
Published in IET Networks
Received on 20th December 2011
Revised on 19th February 2012
doi: 10.1049/iet-net.2011.0048

ISSN 2047-4954

Design and evaluation of deep packet inspection
system: a case study
M.-Y. Liao1 M.-Y. Luo2 C.-S. Yang1 C.-H. Chen3 P.-C. Wu3 Y.-W. Chen1

1Institute of Computer and Communication Engineering, Department of Electrical Engineering, National Cheng Kung
University, Taiwan
2Department of Computer Science and Information Engineering, National Kaohsiung University of Applied Sciences,
Taiwan
3Department of Computer Science and Engineering, National Sun Yat-sen University, Taiwan
E-mail: myluo@cc.kuas.edu.tw

Abstract: An increasing number of Internet applications and services render network management more troublesome for
bandwidth misuse and security concern. As a result, network traffic identification plays an increasingly important role in
network management. Deep packet inspection (DPI) is one of the effective approaches. Conventional network devices lookup
the header of a packet, but DPI means the network device is required to match a pattern in the payload of a packet. This
study proposes a DPI system and WMT (Wu-Manber with trie) algorithm to classify popular network services; The Net-DPIS
is developed based on Netfilter framework in Linux kernel. The authors show how to rearrange the rule policies to increase
the performance of Net-DPIS. In the results, the authors show that WMT algorithm is faster than WM algorithm; Net-DPIS
has higher average accuracy and performance than L7-filter.

1 Introduction

More and more Internet applications bind random port
number to transmit message and data; the port number is
not exactly mapping to a network service and to identify
traffic with protocol type and port number is not enough
[1]. As a result, there are many challenges in traffic
classification. A running instance of a network application
may generate a series of packets. A packet is composed
with header and payload, and the header carries layering
information, such as the IP address is in the layer three and
the port number is in the layer four. The payload carries
upper layer application protocol and data. Network services
transmit data over the application protocol. HTTP uses GET
or PUT as method and MSN uses NLN or BSY as user
status. These strings are generally unique so that they could
be thought as the patterns or signatures of network
applications. DPI mechanism plays an important role in
traffic characterisation and fine-grained network monitoring
by searching the payload of network packets for known
patterns or signatures [2].

In this paper, Net-DIPS (Netfilter [3]-based deep packet
inspection system) is proposed and developed based on
Linux Netfilter framework. The first part of a DPI system is
to capture packets from network interface cards, and
manipulate them for further detecting certain network
patterns while trying to minimise packet processing latency.
We extend the Netfilter framework of Linux kernel to
implement an efficient mechanism to achieve this. As a
result, the result of this paper can be applied to all network

system equipped Linux kernel. The second part of a DPI
system is to search known signature patterns in the payload
of packets. Variable pattern length and location, and
constantly added rules make pattern matching a difficult
task. Net-DPIS improves the WM multi-pattern matching
algorithm [4] with a novel design of the rule table.
Rajkumar [5] indicates that feature analysis of network
service is able to avoid unnecessary matching; this study
also improves the rule table of Net-DPIS.

The remainder of this paper is organised as follows:
Section 2 describes the related work. We describe the
Netfilter framework and our extension in Section 3. We
detail how to construct the rule table to increase the speed
of Net-DPIS effectively in Section 4. Section 5 measures
the performance of WMT algorithm and compares Net-
DPIS with L7-filter [6], IPP2P [7] and Sen-Spatscheck-
Wang (SSW) [8]. Finally, Section 6 concludes the paper.

2 Related works

Increasingly, network traffics are classified not only by the
fields of their packet headers (e.g. port number defined by
Internet Assigned Numbers Authority), but also by the
content of their payloads. As a result of these trends, there
has been a considerable amount of recent work on
implementing signature-based DPI in software system [6, 9,
10] or networking devices [11]. Therefore some approaches
[12–15] have been proposed to identify the network traffic,
and DPI is one of the effective approaches.

IET Networks, pp. 1–8 1
doi: 10.1049/iet-net.2011.0048 & The Institution of Engineering and Technology 2012

www.ietdl.org

EX 1008 Page 1f

Find authenticated court documents without watermarks at docketalarm.com.

HTTP uses
https://www.docketalarm.com/

2.1 Deep packet inspection

DPI technique inspects both the header and the payload of a
packet. String matching algorithms such as KMP (Knuth–
Morris–Pratt) [16], AC (Aho–Corasick) [17], BM (Boyer–
Moore) [18], CW (Commentz–Walter) [19] and WM
(Wu–Manber) [4] algorithms have been the foundation for
many DPI systems over many years. Owing to the variable
position of a signature in packet payload, the string matching
algorithm directly affects the matching performance of an
identification system. The authors of [8, 20, 21] suggest that
the signature in packet payload can be used for generating
service rules. This paper proposed a design of rule table can
improve the performance of traffic identification.

Many DPI systems use regular expressions to depict pattern
signatures as more general cases. There have been numerous
studies on regular expression matching [22–24]. L7-filter is a
packet identification system whose regular expression is
based on Henry Spencer’s Bell Version 8 Regular
Expression. This version of the regular expression has the
following limitations; Bound, Character Class and Back
Reference are not used. Currently, L7-filter supports to
identify 120 types of services, including 23 types of P2P
applications. Different platforms have been used to
implement DPI system, including ASICs [25], field
programmable gate arrays [26], network processors [27] and
even cloud platform [28].

As shown in Fig. 1, the depth (N) means that the first N
bytes of the payload are required to be searched by DPI
system; Hsu [29] indicates that Net-DPIS finds 99% of
identifiable network flows in the first 600 bytes of a
payload, DPI system could set a suitable depth (N)
according to the tradeoff of accuracy and cost time.

2.2 Netfilter framework

The Netfilter framework is located in the Linux kernel IP
layer; it provides a set of hooks to intercept and manipulate
the packets. Netfilter framework provides the packet
processing function such as packet filtering, packet
forwarding, connection tracking, network address translation
(NAT), packet mangling for packet modification etc. The
Netfilter framework for kernel version 2.6 implements five
hooks to intercept and manipulate packets as illustrated in
Fig. 2. If the packets are forwarded to the next hop, they go
through the path of PREROUTING, FORWARD and
POSTROUTING chains. The packets are received to local
network service via the PREROUTING and INPUT chains.
Outgoing packets are sent out via OUTPUT and
POSTROUTING chains. Netfilter firewall is registered at
INPUT chain for end-host servers.

Netfilter framework provides the iptables utilities for users
to configure the Netfilter framework, for example, firewall
rules configuration. The iptables utilities in user space
communicate with the Netfilter framework in the kernel
space via the Netlink socket. Netlink socket is socket-like
system calls for accessing the kernel space. Unlike other

system calls, Netlink socket has the benefits that support
asynchronous operations, duplex characteristics,
multicasting and short response time for user-space
applications etc. Netfilter firewall manages the firewall rules
using the linked-list data structure. So every packet must
check all firewall rules until it finds the rule-matching
result. As a consequence, the number of rules and incoming
packets determine firewall’s computation complexity. With
the growth of rules and incoming packets, CPUs would
spend considerable time on the Netfilter firewall; this
situation would influence the overall performance of
network application.

3 Design and implementation of Net-DPIS

Net-DPIS is a network traffic classification system; Fig. 3 is
the network topology. The core switch clones the network
traffic between local area network (LAN) and Internet to a
mirror port. The advantage of using port mirror is that we do
not need to change the network topology and the Net-DPIS
will not be the bottleneck while network traffic is large.
What we have to do is to enable the port mirror feature of the
core switch and to connect Net-DPIS with the mirror port of
the core switch. If we use online mode, we have to make
the network traffic go through Net-DPIS; the processing
delay of Net-DPIS may cause packet lose. We show the
details of design and implementation in this section.

3.1 System architecture

A core switch enables the port mirror function to clone all
packets in LAN and all of the cloned packets are sent to a
Net-DPIS. The system components are shown in Fig. 4.
The Net-DPIS sets the network interface card (NIC) in
promiscuous mode and captures all the cloned packets from
the core switch. Net-DPIS is developed based on Netfilter

Fig. 1 Inspection depth length

Fig. 2 Netfilter framework

Fig. 3 Network topology (port mirror)

2 IET Networks, pp. 1–8

& The Institution of Engineering and Technology 2012 doi: 10.1049/iet-net.2011.0048

www.ietdl.org

EX 1008 Page 2f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

[3] framework in Linux kernel. A PROMISC hook is added
to Netfilter framework; the PROMISC hook cloned
packets from NIC. Connection tracking module is a native
module on Netfilter framework and maintains the connection
information. Cloned packets are classified in traffic
classification module and the classified results are recorded in
database. Net-DPIS uses simple network management
protocol (SNMP) trap message to communicate with network
management system (NMS) [30, 31]. While event handler
sends the results of traffic classification with updating the
private management information base (MIB), Net-DPIS sends
connection information and service types to NMS over the
SNMP trap message.

3.2 PROMISC hook

In Netfilter framework, there are five native hooks which are
called NF_IP_PRE_ROUTING, NF_IP_LOCAL_IN, NF_
IP_FORWARD, NF_IP_LOCAL_OUT and NF_IP_POST_
ROUTING as shown in Fig. 3. While a NIC runs in
promiscuous mode, the NIC captures all the incoming
packets. If the destination media access control (MAC)
address of a packet is not the same with the NIC of Net-
DPIS, the packet is dropped; if the destination MAC
address of a packet is the same with the NIC of Net-DPIS,
the packet is allowed to enter Netfilter framework [32, 33].
In order to allow all packets from NIC to enter Netfilter
framework, we modified receive module and added a
PROMISC hook on Netfilter framework to receive the
packets that should be dropped. Shishlov [34] proposed a
patch of PROMISC hook for Linux kernel 2.4; in this

study, we proposed a patch of PROMISC hook for Linux
kernel 2.6.31 [35].

3.3 Traffic classification

Traffic classification is the core module of Net-DPIS for
identifying the network traffic; the purpose of traffic
classification is to match signatures in payload. Notations
used in this paper are explained in Table 1.

Formula (1) is used to define how to classify the signatures
into the four types of matching policies:

t =

a if |p| = 1 and x = 0
b if |p| = 1 and 0 % x % (L − S)
g if |p| . 1
l if |p| = 1 and c = L

⎧⎪⎪⎨
⎪⎪⎩

(1)

Net-DPIS uses four matching policies to increase the
performance of pattern matching; the following statements
describe four matching policies: As shown in Fig. 5, zero
offset policy and fixed offset policy match signatures at a
static offset x, zero offset policy is a case of fixed offset
policy whereas the offset x is at 0. ‘PASV’ is one of zero
offset signatures; ‘BitTorrent protocol’ is one of fixed offset
signatures and starts at offset 1. Variable offset policy
matches signatures at dynamic offset x; ‘SMTP’ signature
belongs to variable offset type. Arithmetic policy computes
the message header; an example of arithmetic policy,
the message header of eDonkey has the following data
structure: protocol field, message length field and message

Fig. 4 System architecture

IET Networks, pp. 1–8 3
doi: 10.1049/iet-net.2011.0048 & The Institution of Engineering and Technology 2012

www.ietdl.org

EX 1008 Page 3f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

ID field [35]; eDonkey traffic is identified with counting the
message size in byte and compares the counting result with
the message length field in message header.

Fig. 6 shows the flowchart of traffic classification. While
traffic classification module gets a packet, four policies are
used to search if there are any signatures in the packet; the
rule table identifies the service type of the packet according
to the results of four policies.

3.4 Pattern matching

WMT (WM with trie) is an evolution from WM pattern
matching algorithm. WM algorithm uses hash structure
to lookup patterns and the maximum offset of shift is
(m 2 B + 1). WMT algorithm uses a trie structure to reduce
the hash collisions; shift distance table (SDT) of fast string
matching algorithm for network processor (FNP) algorithm
[36] is referred by WMT to design the shift table of WM.

In the latter result of this paper will show that WMT
effectively improves the cost time in pattern matching.

3.5 Rule table

To understand the features of network services is useful to
prevent the unnecessary pattern matching. The rules in rule
table are used to identify the service type of the network
traffic; there are more than 300 rules in Net-DPIS. We
rearrange the rule policies of the rule table in order to
effectively reduce the time of lookup table. In the pattern
matching of the four policies, the variable offset policy is
the most time consuming; thus, to separate the variable
signatures can reduce the time. The improved traffic
classification procedure is as shown in Fig. 7. Zero offset,
fixed offset and arithmetical signatures are first used for
traffic classification state one. In cases of failure to search,
the name of the corresponding service is returned; the
variable offset policy is not required.

3.6 Connection tracking table

In general, there are more than one packet in a connection;
the packets in an identified connection should not be
inspected in the reason of saving computing performance.
In order to prevent to match the remainder packets in an
identified connection, a connection tracking table is used
and records the following records: (i) source IP address, (ii)

Fig. 7 Refined traffic classification flowchart

Fig. 8 Experimental environment

Fig. 5 Locating the signature

Table 1 Notations definition

Symbol Definition

L length of the payload of a packet

S length of the signature

c content of the signature

t type of the signature

a zero offset signature type

b fixed offset signature type

g variable offset signature type

l arithmetic signature type

x position of the signature

p the position set of the signature, p = {x [0 % x % (l − s)}

|p| number of the elements in p set, |p| . 1 means that the

signature occurs at more than one position

N the deep length of payload which is inspected by Net-DPIS

R the rule of identifying a service type

m length of shortest pattern

B the number of characters is matched in a matching cycle

Fig. 6 Traffic classification flowchart

4 IET Networks, pp. 1–8

& The Institution of Engineering and Technology 2012 doi: 10.1049/iet-net.2011.0048

www.ietdl.org

EX 1008 Page 4f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

destination IP address, (iii) source port, (iv) destination port,
(v) protocol, (vi) packet count, (vii) byte count, (viii)
connection state, (ix) connection expired time, (x) service
type. When a connection is identified, the connection
information will be recorded in the connection tracking table.
If a packet belongs to the identified connection, the traffic
classification module is not required to match the packet; on
the contrary, if the connection is not identified yet, the
connection information does not exist in the connection
tracking table and the traffic classification is necessary. The
connection recorded by connection tracking is two-way
information; when Net-DPIS receives the first packet in one
connection to be identified; opposite direction information
would be generated. The packet count and byte count of a
connection can be obtained with the sum of both ways.

4 Performance evaluation of Net-DPIS

This section describes that we measure the time cost in each
stage and reconstruct the policies of Net-DPIS to increase
the performance effectively.

4.1 Experimental environment

Fig. 8 shows the experimental environment and the
specification of the Net-DPIS and packet generator will be
described in the following statements. The Net-DPIS is a
personal computer with dual-core CPU, Ubuntu Linux
10.04 operating system, a Linux kernel version 2.6.31 and a
D-Link DGE-530T Gigabit Ethernet Adapter; the packet
generator is a personal computer with dual-core CPU,
Ubuntu Linux 10.10 operating system and a Intel(R)
82567LM Gigabit Ethernet Adapter; the switch supports
Gigabit Ethernet and port mirror. The packet generator

generates the network traffic to the user client, and the
switch will mirror the traffic between the packet generator
and the user client to Net-DPIS with port mirror function.

4.2 Time measurement of Net-DPIS

This experiment is conducted to observe the time cost.
The packet generator sends UDP packets to the user client.
Each experiment is repeated ten times and lasts 10 s. The
packet size is the sum of L2 header, L3 header, L4 header
and payload length in byte; the Net-DPIS matches
the signatures in the payload and is configured to inspect
the payload in the depth of 60, 300, 900 and 1500 bytes. The
packet generator sends user datagram protocol (UDP) packets
at 1514 bytes to the user client. The results are as shown in
Table 2; the unit of time is microsecond. From the results,
we can find that most of time is used to lookup rule table.

4.3 Time cost of traffic classification

In this experiment, the inspection length of the Net-DPIS is at
60, 300, 900 and 1500 bytes; the packet generator sends UDP
packets at 82, 342, 937 and 1514 bytes to the user client; each
experiment is repeated ten times. Table 3 shows a comparison
of the time cost in traffic classification; the unit of data is
microsecond. The time cost of the Net-DPIS and the
modified Net-DPIS are reduced with the reduction in packet
length, when the packet length is fixed; the total time cost
of the modified Net-DPIS is 23�35% less than the Net-DPIS.

4.4 Time cost of look-up table

Table 4 shows a comparison of the look-up table time.
The average time of the Net-DPIS is 79.4–88.1 ms. The

Table 2 Time cost in different inspection depths

Zero offset

time, ms

Fixed offset

time, ms

Variable offset

time, ms

Arithmetic

time, ms

Lookup rule

time, ms

Total time,

ms

60 14.3 9.7 7.14 5.2 80.3 116.6

300 14.2 9.8 14.5 5.4 79.9 123.8

900 14.3 9.8 33.6 5.6 80.2 143.5

1500 14.4 9.9 55.1 5.3 79.4 164.1

Table 3 Time cost of traffic classification

1514 937 342 82

Net-DPIS Modified Net-DPIS Modified Net-DPIS Modified Net-DPIS Modified

60 116.6 79.9 117.7 80.9 124.2 80.2 117.3 79.3

300 123.8 87.1 123.2 85.4 125.9 82.4 – –

900 143.5 104.7 130.3 94.3 – – – –

1500 164.1 125.1 – – – – – –

Table 4 Time cost of lookup table

1514 937 342 82

Net-DPIS Modified Net-DPIS Modified Net-DPIS Modified Net-DPIS Modified

60 80.3 43.3 80.2 43.5 88.1 44.3 81.6 43.7

300 79.9 43.7 80.4 43.4 87.9 44.0 – –

900 80.2 43.2 79.4 43.4 – – – –

1500 79.4 42.9 – – – – – –

IET Networks, pp. 1–8 5
doi: 10.1049/iet-net.2011.0048 & The Institution of Engineering and Technology 2012

www.ietdl.org

EX 1008 Page 5f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
 Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

 Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
 With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

 Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
 Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

 Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

