Executive Publisher Don Fowley
Associate Publisher Dan Sayre

Acquisitions Editor Catherine Shuliz
Project Editor Gladys Soto

Editorial Assistant Chelsee Pengal

Marketing Manager Chris Ruel

Production Editor Lea Radick

Cover Designer Michael St. Martine

Cover Image ©Megumi Takamura/Dex Image/Getty Images
Bicentennial Logo Design Richard J. Pacifico

‘This book was setin Zimes Ten by Preparé and printed and bound by Hamilton Printing.
‘The cover was printed by Phoenix Color. NTRODUCIN

Copyright 2008 © John Wiley & Sons, Inc. All rights reserved.

Ko ot s blion ey b Fprdced st na rerieal sysem o rnsmited i any form o
Y any means, lctrosic, mechanicl,photocopying. recording, scanning, or oherwise, except as permit-
enderecion 07 L0 e 197 Unied S Copyigh Act,without it heproper e
pionafie Publsher, o o aiontiough paymentof thsppropriss per<opy f o the Copyrigh
S earoce e I, 222 R Drive, Danvrs, MA 01923, (97750-640,fu (97)646-8600
Aeduests o Publerforpecision ol e adese o the Perissions Deprtment, Joha W

nc. 11 River Sreet, Hoboken, NJ 070305774, (201)748-601 1, fax (201)748.6008,

Library of Congress Cataloging-in-Publication Data
Peckol, James K.

mbedded system: a contemp lesign tool / James K. Peckol.
p.cm. -
ISBN 978-0-471-72180-2 (cloth)
1 Embedded computer system, 2.
1 Title. 5
TK7895.E42P43 2008
004.16~-dc22

Object oriented methods (Computer science)

ISBN 978.0471.72180:2 2007017870

o order books or for customer service please

Printedin the Unied S o i, P25 4l 1-00-CALL WILEY (225-5945).

10987654321

Preface

IBEDDED SYSTEMS

Less than 150 years ago, shipping a new product, petroleum, down the Mississippi in barges
was viewed with skepticism and fear of possible explosion. Fifty years later, electricity and
electric lights were viewed as marvels of modem technology available only to a few.
Another S0 years subsequent, someone suggested that the world would need at most three
to four computers. Our views continue to change. Today we ship petroleum (still with con-
cern) all over the world. Electricity has become so common that we are surprised if a switch
i not available to turn on a light when we enter a room. The need for three to four computers
has grown to hundreds of millions, perhaps billions, of installed computers worldwide.
This book presents a contemporary approach to the design and development of a kind
of computer system that most of us will never see—those that we call embedded systems.
The approach brings together a solid theoretical hardware and software foundation with
real-world applications. Why do we need such a thing? A good question, let’s take a look
Today we interact with an embedded computer in virtually every aspect of our
everyday life. From operating our car toriding an elevator to our office to doing our laundry
or cooking our dinner, a computer is there, quietly, silently doing its job. We find the micro-
proc verywhere. Today these machines are
ubiquitous. Like the electric light, without thought, we expect the antilock braking system
in our car to work when we use it. We expect our mobile phone to operate like the stationary
one in our home. We carry a computer in our pocket that is more powerful than the ones the

original astronauts took into space.

Today we have the ablity to put an increasingly larger number of hardware pieces
into diminishingly smaller spaces. Software is no longer relegated to a giant machine in an
air-conditioned room; our computer and its software go where we go. This ability gives
engineers a new freedom to creatively put together substantially more complex systems
with titillating functionality, systems that only science fiction writers thought of a few
years ago. Such an ability also gives us the opportunity to solve bigger and more complex
problems than we have ever imagined in the past—and to put those designs into smaller
and smaller packages. These are definitely the most fun problems, the exciting kinds of
things that we are challenged to work on. Okay, where do we begin?

The embedded field started almost by accident not too many years ago. In the early 70s
Federico Faggin and many others at Intel and Motorola introduced the 4004, 8008, and 6800

microprocessors to the engineering world. Originally inended for use in caleulators and in
K

calculator-1 ions, today, driven by like Faggin, the mic has
become a fundamental component of virtually everything we touch. With such widespread
application, the ensured safety and reliability of such systems are absolutely essential.

The embedded systems field has grown virtually overnight from nonexistent several
yearsago almost every aspect of modern electrical engineering and computing

APPLE 1026

462 Chapter 11 Real-Time Kernels and Operating Systems

11.7 Consider implementing an embedded system to control a
traffic light as a foreground/background system. Each direction
supports a left turn (right turn if traffic normally drives on the
left hand side) and pedestrian-activated crosswalk control.

(a) Which tasks are foreground tasks?

(b) Which tasks are background tasks?

(¢) Give a UML state diagram illustrating the behavior of the
system during a change from north-south green to east-west
green. Be certain to consider the operation with and without a
left (right) turn and with and without a pedestrian.

(d) Give a UML sequence diagram for the events in part (c).
11.8 Repeat Problem 11.7 for a microwave cooker.

11.9 Repeat Problem 11.7 for a washing machine.

11.10 Repeat Problem 11.7 for a video-on-demand entertain-
ment system for a large hotel.

11.11 Consider implementing an embedded system to control
a traffic light as an RTOS-based system. Each direction sup-
ports a left turn (right turn if traffic normally drives on the left-
hand side) and pedestrian-activated crosswalk control.

(a) Which tasks are the major tasks?

(b) Give a UML state diagram illustrating the behavior of the
system during a change from north-south green to east-west
green. Be certain to consider the operation with and without a
left (right) turn and with and without a pedestrian.

(¢) Give a UML sequence diagram for the events in part (c).
11.12 Repeat Problem 11.11 for a microwave cooker.

11.13 Repeat Problem 11.11 for a washing machine.

11.14 Repeat Problem 11.11 for a video-on-demand entertain-
ment system for a large hotel.

11.15 Provide a UML class diagram for a task control block
(TCB). Implement the design using a C struct data structure.
11.16 Design a method that would enable the dynamic alloca-
tion and deallocation of TCBs as tasks are created or terminated.
11.17 Modify the design in Example 11.1 to support a
dynamic number of tasks in the task queue without using malloc
and free (C) or new and delete (C++) while retaining the array
as the queue container.

11.18 Provide a UML class diagram for a task queue that sup-
ports the dynamic insertion and deletion of tasks.

11.19 Implement the task queue specified in Example 11,11
use a doubly linked list as the underlying data type for the quere
container.

11.20 Combine the subsystems in Problem 11.16 and Probles
11.19.

1121 Modify the design of the TCB in Problem 11.15 to sup-
port a task priority number in the range of {0-9}. Assume s
the highest and 9 the lowest priority.

Incorporate the modified TCB design into the task quese
design in Problem 11.19. Modify the access method to always
return the highest priority task.

11.22 Modify the design of the TCB in Problem 11.15 to sup-
port the inclusion of an estimate of execution time numberinthe
range of {0-99].

Incorporate the modified TCB design into the task quese
design in Problem 11.19. Modify the access method to always
return the shortest task.

11.23 Give a high-level description of how the system in Fig-
ure P11.22 works. You should not need more than 10 lines.

Temp Buffer

Figure P11.22

11.24 Write a C program to implement the design given in the
data/control flow diagram in Problem 11.23.

| ’ Chapter 12
&

|

|

|

|

Tasks and
Task Management

| THINGS TO LOOK FOR

|
i

* The role of time in embedded designs.

» The definitions of reactive and time-based systems.

» The differences between preemptive and nonpreemptive systems.
¢ The need for effectively scheduling the use of the system CPU(s).
* The criteria for making scheduling decisions.

¢ Common scheduling algorithms.

* Real-time scheduling considerations.

* How scheduling algorithms might be evaluated.

* Methods for intertask communication.

* The critical section problem and several solutions.

* Methods for task synchronization.

120 INTRODUCTION

reactive, time-based systems

In the previous chapter we introduced some of the basic concepts and methods involved in
controlling multitasking systems. We learned that foreground / background systems can be
effective under real-time constraints and that the basic responsibilities of the operating sys-
tem comprise task scheduling, intertask communication, and task dispatch. In addition, we
introduced some of the issues associated with the context switch in preemptable systems.

In this chapter, we will examine the scheduling problem and intertask communication
in greater detail. The resource management aspects of task scheduling and dispatch will be
covered in the following chapter. We will open by continuing the discussion of time and the
critical role it plays in the design of embedded applications by introducing the concepts of
reactive and time-based systems. We will present and discuss various metrics for specifying
and assessing a task schedule. We will then investigate several different scheduling algo-
rithms and analyze task synchronization and intertask communication in some detail. The
focus will be primarily from the perspective of either a kernel-based or more complete oper-
ating system-based control strategy.

463

| Chapter 12 Tasks and Task Management

1 TIME, TIME-BASED SYSTEMS, AND REACTIVE SYSTEMS

g lime

absolute, relative

interval
duration

We have already briefly encountered time and the important role it plays in the design and
execution of embedded applications. We will now explore that role in greater detail,

We define two different measures of time: absolute and relative, based on what the
measurement is referenced to. Absolute time is based on real-world time; relative time is
measured with respect to some reference. Time is further qualified as either an interval o
a duration; these are distinct. An interval is marked by specific start and end times; a durg-
tion is a relative time measure. Equal intervals must have the same start times and the same
stop times; nonequal intervals can have the same duration. This difference is captured in
Figure 12.0.

Equal Intervals < ?Eq\m Durations

Equal Intervals <: :?Equal Durations Figure 12.0 Equal Intervals

and Equal Durations

«1.2 Reactive and Time-Based Systems

reactive, time based

time-based Systems
absolute, relative
follnwing an interyq)

. Periogj,
aPenad,'c_ P""iodi

¢

€Xecutipn timeg

jitler

delay

harg, harq de adliy
e

Embedded systems are classified into two broad categories: reactive and time based. Reac-
tive systems, as the name suggests, contain tasks that are initiated by some event that may
be either internal or external to the system. An internal event may be an elapsed time ora
temporal bound on data that has been exceeded. An external event is the recognition of a
switch that has been activated or an external response to an internally generated command,
for example. Typically, the initiating events are asynchronous to the normal activity of th
system, Foreground/background systems are a good example of those classed as reactie.

Time-based systems are those systems whose behavior is controlled by time. Sucha
relalionship can be absolute—an action must occur at a specific time; relative—an action
MUst oceur after or before some reference; or following an interval—an action must oceur
at a specified time with respect to some reference. The behavior in time-based systems is
genera]ly synchronous with a timing element of one form or another. Time-shared systems
are a good example of those classed as time based.

The relevance of time in embedded applications becomes clear when trying to schedule
tasks an threads, that is, deciding when and how often each is executed. Tasks or threads
that are jpitiated with repeating duration between invocations are called periodic; otherwise
they are designated as aperiodic. A repeating duration is called the period. The time to com-
Plete g 1ok is called the execution time.

Ing periodic system, variation in the evoking event is called jitter. The time between
the ®Voking event and the intended action is called the delay. When designing a system,
€ach ¢onext in which it is anticipated that the system will be operating must be examined
0 determine the significance of jitter and delay with respect to specified time constraints

An getion that must occur by a specified time is defined as hard or is said to have a hard

€adlin, A missed deadline in such cases is considered to be a partial or total system fail-

|
|

hard real-time

soft real-time

firm real-time

predictability

when, how

periodic

12.1 Time, Time-Based Systems, and Reactive Systems 465

ure. A system is defined as hard real-time if it contains one or more tasks containing such
constraints. Such systems may have other tasks that do not have temporal deadlines. The
major focus, however, is on the hard deadlines.

Systems with relaxed time constraints are defined as soft real-time. Such systems may
meet their deadlines on average. Soft real-time systems may be soft in several ways:

* Relaxation of the constraint that missing the deadline constitutes system failure. Such
a system may tolerate missing the specific deadline provided some other deadline or
timeliness constraint is met—the average throughput, for example.

* Evaluating the correctness of timeliness as a gradation of values rather than pass
or fail.

Systems with tasks that have some relaxed constraints as well as hard deadlines are defined
as firm real-time.

Real-time systems are those in which correctness demands timeliness. Most such sys-
tems carefully manage resources with respect to maintaining the predictability of timeliness
constraints. Such predictability gives us a measure of accuracy with which one can state in
advance when and how an action will occur. We elaborate by annotating the durations,
events, jitter, and actions. Figure 12.1 illustrates a periodic system typical of a time-based
design.

| Evoking Event
|t -
| B = =N =
|ORE . RN 13
=\ el
w‘
Time

Figure 12.1 Task Activity in a Periodic Time-Based System

In the figure, the period of the recurrence of the tasks is defined. The evoking event
occurs with respect to the start of the period. The first rectangle expresses the variation in
the actual invocation with respect to the intended. Such jitter may arise from variations in
the system’s ability to respond to a timer expiring, for example. Once the event occurs, the
second rectangle captures the delay in getting the task started. When the task begins to exe-
cute, the third rectangle accounts for any initialization or similar operations that must occur
before the intended action takes place. The intended action occurs during the time indicated
by the fourth rectangle. After the action completes, the fifth rectangle mirrors the entry
actions with any necessary cleanup before the task completes. The sixth rectangle accounts
for variation in exiting the task.

The diagram also marks the latest time at which the intended action could complete and
still meet the time constraints on the period. The duration between the completion deadline
and the start of the next cycle is equal to that between the end of the action and the end of
the exit jitter.

5 Chapter 12 Tasks and Task Management

Evoking Event

Task
7557
 Emy
B

Time
Figure 12.2 Task Activity in an Aperiodic Foreground/Background Design

aperiodic Figure 12.2 illustrates an aperiodic system that is typical of a foreground/background
design. Notice how the minimum and maximum times are specified.
The invocation of aperiodic tasks is not fixed in time—they are asynchronous to the
operation of the core system. Thus, there can be no jitter because there is no expected time
interarrival time for the initiating event. The duration between such tasks is called interarrival time. Sucha
time is critical when one needs to determine how to schedule real-time tasks. Under such
circumstances, the lower bound on interarrival time must be identified. Such things as the
maximum number of events occurring within a given time interval may also need to be
considered.
Table 12.0 captures timeliness constraints with respect to whether the task is soft or
hard real-time.

Table 12.0 Hard and Soft Real-Time Timeliness Constraints

Property Nonreal-time Soft Real-time Hard Real-time

Deterministic No Possibly Yes

Predictable No Possibly Yes
Consequences of late computation No effect Degraded performance Failure

Critical reliability No Yes Yes

Response dictated by external events No Yes Yes

Timing analysis possible No Analytic (sometimes) Analytic, stochastic

stochastic simulation simulation

At this point, we should be sufficiently comfortable with some of the terminology that
we can start to investigate the control of embedded systems in greater detail. We will begin
with the problem of task scheduling.

»2 TASK SCHEDULING

How efficiently and effectively a task moves through the various queues along the contro|
path following its arrival and how effectively and efficiently the CPU is utilized during such
a movement establish the quality of the embedded design. An essential component of that
control strategy is the algorithm used to schedule the allocation of the CPU.

In a multitasking system, the main objective is to have some process using the CPU
all times. Such a scheme maximizes the usage of that resource. Which task is running at any

| priority

| schedulable
deterministically schedulable

12.2 Task Scheduling 467

specific time is based on a number of criteria. It is the scheduler’s responsibility to ensure
that the CPU is efficiently utilized and that the various jobs are executed in such an order
as to meet any required constraints.

When working with a scheduling algorithm, one must also consider the priority of the
task. Priority is assigned by the designer and is based on a variety of different criteria. We
will examine these shortly. Such criteria are used to resolve which task to execute when
more than one is waiting and ready to execute. Tasks with higher priority execute prefer-
entially over those with lower priority.

In a real-time context, a task that can be determined to always meet its timeliness con-
straints is said to be schedulable. A task that can be guaranteed to always meet all deadlines
is said to be deterministically schedulable. Such a situation occurs when an event's worst
case response time is less than or equal to the task’s deadline. When all tasks can be sched-
uled, the overall system can be scheduled.

Scheduling decisions must be made during the design phase of the system development
since such decisions involve trade-offs that affect and optimize the overall performance of
the system. When the system specification stipulates hard deadlines, one must ensure that
the implementing tasks and their associated actions can meet every deadline. Soft deadlines
naturally give more flexibility.

. 1221 CPU Utilization

CPU Utilization

In addition to satisfying time constraints, a goal in formulating a task schedule is to keep the

CPU as busy as possible, ideally close to 100%, but with some margin for additional tasks.

Such a metric is referred to as CPU utilization. In a practical system, utilization should

range between 40% for a lightly loaded system and 90% for one that is heavily loaded.
For a single periodic task, CPU utilization is given as

u=e/p; : (12.0)

u; fraction of time task keeps CPU busy
e, execution time
p; for periodic task is the period

One can express a similar relationship for aperiodic tasks.
CPU utilization information can be used in conjunction with a sequence diagram to aid
in assessing when each of the tasks can and needs to run.

1222 Scheduling Decisions

running, waiting
running, ready
waiting, ready

Two key elements of real-time design, repeatability and predictability, are absolutely essen-
tial in the context of hard deadlines. To ensure predictability, one must completely under-
stand and define the timing characteristics of each task and properly schedule those tasks
using a predictable scheduling algorithm. The first step in developing a robust schedule is
knowing when a scheduling decision must be made.

Scheduling decisions are made under the following four conditions:

1. A process switches from the running to the waiting state—initiated by an I/O request.
2. A process switches from the running to the ready state—when an interrupt occurs.
3. A process switches from the waiting to the ready state—the completion of /O activity.
4. A process terminates.

Chapter 12 Tasks and Task Management

Asynchronous Interrupt Event Driven

One of the simplest scheduling schemes is asynchronous interrupt event driven, Certainly,
the asynchronous nature of the scheme calls into question the use of the word “schedule”
Under such an approach, the system is constrained to operate in a basic one-line infinite
loop until an interrupting event occurs, s is illustrated in the code fragment shown in Figure
12.3. As such, the design is a special case of the foreground/background model. In this case,
the design has no background tasks. The design can also be considered to be reactive,

global variable declarations

isr set up
function prototypes
void main (void)
{
local variable declarations
while(1); l task loop
}
ISRs
function definitions Figure 12.3 An Event-Driven
Schedule Algorithm

When an interrupting event occurs, flow of control jumps to the associated ISR where
the designated task is executed; flow then resumes in the infinite loop. Generally, the event
originates from some external source. We will look at an extension to the event-driven
approach in which the event derives from a system timer.

The overall behavior of such a system can be difficult to analyze because of the non-
deterministic nature of asynchronous interrupts. However, it is rather straightforward to
determine the postevent behavior for systems with a single interrupt or the behavior of the
highest priority interrupt in systems with more than one interrupt.

Polled and Polled with a Timing Element

The basic polled algorithm is among the simplest and fastest algorithms. The system con-
tinually loops, waiting for an event to occur. The difference between the polled algorithm
and the event driven is that the polled algorithm is continually testing the value of the polled
signal looking for a state change. The interrupt-driven design, on the other hand, does noth-
ing until the event occurs. Only then does it respond. Schematically, the algorithm is given
as shown in Figure 12.4.

Such a scheme works well for a single task. It is completely deterministic. The time to
respond to the event is computable and bounded. In the worst case, let's assume the event
occurs immediately after the test instruction. Under such a circumstance, the response time
is the length of the loop. Polled with a timing event is a simple extension. The scheme uses
a timing element to ensure a delay action after a polled event is true. Such a technique
deskews the incoming signals.

The polled model is also a special case of the foreground/background model. In con-
trast to the event-driven schedule, the polled model has no foreground tasks. The design
implements a reactive system.

12.3.3 State Based

12.3 Scheduling Algorithms 471

global variable declarations
function prototypes
void main (void)
{
local variable declarations
while(1) 1/ task loop
3 // test state of each signal in polled set
if then construct
or
switch statement
}
}
function definitions Figure 12.4 A Polling-Based
Schedule Algorithm

The next approach implements the flow of control through the task set as a finite automaton
or state machine. The two basic implementations of the finite-state machine (FSM), Mealy
and Moore, are distinguished by the implementation of the output function: in Mealy the
output is a function of the current state and the input, and in Moore the output is a function
of the current state only. The basic machine can be expressed as illustrated in Figure 12.5.

oo Sodiment

I

':I:[D ™ ixs —»s [>
I1x§ —» 0O (o]

> s —»0

State: S

A

Figure 12.5 A Basic State
Machine Model

The state machine can easily be implemented as either a set of case statements, as an if-then,
or if-then-else construct.

Some of the limitations of such an approach begin with the theoretical limit on the com-
putational power of the finite-state machine. Using states is not efficient, and the state space
explosion for large problems makes the approach impractical for systems with large num-
bers of inputs. There is a rich set of variations on the basic FSM, however, some of which
address the various limitations of the basic implementation. A state-based design is reactive
in nature.

1234 Synchronous Interrupt Event Driven

timing

The next level of sophistication entails constraining the asynchronous event used in the
opening algorithm to one that is synchronous, based on a timer. Such a system continually
loops until interrupted by a timing signal (which is typically internally generated). The tim-
ing/interrupt event triggers a context switch to an ISR that manages it. A schedule based on

472 Chapter 12 Tasks and Task Management

a periodic event is defined as fixed rate. In contrast, an aperiodic schedule is deﬁnedmpo.
radic. Such a synchronous interrupt-based scheme can work with multiple tasks and is the

time-sharing systems basis for time-sharing systems. The design is an example of a time-based system, although
it is reacting to a special interrupt.

12.3.5 Combined Interrupt Event Driven

A simple variation on the two interrupt event-driven designs is to permit both synchronous
and asynchronous interrupts. In such a system, priority is used to select among tasks that are
ready when the timing interrupt occurs. If multiple tasks are permitted to have the same pri-
ority, then selection from among ready tasks proceeds in a round robin fashion. Naturally,
higher priority tasks will be given preference at any time.

12.3.6 Foreground-Background

foreground-background A system utilizing a foreground-background flow of control strategy implements a com-
foreground bination of interrupt and noninterrupt-driven tasks. The former are designated the fore-
background ground tasks and the latter the background tasks. The background tasks can be interrupted
at any time by any of the foreground tasks and are thus operating at the lowest priority. The
interrupt-driven processes implement the real-time aspects of the application; the interrupt
events may be either synchronous or asynchronous. All of the previous algorithms are spe-
cial cases of foreground/background designs in which either the foreground (polled sys-
tems) or the background (interrupt based) component is missing.

12.3.7 Time-Shared Systems

In a time-shared system, tasks may or may not all be equally important. When all are given
the same amount of time, the schedule is periodic, and when the allocation is based on pri-
ority, the schedule is aperiodic. Several of the more common algorithms are examined in the
ensuing paragraphs.

12.3.7.1 First-Come First-Served

A very simple algorithm is first-come first-served and is easily managed with a FIFO quee.
When a process enters the ready queue, the task control block is linked to the tail of the
queue. When the CPU becomes free, it is allocated to the process at the head of the queue,
The currently running process is removed from the queue. Such an approach is nonpreemp-
tive and can be troublesome in a system with real-time constraints.

12.3.7.2 Shortest Job First

The shortest job first schedule assumes that the CPU is used in bursts of activity. Each task
has associated with it an estimate of how much time the job will need when next given the
CPU. The estimate is based on measured lengths of previous CPU usage. The algorithm can
be either preemptive or nonpreemptive. With a preemptive schedule, the currently running
process can be interrupted by one with a shorter remaining time to completion.

12.3.7.3 Round Robin

The round robin algorithm is designed especially for time-shared systems. It is similar to
first-come first-served, with preemption added to switch between processes. A small unit of

10

time quantum, slice

12.3 Scheduling Algorithms 473

time called time quantum or slice is defined, and the ready queue is treated as a circular
queue. The scheduler walks the queue, allocating the CPU to each process for one time
slice. If a process completes in less than its allocated time, it releases the CPU; otherwise,
the process is interrupted when time expires and it’s put at the end of queue. New processes
are added to the tail of the queue. Observe that if the time slice is increased to infinity, round
robin becomes a first-come first-served scheduler.

238 Priority Schedule

rate-monotonic

static, fixed

Shortest job first is a special case of the more general priority scheduling class of algo-
rithms. A priority is associated with each process, and the CPU is allocated to the process
with the highest priority. Equal priority jobs are scheduled first-come first-served or in
round robin fashion. The major problem with a priority schedule is the potential for indef-
inite blocking or starving—priority inversion. The algorithms can be either preemptive or
nonpreemptive.

12.3.8.1 Rate-Monotonic

With a preemptive schedule, the currently running process can be interrupted by any other
task with a higher priority. A special class of priority-driven algorithms called rate-
monotonic was initially developed in 1973 and has been updated over the years. In the basic
algorithm, priority is assigned based on execution period; the shorter the period, the higher
the priority.

Priorities that are determined and assigned at design time and then remain fixed during
execution are said to use a static or fixed scheduling policy. The ability to schedule a set of
tasks is computed as a bound on utilization of the CPU as shown in Eq. 12.1.

n-1 a, 1

55;{2"-1) (12.1)
et Pi
e = Execution time of the task
p = Period of the task

This approach makes the following assumptions.

* The deadline for each task is equal to its period.
* Any task can be preempted at any time.

The expression on the right-hand side gives a bound on CPU utilization; the bound is
extreme, that is, worst case. If it cannot be met, a more detailed analysis must be performed
to prove whether or not the task can be scheduled. The above equation sets a CPU utilization
bound at 69%. Practically, the bound could be relaxed to around 88%, and the tasks can still
be scheduled.

The basic algorithm given above simplifies system analysis. Scheduling is static, and
the worst case occurs when all the jobs must be started simultaneously. Formal analysis that
is beyond the scope of this text leads us to the rate-monotonic schedule also known as the

critical zone theorem critical zone theorem.

11

Chapter 12 Tasks and Task Management

stable

earliest deadline

least laxity

Critical Zone Theorem
If the computed utilization is less than the utilization bound, then the system is guaranteed to meet
all task deadlines in all task orderings.

It can be shown that rate-monotonic systems are the optimal fixed rate scheduling
method. If a rate-monotonic schedule cannot be found, then no other fixed rate scheme will
work. The algorithm is defined as stable, which means that as additional, lower priority
tasks are added to the system, the higher priority tasks can still meet their deadlines evenif
lower priority tasks fail to do so. The initial algorithm bases assurance upon the assumption
that there is no task blocking. The basic algorithm can be modified to include blocking as
illustrated in Eq. 12.2.

1

n-1 e b b =

Z = B max[—o,....,—“—"J < n(Z" = l) (122
=it Dy Po P

n-1

The terms b; give the maximum time task i can be
blocked by a lower priority task

With a nonpreemptive schedule, a currently arriving higher priority process is placed at the
head of the ready queue.

12.3.8.2 Earliest Deadline

A dynamic variation on the rate-monotonic algorithm is called earliest deadline. The ear-
liest deadline schedule uses a dynamic algorithm with priority assigned based on the task
with the closest deadline. The schedule must be established and modified during runtime,
for only then can the deadline(s) be assessed.

A set of tasks is considered schedulable if the sum of the task loading is less than 100%.
It is considered optimal in the sense that if a task can be scheduled by other algorithms, then
it can be scheduled by the earliest deadline.

The algorithm is not considered stable. If the runtime task load rises above 100%, some
task may miss its deadline. Generally, it is not possible to predict which task will fail. This
uncertainty adds greater runtime complexity. The scheduler must continually determine
which task to execute next whenever such decisions must be made. Such analytical methods
are more complex than fixed priority cases.

12.3.8.3 Least Laxity

The least laxity algorithm is similar to the earliest deadline with slightly tighter constraints,
In addition to the deadline, the time to execute the task is considered. Task priority is based
on the following relationship. It should be clear that a task with negative laxity cannot megt
its deadline.

laxity = deadline — execution time (12.3)

The schedule is then based on the metric using ascending laxity. On paper it is a rather
straightforward concept. However, it means that one must know the exact value of the exe-

12

maximum-urgency-first

criticality
critical, noncritical

124 Real-Time Scheduling Considerations 475

cution time, or at least an upper bound on it. Furthermore, the values must be updated with
each system change.

The least laxity algorithm can be utilized in systems with a mixture of hard and soft
deadlines. Hard real-time tasks can be given priority over those with less rigid constraints.
However, it has weaknesses similar to those found with the earliest deadline algorithm; that
is, it is not stable. In addition, it has a greater runtime burden than the fixed schedule
schemes. The algorithm tends to devote CPU cycles to tasks that are clearly going to be late
and thereby causes more tasks to miss deadlines.

12.3.8.4 Maximum Urgency

The maximum-urgency-first algorithm includes features of both the rate-monotonic and the
least laxity algorithms. As a first cut, it assigns priority according to the task’s period, as is
done with the rate-monotonic algorithm. Next, a binary criticaliry task parameter is added.
The criticality parameter is used to decompose the tasks into two sets: critical and noncrit-
ical. Then the least laxity algorithm is applied to those in the critical set. The criticality
parameter and the priority assignment are assessed at runtime.

If no critical tasks are waiting, then tasks from the noncritical set are scheduled.
Because the critical set is based on the rate-monotonic algorithm, the schedule can be struc-
tured so that no critical task fails to meet its deadline.

The major advantage of the algorithm is the simplicity of the static priority component
and reduced runtime burden compared with full least laxity. The algorithm, however, lacks
some flexibility. The rate-monotonic component assumes unconstrained preemption. Typ-
ically, short deviations are well tolerated; longer deviations can lead to missed deadlines.

Maximum-urgency-first is best applied to tasks that are well understood and for which
blocking constraints are easy to determine. The dynamic scheduling contribution from least
laxity potentially can compensate by elevating a task’s priority. The algorithm has some of
the runtime complexity of pure least laxity and is best applied to tasks that can vary in their
ability to miss deadlines. It can be thought of primarily as a rate-monotonic algorithm with
some runtime checking to ensure that deadlines can be met.

124 REAL-TIME SCHEDULING CONSIDERATIONS

resource reservation

A real-time system may be hard or soft real-time, and the task scheduling may be static or
dynamic. For a dynamic hard real-time schedule, the process is submitted along with a state-
ment of the time required to compute and to do I/O. If, following assessment of the task’s
requirements, the scheduler accepts the task, it guarantees that the task will complete on
time. Otherwise, it rejects the task as nonschedulable. Such a guarantee calls for resource
reservation and requires the scheduler to know exactly how long each operating system
function takes along with a completion time guarantee. Such a restriction is impossible for
systems with secondary storage or using virtual memory algorithms.

A softreal-time schedule is less restrictive. Such a schedule does require that critical pro-
cesses have priority over the less critical. Implementing a soft real-time system requires care-
ful design of the scheduler and other related aspects of the operating system. There is a further
requirement for priority scheduling. Real-time processes must have the highest priority, and
that priority must not degrade over time. Such a constraint is relatively easy to ensure. Fur-
thermore, the dispatch latency must be small; thus, system calls must be preemptable.

Such a requirement can be accomplished in several ways. One approach is to insert pre-
emption points where the system can check to see if a high-priority process needs to be run.
Alternatively, the entire kernel can be made preemptable. In such a case, all kernel data
structures must be protected, and one must have synchronization methods.

13

{76 Chapter 12 Tasks and Task Management

conflict phase, dispatch The preemption process has two components: a conflict phase and a dispatch Pphase.
phase During the conflict phase, preemption of any process running in the kernel is permitted. The l
lower priority process must release needed resources. The next step is a context switchto
the high-priority process. In the dispatch phase, the process moves from the ready state to
the run state.

2.5 ALGORITHM EVALUATION

With the plethora of algorithms and each having its own parameters, selecting the proper .
and appropriate one can be difficult. To begin the evaluation, one must first establish assess-
ment criteria. For example, CPU utilization, response time, or throughput may be the most
critical factors in a design. Next, the candidate algorithms must be evaluated against the
selection criteria. Once again, there are a variety of methods.

[2.5.1 Deterministic Modeling

analytic evaluation A major class of methods is called analytic evaluation. The approach uses the candidate

algorithm and a representative system workload to produce a formula or number from

deterministic modeling which to evaluate the algorithm. One such method is called deterministic modeling. To see
how this works, consider the following processes and workloads.

Process Burst Time
Pl 10
P2 20
P3 3
P4 7
P5 12

Figures 12.6a—c illustrate the results of evaluating the following scheduling algorithms
against the example workload.

¢ First-come first-served
* Shortest job first
* Round robin

first-come first-served Starting with the first-come first-served, each algorithm will be evaluated with the goal of
achieving the shortest average wait time.

First-Come First-Served

P1-10 P2-29 P3-3 P4-7 P5-12
Process Waiting Time
P1 0
P2 10
P3 32 Average 28 time units
P4 42 Figure 12.6a The First-
P5 49 Come First-Served Algorithm

14

12.5 Algorithm Evaluation 477

: It is assumed that the jobs arrive into the system in the order shown. With this algo-
rithm, the average wait time is computed to be 28 time units.

shortest job first Next is the shortest job first schedule.
Shortest Job First
P3-3P4-7 P1-10 P5-12 P2-29
Process Waiting Time
P3 0
P4 3
P1 10 Average 13 time units
P5 20 Figure 12.6b The Shortest
P2 32 Job First Algorithm
Now, the average wait is 13 time units. The algorithm achieves a two to one improve-
ment over the FIFO schedule.
round robin For, the round robin algorithm, the time slice is set to 10 time units. Under such a con-

straint, jobs P1, P3, and P4 will complete in their allotted time. P2 and P5 will have to be
preempted and returned to the queue.

Round Robin

P1-10 P2-10 P3-3 P4-7 PS5-10 P2-10 P52 P2-9

2| %] L] |

Process Waiting Time
P1
P2
P3
P4
P5

Average 23 time units
Figure 12.6¢ The Round
Robin Algorithm

EBY8Be

shortest job first Now the average wait is 23 time units. In the above example, clearly the shortest job
first algorithm should be the choice since it performs the best against the specified metric.
As can be seen, deterministic modeling is simple and fast, but it does require exact
knowledge of the process times, which often can be difficult to establish. One obvious solu-
tion is to measure the process times over repeated executions. Such data collection can be
done more easily in the embedded world than in the applications world because one gener-
ally knows the task mix in advance.

.2 Queuing Models

If the system being designed is one in which the processes can vary from day to day, there
may be no static set of processes and times that can be used in a deterministic model.
Statistical studies have shown that task execution generally consists of a cycle of CPU
execution followed by I/O activity. The CPU and /O bursts alternate until the job is fin-
ished. The frequency of the bursts tends to be fairly predictable and is typically independent
of machine or process. As a first-order approximation, such behavior can be modeled as the
exponential graph given in Figure 12.7. One can measure or compute the distribution of

15

3 Chapter 12 Tasks and Task Management

Little’s Formula

5.3 Simulation

Frequency

Figure 12.7 CPU or I/O Burst
Burst Duration Duration vs. Frequency

CPU and I/O bursts over a collection of tasks and determine a similar distribution for pro-
cess arrival times. Based on these two distributions, for most algorithms, it is possible to
compute average throughput, utilization, waiting times, and so on.

The computer can be modeled as a collection or network of servers, with each server
having an associated queue. Knowing the arrival and service rates, one can compute utili-
zation, the average queue length—n, and the average wait time—w. The average arrival time
is specified as A. Thus, if the system is in steady state, the number of processes leaving a
queue is equal to the number of processes arriving, and one can write,

The expression relating the three variables is known as Little's formula. The approach s use-
ful because itis valid for any scheduling algorithm. Knowing any two variables, one cancom-
pute the third. Though useful for comparing algorithms, it has limitations. The mathematics
of complex algorithms and distributions is difficult to work with. The arrival and service dis-
tributions are complex, and the queuing models are only an approximation of the real system.

To produce a more accurate evaluation of a scheduling algorithm, one can use simulations,
Such an approach requires models of the computer system and the processes as well as
appropriate data to drive the simulation. Often such data is collected from a trace of actual
processes by recording the actual events on a real system. Simulation can be expensive, but
it is growing in popularity and is becoming an increasingly powerful and effective tool.

.5.4 Implementation

As another alternative, one can simply build and test the system. Certainly, this is the most
accurate method. Once again, the difficulty is the cost.

.6 TASKS, THREADS, AND COMMUNICATION

.6.1 Getting Started

exchanging data
synchronizing,
sharing resources

A multitasking/multithreading system supports multiple tasks, and those tasks will have one
or more threads. Important jobs in any multitasking system include exchanging data
between tasks and between threads, synchronizing tasks and threads, and sharing resources,

In the not too recent past, such activities were limited primarily to tasks or threads
within a single microprocessor. Today, one finds a growing use of FPGA-based designs uti-
lizing devices that support the inclusion of multiple microprocessor cores within a single-
gate array. Consequently, it is not uncommon for communication, synchronization, and
sharing to involve tasks on multiple processors. We will find that certain assumptions can

16

12.6 Tasks, Threads, and Communication 479

be made when tasks are localized that cannot be made when working with multiple distrib-
uted processors or other centers of computation.

12.6.2 Intertask/Interthread Communication

When tasks are operating independently, systems have few if any conflicts, chances for cor-
ruption, or contentions. Real systems, the interesting ones, must deal with the challenge of
such problems. In real-world systems, resource sharing and intertask synchronization and
communication must take place in a robust, safe, and reliable manner. Interaction between
tasks may be direct or indirect and must be synchronized and coordinated. We want to pre-
vent race conditions—conditions under which the outcome of a computation depends on the
order in which tasks execute. Such an exchange is illustrated in Figure 12.8.

Figure 12.8 Intertask Communication

We see, then, that interaction and interchange among tasks requires three basic com-
ponents: the information that is to be interchanged, the places where the information can be
found, and where it is ultimately to be put, coupled with the conventions that govern the
interaction and interchange. These requirements are captured in the following model of
interprocess communication and synchronization.

information * The information—the data or signals being moved

place, places * The place or places from which the information is moved to or from
control, synchronization * The control and synchronization of actions and the movement of the information
places In such a model, the places—that is, the source and destination(s) for the exchange—

are identified variously by named variables or by pointer variables holding memory
addresses. Control and coordination comprises a number of different techniques ranging
from flags or status bits to interrupts or managed access into critical areas under the control
shared variables, messages of semaphores or monitors. Information is moved either through shared variables, or mes-
sages on busses internal to the microprocessor that (except in rare circumstances) were of
little immediate concern to us.
Let's begin our study of intertask communication and synchronization by looking at the
shared information component. Such sharing can occur in a variety of ways. In subsequent chap-
ters, we will extend the model to include centers of control outside of the core microprocessor.

1263 Shared Variables

Such sharing can occur in a variety of ways. We will begin with the simplest model: shared
global variables.

17

—

0 Chapter 12 Tasks and Task Management

12.6.3.1 Global Variables

One fundamental solution for exchanging data among tasks is a shared memory envirop-

global variables ment. In such an environment, global variables can be a very effective mechanism for shar-
ing information. Global variables have the obvious problems that arise when two or more
tasks require the ability to read a piece of global data and potentially modify its value, The
major advantage of globals is that they do not have to be copied to the stack during a context
switch. By obviating the need for such copying, critical time in hard real-time systems can
be saved. Properly managed, global variables can be an effective tool.

12.6.3.2 Shared Buffer

shared buffer A shared buffer is an exchange technique in which two processes share a common set of
producer memory locations as seen in the data flow diagram in Figure 12.9. A producer of the data
consumer puts it into the buffer, and a consumer removes it. Once again, there are several obvious
problems. If one process is faster than the other, the potential for overrun or underrun arises,
Clearly, identifying the proper buffer size (for the application) and access protocol is critical
to avoiding such problems. Even with the proper buffer size, the producer and consumer

must always check the state of the buffer before inserting or removing an item.

Task TO Task T1

_— Figure 12.9 Intertask Communication
Shared Buffer Using a Shared Buffer

Good design practice recommends adding methods of the form

bool isFull() or bool isEmpty()

to the public interface of the container. Such methods should always be invoked prior to a
read from or write to the buffer.

12.6.3.3 Shared Double Buffer—Ping-Pong Buffer

shared double buffer The shared double buffer model permits two tasks to share two (or more) common sets of
memory locations. Shown in the data and control flow diagram in Figure 12.10, the config-
ping-pong buffer uration is also called a ping-pong buffer.

Shared Buffer B1

Figure 12.10 Intertask Communication
Shared Buffer BO Using a Shared Double Buffer

18

126 Tasks, Threads, and Communication 481

Several control schemes can be used with a ping-pong buffer. One implementation
begins with both buffers being empty. T0 is designated as the producer and T1 as the con-
sumer. During operation, task T0 will write to buffer BO until it is full. In the meantime, T1
is blocked because there is no data available. Once B0 is filled, TO will signal T1 and switch
to writing to buffer B1.

T1 can now begin reading the data from B0. When T1 has removed all the data from
B0, it signals TO that the buffer is empty. If TO has filled B1, T1 can begin reading from that
buffer; otherwise it waits. Similarly, if TO finishes writing to B1 before T1 has emptied BO,
then it must block. The operation of the buffer scheme is illustrated in the two skeletal code
fragments in Figure 12.11. Such an approach can be a very effective “buffer” between pro-
cesses that are running at different rates. One buffer is being filled while the other is being
emptied. Improved robustness requires that the consumer block on a lack of data and the
producer must avoid overrunning the buffer; thus, it blocks on a full buffer.

Task TO Task T1
while(1) while(1)
if (B0 == EMPTY) if (BO == FULL)
repeat repeat
produce item in nextB0 consume item in nextB0
until (BO == FULL) until (BO == EMPTY)
signal (T1, FULLBO) signal (TO, EMPTYBO)
endif endif
if (B1 == EMPTY) if (B1 == FULL)
repeat repeat
produce item in nextB1 consume item in nextB1
until (B1 == FULL) until (B1 == EMPTY)
signal (T1, FULLB1) signal (TO, EMPTYB1)
endif endif
end while end while

Figure 12.11 Two Tasks Exchanging Information Using a Shared Buffer

A second variant on the ping-pong buffer utilizes more than two buffers. Consider that
we have two tasks, TO and T1; the first task can produce data at a rate of 4 MHz, but the sec-
ond can only consume at I MHz. To further complicate the problem, let’s also assume that
the buffer can only be written to at a | MHz rate. An implementation to solve the problem
is given in the data and control flow diagram in Figure 12.12.

Shared Buffers B2 and B3

Figure 12.12 Information Sharing
Between Tasks Executing at Different

Speeds

19

ser 12 Tasks and Task Management

The execution of the synchronization scheme is given in the pseudo-code fragmentsiy
Figure 12.13. Each buffer is written to at the 1-MHz rate. The buffers are filled in burstsn |
TO and read at a more uniform rate in T1.

Task TO Task T1
while(1) - while(1)
if (B3 == EMPTY) if (B3 == FULL)
repeat repeat
produce item in nextB0 consume item in nextB0
produce item in nextB1 consume item in nextB1
produce item in nextB2 consume item in nextB2
produce item in nextB3 consume item in nextB3
until (B3 == FULL) until (B3 == EMPTY)
signal (T1, FULLB3) signal (TO, EMPTYB3)
endif endif
end while end while

Figure 12.13 Information Sharing Between Tasks Executing at Different Speeds

12.6.3.4 Ring Buffer

ring buffer A ring buffer scheme uses a FIFO structure as illustrated in the accompanying schematic
representation in Figure 12.14. The structure permits simultaneous input and output using
head and tail pointers. Task TO, the producer, adds data to the buffer, and task T1, the con-
sumer, removes it. As with the other buffers, one must take precautions to properly manage
overflow and underflow.

Task TO
7\ heac

Task T1

tail
Figure 12.14 Information Sharing
Using a Ring Buffer

12.6.3.5 Mailbox

mailbox A mailbox is another data structure with access semantics that are similar to those used for
the queue. Two or more tasks can use the mailbox to pass data or for synchronization. Gen-
erally, one finds mailboxes included in full-featured operating systems. Two operations on
post, pend the data structure are defined: a write operation called post and a read operation called pend.
When a task posts data to the mailbox, a flag associated with the mailbox is raised, indi-
cating that data is available. A task that may be pending or waiting on that flag is alerted and

can then read the data, resetting the flag.

20

12.6.4 Messages

interprocess communication
send, receive, pend, post

12.6 Tasks, Threads, and Communication 483

The pend and post operations present the following public interface:

post (mailbox, data) /f post to mailbox
pend (mailbox, data) /I pend on mailbox

At first blush, the pend operation may appear to be the same as a poll because a poll task
continually interrogates the polled variable (occupying the CPU) looking for a change in
state of the signal. In contrast, however, the pending task is suspended (giving up the CPU),
while there is no data available only to be awakened when data becomes available. Thus, in
the case of a polling operation, the CPU is devoted to testing the state of the poll signal,
whereas the pend operation frees the CPU to another task. A variety of things can be passed
through a mailbox, a single bit or flag, a single data word, a pointer to a data buffer, or a
more elaborate message.

The data and control flow diagram is given in Figure 12.15.

Task TO Task T1

Figure 12.15 Information Sharing
mailbox Using Messages and a Mailbox

One straightforward implementation of the mailbox data type utilizes a queue as the
underlying container. In the basic implementation, the queue is of length one and thus, the
post operation fills the mailbox precluding further posts until a pend operation takes place
to empty the mailbox. If several tasks are pending on a flag, the enabled task resets the flag.
Such a scheme blocks multiple accesses to the resource from a single flag. Other implemen-
tations extend the queue length, thereby supporting a queue of pending elements rather than
a single entry. Such a scheme may be useful when there are multiple independent copies of
a critical resource. Another variation on this latter design utilizes a priority queue and
thence permits a priority to be assigned to each message. The associated pend operation will
always read the highest priority message first.

The methods for intertask communication discussed up to this point have relied on a mutu-
ally agreed upon memory location to at least begin the exchange. Today's embedded appli-
cations are becoming increasingly distributed. With such an expansion, the need for
synchronization and information interchange remains and, to some extent, increases.

To execute such an exchange, one can build on the concept of mailboxes. Using a
mailbox-based approach, data—now the message—is sent to a named mailbox or destina-
tion. The named mailbox now becomes the address of the message destination. The mes-
sage may or may not be buffered at the source of the message—a source mailbox or at the
destination—a destination mailbox. Such a scheme, however, is not mutually exclusive
with shared memory.

A message-based approach, called an interprocess communication facility (IPC), sup-
ports two operations, send and receive. These are analogous to the pend and post operations’
used for mailboxes. Continuing the analogy, messages may be of fixed or variable size. If

21

484 Chapter 12 Tasks and Task Management

directly, indirectly

T0 T

T2 T3

Figure 12.16 Four
Fully Interconnected
Tasks

tasks TO and T1 wish to use messages to exchange information, they must first establishq
communication link and then proceed to send and receive the messages.

As noted earlier, with the increasing use of multiprocessor core FPGAs, the commup-
cation link can be between processors within the same gate array as well as between phys-
ically and geographically separated microprocessors.

As one begins to think about message exchange, several questions immediately arise,

* How is the link established?

* Can the link be associated with multiple tasks?

» How many links are there between a pair of tasks?

» What is the link capacity, and are there buffers?

¢ What is the message size?

¢ Are links unidirectional or bidirectional?
We will look at several of these questions but defer the last two to a later chapter in which
we present a more in-depth discussion of networking and remote systems.

When considering implementation methods, one may choose

* Direct/indirect communication

* Symmetric/asymmetric addressing
* Auto or explicit buffering

+ Send by copy or reference

+ Fixed or variable message size

12.6.4.1 Communication

A message can be moved from one place to another, either directly or indirectly, via some
intermediate point or points. Each way has advantages and disadvantages.

DIRECT
When using a direct communication scheme, each process must explicitly name the sender!
receiver of the message. Messages are logically of the form

send (T1, message) // send message to task T1
receive (T0, message) /f receive message from task TO

The link is automatically established between every pair of processes or threads within
a process. For a system with four different processes, the configuration in Figure 12.16
gives full, bidirectional interconnection among all of the processes. Several important
points need to be considered with such an implementation:

* The individual tasks may or may not be physically collocated. On one extreme, they may
be within the same FPGA. On the other, they could be in several different countries.

» Full interconnectivity is not efficient for larger numbers of tasks. A hierarchical
scheme in which a smaller subset of the tasks is so interconnected may be more feasi-
ble to implement and manage. Consider the Internet as a good model.

Using a direct communication scheme, each task only needs to know each other’s identity;
that is, the link is associated with only two processes. The link may be unidirectional or bidi-
rectional.

22

126 Tasks, Threads, and Communication 485

Task TO

network Task T
Figure 12.17 Information
Exchange Between Two
Buffer BO Buffer B1 Tasks over a Network

The exchange can be expressed in a modified data flow diagram in Figure 12.17. Note
that a buffer is associated with each process, although this may not be the case in all imple-
mentations. More specifically, the buffer will probably be attached with an I/O task.

EXAMPLE 12.0 Consider the skeletal structure between two tasks—a producer task, T0 and consumer task, T1. Task
TO produces the data and stores it in a buffer it shares with the send task. The send task takes the data
from the buffer and formats it into a message that it sends as the payload in a message to task T, the
consumer task. T1 then reverses the process.

The activities by both tasks during the exchange are first expressed in the activity diagram in Fig-
ure 12.18 and then in the sequence diagram in Figure 12.19.

Producer Consumer
Receive item | ; ; Send Task
produce item Task TO Talsk T
S ; |
data() l i i
| I
; Consume item ‘r | 1
send item i Mossege() : :
! I i
. i data() i
! | AN 12
! i]
! | |
: | |
! | 1
. i | i
- : : :
Figure 12.18 Activity Diagram Illustrating Figure 12.19 Sequence Diagram Illustrating a
a Producer—Consumer Exchange Producer-Consumer Exchange

Finally, the code fragment shown in Figure 12.20 reflects the operation of the two tasks.

while(1) while(1)
produoa item in nextBO raoelve(To. nextB1)
send (T1, nextB0) cormme item in nextB1
end while und while

Figure 12.20 Code Fragment Illustrating a Producer-Consumer Exchange

23

186 Chapter 12 Tasks and Task Management

symmetrical addressing Observe that the scheme uses symmetrical addressing; the sender and receiver muy
name each other. The disadvantage of such an approach is that it ties the process name t
the implementation, thereby making future changes more difficult.

asymmetric addressing If asymmetric addressing is used, the sender only names the recipient.

INDIRECT
With an indirect approach, messages are sent to or received from a shared variable, gener-
ally in the form of a mailbox. Thus,

send (M0, message) // send message to mailbox MO
receive (M0, message) // receive message from mailboxM0

The link is established only if the tasks/threads have a shared mailbox or similar con-
tainer. The link may be associated with multiple processes, and there may be multiple links
between processes. As with the direct scheme, the link may be unidirectional or bidirec-
tional. The modified data flow diagram takes the form shown in Figure 12.21, in which two
tasks are illustrated. The interconnecting links are shown as bidirectional.

mailbox

network

Buffer BO Buffer B1

Task TO Task T1 O

Figure 12.21 Indirect Information Exchange Between Two Tasks
over a Network Using a Shared Mailbox

Now, consider three processes: T0, T1, and T2, all of which wish to exchange messages
via the shared mailbox M0. Furthermore, let TO send and T1 and T2 receive. The question
of who gets the message, T1 or T2, arises.

One possible solution is to associate the link with at most two processes. Thus, only one
process is allowed to receive at a time. As an alternative approach, the system could select
a receiver. A third approach can be based on the owner of the mailbox.

If a task owns the mailbox, one can easily distinguish between the owner, who can only
receive (there is no reason to send a message to ourselves other than as a built-in test), and
the user, who can only send. Since each mailbox has a unique owner, there is no ambiguity.
If the system owns the mailbox, then it exists independent of any process or thread.

12.6.4.2 Buffering

A buffer or buffers may be associated with the link. Error management aside, for the
moment, buffering establishes the number of messages that can be safely sent out onto the
link with the assurance that they will be received properly at the destination. If messages are
sent too quickly, the receiver may not have sufficient time to accept and process one mes-
sage before the next one arrives.

24

12.7 Task Cooperation, Synchronization, and Sharing 487

Three possible buffering schemes can be identified.

* The link has zero capacity.
That is, the link cannot store messages. The sender must wait for the receiver to

rendezvous accept the message either by delaying or through a handshake. Such a scheme is
Idle RQ protocol called a rendezvous or an Idle RQ protocol.

* The link has bounded capacity.
Associated with the link is a message queue of length n. If there is space remaining
when the sender wishes to transmit, a message can be placed into the queue and the
sender can continue. Otherwise the sender must wait for space.

* If the link has unbounded capacity, it can be viewed as having infinite length.
The sender can post a message and continue. There is no wait. It is important to rec-
ognize that the criterion here is that the sender does not have to wait. If the receiver
can remove the incoming data quickly enough, a buffer size of one will suffice and
Continuous RQ protocol can still be called unbounded. Such a scheme is called a Continuous RQ protocol.

All of the approaches to intertask communication that we have discussed are captured
in Figure 12.22.

~1 Shared Buffer
Ping-pong
Ring or FIFO

Task T1

Owned by —
process

Figure 12.22 Alternative Approaches for Intertask Communication

127 TASK COOPERATION, SYNCHRONIZATION, AND SHARING

In addition to sharing information, the tasks in a multitasking system or the processors in a
multiprocessor system are often charged with cooperating/synchronizing with each other as
they execute the application. Cooperating tasks (and threads) or processors can affect or be
affected by other tasks (and threads) or processors. They may directly share a logical
address space (both code and data) or be allowed to share data only through any of the var-
ious shared variable models that have been discussed. Such concurrent access to common

25

“hapter 12 Tasks and Task Management

data can result in data inconsistency, aberrant or unexpected system behavior, and poten-
tially complete system failure.

Critical Sections and Synchronization

Northern Scotland is beautiful, rugged, and lightly populated. There are few roads, with [itde
traffic. Many of the roads are narrow, bucolic, single-lane driving challenges populated with
passing places and sometimes even narrow bridges as seen in the accompanying simple dray-
ing in Figure 12.23. As the two cars arrive, the bridge clearly presents a problem since itis only
wide enough for a single car to cross at any time. Not having both vehicles simultaneously
occupying this critical section of the road is most certainly beneficial to all concerned.

If each car is modeled as a process and the bridge as a shared resource, the problem is
expressed using the data flow diagram in Figure 12.24.

® Caro Cart
O
o)
% bridge
Figure 1224 A Shared Variable
Figure 12.23 A Critical Section Critical Section

One possible solution to the problem is to control access to the bridge by placing a rock
on the edge of the bridge. When a car approaches the bridge and wants to cross, it must stop
first, pick up the rock, drive across, and then put the rock back on the other side of the
bridge. If the rock is not available, the car must wait.

Of course, it is necessary to make several underlying assumptions for the solution to be
feasible. The first assumption is that no one decides to see how far they can throw the rock
or forgets to return it. Second, two people don’t arrive simultaneously and decide to fight
over the rock. If two people do try to grab the rock at the same time (in the olden days we
may have had clan warfare), today we have learned to play nice and share—after you; oh
no, after you.The third assumption is that the musical group from England doesn’t go rolling
off with it as a souvenir.

The data flow diagram is extended and illustrated in Figure 12.25 in order to add con-
trol, and the design begins to look a bit like a mailbox.

Figure 12.25 Adding Control to
Manage a Critical Section

26

12.7 Task Cooperation, Synchronization, and Sharing 489

Let’s examine how concurrent access to a shared resource can be manifest in a design.
Consider the problem that subsequently arises in the accompanying pseudo-code and code
fragments. Implemented is a simple data transfer between two tasks, one a producer and the
other a consumer, via a shared buffer. The buffer has a limited capacity of n items. The
transfer must be managed to ensure that the producer does not try to put data into the buffer
when it is full and the consumer must not try to take data out when the buffer is empty. A
variable count provides a measure of the number of items in the buffer. It is incremented
when an item is added and decremented when one is removed. The data flow diagram for
the shared buffer is given in Figure 12.26.

Task TO Task T1

SiE L Figure 12.26 Producer-Consumer
Shared Buffer BO-nitems Exchange Through a Shared n Item Buffer

The behavior of the system is first captured in the state chart in Figure 12.27. Observe

not full that for the producer task, T, the transition from idle to the write state is guarded by the not

not empty full condition on the buffers. Similarly, the transition into the read state is guarded by the not
empty condition in the consumer diagram.

Producer Task TO data ot full] \f terminate
¢ e

Consumer Task T1

o)== (=) (=) ""8

Figure 12.27 State Chart Diagram Modeling a Producer-Consumer Information Exchange

The problem is then expressed in pseudo code (see Figure 12.28).

Task TO - Producer Task T1 - Consumer
while(1) while(1)
If not full If not empty
add item get item
incrementcount decrement count
else else
wait for space wait for item
end while end while

Figure 12.28 Pseudo-Code Modeling a Producer-Consumer Information Exchange

27

490

count

critical section

mutually exclusive

synchronization,
mutual exclusion
synchronization,

condition synchronization

while(1)
noncritical code

entry section

|
Vmsrsecis

S /
./4’.11,1.[/-

exit section
noncritical code
end while

Figure 12.30 An
Abstract Model of a
Critical Section

entry section

Chapter 12 Tasks and Task Management

The C code fragments are given in Figure 12.29.

Task TO - Producer Task T1 - Consumer q
intin=0; intout = 0; ﬁ i
while(1) while(1) B
{ { ;
/i produce an item nextTO while (count == 0); // wait for item
1/ wait for room nextT1 = BO[out];
while (count == MAXSIZE); out = (out + 1) % MAXSIZE;
BO[in] = nextT0; count--;
in = (in + 1) % MAXSIZE; /i consume an item nextT1
count++; }

}

Figure 12.29 C Code Fragment Modeling a Producer—Consumer Information Exchange

As with the attempts at simultaneous access to the bridge, there is a potential problem
with simultaneous access to count. The value of the variable count depends on which task
accesses it and in which order. Because the two tasks are running asynchronously, the vari-
able may have any of three different values at any instant in time. Like the bridge, count rep-
resents a critical piece of data or critical section shared between the two processes, T0
and T1.

In general, a critical section is a resource that several tasks may be sharing such as an
I/O port or a segment of memory in which they are reading and writing common variables,
Such variables may be as simple as a single bit or as complex as a file or a table. As was the
goal in crossing the Scottish bridge, while a task is working with a piece of data or some
other resource in a critical section, we want to prevent access by all other processes. That
is, one wants to ensure mutually exclusive access.

The need to control access to a shared resource or to common data gives rise to one
form of process or processor synchronization that is called mutual exclusion synchroniz-
tion. A second form of synchronization is called condition synchronization. For the case of
mutual exclusion synchronization, the objective is to make certain that two processes are
not in their critical sections at the same time. Condition synchronization, on the other hand,
requires that a process delay or block until a specified condition is true (or false).

The need to share and to coordinate access exists only if there is more than one task or
processor that wishes to use a nonsharable resource or to modify common data at the same
time. This is a key point. If the resource is sharable or if the tasks are executing read only
operations, there will be no problem.

As we sought to accomplish with the simple bridge management schemes, the solution
to the critical section problem requires a control algorithm or protocol that regulates access
to the shared area. At a high level, the protocol should be such that a task wishing to access
the critical section should check to see if anyone else is using the variable; if not, announce
to all other tasks that it is now going to use the variable, do its work, and then tell everyone
when it is finished.

An abstract model of the structure of a task with a critical section can be depicted as
shown in Figure 12.30.

The code relevant to the critical section is enclosed in the three rectangles shown in the
figure. The top rectangle, the entry section, acts as the gatekeeper controlling access to the

28

exit section

mutual exclusion

deadlock

progress

bounded waiting

1.2 Flags

atomic

await

condition

statements

12.7 Task Cooperation, Synchronization, and Sharing 491

critical region. The bottom rectangle, the exit section, serves to tell the world that the task
that had been using the critical variable is now finished.

Any solution to the critical section problem must satisfy the following requirements.

* It must ensure mutual exclusion in the critical region.
If a task is in the critical section, no other task may be allowed in.
* It must prevent deadlock.
If two or more tasks are trying to enter the critical section, one must succeed.

* It must ensure progress through the critical section.
If no task is in the critical section and some other task wishes to enter, only tasks that
are not in the exit section rectangle can affect which task enters the critical section
next. Furthermore, a task wishing to enter cannot be prohibited from doing so
indefinitely.

* The solution must ensure bounded waiting.

An upper limit must be set on the number of times a lower priority task can be blocked

by one with a higher priority once it has made a request to enter.

Let’s examine several possible solutions to the critical section problem. We will begin
with a flag-based approach. Prior to doing so, however, we introduce the word atomic as a
qualifier to an operation.

Atomic Operation
One that is guaranteed to terminate and is indivisible when applied to either examining a program
variable or modifying the state of such a variable.

Indivisible simply means that, once started, the operation carries through to completion
without interrupt. From a coarse-grained perspective, the operation appears as a single
statement; from a fine-grained view, the operation may actually comprise several steps. The
full sequence of steps must be guaranteed to complete and to do so uninterrupted.

To protect a critical section, the first goal is to ensure mutually exclusive access. This exclu-
sion can be accomplished using flags embedded in an atomic operation. The method is illus-
trated using two flags and two processes. Expansion to a greater number of processes
follows logically.

Define two processes, T0 and T1. Let them share a critical section. Define two Boolean
flags, TOFlag and T1Flag, to mark which process is in the critical section. Finally, define the
atomic operation, await, which is expressed in pseudo code as shown in Figure 12.31.

await(condition)
{
statements

} variable. Figure 12.31 Await Statement
Pseudo-Code Model

Condition is a Boolean expression on which a task, thread, or processor waits until it
evaluates to true. Statements comprise a set of actions that are to be performed when the
condition evaluates to true. If the condition evaluates to true, execution proceeds through

29

r 12 Tasks and Task Management

await
awaiting

await
count

the statements comprising the body of the await construct. An important assumption here

is that when a process is awaiting a condition, other processes have the opportunity to nuy, ’

Otherwise there is a deadlock. ‘
Using the await operation, one can now reexamine the earlier shared buffer problem,

The await statements are expressed, one for each task, as

1273 Ta
await (!T1Flag) {TOFlag = true;}
await (!TOFlag){TlFlag = true;}
!
Next, the await statements are used to control access to the critical section—the vari-
able count. First, we look at the producer (see Figure 12.32a).
Task TO - Producer
intin=0;
while(1)
{
il produce an item nextTO
while (count == n); 1/ wait for room
BO[in] = nextT0;
in=(in+1)%n;
await(IT1Flag) {TOFlag = true;} // entry section
count++; / critical section
TOFlag = false; /I exit section
}
Figure 12.32a Managing a Critical Section Using the Await
Statement—Producer Side
Then we look at the consumer (Figure 12.32b).
Task T1 - Consumer
intout = 0;
while(1)
{
while (count == 0); 1l wait for item
nextT1 = BO[out];
out = (out+ 1) % n;
await(ITOFlag) {T1Flag = true;} I/ entry section
count-; /i critical section
T1Flag = false; I/ exit section
/l consume an item nextT1 1274 |
}

Figure 12.32b Managing a Critical Section Using the Await
Statement—Consumer Side

30

127 Task Cooperation, Synchronization, and Sharing 493

It is _rather str'ai.ghtforward to show that this scheme satisfies the first three conditions for
solving the critical section problem. Ensuring eventual access is a bit more involved and is
contingent on the scheduling policy.

3 Token Passing

4

Interrupts

Another possible solution to the shared buffer problem is an extension of the rock-passing
protocol developed for the Scottish bridge problem. We define a flag or token. To ensure
sharing of the data, only one token is issued. The token is continuously passed from task to
task; any task wishing to access the critical section can only do so when it has the token as
illustrated in the state chart in Figure 12.33. The transition from state A to state B, from
which the access to the shared variable occurs, is guarded by the requirement of possessing
the token.

Task Ti
Access Buffer [have token]
State A State B

Figure 12.33 State Chart Modeling a Token Passing Protocol as a Solution to the
Critical Section Problem

Although there is now controlled access to the critical section, several problems arise
immediately:

1. A task or processor that does not want to share holds onto the token forever.
2. The task or processor with the token crashes for an extended time.
3. The token gets lost or corrupted because of noise.

4. The task or process with the token terminates or leaves the system without releasing
the token.

5. How does one identify a new task or processor that gets added to the system?

One possible solution to all of these problems is to borrow an idea from our network col-
leagues. A system-level task, charged with managing the token, is added. The task includes
a watchdog timer. Each time the token is released, the timer is reset. If the timer expires, a
ping message is sent to all tasks or processors querying for the token. If no one responds, a
new token is generated.

Borrowing again from the network people, each time a task or processor enters or
leaves the system, it must register with the token management task. Alternatively, the sys-
tem task could periodically query for new entries into the system.

It is evident that such a protocol satisfies all of the requirements stipulated above and
thus does solve the critical section problem. The approach, however, adds a significant
intra- and intersystem communication burden as well as extra overhead to each task.

Another approach to solving the buffer problem centers on managing interrupts. Since the
problem only arises in a single-processor context when preemption is allowed, preventing
preemption solves it. Disallowing all preemption is a bit too extreme in most cases. Taking
a more surgical approach offers a more practical path.

31

| Chapter 12 Tasks and Task Management

entry

entry

7.5 Semaphores

semaphore

atomic

proberen
to test, verhogen,
to increment

wait
signal, test
set

wait, test, set

Referring back to the earlier figure describing a task with a critical section, we shod
be able to solve the problem if interrupts are disabled when entering the rectangle labeled
entry section and reenabled in the section labeled exit section.

Using such an approach, one can encounter some of the same problems discovered wify
a token-based method. Specifically, if a task implements a long or infinite loop in its eritical
section, interrupts may be disabled for an extended period.

The problem can be solved with a variation on the solution developed for the tokes
based scheme. Rather than disabling all interrupts, when the entry code segment is entered,
all interrupts below a specified level are disabled or masked. A timer that can interrupt ata
level above that set by the mask is enabled. If the timer expires, the system can preempt the
offending task and handle it as is appropriate for the design.

Once again, an interrupt-based approach meets the requirements for solving the critical
section problem. The one caveat is that such an approach will not be effective in a mult-
processor approach utilizing shared memory since we only have the ability to manage inter-
rupts On our OWN processor.

A protocol to protect a critical section was suggested by Professor Edsger Wybe Dijkstra,
a distinguished computer science pioneer from Rotterdam, The Netherlands. Dr. Dijksira
has made significant contributions to almost every aspect of the field of computing science.

As his solution to the critical section problem, he devised what is called a semaphore.
In its simplest form, a semaphore is a Boolean variable or an integer— S that can be accessed
only through two atomic operations:

wait - P(S)
signal - V(S}

The letters P and V are the first letters of the Dutch words proberen, which means 1o
test, and verhogen, which means to increment. At this point in the discussion, the value of
a semaphore will reflect whether or not access to the critical variable is available. The word
“atomic” qualifying the access operations for the semaphore is important, as was discussed
earlier for the await operation.

The wait operation tests the value of the semaphore, and if it is false, sets it to true, The
signal operation sets the value to false. The wait operation performs its job in two steps: fes,
then ser. These steps must be seen from outside of the wait as a single, atomic operation.

The sequence of events diagrammed in Figure 12.34 should not be possible. In the sit-
uation presented, the two tasks, TO and T1, are executing. TO currently has the CPU and
needs to enter the critical section. It executes the wait. If the fest and set operation is not
atomic, TO could complete the test portion and see that the resource is available. In the
meantime, task T1, which has a higher priority, interrupts and also needs the resource. It,

T1 interrupt and execute a wait

T1: wait
T1

test set
To TO: wait Figure 12.34 A Nonatomic
test set Model of a Flag Used to Protect a
I Critical Section

32

12.7 Task Cooperation, Synchronization, and Sharing 495

wait 100, executes the wair, which it is allowed to complete. Task T1 then exits, and TO resumes
where it left off and sets the flag. Both processes now believe that they have mutually exclu-
sive access to the critical area.

As long as neither task changes the value of the critical variable, everything will work
as expected. However, a write operation by either task can potentially create a serious
problem.

The operations may be defined by the code fragments presented in Figure 12.35.
Observe the similarity with the await operation.

wait(s) signal(s)
{ {
while (s); s = FALSE;
s = TRUE; }
}
s initialized to FALSE
Figure 12.35 A Model of Semaphore Behavior
await Bear in mind that, as with the await control statement, although shown as several steps, the
wait must execute as a single, atomic operation. Lest the reader think that the semicolon fol-
lowing while is in error, it is not. Such a construct forces a task to block as long as the sema-
phore is set.
test, set The test and set operation (abbreviated in various texts as TS, TAS, or TNS) is imple-
mented as a hardware instruction on many processors.

The semaphore can now be used to protect a critical resource as demonstrated in the

two code fragments presented in Figure 12.36.
Task TO Task T1
{ {
wait(s) wait(s)
critical section critical section
signal(s) signal(s)
} }
Figure 12.36 Protecting a Critical Section with a Semaphore

The task that executes the wait(s) first will gain access to the critical section. The sec-
ond task will block, waiting for the other task to execute the signal. Thereafter, it, too, can
proceed.

Process Synchronization

One can use the semaphore in a slightly different way to force the execution order of several
asynchronous tasks. For the basic case, consider an application with two such tasks, T0 and
T1, which are cooperating on a portion of the application. Task TO contains a function f(sy),

33

6 Chapter 12 Tasks and Task Management

Task TO Task T1

{ {
;(.31): w';ait(sync): 11 wait
signal(sync); // signal g(s2);

} }

Figure 12.37 Using a Semaphore to Control the Order of Execution

and task T1 contains a function, g(s;). Their execution order is critical; the function f(s;)
must be executed before g(s;). To achieve such a synchronization, we define the semaphore
sync and initialize it to TRUE. The code fragments in Figure 12.37 illustrate the design.

Observe that because sync is initialized to TRUE, T1 will execute g(s,) only after)
executes statement f(s,).

2.7.7 Spin Lock and Busy Waiting

wait

busy waiting
spin lock

The one disadvantage of using semaphores for synchronization as we have described earlier

is that when a wait for a shared resource or event, for example, is encountered, the encoun-
tering process is blocked and must loop continuously while waiting. Such a phenomenon s
called busy waiting. Under such a condition, the waiting processes waste CPU cycles that
other processes could use productively. The lock on the critical section is called a spin lock
because the process spins while waiting for the lock to open. Of course, the advantage of l
such a lock is that there is no context switch which can take significant time. If the lockis
expected to be held for only a short time, the spin lock can be particularly useful in time-
critical situations.

2.7.8 Counting Semaphores

binary semaphores

counting semaphores

wait
block
waiting
signal
ready

block, wakeup

The semaphores we have looked at are called binary semaphores: they can take on either
one of two values. The definition can be expanded slightly to permit the semaphore to take
on a range of values from 0 to N-1: such semaphores are called counting semaphores.

Each such semaphore has an integer value and (potentially) a list of associated pro-
cesses. When a process executes a wait operation and the semaphore is not available, rather
than wait the process can block itself. Through the block operation, the process places itself
in a waiting queue associated with the semaphore. The state of the process is changed to
waiting, and control is transferred to the scheduler. The blocked process can be restarted
when some other task executes a signal operation. The restart operation is initiated by a
wakeup operation that places the task in the ready state and into the ready queue. Counting
semaphores can be particularly useful when we must manage a pool of identical resources.

The definition of the semaphore operations is modified slightly, as seen in the code
fragments in Figure 12.38. Nonetheless, the modeled operation of the semaphore remains
atomic. The semaphore now defined as s is initialized to 0.

Note that the block operation suspends the invoking process and the wakeup resumes
execution of the blocked process. Both operations are provided by operating system calls,
Observe that the waiting list can be implemented by a linked list and perhaps implement as
FIFO or a priority queue.

34

:,1-

5 _,ﬂhvﬂ. \-:

Ir“

Figure 12.38 A Code Fragment Modeling a Counting Semaphore

128 TALKING AND SHARING IN SPACE

So far, we have discussed the problems of sharing, cooperation, and synchronization among
asynchronous tasks. Let's look at an application in which we can begin to use these concepts.

128.1 The Bounded Buffer Problem

First let's describe the objective. One of the major goals in designing embedded applica-
tions is to ensure that they perform in a highly robust manner that tolerates faults and mis-
use. Consider the following problem.

The application is to build the data management portion of an extensible digital imaging system to be
used on the next generation Rovers that will engage in an ongoing exploration of Mars.
The goal of the mission is to conduct a series of detailed studies of the Martian surface and sur-
' rounding environment. The system is configured with several cameras that can continuously collect
a variety of image data. The data may include infrared scans, atmospheric analysis, or topographic
mapping.

The imaging system is mounted on the Rover. Data is collected in a buffer and then uploaded to
an orbiting satellite that will subsequently transmit the image data to any one of a number of tracking
stations on the Earth.

Because the objective is to map or sample as much of the environment as possible during each
mission as data is collected, it is stored into any one of a set of N smaller buffers rather than one large
one. With such a scheme, there is no waiting for the one buffer to be emptied before scanning can

‘ begin again, thereby maximizing the transfer on both sides. Thus, as each buffer is filled, image data
is directed to the next free buffer. So as not to miss communication with one of the various Earth sta-
tions, the mother ship must upload the collected data as soon as it becomes available.

The block diagram in Figure 12.39 illustrates the system.

| / \,\
| _

Figure 1239 Information Sharing Utilizing an n Buffer Design

35

ragment is illustrated as shown in Figure 12.41.

- L
Bt . 21|
,‘.njg o) e

o

36

unded Buffer problem

12.8 Talking and Sharing in Space 499

b'II‘he problem just described is a classic synchronization problem known as the Bounded Buffer
Problem.

2 The Readers and Writers Problem

readers, writers

readers-writers

wrtSem

A new engineer proposes that since there are a number of buffers, the imaging system can
be enhanced by permitting data to be collected from several cameras at the same time and
stored in one of the buffers. Also, data can be uploaded using several links and thereby
speed up that process as well.

To demonstrate its operation, the engineer quickly puts together a simple model of the
system. It works well most of the time, but occasionally data gets corrupted and he or she
cannot understand why.

The proposed design exhibits one of the classic problems. We have a data object that
must be shared among several concurrent processes. Some may want to upload (read) and
others may want to store (write). The processes are referred to as readers and writers.

When operating, if multiple readers access the data simultaneously, there is no prob-
lem. If a writer and any other process access the shared data simultaneously, then there is
the potential for a big problem. This problem is referred to as the readers-writers problem.
There are several variations to the problem.

First Readers-Writers: No reader waits unless a writer has obtained access of shared
variable.

Second Readers-Writers: Once a writer is ready, it performs the write as soon as
possible. If a writer is waiting, no new reader started.

Let’s see how the young engineer’s problem can be solved. We will present a solution
to the first readers-writers problem. To start, we define the following terms.

Semaphores
mutex, wrtSem, both initialized to |

mutex
Used to ensure mutual exclusion when numReaders is updated

wrtSem
Used to ensure mutual exclusion for writer access

numReaders
Integer count of the number of readers currently accessing the shared buffer pool,
initialize to 0

Each writer process must check for exclusive access to the buffer pool before writing.
We ensure this by protecting the pool with the semaphore wrtSem. The code fragment for
the writer is given in Figure 12.42.

As many readers as desired are permitted, provided that no other process is accessing
the buffer pool to change the data. The code fragment for the reader is given in Figure 12.43.

Observe that in the entry section of the critical section, if the entering task is not the
only reader, then, there must already be other readers. Such a condition implies there cannot
be any writers. Otherwise, one must check to ensure that there are no writers before
proceeding.

37

38

129

MONITORS

monitor

condition variables

interface, body

mutual exclusion
synchronization

condition variables
active

129 Monitors 501

The semaphores we have studied are a fundamental method for synchronism. However,
they are a low-level mechanism, and it is easy to make errors with them. An alternate solu-
tion uses a data type called a monitor. Monitors are program modules that offer more struc-
ture than semaphores, with an implementation that can be as efficient.

A monitor is a data abstraction mechanism that encapsulates a representation of an
abstract object. The monitor provides a public interface as the only means by which internal
data may be manipulated. Note that this is similar to a class in either C++ or Java. The mon-
itor contains an internal (private) variable to store the object’s state and procedures (meth-
ods or function members) that implement the operations on the object. Mutual exclusion is
satisfied by ensuring that procedures in the same monitor cannot execute simultaneously.
Conditional synchronization is provided through condition variables.

A monitor is used to group a representation and implementation of a shared resource.
It has an interface and a body. The (public) interface specifies those operations provided by
the resource, while the body contains variables that represent the state of the resource. Inter-
nal procedures implement the operations specified in the interface. The monitor can be
schematically illustrated as shown in Figure 12.44.

monitor monName
{
initialization statements
procedures
permanent variables
} Figure 12.44 The Monitor—A
Typical Structure

The procedures implement the visible operations. All processes in the monitor share
the permanent variables. They are denoted permanent because they retain their values on
exit as long as the monitor exists. Such behavior occurs in C or C++ with static variables.
The procedures may also have local variables.

By virtue of being an abstract data type (ADT), the monitor is a distinct scope. Only the
procedure names are visible outside of the monitor—the public interface. Permanent vari-
ables can only be changed through one of the visible procedures. Statements within the
monitor cannot affect variables outside the monitor, that is, those in a different scope. Per-
manent variables are initialized before any procedure is called. The initialization is accom-
plished by executing initialization procedures when the monitor instance is created.

The major difference between the monitor and a class in C++ or Java is that the monitor
is shared by multiple concurrently executing processes or threads. Consequently, the
threads or processes using a monitor may require mutual exclusion to the monitor variables
as well as synchronization to ensure that the monitor state is conducive to continued
execution.

Mutual exclusion is usually implicit; synchronization is implemented explicitly. Dif-
ferent processes require different forms of synchronization. The implementation of the nec-
essary synchronization is accomplished through condition variables. An external task or
thread calls a monitor procedure. The procedure is active if a thread or task is executing a
statement in the procedure. At most one instance of a monitor procedure is active at any one
time. The simultaneous invocation of two different procedures or two invocations of the
same procedure is not permitted.

39

e J

2 Chapter 12 Tasks and Task Management

By definition, the procedures execute with mutual exclusion that is ensured by the fa.

guage library and operating system. Mutual exclusion is generally implemented by using
locks or semaphores and by inhibiting certain interrupts.

.9.1 Condition Variables

cond

wait

signal

Signal and Continue
nonpreemptive

Signal and Wait,
preemptive

calls
entry queue
return, wait

Condition variables are used as part of the synchronization process and are intended to delay
a task or thread that cannot safely continue until the monitor’s state satisfies some Boolean
condition. Note that condition variables are similar to the guard conditions in UML state
charts. They are then used to awaken the delayed process once the condition becomes true.,
A condition variable is an instance of a variable of type cond.

cond myCondvar;

The declaration can only occur inside the monitor. The value of the condition variable is
queue of delayed processes. Initially, the queue is empty. The value on the queue can only
be accessed indirectly, for example, to test its state.

empty (myCondvar) ;

A thread can block on a condition variable:

wait (myCondvar) ;

Execution of the wair causes the task to move to the rear of the queue and to relinquish
exclusive access to the monitor. A blocked process is awakened using

signal (myCondvar) ;

Execution of a signal causes the task at the head of the queue to awaken.

Observe that the execution of signal seems to cause a dilemma. Upon execution, two
tasks have the potential to execute: the awakened task and the signaling task. Such a situa-
tion seems to contradict the requirement that only a single task or thread can be active in the
monitor at any one time.

There are two possible paths for resolution:

* Signal and Continue—the signaling task continues, and the awakened task resumes al
some later time. Such a scheme is considered nonpreemptive; the process executing
the signal retains exclusive control of the monitor.

* Signal and Wait—is considered to be preemptive. The task executing the signal relin-
quishes control and passes the lock to the awakened task. The awakened process pre-
empts the signaling process.

The process is described in Figure 12.45.

The operation/synchronization occurs as follows. A task calls a monitor procedure, If
another task is executing in the monitor, the caller is placed into the entry queue. When the
monitor becomes free, as a result of a return or wait, one task moves from the entry quese
into the monitor.

40

129 Monitors 503

Signal and Wait

Figure 12.45 A State Diagram Model for a Monitor

If no other tasks are executing, the calling task passes through the entry queue and
begins executing immediately. If the task executes wair on a condition variable while exe-
cuting in the monitor, it enters the queue associated with that variable.

Signal and Continue When the task executes a Signal and Continue on a condition variable, the task at the
entry, Signal and Wait head of the associated queue now moves to the entry queue. If a task executes a Signal and
Wait on a condition variable, the task at the head of the associated queue moves to the mon-

itor and the task executing in the monitor moves to the entry queue.

129.2 Bounded Buffer Problem with Monitor

Let’s revisit the bounded buffer problem and implement the design with a monitor. As
before, there is a pool of n buffers. We will assume that each can hold one item.

Define a monitor boundedBuffer.

Define the following condition variables:

notEmpty
Signaled when buffer count > 0
Tracks empty buffers, initialized to 0

notFull
Signaled when buffer count < n-1
Tracks full buffers, Initialized to 0
Define the procedures:

put(data)
Puts data into a buffer when space available

get(data)
Gets data from a buffer when data available

Define the protected entity:
bufferPool

41

Figure 12.46 A Monitor Solution to the Bounded Buffer Problem

12.10 STARVATION

42

1212 SUMMARY

In this chapter we continued the discussion of time and the crit-
ical role it plays in the design of embedded applications by intro-
ducing the concepts of reactive and time-based systems. We
have studied, in some detail, the basic responsibilities of task
scheduling and intertask communication in the operating sys-
tem. We have examined a number of different criteria for assess-
ing scheduling algorithms: we learned the difference between
static and dynamic scheduling, and we looked at several algo-
rithms in each category.

12.13 REVIEW QUESTIONS

Time, Time-Based Systems, Reactive Systems

121 What is the difference between an interval and a dura-
tion?

122 What is a time-based embedded system? a reactive
embedded system?

123 What is the difference between a periodic and an aperi-
odic event or operation?

124 Explain what is meant by delay in an embedded applica-
tion; by jitter.

125 What is meant by the expressions hard or hard deadline
ina real-time embedded context?

126 What is firm real-time? soft real-time?

Scheduling

127 What is meant when a task is said to be schedulable?
deterministically schedulable?

128 What is CPU utilization? Why is it important?

129 When are scheduling decisions made?

1210 What is the difference between a preemptive and a non-
preemptive system?

1211 Several scheduling criteria were outlined in the chapter.
What are these?

1212 What are the different scheduling algorithms identified
in the chapter?
1213 What is deterministic modeling? a queuing model?

1214 What is simulation? emulation? What is the difference
between them?

Intertask Communication

12.15 What are the three primary components that make up
the intertask communication model introduced in this chapter?

12.13 Review Questions 505

We have looked at two categories of intertask communica-
tion—shared variables and message exchange—and at several
ways by which we can implement those strategies. We have
learned that a side effect of using shared data is the need for
coordinated access by the tasks and threads comprising the sys-
tem. We have seen that such a shared data, called a critical sec-
tion, can be managed by several methods, including semaphores
and monitors. Finally, we studied several classical models for
shared data problems and how such problems can be solved
using semaphores and monitors.

12.16 One method introduced in the chapter for exchanging
information between tasks was called shared variables. What
does this mean?

12.17 Message exchange was introduced as another means by
which information might be exchanged between tasks in an
embedded application. What does this mean?

12.18 What is a rendezvous in a message exchange model?
12.19 What is a buffer in a message exchange model?

Task Cooperation, Synchronization,
and Sharing

12.20 What is a critical section?

12.21 Describe what is meant by the entry and exit sections
with respect to a critical section.

12.22 What requirements must be met in order to solve a crit-
ical section problem?

12.23 What is meant by the expression atomic operation?
12.24 What does the expression fest and set mean?
12.25 What is a semaphore?

12.26 Discuss how a semaphore can be used to solve the crit-
ical section problem.

12.27 What is a spin lock?

12.28 What is a counting semaphore?

12.29 What is the bounded buffer problem?
12.30 What is the readers and writers problem?
12.31 What is a monitor?

12.32 How does a monitor meet the specified requirements
for solving a critical section problem?

12.33 What is starvation?
12.34 What is a deadlock?

43

506 Chapter 12 Tasks and Task Management
12.14 THOUGHT QUESTIONS

Time, Time-Based Systems, Reactive Systems

12.1 What is the difference between absolute time and relative
time? Give two examples of each in an embedded application.
12.2 Give two examples of periodic and aperiodic events or
operations in an embedded application.

Scheduling

12.3 Give an example of an embedded application for which
each of the scheduling criteria discussed in the chapter might be
best suited. Explain and justify your answer.

12.4 The chapter introduces several different scheduling algo-
rithms. For each algorithm presented, give an example of an
embedded application for which the algorithm might be best
suited. Explain and justify your answer.

Intertask Communication

12.5 The chapter introduced several shared variable models.
Identify each of these and explain how each works.

12.6 For each of the shared variable models, identify a
strength and a weakness.

12.7 Give an example of an embedded application in which
each of the shared variable models might be used. Explain and
justify your choice.

12.8 Explain how message exchange as a means for exchang-
ing information between tasks in an embedded application
might work.

12,9 Discuss the advantages and disadvantages of message
exchange versus shared variables in an embedded application.
12.10 Explain the difference between direct and indirect com-
munication in a message exchange model? Give an example of
each and explain the pros and cons of each approach in your
selected applications.

12.11 Explain the difference between symmetric and asym-
metric addressing in a message exchange model. Give an exam-

12.15 PROBLEMS

12.1 Present a UML sequence diagram to illustrate the behav-
ior of an embedded design comprising four tasks in the polled set.
12.2 Complete the design of the basic polled algorithm given
in Figure 12.4 for a system with four tasks in the polled set.
Model each task as a mod N, counter that is incremented each
time the task 1s polled.

12.3 You have a digital event, a positive transition on a signal
line, that you must respond to within 40 p sec. As the designer,

44

-

ple of each and explain the pros and cons of each approachis
your selected applications.

12.12 Several different buffering schemes were introduced
What were these? Give several advantages and disadvantagesef
each approach.

12.13 Give an example of an embedded application in whig
each of the buffering schemes might be used. Explain and jus i
tify your choice.

Task Cooperation, Synchronization,
and Sharing

12.14 Give an example of a critical section in an embedded
application and explain why it exists.

12.15 Why should a rest and set operation be atomic?
12.16 The chapter presents several alternate solutions to the
critical section problem. Describe each and discuss its adva-
tages and disadvantages.

12.17 Discuss the advantages and disadvantages of using 2
counting versus binary semaphore in embedded applications,
12.18 Give several examples of embedded applications i

which a binary or counting semaphore is used. Explain and jis-
tify your choice in each case. |

12.19 What real-world problem is the bounded buffer prob- '
lem modeling?

12.20 Give several examples of embedded applications cop-
taining a bounded buffer problem.

12.21 What real-world problem is the readers and writers
problem modeling?

1222 Give several examples of embedded applications con- |
taining a readers and writers problem.

12.23 How does a monitor differ from a binary semaphor!
counting semaphore?

12.24 Explain the purpose of condition variables in a monior

you need to determine the best way to handle such a signal. Yoy
have two choices, polling or an interrupt. You are in a design
review and must present a case justifying one or the other.
(a) Present the pros and cons of polling.

(b) Present the pros and cons of an interrupt-based scheme.
(¢) For a polled scheme, give a detailed description of neces-
sary steps prior to polling, during polling, and after the event
occurs. Be specific.

(d) For an interrupt-based scheme, give a detailed description
of necessary steps prior to the interrupt, during the interrupt, and
after the interrupt has been handled. Be specific.

() What happens in both cases (polled and interrupt) if all
interrupts are globally disabled?

() What happens in the interrupt case if no ISR is set up at the
interrupt vector location?

124 You have a task that must respond to an external event at
five different times during a cycle. For two of the times, t, and
1y, the response is considered hard real-time and for three of the
times, to, t;, ts, the response is considered soft real-time as
shown in Figure P12.48.

u‘me.

to t
Figure P12.48

t: & L

As the designer, you can choose only one of the following
methods to accommodate the external event: polled, interrupt,
or polling an interrupt. Discuss the advantages and disadvan-
tages of each method.

12.5 Design an embedded system to control a traffic light uti-
lizing a state-based schedule. Each direction supports a left turn
(right turn if traffic normally drives on the left-hand side) and
pedestrian-activated crosswalk control.

126 Design an embedded system to control a portable per-
sonal entertainment system utilizing a state-based schedule. The
system must support the ability to: turn on / select a song to
play, play the song, suspend playing, replay a song, turn off.
127 Implement a first-come first-served scheduling algorithm
utilizing a doubly linked list based task queue.

128 Repeat Problem 12.7 for a shortest job first scheduling
algorithm.

129 Repeat Problem 12.7 for a round robin scheduling
algorithm.

1210 An embedded system has three processes with the fol-
lowing execution times and periods: Pl(4, 16), P2(3, 12),
P3(2, 8).

(a) What is the CPU utilization for such a system?

(b) Can the set of tasks be scheduled using a rate-monotonic
schedule?

(¢) Ifthe set of tasks can be scheduled, give the UML sequence
diagram for the schedule.

1211 An embedded system has three processes with the fol-
lowing execution times and periods: PI(4, 16), P2(3,8),
P3(2, 7).

12.15 Problems 507

(a) What is the CPU utilization for such a system?

(b) Can the set of tasks be scheduled using a rate-monotonic
schedule?

(¢) If not, what changes would have to be made to enable the
set of tasks to be scheduled using a rate-monotonic schedule?
12.12 An embedded system has five processes with the fol-
lowing execution times and periods: PI1(5,40), P2(5, 60),
P3(4, 16), P4(6, 48), P5(12, 96).

(a) What is the CPU utilization for such a system?

(b) Can the set of tasks be scheduled using a rate-monotonic
schedule?

(c) If the set of tasks can be scheduled, give the UML sequence
diagram for the schedule.

12.13 An embedded system has three processes with the fol-
lowing execution times and periods: PI1(4, 16), P2(3, 8),
P3(2,7).

(a) What is the CPU utilization for such a system?

(b) Can the set of tasks be scheduled using an earliest deadline
schedule?

(c) Ifthe set of tasks can be scheduled, give the UML sequence
diagram for the schedule.

12.14 Provide a C algorithm to schedule a set of three tasks
using an earliest deadline schedule.

12.15 Repeat Problem 12.14 for a least laxity schedule.

12.16 An embedded system has the following three jobs, pro-
cesses, and resources. Devise a schedule using the shortest job
first algorithm that will achieve optimum utilization of
resources and system throughput.

3 Jobs: J1,J2,13
3 Resources: AD
3 Processes: Measure M
CPU Compute C
/0 Output 0
Time Time Time
- Units 1 Units B Units
M1 1 Ml 2 Ml 3
Cl 1 Cl1 3 Cl 3
M2 2 M2 | M2 2
€2 3 C2 2 Cc2 2
01 3 M3 2 M3 3
M3 2 3 3 C3 3
£3 1 0l 2 0l 2
02 1
Total 14 15 18

12.17 Repeat Problem 12.16 using a rate-monotonic schedule.
12.18 Repeat Problem 12.16 using an earliest deadline schedule.

45

508 Chapter 12 Tasks and Task Management

12.19 An embedded application is designed as three tasks.
The requirements for each are given in the following table.

Task Priority Period Time Units
1 1 7 2
2 2 16 4
3 3 31 7

(a) Can the three tasks be scheduled using a nonpreemptive
scheduling scheme? Why or why not? If so, show the schedule
using a UML sequence diagram.

(b) Can the three tasks be scheduled using a preemptive sched-
uling scheme? Why or why not? If so, show the schedule using
a UML sequence diagram.

(¢) Can the three tasks be scheduled using a time slice schedul-
ing scheme? Why or why not? If so, what is the value of the
time slice to ensure minimum average wait time for all three
tasks. Show the schedule using a UML sequence diagram.
12.20 Give a UML class diagram for a buffer that can be
shared between two tasks.

12.21 Provide a C implementation of the buffer specified by
the class diagram in Problem 12.20.

12.22 Provide a Verilog model of the buffer specified by the
class diagram in Problem 12.20.

12.23 Give a UML class diagram for a ping-pong buffer that
can be shared between two tasks.

12.24 Give a UML sequence diagram for the operation of a
ping-pong buffer.

12.25 Provide a C implementation of the ping-pong buffer
specified by the class diagram in Problem 12.24.

12.26 Provide a Verilog model of the ping-pong buffer speci-
fied by the class diagram in Problem 12.24.

12.27 Give a UML class diagram for a ring buffer that can be
shared between two tasks.

12.28 Provide a C implementation of the ring buffer specified
by the class diagram in Problem 12.27.

12.29 Provide a Verilog model of the ring buffer specified by
the class diagram in Problem 12.27.

12.30 A shared memory scheme is to be used as a means of
exchanging blocks of data between two tasks, T, and T,. The

number of blocks of data to be exchanged and their location is
not fixed.

(a) Give a data/control flow diagram for the shared memory
system.

(b) Explain how your memory system works using a UML
sequence diagram and by describing a complete cycle that
includes the following: Write by Ty—Read by T;—Write by
T—Read by T,. Be certain to explain how each task knows
when and how much to read or write.

(¢) How would your design change if three tasks were involved
in the exchange?

46

-

12.31 As the chief engineer for Make Me Rich Consultangy,
you have been hired by a start-up embedded systems company
Inside Your Stuff, Ltd. It seems that they have designed (in ks
than two weeks) a hard real-time control system for Fager;
Yours Processes, Etc. The control system supports the folloy-
ing two operations on a collection of data items, ay, a;, 8.8,

get (i)—Returns the value of a
put (i, aValue)—Assigns a Value to a;

The control system has three asynchronous processes that must
perform the following transactions:
p0: x = read (j); y = read (i); write (j, 52); write (i, 27);
pl: x = read (k}; write (i, 43}; y = read (j); write {k, 72);
p2: write (k, 25); x = read (i); y = read (j}; write (i, 20);
Occasionally, the system produces incorrect results and
Fastern Yours Processes, Etc. is threatening to return the sy
tem. It is now 3:30 in the morning and you are at the Fastem
Yours Processes site with a not so happy customer and a systen
that is running pretty slowly.

(a) When Inside Your Stuff, Ltd. said they had designed a hard
real-time system, what did they mean?

(b) Can you identify the problem and explain why it is occur-
ring?

(¢) Can you propose a fix? Explain why your solution wil
solve the problem?

12.32 A colleague has built a simulation of a portion of atek-
communications block. He explains that the system uses 2
shared buffer that accepts blocks of characters from a measure-
ment process P1 and forward blocks of data to the output pro-
cess, P2. He has written the following routines, one for P] and
one for P2.

full = 0
max = buffer size
plGenerate()
{
while (full < max)
{
buffer (head) = anltem;
(head = head + 1) mod max;
full++;

}

full = 0
max = buffer size
p2Transmit{ }
{
while (full > 0)
{
anltem = buffer (head);
(head = head -~ 1) mod max;
full--;

Occasionally the system either loses data or forwards incorrect
data.

{a) Can you explain why?

(b) Please propose (in detail) a way to fix the problem. Modify
the existing code as necessary.

{¢) Show how your design solves the problem.

1233 In the pastry corner of the kitchen of a small restaurant,
we find two world-class chefs, grumpy Pierre des Oeufs and
Jean “la loupe™ Farouche, who despise each other. Nonetheless,
they must work in the same place and share the same resources.
Each is responsible for a different kind of cookie. Here are the

recipes:

Grumpy Pierre Jean la loupe

Mix 1 cup of milk with Preheat oven to 190 C

2eggs Mix 1 cup of water with

add 1 cup of sugar 1 cup of flour

add 1 cup of flour add 1 cup of sugar

Bake in oven at 170 C for add 1 egg

10 minutes Bake in oven for 5 minutes

In the kitchen, we have,

One giant carton of milk

One giant crate of eggs

Two large sugar bowls

One large container of flour

One cold water tap

One small oven that has space for one batch of cookies

The previous consultant who tried to schedule the work of
Pierre and Jean had a sudden job change to Cinque Terre on the
Italian Riviera where he now spends his days sun-drying porcini
mushrooms.

Your predecessor was actually quite clever and modeled the
two chefs as processes. You find the following bits of code
{encrusted with cookie dough) and partially implemented chef
processes. Please complete the design.

You have the following nonatomic (they can be interrupted)
subroutines available:
getBEggs| numEgys) // retrieves numBggs from the crate

// of eggs

getFlour(numCups) // retrieves numCups from the flour
// container

getMilk{ numCups) // retrieves and pours numCups from
// milk carton

getSugar (numCups) // retrieves numCups from the
// sugar bowl

getWater (numCups) // retrieves numCups from the tap

putIntoQven(numMinutes }// puts cockie tray into oven for
// numMinutes

12.15 Problems

setOvenTemp(numDegrees) // sets oven temperature to
// numDegrees
Initialize the following semaphores:
Semaphore eggCrate =
Semaphore flourContainer =
Semaphore sugarBowl =
Semaphore waterTap =
Semaphore oven =
Semaphore milkCarton =

Complete the two chef processes:

process grumpyPierre()
{

}

process jeanlaLoup()

{

)

12.34 A now defunct engineering firm was hired to design the
switching system in a small town railway station. Their final
design appears as shown in Figure P12.49.

a0 0y
el o

Figure P12.49

Signal 2 Signal 1 Train 1

Signals 1 and 2 may be Red, Yellow, or Blue.

If Train 1 is approaching Platform 1, it must turn Signal 2,
then Signal 1, to Blue before proceeding. Similarly, if Train 2 is
approaching Station 2, it must turn Signal 1, then Signal 2 to
Red.

A train may only change the signal (to Red or Blue) if the
signal is in the Yellow state.

When Train 1 leaves Station 1, it must turn Signal 1, then
Signal 2, to Yellow. Similarly, when Train 2 leaves Station 2, it
must turn Signal 2, then Signal 1, to Yellow.

(a) Are there any problems with the scheme described above?
If so, identify what they are.

(b) Will such a scheme prevent collisions? Justify your answer.
If not, propose a solution that will.

(c) Will such a scheme prevent deadlocks? Justify your
answer. If not, propose a solution that will.

47

Chapter 13

Deadlocks

THINGS TO LOOK FOR....

¢ Scheduling tasks and resource management.

¢ The problem of deadlock in a shared resource environment.

* The necessary and sufficient conditions for deadlock to occur.
* How to prevent, avoid, and detect deadlocks.

* How to recover from a deadlock state.

13.0 INTRODUCTION

In the previous two chapters, we have addressed several important aspects of task manage-
ment in embedded systems; among these were scheduling task execution and intertask com-
munication. In this chapter, we will examine aspects of the scheduling and dispatch of tasks
with respect to managing task demands for resources. To that end, we will introduce tie |

deadlock problem of deadlock in a shared-resource, multitasking environment. We will identify the
necessary and sufficient conditions for deadlock to occur. First, we examine ways to pre-
vent or avoid deadlock, and then we study methods for detecting a deadlock if, despite best
efforts, a deadlock does occur. We conclude by presenting several techniques for recover-
ing from a deadlock state.

13.1 SHARING RESOURCES

A multitasking or multiprocessing embedded system has a finite number of resources such
as timers, analog-to-digital converters, digital-to-analog converters, and /O ports. Oftea
several tasks may compete for those resources. When such a request is made and if the
requested resources are not available, the task or processor blocks. The implementation of
a semaphore or monitor with waiting queue, for example, can result in a situation in which
two or more processes wait indefinitely. Such a situation is called a deadlock.

Consider the following simple problem in which there are two tasks, TO and T, and
two resources, R1 and R2. Let each task have two counting semaphores, SO and SI. Fur-
thermore, let each need both resources to execute its job. Now, let

TO set wait(S0) // wait for Rl increment SO (= 1)

Tl set wait(Sl) // wait for R2 increment S1 (= 1)
Now let

T0 set wait(Sl) // wait for R2 increment S1 (= 2)

Tl set wait(S0) // wait for Rl increment SO0 (= 2)

510

48

132 System Model 511

The system is now stuck; neither process can continue.
Today the problem of deadlocks is treated rather casually. As systems become more

complex and the number of tasks and threads increases, the problem will have to be
addressed.

13.2 SYSTEM MODEL

tasks
resources

identical resources

dissimilar resources

To begin, we formulate a model of the deadlock problem. Any embedded system has a lim-
ited number of resources. On one hand, if all systems were architected as a single task or if
all the tasks in a multiple-task system have mutually exclusive resource demands, deadlocks
cannot occur. On the other hand, for most designs, as tasks enter the system, they are going
to need those resources. If the system is going to support preemptive multitasking, those
resources will have to be shared. Making this same statement another way, one can say that
from the perspective of a single task, a deadlock is not a problem. When analyzing dead-
locks—their cause, prevention, detection, and correction—the problem must be considered
from a system level. One must take into consideration all of the tasks in the system.

A first high-level model decomposes the problem into two pieces: a set of tasks and a
set of resources. Tasks are largely equivalent; resources are not. One can, therefore, form
a coarse-grained partition on the set of resources. One possible partition decomposes the set
into two groups—those that are identical and those that are not. Although such a decompo-
sition seems reasonable, one must quantify what constitutes identical resources and what
distinguishes them from those that are not. Unlike the factors that were considered when
decomposing a problem statement into functional blocks, such a process for resources is a
bit more straightforward.

For the current model, identical resources are considered to be those for which multiple
interchangeable copies of the same resource exist. For example, if the system has two
analog-to-digital converters, two digital-to-analog converters, three serial I/O ports, or eight
memory buffers, then one can consider instances of each type of resource to be interchange-
able. Allocation of any one to a task may be sufficient. On the other hand, dissimilar
resources are those that are unique for one reason or another. Of these, for example, there
may be only a single copy such as the highest priority interrupt or a single serial I/O port.
The current state of the model can be expressed graphically as in Figure 13.0.

Resources

Tasks

Dissimilar as a Collection of Tasks and
Resources

Figure 13.0 System State

49

