
HTTP as the Narrow Waist of the Future Internet

Lucian Popa
U.C. Berkeley / ICSI

Ali Ghodsi
U.C. Berkeley

Ion Stoica
U.C. Berkeley

ABSTRACT
Over the past decade a variety of network architectures have
been proposed to address IP’s limitations in terms of flexi-
ble forwarding, security, and data distribution. Meanwhile,
fueled by the explosive growth of video traffic and HTTP in-
frastructure (e.g., CDNs, web caches), HTTP has became the
de-facto protocol for deploying new services and applica-
tions. Given these developments, we argue that these archi-
tectures should be evaluated not only with respect to IP, but
also with respect to HTTP, and that HTTP could be a fertile
ground (more so than IP) for deploying the newly proposed
functionalities. In this paper, we take a step in this direction,
and find that HTTP already provides many of the desired
properties for new Internet architectures. HTTP is a content
centric protocol, provides middlebox support in the form of
reverse and forward proxies, and leverages DNS to decouple
names from addresses. We then investigate HTTP’s limita-
tions, and propose an extension, called S-GET that provides
support for low-latency applications, such as VoIP and chat.

1. INTRODUCTION
During the past decade, a plethora of new Internet archi-

tectures have been proposed to address the shortcomings of
IP in terms of flexibility, scale, and security (e.g., [10, 20,
27, 28, 31, 42, 47, 49]). Some of these limitations have been
traced to IP’s inability to decouple the concepts of address
and identity, its lack of explicit support for middleboxes, mo-
bility, and content distribution.

Meanwhile, industry has been pushing through changes
that are having a profound impact on the Internet. In partic-
ular, we are witnessing an explosive growth of HTTP traf-
fic [29, 39]. This trend is driven by the prevalence of the
existing HTTP infrastructure (e.g., CDNs, HTTP proxies,
and caches), the ease of deploying new functionality on the
data path via reverse and forward proxies, and the ability of
HTTP to penetrate corporate firewalls. In turn, the growth of
HTTP traffic pushes infrastructure providers to expand their
HTTP footprint, creating a positive feedback loop, which
further accelerates HTTP traffic growth.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Hotnets ’10, October 20–21, 2010, Monterey, CA, USA.
Copyright 2010 ACM 978-1-4503-0409-2/10/10 ...$10.00.

In this paper, we take this trend to its logical conclusion
and consider the scenario where HTTP becomes the de facto
“narrow waist” of the Internet—that is, the vast majority of
traffic runs over HTTP instead of directly over IP, and HTTP
itself might run on top of network layers other than IP.

Given such scenario, we argue that we should start evalu-
ating HTTP with respect to the existing Internet architecture
proposals, and, in the process, answer the following ques-
tions: What are the properties aimed by these architectures
that HTTP already provides, and what are the ones it does
not? What are HTTP’s main drawbacks? Can these draw-
backs be addressed by extending HTTP, or are they the result
of fundamental limitations of HTTP?

In this paper, we find that HTTP addresses many of the
limitations of IP, limitations which have been the target of
several recently proposed network architectures. First, HTTP
is a content-centric protocol, as each HTTP method speci-
fies the name of the resource (content) it operates on. This
allows proxies along a request’s path to cache the content,
or to redirect the request to the closest or least loaded server
storing a copy of the content. Building a content-centric net-
work, albeit at the network layer, has been one of the main
goals of recently proposed architectures such as DONA [28]
and CCN [27].

Second, HTTP supports both reverse and forward prox-
ies [3,16]. This allows senders and receivers to add middle-
boxes on the data path, functionality proposed by many to
be incorporated in the Internet [10,20,28,42,47].

Third, HTTP uses DNS names to refer to content. This
enables data “mobility” in the context of a DNS name, and
basic anycast functionality via DNS round-robin or modified
DNS resolution (typically done by CDNs).

However, HTTP is not without drawbacks. HTTP does
not address network-level DoS attacks, nor is HTTP a good
fit for low-latency services, such as VoIP, chat, and real-
time applications. To alleviate some of these drawbacks, we
propose a new HTTP GET method, called S-GET, which
enablesdatagram services on top of HTTP. S-GET can be
used to provide low-latency communication between clients,
end-host mobility, and implement delay tolerant networks.
Moreover, the HTTP datagram communication model inher-
ently enables users to be default-off, shielding them from
unwanted traffic. We show that such an extension achieves
high throughput and incurs low overhead.

We are not the first to argue that the narrow waist of the
Internet is changing. Several previous works have argued
that the transport layer should be incorporated in the Inter-
net’s narrow waist [17,36]. However, we believe that HTTP

1

Genius Sports Ex. 1047
p. 1

f

Find authenticated court documents without watermarks at docketalarm.com.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1868447.1868453&domain=pdf&date_stamp=2010-10-20
https://www.docketalarm.com/

would represent a far more drastic change of the narrow
waist, as it provides a data centric abstraction which is fun-
damentally different from the unicast and multicast abstrac-
tions, and there is already a tremendous HTTP infrastructure
(e.g., caches, proxies, servers) deeply integrated in the Inter-
net fabric.

While in this paper we argue that HTTP achieves many
of the properties targeted by the recently proposed Inter-
net architectures, we emphasize that it is not our intention
to underestimate the importance of research on clean-slate
designs. On the contrary, we strongly believe that such re-
search is necessary to better understand the limitations of
today’s Internet, and explore the solution space. Moreover,
we do not argue that HTTP is the right layer to implement
these properties. Instead, in this paper we merely take note
of the seemingly inevitable trend of HTTP becoming the de
facto protocol used by new services and applications, and ar-
gue that: (1) HTTP could be a fertile ground (more so than
IP) for deploying the solutions and techniques provided by
the clean slate proposals, and (2) new functionalities pro-
posed at the IP layer (already implemented by HTTP or not)
should consider their interaction with HTTP and should be
evaluated with respect to HTTP.

2. HTTP TAKES OVER THE WORLD (AGAIN)
With the advent of the web in mid-90’s, HTTP became

the dominant traffic in the Internet [33]. This led to the rapid
development of the Internet infrastructure to support HTTP
traffic. Content distribution networks as well as HTTP prox-
ies greatly increased the distribution scale and the availabil-
ity of the HTTP content.

However, the emergence of video and audio traffic at the
end of 90’s and the beginning of this decade challenged the
dominance of HTTP. Real Networks, Microsoft, and Adobe
employed streaming protocols, such as RTSP and RTMP, to
deliver media content. More recently, peer-to-peer technolo-
gies saw an explosive growth, with their traffic being dom-
inated by video and audio content. These trends seemed to
indicate that HTTP would lose its dominant position in the
Internet traffic.

However, today we are witnessing a resurgence of HTTP
traffic. Ironically, this resurgence has been driven by the
growing popularity of video traffic (in a recent report, Cisco
forecasts that by 2013, 90% of the consumer traffic will be
video [4,38]). To sustain such growth, the content providers
and aggregators have recently turned their attention to HTTP
for video distribution.

Several companies, including Move Networks and Swarm-
cast, have pioneeredHTTP chunking, which enables the de-
livery of video and audio over HTTP instead of traditional
streaming protocols. The basic idea is to chunk a video
stream into blocks of a few seconds each, and then distribute
these blocks as individual files by leveraging existing CDNs
and HTTP proxies. In turn, a client downloads the chunks,
stitches them together, and plays the original stream.

HTTP chunking has several advantages over traditional
streaming protocols. First, it increases the distribution scale

and reduces the cost, as CDNs have more HTTP servers
than streaming servers, and they do not incur licensing costs
for the HTTP servers (these servers are typically based on
open-source software, unlike the streaming servers). Fur-
thermore, using HTTP to distribute video can leverage the
HTTP caching proxies deployed by ISPs and enterprises.
Second, it improves availability: if an HTTP server fails, the
client can mask such a failure by requesting the subsequent
chunks from a different server or CDN. Third, it improves
quality, as a client can request multiple chunks simultane-
ously, which leads to aggregating the throughput of multiple
TCP connections. In contrast, traditional streaming proto-
cols use one TCP connection for data transfer. Fourth, it
improves penetration. Unlike streaming protocols such as
RTPS and RTMP that are blocked by some firewalls, HTTP
traffic is almost universally allowed.

These advantages have pushed HTTP chunking to the fore-
front of distribution technologies for both video-on-demand
(VoD) and live streaming content. Indeed, Microsoft used
HTTP chunking to stream the Beijing Olympics forNBC.
com, and used a second generation HTTP-based technol-
ogy, called Smooth Streaming [30], to stream the Vancouver
Winter Olympic Games. Apple uses an HTTP-chunking so-
lution to stream video to the iPhone, and Adobe, which dom-
inates the video market, recently announced their HTTP-
based solution [5].

HTTP traffic is also increasing at the expense of peer-to-
peer (P2P) traffic, as indicated by recent reports [4, 32, 38].
The promise of P2P has been to provide highly scalable, low
cost (in some cases free) content distribution. However, the
CDN delivery cost has decreased dramatically in the past
few years (e.g., by a factor of 10 between 2006 and 2010),
which had considerably decreased the appeal of P2P distri-
bution. Thus, it should come as no surprise, that today vir-
tually all major content providers, including Youtube, Hulu
and MLB use CDNs instead of P2P for content delivery.
With the advent of HTTP chunking and with a continuous
expansion of the HTTP infrastructure, we expect that this
trend will only intensify.

We therefore project that HTTP traffic will dominate (at
least in volume) Internet traffic.

3. HTTP VS. THE BRAVE NEW WORLD
Given the rapid growth of HTTP, we argue that the pro-

posals for new Internet architectures should be evaluated,
not only in the context of IP, but also in the context of HTTP.
Next, we contrast HTTP to several of these research propos-
als.

For the clarity of the comparison, we classify the numer-
ous research proposals to improve the Internet architecture
into five categories1: (a) proposals to transform the Internet
into a content centric network,e.g., [10, 13, 27, 28]; (b) pro-
posals to enable the explicit use of middleboxes,e.g., [10,
20,28,42,47]; (c) proposals to enable more flexible commu-
nication patterns, such as mobility, anycast and multicast,

1Note that some proposals belong to multiple categories.

2

Genius Sports Ex. 1047
p. 2

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Property HTTP support
Content centric network
[10, 13, 27, 28]

Yes, via named resources and
caching

Middlebox support
[10, 20, 28, 34, 40, 42, 47]

Yes, via proxies

Additional communication pat-
terns
– Mobility [10, 25, 42, 47]
– Multicast [37]
– Anycast [27, 28, 42, 47]
– Multipath / Multihomed [10,
47, 48]
– DTN [15]

Yes, via proposed S-GET extension
(see §4), caching, CDNs and DNS

Security extensions
– Data Authenticity [27, 28]
– DoS Protection
[9, 26, 49]

Yes/Partial via proposed S-GET
extension (see §4), HTTPS and
adding authentication field in
header (see [12, 18, 35])

Routing policy extensions [19,
22–24, 40]

No, but can be implemented mostly
independently of HTTP

Table 1: HTTP’s support for the main types the functionalities pro-

posed in the Internet architecture literature.

e.g., [10,15,20,25,31,34,37,42,44,47]; (d) proposals to in-
crease network security,e.g., [?, 8, 9, 11, 20, 26, 40, 49]; and
(e) proposals to extend the Internet routing policies and add
QoS policies,e.g., [19,22–24,40,48].

Table 1 presents a summary of our findings, which we
discuss in more detail next.

Content centric networks: Several research proposals have
advocated for content centric network architectures [13, 27,
28], where the communication revolves around data instead
of end-points. HTTP is already a content centric protocol, as
HTTP requests deal primarily with retrieving, storing, and
updating content. In particular, each HTTP request contains
the name of the content, similarly to the way the packets in
these proposals contain the content name [13,27,28]. More-
over, the massive HTTP caching infrastructure deployed in
the Internet exhibits another common property of the afore-
mentioned architectures, the pervasive use of caches.

One aspect in which HTTP and some of the content cen-
tric proposals differ is naming: while some of the proposals
use global and semantic-free names [28], HTTP binds con-
tent names to DNS names (in the form of URLs). We note
that content-based architectures are likely to require a res-
olution mechanism to translate human readable names into
content identifiers [27, 41, 46], though that service might be
outside of the architecture [28]. HTTP uses DNS for this
purpose and names content directly with human readable
names (similar to CCN [27]). There are five concerns asso-
ciated with DNS names: (i) persistence, (ii) latency, (iii) fast
updates, (iv) availability, and (v) security. We note, however,
that recent developments have alleviated these concerns to
some degree. The emergence of third party DNS infrastruc-
tures, such as OpenDNS and Google Public DNS, improve
latency and availability. In addition, they alleviate the per-
sistence concern, as a user can obtain names from these ser-
vices, instead of her own organization, and preserve these
names when moving from an organization to another. Dy-
namic DNS has been proposed to address the fast update
problem [45], and more recently, OpenDNS has provided
low latency updates [2]. Still, despite these developments,

more research is needed to fully address the persistence and
fast updates of DNS names. Finally, DNSSEC addresses the
security of the name resolution (we discuss content integrity
later in this section).

Explicit middlebox support: Numerous proposals argue
for explicit middlebox support in the Internet,e.g., [10, 20,
28, 42, 47]. Since IP does not expose a middlebox-like ab-
straction to end-hosts, this leaves one no choice but to physi-
cally place the middlebox on the IP data path. This operation
is not only complex, but also fails to guarantee correctness in
the presence of IP path changes. Furthermore, implementing
sophisticated middlebox functionality (e.g., caching, web ac-
celeration) that changes the number, the size, or the content
of the packets may require to violate the end-to-end seman-
tics of IP.

In contrast, HTTP does provide support for middleboxes
via explicit forward proxies and via reverse proxies [16].
Clients and servers can leverage these proxies to insert a va-
riety of functionalities on the data path, including caching,
web acceleration, content filtering, intrusion detection, load
balancing, and anonymization.2

Flexible communication: During the past two decades, many
solutions have been proposed to extend IP to support mo-
bility, multicast, anycast, multi-path and delay tolerant net-
works (DTN), [15, 25, 34, 37, 42, 44, 47, 48]. HTTP can di-
rectly offer some of these services. As we have discussed
in § 2, HTTP has been successfully used to provide large
scale single-source multicast (e.g., the live transmissions of
the last two Olympic games, and the 2009 US presidential
inauguration). HTTP can provide anycast by leveraging the
DNS anycast functionality, or through reverse HTTP prox-
ies, such as Squid [3]. Through DNS updates, HTTP sup-
ports single host mobility. However, HTTP does not support
simultaneous end-host mobility, or multi-path communica-
tions.

Security: A large body of research is concerned with im-
proving the security of the Internet by providing defense
against DoS attacks [9, 26, 49], or by ensuring data authen-
ticity and integrity [27, 28]. While HTTP does not protect
against IP-level DoS attacks, the widespread caching infras-
tructure and proprietary HTTP-based DoS mitigation prod-
ucts [1] do improve the status quo of DoS protection. On
the other hand, data authenticity and integrity guarantees can
be implemented within the existing HTTP in several ways:
by embedding content-hashes and digital signatures in the
HTTP header [12, 18], by using self-certified URLs, or by
using HTTPS (see our extended TR [35]).

Routing and QoS:Many proposals have aimed to improve
the robustness, efficiency, and security of inter/intra domain
routing, as well as to provide QoS guarantees [19, 22–24].
With few exceptions3, HTTP does not address any of these

2It is also possible to chain multiple HTTP proxies (e.g., the
cache_peer option in Squid [3]).
3HTTP can be used to implement loose source routing via mul-
tiple proxies by using the CONNECT method. Since each proxy
can control which other proxies it is willing to relay connections

3

Genius Sports Ex. 1047
p. 3

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

A S B
PUT GET

Figure 1: Two HTTP clients A and B exchanging data
through an HTTP server S, which acts as a relay

challenges directly. Thus, this remains an area of research
largely unaffected by HTTP.

In summary (see Table 1), HTTP already provides support
for middleboxes and content-centric networking, and partial
support for mobility, anycast and multicast. Many security
properties can be achieved by using HTTPS or by leverag-
ing the flexibility of the the HTTP header to implement new
security mechanisms.

Despite its many strengths, HTTP is not perfect. First,
HTTP is a pull oriented protocol where receivers need to ex-
plicitly ask for new data. As we will discuss in the next sec-
tion, this is not a good fit for datagram and connection ori-
ented services, such as VoIP, video-conferencing, and real-
time applications. Second, HTTP incurs a non-trivial over-
head when compared to IP. Third, as discussed in this sec-
tion, HTTP does not provide or provides limited support for
QoS, network layer DoS protection, and naming persistence.
In the reminder of this paper, we focus on addressing the first
limitation, and leave the others for future work.

4. DATAGRAM SERVICES OVER HTTP
In this section we describe a datagram communication

model on top of HTTP. In this paper, we use liberally the
term of “datagram” to denote a communication service in
which two or more clients exchange application data units
(ADUs) and does not provide end-to-end reliability or in-
order delivery. The main goal of this datagram service is
to support low-latency applications such as VoIP, chat, and
video conferencing, which are hard to implement in the cur-
rent client-server model employed by HTTP.

The natural approach to implement a datagram service on
top of today’s HTTP is for a sender,A, to publish data to an
HTTP server and for receiverB to get the piece of data from
the server (see Fig. 1). However, this pull communication
abstraction is not appropriate for low-latency applications,
as the receiver (client) does not know when new data has be-
come available. The only way to reduce the latency from the
time A publishes the content to the timeB fetches it is for
B to periodically check for the content availability as often
as possible. Assuming the receiver checks for content every
T ms, the end-to-end latency may exceedT ms. If an ap-
plication wants to achieve an end-to-end latency on par with
cross country latencies, it needs to pull about every50 ms.
Such high pulling frequencies can be prohibitive both for the
client and the server, especially when the receiver does not
knowwhen andwhich sender starts sending data.

To reduce the end-to-end delay, we argue that HTTP should
also support a push communication abstraction,i.e., provide

to, security concerns traditionally associated with IP loose source
routing are mitigated.

a mechanism that allows GET requests for content that is
not yet available at the server. In particular, we propose
to extend HTTP with a new type of GET request, called
Subscribe-GET (S-GET), that “waits” for content at the server,
instead of having the server return an error when content is
not available.

Note that while one could continue to use IP for latency-
sensitive applications, providing a datagram service over HTTP
has the advantage of leveraging all the HTTP benefits, as we
discuss in Sec. §4.2.

4.1 Subscribe-GET (S-GET)
The format of an S-GET request is similar to that of a tra-

ditional GET. However, unlike GET requests, HTTP servers
store S-GET requests up to an expiration timeout associated
to the request. As long as the S-GET is stored at the server,
any updates (through PUTs) to the URI of the S-GET are
sent to the client that issued the S-GET. A server removes
an S-GET request only after the timeout expires. Each up-
date is sent to the client through a regular HTTP response.

S-GET only returns content published after the S-GET has
been received by the server. Hence, upon receiving an S-
GET request for a URI, the server does not match it against
the content already stored under that URI. Proxies never cache
the content returned by S-GET.

Note that S-GET provides the abstraction of a named pipe,
where the client opens a pipe through an S-GET request, and
the sender writes data (using either POST or PUT) to the
pipe. The use of S-GET represents just another instantiation
of the publish-subscribe paradigm, which has been strongly
advocated by previous work [14].

S-GET represents a departure from HTTP’s stateless model,
raising concerns about performance, memory requirements
and failure resilience. Our evaluation shows that the perfor-
mance impact of S-GET is not significant. S-GET also uses
soft state, which leaves the failure semantics of HTTP based
protocols largely unchanged.

The S-GET request contains the desired timeout as a header
attribute. For security purposes, the server may not accept
large timeout values, in which case it returns an error re-
sponse containing the maximum allowed timeout. To extend
their duration, S-GET requests need to be “refreshed” before
their expiration.

S-GET is useful beyond the datagram abstraction we have
discussed so far. Many websites today attempt to implement
“HTTP push”, a similar functionality where the server sends
data to the client without the need for the client to query the
data explicitly. These solutions are implemented on top of
HTTP, typically using CGI or Javascript scripts [6,7]. In this
context, the S-GET primitive can be seen as an effort to stan-
dardize these ad-hoc mechanisms. One advantage of stan-
dardizing S-GET is that proxies would appropriately cache
and handle S-GETs (see the next paragraph). In addition,
ad-hoc methods suffer from portability issues, since differ-
ent clients/servers use their own implementations and APIs.

Caching Proxies:Today, proxies cache GETresponses and
deliver them to subsequent GETs for that URI. To support

4

Genius Sports Ex. 1047
p. 4

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

S-GET, proxies should cache S-GETrequests rather than re-
sponses,i.e., the dual of what is done today. If the proxy
receives multiple S-GETs for the same URI, it should only
forward the first to the server. The rest of the S-GETs could
be satisfied by relaying content that is anyway being fetched
for the first request; this behavior is similar to that of an IP
multicast router.

Usage Example:Consider a point-to-point communication
between two hostsA andB, whereA sendsB a sequence of
ADUs. In the HTTP datagram model (see Fig. 1)B regis-
ters an S-GET for a URI andA sends all its ADUs to that
URI through HTTP PUTs. For example, the URI can be
S/from/A/to/B/x, whereS is the server’s host name,
andx is for distinguishing different sessions between two
hosts (similar to TCP ports). Since publishing a new ADU
through PUT modifies the content atS/from/A/to/B/x,
the server will forward each ADU toB.

4.2 Benefits of HTTP Datagrams

Mobility: The proposed datagram communication on top of
HTTP enables both end-hosts to move at the same time, thus
supporting simultaneous mobility.

Multicast and Large Scale Data Distribution: Multi-sender
multicast can be implemented by having each participant
register an S-GET request for the same URI, which plays
the role of an IP multicast address. This implements an open
group multicast model similar to IP multicast, but access
control can be implemented on top (see [35] for details).

HTTP has already been proven highly successful for stream-
ing data to large audiences (see § 2 and § 3). The proposed S-
GET method further improves this service forlive streaming,
in which the availability of new chunks needs to be signaled
to receivers. S-GET can then be used as a control channel
for signaling the availability of new chunks.

Multi-homing and Multiple paths: Multi-homed clients
can setup different S-GET receive channels for each inter-
face, using multiple links for one communication. To further
increase reliability and throughput, clients can use multiple
intermediary servers,e.g., receiverB sends S-GET requests
to serversS1 andS2 and senderA alternates between send-
ing toS1 andS2. This way, even clients with a single inter-
face can use multiple paths.

Delay Tolerant Networking (DTN): The high level idea for
supporting DTN is that during disconnection periods, the
intermediary HTTP servers act as a buffer to store ADUs.
Our DTN solution uses a combination of S-GET and GET
to fetch and resume data transfers (see our TR [35]).

NAT/Firewall Penetration and Default-Off: All HTTP re-
quests are client-initiated and hence HTTP datagrams tra-
verse today’s NATs and firewalls. More fundamentally, HTTP
datagrams would enable an architecture with two types of
entities, clients, which are default-off and servers, which are
reachable by everyone. This emulates the architecture envi-
sioned in [21], with the addition that in our proposal, clients
can still communicate among themselves. This way, DDoS

attacks can be alleviated since resource-weak hosts can be
default-off and receive data through HTTP datagram chan-
nels opened at multiple resourceful servers and data centers.

4.3 Other Considerations

Server Selection: The placement of the HTTP server has
crucial impact on the performance of the HTTP datagram
service. For good performance, each host may chose a nearby
server to receive messages, similar toi3 [42]. This way, end-
hosts can avoid the risk of picking a server far away from
both the sender and the receiver, which may lead to inef-
ficient routing. It has been previously observed that com-
municating through a one-hop overlay using a carefully se-
lected Akamai server often outperforms a direct connection
between two end-points [43]. Thus, CDNs are already in a
good position to offer HTTP datagram services. For other
considerations such as DNS names corresponding to multi-
ple IP addresses see our TR [35].

Connection Establishment:HTTP datagrams can be used
to provide functionalities provided by traditional connection-
oriented services:listen, connect, and reliability. Lis-
ten can be implemented using S-GET on alisten URI, e.g.,
S/listen/B and a connection can be set up by having
one URI per unidirectional channel,e.g., S/from/B/to/
A. Please see our TR for details [35].

Security: The HTTP datagram service faces three types of
attacks: impersonation, eavesdropping and DoS attacks. First,
a malicious node could impersonate a sender by putting ADUs
at the receiver’s S-GET URI. Second, an attacker could eaves-
drop by issuing an S-GET request to the receiver’s end-point
URI. With a similar attack mounted on the receiver’s lis-
ten channel, the attacker can hijack connections. Finally,
a denial-of-service (DoS) attack could be launched against
the server by sending many PUT requests (an attack that can
also occur today) or by registering many S-GETs, to exhaust
its resources.

The impersonation and eavesdropping attacks can be pre-
vented by the use of randomly selected URIs and encryption,
e.g., end-point channels contain random strings and listening
channels use encryption. Our analysis suggests that HTTP
datagrams do not fundamentally increase attackers’ power to
DoS HTTP servers (see our TR [35]).

Interaction with Transport: In our implementation, the en-
tire S-GET communication is performed over a single TCP
connection. However, note that since S-GET does not pro-
vide reliability or in-order delivery, in theory, it can be im-
plemented over other protocols than TCP.

5. PRELIMINARY EVALUATION
The performance of an architecture based on HTTP de-

pends on several factors: the performance of CDNs, the per-
vasiveness of caches, the hit rate of caches, the scalability of
HTTP proxies and the efficiency of the proposed datagram
service. In this section, we summarize the preliminary eval-
uation results restricted to the datagram service (for more
evaluation results, see [35]).

5

Genius Sports Ex. 1047
p. 5

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
 Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

 Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
 With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

 Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
 Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

 Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

