
HTTP ADAPTIVE STREAMING WITH MEDIA FRAGMENT URIS

Wim Van Lancker, Davy Van Deursen, Erik Mannens, Rik Van de Walle

Ghent University – IBBT
Ghent, Belgium

{wim.vanlancker, davy.vandeursen, erik.mannens, rik.vandewalle}@ugent.be

ABSTRACT
HTTP adaptive streaming was introduced with the general

idea that user agents interpret a manifest file (describing dif-

ferent representations and segments of the media); where-

after they retrieve the media content using sequential HTTP

progressive download operations. MPEG started with the

standardization of an HTTP streaming protocol, defining the

structure and semantics of a manifest file and additional re-

strictions and extensions for container formats. At the same

time, W3C is working on a specification for addressing me-

dia fragments on the Web using Uniform Resource Identi-

fiers. The latter not only defines the URI syntax for media

fragment identifiers but also the protocol for retrieving me-

dia fragments over HTTP. In this paper, we elaborate on the

role of Media Fragment URIs within HTTP adaptive stream-

ing scenarios. First, we elaborate on how different media rep-

resentations can be addressed by means of Media Fragment

URIs, by using track fragments. Additionally, we illustrate

how HTTP adaptive streaming is realized relying on the Me-

dia Fragments URI retrieval protocol. To validate the pre-

sented ideas, we implemented Apple’s HTTP Live streaming

technique using Media Fragment URIs.

Index Terms— HTTP Streaming, Media Delivery, Media

Fragment URIs

1. INTRODUCTION

Multimedia content has become an essential part of the World

Wide Web. Moreover, Web-based media is exploding: it

is used for entertainment, education, advertising, product

reviews, etc. Media delivery on the Web evolved from

download-and-play over progressive download to real-time

streaming protocols such as the Real Time Streaming Proto-

col (RTSP). Recently, a new media delivery technique, called

HTTP adaptive streaming, was introduced showing an inter-

esting combination of the features of real-time streaming pro-

tocols and HTTP progressive download.

The research activities as described in this paper were funded by Ghent

University, the Interdisciplinary Institute for Broadband Technology (IBBT),

the Institute for the Promotion of Innovation by Science and Technology in

Flanders (IWT), the Fund for Scientific Research-Flanders (FWO-Flanders),

and the European Union.

Various proprietary implementations are already avail-

able: Microsoft’s Smooth Streaming, Apple’s HTTP Live

streaming, and Adobe’s Dynamic HTTP Streaming. Almost

all current proprietary solutions for HTTP streaming define

the structure and semantics of a manifest file, describing the

high-level structure of the media content in terms of repre-

sentations and temporal segments. Additionally, extensions

and restrictions are defined for one or more existing container

formats encapsulating the media content. User Agents (UA)

interpret the manifest file and retrieve the media content us-

ing sequential HTTP progressive download operations. Cur-

rently, MPEG is standardizing HTTP adaptive streaming as

media delivery protocol, Dynamic Adaptive Streaming over

HTTP (DASH, [1]), which is based on 3GPP Adaptive HTTP

Streaming.

In this paper, we investigate how Media Fragment URIs

can be used within HTTP adaptive streaming scenarios. Note

that Wu et al. already indicated the relevance of Media Frag-

ments within HTTP streaming [2]. The specification of Media

Fragment URIs is currently being developed within W3C by

the Media Fragment Working Group1 (MFWG). Its mission

is to address media fragments on the Web using Uniform Re-

source Identifiers (URIs). Although most HTTP streaming

solutions rely on the use of regular HTTP 1.1 Web servers,

we assume in this paper the availability of Media Fragments-

aware servers for HTTP streaming and describe the impact

of this availability for HTTP streaming solutions. Addition-

ally, since the Media Fragments 1.0 specification also fore-

sees a scenario for serving Media Fragment URIs using reg-

ular HTTP 1.1 Web servers, we will elaborate on how this

scenario fits in the current HTTP streaming solutions.

2. MEDIA FRAGMENTS 1.0

The Media Fragments 1.0 specification supports three differ-

ent axes for media fragments: temporal (i.e., a time range),

spatial (i.e., a spatial region), and track (i.e., a track contained

in the media resource). Since the spatial fragment axis is not

relevant in the context of HTTP streaming, we will not fur-

ther discuss it. Further, the specification recommends both

1http://www.w3.org/2008/WebVideo/Fragments/

Google Exhibit 1016
Google v. Ericssonf

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

the URI syntax and the protocol for the retrieval of Media

Fragment URIs over HTTP [3].

2.1. URI Syntax

The specification defines the syntax for mediafrag
within the URI protocol://path/mediafile#
mediafrag. For brevity, we give a simple example for both

the temporal and the track axis; the full syntactical details

can be found in the specification [3].

• Temporal: http://foo/media.mp4#t=10,30
identifies the time range [10s,30s[of media.mp4.

• Track: http://foo/media.mp4?track=vid
identifies the video track of media.mp4.

Both URI fragments and URI queries can be used for me-

dia fragment addressing. Using a URI fragment means that

the media fragment is a secondary resource and hence must be

expressible in terms of byte ranges pointing to the parent re-

source. On the contrary, URI queries result in new resources,

resulting in no restriction regarding the bytes used to repre-

sent the fragment. Note that, although track fragments can

always be expressed in terms of byte ranges, the amount of

byte ranges for a certain track is infeasible high when tracks

are interleaved. Therefore, track fragments are typically ad-

dressed using URI queries when supported by the server or

interpreted locally when the server is unable to extract the re-

quested track (e.g., in case of a regular HTTP Web server).

Local interpretation means that all tracks are downloaded by

the UA, after which the UA picks the requested tracks. Tem-

poral fragments are typically addressed using URI fragments.

2.2. Media Fragment Retrieval over HTTP

The current Web infrastructure, based on the HTTP proto-

col, is not aware of addressing methods other than bytes to

point to a portion of a media resource. Therefore, in order

to implement and deploy a system able to deal with Media

Fragment URIs, the key requirement is to have a module that

is able to translate media fragments (i.e., expressed in time

or tracks) into fragments expressed in terms of bytes (i.e.,

byte ranges) [4]. Such a translation module can occur at the

server or at the UA. The Media Fragments 1.0 specification

describes a number of scenarios, based on the location of this

translation module.

As specified in [5], fragment identifiers are separated from

the rest of the URI prior to a dereference. In other words, they

are not sent to the server and thus the identifying information

within a fragment needs to be interpreted by the UA. Apply-

ing this to Media Fragment URIs, UAs must be able to parse

and interpret media fragment identifiers. When the UA is able

to perform the mapping between fragments and byte ranges,

fragments can be requested in terms of byte ranges (using reg-

ular HTTP 1.1 byte range requests), as illustrated in Fig. 1.

GET /media.mp4 HTTP/1.1
Host: www.foo.com
Accept: video/*
Range: bytes=3000-6000

HTTP/1.1 206 Partial Content
Accept-Ranges: bytes
Content-Length: 3000
Content-Type: video/mp4
Content-Range: bytes 3000-6000/8000

{binary data}

Fig. 1. UA-mapped Media Fragment retrieval.

GET /media.mp4 HTTP/1.1
Host: www.mfserver.com
Accept: video/*
Range: t:npt=11-19

HTTP/1.1 206 Partial Content
Accept-Ranges: bytes, t, track
Content-Length: 3000
Content-Type: video/mp4
Content-Range: bytes 3000-6000/8000
Content-Range-Mapping:
 {t:npt 10-20/0-30}={bytes 3000-6000/8000}

{binary data}

Fig. 2. Server-mapped Media Fragment retrieval.

In a second scenario, i.e., if the UA needs help to per-

form the mapping between media fragments and byte ranges,

the media fragment identifiers need to be communicated in

some way to a Media Fragments-aware server. Therefore,

the MFWG recommends a protocol for retrieval of media

fragments over HTTP. More specifically, a number of new

HTTP headers were developed, allowing to provide media

fragment information within an HTTP request. The details

of the exact syntax can be found in the specification [3];

examples of these new headers are provided in Fig. 2. In

this figure, a temporal range ([11s,19s[) is requested by us-

ing a time unit in the HTTP Range request header. The

Media Fragments-aware server interprets the Range header,

performs the mapping from time to byte ranges, extracts

the requested bytes, and responds to the UA. As one can

see, the HTTP response message contains a header (i.e.,

Content-Range-Mapping) indicating the actual extracted tem-

poral range. The latter can differ from the original requested

temporal range since random access points do not necessar-

ily correspond to the range boundaries and the fragments re-

turned by the server have to start with a random access point.

The returned temporal fragment will always include the re-

quested temporal fragment. Note that the UA can also re-

quest codec setup information, together with the temporal

range (in the example, the Range header would then contain

t:npt=11-19;include-setup). The response would

then consist of an HTTP multipart response message, contain-

ing both the setup information and the bytes corresponding to

the temporal range.

Finally, retrieving a track fragment using a URI query

simply comes down to the download of a resource, as illus-

trated in Fig. 3. It is important to note that, when using URI

queries and/or the newly defined HTTP headers for media

fragment retrieval, the server needs to be a Media Fragments-

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

GET /media.mp4?track=video HTTP/1.1
Host: www.mfserver.com
Accept: video/*

HTTP/1.1 200 OK
Content-Length: 5500
Content-Type: video/mp4

{binary data}

Fig. 3. Retrieving track fragments with a URI query.

Listing 1. Composing representations using MDP.
1 <MPD minBufferTime="PT2S" mediaPresentationDuration="

PT30S" baseURL="http://example.com/">
<Period start="PT0S">
<Representation mimeType="video/3gpp; codecs=avc"

bandwidth="256000">
<SegmentInfo duration="PT30S" baseURL="media.3

gp?track=highvid" />
5 </Representation>

<Representation mimeType="video/3gpp; codecs=avc"
bandwidth="128000">

<SegmentInfo duration="PT30S" baseURL="media.3
gp?track=lowvid" />

</Representation>
</Period>

10 </MPD>

aware server, thus also containing a fragment-to-byte range

translation module. Only in the first scenario, where the UA is

able to perform the mapping, a regular HTTP 1.1 Web server

is sufficient to serve the media content.

3. COMPOSITION OF MEDIA REPRESENTATIONS

As discussed in Sect. 1, HTTP streaming solutions make use

of a manifest file. It may describe different representations

(e.g., different bit rates, languages, or resolutions) of the same

media content. Typically, these representations correspond to

different media resources or track combinations within one

media resource. The latter means that we can point to a repre-

sentation in terms of a Media Fragment URI, using the track

axis. This way, it is possible to store different representations

within the same media resource.

Examples of manifest files using Media Fragment URIs to

point to representations are shown in Listings 1 and 2, using

the Media Presentation Description (MPD) and M3U8 syn-

tax respectively. Different representations/versions are rep-

resented by means of different URI queries. For instance,

media.3gp?track=highvid represents the high quality

version.

When different representations correspond to different

layers/views of a scalable/multiview media resource, the pro-

posed approach will fail. More specifically, the current Me-

dia Fragments 1.0 specification does not provide explicit so-

lutions for addressing scalability layers or alternative views.

However, it should be noted that scalability layers and alter-

native views are very similar to tracks; the only difference is

Listing 2. Composing representations using M3U8.
1 #EXTM3U

#EXT-X-STREAM-INF:PROGRAM-ID=1,BANDWIDTH=256
http://example.com/media.m3u8?track=highvid
#EXT-X-STREAM-INF:PROGRAM-ID=1,BANDWIDTH=128

5 http://example.com/media.m3u8?track=lowvid
#EXT-X-ENDLIST

Listing 3. Scalable media resources provide additional repre-

sentations.
1 <MPD minBufferTime="PT2S" mediaPresentationDuration="

PT30S" baseURL="http://example.com/">
<Period start="PT0S">
<Representation mimeType="video/3gpp; codecs=avc"

width="352" height="288" bandwidth="256000">
<SegmentInfo duration="PT30S" baseURL="media.3

gp?track=0" />
5 </Representation>

<Representation mimeType="video/3gpp; codecs=svc"
width="176" height="144" bandwidth="128000">

<SegmentInfo duration="PT30S" baseURL="media.3
gp?track=1_0" />

</Representation>
<Representation mimeType="video/3gpp; codecs=svc"

width="352" height="288" bandwidth="280000">
10 <SegmentInfo duration="PT30S" baseURL="media.3

gp?track=1_1" />
</Representation>

</Period>
</MPD>

that the former can be dependent on other layers/views while

this is not the case for the latter. Thus, if these layers/views

are identifyable, the track axis could be used to address them.

Consider a media resource containing two tracks: an

H.264/AVC video track and an SVC video track with two

spatial layers. The corresponding MPD manifest is de-

picted in Listing 3. As one can see, each scalabil-

ity layer corresponds to a representation (which is simi-

lar to what MPEG DASH will support). Further, the two

spatial layers are identified through the track axis (e.g.,

media.3gp?track=SVC layer0 could refer to the spa-

tial base layer of the SVC track). Of course, this only works if

the server disposes of an SVC bitstream extractor and is aware

of the mapping between layer identifiers (e.g., SVC layer0)

and scalability layers.

4. HTTP STREAMING USING THE MEDIA
FRAGMENTS PROTOCOL

In typical HTTP streaming scenarios, not only the different

representations of media content are described in the mani-

fest, but also information regarding the structure of one rep-

resentation. More specifically, for each representation, differ-

ent segments or temporal fragments are described. These dif-

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

ferent segments can also be represented by temporal Media

Fragment URIs. Moreover, UAs could even avoid segment

information and compose their own temporal Media Frag-

ment URIs. The compact manifest shown in Listing 1 would

then be sufficient for a UA to retrieve the media content using

HTTP streaming.

Based on the manifest, the UA can start interpreting or

generating Media Fragment URIs, each representing one tem-

poral piece of a certain representation. These Media Frag-

ment URIs will be translated into HTTP Range requests con-

taining using a time unit (see also Sect. 2.2). We illustrate the

behavior of the UA by using the manifest of Listing 1.
The UA decides to request the high quality representation

(i.e., the media resource media.3gp?track=highvid).
The UA can choose the target duration of each segment, for
example 3 seconds. Consequently, the first segment corre-
sponds to the Media Fragment URI http://example.
com/media.3gp?track=highvid#t=0,3, which re-
sults in the following HTTP request:

GET /media.3gp?track=highvid HTTP/1.1
Host: www.example.com
Accept: video/*
Range: t:npt=0-3;include-setup

The UA adds the ‘include-setup’ parameter to the Range
header in order to retrieve the codec setup information. Note
that the latter can be seen as an initialisation segment in
3GPP’s Adaptive HTTP Streaming specification. The Me-
dia Fragments-aware server interprets the request, calculates
which bytes from the requested resource need to be returned,
and constructs the following HTTP response message:

HTTP/1.1 206 Partial Content
Accept-Ranges: bytes, t
Content-Length: 100
Content-Type: video/3gpp
Content-Range-Mapping:
{t:npt 0-3.6/0-30;include-setup}=
{bytes 0-8,9-99/1067}

Content-type: multipart/byteranges
--SEP
Content-type: video/3gpp
Content-Range: bytes 0-8/1067
{binary data}
--SEP
Content-type: video/3gpp
Content-Range: bytes 9-99/1067
{binary data}
--SEP--

The response of the server consists of a multipart mes-

sage containing the codec setup data and the bytes cor-

responding to the requested time range. However, due

to random access point boundaries, the server returned

bytes corresponding to the time range [0s,3.6s[, as indi-

cated by the Content-Range-Mapping header. This means

that the next request of the UA will correspond to the

Media Fragment URI http://example.com/media.

3gp?track=highvid#t=3.6,6.6, without requesting

codec setup information since this is already retrieved.
After retrieving the bytes from 0s to 16.2s, the UA de-

cides to change the representation because less bandwidth is
available. The following HTTP request is sent to the server:

GET /media.3gp?track=lowvid HTTP/1.1
Host: www.example.com
Accept: video/*
Range: t:npt=16.2-19.2;include-setup

The UA requests bytes from the lower quality version (indi-
cated by the track parameter) and requests new codec setup
information. Since bytes up to timepoint 16.2s were already
retrieved (high quality), the UA seeks to position 16.2s in the
low quality version. The returned HTTP response message
contains the following Content-Range-Mapping header:

{t:npt 15.9-19.3/0-30;include-setup}=
{bytes 0-7,308-361/534}

Since random access points are not aligned between the two

representations, the server returns bytes corresponding to

the underlying random access boundaries (i.e., time range

[15.9,19.3[). Thus, the UA can seamlessly switch from high

to low quality between 15.9 and 16.2 seconds.

The presented approach lets UAs determine how fine or

coarse the requested segments are in terms of duration. Also,

the UA does not have to discover the location of random ac-

cess points within the representation and their segments. In-

deed, the server is able to perform the segment extraction and

communicates the random access point boundaries to the UA.

Also, codec initialisation information is determined by the

server and requested by the UA through the ‘include-setup’

parameter. Further, live scenarios are also supported by Me-

dia Fragment URIs by using wall-clock time codes in the tem-

poral axis. #t=clock:2010-10-11T11:19:01Z for

example is a temporal fragment starting on 11th Oct 2010 at

11hrs, 19min, 1sec. This way, not only information regard-

ing the different segments within a manifest file is avoided,

also updates of the manifest necessary in live scenarios are

not necessary anymore thanks to the use of wall-clock time

codes.

An HTTP adaptive streaming solution based on Media

Fragment URIs as the one presented in this paper looks

promising. It only requires a limited description of the dif-

ferent representations in a manifest and does not impose any

restrictions to underlying media formats. However, the pre-

sented solution only works if the W3C Media Fragments

1.0 specification is implemented within the Web infrastruc-

ture. More specifically, Web servers need to be extended with

support for the newly introduced Range unit (i.e., time) and

HTTP headers, as well as with a media fragments extractor

module that is able to perform the translation between me-

dia fragments and byte ranges. Additionally, current HTTP

caches will not be able to cache media fragments as they are

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

GET /media.mp4 HTTP/1.1
Host: www.mfserver.com
Accept: video/*
Range: t:npt=11-19
Accept-Range-Redirect: bytes

HTTP/1.1 307 Temporary Redirect
Location: http://mfserver.com/media.mp4
Accept-Ranges: bytes, t, track
Content-Length: 0
Content-Type: video/mp4
Content-Range-Mapping:
 {t:npt 10-20/0-30}={bytes 3000-6000/8000}
Range-Redirect: 3000-6000
Vary: Accept-Range-Redirect

Fig. 4. Cacheable media fragments.

not aware of the new Range units. Therefore, specialized me-

dia fragment caches should be developed in order to cache

media fragments served by Media Fragments-aware servers.

5. AVOIDING MEDIA FRAGMENT-AWARE
SERVERS

The MFWG does recognize that there should be solutions for

serving and retrieving media fragments using the current Web

infrastructure. For instance, the UA can request the server

to perform the translation between media fragments and byte

ranges, after which the UA uses the obtained byte ranges to

perform regular HTTP 1.1 byte range requests (HTTP com-

munication is illustrated in Fig. 4). However, this solution

still requires a Media Fragments-aware server. Such a server

can be avoided if the UA is able to perform the mapping be-

tween media fragments and byte ranges without help from the

server, as discussed in Sect. 2.2.

The translation between media fragments and their corre-

sponding byte ranges is dependent on the underlying media

container. Generally, two approaches exist to perform a re-

mote2 translation, dependent on the organization of the con-

tainer format.

When the underlying container format of the media re-

source supports a full index providing a complete mapping of

time and byte-offsets, then only the first couple of bytes corre-

sponding to the index need to be downloaded. Subsequently,

the index is interpreted by the UA in order to calculate the

mapping between media fragments and byte ranges. The lat-

ter is dependent of the container format since different con-

tainer formats use different structures to represent the index.

Examples of container formats providing support for such a

full index are MP4 and ASF.

When no full index is provided at the beginning of the me-

dia resource, the proper byte positions need to be found for a

given media fragment identifier. This is obtained by applying

a bisectional search over HTTP. More specifically, the UA

starts by guessing which byte position corresponds to a given

temporal position. Subsequently, these bytes are retrieved and

interpreted. If the byte position is too high/low, another guess

is made in the right direction until the correct byte offset is

2Note that ‘remote’ indicates that the mapping is calculated without hav-

ing the full media resource at our disposal.

Listing 4. M3U8 composition served by NinSuna (/Medi-

a/Apple/Avatar/Teaser.m3u8).
1 #EXTM3U

#EXT-X-STREAM-INF:PROGRAM-ID=1,BANDWIDTH=296960
/Media/Apple/Avatar/Teaser.m3u8?track=1;2
#EXT-X-STREAM-INF:PROGRAM-ID=1,BANDWIDTH=1230848

5 /Media/Apple/Avatar/Teaser.m3u8?track=3;4
#EXT-X-ENDLIST

found. It is clear that this method is less efficient in terms

of HTTP round-trips than the first method. Examples of con-

tainer format structures where bisectional search over HTTP

could be applied are Ogg files, WebM files, and fragmented

MP4 files.

6. IMPLEMENTATION WITHIN APPLE’S HTTP
LIVE STREAMING

In order to evaluate the feasibility of integrating Media Frag-

ment URIs into HTTP adaptive streaming techniques, we im-

plemented the above described ideas into Apple’s HTTP Live

Streaming solution [6]. More specifically, we used M3U8

as format to describe the manifest information. Also, native

players supporting HTTP Live Streaming such as iPod/iPad/i-

Phone and QuickTime X work with the presented solution.

As a server solution, we used NinSuna3, which is a fully

integrated media adaptation and delivery platform support-

ing the Media Fragment URI 1.0 specification [7]. Moreover,

NinSuna provides support for both query and fragment-based

media fragment retrieval along the temporal and track axis.

Note that the examples in the listings below are available on-

line for testing purposes (base URL is http://ninsuna.
elis.ugent.be).

As discussed in Sect. 3, different representations of the

same media content can be represented in terms of media

fragment URIs, using the track axis. This is illustrated in

Listing 4, where two representations are described. Tracks

‘1’ and ‘2’ correspond to the low quality audio and video ver-

sion, while tracks ‘3’ and ‘4’ correspond to the high quality

version.

When the UA chooses one representation to start the play-

back (e.g., the low quality version), it requests the correspond-

ing manifest (see Listing 5). Since we use an existing, non-

modified HTTP Live Streaming UA, we need to explicitly list

the media fragment URIs of the different time segments. The

latter are expressed with media fragment URIs using the time

and track dimension.

However, there is a difference in the approach explained

in Sect. 4. Since HTTP Live Streaming UAs such as the

iPhone do not support the Media Fragments URI protocol

3http://ninsuna.elis.ugent.be

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
 Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

 Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
 With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

 Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
 Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

 Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

