Recovering High Dynamic Range Radiance Maps from Photographs

Paul E. Debevec

JitendraMalik

University of Californiaat Berkeley!

ABSTRACT

We present a method of recovering high dynamic range radiance
maps from photographs taken with conventional imaging equip-
ment. In our method, multiple photographs of the scene are taken
with different amounts of exposure. Our agorithm uses these dif-
ferently exposed photographs to recover the response function of the
imaging process, up to factor of scale, using the assumption of reci-
procity. With the known response function, the algorithm can fuse
the multiple photographsinto asingle, high dynamic range radiance
map whose pixel values are proportional to the true radiance values
in the scene. We demonstrate our method on images acquired with
both photochemical and digital imaging processes. We discuss how
thiswork is applicable in many areas of computer graphics involv-
ing digitized photographs, including image-based modeling, image
compositing, and image processing. Lastly, we demonstrate a few
applications of having high dynamic range radiance maps, such as
synthesizing realistic motion blur and simul ating the response of the
human visual system.

CR Descriptors. 1.2.10 [Artificial Intelligence]: Vision and
Scene Understanding - Intensity, color, photometry and threshol d-
ing; 1.3.7[Computer Graphics]: Three-Dimensional Graphicsand
Realism - Color, shading, shadowing, and texture; 1.4.1 [Image
Processing]: Digitization - Scanning; 1.4.8 [Image Processing]:
Scene Analysis - Photometry, Sensor Fusion.

1 Introduction

Digitized photographs are becoming increasingly important in com-
puter graphics. More than ever, scanned images are used as texture
maps for geometric models, and recent work in image-based mod-
eling and rendering uses images as the fundamental modeling prim-
itive. Furthermore, many of today’s graphics applications require
computer-generated images to mesh seamlesdy with real photo-
graphicimagery. Properly using photographically acquired imagery
in these applications can greatly benefit from an accurate model of
the photographic process.

When we photograph a scene, either with film or an elec-
tronic imaging array, and digitize the photograph to obtain a two-
dimensiona array of “brightness’ values, these values are rarely

1Computer Science Division, University of Cdifornia at Berkeley,
Berkeley, CA 94720-1776. Email: debevec@cs.berkeley.edu, ma-
lik@cs.berkeley.edu. Moreinformation and additional results may befound
at: http://www.cs.berkeley.edu/"debevec/Research
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true measurements of relative radiancein the scene. For example, if
onepixel hastwicethevalue of another, itisunlikely that it observed
twice the radiance. Instead, there is usually an unknown, nonlinear
mapping that determines how radiance in the scene becomes pixel
vauesin theimage.

This nonlinear mapping is hard to know beforehand becauseitis
actually the composition of several nonlinear mappings that occur
in the photographic process. In a conventional camera (see Fig. 1),
the filmisfirst exposed to light to form alatent image. The filmis
then developed to change this latent image into variations in trans-
parency, or density, on thefilm. Thefilm can then be digitized using
a film scanner, which projects light through the film onto an elec-
tronic light-sensitive array, converting the image to electrical volt-
ages. These voltages are digitized, and then manipulated before fi-
nally being written to the storage medium. If prints of the film are
scanned rather than the filmitself, then the printing process can also
introduce nonlinear mappings.

In the first stage of the process, the film response to variations
in exposure X (which is EAt, the product of the irradiance E the
film receives and the exposure time At) is a non-linear function,
called the“ characteristic curve” of the film. Noteworthy in the typ-
ical characteristic curve isthe presence of a small response with no
exposure and saturation at high exposures. The development, scan-
ning and digitization processes usually introduce their own nonlin-
earities which compose to give the aggregate nonlinear relationship
between the image pixel exposures X and their values Z.

Digital cameras, which use charge coupled device (CCD) arrays
to image the scene, are prone to the same difficulties. Although the
charge collected by a CCD element is proportional toitsirradiance,
most digital cameras apply anonlinear mapping to the CCD outputs
before they are written to the storage medium. This nonlinear map-
ping isused in various waysto mimic the response characteristics of
film, anticipate nonlinear responses in the display device, and often
to convert 12-bit output from the CCD’s anal og-to-digital convert-
ers to 8-hit values commonly used to store images. As with film,
the most significant nonlinearity in the response curve is at its sat-
uration point, where any pixel with aradiance above a certain level
is mapped to the same maximum image value.

Why is this any problem at all? The most obvious difficulty,
as any amateur or professional photographer knows, isthat of lim-
ited dynamic range—one has to choose the range of radiance values
that are of interest and determine the exposure time suitably. Sunlit
scenes, and scenes with shiny materials and artificial light sources,
often have extreme differences in radiance values that are impossi-
ble to capture without either under-exposing or saturating the film.
To cover thefull dynamic rangein such ascene, onecantakeaseries
of photographs with different exposures. This then poses a prob-
lem: how can we combine these separate images into a composite
radiance map? Here the fact that the mapping from scene radiance
to pixel values is unknown and nonlinear begins to haunt us. The
purpose of this paper is to present a simple technique for recover-
ing this response function, up to a scale factor, using nothing more
than a set of photographs taken with varying, known exposure du-
rations. With this mapping, we then use the pixel values from al
available photographs to construct an accurate map of the radiance
in the scene, up to afactor of scale. This radiance map will cover
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Figure 1. Image Acquisition Pipeline shows how scene radiance becomes pixel values for both film and digital cameras. Unknown nonlin-
ear mappings can occur during exposure, development, scanning, digitization, and remapping. The algorithm in this paper determines the
aggregate mapping from scene radiance L to pixel values Z from a set of differently exposed images.

the entire dynamic range captured by the original photographs.

1.1 Applications

Our technique of deriving imaging response functions and recover-
ing high dynamic range radiance maps has many possible applica-
tions in computer graphics:

Image-based modeling and rendering

Image-based modeling and rendering systems to date (e.g. [11, 15,
2, 3, 12, 6, 17]) make the assumption that all the images are taken
with the same exposure settings and film response functions. How-
ever, amost any large-scale environment will have some areas that
are much brighter than others, making it impossible to adequately
photograph the scene using a single exposure setting. In indoor
scenes with windows, this situation often arises within the field of
view of asingle photograph, since the areas visible through thewin-
dows can be far brighter than the areas inside the building.

By determining the response functions of theimaging device, the
method presented here allows one to correctly fuse pixel datafrom
photographs taken at different exposure settings. As a result, one
can properly photograph outdoor areas with short exposures, and in-
door areas with longer exposures, without creating inconsistencies
in the data set. Furthermore, knowing the response functions can
be hel pful in merging photographs taken with different imaging sys-
tems, such asvideo cameras, digital cameras, and film cameraswith
various film stocks and digitization processes.

The area of image-based modeling and rendering is working to-
ward recovering more advanced reflection models (up to complete
BRDF's) of the surfaces in the scene (e.g. [21]). These meth-
ods, which involve observing surface radiance in various directions
under various lighting conditions, require absol ute radiance values
rather than the nonlinearly mapped pixel values found in conven-
tional images. Just asimportant, the recovery of high dynamic range
images will allow these methods to obtain accurate radiance val-
ues from surface specularities and from incident light sources. Such
higher radiance values usually become clamped in conventional im-

ages.

Image processing

Most image processing operations, such asblurring, edge detection,
color correction, and image correspondence, expect pixel values to
be proportional to the scene radiance. Because of nonlinear image
response, especially at the point of saturation, these operations can
produce incorrect results for conventional images.

In computer graphics, one common image processing operation
is the application of synthetic motion blur to images. In our re-
sults (Section 3), we will show that using true radiance maps pro-
duces significantly more realistic motion blur effects for high dy-
namic range scenes.
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Image compositing

Many applications in computer graphics involve compositing im-
age data from images obtained by different processes. For exam-
ple, a background matte might be shot with a still camera, live
action might be shot with a different film stock or scanning pro-
cess, and CG elements would be produced by rendering algorithms.
When there are significant differences in the response curves of
these imaging processes, the composite image can be visualy un-
convincing. Thetechnique presented in this paper providesaconve-
nient and robust method of determining the overall response curve
of any imaging process, allowing imagesfrom different processesto
be used consistently as radiance maps. Furthermore, the recovered
response curves can be inverted to render the composite radiance
map asif it had been photographed with any of the original imaging
processes, or a different imaging process entirely.

A research tool

One goa of computer graphics is to simulate the image formation
process in away that produces results that are consistent with what
happensin the real world. Recovering radiance maps of real-world
scenes should alow more quantitative evaluations of rendering al-
gorithms to be made in addition to the qualitative scrutiny they tra-
ditionally receive. In particular, the method should be useful for de-
veloping reflectance and illumination model s, and comparing global
illumination solutions against ground truth data.

Rendering high dynamic range scenes on conventional display
devicesisthe subject of considerable previous work, including [20,
16, 5, 23]. Thework presented in this paper will allow such meth-
ods to be tested on real radiance maps in addition to synthetically
computed radiance solutions.

1.2 Background

The photochemical processesinvolved in silver halide photography
have been the subject of continued innovation and research ever
since the invention of the daguerretype in 1839. [18] and [8] pro-
vide a comprehensive treatment of the theory and mechanisms in-
volved. For the newer technology of solid-stateimaging with charge
coupled devices, [19] is an excellent reference. The technical and
artistic problem of representing the dynamic range of anatural scene
on the limited range of film has concerned photographers from the
early days — [1] presents one of the best known systems to choose
shutter speeds, lens apertures, and devel oping conditions to best co-
erce the dynamic range of a scene to fit into what is possible on a
print. In scientific applications of photography, such as in astron-
omy, the nonlinear film response has been addressed by suitable cal-
ibration procedures. It is our objective instead to develop asimple
self-calibrating procedure not requiring calibration charts or photo-
metric measuring devices.

In previous work, [13] used multiple flux integration times of a
CCD array to acquire extended dynamic range images. Since direct
CCD outputs were available, the work did not need to deal with the
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problem of nonlinear pixel value response. [14] addressed the prob-
lem of nonlinear response but provide arather limited method of re-
covering the response curve. Specificaly, a parametric form of the
response curve is arbitrarily assumed, there is no satisfactory treat-
ment of image noise, and the recovery process makes only partial
use of the available data.

2 The Algorithm

This section presents our agorithm for recovering the film response
function, and then presents our method of reconstructing the high
dynamic range radiance image from the multiple photographs. We
describe the algorithm assuming a grayscale imaging device. We
discuss how to deal with color in Section 2.6.

2.1 Film Response Recovery

Our agorithmisbased on exploiting aphysical property of imaging
systems, both photochemical and electronic, known as reciprocity.

Let us consider photographic film first. The response of afilm
to variations in exposure is summarized by the characteristic curve
(or Hurter-Driffield curve). This is a graph of the optica density
D of the processed film against the logarithm of the exposure X
to which it has been subjected. The exposure X is defined as the
product of the irradiance E at the film and exposure time, At, so
that its units are Jm ™~ 2. Key to the very concept of the characteris-
tic curve is the assumption that only the product EAt isimportant,
that halving E and doubling At will not change the resulting optical
density D. Under extreme conditions (very large or very low At ),
the reciprocity assumption can break down, a situation described as
reciprocity failure. Intypical print films, reciprocity holdsto within
1 stop" for exposure times of 10 seconds to /10,000 of a second.”
In the case of charge coupled arrays, reciprocity holds under the as-
sumption that each site measures the total number of photons it ab-
sorbs during the integration time.

After the development, scanning and digitization processes, we
obtain adigital number Z, which isanonlinear function of the orig-
inal exposure X at thepixel. Let uscall thisfunction f, whichisthe
composition of the characteristic curve of the film aswell asal the
nonlinearitiesintroduced by thelater processing steps. Our first goal
will be to recover thisfunction f. Once we have that, we can com-
pute the exposure X at each pixel, as X = f~!(Z). We make the
reasonabl e assumption that the function f ismonotonically increas-
ing, soitsinverse f~! iswell defined. Knowing the exposure X and
the exposure time At, theirradiance E isrecovered as E = X/At,
whichwewill taketo be proportional totheradiance L in the scene.®

Before proceeding further, we should discuss the consequences
of the spectral response of the sensor. The exposure X should be
thought of asafunction of wavelength X (\), and the abscissaon the
characteristic curve should be the integral [ X (A\) R(A)dA where
R(\) isthe spectral response of the sensing element at the pixel lo-
cation. Strictly speaking, our use of irradiance, aradiometric quan-
tity, isnot justified. However, the spectral response of the sensor site
may not be the photopic luminosity function V), so the photomet-
ric termilluminance is not justified either. In what follows, we will
usethetermirradiance, whileurging the reader to remember that the

11 stop is a photographic term for afactor of two; % stop isthus 2 3

2An even larger dynamic range can be covered by using neutral density
filterstolessen to amount of light reaching thefilm for agiven exposuretime.
A discussion of the modes of reciprocity failure may be found in [18], ch. 4.
3L is proportional E for any particular pixel, but it is possible for the
proportionality factor to be different at different places on the sensor. One

formulafor this variance, givenin[7],isE = L% (%) ? cos*a, where o
measures the pixel’s angle from the lens' optical axis. However, most mod-
ern camera lenses are designed to compensate for this effect, and provide a

nearly constant mapping between radiance and irradiance at f/8 and smaller
apertures. See also [10].
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quantities we will be dealing with are weighted by the spectral re-
sponse at the sensor site. For color photography, the color channels
may be treated separately.

The input to our algorithm is a number of digitized photographs
taken from the same vantage point with different known exposure
durations At;.* Wewill assume that the sceneis static and that this
process is completed quickly enough that lighting changes can be
safely ignored. It can then be assumed that thefilmirradiance values
E; for each pixel ¢ are constant. We will denote pixel valuesby Z;;
where i is a spatia index over pixels and j indexes over exposure
times At;. We may now write down the film reciprocity equation
as.

Zij = f(EiAt)) (€N

Sincewe assume f ismonotonic, it isinvertible, and we can rewrite

(D as:
1 (Zi) = EiAt;
Taking the natural logarithm of both sides, we have:

In f~4(Zi;)

To simplify notation, let us define function g = In f~
have the set of equations:

9(Zi;)

where i ranges over pixelsand j ranges over exposure durations. In
this set of equations, the Z;; are known, as are the At¢;. The un-
knowns are the irradiances E;, as well as the function g, athough
we assume that g is smooth and monotonic.

Wewish torecover thefunction g and theirradiances E; that best
satisfy the set of equations arising from Equation 2 inaleast-squared
error sense. We note that recovering g only requires recovering the
finite number of values that g(z) can take since the domain of Z,
pixel brightness values, is finite. Letting Z,,.:», and Z,,... be the
least and greatest pixel values (integers), NV be the number of pixel
locations and P be the number of photographs, we formulate the
problem as one of finding the (Zma2 — Zmin + 1) valuesof g(Z)
and the N values of In E; that minimizethe following quadratic ob-
jective function:

=InE;+In At]'
1. Wethen

=1InE; + In At; ()

N P Zmas—1
= ZZ —InE; —InAt;]* + A Z q"(2)*
i=1 j=1 z2=Zmin+1

©)
The first term ensures that the solution satisfies the set of equa-
tions arising from Equation 2 in a least squares sense. The second
term is a smoothness term on the sum of squared values of the sec-
ond derivative of g to ensure that the function g is smooth; in this
discrete settingweuse g’ (z) = g(z — 1) —2g(z) + g(z + 1). This
smoothness term is essential to the formulation in that it provides
coupling between the values g(z) in the minimization. The scalar
A weights the smoothness term relative to the data fitting term, and
should be chosen appropriately for the amount of noise expected in
the Z;; measurements.
Because it is quadratic in the E;’s and g(z)’s, minimizing O is
astraightforward linear least squares problem. The overdetermined

“Most modern SLR cameras have eectronically controlled shutters
which give extremely accurate and reproducible exposure times. We tested
our Canon EOS Elan camera by using a Macintosh to make digital audio
recordings of the shutter. By analyzing these recordings we were able to
verify the accuracy of the exposure times to within a thousandth of a sec-
ond. Conveniently, we determined that the actual @(posure times varied by

powers of two between stops (g5, 35+ 15 5+ 3+ 5+ 1. 2,4, 8,16, 32) rather
than the rounded numbers displayed on the camerareadout (¢, 35, 15 &

4 2, 1, 2, 4, 8, 15, 30). Because of problems associated with vignetting,
varying the aperture is not recommended.
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system of linear equationsisrobustly solved using thesingular value
decomposition (SVD) method. An intuitive explanation of the pro-
cedure may be found in Fig. 2.

We need to make three additional pointsto complete our descrip-
tion of the algorithm:

First, the solution for the g(z) and E; values can only be up to
asingle scale factor . If each log irradiance value In E; were re-
placed by In E; + «, and the function g replaced by g + «, the sys-
tem of equations 2 and also the objective function O would remain
unchanged. To establish a scale factor, we introduce the additional
constraint g(Zmia) = 0, Where Zpnig = 2 (Zmin + Zmaz ), SMply
by adding this as an equation in the linear system. The meaning of
this constraint isthat a pixel with value midway between Z,,,,, and
Zmaz Will be assumed to have unit exposure.

Second, the solution can be made to have amuch better fit by an-
ticipating the basic shape of the response function. Since g(z) will
typically have a steep slope near Z,,,in, and Z,4., We should ex-
pect that g(z) will be less smooth and will fit the data more poorly
near these extremes. To recognize this, we can introduce a weight-
ing function w(z) to emphasize the smoothness and fitting termsto-
ward the middle of the curve. A sensible choice of w isasimple hat
function:

=

4

’lU(Z) _ z— Zmzn for z < l(Zm,zn + Zmaz)
- Zmaz -z for z > E(Zmzn + Zmaz)

Equation 3 now becomes:

0= {w(Z;)l9(Zi;) —m B — m At;]}* +
A [wR)e"
2=Zpmin+1

Finally, we need not use every available pixel site in this solu-
tion procedure. Given measurementsof NV pixelsin P photographs,
we have to solve for N values of In F; and (Zmaz — Zmin) SAM-
plesof g. To ensure a sufficiently overdetermined system, we want
N(P —1) > (Zmaz — Zmin)- For the pixel vduerange (Zmaz —
Zmin) = 255, P = 11 photographs, a choice of N on the or-
der of 50 pixels is more than adequate. Since the size of the sys-
tem of linear equations arising from Equation 3 is on the order of
N X P 4+ Zmaz — Zmin, COMputational complexity considera-
tions make it impractica to use every pixel location in this ago-
rithm. Clearly, the pixel locations should be chosen so that they have
areasonably even distribution of pixel valuesfrom Z,,,,, t0 Zq2,
and so that they are spatially well distributed in theimage. Further-
more, the pixels are best sampled from regions of the image with
low intensity variance so that radiance can be assumed to be con-
stant across the area of the pixel, and the effect of optical blur of the
imaging system is minimized. So far we have performed this task
by hand, though it could easily be automated.

Note that we have not explicitly enforced the constraint that g
must be amonotonic function. If desired, this can be done by trans-
forming the problem to a non-negative least squares problem. We
have not found it necessary because, in our experience, the smooth-
ness penalty term is enough to make the estimated g monotonic in
addition to being smooth.

To show itssimplicity, the MATLAB routine we used to minimize
Equation 5 isincluded in the Appendix. Running times are on the
order of afew seconds.
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2.2 Constructing the High Dynamic Range Radi-
ance Map

Once the response curve g is recovered, it can be used to quickly
convert pixel valuesto relative radiance values, assuming the expo-
sure At; isknown. Note that the curve can be used to determine ra-
diance valuesin any image(s) acquired by theimaging process asso-
ciated with g, not just the images used to recover the response func-
tion.

From Equation 2, we obtain:

InE; = g(Zij) —1In Atj (5)

For robustness, and to recover high dynamic range radiance val-
ues, we should use all the available exposures for a particular pixel
to computeitsradiance. For this, wereusethe weighting functionin
Equation 4 to give higher weight to exposures in which the pixel’s
valueis closer to the middle of the response function:

S w(Zi)(9(Zis) —
S w(Zis)

Combining the multiple exposures has the effect of reducing
noise in the recovered radiance values. It also reduces the effects
of imaging artifacts such as film grain. Since the weighting func-
tion ignores saturated pixel values, “blooming” artifacts® have little
impact on the reconstructed radiance val ues.

In At;
InE; = )

(6)

2.2.1 Storage

In our implementation the recovered radiance map is computed as
an array of single-precision floating point values. For efficiency, the
map can be converted to theimage format used in the RADIANCE
[22] simulation and rendering system, which usesjust eight bits for
each of the mantissa and exponent. Thisformat is particularly com-
pact for color radiance maps, since it stores just one exponent value
for al three color values at each pixel. Thus, in thisformat, a high
dynamic range radiance map requires just one third more storage
than a conventional RGB image.

2.3 How many images are necessary?

To decide on the number of images needed for the technique, it is
convenient to consider the two aspects of the process:

1. Recovering thefilm response curve: Thisrequires aminimum
of two photographs. Whether two photographs are enough
can be understood in terms of the heuristic explanation of the
process of film response curve recovery shown in Fig. 2.
If the scene has sufficiently many different radiance values,
the entire curve can, in principle, be assembled by dliding to-
gether the sampled curve segments, each with only two sam-
ples. Note that the photos must be similar enough in their ex-
posure amounts that some pixels fall into the working range®
of the film in both images; otherwise, there is no information
to relate the exposures to each other. Obviously, using more
than two images with differing exposure times improves per-
formance with respect to noise sensitivity.

2. Recovering aradiance map given thefilmresponse curve: The
number of photographs needed here is a function of the dy-
namic range of radiance values in the scene. Suppose the
range of maximum to minimum radiance values that we are

5Blooming occurs when charge or light at highly saturated sites on the
imaging surface spills over and affects values at neighboring sites.

The working range of the film corresponds to the middle section of the
response curve. The ends of the curve, in which large changes in exposure
cause only small changes in density (or pixel value), are called the toe and
the shoulder.
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plot of g(Zij) from three pixels observed in five images, assuming unit radiance at each pixel
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Figure 2: In the figure on the left, the x symbols represent samples of the g curve derived from the digital values at one pixel for 5 different
known exposures using Equation 2. The unknown logirradiance In E; has been arbitrarily assumed to be 0. Note that the shape of the g curve
is correct, though its position on the vertical scale is arbitrary corresponding to the unknown In E;. The + and o symbols show samples of
g curve segments derived by consideration of two other pixels; again the vertical position of each segment is arbitrary. Essentially, what we
want to achieve in the optimization process is to slide the 3 sampled curve segments up and down (by adjusting their In E;’s) until they “ line
up” into a single smooth, monatonic curve, as shown in the right figure. The vertical position of the composite curve will remain arbitrary.

interested in recovering accurately is R, and the film is capa-
ble of representing in itsworking range adynamic range of F'.
Then the minimum number of photographs needed is [£1] to
ensure that every part of the scene is imaged in at least one
photograph at an exposure duration that puts it in the work-
ing range of the film response curve. Asin recovering the re-
sponse curve, using more photographs than strictly necessary
will result in better noise sensitivity.

If one wanted to use as few photographs as possible, one might
first recover the response curve of the imaging process by pho-
tographing a scene containing a diverse range of radiance values at
three or four different exposures, differing by perhaps one or two
stops. This response curve could be used to determine the working
range of theimaging process, which for the processes we have seen
would beasmany asfiveor six stops. For theremainder of the shoot,
the photographer could decide for any particular scene the number
of shots necessary to cover its entire dynamic range. For diffusein-
door scenes, only one exposure might be necessary; for scenes with
high dynamic range, severa would be necessary. By recording the
exposure amount for each shot, the images could then be converted
to radiance maps using the pre-computed response curve.

2.4 Recovering extended dynamic range from sin-
gle exposures

Most commericialy available film scanners can detect reasonably
close to the full range of useful densities present in film. However,
many of these scanners (aswell asthe Kodak PhotoCD process) pro-
duce 8-bit-per-channel images designed to be viewed on ascreen or
printed on paper. Print film, however, records asignificantly greater
dynamic range than can be displayed with either of these media. As
aresult, such scannersdeliver only aportion of the detected dynamic
range of print filmin asingle scan, discarding information in either
high or low density regions. The portion of the detected dynamic
range that is delivered can usually be influenced by “brightness’ or
“density adjustment” controls.

The method presented in this paper enables two methods for re-
covering the full dynamic range of print film which we will briefly

DOCKET

_ ARM

outling’. In the first method, the print negative is scanned with the
scanner set to scan dide film. Most scanners will then record the
entire detectable dynamic range of the film in the resulting image.
Asbefore, a series of differently exposed images of the same scene
can be used to recover the response function of theimaging system
with each of these scanner settings. Thisresponse function can then
be used to convert individual exposures to radiance maps. Unfortu-
nately, since the resulting image is still 8-bits-per-channel, thisre-
sultsin increased quantization.

In the second method, the film can be scanned twice with the
scanner set to different density adjustment settings. A series of dif-
ferently exposed images of the same scene can then be used to re-
cover the response function of the imaging system at each of these
density adjustment settings. These two response functions can then
be used to combine two scans of any single negative using asimilar
technique asin Section 2.2.

2.5 Obtaining Absolute Radiance

For many applications, such as image processing and image com-
positing, the relative radiance values computed by our method are
all that are necessary. If needed, an approximation to the scaling
term necessary to convert to absol ute radiance can be derived using
the ASA of thefilm® and the shutter speeds and exposure amountsin
the photographs. With these numbers, formul asthat give an approx-
imate prediction of film response can be found in [9]. Such an ap-
proximation can be adequate for smulating visua artifacts such as
glare, and predicting areas of scotopic retina response. If desired,
one could recover the scaling factor precisely by photographing a
calibration luminaire of known radiance, and scaling the radiance
values to agree with the known radiance of the luminaire.

2.6 Color

Color images, consisting of red, green, and blue channels, can be
processed by reconstructing the imaging system response curve for

"This work was done in collaboration with Gregory Ward Larson
8Conveniently, most digital cameras also specify their sensitivity interms
of ASA.
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