
ar
X

iv
:1

90
8.

11
77

5v
4

 [
cs

.L
G

]
 1

1
N

ov
 2

01
9

Transformer Dissection: A Unified Understanding of
Transformer’s Attention via the Lens of Kernel

Yao-Hung Hubert Tsai1 Shaojie Bai1 Makoto Yamada34

Louis-Philippe Morency2 Ruslan Salakhutdinov1

{1Machine Learning Department,2Language Technology Institute}, Carnegie Mellon University
3Kyoto University 4RIKEN AIP

{yaohungt, shaojieb, morency, rsalakhu}@cs.cmu.edu, myamada@i.kyoto-u.ac.jp

https://github.com/yaohungt/TransformerDissection

Abstract

Transformer is a powerful architecture that

achieves superior performance on various se-

quence learning tasks, including neural ma-

chine translation, language understanding, and

sequence prediction. At the core of the Trans-

former is the attention mechanism, which con-

currently processes all inputs in the streams.

In this paper, we present a new formulation

of attention via the lens of the kernel. To be

more precise, we realize that the attention can

be seen as applying kernel smoother over the

inputs with the kernel scores being the simi-

larities between inputs. This new formulation

gives us a better way to understand individ-

ual components of the Transformer’s attention,

such as the better way to integrate the posi-

tional embedding. Another important advan-

tage of our kernel-based formulation is that it

paves the way to a larger space of compos-

ing Transformer’s attention. As an example,

we propose a new variant of Transformer’s at-

tention which models the input as a product

of symmetric kernels. This approach achieves

competitive performance to the current state of

the art model with less computation. In our

experiments, we empirically study different

kernel construction strategies on two widely

used tasks: neural machine translation and se-

quence prediction.

1 Introduction

Transformer (Vaswani et al., 2017) is a relative

new architecture which outperforms tradi-

tional deep learning models such as Recurrent

Neural Networks (RNNs) (Sutskever et al.,

2014) and Temporal Convolutional Net-

works (TCNs) (Bai et al., 2018) for sequence

modeling tasks across neural machine trans-

lations (Vaswani et al., 2017), language un-

derstanding (Devlin et al., 2018), sequence

prediction (Dai et al., 2019), image genera-

tion (Child et al., 2019), video activity clas-

sification (Wang et al., 2018), music genera-

tion (Huang et al., 2018a), and multimodal

sentiment analysis (Tsai et al., 2019a). Instead of

performing recurrence (e.g., RNN) or convolution

(e.g., TCN) over the sequences, Transformer is a

feed-forward model that concurrently processes

the entire sequence. At the core of the Transformer

is its attention mechanism, which is proposed to

integrate the dependencies between the inputs.

There are up to three types of attention within the

full Transformer model as exemplified with neural

machine translation application (Vaswani et al.,

2017): 1) Encoder self-attention considers the

source sentence as input, generating a sequence

of encoded representations, where each encoded

token has a global dependency with other tokens

in the input sequence. 2) Decoder self-attention

considers the target sentence (e.g., predicted

target sequence for translation) as input, gener-

ating a sequence of decoded representations1 ,

where each decoded token depends on previous

decoded tokens. 3) Decoder-encoder attention

considers both encoded and decoded sequences,

generating a sequence with the same length as the

decoded sequence. It should be noted that some

applications has only the decoder self-attention

such as sequence prediction (Dai et al., 2019). In

all cases, the Transformer’s attentions follow the

same general mechanism.

At the high level, the attention can be seen

as a weighted combination of the input se-

quence, where the weights are determined by

the similarities between elements of the input se-

quence. We note that this operation is order-

agnostic to the permutation in the input se-

1The generated sequence can be regarded as a translated
sequence (i.e., translating from the encoded sequence), where
each generated token depends on all tokens in the encoded
sequence.

1
Petitioner, EX1019

IPR2024-01234
Hugging Face, Inc., v. FriendliAI Inc. f

Find authenticated court documents without watermarks at docketalarm.com.

http://arxiv.org/abs/1908.11775v4
https://github.com/yaohungt/TransformerDissection
https://www.docketalarm.com/

quence (order is encoded with extra positional em-

bedding (Vaswani et al., 2017; Shaw et al., 2018;

Dai et al., 2019)). The above observation inspires

us to connect Transformer’s attention to kernel

learning (Scholkopf and Smola, 2001): they both

concurrently and order-agnostically process all in-

puts by calculating the similarity between the

inputs. Therefore, in the paper, we present a

new formulation for Transformer’s attention via

the lens of kernel. To be more precise, the

new formulation can be interpreted as a kernel

smoother (Wasserman, 2006) over the inputs in

a sequence, where the kernel measures how sim-

ilar two different inputs are. The main advantage

of connecting attention to kernel is that it opens

up a new family of attention mechanisms that can

relate to the well-established literature in kernel

learning (Scholkopf and Smola, 2001). As a re-

sult, we develop a new variant of attention which

simply considers a product of symmetric kernels

when modeling non-positional and positional em-

bedding.

Furthermore, our proposed formulation high-

lights naturally the main components of Trans-

former’s attention, enabling a better understand-

ing of this mechanism: recent variants of Trans-

formers (Shaw et al., 2018; Huang et al., 2018b;

Dai et al., 2019; Child et al., 2019; Lee et al.,

2018; Wang et al., 2018; Tsai et al., 2019a) can

be expressed through these individual compo-

nents. Among all the components, we argue

that the most important one is the construc-

tion of the kernel function. We empirically

study multiple kernel forms and the ways to in-

tegrate positional embedding in neural machine

translation (NMT) using IWSLT’14 German-

English (De-En) dataset (Edunov et al., 2017)

and sequence prediction (SP) using WikiText-103

dataset (Merity et al., 2016).

2 Attention

This section aims at providing an understand-

ing of attention in Transformer via the lens of

kernel. The inspiration for connecting the ker-

nel (Scholkopf and Smola, 2001) and attention in-

stantiates from the observation: both operations

concurrently processes all inputs and calculate the

similarity between the inputs. We first introduce

the background (i.e., the original formulation) of

attention and then provide a new reformulation

within the class of kernel smoothers (Wasserman,

2006). Next, we show that this new formulation

allows us to explore new family of attention while

at the same time offering a framework to cate-

gorize previous attention variants (Vaswani et al.,

2017; Shaw et al., 2018; Huang et al., 2018b;

Dai et al., 2019; Child et al., 2019; Lee et al.,

2018; Wang et al., 2018; Tsai et al., 2019a). Last,

we present a new form of attention, which requires

fewer parameters and empirically reaches compet-

itive performance as the state-of-the-art models.

For notation, we use lowercase representing

a vector (e.g., x), bold lowercase representing

a matrix (e.g., x), calligraphy letter denoting a

space (e.g., X), and S denoting a set. To re-

late the notations in sequence to sequence learn-

ing (Vaswani et al., 2017), x represents a specific

element of a sequence, x = [x1, x2,⋯, xT] de-

notes a sequence of features, Sx = {x1, x2,⋯, xT }
represents the set with its elements being the fea-

tures in sequence x, and we refer the space of set

Sx as S .

2.1 Technical Background

Unlike recurrent computation (Sutskever et al.,

2014) (i.e., RNNs) and temporal convolutional

computation (Bai et al., 2018) (i.e., TCNs), Trans-

former’s attention is an order-agnostic opera-

tion given the order in the inputs (Vaswani et al.,

2017). Hence, in the presentation of the pa-

per, we consider the inputs as a set instead

of a sequence. When viewing sequence as a

set, we lose the temporal (positional) informa-

tion in inputs which is often crucial for se-

quence modeling (Sutskever et al., 2014). As a

result, Transformer (Vaswani et al., 2017) intro-

duced positional embedding to indicate the po-

sitional relation for the inputs. Formally, a se-

quence x = [x1, x2,⋯, xT] defines each element

as xi = (fi, ti) with fi ∈ F being the non-

temporal feature at time i and ti ∈ T as an tempo-

ral feature (or we called it positional embedding).

Note that fi can be the word representation (in

neural machine translation (Vaswani et al., 2017)),

a frame in a video (in video activity recogni-

tion (Wang et al., 2018)), or a music unit (in music

generation (Huang et al., 2018b)). ti can be a mix-

ture of sine and cosine functions (Vaswani et al.,

2017) or parameters that can be learned dur-

ing back-propagation (Dai et al., 2019; Ott et al.,

2019). The feature vector are defined over a joint

space X ∶= (F × T). The resulting permutation-

2 f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

invariant set is: Sx = {x1, x2,⋯, xT } ={(f1, t1), (f2, t2),⋯, (fT , tT)}.
Followed the definition by Vaswani et al.

(2017), we use queries(q)/keys(k)/values(v) to

represent the inputs for the attention. To be

more precise, x{q/k/v} is used for denoting a

query/key/value data in the query/key/value

sequence x{q/k/v} (x{q/k/v} ∈ Sx{q/k/v}) with

Sx{q/k/v} being its set representation. We note

that the input sequences are the same (xq = xk)

for self-attention and are different (xq from de-

coder and xk from encoder) for encoder-decoder

attention.

Given the introduced notation, the at-

tention mechanism in original Trans-

former (Vaswani et al., 2017) can be presented as:

Attention(xq ; Sxk
)

= softmax(xqWq(xkWk)⊺√
dk

)xkWv

(1)

with xq = fq + tq, xk = fk + tk, Wq/k/v being

the weight, and dk being the feature dimension of

xkWk. Decoder self-attention further introduces a

mask to block the visibility of elements in Sxk
to

xq. Particularly, decoder self-attention considers

the decoded sequence as inputs (xk = xq), where

the decoded token at time t is not allowed to access

the future decoded tokens (i.e., tokens decoded at

time greater than t). On the contrary, encoder self-

attention and decoder-encoder attention consider

no additional mask to Eq. (1).

Recent work (Shaw et al., 2018; Dai et al.,

2019; Huang et al., 2018b; Child et al., 2019;

Lee et al., 2018; Parmar et al., 2018; Tsai et al.,

2019a) proposed modifications to the Transformer

for the purpose of better modeling inputs po-

sitional relation (Shaw et al., 2018; Huang et al.,

2018b; Dai et al., 2019), appending additional

keys in Sxk
(Dai et al., 2019), modifying the mask

applied to Eq. (1) (Child et al., 2019), or ap-

plying to distinct feature types (Lee et al., 2018;

Parmar et al., 2018; Tsai et al., 2019a). These

works adopt different designs of attention as com-

paring to the original form (Eq. (1)). In our paper,

we aim at providing an unified view via the lens of

kernel.

2.2 Reformulation via the Lens of Kernel

We now provide the intuition to reformulate Eq.

(1) via the lens of kernel. First, the softmax func-

tion can be realized as a probability function for

xq observing the keys {xk}s in Sxk
(Sxk

is the set

representation of sequence xk). The probability is

determined by the dot product between xq and xk
with additional mappings Wq/Wk and scaling by

dk, which we note the dot-product operation is an

instance of kernel function. We also introduce a

set filtering function M(xq, Sxk
) ∶ X × S → S

which returns a set with its elements that operate

with (or are connected/visible to) xq. The filtering

function M(⋅, ⋅) plays as the role of the mask in de-

coder self-attention (Vaswani et al., 2017). Putting

these altogether, we re-represent Eq. (1) into the

following definition.

Definition 1. Given a non-negative kernel func-

tion k(⋅, ⋅) ∶ X × X → R
+, a set filtering func-

tion M(⋅, ⋅) ∶ X × S → S , and a value function

v(⋅) ∶ X → Y , the Attention function taking the

input of a query feature xq ∈ X is defined as

Attention(xq ; M(xq, Sxk
))

= ∑
xk∈M(xq,Sxk

)

k(xq, xk)
∑xk

′∈M(xq,Sxk
) k(xq, xk′)v(xk).

(2)

The Definition 1 is a class of linear

smoothers (Wasserman, 2006) with kernel

smoothing:

∑
xk∈M(xq,Sxk

)

k(xq, xk)
∑xk

′∈M(xq,Sxk
) k(xq, xk′)v(xk)

= Ep(xk∣xq)[v(xk)],
where v(xk) outputs the “values” and

p(xk∣xq) = k(xq,xk)
∑xk

′∈M(xq,Sxk
) k(xq,xk

′) is a probability

function depends on k and N when k(⋅, ⋅) is

always positive. In the prior work (Vaswani et al.,

2017), k(xq, xk) = exp (⟨xqWq, xkWk⟩/√dk)
and v(xk) = xkWv. Note that the ker-

nel form k(xq, xk) in the original Trans-

former (Vaswani et al., 2017) is a asymmetric

exponential kernel with additional mapping Wq

and Wk (Wilson et al., 2016; Li et al., 2017)2.

The new formulation defines a larger space

for composing attention by manipulating its in-

dividual components, and at the same time it is

2We note that rigorous definition of kernel func-
tion (Scholkopf and Smola, 2001) requires the kernel to be
semi-positive definite and symmetric. While in the paper, the
discussion on kernel allows it to be non-semi-positive definite
and asymmetric. In Section 3, we will examine the kernels
which are semi-positive and symmetric.

3 f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

able to categorize different variants of attention in

prior work (Shaw et al., 2018; Huang et al., 2018b;

Dai et al., 2019; Child et al., 2019; Lee et al.,

2018; Wang et al., 2018; Tsai et al., 2019a). In the

following, we study these components by dissect-

ing Eq. (2) into: 1) kernel feature space X , 2)

kernel construction k(⋅, ⋅), 3) value function v(⋅),
and 4) set filtering function M(⋅, ⋅).
2.2.1 Kernel Feature Space X
In Eq. (2), to construct a kernel on X , the

first thing is to identify the kernel feature spaceX . In addition to modeling sequences like

word sentences (Vaswani et al., 2017) or music

signals (Huang et al., 2018b), the Transformer

can also be applied to images (Parmar et al.,

2018), sets (Lee et al., 2018), and multimodal se-

quences (Tsai et al., 2019a). Due to distinct data

types, these applications admit various kernel fea-

ture space:

(i) Sequence Transformer (Vaswani et al., 2017;

Dai et al., 2019):

X ∶= (F × T)
with F being non-positional feature space and T
being the positional embedding space of the posi-

tion in the sequence.

(ii) Image Transformer (Parmar et al., 2018):

X ∶= (F ×H ×W)
with F being non-positional feature space, H be-

ing the positional space of the height in an image,

and W being the positional space of the width in

an image.

(iii) Set Transformer (Lee et al., 2018) and Non-

Local Neural Networks (Wang et al., 2018):

X ∶= (F)
with no any positional information present.

(iv) Multimodal Transformer (Tsai et al., 2019a):

X ∶= (F ℓ ×Fv ×Fa × T)
with F ℓ representing the language feature space,Fv representing the vision feature space, Fa rep-

resenting the audio feature space, and T represent-

ing the temporal indicator space.

For the rest of the paper, we will focus on the

setting for sequence Transformer X = (F × T)
and discuss the kernel construction on it.

2.2.2 Kernel Construction and the Role of

Positional Embedding k(⋅, ⋅)
The kernel construction on X = (F × T)
has distinct design in variants of Trans-

formers (Vaswani et al., 2017; Dai et al.,

2019; Huang et al., 2018b; Shaw et al., 2018;

Child et al., 2019). Since now the kernel feature

space considers a joint space, we will first discuss

the kernel construction on F (the non-positional

feature space) and then discuss how different

variants integrate the positional embedding (with

the positional feature space T) into the kernel.

Kernel construction on F . All the work con-

sidered the scaled asymmetric exponential kernel

with the mapping Wq and Wk (Wilson et al., 2016;

Li et al., 2017) for non-positional features fq and

fk:

kexp(fq, fk) = exp(⟨fqWq, fkWk⟩√
dk

) . (3)

Note that the usage of asymmetric kernel is

also commonly used in various machine learn-

ing tasks (Yilmaz, 2007; Tsuda, 1999; Kulis et al.,

2011), where they observed the kernel form can

be flexible and even non-valid (i.e., a kernel that is

not symmetric and positive semi-definite). In Sec-

tion 3, we show that symmetric design of the ker-

nel has similar performance for various sequence

learning tasks, and we also examine different ker-

nel choices (i.e., linear, polynomial, and rbf ker-

nel).

Kernel construction on X = (F × T). The de-

signs for integrating the positional embedding tq
and tk are listed in the following.

(i) Absolute Positional Embedding (Vaswani et al.,

2017; Dai et al., 2019; Ott et al., 2019): For the

original Transformer (Vaswani et al., 2017), each

ti is represented by a vector with each dimen-

sion being sine or cosine functions. For learned

positional embedding (Dai et al., 2019; Ott et al.,

2019), each ti is a learned parameter and is

fixed for the same position for different sequences.

These works defines the feature space as the di-

rect sum of its temporal and non-temporal space:X = F⊕T . Via the lens of kernel, the kernel sim-

ilarity is defined as

k(xq, xk) ∶= kexp(fq + tq, fk + tk). (4)

(ii) Relative Positional Embedding in Transformer-

XL (Dai et al., 2019): t represents the indicator of

4 f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

the position in the sequence, and the kernel is cho-

sen to be asymmetric of mixing sine and cosine

functions:

k(xq, xk) ∶= kexp(fq, fk) ⋅ kfq(tq, tk) (5)

with kfq(tq, tk) being an asymmetric kernel with

coefficients inferred by fq: log kfq(tq, tk) =
∑⌊dk/2⌋−1p=0 c2p sin(tq−tk

10000
2p
512

)+ c2p+1 cos(tq−tk
10000

2p
512

)
with [c0,⋯, cdk−1] = fqWqWR where WR is

an learned weight matrix. We refer readers

to Dai et al. (2019) for more details.

(iii) Relative Positional Embedding of Shaw et al.

(2018) and Music Transformer (Huang et al.,

2018b): t
⋅

represents the indicator of the position

in the sequence, and the kernel is modified to be

indexed by a look-up table:

k(xq, xk) ∶= Ltq−tk ,fq ⋅ kexp(fq, fk), (6)

where Ltq−tk ,fq = exp(fqWqatq−tk) with a
⋅

be-

ing a learnable matrix having matrix width to

be the length of the sequence. We refer readers

to Shaw et al. (2018) for more details.

Dai et al. (2019) showed that the way to inte-

grate positional embedding is better through Eq.

(5) than through Eq. (6) and is better through Eq.

(6) than through Eq. (4). We argue the reason

is that if viewing fi and ti as two distinct spaces

(X ∶= (F × T)), the direct sum xi = fi + ti may

not be optimal when considering the kernel score

between xq and xk. In contrast, Eq. (5) represents

the kernel as a product of two kernels (one for fi
and another for ti), which is able to capture the

similarities for both temporal and non-temporal

components.

2.2.3 Value Function v(⋅)
The current Transformers consider two different

value function construction:

(i) Original Transformer (Vaswani et al., 2017)

and Sparse Transformer (Child et al., 2019):

v(xk) = v((fk, tk)) ∶= (fk + tk)Wv. (7)

(ii) Transformer-XL (Dai et al., 2019), Music

Transformer (Huang et al., 2018b), Self-Attention

with Relative Positional Embedding (Shaw et al.,

2018):

v(xk) = v((fk, tk)) ∶= fkWv. (8)

Compared Eq. (7) to Eq. (8), Eq. (7) takes

the positional embedding into account for con-

structing the value function. In Section 3, we em-

pirically observe that constructing value function

with Eq. (8) constantly outperforms the construc-

tion with Eq. (7), which suggests that we do not

need positional embedding for value function.

2.2.4 Set Filtering Function M(⋅, ⋅)
In Eq. (2), the returned set by the set filtering

function M(xq, Sxk
) defines how many keys and

which keys are operating with xq. In the follow-

ing, we itemize the corresponding designs for the

variants in Transformers:

(i) Encoder Self-Attention in original Trans-

former (Vaswani et al., 2017): For each query xq
in the encoded sequence, M(xq, Sxk

) = Sxk
con-

tains the keys being all the tokens in the encoded

sequence. Note that encoder self-attention consid-

ers xq = xk with xq being the encoded sequence.

(ii) Encoder-Decoder Attention in original Trans-

former (Vaswani et al., 2017): For each query xq
in decoded sequence, M(xq, Sxk

) = Sxk
contains

the keys being all the tokens in the encoded se-

quence. Note that encode-decoder attention con-

siders xq ≠ xk with xq being the decoded se-

quence and xk being the encoded sequence.

(iii) Decoder Self-Attention in original Trans-

former (Vaswani et al., 2017): For each query xq
in the decoded sequence, M(xq, Sxk

) returns a

subset of Sxk
(M(xq, Sxk

) ⊂ Sxk
). Note that

decoder self-attention considers xq = xk with xq

being the decoded sequence. Since the decoded

sequence is the output for previous timestep, the

query at position i can only observe the keys being

the tokens that are decoded with position < i. For

convenience, let us define S1 as the set returned by

original Transformer (Vaswani et al., 2017) from

M(xq, Sxk
), which we will use it later.

(iv) Decoder Self-Attention in Transformer-

XL (Dai et al., 2019): For each query xq in

the decoded sequence, M(xq, Sxk
) returns

a set containing S1 and additional memories

(M(xq, Sxk
) = S1 + Smem,M(xq, Sxk

) ⊃ S1).

Smem refers to additional memories.

(v) Decoder Self-Attention in Sparse Trans-

former (Child et al., 2019): For each query xq in

the decoded sentence, M(xq, Sxk
) returns a sub-

set of S1 (M(xq, Sxk
) ⊂ S1).

To compare the differences for various designs,

we see the computation time is inversely propor-

5 f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
 Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

 Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
 With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

 Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
 Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

 Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

