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Abstract
Transformers achieve remarkable performance in
several tasks but due to their quadratic complex-
ity, with respect to the input’s length, they are
prohibitively slow for very long sequences. To ad-
dress this limitation, we express the self-attention
as a linear dot-product of kernel feature maps and
make use of the associativity property of matrix
products to reduce the complexity from O

(
N2
)

to O (N), where N is the sequence length. We
show that this formulation permits an iterative
implementation that dramatically accelerates au-
toregressive transformers and reveals their rela-
tionship to recurrent neural networks. Our lin-
ear transformers achieve similar performance to
vanilla transformers and they are up to 4000x
faster on autoregressive prediction of very long
sequences.

1. Introduction
Transformer models were originally introduced by Vaswani
et al. (2017) in the context of neural machine translation
(Sutskever et al., 2014; Bahdanau et al., 2015) and have
demonstrated impressive results on a variety of tasks dealing
with natural language (Devlin et al., 2019), audio (Sperber
et al., 2018), and images (Parmar et al., 2019). Apart from
tasks with ample supervision, transformers are also effec-
tive in transferring knowledge to tasks with limited or no
supervision when they are pretrained with autoregressive
(Radford et al., 2018; 2019) or masked language modeling
objectives (Devlin et al., 2019; Yang et al., 2019; Song et al.,
2019; Liu et al., 2020).

However, these benefits often come with a very high compu-
tational and memory cost. The bottleneck is mainly caused
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by the global receptive field of self-attention, which pro-
cesses contexts of N inputs with a quadratic memory and
time complexity O

(
N2
)
. As a result, in practice trans-

formers are slow to train and their context is limited. This
disrupts temporal coherence and hinders the capturing of
long-term dependencies. Dai et al. (2019) addressed the lat-
ter by attending to memories from previous contexts albeit
at the expense of computational efficiency.

Lately, researchers shifted their attention to approaches that
increase the context length without sacrificing efficiency.
Towards this end, Child et al. (2019) introduced sparse
factorizations of the attention matrix to reduce the self-
attention complexity toO

(
N
√
N
)

. Kitaev et al. (2020) fur-
ther reduced the complexity to O (N logN) using locality-
sensitive hashing. This made scaling to long sequences
possible. Even though the aforementioned models can be
efficiently trained on large sequences, they do not speed-up
autoregressive inference.

In this paper, we introduce the linear transformer model
that significantly reduces the memory footprint and scales
linearly with respect to the context length. We achieve this
by using a kernel-based formulation of self-attention and
the associative property of matrix products to calculate the
self-attention weights (§ 3.2). Using our linear formula-
tion, we also express causal masking with linear complexity
and constant memory (§ 3.3). This reveals the relation be-
tween transformers and RNNs, which enables us to perform
autoregressive inference orders of magnitude faster (§ 3.4).

Our evaluation on image generation and automatic speech
recognition demonstrates that linear transformer can reach
the performance levels of transformer, while being up to
three orders of magnitude faster during inference.

2. Related Work
In this section, we provide an overview of the most relevant
works that seek to address the large memory and computa-
tional requirements of transformers. Furthermore, we dis-
cuss methods that theoretically analyze the core component
of the transformer model, namely self-attention. Finally,
we present another line of work that seeks to alleviate the
softmax bottleneck in the attention computation.
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2.1. Efficient Transformers

Existing works seek to improve memory efficiency in
transformers through weight pruning (Michel et al., 2019),
weight factorization (Lan et al., 2020), weight quantization
(Zafrir et al., 2019) or knowledge distillation. Clark et al.
(2020) proposed a new pretraining objective called replaced
token detection that is more sample efficient and reduces the
overall computation. Lample et al. (2019) used product-key
attention to increase the capacity of any layer with negligible
computational overhead.

Reducing the memory or computational requirements with
these methods leads to training or inference time speedups,
but, fundamentally, the time complexity is still quadratic
with respect to the sequence length which hinders scaling
to long sequences. In contrast, we show that our method
reduces both memory and time complexity of transformers
both theoretically (§ 3.2) and empirically (§ 4.1).

Another line of research aims at increasing the “context” of
self-attention in transformers. Context refers to the maxi-
mum part of the sequence that is used for computing self-
attention. Dai et al. (2019) introduced Transformer-XL
which achieves state-of-the-art in language modeling by
learning dependencies beyond a fixed length context without
disrupting the temporal coherence. However, maintaining
previous contexts in memory introduces significant addi-
tional computational cost. In contrast, Sukhbaatar et al.
(2019) extended the context length significantly by learning
the optimal attention span per attention head, while main-
taining control over the memory footprint and computation
time. Note that both approaches have the same asymptotic
complexity as the vanilla model. In contrast, we improve the
asymptotic complexity of the self-attention, which allows
us to use significantly larger context.

More related to our model are the works of Child et al.
(2019) and Kitaev et al. (2020). The former (Child et al.,
2019) introduced sparse factorizations of the attention ma-
trix reducing the overall complexity from quadratic to
O
(
N
√
N
)

for generative modeling of long sequences.
More recently, Kitaev et al. (2020) proposed Reformer. This
method further reduces complexity to O (N logN) by us-
ing locality-sensitive hashing (LSH) to perform fewer dot
products. Note that in order to be able to use LSH, Reformer
constrains the keys, for the attention, to be identical to the
queries. As a result this method cannot be used for decoding
tasks where the keys need to be different from the queries.
In comparison, linear transformers impose no constraints
on the queries and keys and scale linearly with respect to the
sequence length. Furthermore, they can be used to perform
inference in autoregressive tasks three orders of magnitude
faster, achieving comparable performance in terms of vali-
dation perplexity.

2.2. Understanding Self-Attention

There have been few efforts to better understand self-
attention from a theoretical perspective. Tsai et al. (2019)
proposed a kernel-based formulation of attention in trans-
formers which considers attention as applying a kernel
smoother over the inputs with the kernel scores being the
similarity between inputs. This formulation provides a bet-
ter way to understand attention components and integrate
the positional embedding. In contrast, we use the kernel
formulation to speed up the calculation of self-attention and
lower its computational complexity. Also, we observe that
if a kernel with positive similarity scores is applied on the
queries and keys, linear attention converges normally.

More recently, Cordonnier et al. (2020) provided theoret-
ical proofs and empirical evidence that a multi-head self-
attention with sufficient number of heads can express any
convolutional layer. Here, we instead show that a self-
attention layer trained with an autoregressive objective can
be seen as a recurrent neural network and this observation
can be used to significantly speed up inference time of au-
toregressive transformer models.

2.3. Linearized softmax

For many years, softmax has been the bottleneck for train-
ing classification models with a large number of categories
(Goodman, 2001; Morin & Bengio, 2005; Mnih & Hinton,
2009). Recent works (Blanc & Rendle, 2017; Rawat et al.,
2019), have approximated softmax with a linear dot product
of feature maps to speed up the training through sampling.
Inspired from these works, we linearize the softmax atten-
tion in transformers. Concurrently with this work, Shen
et al. (2020) explored the use of linearized attention for the
task of object detection in images. In comparison, we do not
only linearize the attention computation, but also develop
an autoregressive transformer model with linear complex-
ity and constant memory for both inference and training.
Moreover, we show that through the lens of kernels, every
transformer can be seen as a recurrent neural network.

3. Linear Transformers
In this section, we formalize our proposed linear trans-
former. We present that changing the attention from the tra-
ditional softmax attention to a feature map based dot product
attention results in better time and memory complexity as
well as a causal model that can perform sequence generation
in linear time, similar to a recurrent neural network.

Initially, in § 3.1, we introduce a formulation for the trans-
former architecture introduced in (Vaswani et al., 2017).
Subsequently, in § 3.2 and § 3.3 we present our proposed
linear transformer and finally, in § 3.4 we rewrite the trans-
former as a recurrent neural network.
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3.1. Transformers

Let x ∈ RN×F denote a sequence of N feature vectors of
dimensions F . A transformer is a function T : RN×F →
RN×F defined by the composition of L transformer layers
T1(·), . . . , TL(·) as follows,

Tl(x) = fl(Al(x) + x). (1)

The function fl(·) transforms each feature independently of
the others and is usually implemented with a small two-layer
feedforward network. Al(·) is the self attention function and
is the only part of the transformer that acts across sequences.

The self attention function Al(·) computes, for every posi-
tion, a weighted average of the feature representations of
all other positions with a weight proportional to a similar-
ity score between the representations. Formally, the input
sequence x is projected by three matrices WQ ∈ RF×D,
WK ∈ RF×D and WV ∈ RF×M to corresponding rep-
resentations Q, K and V . The output for all positions,
Al(x) = V ′, is computed as follows,

Q = xWQ,

K = xWK ,

V = xWV ,

Al(x) = V ′ = softmax
(
QKT

√
D

)
V.

(2)

Note that in the previous equation, the softmax function is
applied rowwise to QKT . Following common terminology,
the Q, K and V are referred to as the “queries”, “keys” and
“values” respectively.

Equation 2 implements a specific form of self-attention
called softmax attention where the similarity score is the
exponential of the dot product between a query and a key.
Given that subscripting a matrix with i returns the i-th row
as a vector, we can write a generalized attention equation
for any similarity function as follows,

V ′i =

∑N
j=1 sim (Qi,Kj)Vj∑N
j=1 sim (Qi,Kj)

. (3)

Equation 3 is equivalent to equation 2 if we substitute the
similarity function with sim (q, k) = exp

(
qT k√
D

)
.

3.2. Linearized Attention

The definition of attention in equation 2 is generic and can be
used to define several other attention implementations such
as polynomial attention or RBF kernel attention (Tsai et al.,
2019). Note that the only constraint we need to impose
to sim (·), in order for equation 3 to define an attention
function, is to be non-negative. This includes all kernels
k(x, y) : R2×F → R+.

Given such a kernel with a feature representation φ (x) we
can rewrite equation 2 as follows,

V ′i =

∑N
j=1 φ (Qi)

T
φ (Kj)Vj∑N

j=1 φ (Qi)
T
φ (Kj)

, (4)

and then further simplify it by making use of the associative
property of matrix multiplication to

V ′i =
φ (Qi)

T ∑N
j=1 φ (Kj)V

T
j

φ (Qi)
T ∑N

j=1 φ (Kj)
. (5)

The above equation is simpler to follow when the numerator
is written in vectorized form as follows,(

φ (Q)φ (K)
T
)
V = φ (Q)

(
φ (K)

T
V
)
. (6)

Note that the feature map φ (·) is applied rowwise to the
matrices Q and K.

From equation 2, it is evident that the computational cost of
softmax attention scales with O

(
N2
)
, where N represents

the sequence length. The same is true for the memory re-
quirements because the full attention matrix must be stored
to compute the gradients with respect to the queries, keys
and values. In contrast, our proposed linear transformer
from equation 5 has time and memory complexityO (N) be-
cause we can compute

∑N
j=1 φ (Kj)V

T
j and

∑N
j=1 φ (Kj)

once and reuse them for every query.

3.2.1. FEATURE MAPS AND COMPUTATIONAL COST

For softmax attention, the total cost in terms of multiplica-
tions and additions scales as O

(
N2 max (D,M)

)
, where

D is the dimensionality of the queries and keys and M is
the dimensionality of the values. On the contrary, for linear
attention, we first compute the feature maps of dimension-
ality C. Subsequently, computing the new values requires
O (NCM) additions and multiplications.

The previous analysis does not take into account the choice
of kernel and feature function. Note that the feature func-
tion that corresponds to the exponential kernel is infinite
dimensional, which makes the linearization of exact soft-
max attention infeasible. On the other hand, the polynomial
kernel, for example, has an exact finite dimensional feature
map and has been shown to work equally well with the expo-
nential or RBF kernel (Tsai et al., 2019). The computational
cost for a linearized polynomial transformer of degree 2
is O

(
ND2M

)
. This makes the computational complexity

favorable when N > D2. Note that this is true in practice
since we want to be able to process sequences with tens of
thousands of elements.

For our experiments, that deal with smaller sequences, we
employ a feature map that results in a positive similarity
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function as defined below,

φ (x) = elu(x) + 1, (7)

where elu(·) denotes the exponential linear unit (Clevert
et al., 2015) activation function. We prefer elu(·) over relu(·)
to avoid setting the gradients to 0 when x is negative. This
feature map results in an attention function that requires
O (NDM) multiplications and additions. In our experi-
mental section, we show that the feature map of equation 7
performs on par to the full transformer, while significantly
reducing the computational and memory requirements.

3.3. Causal Masking

The transformer architecture can be used to efficiently train
autoregressive models by masking the attention computa-
tion such that the i-th position can only be influenced by
a position j if and only if j ≤ i, namely a position cannot
be influenced by the subsequent positions. Formally, this
causal masking changes equation 3 as follows,

V ′i =

∑i
j=1 sim (Qi,Kj)Vj∑i
j=1 sim (Qi,Kj)

. (8)

Following the reasoning of § 3.2, we linearize the masked
attention as described below,

V ′i =
φ (Qi)

T ∑i
j=1 φ (Kj)V

T
j

φ (Qi)
T ∑i

j=1 φ (Kj)
. (9)

By introducing Si and Zi as follows,

Si =

i∑
j=1

φ (Kj)V
T
j , (10)

Zi =
i∑

j=1

φ (Kj) , (11)

we can simplify equation 9 to

V ′i =
φ (Qi)

T
Si

φ (Qi)
T
Zi
. (12)

Note that, Si and Zi can be computed from Si−1 and Zi−1

in constant time hence making the computational complex-
ity of linear transformers with causal masking linear with
respect to the sequence length.

3.3.1. GRADIENT COMPUTATION

A naive implementation of equation 12, in any deep learning
framework, requires storing all intermediate values Si in
order to compute the gradients. This increases the mem-
ory consumption by max (D,M) times; thus hindering the

applicability of causal linear attention to longer sequences
or deeper models. To address this, we derive the gradients
of the numerator in equation 9 as cumulative sums. This
allows us to compute both the forward and backward pass
of causal linear attention in linear time and constant mem-
ory. A detailed derivation is provided in the supplementary
material.

Given the numerator V̄i and the gradient of a scalar loss
function with respect to the numerator ∇V̄i

L, we derive
∇φ(Qi)L, ∇φ(Ki)L and∇Vi

L as follows,

∇φ(Qi)L = ∇V̄i
L

 i∑
j=1

φ (Kj)V
T
j

T

, (13)

∇φ(Ki)L =

 N∑
j=i

φ (Qj)
(
∇V̄j
L
)TVi , (14)

∇Vi
L =

 N∑
j=i

φ (Qj)
(
∇V̄j
L
)TT

φ (Ki) . (15)

The cumulative sum terms in equations 9, 13-15 are com-
puted in linear time and require constant memory with re-
spect to the sequence length. This results in an algorithm
with computational complexity O (NCM) and memory
O (N max (C,M)) for a given feature map of C dimen-
sions. A pseudocode implementation of the forward and
backward pass of the numerator is given in algorithm 1.

3.3.2. TRAINING AND INFERENCE

When training an autoregressive transformer model the full
ground truth sequence is available. This makes layerwise
parallelism possible both for fl(·) of equation 1 and the
attention computation. As a result, transformers are more
efficient to train than recurrent neural networks. On the
other hand, during inference the output for timestep i is the
input for timestep i+ 1. This makes autoregressive models
impossible to parallelize. Moreover, the cost per timestep
for transformers is not constant; instead, it scales with the
square of the current sequence length because attention must
be computed for all previous timesteps.

Our proposed linear transformer model combines the best
of both worlds. When it comes to training, the computations
can be parallelized and take full advantage of GPUs or other
accelerators. When it comes to inference, the cost per time
and memory for one prediction is constant for our model.
This means we can simply store the φ (Kj)V

T
j matrix as an

internal state and update it at every time step like a recurrent
neural network. This results in inference thousands of
times faster than other transformer models.
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3.4. Transformers are RNNs

In literature, transformer models are considered to be a fun-
damentally different approach to recurrent neural networks.
However, from the causal masking formulation in § 3.3 and
the discussion in the previous section, it becomes evident
that any transformer layer with causal masking can be writ-
ten as a model that, given an input, modifies an internal state
and then predicts an output, namely a Recurrent Neural
Network (RNN). Note that, in contrast to Universal Trans-
formers (Dehghani et al., 2018), we consider the recurrence
with respect to time and not depth.

In the following equations, we formalize the transformer
layer of equation 1 as a recurrent neural network. The
resulting RNN has two hidden states, namely the attention
memory s and the normalizer memory z. We use subscripts
to denote the timestep in the recurrence.

s0 = 0, (16)
z0 = 0, (17)

si = si−1 + φ (xiWK) (xiWV )
T
, (18)

zi = zi−1 + φ (xiWK) , (19)

yi = fl

(
φ (xiWQ)

T
si

φ (xiWQ)
T
zi

+ xi

)
. (20)

In the above equations, xi denotes the i-th input and yi the
i-th output for a specific transformer layer. Note that our
formulation does not impose any constraint on the feature
function and it can be used for representing any transformer
model, in theory even the ones using softmax attention. This
formulation is a first step towards better understanding the
relationship between transformers and popular recurrent net-
works (Hochreiter & Schmidhuber, 1997) and the processes
used for storing and retrieving information.

4. Experiments
In this section, we analyze experimentally the performance
of the proposed linear transformer. Initially, in § 4.1, we
evaluate the linearized attention in terms of computational
cost, memory consumption and convergence on synthetic
data. To further showcase the effectiveness of linear trans-
formers, we evaluate our model on two real-world appli-
cations, image generation in § 4.2 and automatic speech
recognition in § 4.3. We show that our model achieves
competitive performance with respect to the state-of-the-art
transformer architectures, while requiring significantly less
GPU memory and computation.

Throughout our experiments, we compare our model with
two baselines, the full transformer with softmax attention
and the Reformer (Kitaev et al., 2020), the latter being a
state-of-the-art accelerated transformer architecture. For the
Reformer, we use a PyTorch reimplementation of the pub-

Algorithm 1 Linear transformers with causal masking
function forward(φ (Q), φ (K), V ):

V ′ ← 0, S ← 0
for i = 1, . . . , N do

S ← S + φ (Ki)V
T
i equation 10

V̄i ← φ (Qi)S
end
return V̄

end
function backward(φ (Q), φ (K), V , G):

/* G is the gradient of the loss
with respect to the output of
forward */

S ← 0, ∇φ(Q)L ← 0
for i = 1, . . . , N do
S ← S + φ (Ki)V

T
i

∇φ(Qi)L ← GiS
T equation 13

end
S ← 0, ∇φ(K)L ← 0, ∇V L ← 0
for i = N, . . . , 1 do
S ← S + φ (Qi)G

T
i

∇ViL ← STφ (Ki) equation 15
∇φ(Ki)L ← SVi equation 14

end
return∇φ(Q)L, ∇φ(K)L, ∇V L

end

lished code and for the full transformer we use the default
PyTorch implementation. Note that for Reformer, we do
not use the reversible layers, however, this does not affect
the results as we only measure the memory consumption
with respect to the self attention layer. In all experiments,
we use softmax (Vaswani et al., 2017) to refer to the stan-
dard transformer architecture, linear for our proposed linear
transformers and lsh-X for Reformer (Kitaev et al., 2020),
where X denotes the hashing rounds.

For training the linear transformers, we use the feature map
of equation 7. Our PyTorch (Paszke et al., 2019) code with
documentation and examples can be found at https://
linear-transformers.com/. The constant memory
gradient computation of equations 13-15 is implemented in
approximately 200 lines of CUDA code.

4.1. Synthetic Tasks

4.1.1. CONVERGENCE ANALYSIS

To examine the convergence properties of linear transform-
ers we train on an artifical copy task with causal masking.
Namely, the transformers have to copy a series of symbols
similar to the sequence duplication task of Kitaev et al.
(2020). We use a sequence of maximum length 128 with 10
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