
Copyright © 2012 by the Association for Computing Machinery, Inc.
Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for commercial advantage and that copies bear this notice and the full citation on the
first page. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on
servers, or to redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from Permissions Dept, ACM Inc., fax +1 (212) 869-0481 or e-mail
permissions@acm.org.
Web3D 2012, Los Angeles, CA, August 4 – 5, 2012.
© 2012 ACM 978-1-4503-1432-9/12/0008 $15.00

Real-time Collaborative Scientific WebGL Visualization with WebSocket

Charles Marion∗

Kitware SAS
Julien Jomier†

Kitware SAS

Figure 1: Collaborative visualization integrated to the Visible Patient website. The panels represent two remote instances of the application.

Abstract

In scientific visualization, data are becoming more and more im-
portant and usually implies a cooperative effort. Moreover experts
are usually geographically distributed, therefore they need collabo-
rative tools to work efficiently. To solve this limitation, a prospec-
tive action has been recently initiated, with the development of a
web based application for collaborative interaction based on two
innovating technologies: WebGL and WebSocket. To demonstrate
this approach, a prototype has been developed based on the Visi-
ble Patient project. In this paper we present the architecture of the
proposed system, the initial implementation experiment and a com-
parison with current technologies. Finally we discuss the future
work and potential improvements.

CR Categories: H.3.5 [Information Storage and Retrieval]: On-
line Information Services—Data sharing H.3.7 [Information Stor-
age and Retrieval]: Digital Libraries—Dissemination;

Keywords: Web 3D, remote rendering, collaborative, WebSocket,
WebGL

1 Introduction

In the past decade, data visualization has become more and more
common thanks to research endeavors and innovative infrastruc-
ture. In this context, several tools have been developed for scientific
visualization of large datasets such as ParaView [Moreland et al.
2008] or Ensight [CEI International 2012]. However, as the datasets
get larger, it becomes challenging to visualize and interact with the
data locally. In the past five years, several efforts have been pushed

∗e-mail:charles.marion@kitware.com
†e-mail:julien.jomier@kitware.com

to solve this problem such as ParaViewWeb [Jourdain et al. 2010],
ShareX3D [Jourdain et al. 2008] and Collaviz Framework [Dupont
et al. 2010]. Furthermore, other research projects have been focus-
ing on interactions [Chu et al. 2006] and [Nam and Wright 2001]
to develop products in a collaborative environment. However, these
projects often require a complex infrastructure or the use of external
plugins or program to be installed on the client side.

The system described in this paper tries to solve the limitation of the
current collaborative projects by focusing on the following aspects:

• make use of client hardware to render the 3D scene and obtain
optimal performances with a low latency, as opposed as the
remote rendering

• create applications designed for different types of scientific
visualizations: medical, architecture, biochemical, etc.

• enable interactive and participative collaboration

• allow for the optimal accessibility without the use of plugins

• rely on mainstream technologies to enable service access

Nowadays, the additional challenge is to provide also searchable,
redundant and on-demand access to the data. In fact, researchers
want to easily and quickly visualize the data without the need of
installing complex tools and as possible from the convenience of a
web browser. In order to provide a collaborative and efficient sys-
tem, we propose to combine the WebGL and WebSocket technolo-
gies which do not require any complex architecture on the server
side or external plugins on the client side. These technologies are
now available in most of the current web browsers.

Next we present in more details the technologies used as well as
the integration we have achieved for real-time online collaboration
with a 3D scene.

2 Technologies

In this section, we describe the two technologies to be integrated:
WebGL and WebSocket.

47
Sportradar 1043

Page 1
f

Find authenticated court documents without watermarks at docketalarm.com.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F2338714.2338721&domain=pdf&date_stamp=2012-08-04
https://www.docketalarm.com/

2.1 WebGL

WebGL (Web Graphics Library) is a JavaScript API for rendering
interactive 3D graphics within any compatible web browser with-
out the use of plugins. Based on OpenGL ES 2.0 and using HTML5
canvas, WebGL provides a way to execute shader code on a com-
puter’s Graphics Processing Unit (GPU) via a web browser. We-
bGL is a web standard developed by the Khronos group [Khronos
Group 2011].

In WebGL, like in most real-time 3D graphics, the triangle is the
basic element with which models are drawn. Therefore, the pro-
cess of drawing in WebGL involves using JavaScript to generate
the information that specifies where and how these triangles will be
created, and how they will look (color, shades, textures, etc). This
information is then fed to the GPU, which processes it, and returns
a view of the scene.

The main limitations of the WebGL technology are the perfor-
mance of the JavaScript engines, the dependency on the OpenGL
2.0 drivers and the early stage of the development of the developer
libraries such as XTK [Harvard Medical Group] and SceneJs [Xe-
olabs]. However as the standard gets more and more used, we are
seeing the development of very promising libraries for developers
as well as powerful contributions.

2.2 WebSocket Protocol

The WebSocket specification [W3C 2012] introduced the Web-
Socket JavaScript interface, which defines a full-duplex single
socket connection over which messages can be sent between client
and server. The WebSocket standard simplifies much of the com-
plexity around bi-directional web communication and connection
management. This technology allows to develop real time syn-
chronization between multiple users over the Internet via the web
browser.

The technologies runs via port 80/443 allowing to bypass firewalls
or proxies. It uses TCP handshakes which are HTTP compatible
allowing the use of a cookie-based authentication. To obtain a high
performance system, the message headers have been kept small and
the latency has been reduced by using a single persistent connec-
tion.

The persistent connection allows the server and the client to push
messages to each other at any given time. WebSocket is not limited
in its nature the way that AJAX (or XHR) is; AJAX technologies re-
quire a request to be made by the client, whereas WebSocket servers
and clients can push each other messages. There are many practical
applications for WebSocket. WebSocket is ideal for most client-
to-server asynchronous purposes, chat within the browser being the
most prominent.

The WebSocket protocol is implemented in many browsers, run-
time environments and libraries acting as clients or servers. Here
are listed some implementations:

• The cWebsocket implementation is lightweight Websocket
server library written in C.

• The pywebsocket project aims to provide a WebSocket stan-
dalone server and a WebSocket extension for Apache HTTP
Server written in Python.

• The Node.js platform is built on Chrome’s JavaScript runtime
for easily building fast, scalable network applications.

• jWebSocket Server a pure Java based WebSocket server.

3 Concepts

The idea behind collaborative data visualization is to allow several
users to share the exact same view and to efficiently communicate
additional information during the visualization process. The loca-
tion of the users should not be relevant. Collaborative visualization
can be used as educational tools in a large variety of domains such
as the surgery where a trained surgeon can demonstrate how to pro-
ceed during a chirurgical operation. A colaborative tool can also
be used to cooperatively design a new product online or attend a
online conference where each user interact with a virtual character,
ala Second Life.

However, three main challenges arise with the integration of such
a collaboration solution. The first challenge is to make the data
available to anyone’s visualization engine, the second challenge is
to create a 3D scene information protocol to share the visualization
information between the distributed users, and the last challenge is
to share this information with a high frequency and a low latency.

Figure 2: Sharing of the visualization state using a Web Socket
server.

In a typical scenario, the user browses the data using a web inter-
face and selects the dataset he wants to visualize. Then the user
joins a collaborative session which triggers the visualization server
to create different collaborative visualization views depending on
the type of dataset. The master user is then the only one able to
modify the state of the visualization. The rendering state of the
3D scene is shared in real-time to the spectators over the network.
When a spectator enters the collaborative view, he receives in real
time the current visualization state and upcoming updates which
are used to synchronize the rendering views. The number of partic-
ipants should not affect the other participants, which means that a
broadcast mechanism would be suitable.

In the proposed system, to obtain a real time synchronization, only a
small set of information is sent to the spectators. The 3D models are
first downloaded using an HTTP request which is initiated by the
collaborative visualization server. The collaboration process starts
only after the data has been downloaded. The 3D engine allows us
to process the scene information and reproduce the 3D scene on the
client browser using the rendering pipeline described in the figure
2.

The rendering process is asynchronous of the sharing of the states
allowing the rendering frame rate to be unrelated to the computer’s
performances of the other users. As described in the figure 3, the
system is based on client-server architecture. The master sends
scene information to the WebSocket server which broadcasts the
same message to all the connected users. A solution using a cen-
tral system simplifies the connection between the users and allows
connection/disconnection management. Figure 4 shows a use case
demonstrating the initial connection of a user during the collabora-
tive visualization.

48
Sportradar 1043

Page 2
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Figure 3: Collaborative use case.

4 Experimental setup

Based on the WebGL technology and on the lightweight open
source framework, ThreeJS [ThreeJS Community 2012], we de-
veloped a system which allows users to instantly visualize 3D
datasets online without the need for external plugins. The data is
hosted on an open-source cloud based solution called MIDAS Plat-
form [Jomier et al. 2010] to store the datasets and manage the 3D
visualization; therefore making the use of WebGL transparent to
the users.

The real-time interactive collaboration is based on Node.js [Tilkov
and Vinoski 2010]. Node.js is a platform built on Chrome’s
JavaScript runtime for easily building fast, scalable network appli-
cations. The Node.js library also allows to use the WebSocket and
the AJAX technologies depending on the browser of the clients.
This provides a fallback solution when the protocol is not available
on the web browser.

Using the javascript client capabilities, the application shares the
scene information by sending a Javascript object to the WebSocket
server. An example source code is shown below:

if(isSceneModified())
{
socket = io.connect(collaborativeServerURL);
var scene = new Object();
scene.camera = getCameraInformation();
scene.3DObjects = getObjectsInformation();
socket.emit(’sendSceneInformation’, scene);
}

The server then broadcasts the scene information to all the available
clients. The following source code shows the implementation.

socket.on(’sendSceneInformation’, function (scene)
{
currentScene = scene;
socket.broadcast.emit(’getSceneInformation’,

scene);
});

In order to provide a real world experience we decided to base
our proof of concept on the Visible Patient [IRCAD and Kitware
SAS 2012] project. The French Research Institute against Diges-
tive Cancer (IRCAD) has decided to offer free access to a set of

3D virtual anatomies modeled from medical images of anonymous
patients. The resulting Visible Patient website offers a complete vi-
sualization solution of 3D patient-specific anatomy. The data are
freely available from the visible patient website under a creative
commons license.

As a proof of concept, the experimental setup supports only a sub-
set of collaborative features. We decided to focus our experiment
on the sharing of camera movements and minimal rendering states.
The test of the experimental setup was done in two steps. The first
step was to evaluate the users’ experience with the prototype and
collect feedbacks. The second step was to benchmark the perfor-
mance of the application during the experimental evaluation. To
benchmark the application, we logged all the messages sent by the
master user and all the messages received by the spectator. The
comparison of these information allows us to derive the latency and
rate of message transfer which is directly linked to the synchroniza-
tion rate of the visualized scene.

In order to test our system in real world condition we installed a
server in New York (USA) and the users were located in France.

5 Results

The overall user’s feedbacks were good. Most of the users were sur-
prised by the reactivity and the fluidity of the system and how easy
it was to initiate a collaborative visualization session. As shown on
the Figure 1, the panel on the left is the view of the master user and
the panel on the right is the corresponding view for the spectators.
In the ideal case they should always be synchronized.

From the different benchmarking sessions, we compiled three mea-
sures, the average latency, the synchronization rate and the master
rendering rate. The average latency is the average end-to-end de-
lay of a message transmission between two clients (via the Node.js
server). The synchronization rate is the number of queries received
per second by one client. The master rendering rate is the num-
ber of time the application renders the 3D scene per second. These
measures are reported in the table Figure 5.

AJAX WebSocket
Average latency 332.4ms 149.5ms
Synchronization rate (per second) 5.89 59.1
Master rendering rate (per second) 60 60

Figure 4: Benchmarking results.

Next we discuss these results and present a conclusion.

6 Discussion

The results presented in this paper demonstrate that the proposed
system is easy to use and provides good overall performance lead-
ing to an optimal user experience.

The benchmark demonstrated the large gain in term of networking
performance using the WebSocket protocol compared to AJAX. We
also tested internally the maximum number of messages received
per second and we managed to easily get more than a thousand
messages per second. This means that the prototype synchroniza-
tion rate was only limited by the rendering rate of the master client.

Furthermore, the system can be used in a large variety of use cases
but we recognized that it has two main limitations. First, the ren-
dering of the 3D scene depends directly on the performance of the
client and the proposed system is not suitable for the visualiza-
tion of large datasets since it would require downloading the entire

49
Sportradar 1043

Page 3
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

model’s geometry. The second limitation is related to the imple-
mentation of the system which currently does not include any ad-
vanced post processing visualization such as clipping, decimation,
etc.

The solution presented in the paper implements an easy to use col-
laborative system which uses browsers’ embedded technologies but
would require a hybrid solution to support all the types of visualiza-
tions, mainly large datasets requiring intensive pre/post processing
computation for visualization. This hybrid system would be based
on the combined use of remote and local rendering.

In the context of this project, we confirmed that providing high per-
formance visualization is essential but an easy to use tool is almost
as important. The system must also provide an easy way to select
the datasets of interest and to start the collaborative visualization.

7 Conclusion

In this paper we have presented a novel approach to collabora-
tive visualization by combining two new technologies: WebGL and
WebSocket, therefore allowing for a faster and easier way to re-
motely collaborate with 3D datasets.

In the future, the protocol used in the experimental setup to describe
the scene could be improved to share more information regarding
the scene, such as material, texture, lighting and other interactive
features. We also plan to use this technology to integrate a col-
laborative visualization on mobile devices, not necessarily using
WebGL. For instance we could synchronize a WebGL visualization
with a native visualization on an iPad using embedded technologies
such as the VES library (VTK OpenGL ES Rendering Toolkit) [Kit-
ware 2012].

Acknowledgements

The authors would like to thank the Research Institute against Di-
gestive Cancer (IRCAD) for providing the data used for this exper-
iment.

References

CEI INTERNATIONAL, 2012. Ensight gold software.
http://www.ensight.com/.

CHU, C.-H., CHENG, C.-Y., AND WU, C.-W. 2006. Ap-
plications of the web-based collaborative visualization in
distributed product development. Computers in Industry
57, 3, 272 – 282. ¡ce:title¿Advanced Computer Sup-
port of Engineering and Service Processes of Virtual Enter-
prises¡/ce:title¿ ¡ce:subtitle¿Advanced Computer Support Spe-
cial Issue¡/ce:subtitle¿.

DUPONT, F., DUVAL, T., FLEURY, C., FOREST, J., GOURAN-
TON, V., LANDO, P., LAURENT, T., LAVOUÉ, G., AND
SCHMUTZ, A. 2010. Collaborative Scientific Visualization: The
COLLAVIZ Framework. In JVRC 2010 (2010 Joint Virtual Re-
ality Conference of EuroVR - EGVE - VEC).

HARVARD MEDICAL GROUP. The x toolkit: Webgl for scientific
visualization. https://github.com/xtk/X.

IRCAD, AND KITWARE SAS, 2012. Visible patient:
Freeware for 3d visualization of 3d models of patients.
http://www.visiblepatient.eu/, March.

JOMIER, J., BAILLY, A., GALL, M. L., AND AVILA, R. 2010. An
open-source digital archiving system for medical and scientific
research.

JOURDAIN, S., FOREST, J., MOUTON, C., MALLET, L., AND
CHABRIDON, S. 2008. Sharex3d, a scientific collaborative 3d
viewer over http.

JOURDAIN, S., AYACHIT, U., AND GEVECI, B., 2010. Par-
aviewweb, a web framework for 3d visualization and data pro-
cessing, 07.

KHRONOS GROUP, 2011. Webgl specification.
https://www.khronos.org/registry/webgl/specs/1.0/,
February.

KITWARE, 2012. Kiwiviewer.
http://www.kiwiviewer.org/.

MORELAND, K., ROGERS, D., GREENFIELD, J., GEVECI, B.,
MARION, P., NEUNDORF, A., AND ESCHENBERG, K. 2008.
Large scale visualization on the cray xt3 using paraview. Cray
User Group 2008 2 (01).

NAM, T.-J., AND WRIGHT, D. 2001. The development and evalu-
ation of syco3d: a real-time collaborative 3d cad system. Design
Studies 22, 6, 557 – 582.

THREEJS COMMUNITY, 2012. Threejs: Lightweight javascript 3d
library. http://threejs.org.

TILKOV, S., AND VINOSKI, S. 2010. Node.js: Using javascript to
build high-performance network programs.

W3C, 2012. Websocket api specification.
http://dev.w3.org/html5/websockets/, March.

XEOLABS. 3d scene graph engine for webgl.
http://www.scenejs.com/.

50
Sportradar 1043

Page 4
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

