
1/12

Introduction to Stream Control Transmission Protocol
linuxjournal.com/article/9748

HOWTOs

by Jan Newmarch

on September 1, 2007

Most people who have written networking software are familiar with the
TCP and UDP protocols. These are
used to connect distributed applications
and allow messages to flow between them. These protocols have
been used
successfully to build Internet applications as we know them: e-mail,
HTTP, name services and so
forth. But, these protocols are more than 20 years old, and
over time, some of their deficiencies have
become well known. Although there
have been many attempts to devise new general-purpose transport
protocols
above the IP layer, only one so far has received the blessing of the IETF:
SCTP (Stream Control
Transmission Protocol). The central motivation behind
SCTP is to provide a more reliable and robust
protocol than either TCP
or UDP that can take advantage of features such as multihoming.

SCTP is not a radical departure from TCP or UDP. It borrows from both but
is most similar to TCP. It is a
reliable session-oriented protocol, like
TCP. It adds new features and options and allows finer control over
the
transport of packets. In all but the “edge” cases, it can be used as a
drop-in in place of TCP. This means
that TCP applications often
can be ported trivially to SCTP. Of course, to benefit properly from the
new
features of SCTP, you need to use the additional API calls for SCTP.

The first additional feature in SCTP is better support for multihomed
devices—that is, computers with more
than one network
interface. At
one time this
meant only routers and bridges connecting different parts of the
Internet,
but now even computers on the edges of the network can be multihomed.
Most laptops have built-in
Ethernet cards and Wi-Fi cards, and many have
Bluetooth cards as well (which have IP support through the
Bluetooth PPP
stack). Some laptops now are shipping with WiMAX cards, and it even
is possible to run IP
over the infrared port! So, the standard laptop is at
least dual-homed, with possibly up to five distinct IP
network interfaces.

TCP and UDP allow use of only one or all of the interfaces.
But, what if you are running your laptop as a
peer in, say, a file-sharing service? It probably would be silly to use the Bluetooth
and infrared interfaces.
WiMAX can be very expensive to shift large
amounts of data. But, it would make sense to use both the

Genius Sports Ex. 1033
p. 1

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.linuxjournal.com/article/9748
https://www.linuxjournal.com/tag/howtos
https://www.docketalarm.com/

2/12

Ethernet and Wi-Fi
interfaces. SCTP can support this selective choosing of interfaces. Some
implementations even can add and drop interfaces dynamically, so as you
unplug your laptop and move out
of the house, an application can switch
to the WiMAX interface if you want.

The second main new feature is multistreaming—that is, one
“association”
(which is renamed from
“connection” from TCP) can support multiple
data streams. It is no longer necessary to open up multiple
sockets;
instead, a single socket can be used for multiple streams to a connected
host. Several TCP
applications could benefit from this. For example, FTP
(the major file transfer protocol) uses two streams:
one on port 21 for
control messages and another on port 20 for data. This caused problems
with firewalls in
place. A client could connect to a server through a
firewall, but the server could not connect to the client for
data transfer
because of the firewall. The FTP protocol had to be extended to allow for
“passive” connections
to overcome this. There would be no need for such
an extension under SCTP—simply send the data on a
separate stream in
an association established by a client.

The X Window System also
uses multiple sockets on multiple ports. Although it is not common,
a computer
can have multiple display devices. Typically, the first is
on port 6000, the second on port 6001 and so on.
Under SCTP, these could
all be separate streams on a single association. HTML documents often
contain
embedded references to image files, and to display a
page properly requires downloading the original page
and all of these images (or
embedded frames too). HTTP originally used a separate TCP connection per
downloaded URL, which was expensive and time consuming. HTTP 1.1 brought
in “persistent connections”,
so that a single socket could be reused for
all of these sequential downloads. Under SCTP, the separate
images could
be downloaded concurrently in separate streams on a single association.

There are even more subtle uses of SCTP multiple streams. An MPEG movie
consists of different types of
frames: I frames, P frames and B
frames. I frames encode complete images, and the other two types
measure differences between frames. Typically, there is an I frame every
ten frames, with the others
“predicted” from these. It is critical that
the I frames be delivered, but less so for the P and B frames.
Although
SCTP is not designed as a Quality-of-Service protocol, it does allow
different delivery parameters
on different streams within an association,
so that the I frames can be delivered more reliably.

SCTP has many more features, such as:

TCP is a byte-oriented protocol, and UDP is message-oriented. The
majority of applications are
message-oriented, and applications using TCP
have to jump through hoops, such as sending the
message length as a first
parameter. SCTP is message-oriented, so such tricks are not so necessary.

A single socket can support multiple associations—that is, a computer
can use a single socket to talk
to more than one computer. This is not
multicast, but it could be useful in peer-to-peer situations.

SCTP has no “out of band” messages, but a large number of events can
be interleaved onto a single
association, so that an application can
monitor the state of the association (for example, when the
other end adds
another interface to the association).

Genius Sports Ex. 1033
p. 2

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

3/12

The range of socket options is greater than TCP or UDP. These also
can be used to control individual
associations or individual streams within
a single association. For example, messages on one stream
can be given
a longer time-to-live than messages on other streams, increasing the
likelihood of their
delivery.

Availability of SCTP

The SCTP Web site (www.sctp.org) has a list of
implementations of SCTP. There are implementations for
BSD and
Windows, and since 2001, there has been a Linux kernel project at
sourceforge.net/projects/lksctp.
At present, SCTP is not in any
Microsoft release, so applications running on Windows need to install
one of
the available stacks.

SCTP is included in the Linux kernel as an experimental network
protocol. SCTP is normally built as a
module. It may be necessary to
load the module using modprobe sctp. To build user
applications, you may
need to install the SCTP tools—in Fedora Core
6, these
are in the RPM packages lksctp-tools-1.0.6-
1.fc6.i386.rpm and
lksctp-tools-devel-1.0.6-1.fc6.i386.rpm. On Fedora Core 6, I also had
to add a symbolic
link from /usr/lib/libsctp.so to /usr/lib/libsctp.so.1.

The lksctp-tools package contains the libraries to run SCTP
applications. It also contains a program called
checksctp, which tells you
if your kernel has support for SCTP. When you run this program, it
prints either
“SCTP supported” or an error message.

The devel package contains the sctp.h header file, so you can
compile and build your own applications, and
man pages for the
SCTP function calls.

Firewalls

Most firewalls can be configured to deal with SCTP packets, but the
documentation for each firewall may not
mention SCTP explicitly. For
example, the man page for iptables says, “The specified protocol [in a
rule] can
be one of tcp, udp, icmp, or all...”. But, it then goes on to
say, “A protocol name from /etc/protocols is also
allowed”, and in that
file, we find that protocol 132 is sctp. So, rules for SCTP can be added to
iptables in the
same way as TCP and UDP rules.

For example, an iptables rule to accept SCTP connections to port 13
would be:

-A INPUT -p sctp -m sctp -i eth0 --dport 13 -j ACCEPT

Webmin is a popular administration tool for managing things like iptables
rules. Unfortunately, as of version
1.340, it could not accept this
rule, because it is hard-wired to accept port numbers only for TCP and
UDP,
not realising that SCTP also uses port numbers. Such a rule
would need to be entered by hand into the
iptables configuration file
/etc/sysconfig/iptables. This will be fixed in later versions of Webmin
after I logged
a bug report, but similar problems may occur in other
tools.

One-to-One Socket API

Genius Sports Ex. 1033
p. 3

f

Find authenticated court documents without watermarks at docketalarm.com.

http://www.sctp.org/
http://sourceforge.net/projects/lksctp
https://www.docketalarm.com/

4/12

As with TCP and UDP, SCTP provides a socket API for applications. A
server creates a socket bound to a
port and then uses this to accept a
connection from a client. A client also creates a socket and then connects
to a server. Both then use the socket file descriptor to read and write
messages. SCTP is not a superset of
TCP. Nevertheless, when restricted to
a similar style of connection as TCP, there are sufficient similarities
that an SCTP socket often can be used as a drop-in replacement for a
TCP socket. When used in this way,
SCTP sockets are called one-to-one
sockets, as they simply connect one host to a single other host.

To create a TCP socket, use the system call:

sockfd = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP)

This creates an IPv4 socket. To create an IPv6 socket, replace the first
parameter with AF_INET6. The last
parameter often is given as zero,
meaning “use the only protocol value in the family”. It is better to
use
IPPROTO_TCP explicitly, because SCTP introduces another possible value.

To create an SCTP one-to-one socket, simply replace IPPROTO_TCP
with IPPROTO_SCTP:

sockfd = socket(AF_INET, SOCK_STREAM, IPPROTO_SCTP)

and that (in many cases) is it! The client or server is now talking the
SCTP protocol instead of TCP.

To see this in action, Listings 1 (echo_client.c) and 2
(echo_server.c) give a simple echo-client and server,
where the server
returns a string sent to it when a client connects to it. Only the line
above needs to change
in both the client and the server (with also an
extra include file, sctp.h).

Listing 1. echo_client.c

Genius Sports Ex. 1033
p. 4

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

5/12

#define USE_SCTP

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#ifdef USE_SCTP

#include <netinet/sctp.h>

#endif

#define SIZE 1024

char buf[SIZE];

char *msg = "hello\n";

#define ECHO_PORT 2013

int main(int argc, char *argv[]) {

 int sockfd;

 int nread;

 struct sockaddr_in serv_addr;

 if (argc != 2) {

 fprintf(stderr, "usage: %s IPaddr\n", argv[0]);

 exit(1);

 }

 /* create endpoint using TCP or SCTP */

 sockfd = socket(AF_INET, SOCK_STREAM,

#ifdef USE_SCTP

 IPPROTO_SCTP

#else

 IPPROTO_TCP

#endif

);

 if (sockfd < 0) {

 perror("socket creation failed");

 exit(2); }

 /* connect to server */

 serv_addr.sin_family = AF_INET;

 serv_addr.sin_addr.s_addr = inet_addr(argv[1]);

 serv_addr.sin_port = htons(ECHO_PORT);

 if (connect(sockfd,

 (struct sockaddr *) &serv_addr,

 sizeof(serv_addr)) < 0) {

 perror("connect to server failed");

 exit(3);

 }

 /* write msg to server */

 write(sockfd, msg, strlen(msg) + 1);

 /* read the reply back */

 nread = read(sockfd, buf, SIZE);

Genius Sports Ex. 1033
p. 5

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
	� Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

	� Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
	� With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

	� Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
	� Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

	� Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

