
Sampled Softmax with Random Fourier Features

Ankit Singh Rawat, Jiecao Chen, Felix Yu, Ananda Theertha Suresh, and Sanjiv Kumar

Google Research
New York, NY 10011

{ankitsrawat, chenjiecao, felixyu, theertha, sanjivk}@google.com.

January 1, 2020

Abstract

The computational cost of training with softmax cross entropy loss grows linearly with the
number of classes. For the settings where a large number of classes are involved, a common
method to speed up training is to sample a subset of classes and utilize an estimate of the loss
gradient based on these classes, known as the sampled softmax method. However, the sampled
softmax provides a biased estimate of the gradient unless the samples are drawn from the
exact softmax distribution, which is again expensive to compute. Therefore, a widely employed
practical approach involves sampling from a simpler distribution in the hope of approximating
the exact softmax distribution. In this paper, we develop the first theoretical understanding of
the role that different sampling distributions play in determining the quality of sampled softmax.
Motivated by our analysis and the work on kernel-based sampling, we propose the Random
Fourier Softmax (RF-softmax) method that utilizes the powerful Random Fourier Features to
enable more efficient and accurate sampling from an approximate softmax distribution. We show
that RF-softmax leads to low bias in estimation in terms of both the full softmax distribution
and the full softmax gradient. Furthermore, the cost of RF-softmax scales only logarithmically
with the number of classes.

1 Introduction

The cross entropy loss based on softmax function is widely used in multi-class classification tasks
such as natural language processing [1], image classification [2], and recommendation systems [3].
In multi-class classification, given an input x ∈ X , the goal is to predict its class t ∈ {1, 2, . . . , n},
where n is the number of classes. Given an input feature x, the model (often a neural network) first
computes an input embedding h ∈ Rd and then the raw scores or logits for classes o = (o1, . . . , on)
as the product of the input embedding h and the class embeddings c1, . . . , cn ∈ Rd,

oi = τhT ci. (1)

Here, τ is often referred to as the (inverse) temperature parameter of softmax. Given the logits, the
probability that the model assigns to the i-th class is computed using the full softmax function

pi = eoi/Z, (2)

where Z =
∑n

i=1 e
oi is called the partition function. The distribution in (2) is commonly referred to

as the softmax distribution. Given a training set, the model parameters are estimated by minimizing

1

ar
X

iv
:1

90
7.

10
74

7v
2

 [
cs

.L
G

]
 3

1
D

ec
 2

01
9

Petitioner, EX1020
IPR2024-01234

Hugging Face, Inc., v. FriendliAI Inc. f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

an empirical risk over the training set, where the empirical risk is defined by the cross-entropy loss
based on softmax function or the full softmax loss. Let t ∈ [n] denote the true class for the input x,
then the full softmax loss is defined as1

L(x, t) := − log pt = −ot + logZ. (3)

One typically employs first order optimization methods to train neural network models. This
requires computing the gradient of the loss with respect to the model parameter θθθ during each
iteration

∇θθθL(x, t) = −∇θθθot +
n∑
i=1

eoi

Z
· ∇θθθoi = −∇θθθot + Es∼p [∇θθθos] , (4)

where the expectation is taken over the softmax distribution (cf. (2)). As evident from (4), computing
the gradient of the full softmax loss takes O(dn) time due to the contributions from all n classes.
Therefore, training a model using the full softmax loss becomes prohibitively expensive in the settings
where a large number of classes are involved. To this end, various approaches have been proposed for
efficient training. This includes different modified loss functions: hierarchical softmax [5] partitions
the classes into a tree based on class similarities, allowing for O(d log n) training and inference time;
spherical softmax [6, 7] replaces the exponential function by a quadratic function, enabling efficient
algorithm to compute the updates of the output weights irrespective of the output size. Efficient
hardware-specific implementations of softmax are also being actively studied [8].

1.1 Sampled softmax

A popular approach to speed up the training of full softmax loss is using sampled softmax: instead
of including all classes during each iteration, a small random subset of n classes is considered, where
each negative class is sampled with some probability. Formally, let the number of sampled classes
during each iteration be m, with class i being picked with probability qi. Let Nt , [n]\{t} be the
set of negative classes. Assuming that s1, . . . , sm ∈ Nt denote the sampled class indices, following
[9], we define the adjusted logits o′ = {o′1, o′2, . . . , o′m+1} such that o′1 = ot and for i ∈ [m],

o′i+1 = osi − log(mqsi). (5)

Accordingly, we define the sampled softmax distribution as p′i = eo
′
i

Z′ , where Z
′ =

∑m+1
j=1 eo

′
j . The

sampled softmax loss corresponds to the cross entropy loss with respect to the sampled softmax
distribution:

L′(x, t) = − log p′t = −ot + logZ ′. (6)

Here, we note that adjusting the logits for the sampled negative classes using their expected number
of occurrence in (5) ensures that Z ′ is an unbiased estimator of Z [9]. Since L′(x, t) depends only
on m+ 1 classes, the computational cost is reduced from O(dn) to O(dm) as compared to the full
softmax loss in (3).

In order to realize the training with the full softmax loss, one would like the gradient of the
sampled softmax loss to be an unbiased estimator of the gradient of the full softmax loss2, i.e.,

E
[
∇θθθL′

]
= ∇θθθL, (7)

1The results of this paper generalize to a multi-label setting by using multi-label to multi-class reductions [4].
2Since it is clear from the context, in what follows, we denote L(x, t) and L′(x, t) by L and L′, respectively.

2

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

where the expectation is taken over the sampling distribution q. As it turns out, the sampling
distribution plays a crucial role in ensuring the unbiasedness of ∇θθθL′. Bengio and Senécal [9] show
that (7) holds if the sampling distribution is the full softmax distribution itself, i.e., qi ∝ eoi (cf. (2)).

However, sampling from the softmax distribution itself is again computationally expensive: one
needs to compute the partition function Z during each iteration, which is again an O(dn) operation
since Z depends both on the current model parameters and the input. As a feasible alternative, one
usually samples from a distribution which does not depend on the current model parameters and the
input. Common choices are uniform, log-uniform, or the global prior of classes [10, 1]. However, since
these distributions are far from the full softmax distribution, they can lead to significantly worse
solutions. Various approaches have been proposed to improve negative sampling. For example, a
separate model can be used to track the distribution of softmax in language modeling tasks [9]. One
can also use an LSH algorithm to find the approximate nearest classes in the embedding space which
in turn helps in sampling from the softmax distribution efficiently [11]. Quadratic kernel softmax
[12] uses a kernel-based sampling method and quadratic approximation of the softmax function
to draw each sample in sublinear time. Similarly, the Gumbel trick has been proposed to sample
from the softmax distribution in sublinear time [13]. The partition function can also be written in a
double-sum formulation to enable an unbiased sampling algorithm for SGD [14, 15].

Among other training approaches based on sampled losses, Noise Contrastive Estimation (NCE)
and its variants avoid computing the partition function [16], and (semi-)hard negative sampling
[17, 4, 18] selects the negatives that most violate the current objective function. Hyvärinen [19]
proposes minimization of Fisher divergence (a.k.a. score matching) to avoid computation of the
partition function Z. However, in our setting, the partition function depends on the input embedding
h, which changes during the training. Thus, while calculating the score function (taking derivative
of Z with respect to (h, c)), the partition function has a non-trivial contribution which makes this
approach inapplicable to our setting. We also note the existence of MCMC based approaches in
the literature (see, e.g., [20]) for sampling classes with a distribution that is close to the softmax
distribution. Such methods do not come with precise computational complexity guarantees.

1.2 Our contributions

Theory. Despite a large body of work on improving the quality of sampled softmax, developing a
theoretical understanding of the performance of sampled softmax has not received much attention.
Blanc and Rendle [12] show that the full softmax distribution is the only distribution that provides
an unbiased estimate of the true gradient ∇θθθL. However, it is not clear how different sampling
distributions affect the bias ∇θθθL − E [∇θθθL′]. In this paper, we address this issue and characterize
the bias of the gradient for a generic sampling distribution (cf. Section 2).

Algorithm. In Section 3, guided by our analysis and recognizing the practical appeal of kernel-based
sampling [12], we propose Random Fourier softmax (RF-softmax), a new kernel-based sampling
method for the settings with normalized embeddings. RF-softmax employs the powerful Random
Fourier Features [21] and guarantees small bias of the gradient estimate. Furthermore, the complexity
of sampling one class for RF-softmax is O(D log n), where D denotes the number of random features
used in RF-softmax. In contrast, assuming that d denotes the embedding dimension, the full softmax
and the prior kernel-based sampling method (Quadratic-softmax [12]) incur O(dn) and O(d2 log n)
computational cost to generate one sample, respectively. In practice, D can be two orders of
magnitudes smaller than d2 to achieve similar or better performance. As a result, RF-softmax has
two desirable features: 1) better accuracy due to lower bias and 2) computational efficiency due to
low sampling cost.

3

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Experiments. We conduct experiments on widely used NLP and extreme classification datasets to
demonstrate the utility of the proposed RF-softmax method (cf. Section 4).

2 Gradient bias of sampled softmax

The goal of sampled softmax is to obtain a computationally efficient estimate of the true gradient
∇θθθL (cf. (4)) of the full softmax loss (cf. (3)) with small bias. In this section we develop a theoretical
understanding of how different sampling distributions affect the bias of the gradient. To the best of
our knowledge, this is the first result of this kind.

For the cross entropy loss based on the sampled softmax (cf. (6)), the training algorithm employs
the following estimate of ∇θθθL.

∇θθθL′ = −∇θθθot +
eot∇θθθot +

∑
i∈[m]

eosi
mqsi
∇θθθosi

eot +
∑

i∈[m]
eosi
mqsi

. (8)

The following result bounds the bias of the estimate ∇θθθL′. Without loss of generality, we work
with the sampling distributions that assign strictly positive probability to each negative class, i.e.,
qi > 0 ∀ i ∈ Nt.

Theorem 1. Let ∇θθθL′ (cf. (8)) be the estimate of ∇θθθL based on m negative classes s1, . . . , sm,
drawn according to the sampling distribution q. We further assume that the gradients of the logits
∇θθθoi have their coordinates bounded3 by M . Then, the bias of ∇θθθL′ satisfies

LB ≤ E
[
∇θθθL′

]
−∇θθθL ≤ UB (9)

with
LB , −

M
∑

k∈Nt
eok
∣∣∣Zt − eok

qk

∣∣∣
mZ2

(
1− o

(1

m

))
· 1, (10)

UB ,

(∑
j∈Nt

e2oj

qj
− Z2

t

mZ3︸ ︷︷ ︸
UB1

+o
(1

m

))
· g +

(
2M

m

maxi,i′∈Nt

∣∣∣ eoiqi
− eoi′

qi′

∣∣∣Zt

Z2 +
∑

j∈Nt

e2oj

qj︸ ︷︷ ︸
UB2

+o
(1

m

))
· 1, (11)

where Zt ,
∑

j∈Nt e
oj , g ,

∑
j∈Nt e

oj∇θθθoj and 1 is the all one vector.

The proof of Theorem 1 is presented in Appendix A. Theorem 1 captures the effect of the
underlying sampling distribution q on the bias of gradient estimate in terms of three (closely related)
quantities: ∑

j∈Nt

e2oj

qj
, max
j,j′∈Nt

∣∣∣eoj
qj
− eoj′

qj′

∣∣∣, and ∣∣∣ ∑
j∈Nt

eoj − eok

qk

∣∣∣. (12)

Ideally, we would like to pick a sampling distribution for which all these quantities are as small as
possible. Since q is a probability distribution, it follows from Cauchy-Schwarz inequality that∑

j

e2oj

qj
=
(∑

j

qj
)
·
(∑

j

e2oj

qj

)
≥
(∑

j

eoj
)2
. (13)

3This assumption naturally holds in most of the practical implementations, where each of the gradient coordinates
or norm of the gradient is clipped by a threshold.

4

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

If qj ∝ eoj , then (13) is attained (equivalently,
∑

j
e2oj

qj
is minimized). In particular, this implies that

UB1 in (11) disappears. Furthermore, for such a distribution we have qj = eoj∑
i∈Nt

eoi . This implies
that both UB2 and LB disappear for such a distribution as well. This guarantees a small bias of the
gradient estimate ∇θθθL′.

Since sampling exactly from the distribution q such that qj ∝ eoj is computationally expensive,
one has to resort to other distributions that incur smaller computational cost. However, to ensure
small bias of the gradient estimate ∇θθθL′, Theorem 1 and the accompanying discussion suggest that
it is desirable to employ a distribution that ensures that eoj

qj
is as close to 1 as possible for each

j ∈ Nt and all possible values of the logit oj . In other words, we are interested in those sampling
distributions that provide a tight uniform multiplicative approximation of eoj in a computationally
efficient manner.

This motivates our main contribution in the next section, where we rely on kernel-based sampling
methods to efficiently implement a distribution that uniformly approximates the softmax distribution.

3 Random Fourier Softmax (RF-Softmax)

In this section, guided by the conclusion in Section 2, we propose Random Fourier Softmax (RF-
softmax), as a new sampling method that employs Random Fourier Features to tightly approximate
the full softmax distribution. RF-softmax falls under the broader class of kernel-based sampling
methods which are amenable to efficient implementation. Before presenting RF-softmax, we briefly
describe the kernel-based sampling and an existing method based on quadratic kernels [12].

3.1 Kernel-based sampling and Quadratic-softmax

Given a kernel K : Rd × Rd → R, the input embedding h ∈ Rd, and the class embeddings
c1, . . . , cn ∈ Rd, kernel-based sampling selects the class i with probability qi = K(h,ci)∑n

j=1K(h,cj)
. Note

that if K(h, ci) = exp(oi) = exp(τhT ci), this amounts to directly sampling from the softmax
distribution. Blanc and Steffen [12] show that if the kernel can be linearized by a mapping
φ : Rd → RD such that K(h, ci) = φ(h)Tφ(ci), sampling one point from the distribution takes only
O(D log n) time by a divide-and-conquer algorithm. We briefly review the algorithm in this section.

Under the linearization assumption, the sampling distribution takes the following form.

qi =
K(h, ci)∑n

j=1 φ(h)Tφ(cj)
=

φ(h)Tφ(ci)

φ(h)T
∑n

j=1 φ(cj)
.

The idea is to organize the classes in a binary tree with individual classes at the leaves. We then
sample along a path on this tree recursively until we reach a single class. Each sampling step takes
O(D) time as we can pre-compute

∑
j∈S φ(cj) where S is any subset of classes. Similarly, when the

embedding of a class changes, the cost of updating all
∑

j∈S φ(cj) along the path between the root
and this class is again O(D log n).

Note that we pre-compute
∑

j∈[n] φ(cj) for the root node. Now, suppose the left neighbor and the
right neighbor of the root node divide all the classes into two disjoint set S1 and S2, respectively. In
this case, we pre-compute

∑
j∈S1

φ(cj) and
∑

j∈S2
φ(cj) for the left neighbor and the right neighbor

of the root node, respectively. First, the probability of the sampled class being in S1 is

qS1 =
φ(h)T

∑
j∈S1

φ(cj)

φ(h)T
∑

j∈S1
φ(cj) + φ(h)T

∑
j∈S2

φ(cj)
(14)

5

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
	� Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

	� Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
	� With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

	� Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
	� Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

	� Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

