
Published as a conference paper at ICLR 2015

NEURAL MACHINE TRANSLATION
BY JOINTLY LEARNING TO ALIGN AND TRANSLATE

Dzmitry Bahdanau
Jacobs University Bremen, Germany

KyungHyun Cho Yoshua Bengio∗
Université de Montréal

ABSTRACT

Neural machine translation is a recently proposed approach to machine transla-
tion. Unlike the traditional statistical machine translation, the neural machine
translation aims at building a single neural network that can be jointly tuned to
maximize the translation performance. The models proposed recently for neu-
ral machine translation often belong to a family of encoder–decoders and encode
a source sentence into a fixed-length vector from which a decoder generates a
translation. In this paper, we conjecture that the use of a fixed-length vector is a
bottleneck in improving the performance of this basic encoder–decoder architec-
ture, and propose to extend this by allowing a model to automatically (soft-)search
for parts of a source sentence that are relevant to predicting a target word, without
having to form these parts as a hard segment explicitly. With this new approach,
we achieve a translation performance comparable to the existing state-of-the-art
phrase-based system on the task of English-to-French translation. Furthermore,
qualitative analysis reveals that the (soft-)alignments found by the model agree
well with our intuition.

1 INTRODUCTION

Neural machine translation is a newly emerging approach to machine translation, recently proposed
by Kalchbrenner and Blunsom (2013), Sutskever et al. (2014) and Cho et al. (2014b). Unlike the
traditional phrase-based translation system (see, e.g., Koehn et al., 2003) which consists of many
small sub-components that are tuned separately, neural machine translation attempts to build and
train a single, large neural network that reads a sentence and outputs a correct translation.

Most of the proposed neural machine translation models belong to a family of encoder–
decoders (Sutskever et al., 2014; Cho et al., 2014a), with an encoder and a decoder for each lan-
guage, or involve a language-specific encoder applied to each sentence whose outputs are then com-
pared (Hermann and Blunsom, 2014). An encoder neural network reads and encodes a source sen-
tence into a fixed-length vector. A decoder then outputs a translation from the encoded vector. The
whole encoder–decoder system, which consists of the encoder and the decoder for a language pair,
is jointly trained to maximize the probability of a correct translation given a source sentence.

A potential issue with this encoder–decoder approach is that a neural network needs to be able to
compress all the necessary information of a source sentence into a fixed-length vector. This may
make it difficult for the neural network to cope with long sentences, especially those that are longer
than the sentences in the training corpus. Cho et al. (2014b) showed that indeed the performance of
a basic encoder–decoder deteriorates rapidly as the length of an input sentence increases.

In order to address this issue, we introduce an extension to the encoder–decoder model which learns
to align and translate jointly. Each time the proposed model generates a word in a translation, it
(soft-)searches for a set of positions in a source sentence where the most relevant information is
concentrated. The model then predicts a target word based on the context vectors associated with
these source positions and all the previous generated target words.

∗CIFAR Senior Fellow

1

ar
X

iv
:1

40
9.

04
73

v7
 [

cs
.C

L
]

 1
9

M
ay

 2
01

6

Petitioner, EX1015
IPR2024-01234

Hugging Face, Inc., v. FriendliAI Inc. f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Published as a conference paper at ICLR 2015

The most important distinguishing feature of this approach from the basic encoder–decoder is that
it does not attempt to encode a whole input sentence into a single fixed-length vector. Instead, it en-
codes the input sentence into a sequence of vectors and chooses a subset of these vectors adaptively
while decoding the translation. This frees a neural translation model from having to squash all the
information of a source sentence, regardless of its length, into a fixed-length vector. We show this
allows a model to cope better with long sentences.

In this paper, we show that the proposed approach of jointly learning to align and translate achieves
significantly improved translation performance over the basic encoder–decoder approach. The im-
provement is more apparent with longer sentences, but can be observed with sentences of any
length. On the task of English-to-French translation, the proposed approach achieves, with a single
model, a translation performance comparable, or close, to the conventional phrase-based system.
Furthermore, qualitative analysis reveals that the proposed model finds a linguistically plausible
(soft-)alignment between a source sentence and the corresponding target sentence.

2 BACKGROUND: NEURAL MACHINE TRANSLATION

From a probabilistic perspective, translation is equivalent to finding a target sentence y that max-
imizes the conditional probability of y given a source sentence x, i.e., argmaxy p(y | x). In
neural machine translation, we fit a parameterized model to maximize the conditional probability
of sentence pairs using a parallel training corpus. Once the conditional distribution is learned by a
translation model, given a source sentence a corresponding translation can be generated by searching
for the sentence that maximizes the conditional probability.

Recently, a number of papers have proposed the use of neural networks to directly learn this condi-
tional distribution (see, e.g., Kalchbrenner and Blunsom, 2013; Cho et al., 2014a; Sutskever et al.,
2014; Cho et al., 2014b; Forcada and Ñeco, 1997). This neural machine translation approach typ-
ically consists of two components, the first of which encodes a source sentence x and the second
decodes to a target sentence y. For instance, two recurrent neural networks (RNN) were used by
(Cho et al., 2014a) and (Sutskever et al., 2014) to encode a variable-length source sentence into a
fixed-length vector and to decode the vector into a variable-length target sentence.

Despite being a quite new approach, neural machine translation has already shown promising results.
Sutskever et al. (2014) reported that the neural machine translation based on RNNs with long short-
term memory (LSTM) units achieves close to the state-of-the-art performance of the conventional
phrase-based machine translation system on an English-to-French translation task.1 Adding neural
components to existing translation systems, for instance, to score the phrase pairs in the phrase
table (Cho et al., 2014a) or to re-rank candidate translations (Sutskever et al., 2014), has allowed to
surpass the previous state-of-the-art performance level.

2.1 RNN ENCODER–DECODER

Here, we describe briefly the underlying framework, called RNN Encoder–Decoder, proposed by
Cho et al. (2014a) and Sutskever et al. (2014) upon which we build a novel architecture that learns
to align and translate simultaneously.

In the Encoder–Decoder framework, an encoder reads the input sentence, a sequence of vectors
x = (x1, · · · , xTx

), into a vector c.2 The most common approach is to use an RNN such that
ht = f (xt, ht−1) (1)

and
c = q ({h1, · · · , hTx

}) ,
where ht ∈ Rn is a hidden state at time t, and c is a vector generated from the sequence of the
hidden states. f and q are some nonlinear functions. Sutskever et al. (2014) used an LSTM as f and
q ({h1, · · · , hT }) = hT , for instance.

1 We mean by the state-of-the-art performance, the performance of the conventional phrase-based system
without using any neural network-based component.

2 Although most of the previous works (see, e.g., Cho et al., 2014a; Sutskever et al., 2014; Kalchbrenner and
Blunsom, 2013) used to encode a variable-length input sentence into a fixed-length vector, it is not necessary,
and even it may be beneficial to have a variable-length vector, as we will show later.

2
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Published as a conference paper at ICLR 2015

The decoder is often trained to predict the next word yt′ given the context vector c and all the
previously predicted words {y1, · · · , yt′−1}. In other words, the decoder defines a probability over
the translation y by decomposing the joint probability into the ordered conditionals:

p(y) =

T∏
t=1

p(yt | {y1, · · · , yt−1} , c), (2)

where y =
(
y1, · · · , yTy

)
. With an RNN, each conditional probability is modeled as

p(yt | {y1, · · · , yt−1} , c) = g(yt−1, st, c), (3)

where g is a nonlinear, potentially multi-layered, function that outputs the probability of yt, and st is
the hidden state of the RNN. It should be noted that other architectures such as a hybrid of an RNN
and a de-convolutional neural network can be used (Kalchbrenner and Blunsom, 2013).

3 LEARNING TO ALIGN AND TRANSLATE

In this section, we propose a novel architecture for neural machine translation. The new architecture
consists of a bidirectional RNN as an encoder (Sec. 3.2) and a decoder that emulates searching
through a source sentence during decoding a translation (Sec. 3.1).

3.1 DECODER: GENERAL DESCRIPTION

x1 x2 x3 xT

+
αt,1
αt,2 αt,3

αt,T

yt-1 yt

h1 h2 h3 hT

h1 h2 h3 hT

st-1 s t

Figure 1: The graphical illus-
tration of the proposed model
trying to generate the t-th tar-
get word yt given a source
sentence (x1, x2, . . . , xT).

In a new model architecture, we define each conditional probability
in Eq. (2) as:

p(yi|y1, . . . , yi−1,x) = g(yi−1, si, ci), (4)

where si is an RNN hidden state for time i, computed by

si = f(si−1, yi−1, ci).

It should be noted that unlike the existing encoder–decoder ap-
proach (see Eq. (2)), here the probability is conditioned on a distinct
context vector ci for each target word yi.

The context vector ci depends on a sequence of annotations
(h1, · · · , hTx

) to which an encoder maps the input sentence. Each
annotation hi contains information about the whole input sequence
with a strong focus on the parts surrounding the i-th word of the
input sequence. We explain in detail how the annotations are com-
puted in the next section.

The context vector ci is, then, computed as a weighted sum of these
annotations hi:

ci =

Tx∑
j=1

αijhj . (5)

The weight αij of each annotation hj is computed by

αij =
exp (eij)∑Tx

k=1 exp (eik)
, (6)

where
eij = a(si−1, hj)

is an alignment model which scores how well the inputs around position j and the output at position
i match. The score is based on the RNN hidden state si−1 (just before emitting yi, Eq. (4)) and the
j-th annotation hj of the input sentence.

We parametrize the alignment model a as a feedforward neural network which is jointly trained with
all the other components of the proposed system. Note that unlike in traditional machine translation,

3
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Published as a conference paper at ICLR 2015

the alignment is not considered to be a latent variable. Instead, the alignment model directly com-
putes a soft alignment, which allows the gradient of the cost function to be backpropagated through.
This gradient can be used to train the alignment model as well as the whole translation model jointly.

We can understand the approach of taking a weighted sum of all the annotations as computing an
expected annotation, where the expectation is over possible alignments. Let αij be a probability that
the target word yi is aligned to, or translated from, a source word xj . Then, the i-th context vector
ci is the expected annotation over all the annotations with probabilities αij .

The probability αij , or its associated energy eij , reflects the importance of the annotation hj with
respect to the previous hidden state si−1 in deciding the next state si and generating yi. Intuitively,
this implements a mechanism of attention in the decoder. The decoder decides parts of the source
sentence to pay attention to. By letting the decoder have an attention mechanism, we relieve the
encoder from the burden of having to encode all information in the source sentence into a fixed-
length vector. With this new approach the information can be spread throughout the sequence of
annotations, which can be selectively retrieved by the decoder accordingly.

3.2 ENCODER: BIDIRECTIONAL RNN FOR ANNOTATING SEQUENCES

The usual RNN, described in Eq. (1), reads an input sequence x in order starting from the first
symbol x1 to the last one xTx . However, in the proposed scheme, we would like the annotation
of each word to summarize not only the preceding words, but also the following words. Hence,
we propose to use a bidirectional RNN (BiRNN, Schuster and Paliwal, 1997), which has been
successfully used recently in speech recognition (see, e.g., Graves et al., 2013).

A BiRNN consists of forward and backward RNN’s. The forward RNN
−→
f reads the input sequence

as it is ordered (from x1 to xTx
) and calculates a sequence of forward hidden states (

−→
h 1, · · · ,

−→
h Tx

).
The backward RNN

←−
f reads the sequence in the reverse order (from xTx to x1), resulting in a

sequence of backward hidden states (
←−
h 1, · · · ,

←−
h Tx

).

We obtain an annotation for each word xj by concatenating the forward hidden state
−→
h j and the

backward one
←−
h j , i.e., hj =

[−→
h >j ;
←−
h >j

]>
. In this way, the annotation hj contains the summaries

of both the preceding words and the following words. Due to the tendency of RNNs to better
represent recent inputs, the annotation hj will be focused on the words around xj . This sequence
of annotations is used by the decoder and the alignment model later to compute the context vector
(Eqs. (5)–(6)).

See Fig. 1 for the graphical illustration of the proposed model.

4 EXPERIMENT SETTINGS

We evaluate the proposed approach on the task of English-to-French translation. We use the bilin-
gual, parallel corpora provided by ACL WMT ’14.3 As a comparison, we also report the perfor-
mance of an RNN Encoder–Decoder which was proposed recently by Cho et al. (2014a). We use
the same training procedures and the same dataset for both models.4

4.1 DATASET

WMT ’14 contains the following English-French parallel corpora: Europarl (61M words), news
commentary (5.5M), UN (421M) and two crawled corpora of 90M and 272.5M words respectively,
totaling 850M words. Following the procedure described in Cho et al. (2014a), we reduce the size of
the combined corpus to have 348M words using the data selection method by Axelrod et al. (2011).5
We do not use any monolingual data other than the mentioned parallel corpora, although it may be
possible to use a much larger monolingual corpus to pretrain an encoder. We concatenate news-test-

3 http://www.statmt.org/wmt14/translation-task.html
4 Implementations are available at https://github.com/lisa-groundhog/GroundHog.
5 Available online at http://www-lium.univ-lemans.fr/˜schwenk/cslm_joint_paper/.

4
f

Find authenticated court documents without watermarks at docketalarm.com.

http://www.statmt.org/wmt14/translation-task.html
https://github.com/lisa-groundhog/GroundHog
http://www-lium.univ-lemans.fr/~schwenk/cslm_joint_paper/
https://www.docketalarm.com/

Published as a conference paper at ICLR 2015

0 10 20 30 40 50 60

Sentence length

0

5

10

15

20

25

30

B
L

E
U

sc
or

e

RNNsearch-50

RNNsearch-30

RNNenc-50

RNNenc-30

Figure 2: The BLEU scores
of the generated translations
on the test set with respect
to the lengths of the sen-
tences. The results are on
the full test set which in-
cludes sentences having un-
known words to the models.

2012 and news-test-2013 to make a development (validation) set, and evaluate the models on the test
set (news-test-2014) from WMT ’14, which consists of 3003 sentences not present in the training
data.

After a usual tokenization6, we use a shortlist of 30,000 most frequent words in each language to
train our models. Any word not included in the shortlist is mapped to a special token ([UNK]). We
do not apply any other special preprocessing, such as lowercasing or stemming, to the data.

4.2 MODELS

We train two types of models. The first one is an RNN Encoder–Decoder (RNNencdec, Cho et al.,
2014a), and the other is the proposed model, to which we refer as RNNsearch. We train each model
twice: first with the sentences of length up to 30 words (RNNencdec-30, RNNsearch-30) and then
with the sentences of length up to 50 word (RNNencdec-50, RNNsearch-50).

The encoder and decoder of the RNNencdec have 1000 hidden units each.7 The encoder of the
RNNsearch consists of forward and backward recurrent neural networks (RNN) each having 1000
hidden units. Its decoder has 1000 hidden units. In both cases, we use a multilayer network with a
single maxout (Goodfellow et al., 2013) hidden layer to compute the conditional probability of each
target word (Pascanu et al., 2014).

We use a minibatch stochastic gradient descent (SGD) algorithm together with Adadelta (Zeiler,
2012) to train each model. Each SGD update direction is computed using a minibatch of 80 sen-
tences. We trained each model for approximately 5 days.

Once a model is trained, we use a beam search to find a translation that approximately maximizes the
conditional probability (see, e.g., Graves, 2012; Boulanger-Lewandowski et al., 2013). Sutskever
et al. (2014) used this approach to generate translations from their neural machine translation model.

For more details on the architectures of the models and training procedure used in the experiments,
see Appendices A and B.

5 RESULTS

5.1 QUANTITATIVE RESULTS

In Table 1, we list the translation performances measured in BLEU score. It is clear from the table
that in all the cases, the proposed RNNsearch outperforms the conventional RNNencdec. More
importantly, the performance of the RNNsearch is as high as that of the conventional phrase-based
translation system (Moses), when only the sentences consisting of known words are considered.
This is a significant achievement, considering that Moses uses a separate monolingual corpus (418M
words) in addition to the parallel corpora we used to train the RNNsearch and RNNencdec.

6 We used the tokenization script from the open-source machine translation package, Moses.
7 In this paper, by a ’hidden unit’, we always mean the gated hidden unit (see Appendix A.1.1).

5
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
 Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

 Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
 With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

 Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
 Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

 Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

