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The most important principle in Software Engineering is the Separation of

Concerns (SoC): The idea that a software system must be decomposed into

parts that overlap in functionality as little as possible. It is so central that it

appears in many different forms in the evolution of all methodologies,

programming languages and best practices.

Dijkstra mentions it in 1974: “separation of concerns… even if not

perfectly possible is yet the only available technique for effective ordering of

one’s thoughts”. Information Hiding, defined by Parnas in 1972, focuses on

reducing the dependency between modules through the definition of clear

interfaces. A further improvement was Abstract Data Types (ADT), by Liskov in

1974, which integrated data and functions in a single definition.

In the case of Object Oriented Programming (OOP), encapsulation and inheritance proved to be essential

mechanisms to support new levels of modularity. Design-by-Contract, proposed by Meyer in 1986, provides

guidelines of how to improve interfaces using pre-conditions and post-conditions. Finally, the separation of cross-

cutting concerns is the most important motivation for the proponents of Aspect Oriented Programming (AOP).

Doing the right thing.
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Since the first software systems were implemented, it was understood that it was important for them to be

modular. It is necessary to follow a methodology when decomposing a system into modules and this is generally

done by focusing on the software quality metrics of coupling and cohesion, originally defined by Constantine:

Coupling: The degree of dependency between two modules. We always want low coupling.

Cohesion: The measure of how strongly-related is the set of functions performed by a module. We always want

high cohesion.

All methodologies try to reduce coupling and increase cohesion. Information Hiding reduces coupling by isolating

the details of the implementation of state. ADTs reduce coupling by defining clear and abstract interfaces. An ADT

that specifies in a single definition the set of functions that can be executed on a type is certainly more cohesive

than a global data structure that is modified by external functions.

OOP adds another step in the reduction of coupling with the enforcement of encapsulation and the introduction of

dynamic binding and polymorphism. Inheritance allows us to increase cohesion by defining hierarchies based on

generalization and specialization, in which we can separate the functionality that belongs to the superclass from

its subclasses. AOP provides a solution for the problem of cross-cutting concerns, so that both the aspects and the

affected methods may become more cohesive.

There are many benefits that software developers expect to obtain when making a system more modular, reducing

coupling and increasing cohesion:

Maintainability: A measure of how easy it is to maintain the system. As a consequence of low coupling, there is

a reduced probability that a change in one module will be propagated to other modules. As a consequence of high
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cohesion, there is an increased probability that a change in the system requirements will affect only a small

number of modules.

Extensibility: A measure of how easily the system can be extended with new functionality. As a consequence of

low coupling, it should be easier to introduce new modules, for example a new implementation for an existing

interface. As a consequence of high cohesion, it should be easier to implement new modules without being

concerned with aspects that are not directly related to their functionality.

Reusability: A measure of how easy it is to reuse a module in a different system. As a consequence of low

coupling, it should be easier to reuse a module that was implemented in the past for a previous system, because

that module should be less dependent on the rest of the system. Accordingly, it should be easier to reuse the

modules of the current system in new future systems. As a consequence of high cohesion, the functionality

provided by a module should be well-defined and complete, making it more useful as a reusable component.

As software developers, after we recognize the importance of SoC, we need to apply this principle in at least two

ways: Understanding the power of our programming language tools and patterns, and learning how to evaluate

and compare different designs in terms of coupling and cohesion.

Tools: For each mechanism in the programming languages we use, we should understand how it can be applied

to reduce coupling and increase cohesion. For example: How encapsulation, dynamic binding, polymorphism and

generic types can be used to separate concerns? Similarly, for each Design Pattern, we can analyze how it helps to

make a system more modular.

Designs: When evaluating and comparing our own design alternatives, it is always useful to think in terms of

coupling and cohesion. Sometimes a design seems to be more complex than others, but this may be a consequence
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of a better separation of concerns, with fewer dependencies between modules through the definition of additional

layers. Another design may at first appear to have too many classes, but this may be an advantage if each class

becomes more cohesive.

Producing effective software designs requires lots of experience, but principles such as the Separation of Concerns

are essential to perform a great work. So reduce coupling, increase cohesion and good luck!

Putcha V. Narasimham says:

Very good and comprehensive introduction to Effective Software Design. I too have come to know this set of concepts /

principles in different forms.

While studying General Systems Theory and Systems Thinking (particularly of Ackoff Russell), I felt that the holistic

approach is either missing or not well utilized in SSAD / OOAD. There is too much of emphasis on partitioning, division,

analysis which cannot be applied to the NEW SYSTEM to be created… there is NO READYMADE SYSTEM to be partitioned.

It has to be conceived as a whole…more as a black-box with some capabilities. One can then think of possible composition

(there can be many) of such a system…which is more of HYPOTHESIS than analysis.
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I refer to Ackoff’s video in which he said this http://www.youtube.com/watch?v=IJxWoZJAD8k. See all the 3 parts. This is

very profound and it operates whether one knows it or not. I am interested in applying it to software design more rigorously.

Feel free to reach me at putchavn@yahoo.com

Best wishes,
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