
Get started with WebRTC

Sam Dutton

 (https://twitter.com/sw12) (https://github.com/samdutton) (https://glitch.com/@samdutton) (https://techhub.social/@samdutton) (https://samdutton.com)

WebRTC is a new front in the long war for an open and unencumbered web.

Brendan Eich, inventor of JavaScript

Real-time communication without plugins

Imagine a world where your phone, TV, and computer could communicate on a common platform. Imagine it was easy to add video chat and peer-to-peer data sharing to

your web app. That's the vision of WebRTC.

Want to try it out? WebRTC is available on desktop and mobile in Google Chrome, Safari, Firefox, and Opera. A good place to start is the simple video chat app at appr.tc

(https://appr.tc):

1. Open appr.tc (https://appr.tc) in your browser.

2. Click Join to join a chat room and let the app use your webcam.

3. Open the URL displayed at the end of the page in a new tab or, better still, on a different computer.

Quick start

Haven't got time to read this article or only want code?

To get an overview of WebRTC, watch the following Google I/O video or view these slides (https://io13webrtc.appspot.com/):

Real-time communication with WebRTC: Google I/O 2013Real-time communication with WebRTC: Google I/O 2013

8/7/24, 1:09 PM Get started with WebRTC | Articles | web.dev

https://web.dev/articles/webrtc-basics 1/27Genius Sports Ex. 1038
p. 1

f

Find authenticated court documents without watermarks at docketalarm.com.

https://twitter.com/sw12
https://twitter.com/sw12
https://twitter.com/sw12
https://twitter.com/sw12
https://github.com/samdutton
https://github.com/samdutton
https://github.com/samdutton
https://github.com/samdutton
https://glitch.com/@samdutton
https://glitch.com/@samdutton
https://glitch.com/@samdutton
https://glitch.com/@samdutton
https://techhub.social/@samdutton
https://techhub.social/@samdutton
https://techhub.social/@samdutton
https://techhub.social/@samdutton
https://samdutton.com/
https://samdutton.com/
https://samdutton.com/
https://samdutton.com/
https://appr.tc/
https://appr.tc/
https://appr.tc/
https://appr.tc/
https://appr.tc/
https://appr.tc/
https://appr.tc/
https://io13webrtc.appspot.com/
https://io13webrtc.appspot.com/
https://io13webrtc.appspot.com/
https://www.youtube.com/watch?v=p2HzZkd2A40
https://www.docketalarm.com/

If you haven't used the getUserMedia API, see Capture audio and video in HTML5 (https://www.html5rocks.com/en/tutorials/getusermedia/intro) and simpl.info

getUserMedia (https://www.simpl.info/getusermedia).

To learn about the RTCPeerConnection API, see the following example and 'simpl.info RTCPeerConnection' (https://simpl.info/rtcpeerconnection).

To learn how WebRTC uses servers for signaling, and firewall and NAT traversal, see the code and console logs from appr.tc (https://appr.tc).

Can’t wait and just want to try WebRTC right now? Try some of the more-than 20 demos (https://webrtc.github.io/samples) that exercise the WebRTC JavaScript APIs.

Having trouble with your machine and WebRTC? Visit the WebRTC Troubleshooter (https://test.webrtc.org).

Alternatively, jump straight into the WebRTC codelab (https://codelabs.developers.google.com/codelabs/webrtc-web/), a step-by-step guide that explains how to build a

complete video chat app, including a simple signaling server.

A very short history of WebRTC

8/7/24, 1:09 PM Get started with WebRTC | Articles | web.dev

https://web.dev/articles/webrtc-basics 2/27Genius Sports Ex. 1038
p. 2

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.html5rocks.com/en/tutorials/getusermedia/intro
https://www.html5rocks.com/en/tutorials/getusermedia/intro
https://www.html5rocks.com/en/tutorials/getusermedia/intro
https://www.simpl.info/getusermedia
https://www.simpl.info/getusermedia
https://www.simpl.info/getusermedia
https://www.simpl.info/getusermedia
https://simpl.info/rtcpeerconnection
https://simpl.info/rtcpeerconnection
https://simpl.info/rtcpeerconnection
https://appr.tc/
https://appr.tc/
https://appr.tc/
https://webrtc.github.io/samples
https://webrtc.github.io/samples
https://webrtc.github.io/samples
https://test.webrtc.org/
https://test.webrtc.org/
https://test.webrtc.org/
https://codelabs.developers.google.com/codelabs/webrtc-web/
https://codelabs.developers.google.com/codelabs/webrtc-web/
https://codelabs.developers.google.com/codelabs/webrtc-web/
https://www.docketalarm.com/

One of the last major challenges for the web is to enable human communication through voice and video: real-time communication or RTC for short. RTC should be as

natural in a web app as entering text in a text input. Without it, you're limited in your ability to innovate and develop new ways for people to interact.

Historically, RTC has been corporate and complex, requiring expensive audio and video technologies to be licensed or developed in house. Integrating RTC technology

with existing content, data, and services has been difficult and time-consuming, particularly on the web.

Gmail video chat became popular in 2008 and, in 2011, Google introduced Hangouts, which uses Talk (as did Gmail). Google bought GIPS, a company that developed

many components required for RTC, such as codecs and echo cancellation techniques. Google open sourced the technologies developed by GIPS and engaged with

relevant standards bodies at the Internet Engineering Task Force (IETF) and World Wide Web Consortium (W3C) to ensure industry consensus. In May 2011, Ericsson built

the first implementation of WebRTC (https://labs.ericsson.com/developer-community/blog/beyond-html5-peer-peer-conversational-video).

WebRTC implemented open standards for real-time, plugin-free video, audio, and data communication. The need was real:

Many web services used RTC, but needed downloads, native apps, or plugins. These included Skype, Facebook, and Hangouts.

Downloading, installing, and updating plugins is complex, error prone, and annoying.

Plugins are difficult to deploy, debug, troubleshoot, test, and maintain - and may require licensing and integration with complex, expensive technology. It's often

difficult to persuade people to install plugins in the first place!

The guiding principles of the WebRTC project are that its APIs should be open source, free, standardized, built into web browsers, and more efficient than existing

technologies.

Where are we now?

WebRTC is used in various apps, such as Google Meet. WebRTC has also been integrated with WebKitGTK+

 (https://labs.ericsson.com/developer-community/blog/beyond-html5-conversational-voice-and-video-implemented-webkit-gtk) and Qt native apps.

WebRTC implements these three APIs: - MediaStream (also known as getUserMedia) - RTCPeerConnection - RTCDataChannel

The APIs are defined in these two specs:

WebRTC (https://w3c.github.io/webrtc-pc/)

getUserMedia (https://www.w3.org/TR/mediacapture-streams)

All three APIs are supported on mobile and desktop by Chrome, Safari, Firefox, Edge, and Opera.

8/7/24, 1:09 PM Get started with WebRTC | Articles | web.dev

https://web.dev/articles/webrtc-basics 3/27Genius Sports Ex. 1038
p. 3

f

Find authenticated court documents without watermarks at docketalarm.com.

https://labs.ericsson.com/developer-community/blog/beyond-html5-peer-peer-conversational-video
https://labs.ericsson.com/developer-community/blog/beyond-html5-peer-peer-conversational-video
https://labs.ericsson.com/developer-community/blog/beyond-html5-peer-peer-conversational-video
https://labs.ericsson.com/developer-community/blog/beyond-html5-conversational-voice-and-video-implemented-webkit-gtk
https://labs.ericsson.com/developer-community/blog/beyond-html5-conversational-voice-and-video-implemented-webkit-gtk
https://labs.ericsson.com/developer-community/blog/beyond-html5-conversational-voice-and-video-implemented-webkit-gtk
https://labs.ericsson.com/developer-community/blog/beyond-html5-conversational-voice-and-video-implemented-webkit-gtk
https://w3c.github.io/webrtc-pc/
https://w3c.github.io/webrtc-pc/
https://w3c.github.io/webrtc-pc/
https://www.w3.org/TR/mediacapture-streams
https://www.w3.org/TR/mediacapture-streams
https://www.w3.org/TR/mediacapture-streams
https://www.docketalarm.com/

getUserMedia: For demos and code, see WebRTC samples (https://webrtc.github.io/samples) or try Chris Wilson's amazing examples (https://webaudiodemos.appspot.com) that

use getUserMedia as input for web audio.

RTCPeerConnection: For a simple demo and a fully functional video-chat app, see WebRTC samples Peer connection

(https://webrtc.github.io/samples/src/content/peerconnection/pc1/) and appr.tc (https://appr.tc), respectively. This app uses adapter.js (https://github.com/webrtc/adapter), a JavaScript

shim maintained by Google with help from the WebRTC community (https://github.com/webrtc/adapter/graphs/contributors), to abstract away browser differences and spec

changes.

RTCDataChannel: To see this in action, see WebRTC samples (https://webrtc.github.io/samples/) to check out one of the data-channel demos.

The WebRTC codelab (https://codelabs.developers.google.com/codelabs/webrtc-web/#0) shows how to use all three APIs to build a simple app for video chat and file sharing.

Your first WebRTC

WebRTC apps need to do several things:

Get streaming audio, video, or other data.

Get network information, such as IP addresses and ports, and exchange it with other WebRTC clients (known as peers) to enable connection, even through NATs

(https://en.wikipedia.org/wiki/NAT_traversal) and firewalls.

Coordinate signaling communication to report errors and initiate or close sessions.

Exchange information about media and client capability, such as resolution and codecs.

Communicate streaming audio, video, or data.

To acquire and communicate streaming data, WebRTC implements the following APIs:

MediaStream (https://dvcs.w3.org/hg/audio/raw-file/tip/streams/StreamProcessing.html) gets access to data streams, such as from the user's camera and microphone.

RTCPeerConnection (https://dev.w3.org/2011/webrtc/editor/webrtc.html#rtcpeerconnection-interface) enables audio or video calling with facilities for encryption and

bandwidth management.

RTCDataChannel (https://dev.w3.org/2011/webrtc/editor/webrtc.html#rtcdatachannel) enables peer-to-peer communication of generic data.

(There is detailed discussion of the network and signaling aspects of WebRTC later.)

MediaStreamAPI (also known as getUserMediaAPI)

8/7/24, 1:09 PM Get started with WebRTC | Articles | web.dev

https://web.dev/articles/webrtc-basics 4/27Genius Sports Ex. 1038
p. 4

f

Find authenticated court documents without watermarks at docketalarm.com.

https://webrtc.github.io/samples
https://webrtc.github.io/samples
https://webrtc.github.io/samples
https://webaudiodemos.appspot.com/
https://webaudiodemos.appspot.com/
https://webaudiodemos.appspot.com/
https://webrtc.github.io/samples/src/content/peerconnection/pc1/
https://webrtc.github.io/samples/src/content/peerconnection/pc1/
https://webrtc.github.io/samples/src/content/peerconnection/pc1/
https://webrtc.github.io/samples/src/content/peerconnection/pc1/
https://appr.tc/
https://appr.tc/
https://appr.tc/
https://github.com/webrtc/adapter
https://github.com/webrtc/adapter
https://github.com/webrtc/adapter
https://github.com/webrtc/adapter/graphs/contributors
https://github.com/webrtc/adapter/graphs/contributors
https://github.com/webrtc/adapter/graphs/contributors
https://webrtc.github.io/samples/
https://webrtc.github.io/samples/
https://webrtc.github.io/samples/
https://codelabs.developers.google.com/codelabs/webrtc-web/#0
https://codelabs.developers.google.com/codelabs/webrtc-web/#0
https://codelabs.developers.google.com/codelabs/webrtc-web/#0
https://en.wikipedia.org/wiki/NAT_traversal
https://en.wikipedia.org/wiki/NAT_traversal
https://en.wikipedia.org/wiki/NAT_traversal
https://en.wikipedia.org/wiki/NAT_traversal
https://dvcs.w3.org/hg/audio/raw-file/tip/streams/StreamProcessing.html
https://dvcs.w3.org/hg/audio/raw-file/tip/streams/StreamProcessing.html
https://dvcs.w3.org/hg/audio/raw-file/tip/streams/StreamProcessing.html
https://dev.w3.org/2011/webrtc/editor/webrtc.html#rtcpeerconnection-interface
https://dev.w3.org/2011/webrtc/editor/webrtc.html#rtcpeerconnection-interface
https://dev.w3.org/2011/webrtc/editor/webrtc.html#rtcpeerconnection-interface
https://dev.w3.org/2011/webrtc/editor/webrtc.html#rtcdatachannel
https://dev.w3.org/2011/webrtc/editor/webrtc.html#rtcdatachannel
https://dev.w3.org/2011/webrtc/editor/webrtc.html#rtcdatachannel
https://www.docketalarm.com/

The MediaStream API (https://dev.w3.org/2011/webrtc/editor/getusermedia.html) represents synchronized streams of media. For example, a stream taken from camera and

microphone input has synchronized video and audio tracks. (Don't confuse MediaStreamTrack with the <track> element, which is something entirely different

 (https://www.html5rocks.com/en/tutorials/track/basics/).)

Probably the easiest way to understand the MediaStream API is to look at it in the wild:

1. In your browser, navigate to WebRTC samples getUserMedia (https://webrtc.github.io/samples/src/content/getusermedia/gum/).

2. Open the console.

3. Inspect the stream variable, which is in global scope.

Each MediaStream has an input, which might be a MediaStream generated by getUserMedia(), and an output, which might be passed to a video element or an

RTCPeerConnection.

The getUserMedia() method takes a MediaStreamConstraints object parameter and returns a Promise that resolves to a MediaStream object.

Each MediaStream has a label, such as 'Xk7EuLhsuHKbnjLWkW4yYGNJJ8ONsgwHBvLQ'. An array of MediaStreamTracks is returned by the getAudioTracks() and

getVideoTracks() methods.

For the getUserMedia (https://webrtc.github.io/samples/src/content/getusermedia/gum/) example, stream.getAudioTracks() returns an empty array (because there's no audio)

and, assuming a working webcam is connected, stream.getVideoTracks() returns an array of one MediaStreamTrack representing the stream from the webcam. Each

MediaStreamTrack has a kind ('video' or 'audio'), a label (something like 'FaceTime HD Camera (Built-in)'), and represents one or more channels of either audio

or video. In this case, there is only one video track and no audio, but it is easy to imagine use cases where there are more, such as a chat app that gets streams from the

front camera, rear camera, microphone, and an app sharing its screen.

A MediaStream can be attached to a video element by setting the srcObject attribute (https://developer.mozilla.org/docs/Web/API/HTMLMediaElement/srcObject). Previously, this

was done by setting the src attribute to an object URL created with URL.createObjectURL(), but this has been deprecated

 (https://developer.mozilla.org/docs/Web/API/URL/createObjectURL).

Note: The MediaStreamTrack is actively using the camera, which takes resources, and keeps the camera open and camera light on. When you are no longer using a track, make sure to call

track.stop() so that the camera can be closed.

getUserMedia can also be used as an input node for the Web Audio API (https://developer.chrome.com/blog/live-web-audio-input-enabled):

8/7/24, 1:09 PM Get started with WebRTC | Articles | web.dev

https://web.dev/articles/webrtc-basics 5/27Genius Sports Ex. 1038
p. 5

f

Find authenticated court documents without watermarks at docketalarm.com.

https://dev.w3.org/2011/webrtc/editor/getusermedia.html
https://dev.w3.org/2011/webrtc/editor/getusermedia.html
https://dev.w3.org/2011/webrtc/editor/getusermedia.html
https://www.html5rocks.com/en/tutorials/track/basics/
https://www.html5rocks.com/en/tutorials/track/basics/
https://www.html5rocks.com/en/tutorials/track/basics/
https://www.html5rocks.com/en/tutorials/track/basics/
https://webrtc.github.io/samples/src/content/getusermedia/gum/
https://webrtc.github.io/samples/src/content/getusermedia/gum/
https://webrtc.github.io/samples/src/content/getusermedia/gum/
https://webrtc.github.io/samples/src/content/getusermedia/gum/
https://webrtc.github.io/samples/src/content/getusermedia/gum/
https://webrtc.github.io/samples/src/content/getusermedia/gum/
https://developer.mozilla.org/docs/Web/API/HTMLMediaElement/srcObject
https://developer.mozilla.org/docs/Web/API/HTMLMediaElement/srcObject
https://developer.mozilla.org/docs/Web/API/HTMLMediaElement/srcObject
https://developer.mozilla.org/docs/Web/API/URL/createObjectURL
https://developer.mozilla.org/docs/Web/API/URL/createObjectURL
https://developer.mozilla.org/docs/Web/API/URL/createObjectURL
https://developer.mozilla.org/docs/Web/API/URL/createObjectURL
https://developer.chrome.com/blog/live-web-audio-input-enabled
https://developer.chrome.com/blog/live-web-audio-input-enabled
https://developer.chrome.com/blog/live-web-audio-input-enabled
https://www.docketalarm.com/

Real-Time Litigation Alerts
	� Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

	� Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
	� With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

	� Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
	� Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

	� Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

