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ABSTRACT
Performing inference on pre-trained neural network models must
meet the requirement of low-latency, which is often at odds with
achieving high throughput. Existing deep learning systems use
batching to improve throughput, which do not perform well when
serving Recurrent Neural Networks with dynamic dataflow graphs.
We propose the technique of cellular batching, which improves
both the latency and throughput of RNN inference. Unlike existing
systems that batch a fixed set of dataflow graphs, cellular batching
makes batching decisions at the granularity of an RNN “cell” (a sub-
graph with shared weights) and dynamically assembles a batched
cell for execution as requests join and leave the system. We imple-
mented our approach in a system called BatchMaker. Experiments
show that BatchMaker achieves much lower latency and also higher
throughput than existing systems.
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1 INTRODUCTION
In recent years, deep learning methods have rapidly matured from
experimental research to real world deployments. The typical life-
cycle of a deep neural network (DNN) deployment consists of two
phases. In the training phase, a specific DNN model is chosen after
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many design iterations and its parameter weights are computed
based on a training dataset. In the inference phase, the pre-trained
model is used to process live application requests using the com-
puted weights. As a DNN model matures, it is the inference phase
that consumes the most computing resource and provides the most
bang-for-the-buck for performance optimization.

Unlike training, DNN inference places much emphasis on low
latency in addition to good throughput. As applications often desire
real time response, inference latency has a big impact on the user
experience. Among existing DNN architectures, the one facing the
biggest performance challenge is the Recurrent Neural Network
(RNN). RNN is designed to model variable length inputs, and is a
workhorse for tasks that require processing language data. Example
uses of RNNs include speech recognition [3, 22], machine transla-
tion [4, 46], image captioning [44], question answering [40, 47] and
video to text [20].

RNN differs from other popular DNN architectures such as Multi-
layer Perceptrons (MLPs) and ConvolutionNeural Networks (CNNs)
in that it represents recursive instead of fixed computation. There-
fore, when expressing RNN computation in a dataflow-based deep
learning system, the resulting “unfolded” dataflow graph is not
fixed, but varies depending on each input. The dynamic nature
of RNN computation puts it at odds with biggest performance
booster—batching. Batched execution of many inputs is straight-
forward when their underlying computation is identical, as is the
case with MLPs and CNNs. By contrast, as inputs affect the depth
of recursion, batching RNN computation is challenging.

Existing systems have focused on improving training throughput.
As such, they batch RNN computation at the granularity of unfolded
dataflow graphs, which we refer to as graph batching. Graph batch-
ing collects a batch of inputs, combines their dataflow graphs into
a single graph whose operators represent batched execution of
corresponding operators in the original graphs, and submits the
combined graph to the backend for execution. The most common
form of graph batching is to pad inputs to the same length so that
the resulting graphs become identical and can be easily combined.
This is done in TensorFlow [1], MXNet [7] and PyTorch [34]. An-
other form of graph batching is to dynamically analyze a set of
input-dependent dataflow graphs and fuse equivalent operators to
generate a conglomerate graph. This form of batching is done in
TensorFlow Fold [26] and DyNet [30].

Graph batching harms both the latency and throughput of model
inference. First, unlike training, the inputs for inference arrive at
different times. With graph batching, a newly arrived request must
wait for an ongoing batch of requests to finish their execution com-
pletely, which imposes significant latency penalty. Second, when
inputs have varying sizes, not all operators in the combined graph
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can be batched fully after merging the dataflow graphs for different
inputs. Insufficient amount of batching reduces throughput under
high load.

This paper proposes a new mechanism, called cellular batching,
that can significantly improve the latency and throughput of RNN
inference. Our key insight is to realize that a recursive RNN compu-
tation is made up of varying numbers of similar computation units
connected together, much like an organism is composed of many
cells. As such, we propose to perform batching and execution at the
granularity of cells (aka common subgraphs in the dataflow graph)
instead of the entire organism (aka the whole dataflow graph), as
is done in existing systems.

We build the BatchMaker RNN inference system based on cellular
batching. As each input arrives, BatchMaker breaks its computation
graph into a graph of cells and dynamically decides the set of
common cells that should be batched together for the execution.
Cellular batching is highly flexible, as the set of batched cells may
come from requests arriving at different times or even from the
same request. As a result, a newly arrived request can immediately
join the ongoing execution of existing requests, without needing
to waiting for them to finish. Long requests also do not decrease
the amount of batching when they are batched together with short
ones: each request can return to the user as soon as its last cell
finishes and a long request effectively hitches a ride with multiple
short requests over its execution lifetime.

When batching and executing at the granularity of cells, Batch-
Maker also faces several technical challenges. What cells should be
grouped together to form a batched task? Given multiple batched
tasks, which one should be scheduled for execution next? When
multiple GPU devices are used, how should BatchMaker balance the
loads of different GPUs while preserving the locality of execution
within a request? How can BatchMaker minimize the overhead of
GPU kernel launches when a request’s execution is broken up into
multiple pieces?

We address these challenges and develop a prototype imple-
mentation of BatchMaker based on the codebase of MXNet. We
have evaluated BatchMaker using several well-known RNN mod-
els (LSTM [24], Seq2Seq [38] and TreeLSTM [39]) on different
datasets. We also compare the performance of BatchMaker with
existing systems including MXNet, TensorFlow, TensorFlow Fold
and DyNet. Experiments show that BatchMaker reduces the latency
by 17.5-90.5% and improves the throughput by 25-60% for LSTM
and Seq2Seq compared to TensorFlow and MXNet. The inference
throughput of BatchMaker for TreeLSTM is 4× and 1.8× that of Ten-
sorFlow Fold and DyNet, respectively, and the latency reductions
are 87% and 28%.

2 BACKGROUND
In this section, we explain the unique characteristics of RNNs, the
difference between model training and inference, the importance
of batching and how it is done in existing deep learning systems.

2.1 A primer on recurrent neural networks
Recurrent Neural Network (RNN) is a family of neural networks
designed to process sequential data of variable length. RNN is par-
ticularly suited for language processing, with applications ranging

RNN 
Cell

RNN 
Cell

RNN 
Cell

system research is

h(1) output
cool

h(2)

Figure 1: An unfolded chain-structured RNN. All RNN Cells
in the chain share the same parameter weights.
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Figure 2: An unfolded tree-structured RNN. There are two
types of RNN cells, leaf cell (grey) and internal cell (white).
All RNN cells of the same type share the same parameter
weights.

from speech recognition [3], machine translation [4, 46], to question
answering [40, 47].

In its simplest form, we can view RNNs as operating on an input
sequence, X = [x (1) ,x (2) , ...,x (τ )], where x (i ) represents the input
at the i-th position (or timestep). For language processing, the input
X would be a sentence, and x (i ) would be the vector embedding of
the i-th word in the sentence. RNN’s key advantage comes from
parameter sharing when processing different positions. Specifically,
let fθ be a function parameterized with θ , RNNs represent the
recursive computation h(t ) = fθ (h

(t−1) ,x (t ) ), where h(t ) is viewed
as the value of the hidden unit after processing the input sequence
up to the t-th position. The function fθ is commonly referred to as
an RNN cell. An RNN cell can be as simple as a fully connected layer
with an activation function, or the more sophisticated Long Short-
Term Memory (LSTM) cell. The LSTM cell [24] contains internal
cell state that store information and uses several gates to control
what goes in or out of those cell state and whether to erase the
stored information.

RNNs can be used tomodel a natural language, solving tasks such
as predicting the most likely word following an input sentence. For
example, we can use an RNN to process the input sentence “system
research is” and to derive the most likely next word from the RNN’s
output. Figure 1 shows the unfolded dataflow graph for this input.
At each time step, one input position is consumed and the calculated
value of the hidden unit is then passed to the successor cell in the
next time step. After unfolding three steps, the output will have
the context of the entire input sentence and can be used to predict
the next word. It is important to note that each RNN cell in the
unfolded graph is just a copy, meaning that all unfolded cells share
the same model parameter θ .

Although sequential data are common, RNNs are not limited
to chain-like structures. For example, TreeLSTM [39] is a tree-
structured RNN. It takes as input a tree structure (usually, the
parse tree of a sentence [36]) and unfolds the computation graph
to that structure, as shown in Figure 2. TreeLSTM has been used
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Figure 3: Latency vs. throughput for computing a single step
of LSTM cell at different batch sizes for CPU and GPU. The
value on the marker denotes the batch size.

for classifying the sentiment of a sentence [33] and the semantic
relatedness of two sentences [28].

2.2 Training vs. inference, and the importance
of batching

Deploying a DNN is two-phase process. During the offline training
phase, a model is selected and its parameter weights are computed
using a training dataset. Subsequently, during the online inference
phase, the pre-trained model is used to process application requests.

At a high level, DNN training is an optimization problem to
compute parameter weights that minimize some loss function. The
optimization algorithm is minibatch-based Stochastic Gradient De-
scent (SGD), which calculates the gradients of the model parame-
ters using a mini-batch of a few hundred training examples, and
updates the parameter weights along computed gradients for the
subsequent iteration. The gradient computation involves forward-
propagation (computing the DNN outputs for those training sam-
ples) and backward-propagation (propagating the errors between
the outputs and true labels backward to determine parameter gradi-
ents). Training cares about throughput: the higher the throughput,
the faster one can scan the entire training dataset many times to
arrive at good parameter weights. Luckily, the minibatch-based
SGD algorithm naturally results in batched gradient computation,
which is crucial for achieving high throughput.

DNN inference uses pre-trained parameter weights to process
application requests as they arrive. Compared to training, there’s
no backward-propagation and no parameter updates. However,
as applications desire real time response, inference must strive
for low latency as well as high throughput, which are at odds
with each other. Unlike training, there is no algorithmic need for
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(b) Graph batching in TensorFlow Fold and DyNet

Figure 4: Existing systems perform graph batching

batching during inference1. Nevertheless, batching is still required
by inference for achieving good throughput.

To see the importance of batching for performance, we conduct
a micro-benchmark that performs a single LSTM computation step
using varying batch sizes (b)2. The GPU experiment uses NVIDIA
Tesla V100 GPU and NVIDIA CUDA Toolkit 9.0. Figure 3 (bottom)
shows the execution time of a batch vs. the overall throughput,
for batch sizes b = 2, 4, ...2048. We can see that the execution
time of a batch remains almost unchanged first and then increases
sublinearlywithb.Whenb > 512, the execution time approximately
doubles as b doubles. Thus, setting b = 512 results in the best
throughput. We also ran CPU experiments on Intel Xeon Processor
E5-2698 v4 with 32 virtual cores. The LSTM cell is implemented
using Intel’s Math Kernel Library (2018.1.163). As Figure 3 (top)
shows, batching is equally important for the CPU. On both the GPU
and CPU, batching improves throughput because increasing the
amount of computation helps saturate available computing cores
and masks the overhead of off-chip memory access. As the CPU
performance lags far behind that of the GPU, we focus our system
development on the GPU.

2.3 Existing solutions for batching RNNs
Batching is straightforward when all inputs have the same compu-
tation graph. This is the case for certain DNNs such as Multi-layer
Perceptron (MLP) and Convolution Neural Networks (CNNs). How-
ever, for RNNs, each input has a potentially different recursion
depth and results in an unfolded graph of different sizes. This input-
dependent structure makes batching for RNNs challenging.

Existing systems fall into two camps in terms of how they batch
for RNNs:

(1) TensorFlow/MXNet/PyTorch/Theano:These systems pad
a batch of input sequences to the same length. As a result,

1The SGD algorithm used in training is best done in mini-batches. This is because the
gradient averaged across many inputs in a batch results in a better estimate of the true
gradient than that computed using a single input.
2We configure the LSTM hidden unit size h = 1024. The LSTM implementation
involves several element-wise operations and one matrix multiplication operation
with input tensor shapes b × 2h and 2h × 4h.
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each input has the same computation graph and the exe-
cution can be batched easily. An example of batching via
padding is shown in Figure 4a. However, padding is not a
general solution and can only be applied to RNNs that handle
sequential data using a chain-like structure. For non-chain
RNNs such as TreeLSTMs, padding does not work.

(2) TensorFlow-Fold/DyNet: In these two recent work, the
system first collects a batch of input samples and generates
the dataflow graph for each input. The system then merges
all these dataflow graphs together into one graph where
some operator might correspond to the batched execution
of operations in the original graphs. An example is shown
in Figure 4b.

Both above existing strategies try to collect a set of inputs to form
a batch and find a dataflow graph that’s compatible with all inputs
in the batch. As such, we refer to both strategies as graph batching.
Existing systems use graph batching for both training and inference.
We note that graph batching is ideal for RNN training. First, since
all training inputs are present before training starts, there is no
delay in collecting a batch. Second, it does not matter if a short
input is merged with a long one because mini-batch (synchronous)
SGD must wait for the entire batch to finish in order to compute
the parameter gradient anyway.

Unfortunately, graph batching is far from ideal for RNN inference
and negatively affects both the latency and throughput. Graph
batching incurs extra latency due to unnecessary synchronization
because an input cannot start executing unless all requests in the
current batch have finished. This is further exacerbated in practice
when inputs have varying lengths, causing some long input to
delay the completion of the entire batch. Graph batching can also
result in suboptimal throughput, either due to performing useless
computation for padding or failing to batch at the optimal level for
all operators in the merged dataflow graph.

3 OUR APPROACH: CELLULAR BATCHING
We propose cellular batching for RNN inference. RNN has the
unique feature that it contains many identical computational units
connected with each other. Cellular batching exploits this feature to
1) batch at the level of RNN cells instead of whole dataflow graphs,
and 2) let new requests join the execution of current requests and
let requests return to the user as soon as they finish.

3.1 Batching at the granularity of cells
Graph batching is not efficient for inference because it performs
batching at a coarse granularity–a dataflow graph. The recursive
nature of RNN enables batching at a finer granularity–an RNN cell.
Since all unfolded RNN cells share the same parameter weights,
there is ample opportunity for batching at the cell-level: each un-
folded cell of a request X can be batched with any other unfolded
cell from request Y. In this way, RNN cells resemble biological cells
which constitute all kinds of organisms. Although organisms have
numerous types and shapes, the number of cell types they have is
much more limited. Moreover, regardless of the location of a cell,
cells of the same type perform the same functionality (and can be
batched together). This characteristic makes it more efficient to
batch at cell level instead of the organism (dataflow graph) level.
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0 5 10 time

0 5 10 time

(a) Graph Batching

Running 
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(b) Cellular Batching
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req4 (5) queueing time

computation time

waiting for batch
to finish

formed batch

Figure 5: The timeline of graph batching and Cellular Batch-
ing when processing 8 requests from req1 to req8. The num-
ber shown in parenthesis is the request’s sequence length,
e.g. req1(2) means req1 has a sequence length of 2. Each row
marks the lifetime of a request starting from its arrival time.
Req1-4 are Running Requests as they arrive at time 0 and
have started execution. Req5-8 are Upcoming Requests that
arrive after the Req1-4.

More generally, we allow programmers to define a cell as a (sub-
)dataflow graph and to use it as a basic computation unit for express-
ing the recurrent structure of an RNN. A simple cell contains a few
tensor operators (e.g. matrix-matrix multiplication followed by an
element-wise operation); a complex cell such as LSTM not only con-
tains many operators but also its own internal recursion. Grouping
operators into cell allows us to make the unfolded dataflow graph
coarse-grained, where each node represents a cell and each edge
depicts the direction in which data flows from one cell to another.
We refer to this coarse-grained dataflow graph as cell graph.

There may be more than one type of cells in the dataflow graph.
Two cells are of the same type if they have identical sub-graphs,
share the same parameter weights, and expect the same number of
identically-shaped input tensors. Cells with the same type can be
batched together if there is no data dependency between them.

3.2 Joining and leaving the ongoing execution
In graph batching, the system collects a batch of requests, finishes
executing all of them and then moves on to the next batch. By
contrast, in cellular batching, there is no notion of a fixed batch
of requests. Rather, new requests continuously join the ongoing
execution of existing requests without waiting for them to finish.
This is possible because a new request’s cells at an earlier recursion
depth can be batched together with existing requests’ cells at later
recursion depths.

Existing deep learning systems such as TensorFlow, MXNet and
DyNet schedule an entire dataflow graph for execution. To support
continuous join, we need a different system implementation that
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can dynamically batch and schedule individual cells. More con-
cretely, our system unfolds each incoming request’s execution into
a graph of cells, and continuously forms batched tasks by grouping
cells of the same type together. When a task has batched sufficiently
many cells, it is submitted to a GPU device for execution. Therefore,
as long as an ongoing request still has remaining cells that have not
been executed, they will be batched together with any incoming
requests. Furthermore, our system also returns a request to the user
as soon as its last cell finishes. As a result, a short request is not
penalized with increased latency when it’s batched with longer
requests.

Figure 5 illustrates the different batching behavior of Cellular
Batching and graph batching when processing the same 8 requests.
We assume a chain-structured RNN model and that each RNN
cell in the chain takes one unit of time to execute. Each request
corresponds to an input sequence whose length is shown in the
parentheses. In the Figure, each row shows the lifetime of one
request, starting from its arrival time. The example uses a batch
size of 4.

In the beginning of time (t=0), the first 4 requests (req1-4) arrive.
Under graph batching, these 4 requests form a batch and their
corresponding dataflow graphs are fused together and submitted
to the backend for execution. The system does not finish executing
the fused graph until time t=5, as the longest request in the batch
(req4) has a length of 5. In the meanwhile, newly arrived requests
(req5-8) are being queued up and form the next batch. The system
starts executing the next batch at t=5 and finishes at t=12. Under
cellular batching, among the first 4 requests, the system forms two
fully batched tasks, each performing the execution of a single (4-
way batched) RNN cell. At t=2, the second task finishes, causing
req1 to complete and leave the system. Since a new request (req5)
has already arrived, the system forms its third fully batched task
containing req2-5 at t=2. After finishing this task, another two
existing requests (req2,req3) depart and two new ones are added
(req6, req7) to form the fourth task. As shown in this example,
cellular batching not only reduces the latency of each request (due
to less queuing), but also increases the overall system throughput
(due to tighter batching).

4 SYSTEM DESIGN
We build an inference system, called BatchMaker, based on cellular
batching. This section describes the basic system design.

4.1 User Interface
In order to use BatchMaker, users must provide two pieces of in-
formation: the definition of each cell (i.e. the cell’s dataflow graph)
and a user-defined function that unfolds each request/input into
its corresponding cell graph. We expect users to obtain a cell’s
definition from their training programs for MXNet or TensorFlow.
Specifically, users define each RNN cell using MXNet/TensorFlow’s
Python interface and save the cell’s dataflow graph in a JSON file
using existing MXNet/TensorFlow facilities. The saved file is given
to BatchMaker as the cell definition. In our current implementation,
the user-defined unfolding logic is expressed as a C++ function
which uses our given library functions to create a dataflow graph
of cells.

generate
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Figure 6: The system architecture of BatchMaker. In the
cell graph, black means computed nodes, grey means nodes
whose input is ready, and white means input dependency is
not satisfied.

4.2 Software Architecture
BatchMaker runs on a single machine with potentially many GPU
devices. Its overall system architecture is depicted in Figure 6. Batch-
Maker has two main components: Manager and Worker. The man-
ager processes arriving requests and submits batched computation
tasks to workers for execution. Depending on the number of GPU
devices equipped, there may be multiple workers, each of which is
associated with one GPU device. Workers execute tasks on GPUs
and notify the manager when its tasks complete.

System initialization. Upon startup, BatchMaker loads each cell’s
definition and its pre-trained weights from files. BatchMaker “em-
beds” the weights into cells so that weights are part of the internal
state as opposed to the inputs to a cell. For a cell to be considered
batchable, the first dimension of each of its input tensors should be
the batch dimension. BatchMaker identifies the type of each cell by
its definition, weights, and input tensor shapes.

The workflow of a request. The manager consists of two submod-
ules, request processor and scheduler. The request processor tracks
the progress of execution for each request and the scheduler deter-
mines which cells from different requests would form a batched
task, and selects a worker to execute the task.

When a new request arrives, the request processor runs the user-
code to unfold the recursion and generates the corresponding cell
graph for the request. In this cell graph, each node represents a cell
and is labeled with a unique node id as well as its cell type. Request
processor will track and update the dependencies of each node.
When a node’s dependencies have been satisfied (aka its inputs are
ready), the node is ready to be scheduled for execution (§4.3). The
scheduler forms batched tasks among ready nodes of the same cell
type. Each type of cell has a desired maximum batch size, which is
determined through offline benchmarking. Once a task has reached
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