
JULY/AUGUST 2012 1089-7801/12/$31.00 © 2012 IEEE Published by the IEEE Computer Society 45

Pr
og

ra
m

m
at

ic
 W

eb
 I

nt
er

fa
ce

s

L atency is a significant issue in appli-
cations such as networked control
systems, where update frequen-

cies of 10 to 500 milliseconds (ms) are
required for adequate control of indus-
trial processes.1 Closed-loop control over
the Internet is possible2 by modeling the
roundtrip delay and using UDP to con-
sider only the most recent data, possibly
discarding delayed packets. When an
application must provide real-time data
over an Internet connection in a peer-
to-peer fashion, however (as when deliv-
ering real-time stock quotes or medical
signals remotely for further processing),
then latency becomes very important.

HTTP polling is considered a good solu-
tion for delivering real-time information if

the message delivery interval is known —
that is, when the data transmission rate
is constant, as when transmitting sensor
readings such as hourly temperature or
water level. In such cases, the application
developer can synchronize the client to
request data when it’s known to be avail-
able. When the rate increases, however,
the overhead inherent to HTTP polling
repeats significant header information,
thus increasing latency. Earlier research
posits that HTTP wasn’t designed for
real-time, full-duplex communication
due to the complexity of real-time HTTP
Web applications.3 Thus, HTTP can sim-
ulate real-time communication only with
a high price — increased latency and
high network traffic.

Internet communication provides a convenient, hyperlinked, stateless exchange

of information, but can be problematic when real-time data exchange is

needed. The WebSocket protocol reduces Internet communication overhead

and provides efficient, stateful communication between Web servers and

clients. To determine whether WebSocket communication is faster than

HTTP polling, the authors built a Web application to measure the one-

way transmission latency of sending real-time wind sensor data at a rate of

4 Hz. They implemented a Jetty servlet to upgrade an HTTP connection to a

WebSocket connection. Here, they compare the WebSocket protocol latency

to HTTP polling and long polling.

Victoria Pimentel
Universidad Simón Bolívar

Bradford G. Nickerson
University of New Brunswick

Communicating and
Displaying Real-Time
Data with WebSocket

IC-16-04-Nick.indd 45 6/5/12 5:26 PM

Genius Sports Ex. 1046
p. 1

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Programmatic Web Interfaces

46 www.computer.org/internet/ IEEE INTERNET COMPUTING

Long polling is a variation on HTTP polling
that emulates the information push from a server
to a client. The Comet Web application model,4
for instance, was designed to push data from
a server to a browser without a browser HTTP
request, but is generally implemented using long
polling to accommodate multiple browsers. Long
polling isn’t believed to provide any substantial
improvement over traditional polling.5

The WebSocket protocol enables full-duplex
communication between a client and a remote
host over a single TCP socket.6 The WebSocket
API is currently a W3C working draft,7 but the
protocol is estimated to provide a three-to-one
reduction in latency against half-duplex HTTP
polling applications.5

Here, we compare the one-way transmis-
sion latency of WebSocket, long polling, and
the best-case scenario for HTTP polling in a
real-time application (see the “Related Work in
WebSocket Usage” sidebar for other research in
this area). We experimentally validate latency
behavior at a 4-Hz rate for the low-volume
communication (roughly 100 bytes per sec-
ond of sensor data) typical of real-time sensor
networks.

Web Client-Server Communication
To evaluate the Internet’s effectiveness for
real-time data exchange, we compare Web-
Socket communication with HTTP. We didn’t
consider other Internet protocols, such as
UDP,8 because they’re designed for streaming
real-time data when the newest data is more

important and allowing older information to be
dropped.

HTTP Polling
HTTP polling consists of a sequence of request-
response messages. The client sends a request to
a server. Upon receiving this request, the server
responds with a new message, if there is one, or
with an empty response if no new message is
available for that client. After a short time
Δ, called the polling interval, the client polls
the server again to see if any new messages are
available. Various applications including chat,
online games, and text messaging use HTTP
polling.

HTTP Long Polling
One weakness associated with polling is the
number of unnecessary requests made to the
server when it has no new messages for a cli-
ent. Long polling emerged as a variation on the
polling technique that efficiently handles the
information push from servers to clients. With
long polling, the server doesn’t send an empty
response immediately after realizing that no
new messages are available for a client. Instead,
the server holds the request until a new message
is available or a timeout expires. This reduces
the number of client requests when no new mes-
sages are available.

WebSocket
With continuous polling, an application must
repeat HTTP headers in each request from

Related Work in WebSocket Usage

Many researchers have tested and continue to test Web-
Socket usage for real-time applications. Bijin Chen and

Zhiqi Xu have developed a framework that uses the Web-
Socket protocol for browser-based multiplayer online games.1
They used a WebSocket implementation and evaluated per-
formance in a LAN Ethernet network using Wireshark soft-
ware to capture and analyze the size of IP packets traveling on
the network. With a time interval of 50 milliseconds between
updates of three game clients’ states, their testing showed that
the WebSocket protocol was sufficient to handle a server load
of 96,257 bytes (758 packets) per second.

Peter Lubbers and Frank Greco compare the WebSocket
protocol with HTTP polling in an application that updates
stock quotes every second.2 Their analysis shows a three-to-
one reduction in latency and up to a 500-to-one reduction
in HTTP header traffic. One question this research hasn’t

answered, however, is whether the advantage of less overhead
for WebSocket protocol communication persists over a wide
area network.

Our investigation in the main text explores the WebSocket
protocol’s efficiency over long distances via the Internet. We
performed experimental validation with clients located in dif-
ferent countries and at different times of day to probe a variety
of network conditions.

References
1. B. Chen and Z. Xu, “A Framework for Browser-Based Multiplayer Online

Games Using Webgl and Websocket,” Proc. Int’l Conf. Multimedia Technology

(ICMT 11), IEEE Press, 2011, pp. 471–474.

2. P. Lubbers and F. Greco, “HTML5 Web Sockets: A Quantum Leap in Scal-

ability for the Web,” SOA World Magazine, Mar. 2010; http://soa.sys-con.

com/node/1315473.

IC-16-04-Nick.indd 46 6/5/12 5:26 PM

Genius Sports Ex. 1046
p. 2

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Communicating and Displaying Real-Time Data with WebSocket

JULY/AUGUST 2012 47

the client and each response from the server.
Depending on the application, this can lead
to increased communication overhead. The
WebSocket protocol provides a full-duplex,
bi directional communication channel that operates
through a single socket over the Web and can
help build scalable, real-time Web applications.5

The WebSocket protocol has two parts. The
handshake consists of a message from the client
and the handshake response from the server.
The second part is data transfer. Jetty’s imple-
mentation of the WebSocket API is fully inte-
grated into the Jetty HTTP server and servlet
containers (see http://jetty.codehaus.org/jetty).
Thus, a Jetty servlet can process and accept a
request to upgrade an HTTP connection to
a WebSocket connection. Further details on the
WebSocket communication process are avail-
able in our prior work.9

Architecture
Our WindComm Web application using the
WebSocket protocol has three main compo-
nents: the wind sensor, the base station com-
puter (server), and the client. The base station
computer employs a Jetty server running a Web
application called WindComm. This application
communicates with the sensor and manages
HTTP and WebSocket requests from clients. A
client accesses the Web application to see real-
time wind sensor data using a Web browser that
supports the WebSocket protocol and HTML5’s
Canvas element.

Wind Sensor
The Gill WindSonic is a robust, ultrasonic wind
sensor with no moving parts that measures
wind direction and speed (see www.gill.co.uk/
products/anemometer/windsonic.html). We con-
nected the WindSonic to a base station com-
puter through an RS232 output cable connected
to a USB serial port in the base station computer
via an adapter. We simulated dynamic wind
with an oscillating fan.

WindSonic operates in three modes: contin-
uous, polled, and configuration. We used con-
tinuous mode and a data rate of 4 Hz to send
22-byte messages continuously.

Base Station Computer
The base station computer runs the WindComm
Web application implementing a Jetty servlet.
The application communicates with the sensor

using the RXTX Java library (http://rxtx.qbang.
org/wiki/index.php/Main_Page) to access the
computer serial port. WindComm provides a
near real-time channel for sensor data and must
keep up with the sensor’s 4-Hz output rate. We
implemented the WindComm Web application
in three versions. The first, called WindComm,
uses Jetty’s implementation of the HTML Web-
Socket protocol. The second, LongPollingWind-
Comm, implements HTTP long polling, and the
third, PollingWindComm, uses HTTP polling. In
all three approaches, we implemented a thread
to establish and maintain communication with
the wind sensor through the base station com-
puter serial port.

For LongPollingWindComm, we used Jetty’s
Continuations interface, which lets the servlet
suspend and hold a client request until an event
occurs or a timeout expires. For LongPolling-
WindComm, the event is a new sensor measure-
ment, and we set the timeout to 300 ms, which
is 50 ms more than the sensor’s output rate.

In PollingWindComm, the servlet doesn’t
hold the client request. Setting the timeout to
250 ms would assume that the latency is 0 ms.
We know the latency is significantly higher
than this, so setting Δ to 250 ms would result in
Polling WindComm running very slowly because
it would take longer to process the accumulating
queue of sensor observations. Thus, we set the
polling interval Δ of the client to 150 ms, 100 ms
less than the sensor’s output rate. We also con-
sidered the time that the client takes to parse
and display a sensor observation received from
the server before polling the server again. We
don’t count this parse-and-display time in the
latency observations, but we must account for it
when setting the polling interval.

Experimental Design
Our experiments compare one-way latency
between a client and our server for the Wind-
Comm, LongPollingWindComm, and Polling-
WindComm Web applications. Figure 1 shows a
timeline with marked events that are relevant to
our tests. For LongPollingWindComm, the time-
line is similar to the polling timeline, except
that t2 doesn’t necessarily occur after t1 or t0. If
a client request has been held, after t1 the serv-
let resumes using the Continuations interface,
and sends the packet to the client immediately.
The servlet keeps measured data that it hasn’t
yet transmitted in a buffer. It sends all buffered

IC-16-04-Nick.indd 47 6/5/12 5:26 PM

Genius Sports Ex. 1046
p. 3

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Programmatic Web Interfaces

48 www.computer.org/internet/ IEEE INTERNET COMPUTING

data each time a poll occurs for either polling
version.

Our definition of latency for all three versions
of the WindComm Web application is t4 − t0.
To report this one-way latency, the application
takes a time stamp at the server for t0 and a
second one at the client for t4. To make the time
stamps comparable, the client and server must
be synchronized.

Time Synchronization
The Network Time Protocol (NTP) is widely
used to synchronize computer clocks over the
Internet.10 The NTP packet is a UDP datagram
carried on port 123. For Linux, NTP is imple-
mented as a daemon to run continuously. This
daemon, NTPd, maintains the system time syn-
chronized with NTP time servers. We config-
ured NTPd on the base station computer and all
four client test computers to synchronize with
an NTP time server. Immediately before start-
ing a test, we (or a colleague at the client loca-
tion) ran the command "ntpq -p" in the client
and the server until they each reported an off-
set magnitude below 2 ms. The server always
reported an offset below 1 ms. We repeated the
command after each test as well to make sure
the offset remained below 2 ms. After syn-
chronizing the time in this fashion, the client
directed its HTML5-capable browser (Firefox
6.0.2 or later) to one of the three Web applica-
tions by entering the appropriate URL (such as
http://131.202.243.62:8080/WindComm/).

As soon as the client receives a message, it
takes a local time stamp. The client then parses
the message received, extracts the server time
stamp, calculates the latency, and saves it in
an array. When the array of 1,200 latencies is
filled, the test ends, and the client sends the
array’s contents to the server. We chose an
array size of 1,200 to correspond to approxi-
mately five minutes of measurements at a con-
tinuous 4-Hz rate.

Testing
Our tests ran WindComm, LongPollingWind-
Comm, and Pol l ingWindComm one af ter
another at three different local times until
each application successfully delivered 1,200
messages. The total time taken to run three
applications for each test was approximately
15 minutes, plus the latency, the time to start
applications, and the time to report the results
from the client to the base station. We planned
the first test for around 8:00 a.m. (not busy), the
second test for around 1:00 p.m. (normal traf-
fic), and the third test around 8:00 p.m. (busy).
We chose these times to vary the network
state. Although it would have been interest-
ing to run the test interspersing messages —
that is, one message from WindComm fol-
lowed by one from LongPollingWindComm
followed by one from PollingWindComm to
provide a more comparable network state for
each protocol — this wasn’t possible. Only one
running process (one Web application) in our

Figure 1. The time epochs at which we recorded time stamps to evaluate latency. In all cases, latency
is defined as t4 – t0, and doesn’t include the time to parse and display a sensor measurement.

Packet received
at client

Measurement
received at

server

Measurement
placed in server

queue

HTTP request
from client

Packet sent
to client

Packet received
at client

Measurement
received
at server

Packet sent
to client

WebSocket

Polling

t0

t1 t2

t3 t4

t0 t3 t4

t4 – t0

t4 – t0

IC-16-04-Nick.indd 48 6/5/12 5:26 PM

Genius Sports Ex. 1046
p. 4

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Communicating and Displaying Real-Time Data with WebSocket

JULY/AUGUST 2012 49

base station computer can access the wind sen-
sor at a time.

We ran the tests between our server located
at the University of New Brunswick in eastern
Canada, with clients in Edmonton, Canada; Cara-
cas, Venezuela; Lund, Sweden; and Nagaoka,
Japan. Note that, except for Lund, all the cli-
ents were located on a university campus. This
means that our test data was likely routed over
the research networks connecting university
campuses and not over the commercial Internet.
The client in Lund was located in a company
office building.

Results
Table 1 shows the results of our evaluation.
We ran a total of 12 tests for each method −
WebSocket (WS), long polling (LP), and polling
(P), repeating each test three times with the client
in four countries. In all 36 test cases, the server
delivered the 1,200 measurements to the client
within 5 minutes and 1 second after starting the
test. Table 1 reports the test start time, observed
average latency µ (ms, for N = 1,200), the sam-
ple standard deviation s (ms), and the ratio r of
µ
µ
LP

WS

or µ

µ
P

WS

for each of the tests. Tests in bold are

those we selected for further analysis.
For the real-time, low-volume continuous

data used here, all the tests showed that HTTP
polling average latency is significantly higher
(between 2.3 and 4.5 times higher) than either
WebSocket or long polling. The WebSocket
protocol can have a lower or higher average
latency than long polling. Over longer distances
(such as to Japan), the WebSocket protocol has
significantly (between 3.8 and 4.0 times) lower
average latency than long polling.

In the selected (bold) test results for Edmon-
ton, we observe that polling has a 3.75 times
longer average latency than the WebSocket
protocol (151.3 versus 40.3 ms). A difference of
means statistical test (with unknown and dif-
ferent population variances) indicates that the
null hypothesis H0 : µWS − µP = 0 is rejected at
the 99 percent confidence level in favor of the
alternate hypothesis H1 : µWS − µP < 0. Thus,
we have enough evidence to affirm that the
WebSocket protocol is significantly faster than
HTTP polling within Canada. In fact, all our
statistical testing provides strong evidence that
the WebSocket protocol always has significantly
lower latency than polling for the low-volume,
real-time data communication testing done here.

Long polling average latency for the 5-minute
test period starting at 9:10 a.m. was only 1.0 ms
longer than the WebSocket latency. Despite
this, the null hypothesis H0 : µWS − µLP = 0 is
also rejected at the 99 percent confidence level in
favor of the alternate hypothesis H1 : µWS − µLP < 0.
The difference in average latency of 1.0 ms
is less than the time synchronization offset
threshold of 2 ms. In all the Edmonton cases,
long polling and WebSocket average latencies
can be considered the same within experimen-
tal uncertainty.

The results for Caracas are essentially the
same, except for the selected tests starting at
12:00 noon and 12:05 p.m. In this case, the null
hypothesis H0 : µWS − µLP = 0 can’t be rejected
at the 99 or 95 percent confidence levels in favor
of the alternate hypothesis H1 : µWS − µLP ≠ 0.
Our evidence indicates that, in this case, the
WebSocket and long polling mean latencies are
the same.

The selected results for Lund show the same
trend as for Caracas — that is, the long polling
average latency of 87.5 ms starting at 10:53 a.m.
is 4.4 ms faster than the WebSocket average
latency of 91.9 ms. In this case, the null hypoth-
esis H0 : µWS − µLP = 0 is rejected at the 99 percent
confidence level in favor of H1 : µWS − µLP > 0.
Thus, we have enough evidence to affirm that
the WebSocket average latency µWS is greater
than the long polling average latency µLP .

All three test cases for Nagaoka are consis-
tent. The long polling average latency is sig-
nificantly (3.6 to 4.2 times) higher than the
WebSocket average latency. Statistical testing
shows that the null hypothesis H0 : µWS − µLP = 0
is rejected at the 99 percent confidence level in
favor of H1 : µWS − µLP < 0 in all three cases. In
one case (start times 11:22 and 11:28 a.m.), the
long polling average latency of 647.0 ms exceeds
that of the 584.3 ms polling average latency. The
null hypothesis H0 : µLP − µP = 0 is rejected at
the 99 percent confidence level in favor of the
alternate hypothesis H1 : µLP − µP > 0.

Long Polling
To explain why long polling performs nearly as
well as the WebSocket protocol in all but the
Nagaoka test, we divided our results into three
cases. The first case considers tests in which
µLP ≤ 125 ms, the second tests where 125 ms <
µLP ≤ 250 ms, and the third tests where
µLP > 250 ms.

IC-16-04-Nick.indd 49 6/5/12 5:26 PM

Genius Sports Ex. 1046
p. 5

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
 Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

 Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
 With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

 Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
 Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

 Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

