において発生する音鳴りは抑制される。
【 $\left.\begin{array}{llll}0 & 1 & 5 & 8\end{array}\right]$
非容量形成領域が引き出し電極部分に近いほど，コンデンサ素体の電歪効果によつて端子電極が受ける影響は低減される。これに対し，積層コンデンサC2では，第1の内部電極40において，主電極部分 42 と引き出し電極部分 $44 \mathrm{a} \sim 44 \mathrm{~d}$ とが接しており，非容量形成領域48aは主電極部分 42 と引き出し電極部分 44 b と 1 境界部に，非容量形成領域 48 b は主電極部分 42 と引き出し電極部分 44 c との境界部に，それぞれ接する ように配罩されている。そのため，積層コンデンサC2では第1の端子電極付近での電歪効果による機械的歪みをより一層抑制することが可能となる。
【 01159 〕
さらに，積層コンデンサC2では，第2の内部電極50においても，主電極部分52と引き出し電極部分 $54 \mathrm{a} \sim 54 \mathrm{~d}$ とが接しており，非容量形成領域 58 aは主電極部分 5 2 と引き出し電極部分 54 bとの境界部に，非容量形成頜域 58 bは主電極部分 52 と引 き出し電極部分 54 c と積層コンデンサC2では第2の端子電極付近での電歪効果による機械的歪みをも，より一層抑制することが可能である。
【 $\left.\begin{array}{llll}0 & 1 & 6 & 0\end{array}\right]$
また，積層コンデンサC2では，第1及び第2の内部電極40，50が，第1 の内部電極40の非容量形成領域48 aと第2の内部電極500の非容量形成領域58aとが，さら に第1 の内部電極40の非容量形成領域48bと第2の内部電極50の非容量形成領域5 8 bとが，それぞれ誘電体層1 0 を挟んで対向するように配置されている。したがって，積層コンデンサC2では，静電容堛の低減を効率良く抑制することができると共に，第1及び第2の内部電榛40，50と誘電体厝10との間の密着性を良好にすることが可能と なる。

また，積層コンデンサC2では，コンデンサ素体L2の尿間の密着性が良好であるため ，コンデンサ素体L2全体の機械的歪みが抑制されるとともに，第1及び第2の端子電桠 $1 \mathrm{~A} \sim 1 \mathrm{D}, ~ 2 \mathrm{~A} \sim 2 \mathrm{D}$ 付近での機械的歪みをより一層抑制することが可能となる。
【 $\left.\begin{array}{llll}0 & 1 & 6 & 2\end{array}\right]$
また，積層コンデンサC2では，第2の方向において，第1 0端子電極1 A～1 D の長
 このため，電歪効果によつて查んだコンデンサ素体L2に第1の端子電極1 A～1 Dが引 つ張られたとしても，積層コンデンサC2を実装する基板等に影響を与える面積を小さく することができる。
［llll $\begin{array}{lll}0 & 1 & 6\end{array}$ 3 $]$
また，積層コンデンサC2では，第2の方问において，第1の端子電極1 A～1 Dに接続する引き出し電極部分 $44 \mathrm{a} ~ 44 \mathrm{~d}$ の長さd13 A_{1}～d 1 3 D が主電極部分 42 の長 さ d14に比して小さく設定されている。これにより，第1の端子電極1 A～1 D の第2 の方向に招ける長さd11 A～d11 Dを小さくすることが可能となる。
〔 $\left.\begin{array}{llll}0 & 1 & 6 & 4\end{array}\right]$
さらに，積層コンデンサC2では，第3の方向において，第2の端子電極2A～2Dの
 －このため，電電効果によって歪んだコンデンサ素体L2に第2の端子電椒2A～2Dが引つ張られたとしても，積層コンデンサC2を実装する基板等に影響を与える面積を小さ くすることができる。
【01165】
また，積㕌コンデンサC2では，第3の方向において，第2の韹子電極2A～2Dに接
 さ d 2 4 K比して小さく設定されている。これにより，第2の端子電極 2 A～2 D の第3 の方向における長さd2はを小さくすることが可能となる。

【0 166 〕
以上，本発明の好適な実施形態について説明してきたが，本発明は必ずしも上述した実施形態に限定されるものではなく，その要旨を逸脱しない範囲で様々な変更が可能である

【0167】
例えば，誘電体層10及び各内部電極20，40，30，500積層数，並びに端子電極1，1A～1D，2，2A～2Dの数は，上記実施形態及び変形例での数に限られない
$\left[\begin{array}{llll}0 & 1 & 6 & 8\end{array}\right]$
各内部電嫩 $20, ~ 40, ~ 30, ~ 50$ の容量形成領域26，26a，26b，46a～4 $6 \mathrm{c}, ~ 36,36 \mathrm{a}, ~ 36 \mathrm{c}, ~ 56 \mathrm{a} \sim 56 \mathrm{c}$ 及び非容量形成領域28，28a～28d ，48a，48b，38，38a～38d，58a，58bの形状は，上記実施形態及び変形例での形状に限られない。各内部電極 20 ， $40, ~ 30, ~ 500$ 主電極部分 $22, ~ 4$ 2，32，52に含まれる容量形成領域26，26a，26b，46a～46c，36， $36 \mathrm{a}, ~ 36 \mathrm{c}, ~ 56 \mathrm{a} \sim 56 \mathrm{c}$ 及び非容量形成領域28，28a～28d，48a，4 $8 \mathrm{~b}, ~ 38, ~ 38 \mathrm{a} \sim 38 \mathrm{~d}, ~ 58 \mathrm{a}, ~ 58 \mathrm{~b}$ の数は，上記実施形態及び変形例での数に限られない。
【01169】
また，各内部電極 $20, ~ 40, ~ 30, ~ 50$ の非容量形成領域 28 ， $28 \mathrm{a} \sim 28 \mathrm{~d}$ ， 4 $8 \mathrm{a}, ~ 48 \mathrm{~b}, ~ 38, ~ 38 \mathrm{a} \sim 38 \mathrm{~d}, ~ 58 \mathrm{a}, ~ 58 \mathrm{~b}$ は，主電極部分22，42，32 ， 52 と引き出し電極部分 $24, ~ 34, ~ 44 a \sim 44 d, ~ 54 a \sim 54 d$ との境界部に接 していなくてもよい。また，第1 の内部電極20，40の非容量形成領域28，28a～ $28 \mathrm{~d}, ~ 48 \mathrm{a}, ~ 48 \mathrm{~b}$ と，第2の内部電板の非容量形成領域38，38a～38d，5 $8 \mathrm{a}, ~ 58 \mathrm{~b}$ とが，第1 の方向で対向していなくてもよい。
【0 1770 〕
また，第1及び第2の内部電極20，40，30，500双方が非容量形成領域を含ま ず，片方（第1の内部電極）だけが倉んでいてもよい。【 $\left.\begin{array}{lllll}0 & 1 & 7 & 1\end{array}\right]$
また，第2及び第3の実施形態に係る積層コンデンサにおいて，複数の第1及び第2の内部電極 2 0 ，40，30，50のうち第10方向の第20主面L1 b，L2 b 側で最も外側に配䈯された内部電極 3 0 ，50と該内部電板30，50に対向するコンデンサ素体 L 1 ，L 2 の第 2 の主面 L 1 b ，L 2 b との間隔に対する，第1 の方向に招ける各第1 の端子電極1，1A～1 D の長さの比が，0．4より大きく且つ8． 0 より小さくてもよい。また，第 2 及び第 3 の実施形態に係る積層コンデンサにおいて，複数の第 1 及び第 2 の内部電棷20，40，30，500うち第1の方向の第1 の主面L1a，L2a側で最も外側に配置された内部電極 2 0 ，4 0 と該内部電極 2 0 ，40に対向するコンデンサ素体 L1，L2の第1の主面L1 a，L2aとの間隔に対する，第1の方向における各第10）端子電極1，1 A～1 D の長さの比が，0．4より大きく且つ8．0より小さくてもよい

【 $\left.\begin{array}{llll}0 & 1 & 7 & 2\end{array}\right]$
また，第2及び第3の実施形態に係る積層コンデンサにおいて，複数の第1及び第2の内部電極 2 0 ，40，30，50のうち第1の方向の第2の主面L1b，L2b側で最も外側に配置された内部電極 3 0 ，5 0 と該内部電極30，50に対向するコンデンサ素体 L 1，L 2 の第 2 の主面 L 1 b，L 2 bとの間隔に対する，第 2 の方向における各第 2 の端子電極2，2 A～2Dの長さの比が，0．4より大きく且つ8．0より小さくてもよい
内部電極 2 0 ，40，30，500うち第1 の方向の第1の主面 L 1 a，L 2 a 側で最も外侧に配推された内部電極 2 0 ，40と咳内部電板20，40に対向するコンデンサ素体 L1，L2の第1の主面L1a，L2 aとの間隔に対する，第2の方向に扮ける各第2の端子電極2，2A～2Dの長さの比が，0．4より大きく且つ8．0より小さくてもよい
$\left[\begin{array}{llll}0 & 1 & 7 & 3\end{array}\right]$
これらの場合，コンデンサ素体L1，L2の電歪効果による機械的歪みが第1又は第2 の端子電極1，1A～1 D，2，2A～2Dを介して実装基板等に伝搬することを好適に抑制することが可能となる。
【図面の籣単な説明】
［ $\left.\begin{array}{lll}0174\end{array}\right]$
【図1】第1実施形態に係る積層コンデンサの斜視図である。
【図2】第1実施形態に係る積層コンデンサに含まれる素体の分解斜視図である。
【図3】第1実施形態に係る䅡層コンデンサの断面構成を説明するための図である。
【図4】第1実施形態に係る積層コンデンサの断面構成を説明するための図である。
【図5】第2実施形態に係る積層コンデンサに含まれるコンデンサ素体の分解斜視図であ る。
【図6】第2実施形態の変形例に係る積屏コンデンサに含まれるコンデンサ美体の分解斜視図である。
【図7】第3実施形態に係る積層コンデンサの斜視図である。
【図8】第3実施形態に係る積層コンデンサに含まれる素体の分解斜視図である。
【図9】第3実施形態に係る積層コンデンサの断面構成を裞明するための図である。
【図10】第3実施形態に係る積層コンデンサの断面構成を説明するための図である。
【図11】第1実施形態に係る積層コンデンサの断面構成を説明するための図である。
【符号の説明】
【 $\left.\begin{array}{llll}0 & 1 & 7 & 5 \\ \hline\end{array}\right]$
子電極，2，2 A～2 D \cdots 第2の端子電極，11…第1の外層部， $12 \cdots$ 第2の外層部， $20, ~ 40 \cdots$ 第1の内部電極，22，42…主電極部分，24，44a～44d…引き出乚電極部分，26，26a，26b，46a～46c…容量形成領域，28，28a～2 $8 \mathrm{~d}, ~ 48 \mathrm{a}, ~ 48 \mathrm{~b} \cdots$ 非容量形成領域， 30 ， $50 \cdots$ 第20内部電棑， $32, ~ 52 \cdots$ 主電極部分， $34, ~ 54 \mathrm{a} \sim 54 \mathrm{~d} \cdots$ 引き出し電極部分， $36, ~ 36 \mathrm{a}, ~ 36 \mathrm{~b}, ~ 56 \mathrm{a} \sim$ $56 \mathrm{c} \cdots$ 容量形成領域， $38, ~ 38 \mathrm{a} \sim 38 \mathrm{~d}, ~ 58 \mathrm{a}, ~ 58 \mathrm{~b} \cdots$ 非容量形成領域。

〔図1〕

【図2】

【図4】

【図5】

〔図7】

【図6】

〔図8】

【図9】

【図10】

【図 111 〕

フロントページの続き

Fターム（参考）5E001 AB03 ACO2 AF06 AH09 $5 E 082$ AA01 AB03 BC33 EE04 EE17 FF05 FG06 FG26 GG10 JJ03 M224 PP09

(19) KOREAN INTELLECTUAL PROPERTY OFFICE			
KOREAN PATENT ABSTRACTS			
		(11) Publicatio (43) Publicatio	$\begin{aligned} & 1020080063680 \mathrm{~A} \\ & 2008 \end{aligned}$
(21) Application number	1020070000353	(71) Applicant:	- SAMSUNG ELECTRO-
(22) Application date:	02.01 .2007	(72) Inventor:	MECHANICS CO., LTD. - PARK, MIN KYU
(51) Int. Cl :	$\begin{aligned} & \text { H01G } 4 / 30 \\ & H 01 G 4 / 005 \end{aligned}$		

(54) MULTILAYER CHIP CAPACITOR, CAPABLE OF REDUCING EQUIVALENT SERIES INDUCTANCE AND IMPROVING A HIGH FREQUENCY ATTENUATION CHARACTERISTIC AND A RESONANCE FREQUENCY CHARACTERISTIC BY INCREASING A CONTACT AREA BETWEEN INNER AND OUTER ELECTRODES AND REDUCING A LENGTH OF A CURRENT PATH
(57) Abstract

PURPOSE: A multilayer chip capacitor is provided to reduce power loss by decreasing ESR(Equivalent Series Resistance) through frequency attenuation characteristic and a resonance frequency characteristic.

CONSTITUTION: A multilayer chip capacitor(100) includes a main body(101), a plurality of first and second inner electrodes (103a, 104a), and first and second outer electrodes $(103,104)$. The main body is formed by stacking a plurality of delectric layers(103b,104b) and has first and fourth sides(S1-S4) in
 parallel with a stacking direction. The first and second sides
face each other and the third and fourth sides face each other.
The first and second inner electrodes are alternately stacked by
being separated by the dielectric layers in the main body. The
first and second outer electrodes are formed on the first and second sides respectively and have different polarity.
copyright KIPO 2008

청구항 1
복수의 유전체층이 적층되어 형성푀고, 적층 방향과 평행한 제 1 내지 제 4 측면을 갖되 제 1 측면과 제 2 측면이 서로 대향하고 제 3 측면과 게 4 흑면이 서로 대향하는 커패시터 본체:

상기 커패시터 본체 내에서 유전체층에 의해 분리되어 꾜대로 적층된 복수의 제 1 및 제 2 내부 전극: 및
상기 제1 및 제 2 측면에 각각 형성된 상이한 극성의 제1 및 제 2 외부 전극을 포함하되,
상기 제 1 내부 전극은 제 1 및 제 3 측면으로 인출된 하나의 제 1 인출부를 갖고, 상기 제 2 내부 전극은 제 2 및 제 4 측면으로 인출되는 하나의 제 2 인출부를 가지며, 상기 제 1 외부 전극은 제 1 및 제 3 측면에서 제 1 인출부와 접하 여 제 1 내부 전극과 연결되고, 제 2 외부 전극은 제 2 및 제 4 측면에서 제 2 인출부와 접하여 제 2 내부 전극과 연 결된 것을 특징으로 하는 적층형 칩 커패시터.

청구항 2

제 1 항에 있어시,
상기 제 1 및 제 2 내부 전극 각각은 긱사각형의 전극 패턴으로 되어 있고, 제 1 외부 전극은 제 1 축면과 제 3 축면 상에 일체로 도포되어 상기 제1 내부 전극의 2 개 변과 접하고, 제 2 외부 전국은 제 2 측면과 제 4 측면에 일체로 도포되어 상기 제 2 내부 전극의 2 개 변과 접하는 겻을 특징으로 하는 적층형 칩 거패시터,

청구항 3

제2항에 있어서,
상기 제 1 외부 전극은 제 1 내부 전극의 장변 전체 길이에 걸려 제 1 내부 전극의 하나의 장변과 접하고, 제 2 외 부 전극은 제 2 내부 전극의 장변 전체 길이에 걸쳐 제 2 내부 전극의 하나의 장변과 접하는 것을 특징으로 하는 적층형 칩 커패시터.

청구항 4

제1항에 있어서.
상기 제 1 인출부는 제 1 측면의 전체 길이에 걸쳐 제 1 측면과 접하고, 제 3 및 졔 4 축면의 일부 길이에 걸쳐 제 3 및 제 4 측면파 접하며,
상기 제 2 인출부는 제 2 촉면의 전체 길이에 걸처 제 2 측면과 접하고, 제 3 및 제 4 측면의 일부 길이에 결쳐 제 3 및 제 4 측면과 접하며,

제 1 외부 전끅은 제 3 및 제 4 측면으로 일부 연장되어 제 1 , 제 3 및 제 4 측면에서 상기 제 1 인출부와 접하고, 제 2 99 부 전극은 제 3 및 제 4 측면으로 일부 연장되어 제 2 , 졔 3 및 제 4 측면에서 상기 제 2 인출부와 졉하는 것을 특 징으로 하는 적층쳥 칩 커패시터.

청구항 5

제 4 항에 있어서.
상기 제 1 및 제 2 촉면 간의 거리는 제 3 및 제 4 측면 간의 거리보다 더 큰 것을 특징으로 하는 적흥형 칩 커패시 터.

청구항 6
제 4 항에 있어서,
 시터.

청구항 7

복수의 유전체층이 적층되어 형성되고. 적층 방향가 평행한 제 1 내지 제 4 축면을 갖되 제 1 측면과 제 2 측면이 서로 대향하고 졔3 측면과 제4 측면이 서로 대향하는 커패시터 본체;

상기 커패시터 본쳬 내에서 유전체층에 의헤 분리되어 표대로 적층둰 복수의 제 1 및 제 2 내부 전극; 및
상기 제1 및 제2 측면에 각각 형성된 일극성의 제1 및 제2 외부 전극과, 제1 및 제2 촉면 사이의 중간 영역의 커패시터 본체외면을 떠 형상으로 둘러싸는 타극성의 제3 외부 전극을 포함하되,

제 1 내부 전극은 유전체층의 전체 폭으로 제 1 측면으로 인출된 제 1 인출부와 유전체층의 전체 폭으로 체 2 촉면 으로 인출된 제 2 인출부를 갖고, 제 2 내부 전극은 제 3 측면과 제 2 측면으로 각각 인출된 제3 및 제 4 인출부를 갖ㄱ.

제 1 외부 전극은 제 1 , 졔3 및 졔 4 측면에서 제 1 인출부와 접하고 제 2 이부 전극은 제 2 , 제 3 몿 제 4 측면에서 제 2 인출부와 접하여, 각각 제 1 내부 전극과 연졀되고, 제 3 외부 전극은 제3 및 제 4 인출부와 접하여 제 2 내부 전 그ㄱㅘㅘ 연결된 것을 톡징으로 하는 적층형 칩 커패시터.

청구항 8

제7항에 있어서,
상기 제 1 측면가 제 2 측면간의 기리는 제 3 측면과 제 4 측면 간의 거리보다 더 긴 것을 특징으로 하는 적층형 칩 커패시터.

청구항 9

복수의 유전체충이 적층되어 형성되고, 적층 방향과 평행한 제 1 내지 제 4 측면을 갖되 제 1 측면과 제 2 측면이 서로 대향하고 제3 측면과 제4 측면이 서로 대향하는 커패시터 본제:
상기 커패시터 본체 내에서 유전체충에 의해 분리되어 교매로 적층된 복수의 제1 및 제2 네부 전극: 몿
상기 제1 및 제2 측면에 각각 형성된 일극셩의 제 1 및 제 2 외부 전극과, 제 3 몇 제 4 측면에 각각 형성된 타극성 의 제3 및 제 4 외부 전극을 포함하되,

상기 커패시터 본체는 각 측면의 길이가 동일하여 정사각형 형상의 상면을 갖표, 제 1 내부 전극은 제1 및 제2 측면으로 각각 인출묀 제 1 및 제2 인출부를 갖고, 제2 내부 전극은 제3 및 제4 측면으로 각각 인출된 제3 및 제 4 인출부를 갖고, 제 1 및 제 2 외부 전극은 제 1 및 졔 2 인출부에 각각 접하여 제 1 내부 전극에 연결되고, 제 3 및 제 4 외부 전극은 제 3 및 제 4 인출부에 각각 접하여 제 2 내부 진극에 연결된 것을 특징으로 하는 적충형 칩 케패 시터.

망 不
4yy ghaty dy

본 발명은 적충힝 칩 커패시터에 관한 것으로, 톡히 저감된 등가직렬 인덕턴스(ESL)를 갖고 우수한 고주파 감쇄 특성을 나타내는 적층형 칩 커패시터에 관한 겻이다.
<14> 최근 전자 제품의 소형화 추세와 디불어 전자 또는 전기 부품의 실장 밀도가 높아짐에 따라, 전자기적인 상호간 간섭 발생하여 수딶은 전자기 방해파가 발샹한다. 또한 전기전자기기 및 정보처리장치가 다기능화 및 고속화됨 예 따라, 불필요한 전자파 잡음으로 인한 전자파 장애(EMI) 문제가 푈연적으로 발생하게 되었다. 전자퐈 장애는 통신 장애, 디지달 장치의 오동직 등의 문제를 일으킬 수 있다.
<15 이러한 의도하지 앟은 전자파 짱애른 재거하기 윅한 방볍을서 EM 필더를 전자 기기 배에 대장 도는 신장하 는 방법이 효과적으로 사용되고 있다. EMI 필터는 전자기 계연에서 발생하는 노이즈를 제거하는 퓔터로서, 톰상 적층형 칩 케패시터의 구조를 갖는다. 고주파에서의 감ㅅㅙㅞ 톡성이 우수한 EMI 필터가 요구됨에 따라 통상적인 2 단자 커패시터 대신에, 지 인덕턴스 칩 커패시터나 3 단자 관툼 커패시터 둥이 많이 사용되고 있다.
<16> 그러나 실제 커폐시터는 커패시턴스(C)를 형성할 뿐만 아니라 기생 인덕턴스 즉 ESL으 포한한다 이로 인해, 와 ESL.로 인한 공진이 생기고, 이 공진 주파수(SRF) 이상에서는 커패시터로서의 거동이 약화된다. 이에 따라 특 정 주파수 대역에서 감혜 파형이 형성되고, 공진 주파수(SRF)는 ESL이 커질수록 낮아진다.

417> 도 1 a 내지 도 $1 c$ 는 종래의 적층형 칩 커패시터의 사시도와 그 등가회로도이다. 특히, 이들 도면은, EMI 필터로 사용하기 위해 커패시터가 회로 기판 등의 신호 라인에 연결된 상태를 나타년다. 도 2 a 내지 도 $2 c$ 는 각각 도 1 a 내지 도 1 c 의 커패시터의 평면도 및 평단면도이다.
<18> 도 la 및 도 2 a 를 찹조하면, 통상의 2 단자 적킁형 칩 커패시터 (10) 는 커패시터 본쳬(11)와 외부 전극(13, 14)을 포함한다. 본체(11) 내에는 다수의 제1 내부 전극 (13a)과 제2 내부 전극(14a)이 유전체층(13b, 14b)에 의해 분 리되어 표대로 적층된다. 내부 전극이 형성된 다수의 유전체($13 \mathrm{~b}, 14 \mathrm{~b}$) 층이 표대로 다수혀 적층됨으로써 커패시 터 본체 (11) 를 형성한다. 제 1 및 제2 내부 전극 ($13 \mathrm{a}, 14 \mathrm{a}$) 은 인출부 ($13 \mathrm{c}, 14 \mathrm{c}$)를 통해 다른 극성의 제1 외부 전 극 (13,14)에 각각 연결된다. (도 2 a 찹조). 도 1 a 를 참조하면, 제1 외부 전극(13)은 신호 라인(53)에 연결되고 제2 외훈 전륵 (14) 은 접지 폐텬(54)되어, 고주파 노이즈가 신호 라인(53)의 입력부 (IN) 로부터 EMI 펼퇴용 커패 시터(10)롤 통혜 접지 패틴(54)으로 빠져 나가도록 한다. 그러나. 도 $1 a$ 의 등가회로도(저항 성분은 편의상 생략 함)에서와 같이, 커패시턴스(10)는 상당한 크기의 기생 인덕턴스(ESL)을 포함하므로, 고주파 노이즈의 제기가 충분하지 못하다. 특히, 지패시터(10) 내의 전류 경로 (도 $2 a$ 의 화살표 참조)가 상당한 길이를 가저서 기생 인덕 턴스의 값이 높아지게 된다.
<19 도 1 b 및 도 2 b 를 참조하면, 2 단자 젹층형 칩 커패시터 (20) 는 저 인떡턴스 칩 커패시터 (Low Inductance Chip Capactor: LICC)이다. 이 커패시터(20)에 따르면, 신호 라인(63)과 접지 패턴(64) 간의 전류 경로의 길이(도 2 b 의 화살표 참조)가 적층형 칩 커패시터 (10)예 비하여 반으로 출고, 내외부 전극간 접촉 면적은 2 배로 늘어나게 된다. 즉, 외부 전극이 도포된 양 측면잔의 기리(A)는 외부 전극이 도포된 측면의 길이(B)보다 짧고(도 1 b 참조), 제 1 내부 전극 ($23 a$) 과 제 1 외부 전극간 (23) 간의 접촉 면적 및 제2 내부 전극(24a)과 제2 이부 전극(24) 간의 접촉 면적은 보다 더 크다(도 2 b 참조). 이에 따라 ESL은 줄어들게 되고 고주파 감쇄 특성이 종전 커패시 터 (10)보다 개선된다. 도 2 b 에서 도면부호 21 은 커패시터 본체를, $23 \mathrm{~b}, 24 \mathrm{~b}$ 는 유전체충을, 도면부호 $23 \mathrm{c}, 24 \mathrm{c}$ 는 내부 전극 (23a, 24a)의 인출부를 나타낸다.

또한 도 1 c 맟 도 2 C 를 참조하면, 적층형 칩 커패시터 (30)는 3 단자 퐌통 (feed through) 커페시터이다. 본제(3 $1)$ 의 양측면에 도포된 동일 극성의 외부 전극 (33, 33')은 신호 라인의 입력부 (IN) (73) 와 출력부 (OUT) (73')에 각 각 연길되포, 본체(31)의 충잔 부분에 도포된 타 극성의 외부 전극 (34, 34')은 접지 패텬(74)에 연졀된다. 일국 성의 제1 내부 전극 (33a)은 유전쳬층 (33b) 의 전체 길이를 통해 연장하여 일극성의 외부 전극 $\left(33,33^{\prime}\right)$ 과 연결되 고, (-) 극성의 내부 전극은 유전체층 (34 b) 의 전체 폭을 통혜 연장되어 다른 앙측단의 외부 전극(34, 34') 과 연 결된다. 고주파 노이즈는 신호 라인의 입력부 (73)로부터 커패시터(30)를 통해 접지 패턴(74)으로 빠져 나가게 된다. 이 지패시터 (30)에 따르면, 전류 경로가 적층형 칩 커페시터(10)보다 더 짧고(도 2 c 의 화살표 참조), 전 류 경로에 의한 인덕턴스 성분이 서로 병렬 연결된다(도 1 c 의 등가회로도 참조). 이에 따라, 커패시터(20)보다 더 개선된 고주파 감쇄 특성을 나타낼 수 있다. 도 $2 c^{\circ}$ 에서 도면부호 $33 \mathrm{c}, 33 \mathrm{c}^{\prime}, 34 \mathrm{c}, 34 \mathrm{c}^{\prime}$ 는 내부 전극의 인출 부를 나타낸다.
<21> 그러나, 충분한 고주퐈 감쇄 특성을 갖는 혈로를 구현 실헌하기 위해서는 보다 더 낮은 ESL과 보다 더 높은 공 진 주표수를 갖는 고성능 적층형 칩 커패시터가 필요하다. 이러한 낮은 ESL퐈 높은 공진 주펴수 톡성은 EMI 필 터에서 뿐만 아니라. 전원회로의 안정화를 위한 디키플링 기패시터에서도 요구된다.

《22 본 발명은 상기한 문제점을 해결하기 위한 것으모서, 그 목적은 보다 항상된 고주파 감세 톡성을 갖는 고성능 적층형 칩 커폐시터를 제공하는 것이다.

$\langle 23\rangle$
상술한 기술적 과제를 달성하기 위하여, 본 발뗭의 제 1 훅면에 따른 적충형 칩 커패시터는 2 단자 커패시터로시.
복수의 유전체층이 적층되어 형성되고, 적층 방향과 평행한 제 1 내지 제 4 측면을 갖되 제 1 측면퐈 제 2 측면이 서로 대향하고 제3 측면겨 제 4 측뎐이 서로 디향하는 커패시터 본체; 상기 커패시터 본체 내에서 유전체층에 의 혜 분리되어 교대로 적층된 복수의 제1 및 졔2 내부 전극; 및 상기 제1 및 제2 측면에 각각 형성된 상이한 극성

의 제1 및 제2 외부 전극을 포함하되,
25: 상기 제 1 내부 전국은 제 1 및 제 3 측면으로 인출된 하나의 제1 인출부를 갖포, 삼기 제 2 내부 전극은 제2 및 제4 측면으로 인출되는 하나의 제2 인출부를 가지며, 상기 제1 외부 전극은 졔1 및 제3 측면에서 제 1 인출부와 접하 여 제1 내부 전극과 연결되고, 제2 외부 전극은 제 2 및 제 4 즉면에서 제 2 인줄부와 접하여 제 2 내부 전극과 연 결된다.
<26> 본 발명의 실시형톄예 따르면, 상기 제1 및 제2 내부 전극 각각은 직사각형의 전극 패턴으로 되어 있고, 제1 외 부 전극은 제 1 측면과 제3 측면 상예 일체로 도포되어 상기 제1 내부 전극의 2 개 변(two sides)과 접하고, 제2 외부 전극은 제2 측면과 제 4 측면에 일체로 도포되어 상기 제 2 내부 전극의 2 개 변(two sides)과 접한다. 특히 제 1 외부 전극은 제 1 내부 전극의 장변 전제 길이에 걸혀 제 1 내부 전극의 하나의 장변과 접하고, 제 2 외부 전 극은 제 2 내부 전국의 장변 전체 길이에 절쳐 제 2 내부 전극의 하나의 장변과 접할 수 있다.
<27> 본 발명의 다른 실시형태에 따르면, 상기 제1 인출부는 제 1 측면의 전체 길이에 걸쳐 제 1 측면과 접하고, 제 3 및 제 4 측면의 일부 길이에 걸쳐 제 3 및 제 4 측면과 접한다. 또한 상기 제 2 인출부는 제 2 측면의 전체 길이에 질쳐 제 2 축면가 접하고, 제 3 및 제 4 측면의 일부 길이에 글쳐 제 3 및 제 4 측면과 접한다. 제 1 외부 전극은 제3 및 제 4 측면으로 일부 연장되어 제 1 , 제 3 및 제 4 측면에서 상기 제 1 인출부와 접한다. 제 2 외부 전극은 제 3 및 제 4 측면으로 일부 연장되어 제2, 제 3 및 제 4 측면에서 상기 제 2 인출부와 접한다. 이 경우, 상기 제 1 및 제 2 측면 간의 거리는 제 3 및 제 4 측면 간의 기리보다 더 클 수 있다. 이와 반대로, 상기 제 1 및 제 2 측면 간의 거리는 제3 및 제 4 측면 간의 거리보다 더 작을 수도 있다. ESL 저감 효과의 측면예시는 훈자가 전자보다 유리하다.
<28> 본 발명의 제2 측면에 따른 적층형 칩 커패시터는 3 단자 관통 커패시터로서,
<29복수의 유전체층이 적층되어 형성되고, 적층 방항과 평행한 제 1 내지 제 4 측면을 갖되 제 1 측면과 제 2 측면이 서로 대향하고 제3 측면과 제 4 측면이 서로 대향하는 커패시터 본쳬 ; 상기 커패시터 본체 내에서 유전체층에 의 해 분리되어 표대로 적층된 복수의 제 1 및 제 2 내부 전극; 및 제 1 및 제 2 측면에 각각 형성된 일극성의 제 1 및 졔2 외부 전극과, 제1 및 제2 측면 사이의 중간 영역의 커패시터 본체외면을 띠 형상(strip-like)으로 둘러싸는 타극성의 제3 외부 전극을 포함하되,

제 1 내부 전극은 유전체층의 전체 폭으로 제 1 측면으로 인출된 제 1 인출부와, 유전체충의 전체 폭으로 제 2 측면 으로 인출된 제2 인출부를 갖고, 제2 내부 전극은 제3 측면퐈 제2 측면으로 각각 인출된 제3 및 제4 인출부를 갖그,
<31> 제1 이부 전극은 제1, 제3 및 제4 축면에서 제 1 인출부와 접하고 제 2 외부 전극은 제2, 제3 및 제 4 측면에서 게 2 인출부와 접하여, 각각 제 1 내부 전극과 연절되고, 제 3 외부 전극은 제 3 및 제 4 인출부와 접히여 제 2 내부 전 극과 연결된다.
<32> 본 발명의 실시형태에 따르면, 상기 제 1 측면과 제 2 측면간의 거리는 제3 측면과 제4 측면 간의 거리보다 더 길 다.
<33> 본 발명의 제3 측면에 따른 적층형 칩 커패시터는,
<34> 복수의 유전체층이 적층되어 형성되고, 적층 방향과 평행한 제 1 내지 제 4 측면을 갖되 제 1 측면과 제 2 측면이 서로 대향하고 제 3 측면과 제 4 측면이 서로 대향하는 커페시터 본체와; 상기 커패시터 본체 네에서 유전체충에 의해 분리되어 교대로 적층된 복수의 제1 및 제2 내부 전극; 및 제1 및 제2 측면에 각각 헝성된 일극성의 제 1 및 제 2 외부 전극과, 제 3 및 제 4 측면에 각작 형성된 타극성의 제 3 및 제 4 외부 전극을 포함하되,

상기 커패시터 본체는 각 측면의 길이가 동일하여 정사각형 형상의 상면을 갖고, 제 1 내부 전극은 제 1 및 졔 2 측면으로 각각 인출된 제1 및 제 2 인출부를 갖고, 제 2 내부 전극은 제 3 및 제 4 측면으로 각작 인출된 제 3 및 제 4 인출부를 갖고, 제1 및 제2 외부 전극은 제 1 및 제 2 인출부에 각각 접하여 제 1 내부 전극에 연결되고, 제3 및 졔4 이부 전국은 졔3 및 제4 인출부에 각각 접하여 제2 내루 전극에 연결된다.

이하, 첨부된 도뗜을 참조하여 본 발명의 실시형태를 설명한다. 그러나, 본 발명의 실시형테는 여러가지 다른
 형태는 당업계에서 평만적인 지식을 가진 자에게 본 발명을 보다 완전하계 설명하기 위해서 제공되는 것이다. 따라서, 도면에서의 요소들의 형상 및 크기 등은 보다 명확한 설명을 위해 과장될 수 있으며, 도면 상의 동일한 부호로 표시되는 요소는 동일한 요소이다.
<37> 도 3은 본 발명의 일 실시형태에 따른 적층형 칩 커패시터의 평면도, 사시도 및 그 내부 구조를 나타낸 평단면 도이다. 도 3 을 참조하면, 커패시터 (100) 는 2 단자 커패시터로서, 다수의 유전체층 $(103 b, 104 b$)이 적층되어 형성 된 커패시터 본체(101)와 본체의 측면에 형성된 상이한 극성의 제1 및 제2 외부 전극(103, 104)을 포함한다. 커 패시터 본체(101)는 직육면체 형상으로서. 서로 대향하는 제1 및 제2 측면(S1, S2) 과 서로 대향하는 나머지 제3 및 제4 측면 (S3, S4) 를 갖흔다.

638 커패시터 본체(101) 내에는 유전체층 $(103 b, 104 b)$ 상에 복수의 제1 및 제2 내부 전극(103a, 104a)이 형성되어 있다. 이 제1 및 제2 내부 친국 (103a, 104a) 은 유전체층에 의해 분리되어 서로 교대로 반복하여 적층되어 있다. 제1 및 제2 내부 전극 (103a, 104a) 은 각각의 인출부 ($103 \mathrm{c}, 104 \mathrm{c}$) 를 동해 제1 및 제2 외부 전극 (103, 104)에 각 각 연결되어 서로 다른 극성을 갖게 된다. 이러한 상이한 극셩의 제1 및 제2 내부 전극(103a, 104a)이 유전체층 을 사이에 두고 서로 디향 배치됨으로써 커패시던스를 구현하게 된다. 편의상 내부 전극의 메인 전극부 (커패시 턴스 형성에 실질적으로 기여하는 내부 전극 부분으로서 제1 및 제2 내부 전극이 서로 오버랩된 부분에 해당 함)와 인출부 간의 경계를 점선으로 표시하였다.
<39> 톡히, 본 실시형태에 따르면, 제1 및 제2 내부 전극 (103a, 104a) 각각은 직사각형 형상의 전극 폐턴으로 되어 있고, 제 1 내부 전극 (103a)의 2 변은 제 1 측면 (SI) 과 제 3 측면 $(\mathrm{S} 3)$ 으로 인출되고, 제 2 내부 전극 (104 a) 의 2 변은 제2 측면 $(\mathrm{S} 2)$ 과 제 4 측면 $(\mathrm{S} 4)$ 으로 인출된다. 제 1 내부 전극 $(103 \mathrm{a})$ 의 제1 인출부 $(103 \mathrm{C})$ 는 제 1 및 제 3 측면 $(\mathrm{S} 1$, S 3)과 접하고, 졔 2 내부 전극 $(104 a)$ 의 제 2 인출부 $(104 \mathrm{c})$ 는 제2 및 제 4 측면 $(\mathrm{S} 2, \mathrm{~S} 4)$ 과 접한다(도 3 의 평단면도 참조)
 이에 따라 제1 내부 전극 (103)의 2 변과 집하게 된다. 제2 외부 전극 (104) 은 제2 측면 $(\mathrm{S} 2)$ 가 제 4 측면 (S 4) 상에 열체로 도포되어 제2 인출부 $(104 \mathrm{c})$ 와 접하고, 이에 따라 제2 내부 전극(104)의 2변과 접하게 된다.
<41> 이와 같이, 내부 전극 ($103 \mathrm{a}, 104 \mathrm{a}$) 가 외부 전극 (103,104) 은 내부 전극의 2 변에 걸처 넓은 면적으로 접하게 됨 으로써, 내외부 전큭간 접촉 넓이가 커지고 이에 따라 인출부로부터 니부 전극 내측으로 (또는 내부 전극 내측으 로부터 인출부로) 흐르는 전류의 저항 (Rdc) 가 감소되피 이 전류로부터 발생되는 기샹 인덕턴스의 값도 작아지게 된다.
<42> 뿐만 아니라, 도 3 예 도시된 바와 같이, 제1 및 제2 외부 전극(103,104)은 각각 제1 및 제2 내부 전극(103a, 104 a)의 장변 전체 길이에 걸쳐 각 내부 2 전극 $(103 \mathrm{a}, 104 \mathrm{a})$ 의 하나의 장변과 접함으로써, 내외부 전극간 접촉 면적은 크게 증가하게 된다. 더욱이, 도 3 의 평면도에 나타난 바와 같이, 이종 극셩 간의 전류 경로 (화살표 참 조)는 그 길이가 줄어들어, 기생 인덕턴스의 감소 효과는 더욱 커지게 된다. 이리한 전류 경로의 길이 감소는, 특히 커패시터 (100)가 EMI 펼터용으로 사용되어 신호 라인 및 접지 패턴에 연결될 때, 신호 라인과 접지 패턴 간의 전류 경로의 길이를 저감시켜 고주파 노이즈 제거 효과가 더욱 향상된다. 결과적으로, 커패시터(100)의 전 체 ESL은 저감되고, 고주퐈 갑쇄 득성 및 공진 주파수 (SRF) 특성이 크게 향상된다. 또한 ESR (저항 성분)을 포함 한 임패던스 감소로 고주파 전력 손실이 저감되어 절전헝 회로 구성에 용이하다.
<43> 도 4 는 본 발명의 다른 실시형태에 따른 2 단자 적층형 칩 커패시터(200)를 나타내는 도면이다. 본 실시형태에 따르면, 제 1 내부 전극 (203a) 의 인출부 $(203 \mathrm{c})$ 는 제 1 측면 (Si) 의 전체 길이에 걸쳐 제 1 측면 (S 1)과 접하고, 제3 및 제 4 측면 $(\mathrm{S} 3, \mathrm{~S} 4)$ 의 일부 길이에 걸쳐 제 3 및 제 4 측면 $(\mathrm{S} 3, \mathrm{~S} 4)$ 과 접한다. 또한 제 2 내부 전극 (204a) 의 제2 인출부 $(204 \mathrm{c})$ 는 제 2 측면 $(\mathrm{S} 2)$ 의 전체 길이에 절쳐 제 2 측면 $(\mathrm{S} 2)$ 과 접하고, 제 3 및 제 4 측면 $(\mathrm{S} 3, \mathrm{~S} 4)$ 의 일부 길 이예 절쳐 졔3 및 제 4 측면 $(S 3, S 4)$ 가 접한다.
<44》 또한, 일극셩의 제 1 외부 전극 (203) 은 제 1 측면 $(S 1)$ 전체에 걸쳐 도포되어 있을 뿐만 아니라 제3 및 제 4 측면 (S3, S4)으로 일부 연장되여 제1. 제3 띷 제4 측면 (S1, S3, S4)에서 제1 내부 전극(203a)의 제1 인출부 (203c) 와 접한다. 타극셩의 제 2 외부 전극 (204)은 졔 2 측면 $(\mathrm{S} 2)$ 전체에 절처 도포되어 있을 뿐만 아나라, 제3 및 제4 측면 (S3, S4) 으로 일부 연장되어 제 2 , 제3 및 제4 측면 $(\mathrm{S} 2, \mathrm{~S} 3, \mathrm{~S} 4)$ 예서 제2 내부 전극(204a) 의 제2 인출부 (204c)와 접한다.
<45. 따라서, 내부 전극 (203a, 204a) 과 외부 전극(203. 204)은 3 면에 걸쳐 메우 넓은 접축 면직으로 서로 접하게 되
 게 된다, 결과적으로, 커패시터 (200)는 종래예 비하여 현저하 감소된 ESL값을 나타내고, EMI 필터용으로 사용될 경우, 고주파 노이즈 제거 효과가 향상되며 다양한 주파수 영역에서 우수한 고주표 감쉐 특성 및 공진 주파수 (SRF) 특성을 나타네게 된다. 또한 임피던스 감소로 고주파 진력 손실이 저감되어 절전형 회로 구성에

용이하다．도 4 에서，도면부호 201 은 커패시터 본체를， 203 b 및 204 b 는 유전체층을 나타낸다．
＜46＞도 5 는 본 발명의 또 다른 실시헝태에 따른 2 단자 적층형 칩 커페시터（ 300 ）를 나타내는 도면이다．본 실시형태 에서도，도 4 의 실시형태와 같이，제 1 및 제2 내부 전극 $(303 a, 304 a$ ）의 제 1 및 제2 인출부 $(303 \mathrm{c}, 304 \mathrm{c}$ ）는 3 개 측면（S1，S3，S4）（S2，S3，S4）에 걸쳐 연장되어 있으며，그 3개 촉면에서 해당 외부 전극（303，304）과 접한다．

447 그러나 도 5 의 실시형태에서는，도 4 의 실시형태와 달리，이부 전국（303，304）이 전면적으로 도포된 양측면（S1， S 2 ）간의 거리는 다른 대향하는 양측면 $(\mathrm{S} 3, \mathrm{~S} 4)$ 간의 거리보다 더 크다．이에 따라．이종 극성 간의 전류 경로 （EMI 펼터용으로 사용할 경우에는 신호 라인퐈 접지 패턴 간의 전류 경로）가 도 4 의 실시형태에서보다 더욱 짧 아지고 내외부 접촉 면적은 더욱 커지계 된다（도 4 및 도 5의 폄단면도 비교）．

《48》 따라서，도 5 의 실시형태에 따르면，도 4 의 실시형태에서 보다 더 저감된 ESL 을 구현하게 되며，이에 따라 고추 파 감쇄 특성 및 공진 주파수 특성은 더욱 향상되고．고주퐈 전력 손실의 저감 효과는 더욱 현저하게 된다．도 5 에서，또면부호 301 은 커패시터 본체를， 303 b 딫 304 b 는 윶전체층을 나타낸다．
＜49＞도 6은 본 발명의 또 다른 실시형태에 따른 적츰형 칩 커패시터（400）를 나타낸다．이 커패시터（400）는 특히 EMI 필더용으로 유용하게 사용될 수 있는 3 단자 관통（feed through）커패시터에 해당한다．
＜50＞도 6 을 참조하면，거패시터 본체（401）의 제1 및 제2 측면 $(\mathrm{S} 1, \mathrm{~S} 2)$ 에 각각 도일 극성의 제1 및 제2 외부 전극 （403，403＇）이 도포되어 있고，양측면（S1，S2）의 중간 영역에는 커패시ㅌㅓㅚ 본체（401）이면을 떠 형상으로 둘러싸 는 타극성의 제3 외부 전극（404）이 형성되어 있다．
＜51＞도 6의 실시형태에서는，특히 제1 및 제2 인출부（ $403 \mathrm{c}, 403 \mathrm{c}$＇）는 유전체층（ 403 b ）의＇전체 폭으로＇각각 제 1 측 면（S1）및 제2 혹면（S2）으로 인출된다．한편 제 3 및 제 4 인출부（ $404 \mathrm{c}, 404 \mathrm{c}$ ）는 각각 제3 측면（S3）및 제4 측 면（S4）으로 인출된다．또한 제1 외부 전극（403）은 제1，제3 맟 제4 측면（S1， $\mathrm{S} 3, \mathrm{S4}$ ）에서 제1 인출붇（403C）와 접하교 제2 외부 전극（403＇）은 졔2，제3 및 제 4 측면 $\left(52,53,54\right.$ ）에서 제 2 인출부（ $403 \mathrm{C}^{\prime}$ ）와 접하여，각각 제 1 내부 전극（403a）과 연결된다．한편，제3 외부 전국은 제3 및 제4 인출부화 접하여，제2 내부 전극（404a）과 연결 된다．
＜52＞도 6의 실시형태에 따르면 내부 전극과 외부 전극이 3 개 측면에 절쳐 넓은 접촉 면적으로 접함으로써，내부 전 극의 저항 성분 (Rdc) 가 낯아질 뿐만 아니라 ESL이 크게 저감된다．이에 따라，고주파 감쇄 특성 및 공진 주파수 특성은 크게 향상되고，고주파 전력 손실은 더욱 저갑된다．제 1 측면 $(\mathrm{S} 1)$ 과 제 2 측면 $(\mathrm{S} 2)$ 간의 거리를 졔 3 측면 （S3）과 제 4 측면（S4）간의 거리보다 길게 함으롰ㅆ，외부 전극의 도포 공정을 용이하게 할 수 있다．
$<53>$ 도 7 은 본 발명의 또 다른 실시형태에 따른 적층형 칩 키패시터（500）를 나타내는 도면이다．도 7 을 참조하면， 이 커패시터 (500) 는 4 단자 커패시터로 사용될 수도 있지만，동일 극성의 제1 및 제 2 외부 전극（503，503＇）을 신 호 라인의 입력단 및 출력단에 작각 연결하고 타극성의 제3 및 제4 외부 전극（504，504＇）를 접지단에 연결시킴 으로써，일종의 3단자 꽌통 커패시터로 사용할 수 있다．

《54＞도 7을 참조하면，제1 내부 전극（ 503 a ）의 제1 및 졔 2 인출부（ $503 \mathrm{c}, 503 \mathrm{c}$＇）는 제1 및 제2 축면（ $\mathrm{S} 1, \mathrm{~S} 2$ ）에서 동 일 극성의 제1 및 제2 외부 전극（503，503＇）에 각각 연결되고，제2 내ㅂㅜㅜ 전극（504a）의 제3 및 제4 인출부（ 504 c ， $\left.504 \mathrm{c}^{\prime}\right)$ 는 제 3 및 제 4 측면 $\left(\mathrm{S} 3, \mathrm{~S} 4\right.$ ）에서 타극성의 제3 및 제 4 외부 전극 $\left(504,504^{\prime}\right)$ 과 연결된다．
く55＞도 7 의 3 단자 관통 커패시터에서는，특히 각 측면（S1～S4）의 길이가 실질적으로 동일하여 키패시터 본체（501）는 정사각형의 상면을 갖는다．이에 따라 동일 면적（또는 동일 커패시턴스）예서，이종 극성 간의 전류 경로가 쫇아 지게 되고 이에 따라 기생 인덕턴스 성뚠 몿 저항 성분이 저감된다．따라서，ESL이 낮아지고，고주파 감쇄 특성 및 공진 주파수 특성이 향상되며，고주파 전력 손실은 저감된다．
＜56＞도 8 및 도 9 는 실시예들 및 비교예들의 주파수 데 감세 파형을 비교한 그래프이다．도 8 예서는，실시예로서 도 3의 2 단자 키폐시터를 사용하고（실시예1），비교예로서 도 1 a 및 2 a 의 통상적인 종래의 2 단자 커패시터를 사용하 였다．도 8 에 도시된 바와 같이，실시예 1 은 비교예 1 에서보다 더 높은 퐁진 주파수（감셰 파형에서 극소점의 주파 수에 해당함）를 나타내며 이에 따라 디욱 저감된 ESL을 갖는다는 사실을 알 수 있다．
 통 키패시터를 시움하였다（비교예2），실시예2에서도．비표예2보다 디 항상된 공진 주파수 특성，듸 저갑된 ESL 및 더 개선된 고주마 감왜 특성을 나타낸다는 것을 확인할 수 있다．
＜58＞본 발명은 상술한 실시형테 및 첨부된 도면에 의해 한정되는 것이 아너고，첨분된 칭구범위에 의해 한정하고자

하며，청구볌위에 기재된 변 발명의 기술적 사상을 벗어나지 안는 범위 내에서 다양한 형테의 치환，변형 및 변 경이 가능하다는 겻은 당 기술분야의 통상의 지식을 가진 자에게 자명할 것이다．

＜59＞이상 설명한 바와 같이 본 발명에 따르면，내외부 전극간 접족 면적이 넓고，전류 경로의 길이가 줄어듦으로씄 더 녗은 ESL을 구현할 수 있고，더욱 개선된 고주파 감셰 특성 및 공진 주파수 특성을 실현할 있으며 고주파에 서의 전자 기기의 사뵹범위를 확대할 수 있게 된다．또한 ESR（지항 성분）이 줄어들어 고주파에서의 전력 손실 이 더욱 저감된다．

＜1＞도 la 내지 도 1 c 는 종래의 적총형 칩 커패시터의 외형을 나타내는 사시도와 등가회로도이다．
《스도 2 a 내지 도 2 c 는 종래의 적층형 칩 저패시터의 평면도와 그 내부 구조를 나타내는 평단면도이다．
《도 3 내지 도 7은 본 발명의 여러 실시형태에 따른 적층형 칩 커패시터의 외형을 나타내는 평면도와 사시도 그 리고 내부 구조를 나타내는 평단면도이다．

도 8은 본 발명의 일 실시예와 비교예에 따른 적층형 칩 커패시터의 주파수예 따른 감쉐 특성을 나터내는 그레 프이다．

도 9 는 본 발명의 다른 실시에와 비교예에 따른 적충형 칩 커패시터의 주파수에 따른 감ㅅㅙㅞ 쁙성을 나타내는 그 래프이다．
＜도면의 주요부분에 대한 부호의 설명＞
＜7＞ $100,200,300,400,500$ ：적층형 칩 커패시터
《8 101，201，301，401，501：커폐시터 본체
$9.103,104,203,204,303,304,403,403^{\circ}, 404,404^{\prime}, 503,503^{\prime}, 504,504^{\prime}:$ 외부 전극
＜10＞103b，104b，203b，204b，303b，304b，403b，404b，503b，504b：유전쳬충
＜11＞103a，104a，203a，204a，303a，304a，403a，404a，503a，504a：내부 전극
$<12\rangle$ 103c，104c，203c，204c，303c，304c，403c，403c＇，404c，404c＇503c，503c＇，504c，504c＇：인출부

5
5y

53日路

54 40

- 12 -
sext

54880

5岳號

事理委

545

5म6

단

5198

도졍


```
(72) 바ᄅ며ᄋ자
저ᄋ해서ᄀ
서우ᄅ 가ᄋ나ᄆ구 아ᄇ구저ᄋ도ᄋ 혀ᄂ대아파트 74도ᄋ 1202호
바ᄀ도ᄋ서ᄀ
서우ᄅ 서ᄋ부ᄀ구 자ᄋ웨1도ᄋ 209-26
```

박상수
경기 수원시 영통구 영통동 신나무실 풍림아파트 603동 1403 호
박민철
경기 광명시 광명6동 374 번지 63호

청구항 1
제1 및 제2 극성 (+ 및 - 극성) 의 내부 전끅이 유전체층을 사이에 두고 교대로 배치되고 상하로 연속 배치된 2개 이상의 내부 전극을 1 개 블록ㅇㅇㄹㅗ 하여 그 블록이 반복 적층되는 적층형 칩 커패시터에 있어서, 상기 블록 내에 서 상호 대면하여 인접 배치된 2 개의 내부 전극의 총 리드 기수의 평균값을 정하는 단계;

상기 블록 내에 있는 각각의 내부 전극의 리드수를 결정하는 단계; 및
상기 볼록 내의 상기 리드수가 결정된 각 내부 전극예 대하여, 상호 대면하여 인접 배치된 제1 극성 및 제 2 극 성의 내부 전극의 리드가 가장 인접하게 배치되도록 각 내부 전극의 리드들의 위치를 결정하는 단계:

를 포함하는 제어됸 ESR 을 갖는 적층형 칩 커패시터의 구현방법

청구항 2

제1항에 있어서.
상기 적충형 칩 커패시터는 상기 블록과 다른 추가 블록을 디 갖도
상기 추가 불록 내예서 상호 대면하여 인접 배치뙤고 서로 다른 국성을 갖는 2 개의 내부 전극의 총 리드 개수의 평균값을 정하는 단계:

상기 추가 블록 내에 있는 각각의 내부 전극의 리드수를 결정하는 단게; 및
상기 추가 블록 내의 상기 리트수가 결점된 각 내부 전극에 대하여, 상호 디면하여 인접 배치된 서로 다른 극성 의 내부 전극의 리드가 가창 인접하게 배치되도록 각 내부 전극의 리드들의 위치를 결정하는 단계;를 더 포함하 는 것을 특징으로 하는 제어된 ESR 을 갖는 적층형 칩 커패시터의 구현방법

청구항 3

제 1 항에 있어서,
상기 적층형 칩 커페시터는, 리드를 통해 내부 전극과 연결되는 이부 전극을 적이또 6 개 이상 갖는 겻을 특징으 로 하는 제어된 ESR 을 갖는 적충형 칩 커패시터의 구현방법.

청구항 4

제1항에 있어서,
상기 적층형 칩 커패시터는, 마주보는 2 개 측면 각각에 4 개씩의 외부 전극을 갖는 8 단자 적층형 칩 커패시터인 것을 톡징으로 하는 제어된 ESR 을 갖는 적층형 칩 커패시터의 구현방법

청구항 5

제1항에 있어서,
상기 적층형 칩 커패시터는, 상호로 연속 배치된 4 개의 내부 전극이 하나의 블록을 이루고 그 블록이 반복하여 적층되는 것을 특징으로 하는 제어된 ESR 을 갖는 적층형 칩 키패시터의 구헌방법.

청구항 6

제5항에 있어서,
상기 하나의 블록 내에는 충 3 가지 전극 페턴이 포함되는 것을 특징으로 하는 제어뎐 ESR 을 갖는 적층형 칩 케 패시터의 구현방법

청구항 7
제1항에 있어서.

상기 젹층형 칩 커패시터는. 상호로 연속 배치된 6개의 내부 전극이 하나의 블록을 이루고 그 블록이 반복하여 적충되는 것을 특징으로 하는 제어된 ESR 을 갖는 적흥혐 칩 커패시터의 구현방법.
청구항 8
제 7 항에 있어서,
상기 하나의 블록 내에는 총 4 가지 또는 6가지 전극 패턴이 포함되는 것을 특징으로 하는 체어된 ESR을 갓는 적 층형 칩 커패시터의 구현방법.

청구항 9

제 1 항에 있어서,
상기 적층형 칩 커패시터는, 상호로 연속 배치뎐 8개의 내부 전극이 하나의 블록을 이루고 그 블록이 반복하여 적층되는 것을 튝징으로 하는 졔어된 ESR을 갖는 적층형 칩 커패시터의 구현방법.

청구항 10
제9항에 있어서,
상기 하나의 블록 내에 포함되는 전극 패퇸들은, 총 4 내지 8 가지 중 어느 하나인 것을 특징으로 하는 제어된 ESR을 갖는 적충형 칩 커패시터의 구현방법.
청구항 11
제 1 항에 있어서.
상기 적층형 칩 커패시터는, 상호로 연속 배치뎐 12 개의 내부 전극이 하나의 블록을 이루고 그 블록이 반복하여 적층되는 것을 톡졍으로 하는 제어된 ESR을 갖는 적층형 칩 커패시터의 구현방법

청구항 12

제 11 항에 있어서,
상기 하나의 블록 내에는 총 7 가지 전극 패틴이 포함되는 것을 특징으로 하는 제어된 ESR 을 갖는 적층형 칩 커 패시터의 구현방법.

청구항 13

제 1 항에 있어서
상기 적층혐 칩 커패시터의 외부 전극에 사용될 특정 도전울의 저항체를 선택하는 단계를 더 포함하는 것을 특 징으로 하는 제어된 ESR 을 갖는 적흥형 칩 커패시터의 구현방법.

청구항 14

제 13 항에 있어서,
상기 저항체는 상기 내부 전극과 접촉하는 상기 외부 전극의 내층부로 사용되는 것을 특징으로 하는 적층형 칩 커패시터의 구현방법.

청구항 15
제 13 항에 있어서,
상기 저항체는 상기 내부 전극과 접촉하는 상기 외부 전극의 내총부와 상기 외부 전극의 최외곽 도금층 사이에 개재된 증간충으로 사용되는 것을 톡징으로 하는 적층형 칩 커패시터의 구현방법.

2 4
W以

〈13> 본 발명은 적층형 칩 커패시터의 구현 방법에 간한 것으로 특히 낮은 등가직렬 인덕턴스(ESL: Equivalent Serial Inductance)와 함께 높은 범위까지 조절가능한 등가직렬 저항(ESR; Equivalent Serial Resistance)을 갖는 적층형 칩 커패시터를 구현하는 방법에 관한 것이다.
<14 LSI의 전원 회로 내의 용량셩 부품으로 적층형 칩 커패시터(multilayer chip capacitor)가 사용되고 있다. 특히 적층형 칩 커패시터는 마이크로 프로세서의 파워 분배 네트워크 (Power Distribution Network: PDN)에서 파워 전 달 특성을 향상시키기 위한 디커플링 커피시터(decoupling capacitor)로 널리 사용되고 있다. 전원 회로를 안정 화시키기 위해서, 디커플링용 적층향 칩 커페시터는 보다 낮은 ESL 값을 가져야한다. 이러한 요구는 마이크로 프로세서가 점차 그속화되면서 더욱 증가되고 있고, ESL를 감소시키기 위한 많은 연구가 이루어서 홨다.
$\langle 15\rangle$
PDN에 있어서서 더 안정적인 파워 전달 특성을 구헌하기 위하여, 더커플링 저패시터에 요구되는 또다른 점은, 조절가능한 ESR 툭성을 가져야 한다는 점이다. 즉, PDN 에 사용되는 디커플링 커패시터는 PDN 설계자가 필요에 따라 선텩가능하도록 다양한 ESR 특성을 가져야 한다. 만일 요구되는 수준 이하의 ESR 을 갖는 적층형 칩 커패시 터를 디커플링 커패시터로 사용되는 경우에는, 커패시터의 ESL과 마이크로 프로세서 패키지의 플레인 커패시턴 스(plane capacitance)로 인하여 발생하는 병렬 공진주파수에서의 임피던스 피크가 높아지고 거패시터의 직렬 공진주표수에서의 임피던스는 지나치게 낮아진다. 이에 따라 낮은 ESR 로 인햬 PDN 을 안정적으로 설계하는 것이 어렵게 된다.

ESL의 감소를 위해, 미국특허 졔 $5,880,925$ 호는, 서로 다른 극성을 갖는 제 1 내부 전극과 제2 내부 전극의 리드 를 서로 인접하여 깍지낀 배열(interdigitated arrangement)로 배치시키는 방안을 제안하고 있다. 도 $1 a$ 는 이러 한 종래 적층형 칩 커패시터의 내부 전극 구조를 나타내는 분해 사시도이며, 도 1 b 는 도 $1 a$ 의 적층형 칩 커패시 터(10)의 외쳥을 나타내는 시시도이다.

도 1 a 를 참조하면, 유전체층 (11a, 11b) 상예는 내부 전극(14)이 형성되어 있다. 유전체충 (11a, 11b)이 반복하여 표대로 적층됨으롰써 커패시터 본체(20)가 형성된다. 내부 전극 (14)은 서로 다른 극성을 갖는 졔1 내부 전극 (12)과 제2 내붇 전극(13)으로 구분된다. 제1 내부 전각(12)과 제2 내부 전극(13)은 하나의 불록을 이룩 이 블록이 계속 반톡하여 적층둰다. 각각의 내부 전극 $(12,13)$ 은 리드 $(16,17)$ 를 통해 9 우 전극 $(31,32)$ 에 연결된 다 (도 $1 b$ 참조). 제1 내부 전극 (12) 의 리드(16)는 졔2 내부 전극 (13)의 리드(17)와 인접하여 깍지낀 배열로 배 치되이 있다. 인접한 리뜨에 공급되는 전압의 극성이 다르기 때문에, 외부 전극으로부터 흘르는 고주파 전류에 의해 탈생된 자속이 인접한 리드 사이에서 상쇄되고 이에 따라 ESL이 감소된다.

48> 도 1 ㅇㅔㅔ 도시된 바와 같이, 각각의 내부 전극 (12 또는 13)은 4개의 리드(16 또는 17)을 가진다. 상기 4 개의 리 드에서 발생하는 저항은 서로 병렬로 연결되므로, 커패시터 전쳬의 저항은 매우 낮아지게 된다. 그 결과 커패시 터의 ESR은 너무 작아지게 된다. ESR이 너무 작으면, 타겟 임피던스를 만족시키기 어렵고 전원 회로의 불안정성 을 초래한다.
<19> ESR이 너무 낫아지는 것을 방지하기 위해, 미국특허 제6,441,459호는 하내의 내부 전극에 하나여 리드만을 사옹 하는 방안을 졔안하교 있다. 그러나, 상기 미국특허에 따르면, 상하로 (적층 방향으로) 인접한 일부 내부 전끅에 흐르는 전류의 방향이 동일하게 된다. 이에 따라, 상기 인접한 일부 내부 전극들 사이에서는 자속이 상셰되지 못한다. 그 결과 ESL이 커지게 되는 문제가 발생한다. 또한, 단지 하나의 리드만을 사용하는 방법으로는, PDN 실계자의 푈요예 따라 선택할 수 있는 다양한 ESR 에 대한 요구를 충족시켜주지 못한다.
20. 상술한 바와 같이 PDN 에 사용되는, 특히 고주퐈 디커플링을 워해 사용되는 다단자 젹층형 칩 커패시터는, 전원 회로의 안정화를 위해 매ㅇㅜㅜ 낮은 ESL을 가져야 함과 동시에 높은 법윆까지 조절가능한 ESR 을 가져야 한다. 대표 적인 교속 마이크로 프로세서의 하나인 큼퓨터 CPU에 사용되는 디커플림 커패시터는 수 Ω 까지의 ESR이 요구되 고 있으며 이러한 높은 범위까지의 ESR 의 구현이 용이하지 않다.

$<21>$ 본 발명은 상기한 몬제점을 해결하기 위한 것으로서, 그 목적은 다단자 적층형 집 커페시터에 있어서, 낯은 ESL 퐈 함께 PDN 서ㄹㅖㅖ지가 필오에 따라 선뗙가능하도록 다양하게 제여된 ESR 을 구현하는 방법을 제공하는 겻이다.

《22＞상술한 기술적 파제를 달성하기 위하여，본 발명에 따른 제어원 ESR을 갖는 적충형 칩 커패시터의 구현방법은，
23ㄱㅈㅔ 및 제2 극성（＋및－극성）의 내부 전극이 유전체층을 사이에 두고 교대로 배치되고 상하로 연속 배치된 2게 이상의 내부 전국을 1 개 블록으로 하여 그 블록이 반복 적층되는 적층형 칩 커패시더에 있어서，상기 블록 내에 서 상흐 대면하여 인접 배치뒨 2 개의 내부 전끅의 총 리드 개수의 평균값을 정하는 단계와；
＜24＞상기 블록 내에 있는 각작의 내부 전극의 리드수틀 결정하는 단계와；
25＞상기 블록 내의 상기 리드수가 결정된 각 내부 전극에 대하여，상호 대면하여 인접 배치된 제1 극성 및 제2 극 성의 내부 전극의 리드가 가장 인접하게 배치되도록 각 내부 전극의 리드들의 위치를 결정하는 단계；를 포함한 다．
＜26＞본 발명의 실시형태에 따르면，상기 적층형 칩 커패시터는 상기 블록과 다른 추가 블록을 더 값되，상기 적흥형 칩 커패시터 구현방법은
＜27＞상기 추가 블록 내에서 상호 때면하여 인접 배치되고 서로 다른 극성을 갖는 2 개의 내부 전극의 총 리드 개수의 평교값을 정하는 단계와；
28．상기 추⼣ㅏ 블록 내에 있는 각각의 내부 전극의 리드수를 결겅하는 단계와：
＜29＞상기 추가 블록 내의 상기 리드수가 결정된 각 내부 전극에 대하여，상호 대면하여 인접 배치된 서로 다른 극성 의 내부 전극의 리드가 가장 인접하제 배치되도록 각 내부 전극의 리드들의 위치를 결정하는 단계：를 더 포함할 수 있다．
《30＞본 발명의 실시형태에 따르면，상기 적층형 칩 커패시터는，리드를 픙해 내부 전극과 연결되는 외부 전극을 적 어도 6 개 이상 가질 수 있다．특히 상기 적층형 칩 커패시터는 마주보는 2 개 측면 각각에 4 개씩의 외부 전극을 갖는 8 단자 적층형 칩 커패시터일 수 있다．
＜31＞상기 적층혐 칩 커패시터는，상호로 연속 배치된 4개의 내부 전극이 하나의 블록을 이루고 그 블록이 반복하여 적흥될 수 있다．이 경우，상기 하나의 블록 내에는 총 3 가지 전극 패턴이 포함될 수 있다．
＜32＞다른 실시형톄에 따르면，상기 적층형 칩 커페시터는，상호로 연속 배치된 6개의 내부 전극이 하나의 블록을 이 루고 그 블록이 반복하여 적층될 수 있다．이 경우，상기 하나의 블록 내에는 총 4 가지 또는 6 가지 전극 패턴이 포함될 수 있다．

43ㄱㄸ도다른 실시형태예 따르면，상기 적층형 칩 커패시터는，상호로 연속 배치된 8 개의 내부 전극이 하나의 블록을 이루고 그 블록이 반복하여 적층될 수 있다．이 경우，상기 하나의 블록 내에 포합된 전극 패턴들은，총 4 내지 8가지 중 어느 하나일 수 있다．
＜34＞또다른 실시형태에 따르면，상기 적층형 칩 커패시터는，상호로 연속 배치된 12 개의 내부 전극이 하나의 블록을 이루고 그 블록이 반북하여 적층될 수 있다．이 경우，상기 하나의 블록 내에는 총 7 가지 전극 페턴이 포함둴 수 있다．
＜35＞본 발명의 실시형태에 따르면，상기 젹층형 칩 커패시터의 외부 전극에 사용뒬 특정 도전율의 저항체블 선택하 는 단계를 더 포함할 수 있다．바람직하게는，상기 지항체는 상기 내부 전극과 점촉하는 상기 외부 전극의 내충 부로 사용된다．
＜36＞
이하，첨부된 도면을 찹조하여 본 발명의 실시형톄를 설명한다．그러나，본 발명의 실시형태는 여뢰가지 다른 형태로 변형될 수 있으며，본 발명의 멈위가 이하 설명하는 실시형태로 한정되는 것은 아니다．본 발명의 실시 형톄는 당업계에서 평균적인 지식을 가진 자에게 본 발똥을 보다 완진하게 설명하기 위해서 제공되는 것이다． 따라서，도면에서의 요소들의 형상 및 크기 등은 보다 뗭확한 설뗭을 위해 과장될 수 있으며，도몬 상의 동일한 부호로 표시되는 요소는 동일한 요소이다．
 내부 전극의 리드수를 조절한다．또한 ESL 값을 가능한 한 억제하기 위하여，상호 대면하여 인접베치된 이종 극 성의 내부 전쿡의 리드는 가능하면 가장 인접하게 배치한다．
＜38＞이와 같이 리드수와 리트의 위치를 조절함으로써，ESR을 높은 수준까지 비교적 정밀하게 효롸적으로 조절할 수

있으며，리드수의 감소로 인해 필연적으로 초래되는 ESL의 증가를 가능한 한 역제할 수 있다．
＜39엑ㄱㄱ성（ + 및－극성 중 하나）의 내부 전극의 리드수와 제2 극성（ + 및－극셩 중 다른 하나）의 내부 전극의 리 드수에 따른 상호 인집배치된 2개 내부 전극의 총 리드 개수는，예컨대 아래 표에 나타난 바와 같이 여러가지로 결정될 수 있다．

4 1

| 졔12극성 내부전국의 리드수
 제2 극성 내부전극의 리드수 | 2 | 3 | 4 | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 2 | 3 | 4 | 5 |
| 2 | 3 | 4 | 5 | 6 |
| 3 | 4 | 5 | 6 | 7 |
| 4 | 5 | 6 | 7 | 8 |

＜41＞상기 표 1 에서 제 1 행 및 제 1 열의 숫자들 $(1,2,3,4)$ 는 제 1 극성의 내부 전극의 리드수 및 제 2 극셩의 리드수롤 나타낸다．상호 인졉한 서로 다른 극성의 내부 전극의 리드수의 조합에 따라 상호 인접한 2 개 내부 전극의 총 리드 개수 $(2,3,4,5,6,7,8)$ 가 정혜진다．

427 만약 상호 인접한 2개 내부 전극의 총 리드 개수가，하나의 블록 내에서 일정하지 않다면 그 평균값을 고려한다．상호 인접 배치된 2개의 내부 전극의 총 리드 개수가 증가할수록 적킁형 칩 커패시터의 ESR은 낮아지 게 된다，이는 상기 총 리드 개수가 증가할수록，내부 전극의 몌인 전극 플레이트에 병렬로 연결되는 저항（리드 로 인해 발생하는 병렬 연결된 저항）의 개수가 늘어나기 때문이다．
＜43＞예를 들어 도 2를 참조하먼，커패시터 본체 내에서，상하로 연속배치된 12 개의 내부 전극이 하나의 블록을 이루 교 이 블록이 반복하여 적층될 수 있다．도 2 에 도시된 비와 잩이，（ t ）내부 전극 $(1010,1030,1050,1070$ ）은 각각 단 1 개의 리드（ $1010 \mathrm{a}, 1030 \mathrm{a}, 1050 \mathrm{a}, 1070 \mathrm{a}$ ）를 구비하고，$(-)$ 내부 전극 $(1020,1040,1060$ ）은 각각 2개의 리드（1020a，1020b；1040a，1040b；1060a，1060b）를 구비한다．따라시，상호 인접한 2 개 내부 전극의 홍 리드 개수（평균）는＂ 3 ＂이 된다．＇상하로 인접한 2 개 내부 전극＇의 총 리드 개수가 3 이면，종래의 총 리뜨 개수가 8 개 인 경우（도 la 참조）에 비하여 ESR은 상담히 늪아지게 된다．이와 같이 상하로 인접한 2개 내부 전극의 총 리드 개수의 조절을 통해，높은 수준까지 다양한 범위로 ESR 의 조정이 가능하게 된다．특히，「제1 극성 또는 제2 극 성 내부 전큭이 2 개 이상의 리드를 구비하고＇상하로 인접한 2 개의 내부 전큭＇의 총 리드 개수가 총 외부 전극 의 개수보다 쟉은 조건을 딴족하도록 각 내부 전극여 리드 개수를 조절 할 수 있다 이러한 조건 내에서 각 내부 전극의 리드 개수를 조절합으로써，과도하게 낮은 ESR과 너무 높은 ESL을 방지하는 데에 도움을 줄 수 있 다．

《44＞또한 ESL 증가를 억제하그 가능한 한 ESL 을 낮추기 위혜서，도 2 에 또시된 바와 같이，상하로 인접한 이종 극성 의 내투 전극의 리드（예컨대， 1010 a 와 1020 a ）를 가능하면 가장 인접하게 배치하여，전류 겸로（current path）의 길이를 작게 한다．이러한 총 리드 개수 조절 맟 리드 위치 조절예 의해，저ESL 및 졔어된 ESR 구현이 용이하게 된다．

455：도 2를 참조하여，저ESL 및 졔어된 ESR의 구현 방법을 몌를 뜰어 설명하면 아래와 같다．
＜46＞우선 12 개의 연속 배치된 내부 전극을 1 개 블록으로 정하여 이 블록이 커패시터 본체 내에서 연속하여 적층되는 다단자 커패시터를 상정한다，그 후，ESR에 영향을 미치는 인자인＇상호 대면하여 인접배치된（ + ）내부 전극 1 개와（ - ）내부 전극 1 개의 총 리드 개수＇를 3 으로 정한다（이 개수＇ 3 ＇은 중래（도 la 참조）의 개수＇8＇에 비하여 작으므로 ESR의 중대 효퐈를 얻을 수 있음）．
＜47＞이와 같이 촣 리드 개수가 3 으로 정혀지면，이제 총 개수 3 에 혜당하는 각 내부 전극의 리드수를 정한다．예를 들어 도 2 에 도시된 바와 같이（ + ）내부 전극 $(1010,1030,1050,1070$ ）의 리트수는 1 로，（ - ）내부 전극（ 1020 ，

《48》 이와 같이 각 내부 전극의 리드수가 정해지뗜，그 정해진 리드수예 해당하는 각 내부 전극의 리드（들）의 위치를 글정하되．ESL여 증가 요인을 억제하기 위해，이종 국셩의 뢰드가 가능한 한 인접하제 배치되도록 리드들의 위 치를 결정한다．예를 들어，각 리드들（1010a，1020a，1020b，1030a，1040a，1040b，1050a，1060a，1060b，

1070a)의 위치를 도 2에 도시된 바와 같이 점할 수 있다. 도 2 에 포시된 바와 같은 내부 전극 구조에 의하여, 1 개 블록에 총 12 개의 내부 전극이 충 7 가지 전극 패턴을 나타내면서 연속 배치된다. 이와 같이 구현된 적층형 칩 커폐시터는 낮은 ESL을 나타내면서도 충분한 값으로 조절된 ESR을 나타녈 수 있다.
<49>
도 3 은 도 2 와 같이 졀정묀 니누 전극 구조를 갖는 적층헝 칩 커패시터 (100)의 외형을 나타내는 사시도이다. 커 패시터 톤체(120) 내예는 유전쳬충을 사이에 두고 각 내부 전극 (1010~1070)이 적층되어 있으며, 내부 전극의 라 드들은 대응하는 외부 전극 (131-108)에 연결되어 8단자 적층형 칩 커패시터를 이룬다.
50도 도 4 는 본 발명의 방법에 따라 구현된 젹층형 칩 퍼패시터의 내부 전국 구조의 다른 뗴를 나타낸 평면도이다. 도 4 의 실시형테에서는, 커패시터 본체 내에 2 가지의 서로 다른 블록이 존재한다. 즉, 블목ㅈ이외에도 추가적인 볼록 b 가 커패시터 본체 내에 반복하여 적층되여 있으며, 블록ㅁㅇㅢ 반복 적충쳬 (A) 와 불록b의 반복 적충체(B)는 또한 서로 상하로 배치되어 있다.
<51> 도 4의 내부 전극 구조를 구현하기 위해, 연속 배치된 6개의 내부 전극들(2010. 2020. 2030, 2040)로 구성된 블 록a에 대하여 '상하로 인접 배치된 2 개의 내부 전극' 의 촣 리드 개수 $(1+1=2)$ 를 정하고, 각 내부 전끅의 리드수 를 결정한다. 즉 (+) 내부 전극 $(2010,2030)$ 은 각각 1 개씩 리드를 갖고, $(-)$ 내부 전극 $(2020,2040)$ 도 각각 1 개씩 리드를 갖는다. 그리고 나서, 각 내부 전극의 리드들의 위치를 결정하되, 상하로 인접한 내부 전극의 리드 가 가능한 한 서로 인접하도록 리드들의 위치를 결정한다. 도 4 의 실시형티에 따르면, 블록a 내의 연속 배치둰 6개의 내부 전극들은 4가지의 서로 다른 전곡 패턴(2010-2040의 패턴)을 나타내며 내부 전곡 (2020, 2030)의 전 극 패턴은 블록a 내에서 2 번 나타난다.
<52> 마찬가지로, 연속 배치된 6 개의 내부 전극들 $(2050,2060,2070,2080)$ 로 구성된 블록b에 대하여, '상하로 인접 배치된 2 개의 내부 전극'의 촣 리드 개수 $(1+1=2)$ 를 정하고, 각 내부 전극의 리드수를 결정한다. 즉 (+) 내부 전 극 (2050, 2070)은 각각 1개씩 리드를 갖고, (-) 내부 전국 (2060, 2080)도 작각 1 개씩 리드를 갖는다. 그리고 나 서, 각 내부 전극의 리드늘의 위치률 결정하되, 상하로 인접한 내부 전극의 리드가 가능한 한 서로 인접하도록 리드들의 위치를 결점한다. 도 4 의 실시형태에 따르면, 블록b 내의 연속 배치된 6 개의 내부 전극들은 4 가지의 서로 다른 전극 패턴 (2050-2080의 패턴)을 나타내며 내부 전극 (2060, 2070)의 전극 패턴은 블록b 내에서 2 번 나 타난다.
<53> 도 4 의 실시형태에 따르면, 상하로 인접한 2 개 내부 전극의 충 리드 개수가 2 개이므로 중래의 춯 리드 개수 8 개 인 경우에 비하여 충분히 높은 ESR 을 나타낸다. 뿐만 아니라, 상하로 인접한 이종 국셩의 내부 전극의 리드들을 각 적층체 (A, B) 내에서 가능한 한 상호 인접하게 배치함으로써 낮은 ESL 을 구쳔할 수 있다. 도 4 의 내부 전극 구조에 따르면, 다른 조건(커패시터 사이즈, 적층수, 사옹된 세라믹 유전제 및 전극 물질 등)이 동일할 경우, 도 2 의 내부 전극 구조에 비하여 ESR이 다소 높게 나타날 것이다. 이는 도 2 에서는 상하로 인접한 2 개 내부 전 극의 총 리드 개수가 3 이지만, 도 4 에서는 그 홍 리드 개수가 단지 2 이기 때문이다(총 리트수가 감소할수록 ESR 은 ㅡㅡㅇ가함)
54. 도 2 및 도 4 의 실시형태에서는 상호 대면하여 인접한 이종 극성의 2 게 내부 전극의 충 리드 개수가 한 블록 내 에서 일정하지만, 본 발명이 이에 한정되는 깃은 아니다, 즉, 상하로 인접한 2 개 내부 전극의 총 리드 개수가 한 블록 내에서 다르게 나탸날 수도 있으며, 이 경우 ESR에 영향을 미치는 인자로서 총 리드 개수의 평균값을 그려할 伞 있다.
<55> 제1 및 제 2 극성 내부 전극의 리드수에 따른 상하로 인접한 2 개 내부 전극의 총 리드 개수의 평균은, 그 총 리 드 개수가 한 블록 내에서 일정하지 않은 경우를 포함하여, 예컨대 아례 표 2에 나타난 바와 같이 여러가지로 결징될 수 있다. 표 1 및 2에서 알 수 있는 바와 같이, 아래 표 2 에 나타난 총 리드 개수의 평균값의 예들은, 위에서 언급한 표 1 에 나타난 예들을 포함한다(따라서, 표 2 는 표 1 보다 더 포괄적임).

32
<56>

| 1 | 1 | 2 | 2.5 | 3 | 3.5 | 2.5 | 3 | 3.5 | 4 | 3 | 3.5 | 4 | 4.5 | 3.5 | 4 | 4.5 | 5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 2 | 2.5 | 3 | 3.5 | 4 | 3 | 3.5 | 4 | 4.5 | 3.5 | 4 | 4.5 | 5 | 4 | 4.5 | 5 | 5.5 |
| 1 | 3 | 3 | 3.5 | 4 | 4.5 | 3.5 | 4 | 4.5 | 5 | 4 | 4.5 | 5 | 5.5 | 4.5 | 5 | 5.5 | 6 |
| 1 | 4 | 3.5 | 4 | 4.5 | 5 | 4 | 4.5 | 5 | 5.5 | 4.5 | 5 | 5.5 | 6 | 5 | 5.5 | 6 | 6.5 |
| 2 | 1 | 2.5 | 3 | 3.5 | 4 | 3 | 3.5 | 4 | 4.5 | 3.5 | 4 | 4.5 | 5 | 4 | 4.5 | 5 | 5.5 |
| 2 | 2 | 3 | 3.5 | 4 | 4.5 | 3.5 | 4 | 4.5 | 5 | 4 | 4.5 | 5 | 5.5 | 4.5 | 5 | 5.5 | 6 |
| 2 | 3 | 3.5 | 4 | 4.5 | 5 | 4 | 4.5 | 5 | 5.5 | 4.5 | 5 | 5.5 | 6 | 5 | 5.5 | 6 | 6.5 |
| 2 | 4 | 4 | 4.5 | 5 | 5.5 | 4.5 | 5 | 5.5 | 6 | 5 | 5.5 | 6 | 6.5 | 5.5 | 6 | 6.5 | 7 |
| 3 | 1 | 3 | 3.5 | 4 | 4.5 | 3.5 | 4 | 4.5 | 5 | 4 | 4.5 | 5 | 5.5 | 4.5 | 5 | 5.5 | 6 |
| 3 | 2 | 3.5 | 4 | 4.5 | 5 | 4 | 4.5 | 5 | 5.5 | 4.5 | 5 | 5.5 | 6 | 5 | 5.5 | 6 | 6.5 |
| 3 | 3 | 4 | 4.5 | 5 | 5.5 | 4.5 | 5 | 5.5 | 6 | 5 | 5.5 | 6 | 6.5 | 5.5 | 6 | 6.5 | 7 |
| 3 | 4 | 4.5 | 5 | 5.5 | 6 | 5 | 5.5 | 4.5 | 6.5 | 5.5 | 6 | 6.5 | 7 | 6 | 6.5 | 7 | 7.5 |
| 4 | 1 | 3.5 | 4 | 4.5 | 5 | 4 | 4.5 | 5 | 5.5 | 4.5 | 5 | 5.5 | 6 | 5 | 5.5 | 6 | 6.5 |
| 4 | 2 | 4 | 4.5 | 5 | 5.5 | 4.5 | 5 | 5.5 | 6 | 5 | 5.5 | 6 | 6.5 | 5.5 | 6 | 6.5 | 7 |
| 4 | 3 | 4.5 | 5 | 5.5 | 6 | 5 | 5.5 | 6 | 6.5 | 5.5 | 6 | 6.5 | 7 | 6 | 6.5 | 7 | 7.5 |
| 4 | 4 | 5 | 5.5 | 6 | 6.5 | 5.5 | 6 | 6.5 | 7 | 6 | 6.5 | 7 | 7.5 | 6.5 | 7 | 7.5 | 8 |

457> 상기 표 2 에서, 제 1 행 및 체 2 행의 숫자들은 졔 1 극성의 내부 전극의 리드수를 나타내는 것으로서, 예컨대, 제 1 및 2행 숫자들중 맨 좌측열에 해당하는 $(1,1)$ 은 "한 블록 내에 제1 끅셩 내투 전극의 리드가 모두 1 인 경 우"를 의미하고, 좌측에서 두번째 열에 해당하는 (1,2)는 "한 블록 내에 1 개의 리드를 갖는 졔 1 극성 내부 전 극과 2 개의 리드를 갖는 제 1 극성 내부 전극이 각 1 개씩 (보다 넓게는 같은 개수 비율로) 존재한다"는 것을 의미 한다. 마찬가지로, 제 1 열 닻 제 2 열의 숫자들은 제2 극성의 내부 전극의 리드 수를 나타낸다.
<58> 예를 들어, 제1 몇 2 열 숫자들 중 맨 위에서 2 번째 행 (1, 2) 과 제1 및 2 햄 숫자들중 좌측에서 2 번째 열 (1, 2)에 해당하는 내부 전극 구조는, 한 블록 내에 1 개의 리드를 갖는 제 1 극성 내부 전극, 2 개의 리드를 갖는 제 1 극성 내부 전극. 1 게의 리드를 갖는 제2 극성 내부 전극. 2 게의 리드를 갖는 제 2 극성 내부 전극이 각각 같은 개수 로 배치되어 있는 구조에 해당한다. 상기 2 번째 행 $(1,2)$ 와 2 번째 열 $(1,2)$ 에 해당하는 총 리드 개수의 평균(상 하로 인접한 2 개 내부 전독의 총 리드 개수의 평가 $)$ 은 $(1+2) / 2+(1+2) / 2=3$ 이 된다. 이와 같이 상호 인접한 이종 극성의 내부 전쿡의 리드수의 조합에 따라 상호 인접한 2 게 내부 전극의 충 리드 개수의 평균이 정해진다.
<59> 상술한 표 1 및 표 2 이외에도, 상호 인접한 2개 내부 전극의 촣 리드수의 평균값을 다앙하계 결정할 수 있다. 예를 들에, 한 블록 내에 졔1 또는 제2 극성 내부 전국의 리드수는 3 가지 이상으로 존재할 수도 있다.
<60> 도 5 는 본 발뗭의 방법에 따라 구현된 적층형 칩 커페시터의 내부 전극 구조의 또다른 예를 나타낸 평면도이다. 도 5 의 내부 전극 구조에서는, 각 극성의 내부 전극의 리드수는 한 블록 내에서 일정하지 않고, 적충 방향에 따 라 1 과 2 의 값을 교대로 춰한다. 예를 들어 2 개의 리드를 갖는 (+) 내부 전국 (3010,3050) 과 1 계의 리드를 갖는 (t) 네부 전극 $(3030,3070)$ 이 적층 방향을 따라 교대로 배치될 수 있다. 이 경우, ($($) 내부 전극의 리드수의 평 규은 $(1+2) / 2=1.5$ 가 된디. 마찬가지로, (-) 내부 전극 $(3020,3040,3060,3080)$ 의 리드수도 1 과 2 의 값을 교 뎨로 최하며, (-) 내부 전극의 리드수의 평군은 $(1+2) / 2=1.5$ 가 된다. 따라서, 상호 인접한 이종 극성의 2기 내부 전극의 총 리드 개수의 평간은 $1.5+1.5=3$ 이 된다.

도 5 의 내부 전극 구조를 구현하기 위해, 8 개의 연속 배치된 내부 전극을 1 개 블록으로 정하여 이 블폭이 반복 적흥된 다단자 키패시터률 상정한다. 그리고 나서, 상하로 인접한 2 개 내부 전극의 총 리드 개수의 평군값을 3 으로 정한다. 그리고 나서, 상기 총 리드 개수의 평균값 3 에 해당하는 각 내부 전극의 리드수를 정한다. 총 리 트 개수의 꼉균값이 3 이 되도록 각 내부 전극의 리드수를 정하는 방법은 다양하게 있을 수 있다. 이러한 다양한 방법 중에서, 예를 들어 도 5에 도시된 바와 같이, (+) 내부 전극(3010, 3050)의 리드수는 2 로 정하고, (+) 내 부 전극 $(3030,3070)$ 의 리드수는 1 로 정할 수 있다. 또한 (-) 내부 전극 $(3020,3060$)의 리드수는 1 로 정하고, (-) 내부 전극 $(3040,3080)$ 의 리드수는 2 로 정할 수 있다.
$<62>$ 이와 같이 각 내부 전각의 리드수가 정해지며 각 내부 저극의 리드(들)의 위치를 결정하되 ESL 증가 요이을 억제하기 위헤, 이종 극성의 내부 전극의 리드가 가능한 한 인접하게 배치되도록 리드들의 워치를 골정한다. 예 를 들어, 각 리드들 $3010 \mathrm{a}, 3010 \mathrm{~b}, 3020 \mathrm{a}, 3030 \mathrm{a}, 3040 \mathrm{a}, 3040 \mathrm{~b}, 3050 \mathrm{a}, 3050 \mathrm{~b}, 3060 \mathrm{a}, 3070 \mathrm{a}, 3080 \mathrm{a}, 3080$ b)의 위치를 도 5 에 도시된 바와 같이 정할 수 있다. 도 3 의 내부 전극 구조에 의하여, 개 블록에 총 8 개의 내 부 전극이 충 8 가지 전극 패턴을 나타내면서 연속 배치된다. 이와 같이 구현된 적층형 칩 케패시버는 저ESL 및

졔어된 ESR을 나타낼 수 있다.
663도 6은 본 발명의 방법에 따라 구현된 적층형 칩 커페시터의 내부 전극 구조의 또다른 예를 나타년 평면도이다. 도 6 의 내부 전극 구조에서도, 각 극성의 니부 전극의 리드수는 한 블록 내에서 일정하지 않고, 적층 방향을 따 라 1 과 2 의 값을 교대로 취한다.
<64> 도 6 의 내부 전극 구조를 구현하기 웨해, 8 개의 연속 배치된 내부 전극을 1 개 블록으로 정하여 이 블록이 반복 적층된 다단자 커패시터를 상정한다. 그리고 나서, 상하로 인접한 2개 내부 전극의 총 리드 개수의 평균값을 3 으로 정한다. 그리고 나서, 총 리드 개수의 평균값 3 에 해당하는 각 내부 전극의 리드수를 정하되, 그 일례로서 적흥 방향을 따라 각 내부 전극의 리드수가 $2,2,1,1,2,2,1,1$ 이 되도록 정한다. 극, 도 6 에 또시된 바와 같이 (t) 내부 전극 (4010)은 2개, (-) 내부 전극 (4020) 은 2개, (t) 내부 전극 (4030)은 1 개, (-) 내부 전극 (4040)은 1개, (+) 내부 전극 (4050) 은 2개, (-) 내부 전극 (4060)은 2 개, (+) 내부 전극 (4070)은 1 개, (-) 내부 전극 (4080) 은 1 개의 리드를 갖는 것으로 정한다.

665이와 같이 각 내부 전극의 리트수가 정해지년(즉, 각 내부 전극의 리트수를 적층 방향예 따라 나열한 순열(본 실시예예서는, 2, 2, 1, 1, 2, 2, 1, 1)'이 정해지면). 각 내부 전극의 리드(들)의 웣치를 결정한다. 뢰드 워치 결정시, ESL 요인을 억제하기 위해, 이종 극성의 내부 전극의 리드가 가장 인접하게 배치되도록 리드들(4010a, 4010b, 4020a, 4020b, 4030a, 4040a, 4050a, 4050b, 4060a, 4060b, 4070a, 4080a)의 위치를 결정한다. 이리한 리드 위치 결정의 일례가 도 6 에 도시된 것이다.

도 7 은 본 발명의 방법에 따라 구현된 적층형 칩 커패시터의 내부 전극 구조의 또다른 예를 나타내는 평면도이 다. 도 7 의 내부 전극 구조를 구현하기 위해. 8 개의 연속 배치된 내부 전극을 1 개 블록으로 정하여 이 블톡이 반복 적충된 다단자 커패시터를 상정한다. 그리고 나서, 상하로 인접한 2개의 내부 내부 전극의 촘 리드 개수의 평균값을 3 으로 정한다. 그리고 나서, 총 리드 개수의 평간값 3 에 해당하는 각 내부 전극의 리드수를 정하되. 그 일례로서 적층 방향을 따라 각 내부 전극의 리드수가 $1,1,1,3,1,1,1,3$ 이 되도록 정한다. 즉, 도 7에 도시퇸 바와 같이 (t) 내부 전극 (5010) 은 1 개, (-) 내부 전극 $(5020$)은 1 개, (+) 내부 전극 (5030) 은 1개, (-) 내부 전극 (5040)은 3개. (+) 내부 전극 (5050)은 1 개, (-) 내부 전극 (5060) 은 1 개, (t) 내부 전극 (5070) 은 1 개, (-) 내부 전극 (5080) 은 3 개의 리드를 갖는 것으로 정한다. 이와 같이 각 내부 전극의 리드수를 정함으로써, 상 하로 인접한 2 개 내부 전극의 총 리드 개수의 평균은 $(1+1+1+3+1+1+1+3) / 4=3$ 이 된다.

667각 내부 전국의 리드수가 정해지면, 각 내부 전끅의 리드(들)의 위치를 결정하되, 상하로 인접한 이종 극성의 내부 전극의 리드가 가장 인접하게 배치되도록 리드뜰 (5010a, 5020a, 5030a, 5040a, 5040b, 5040c, 5050a, 5060a, 5070a, 5080a, 5080b, 5080c)의 워치를 결정한다. 이러한 리드 위치 결정의 일례가 도 7에 도시되어 있 다.
<68: 도 8은 본 발명의 방법에 따라 구현된 적층향 칩 커패시터의 내부 전극 구조의 또다른 예를 나타내는 평면도이 다. 도 8 의 내누 전극 구조를 꾸현하기 위해, 6 개의 연속 배치된 내부 전극을 1 개 블록으로 정하여 이 블록이 반복 적층된 다단자 커패시터를 상정한다. 그리고 나서, 상하로 인접한 2개의 내부 내부 전극의 총 리드 개수의 평균값을 4 로 정한다. 그리고 나서, 총 리뜨 개수의 평균값 4 에 해당하는 각 내부 젼극의 리드수를 정하퇴. 그 일례로서 적층 방향을 따라 각 내부 전극의 리드수가 $2,2,2,2,2,2,2,2$ 가 되도록 정한다. 즉, 도 8 에 도 시된 바와 같이 각각의 내부 전극 (6010~6060)은 리드를 2개씩 갖는 것으로 정해질 수 있다.
69. 각 내부 전극의 리드수가 정해지면, 각 나부 전국의 리드(들)의 위치를 결정하되, 상하로 인접한 이종 극성의 내부 전극의 리드가 가장 인접하게 배치되도록 리드들(6010a, 6010b, 6020a, 6020b, 6030a, 6030b, 6040a, 6040b. 6050a. 6050b, 6060a, 6060b) 의 위치를 결정한다. 이러한 리드 위치 결정의 일례가 도 8에 도시되어 있다. 도 8 의 배부 전극 구조에 의하여, 1 개 블록에 총 6 개의 내부 전국이 총 6 가지 전극 패턴을 나타내면서 연 속 비치된다.
<70> 도 9는 본 발명의 방법에 따라 구현된 적층형 칩 커패시터의 내부 전극 구조의 또다른 예쁠 나타내는 평면도이 다. 도 9 의 내부 전극 구조를 구현하기 위해, 12 기의 연속 배치된 내부 전극을 1 개 블록으로 정하여 이 블록이 반복 적층된 다단자 커패시터를 상정한다. 그리고 나서, 상하로 인접한 2 개의 내부 내부 진극의 총 리드 개수의
 일례로서 적층 방향을 따라 각 내부 전각의 리드수가 $1,3,1,3,1,3,1,3,1,3,1,3$ 이 되도록 정한다. 즉, 도 9 에 도시된 바와 같이, (+) 내부 전극 (7010, 7030, 7050, 7070)은 1 개의 리드를 갖고 (-) 내부 전극 (7020. 7040, 7060)은 3개의 리드를 갖도록 각 내부 전국의 리드수를 정한다.
＜71각 내부 전극의 리드수가 정해지면，각 내부 전국의 리드（들）의 위치를 결정하되，상하로 인접한 이종 극성의 내부 전극의 리드가 가장 인접하게 배치되도록 리드들（7010a，7020a，7020b，7020c，7030a，7040a，7040b， $7040 \mathrm{c}, 7050 \mathrm{a}, 7060 \mathrm{a}, 7060 \mathrm{~b}, 7060 \mathrm{c}, 7070 \mathrm{a}$ ）의 위치를 결정한다．이러한 리드 위치 결정의 일례가 도 9 에 도 시되어 있다．도 9 의 내부 전극 구조에 의하여， 1 개 블톡에 12 개의 내부 전국이 총 7 가지 전극 패턴을 나타내면 서 연속 배치퇸다．
＜72＞도 10 은 본 발명의 방법에 따라 구현된 적충형 칩 커패시터의 내부 전극 구조의 또다른 예를 나바내는 평면도이 다．도 10 의 내부 전극 구조를 구현하기 위해， 8 개의 연속 배치된 내부 전극을 1 개 블룩으로 정하여 이 블록이 반복 적층된 다단자 커폐시터를 상졍한다．그리고 나서，상하로 인접한 2 개의 내부 내부 전극의 총 리드 개수의 평균값을 4 로 정한다．그리고 나서，충 리드 개수의 평균값 4 에 혀당하는 각 내부 전극의 리드수를 정하되，그 일례로서 적층 방향을 따라 각 내부 전국의 리드수가 $1,1,2,4,1,1,2,4$ 가 되도록 정한다．즉．도 10 예 도 시된 바와 같이，（ + ）내부 전극 $(8010,8050$ ）은 1 개의 리드를 갖고．（ + ）내부 전극 (8030) 은 2 개의 리드를 갖고， （－）내부 전극 $(8020 \mathrm{a}, 8060 \mathrm{a})$ 는 1 개의 리드를 갖고，（ - ）내부 전극 (8040) 은 4 개의 리드를 갖는다．이와 같이 각 내부 전극의 리드수를 정함으로써，상하로 인접한 2 개 내부 전극의 총 리드 개수의 평균은 $(1+1+2+4+1+1+2+4) / 4$ $=4$ 가 된다．
《73＞각 내부 전극의 리드수가 정해지면，작 내부 전극의 리드（들）의 위치를 결정하되，상하로 인접한 이종 극성의 내부 전ㄱㄱㄱㅇㅢ 리드가 가장 인접하게 배치되도록 리드들（8010a，8020a，8030a，8030b，8040a，8040b，8040c， 8040d，8050a，8060a）의 위치를 결정한다．이러한 리드 위치 결정의 일례가 도 10 에 도시되어 있다．도 10 의 내 부 전극 구조에 의하여， 1 개 블록에 8 개의 내부 진국이 총 6 가지 전극 패턴을 나타내면서 연속 배치된다，상술 한 도 4 내지 도 10 의 실시형테는 도 3 에 도시된 바와 같은 8 단자 저페시터의 외형을 구비할 수 있다．
＜74＞도 6 내지 도 10 의 실시형태에 따르면，전술한 실시형태와 마찬가지로．상호 대면하여 인접한 2 개의 내부 전극 의 촣 리드 개个싀 평균값을 조절함으로쌔，충분히 높은 범위까지 ESR을 웅이하게 제어할 수 있게 된다．또한 상호 대면하여 인접한 내부 전극의 리드를 가장 인접하게 배치함으로써，리드들 간의 전류 경로를 짧게 할 수 있고 이에 따라 ESL의 감소 효과를 얼을 수 있다．
＜75＞＇상호 대면하여 인접한 2개의 내부 전극의 총 리드 개수의 평균값＇과 함께，외부 전극에 형성되는 저항흥 또는 저항체를 이용하여 ESR을 보다 넓은 범위에서 제어할 수 있다．즉，전술한 실시형태에서의 저 ESL 및 제어된 ESR 구현 방법에 더하여，외부 전극에 사용될 특정 도전율의 저항체를 선택하고（이 저항체는 외부 전극의 도금 흥보다 더 낮은 도전율을 가짐），이 선택된 저항채를 외부 전극 물질 또는 외부 전극의 일부층의 물질로 사용할 수 있다．ESR 조걸을 위해 저항체를 사용한 외부 전국 구성의 예들이 도 11a 및 도 11 b 에 도시되어 있다．도 11a 및 도 11 b 에서는 편의상 커패시터 본체 (120) 의 내부 구조는 그 도시를 생략하였다．
《76．도 3 과 도 11 a를 참조하면，커패시터 본체（ 120 ）의 대향하는 2 개 측면에 외부 전극（131～138）이 형성되어 있는테， 외부 전극（ $131 \sim 138$ ）은 상대적으로 높은 저항율（낮은 도전율）을 갖는 저항채로 된 내층부（ 150 ：저항충）와 저항층 상에 형성된 도금층（155）을 포함한다．이와 같이 적절한 도전율의 저항체 물질을 선택하여 이를 외부 전극의 저 항층으로 사용하면，커폐시터의 ESR을 보다 넓은 범윅에서 졔어할 수 있게 된다．특히 상기 저항층（150）이 내부 전극교 직접 접촉하는（외부 전극의）내층부로 사용둴 경우 효과젹이다．이는，외부 전극으로부터 내부 전극으 로 전류가 흐르기 위헤서는 외부 전극과 접촉하는 내충부를 통과하여야 하기 때문이나．내층부의 저항체를 통과 하는 전류량의 비율이 높을수록 저항체에 의한 ESR의 증대 효표는 높아질 겻이다．다른 예로서，도 11 b 와 같이 저항충（ 150 ）은 Cu 등으로 된 내층（151）과 최외곽의 도금층（155）사이에 개재될 수도 있다．
＜77．에를 들어，외부 전극용 저항체들의 선땍에 의해 커패시터의 ESR을 $30 \mathrm{~ms}, 100 \mathrm{~m} \Omega, 500 \mathrm{~ms}, 18$ 으로 만들 수 있 고，ESR을 보다 정밀하게 제어하기 위해서（예컨대， $20 \mathrm{~m} \Omega$ 이하의 단위로 ESR을 제어하기 위해），상술한 실시형 태들에서 언급한 바와 같이＇인접한 2개 내부 전국의 충 리드 개수의 평균값＇을 조절할 수 있다．
＜78＞이와 같이 제어횐 ESR을 넓은 범위에서 라인－업（line－up）함으로써，커패시터 사용자（특히，파웨 분배 네트워그 （PDN）설계자）는 다양한 ESR 범위에서 원하는 ESR 톡성의 커패시터를 펼요에 따라 용이하게 선택할 수 있게 된 다．본 발명의 장점들 중 하나는，사용자 선택형 ESR 특성（User－Selectable ESR）을 PDN 설계자에게 효과적으로 제공한 수 있다는 것이다
＜79＞본 빨명에 따라 구현될 수 있는 내부 저ㄴㅡㅡㄱ 구조는 전술한 실시형태에 한정되는 것이 아니라．＇상호 대면하여 인 접한 2개 내부 전극의 훟 리드 개수의 평균값＇과 구체젹인 간 내부 전극의 리드수 및 리드 위치에 따라 다양하 체 제공뎔 수 있다．본 발명의 실시형태들에 따라 구혈되는 내부 전극 구조는，정혜진 각 내부 진국의 리드수에

서 가능한한 낮은 ESL 을 갖도록 하는 리트 배치（전극 패턴 형상）을 갖는다．
＜80＞도 12 내지 도 58 은 본 발명의 저ESL 및 제어된 ESR 커페시터 구현 방법에 따라 구현된 커패시터의 다양한 내툭 전극 구조들을 나타낸다．도 12 내지 58 에서，편의상 내부 전극의 전극 패턴을 구별하기 위해 숫자（내부 전극에 표시된 숫자）를 표기하였으며，각 도면은 1 개의 블록만을 도시하였다．
＜81＞예를 들어，도 12 의 내부 전극 구조를 참조하면， 8 개의 연속 배치된 내부 전극이 1 계의 블록을 이루고 이 블록 이 반복 적층된다．상기 8 개의 내부 전극은 춤 가지 전극 패턴 $(1,2,3,4,5,6,7)$ 을 갖고，각 전극 패턴이 1 개의 블록 내에서 $1,2,3,4,5,6,7,4$ 의 순서로 배치된다．도 12 에 도시된 바와 같이，상하로 인접한 2게 내부 전극의 총 리드 개수의 평균은 $(1+2+1+4+1+2+1+4) / 4=4$ 이고，상하로 인접한 내부 전극의 리드는，정해진 리트수에서 가장 인접하게 배치된다．도 13 딫 14 에서도，상하로 인접한 2 개 내부 전극의 촣 리드 개수의 평균 은 4 이다．
＜82＞도 15 내지 도 23 에서는，상하로 인접한 2 개 내부 전극의 총 리드 개수의 평균은 5 이다．도 15 을 참조하면， 8 개 의 내부 전극이 연속 배치되어 1 개의 블록을 이룬다．이 블록 내에는 총 5 가지 전극 패턴（1，2，3，4，5）이 포 함되어 있다．

《83＞또한，도 22 를 참조하면， 8 개의 내부 전극이 연속 배치되어 1 개의 블록을 이룬다．이 블록 내에는 홍 4 가지 전 극 패턴（1，2，3，4）이 포함되어 있다．
＜84도 24 내지 도 30 에서는，상하로 인접한 2 개 내부 전극의 총 리드 개수의 평군은 6이다．도 24 를 참조하면，6기 의 내부 전극이 연속 배치되어 1 개의 블록을 이룬다．이 불록 내에는 총 4 가지 전국 패턴（1，2，3，4）이 포함되 어 있다．
＜85＞또한 도 25 를 참조하면， 4 개의 내부 전극이 연속 배치되어 1 개의 블록을 이른다．이 블록 내에는 충 3 가지 전극 패턴（ $1,2,3$ ）이 포합되어 있다．
＜86：도 31 내지 토 33에서는，상하로 인접한 2 개 내부 전극의 총 리드 개수의 평균은 7 이다．도 34 에서는，상하로 인접한 2 개 내부 전극의 총 리트 개수의 평균은 2.5 이다．도 35 내지 도 39 에서는，상하로 인접한 2 개 내부 전 극의 총 리드 개수의 평균은 3.5 이다．도 40 내지 도 46 에서는，상하로 인접한 2 개 내부 진극의 총 리드 개수의 평간은 4.5 이다．도 47 내지 도 53 에서는，상하로 인접한 2 개 네부 전극의 충 리드 개수의 평균은 5.5 이다．도 54 내지 도 57 에서는，상하로 인접한 2 개 내부 전극의 촣 리드 개수의 평균은 6.5 이다．도 58 에서는，상하로 인 접한 2개 내부 전극의 총 리드 개수의 평균은 7．5이다．
$<87>$ 상술한 바와 같이 상하로 인접한 2개 내부 전극의 총 리드 개수의 평균을 조절하여 정함으로써 ESR을 효과적으 로 제어할 수 있고，정해진 리드수에서 이종 극성의 리드간 거리를 가능하면 작게함으로써 저ESL을 구현할 수 있게 된다．
＜88＞본 발명은 상술한 실시형톄 및 첨부된 도면에 의해 한정되는 것이 아니고，첨부된 청구범위예 의해 한정하고자 하며，청구범위에 기재된 본 발뗭의 기술적 사상을 벗어나지 않는 범위 내에서 다양한 형태의 최환，변형 및 변 경이 가능하다는 것은 당 기술분야의 통상의 지식을 가진 자에게 자명할 것이다．

4．

889 이상 설명한 바와 같이 본 발명에 따르면，커패시터의 ESR을 높은 법위까지 용이하게 조절가능하고 낮은 ESL을 구현할 수 있다．이예 따라，PDN 설계자에게 사용자 선택형 ESR 특성을 제공하도록 넓은 볌ㅇㅟㅟ에서 ESR을 라인－ 업을 할 수 있포，전원회로의 안정화에 기여할 수 있게 된다．

《ㅣㄷㅗ $1 a$ 는 종래의 적층형 칩 커패시터의 내부 전극 구조를 나타내는 분해 사시도이고，도 1 b 는 도 $1 a$ 의 적층형 칩 키패시터의 외형을 나타내는 사시도이다．

도 2 는 본 발명의 방법에 따라 구현된 적층형 칩 커패시터의 내부 전극 구조의 일례를 나타넨 평면도이다．
《3＞도 3은 도 2의 적층형 칩 거패시터의 외형을 나타내는 사시도이다．
44도 4는 본 발명의 방법에 따라 구현된 적층형 칩 커패시터의 내부 전극 구조의 다른 예를 나타낸 평면도이다．
ㄴ․도 5 내지 10 은 본 발명의 방법에 따라 구현된 적충형 칩 커패시터의 내부 전극 구조의 여러가지 예들을 나타낸

```
        펴ᄋ며ᄂ도이다.
<6> 도 11a 미ᄎ 도 11b느ᄂ 보ᄂ 바ᄅ며ᄋ에 저ᄀ요ᄋ되ᄅ 수 이ᄊ느ᄂ 외부 저ᄂ그ᄀ의 다ᄂ며ᄂ 구조르ᄅ 나타내ᄂ 도며ᄂ두ᄅ이다.
<7> 도 12 내지 도 58으ᄂ 보ᄂ 바ᄅ며ᄋ의 뱌ᄋ버ᄇ에 따라 구혀ᄂ되ᄂ 저ᄀ츠ᄋ혀ᄋ 치ᄇ 커패시터의 내부 저ᄂ그ᄀ 구조의 ᄋ|드ᄅ오ᄅ 나타네ᄂ 펴ᄋ며ᄂ
        도이다.
<8> <도며ᄂ의 주요부부ᄂ에 대하ᄂ 부호의 서ᄅ며ᄋ>
<9> 100: 저ᄀ추ᄋ혀ᄋ 취ᄇ 커패시터 120: 키패시터 보ᄂ체
<10> 131~138: 외부 저ᄂ그ᄀ
1000: 유저ᄂ체추ᄋ
<11》 \(1010,1020,1030,1040,1050,1060,1070\) : 내부 전극
<12> 1010a, 1020a, 1020b, 1030a, 1040a, 1040b, 1050a, 1060a, 1060b, 1070a: 리드
볼
```


도낭

$-15-$

E48

5 E

55

도눈

5188

Eato

5品17a

- 22 -

Exellb

FII2

果昔 13

3417

5918

5⽟ㅢㄴㅇ

5 ± 20

4as

FI2

5425

来荤26

도뼐우

5 5 28

도면29

FEGS

5xate

smbe

조팡룽

5도영 9

EXIS

EM子

5敩4
$54+2$

5943

5yly

E195

5446

E留存

E等教

SE

5x 5

sy?s

E45

13856

Description	Fee Code	Quantity	Amount	Sub-Total in USD(\$)
Post-Allowance-and-Post-Issuance:				
Extension-of-Time:				
Miscellaneous:				
	Total in USD (\$)			1600

Electronic Acknowledgement Receipt	
EFS ID:	18830362
Application Number:	14259011
International Application Number:	
Confirmation Number:	5037
Title of Invention:	MULTILAYER CERAMIC CAPACITOR AND BOARD HAVING THE SAME MOUNTED THEREON
First Named Inventor/Applicant Name:	Byoung Hwa LEE
Customer Number:	20277
Filer:	Stephen Alan Becker/4233/Matilda Mason
Filer Authorized By:	Stephen Alan Becker
Attorney Docket Number:	093814-0302
Receipt Date:	22-APR-2014
Filing Date:	
Time Stamp:	19:26:24
Application Type:	Utility under 35 USC 111(a)

Payment information:

Submitted with Payment	yes
Payment Type	Deposit Account
Payment was successfully received in RAM	$\$ 1600$
RAM confirmation Number	5303
Deposit Account	500417
Authorized User	
The Director of the USPTO is hereby authorized to charge indicated fees and credit any overpayment as follows: \quadCharge any Additional Fees required under 37 C.F.R. Section 1.16 (National application filing, search, and examination fees) Charge any Additional Fees required under 37 C.F.R. Section 1.17 (Patent application and reexamination processing fees) \mathbf{l}	

Charge any Additional Fees required under 37 C.F.R. Section 1.19 (Document supply fees)					
File Listing:					
Document Number	Document Description	File Name	File Size(Bytes)/ Message Digest	$\begin{gathered} \text { Multi } \\ \text { Part /.zip } \end{gathered}$	Pages (if appl.)
1	Transmittal of New Application	TRANSMITTAL_093814-0302. pdf	$\frac{105226}{\substack{\text { 2200fsccaa8 15as57be969133eecccfor } \\ \text { 893a }}}$	no	2
Warnings:					
Information:					
2	Power of Attorney	POA_093814-0302.pdf		no	2
Warnings:					
Information:					
3	Application Data Sheet	ADS_093814-0302.pdf		no	8
Warnings:					
Information:					
4		Specification_093814-0302.pdf		yes	39
Multipart Description/PDF files in .zip description					
	Document Description		Start	End	
	Specification		1	32	
	Claims		33	38	
	Abstract		39	39	
Warnings:					
Information:					
5	Drawings-only black and white line drawings	Drawings_093814-0302.pdf		no	5
Warnings:					
Information:					
6	Oath or Declaration filed	Declaration_Assignment_0938 14-0302.pdf	2492165 3705420469744a34847799ce188460052094 38896	no	3
Warnings:					
Information:					

7	Information Disclosure Statement (IDS) Form (SB08)	IDS_093814-0302.pdf	612367	no	4
Warnings:					
Information:					
8	Foreign Reference	JP2008192757.pdf	4989514	no	28
Warnings:					
Information:					
9	Foreign Reference	KR1020080063680.pdf	1827500	no	18
Warnings:					
Information:					
10	Foreign Reference	KR1020080110180.pdf	3282440	no	37
			136314828 bf2e $987 \mathrm{e} 08 \mathrm{eb} 5 \mathrm{cbe90421a8e66}$		
Warnings:					
Information:					
11	Fee Worksheet (SB06)	fee-info.pdf	33330	no	2
			$960835 \mathrm{~d} 4 \mathrm{ef86c65007fb46550520c9a8423e}$ 63 a 4		
Warnings:					
Information:					
Total Files Size (in bytes)			15561654		
This Acknowledgement Receipt evidences receipt on the noted date by the USPTO of the indicated documents, characterized by the applicant, and including page counts, where applicable. It serves as evidence of receipt similar to a Post Card, as described in MPEP 503.					
New Applications Under 35 U.S.C. 111					
If a new application is being filed and the application includes the necessary components for a filing date (see 37 CFR 1.53(b)-(d) and MPEP 506), a Filing Receipt (37 CFR 1.54) will be issued in due course and the date shown on this Acknowledgement Receipt will establish the filing date of the application.					
National Stage of an International Application under 35 U.S.C. 371					
If a timely submission to enter the national stage of an international application is compliant with the conditions of 35 U.S.C. 371 and other applicable requirements a Form PCT/DO/EO/903 indicating acceptance of the application as a national stage submission under 35 U.S.C. 371 will be issued in addition to the Filing Receipt, in due course.					
New International Application Filed with the USPTO as a Receiving Office					
If a new international application is being filed and the international application includes the necessary components for an international filing date (see PCT Article 11 and MPEP 1810), a Notification of the International Application Number and of the International Filing Date (Form PCT/RO/105) will be issued in due course, subject to prescriptions concerning national security, and the date shown on this Acknowledgement Receipt will establish the international filing date of the application.					

Electronic Version v1.1
Stylesheet Version v1.2

| SUBMISSION TYPE: | NEW ASSIGNMENT |
| :--- | :--- | :--- |
| NATURE OF CONVEYANCE: | ASSIGNMENT |
| CONVEYING PARTY DATA
 Name
 BYOUNG HWA LEE Execution Date
 HEUNG KIL PARK $03 / 25 / 2014$
 KYO KWANG LEE $03 / 25 / 2014$
 YOUNG GHYU AHN $03 / 25 / 2014$
 SANG SOO PARK $03 / 25 / 2014$
 SOON JU LEE $03 / 25 / 2014$ $03 / 25 / 2014$ | |

RECEIVING PARTY DATA

Name:	SAMSUNG ELECTRO-MECHANICS CO., LTD.
Street Address:	MAEYOUNG-RO 150 (MAETAN-DONG), YOUNGTONG-GU
City:	SUWON-SI, GYEONGGI-DO
State/Country:	KOREA, REPUBLIC OF

PROPERTY NUMBERS Total: 1

Property Type	Number
Application Number:	14259011

CORRESPONDENCE DATA

Fax Number:
(202)756-8087

Correspondence will be sent to the e-mail address first; if that is unsuccessful, it will be sent via US Mail.
$\begin{array}{ll}\text { Phone: } & \text { 202-756-8000 } \\ \text { Email: } & \text { mweipdocket@mwe.com }\end{array}$
Correspondent Name: MCDERMOTT WILL \& EMERY LLP
Address Line 1: THE MCDERMOTT BUILDING
Address Line 2: 500 NORTH CAPITOL STREET, N.W.
Address Line 4: WASHINGTON, DISTRICT OF COLUMBIA 20001

ATTORNEY DOCKET NUMBER:	$093814-0302$
NAME OF SUBMITTER:	STEPHEN ALAN BECKER
SIGNATURE:	/Stephen Alan Becker/
DATE SIGNED:	$04 / 22 / 2014$
	This document serves as an Oath/Declaration (37 CFR 1.63).

Total Attachments: 3
source=Declaration_Assignment_093814-0302\#page1.tif
source=Declaration_Assignment_093814-0302\#page2.tif
source=Declaration_Assignment_093814-0302\#page3.tif
\qquad

COMBFNED OECLARATON AND ASSIGNMENT YOR PATENT APYELCATION

As a below named inventor, I hereby declare that:
I believe I am the original or an original jomt inventor of a clamed invention in the application for which a patent is sought on the invention entitied:

MULTLLAYER CERAMC CAPACITOR AND

BOARD HAVING THE SAME MOUNTED THEREON

a atached, or

- United States application number or PCT intemational application

number \qquad fized on \qquad .

The above-identified application was made or authorized to be made by me.
Hr the event that the kling date andor aplication number are not entered above at the time 1 execute this document, and if such infomation is deemed necessary, I hereby authorize and
 Customer Number 20277, to insert above the Gling date and/or application number of the application.

I hereby acknowledge that any willal false statement made in this declaxation is punshable under 18 USS. 100 by hae or mprisonment of not more than five (5) years, or both.
\qquad

ASSIGNMENT

For good and valuable consideration, the receipt and sumneiency of which is hereby acknowledged, I hereby assign to

SAMSUNG ELECTROMECHANCS CO. LTD.

having an address at Maevoung. Ro 150 (Maetan-Dong). Youngtong. Gu, Suwon-Si, Gyeonggi-Do. Republic of Korea (hereinafter designated as the Assignee), the entire (100%) right, tite and interest for the United States as defined in 35 USC 8100 , in the invention described in the application identified in this document.

Shereby contim any prior assigment to Assignee, and to the extent that I have not already done so, agree to assign, and hereby do, sell, assign and transfer mito Assignee and its successors in interest, the fall and excusive right, title and interest in the United States of America, including the right to claim prionity under the laws of the United States, the Paris Convention, and any foreign countries, to the inventions as described in the aforesaid application, to the aforesaid application itself, and all divisions, continuations, continuations-in-part, or other applications claming prosity directly or indirectly from the aforesad application, and any United States or foreign Letters Patent, atilty model, or other similar rights which may be granted thereon, including reissues, reexaminations and extensions thereof, and all copyright rights in the aforestal application and the subject mater disclosed therein, these rights, title and interest to be held and enjoyed by Assignee to the full end of the term for which the Letters Patent, wility model, or oher simblat xights, axe granted and any extensions thereof as fully and entrely as the same would have been held by the undersigned had this assignment and sale not been made, and the right to sue for, and recover for past infringements of, or liabitites for, any of the rights relatug to any of the applications, patents, wility models, or other similar rights, resulting therefrom, and the copyright rights;

I hereby covenant and agree to execute all instruments or documents recuired or requested for the making and prosecution of any applications of any type for patent, utility model, or other similar rights, and for copyright, in the United States and in all foreign countries including, bat not linited to, any provisionai, contimution, cominuation-in-part, divisional, renewai or substitute thereof, and as to letters patent any reissue, re-examination, or extension thereof, and for litigation regading, or for the parpose of protecting tite and to the said invention, the United States application for patent, or Letters Patent therefor, and to tesify in support thereof, for the benefit of Assignee without further or other compensation than that above set forth;

Thereby covenant that no assigument, sale, license, agreement or encumbrance has been or will be entered into which would conflict with this Assignment.
\qquad

Legal name of fist inventor LEE, Byoung Kwa	
Firs inventor's signatare	Dato $204.3 .24$

Lesal name of second inventor PARK, Heung Ki	
Second inventor's signature	Date $x_{5} 14.3 .25$

Legal name of third inventor	
LEE, Kyo Kwang	
Thrd wenty's gratue	Dale $20 / 4,3,2$

Legal name of fourth inventor ABN, Young © $B y$	
Fomin inventor's sinnabue	Date $20 / 4.3 .25$

Legan wame of futh inventor PARK, Sang Soo	
Finh aventor's signature	Date $2014, \quad 3,23$

Legan mame of sixth myentor	
JEE, Soon Ju	
Soth mventor's iggrature	Date
123	20.4.3.25

