
Improving Language Understanding
by Generative Pre-Training

Alec Radford
OpenAI

alec@openai.com

Karthik Narasimhan
OpenAI

karthikn@openai.com

Tim Salimans
OpenAI

tim@openai.com

Ilya Sutskever
OpenAI

ilyasu@openai.com

Abstract

Natural language understanding comprises a wide range of diverse tasks such
as textual entailment, question answering, semantic similarity assessment, and
document classification. Although large unlabeled text corpora are abundant,
labeled data for learning these specific tasks is scarce, making it challenging for
discriminatively trained models to perform adequately. We demonstrate that large
gains on these tasks can be realized by generative pre-training of a language model
on a diverse corpus of unlabeled text, followed by discriminative fine-tuning on each
specific task. In contrast to previous approaches, we make use of task-aware input
transformations during fine-tuning to achieve effective transfer while requiring
minimal changes to the model architecture. We demonstrate the effectiveness of
our approach on a wide range of benchmarks for natural language understanding.
Our general task-agnostic model outperforms discriminatively trained models that
use architectures specifically crafted for each task, significantly improving upon the
state of the art in 9 out of the 12 tasks studied. For instance, we achieve absolute
improvements of 8.9% on commonsense reasoning (Stories Cloze Test), 5.7% on
question answering (RACE), and 1.5% on textual entailment (MultiNLI).

1 Introduction

The ability to learn effectively from raw text is crucial to alleviating the dependence on supervised
learning in natural language processing (NLP). Most deep learning methods require substantial
amounts of manually labeled data, which restricts their applicability in many domains that suffer
from a dearth of annotated resources [61]. In these situations, models that can leverage linguistic
information from unlabeled data provide a valuable alternative to gathering more annotation, which
can be time-consuming and expensive. Further, even in cases where considerable supervision
is available, learning good representations in an unsupervised fashion can provide a significant
performance boost. The most compelling evidence for this so far has been the extensive use of pre-
trained word embeddings [10, 39, 42] to improve performance on a range of NLP tasks [8, 11, 26, 45].

Leveraging more than word-level information from unlabeled text, however, is challenging for two
main reasons. First, it is unclear what type of optimization objectives are most effective at learning
text representations that are useful for transfer. Recent research has looked at various objectives
such as language modeling [44], machine translation [38], and discourse coherence [22], with each
method outperforming the others on different tasks.1 Second, there is no consensus on the most
effective way to transfer these learned representations to the target task. Existing techniques involve
a combination of making task-specific changes to the model architecture [43, 44], using intricate
learning schemes [21] and adding auxiliary learning objectives [50]. These uncertainties have made
it difficult to develop effective semi-supervised learning approaches for language processing.

1https://gluebenchmark.com/leaderboard

Preprint. Work in progress.
1 Petitioner, EX1018

IPR2024-01234
Hugging Face, Inc., v. FriendliAI Inc. f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

In this paper, we explore a semi-supervised approach for language understanding tasks using a
combination of unsupervised pre-training and supervised fine-tuning. Our goal is to learn a universal
representation that transfers with little adaptation to a wide range of tasks. We assume access to
a large corpus of unlabeled text and several datasets with manually annotated training examples
(target tasks). Our setup does not require these target tasks to be in the same domain as the unlabeled
corpus. We employ a two-stage training procedure. First, we use a language modeling objective on
the unlabeled data to learn the initial parameters of a neural network model. Subsequently, we adapt
these parameters to a target task using the corresponding supervised objective.

For our model architecture, we use the Transformer [62], which has been shown to perform strongly on
various tasks such as machine translation [62], document generation [34], and syntactic parsing [29].
This model choice provides us with a more structured memory for handling long-term dependencies in
text, compared to alternatives like recurrent networks, resulting in robust transfer performance across
diverse tasks. During transfer, we utilize task-specific input adaptations derived from traversal-style
approaches [52], which process structured text input as a single contiguous sequence of tokens. As
we demonstrate in our experiments, these adaptations enable us to fine-tune effectively with minimal
changes to the architecture of the pre-trained model.

We evaluate our approach on four types of language understanding tasks – natural language inference,
question answering, semantic similarity, and text classification. Our general task-agnostic model
outperforms discriminatively trained models that employ architectures specifically crafted for each
task, significantly improving upon the state of the art in 9 out of the 12 tasks studied. For instance,
we achieve absolute improvements of 8.9% on commonsense reasoning (Stories Cloze Test) [40],
5.7% on question answering (RACE) [30], 1.5% on textual entailment (MultiNLI) [66] and 5.5% on
the recently introduced GLUE multi-task benchmark [64]. We also analyzed zero-shot behaviors
of the pre-trained model on four different settings and demonstrate that it acquires useful linguistic
knowledge for downstream tasks.

2 Related Work

Semi-supervised learning for NLP Our work broadly falls under the category of semi-supervised
learning for natural language. This paradigm has attracted significant interest, with applications to
tasks like sequence labeling [24, 33, 57] or text classification [41, 70]. The earliest approaches used
unlabeled data to compute word-level or phrase-level statistics, which were then used as features in a
supervised model [33]. Over the last few years, researchers have demonstrated the benefits of using
word embeddings [11, 39, 42], which are trained on unlabeled corpora, to improve performance on a
variety of tasks [8, 11, 26, 45]. These approaches, however, mainly transfer word-level information,
whereas we aim to capture higher-level semantics.

Recent approaches have investigated learning and utilizing more than word-level semantics from
unlabeled data. Phrase-level or sentence-level embeddings, which can be trained using an unlabeled
corpus, have been used to encode text into suitable vector representations for various target tasks [28,
32, 1, 36, 22, 12, 56, 31].

Unsupervised pre-training Unsupervised pre-training is a special case of semi-supervised learning
where the goal is to find a good initialization point instead of modifying the supervised learning
objective. Early works explored the use of the technique in image classification [20, 49, 63] and
regression tasks [3]. Subsequent research [15] demonstrated that pre-training acts as a regularization
scheme, enabling better generalization in deep neural networks. In recent work, the method has
been used to help train deep neural networks on various tasks like image classification [69], speech
recognition [68], entity disambiguation [17] and machine translation [48].

The closest line of work to ours involves pre-training a neural network using a language modeling
objective and then fine-tuning it on a target task with supervision. Dai et al. [13] and Howard and
Ruder [21] follow this method to improve text classification. However, although the pre-training
phase helps capture some linguistic information, their usage of LSTM models restricts their prediction
ability to a short range. In contrast, our choice of transformer networks allows us to capture longer-
range linguistic structure, as demonstrated in our experiments. Further, we also demonstrate the
effectiveness of our model on a wider range of tasks including natural language inference, paraphrase
detection and story completion. Other approaches [43, 44, 38] use hidden representations from a

2

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

pre-trained language or machine translation model as auxiliary features while training a supervised
model on the target task. This involves a substantial amount of new parameters for each separate
target task, whereas we require minimal changes to our model architecture during transfer.

Auxiliary training objectives Adding auxiliary unsupervised training objectives is an alternative
form of semi-supervised learning. Early work by Collobert and Weston [10] used a wide variety of
auxiliary NLP tasks such as POS tagging, chunking, named entity recognition, and language modeling
to improve semantic role labeling. More recently, Rei [50] added an auxiliary language modeling
objective to their target task objective and demonstrated performance gains on sequence labeling
tasks. Our experiments also use an auxiliary objective, but as we show, unsupervised pre-training
already learns several linguistic aspects relevant to target tasks.

3 Framework

Our training procedure consists of two stages. The first stage is learning a high-capacity language
model on a large corpus of text. This is followed by a fine-tuning stage, where we adapt the model to
a discriminative task with labeled data.

3.1 Unsupervised pre-training

Given an unsupervised corpus of tokens U = {u1, . . . , un}, we use a standard language modeling
objective to maximize the following likelihood:

L1(U) =
∑
i

logP (ui|ui−k, . . . , ui−1; Θ) (1)

where k is the size of the context window, and the conditional probability P is modeled using a neural
network with parameters Θ. These parameters are trained using stochastic gradient descent [51].

In our experiments, we use a multi-layer Transformer decoder [34] for the language model, which is
a variant of the transformer [62]. This model applies a multi-headed self-attention operation over the
input context tokens followed by position-wise feedforward layers to produce an output distribution
over target tokens:

h0 = UWe +Wp

hl = transformer_block(hl−1)∀i ∈ [1, n]

P (u) = softmax(hnW
T
e)

(2)

where U = (u−k, . . . , u−1) is the context vector of tokens, n is the number of layers, We is the token
embedding matrix, and Wp is the position embedding matrix.

3.2 Supervised fine-tuning

After training the model with the objective in Eq. 1, we adapt the parameters to the supervised target
task. We assume a labeled dataset C, where each instance consists of a sequence of input tokens,
x1, . . . , xm, along with a label y. The inputs are passed through our pre-trained model to obtain
the final transformer block’s activation hml , which is then fed into an added linear output layer with
parameters Wy to predict y:

P (y|x1, . . . , xm) = softmax(hml Wy). (3)

This gives us the following objective to maximize:

L2(C) =
∑
(x,y)

logP (y|x1, . . . , xm). (4)

We additionally found that including language modeling as an auxiliary objective to the fine-tuning
helped learning by (a) improving generalization of the supervised model, and (b) accelerating
convergence. This is in line with prior work [50, 43], who also observed improved performance with
such an auxiliary objective. Specifically, we optimize the following objective (with weight λ):

L3(C) = L2(C) + λ ∗ L1(C) (5)
Overall, the only extra parameters we require during fine-tuning areWy , and embeddings for delimiter
tokens (described below in Section 3.3).

3

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Figure 1: (left) Transformer architecture and training objectives used in this work. (right) Input
transformations for fine-tuning on different tasks. We convert all structured inputs into token
sequences to be processed by our pre-trained model, followed by a linear+softmax layer.

3.3 Task-specific input transformations

For some tasks, like text classification, we can directly fine-tune our model as described above.
Certain other tasks, like question answering or textual entailment, have structured inputs such as
ordered sentence pairs, or triplets of document, question, and answers. Since our pre-trained model
was trained on contiguous sequences of text, we require some modifications to apply it to these tasks.
Previous work proposed learning task specific architectures on top of transferred representations [44].
Such an approach re-introduces a significant amount of task-specific customization and does not
use transfer learning for these additional architectural components. Instead, we use a traversal-style
approach [52], where we convert structured inputs into an ordered sequence that our pre-trained
model can process. These input transformations allow us to avoid making extensive changes to the
architecture across tasks. We provide a brief description of these input transformations below and
Figure 1 provides a visual illustration. All transformations include adding randomly initialized start
and end tokens (〈s〉, 〈e〉).

Textual entailment For entailment tasks, we concatenate the premise p and hypothesis h token
sequences, with a delimiter token ($) in between.

Similarity For similarity tasks, there is no inherent ordering of the two sentences being compared.
To reflect this, we modify the input sequence to contain both possible sentence orderings (with a
delimiter in between) and process each independently to produce two sequence representations hml
which are added element-wise before being fed into the linear output layer.

Question Answering and Commonsense Reasoning For these tasks, we are given a context
document z, a question q, and a set of possible answers {ak}. We concatenate the document context
and question with each possible answer, adding a delimiter token in between to get [z; q; $; ak]. Each
of these sequences are processed independently with our model and then normalized via a softmax
layer to produce an output distribution over possible answers.

4 Experiments

4.1 Setup

Unsupervised pre-training We use the BooksCorpus dataset [71] for training the language model.
It contains over 7,000 unique unpublished books from a variety of genres including Adventure,
Fantasy, and Romance. Crucially, it contains long stretches of contiguous text, which allows the
generative model to learn to condition on long-range information. An alternative dataset, the 1B
Word Benchmark, which is used by a similar approach, ELMo [44], is approximately the same size

4

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Table 1: A list of the different tasks and datasets used in our experiments.

Task Datasets
Natural language inference SNLI [5], MultiNLI [66], Question NLI [64], RTE [4], SciTail [25]
Question Answering RACE [30], Story Cloze [40]
Sentence similarity MSR Paraphrase Corpus [14], Quora Question Pairs [9], STS Benchmark [6]
Classification Stanford Sentiment Treebank-2 [54], CoLA [65]

but is shuffled at a sentence level - destroying long-range structure. Our language model achieves a
very low token level perplexity of 18.4 on this corpus.

Model specifications Our model largely follows the original transformer work [62]. We trained a
12-layer decoder-only transformer with masked self-attention heads (768 dimensional states and 12
attention heads). For the position-wise feed-forward networks, we used 3072 dimensional inner states.
We used the Adam optimization scheme [27] with a max learning rate of 2.5e-4. The learning rate
was increased linearly from zero over the first 2000 updates and annealed to 0 using a cosine schedule.
We train for 100 epochs on minibatches of 64 randomly sampled, contiguous sequences of 512 tokens.
Since layernorm [2] is used extensively throughout the model, a simple weight initialization of
N(0, 0.02) was sufficient. We used a bytepair encoding (BPE) vocabulary with 40,000 merges [53]
and residual, embedding, and attention dropouts with a rate of 0.1 for regularization. We also
employed a modified version of L2 regularization proposed in [37], with w = 0.01 on all non bias or
gain weights. For the activation function, we used the Gaussian Error Linear Unit (GELU) [18]. We
used learned position embeddings instead of the sinusoidal version proposed in the original work.
We use the ftfy library2 to clean the raw text in BooksCorpus, standardize some punctuation and
whitespace, and use the spaCy tokenizer.3

Fine-tuning details Unless specified, we reuse the hyperparameter settings from unsupervised
pre-training. We add dropout to the classifier with a rate of 0.1. For most tasks, we use a learning rate
of 6.25e-5 and a batchsize of 32. Our model finetunes quickly and 3 epochs of training was sufficient
for most cases. We use a linear learning rate decay schedule with warmup over 0.2% of training. λ
was set to 0.5.

4.2 Supervised fine-tuning

We perform experiments on a variety of supervised tasks including natural language inference,
question answering, semantic similarity, and text classification. Some of these tasks are available
as part of the recently released GLUE multi-task benchmark [64], which we make use of. Figure 1
provides an overview of all the tasks and datasets.

Natural Language Inference The task of natural language inference (NLI), also known as recog-
nizing textual entailment, involves reading a pair of sentences and judging the relationship between
them from one of entailment, contradiction or neutral. Although there has been a lot of
recent interest [58, 35, 44], the task remains challenging due to the presence of a wide variety of
phenomena like lexical entailment, coreference, and lexical and syntactic ambiguity. We evaluate
on five datasets with diverse sources, including image captions (SNLI), transcribed speech, popular
fiction, and government reports (MNLI), Wikipedia articles (QNLI), science exams (SciTail) or news
articles (RTE).

Table 2 details various results on the different NLI tasks for our model and previous state-of-the-art
approaches. Our method significantly outperforms the baselines on four of the five datasets, achieving
absolute improvements of upto 1.5% on MNLI, 5% on SciTail, 5.8% on QNLI and 0.6% on SNLI
over the previous best results. This demonstrates our model’s ability to better reason over multiple
sentences, and handle aspects of linguistic ambiguity. On RTE, one of the smaller datasets we
evaluate on (2490 examples), we achieve an accuracy of 56%, which is below the 61.7% reported by a
multi-task biLSTM model. Given the strong performance of our approach on larger NLI datasets, it is
likely our model will benefit from multi-task training as well but we have not explored this currently.

2https://ftfy.readthedocs.io/en/latest/
3https://spacy.io/

5

f

Find authenticated court documents without watermarks at docketalarm.com.

https://ftfy.readthedocs.io/en/latest/
https://spacy.io/
https://www.docketalarm.com/

Real-Time Litigation Alerts
 Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

 Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
 With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

 Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
 Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

 Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

