SOOI ST ST SN

Hilhy

- Il

Computer
Networking

A Top-Down Approach

James F. Kurose

Unuiversity of Massachusetts, Amherst

Keith W. Ross
Polytechnic University, Brooklyn

PEARSON’

Addison
ddison
i Wosley:

Boston San Francisco New York
London Toronto Sydney Tokyo Singapore Madrid
Mexico City Munich Paris Cape Town Hong Kong Montreal

DOCKET

A R M Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Publisher Greg Tobin

Executive Editor Michael Hirsch

Assistant Editor Lindsey Tricbel

Associate Managing Editor Jeffrey Holcomb

Senior Production Supervisor Marilyn Lloyd

Senior Marketing Manager Michelle Brown

Marketing Assistant | Sarah Milmore

Cover Designer Joyce Cosentino Wells

Cover Image ©Robert Harding/Getty Images: Bridge over

Dordogne River, Aquitaine, France

Art Director Janet Theurer/Theurer Briggs Design

Art Studio Patrice Rossi Calkin/Rossi Illustration & Design

Senior Manufacturing Buyer Carol Melville

Senior Media Producer Bethany Tidd

Project Management Nancy Kotary, Alicia Williams, Scott Harris/Argosy Publishing, Inc.
Composition Argosy Publishing, Inc.

Many of the designations used by manufacturers and sellers to distinguish.their products are
claimed as trademarks. Where those designations appear in this book, and Addison-Wesley
was aware of a trademark claim, the designations have been printed in initial caps or all caps.

The programs and applications presented in this book have been included for their instruc-
tional value. They have been tested with care, but are not guaranteed for any particular pur-
pose. The publisher does not offer any warranties or representations, nor does it accept any
Liabilities with respect to the programs or applications.

Library of Congress Cataloging-in-Publication Data
Kurose, James F.
Computer networking : a top-down approach / James F. Kurose,
Keith W. Ross. — 4th ed.
p- cm.
ISBN 0-321-49770-8
1. Internet. 2. Computer networks. I. Ross, Keith W., 1956- II. Title.
TK5105.875.157K88 2007

004.6—dc22 2007002094

Copyright © 2008 Pearson Education, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior written permission of the publisher. Printed in the United States
of America. For information on obtaining permission for use of material in this work, please
submit a written request to Pearson Education, Inc., Rights and Contracts Department,
75 Arlington Street, Suite 300, Boston, MA 02116, fax your request to 617-848-7047, or
e-mail at http://www.pearsoned.com/ legal/permissions.htm.

ISBN-13: 978-0-321-49770-3
ISBN-10: 0-321-49770-8

3456789 10—CRW—1009 08

[A)OCKET

L A R M Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

s PRINICIPLES OF HIETIORE ARPLICATIONS g7 ‘
§
i

‘ ierface Betwee Preveoe.
The I cen the Process and the Computer Network

As noted above, most

. applications consist of pairs of communicating processes, with
the two processes in ¢

ach pair sending messages to cach other. Any message sent from
one process 1o another must go through the underlying network. A process sends
messages into, and receives messages from, the network through a software interface
called a sockef. Let’s consider an analogy to help us understand processes and sock-
cts. A process 1s analogous to a house and its socket is analogous to its door. When a
process wants to send a message to another process on another host, it shoves the mes-
sage out its door (socket). This sending process assumes that there is a transportation
infrastructure on the other side of its door that will transport the message to the door
of the destination process. Once the message arrives at the destination host, the mes-
sage passes through the receiving process’s door (socket), and the receiving process
then acts on the message.

Figure 2.3 illustrates socket communication between two processes that com-
municate over the Internet. (Figure 2.3 assumes that the underlying transport proto-
col used by the processes is the Internet’s TCP protocol.) As shown in this figure, a
socket is the interface between the application layer and the transport layer within a
host. It is also referred to as the Application Programming Interface (API)
between the application and the network, since the socket is the programming inter-
face with which network applications are built. The application developer has con-
trol of everything on the application-layer side of the socket but has little control of
the transport-layer side of the socket. The only control that the application devel-
oper has on the transport-layer side is (1) the choice of transport protf)col and (2)
perhaps the ability to fix a few transport-layer parameters such as maximum buffer

Host or Host or
server

server

[

—

. \— Controlled
ontrol.led"—' — Process by application
by application developer
developer : ~
l Socket h| Socket |

l ; -+ Controlled
Controlled———| 7¢cp with | TCRwith by operating
by operating buffers, A= | garfables system
system variables Internet

Figure 2.3 o Application processes, sockets, and underlying transport protocol

[A)OCKET

L A R M Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

160 CHAPTER 2« APPLICATION LAYER

single developer (or <ic o,
) & ;[)[nCnt

and the developer ro, - ., te
. Trplete (.

e does not impleraey ., piby; 0

« C_
able to develon oo thot d 4
i Cihat lntel‘() n

Elrn)

necessarily conform to any existing RFC. A
ntr()l

creates both the client and server programs,
over what goes in the code. But because the cod
protocol, other independent developers will not be : o ¢
ates with the application. When developing a proprictary apphczt[um, the eve] "
must be careful not to use one of the well-known port n‘umber.? defined in the RF(?pQr
In this and the next section, we examine the key issues in developing , proS.-
etary client-server application. During the development pbasc, one of the firg dgr%
sions the developer must make is whether the application is to run over TCp . OCI-
UDP. Recall that TCP is connection oriented and provides a reliable byte.stre‘;er
channel through which data flows between two end systems. UDP is Connectiop Bss

and sends independent packets of data from one end system to the other, Withoyt any

guarantees about delivery.

In this section we develop a simple client application that runs over TCP; i the
next section, we develop a simple client application that runs over UDP. We Present
these simple TCP and UDP applications in Java. We could have written the code i
C or C++, but we opted for Java mostly because the applications are more neatly
and cleanly written in Java. With Java there are fewer lines of code, and each line
can be explained to the novice programmer without much difficulty. But there ig no
need to be frightened if you are not familiar with Java. You should be able to foljy,

the code if you have experience programming in another language.
For readers who are interested in client/server programming in C, there are severy]

good references available [Donahoo 2001; Stevens 1997; Frost 1994; Kurose 1996].

2.7.1 Socket Programming with TCP

Recall from Section 2.1 that processes running on different machines communicate

with each other by sending messages into sockets. We said that each process was

analogous to a house and the process’s socket is analogous to a door. As shown in
Figure 2.30, the socket is the door between the application process and TCP. The
application developer has control of everything on the application-layer side of the
socket; however, it has little control of the transport-layer side. (At the very most,
the application developer has the ability to fix a few TCP parameters, such as maxi
mum buffer size and maximum segment size.)

Now let’s take a closer look at the interaction of the client and server programs:
The client has the job of initiating contact with the server. In order for the server [0
be able to react to the client’s initial contact, the server has to be ready. This il“pl.les
two things. First, the server program cannot be dormant—that is, it must be runni
as a process before the client attempts to initiate contact. Second, the server Prog.rqm
must have some sort of door—more precisely, a socket—that welcomes some initid
contact from a client process running on an arbitrary host. Using our house/doo‘:
analogy for a process/socket, we will sometimes refer to the client’s initial conté

as “knocking on the welcoming door.”

A Find authenticated court documents without watermarks at docketalarm.com.

LARM

https://www.docketalarm.com/

Host or

T ,'/ \" v _'),-?/' :‘. i

i WHTH TC

Host or
server server
o
trolled
g; :pplication PrO:ess Process
developer 4
Socket = Socket
Controlled TCP with TCP with
by operating buffers, > buffers,
system variables Internet variables

Figure 2.30 ¢ Processes communicating through TCP sockets

With the server process running, the client process can initiate a TCP connec-
tion to the server. This is done in the client program by creating a socket. When the
client creates its socket, it specifies the address of the server process, namely, the IP
address of the server host and the port number of the server process. Once the socket
has been created in the client program, TCP in the client initiates a three-way hand-
shake and establishes a TCP connection with the server. The three-way handshake,
which takes place at the transport layer, is completely transparent to the client and
server programs.

During the three-way handshake, the client process knocks on the welcoming
door of the server process. When the server “hears” the knocking, it creates a new
door—more precisely, a new socket—that is dedicated to that particular client. In
ourexample below, the welcoming door is a ServerSocket object that we call
we'cl‘;’::)lcomeSocket_ When a client knocks: on this door, the program invc.)kes

tthe :rl‘zSocket ’s accept () method, which crf.:ates anew door for the qllent.
ket ang 0}1; the hanfishaking phase, a TCP connection exists betweer’l the cllent’.s
Cated SOCkeI € server’s new socket..Henceforth, we refer to the server’s new, dedi-

From g :s the‘ser\‘zer ’s connectlf)n socket. o _ . .
betweer, the C]fipp’llcatlon s perspective, the TCP cpnnectlon isa dlr.ect virtual pipe
Send arpyy l;;m S S.ocke‘t and the server’s connection socket. The client process can
Teceiye (lhri? h)’tes 1nto its .socket, and TCP gua.rantees that the server process yvnll
1elighyq bytg the connection socket) each byte in the order sent. TCP thus provides
Just g i e-strea{n service between the client and server processes. Furthermore,

€an go in and out the same door, the client process not only sends bytes

[A)OCKET

LARM

B

Controlled
by application
developer

+—Controlled

by operating
system

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

