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TRODUCIN'

Preface

3 EMBEDDED SYSTEMS
Less than150 years ago, shipping a newproduct, petroleum, down the Mississippi in barges
wasviewedwithskepticismandfear of possible explosion.Fifty yearslater, electricity and
electric lights were viewed as marvels of modern technology available only to a few
Another 50 years subsequent, someonesuggested that the world would needat most three
to four computers. Our views continue to change. Today we shippetroleum(still with con-
cern) all over the world. Electricity has become so commonthatwe are surprised ifa switch
is not available toturnon a light whenwe entera room. Theneedforthree to four computers
has grownto hundreds ofmillions, perhapsbillions,ofinstalled computers worldwide.

This book presents a contemporary approachtothe design and developmentof a kind
of computer systemthat most of us will never see—those that we call embedded systems.
The approach brings together a solid theoretical hardware and software foundation with
real-worldapplications. Why do we needsuch athing? A goodquestion, let’s take a look

Today we interact with an embedded computer invirtually every aspect of our
everyday life. Fromoperating our cartoriding anelevatortoour office to doing our laundry
or cookingour dinner, a computer is there, quietly, silently doing its job. Wefind the micro-
processor—microcomputer—microcontroller—everywhere. Today these machines are
ubiquitous. Like the electric light, without thought, we expect the antilock braking systemin our car to work whenweuseit. We expectour mobile phone tooperatelikethe stationary
one in our home. We carry a computerin our pocket that is more powerful than the ones the
original astronauts took intospace.

Today we have the ability to put an increasingly larger number of hardware pieces
into diminishingly smaller spaces. Softwareis no longerrelegated to agiant machinein an
air-conditioned room; our computerandits software go where we go.Thisability gives
engineers a newfreedomtocreatively put together substantially more complex systems
withtitillating functionality, systemsthat only sciencefiction writers thoughtofa few
years ago, Suchanability alsogivesus the opportunity to solve bigger and more complex
problems thanwe have ever imaginedin the past—andtoput those designsinto smaller
and smaller packages. Theseare definitely the most fun problems, the exciting kinds of
things that we arechallengedto work on. Okay, where do we begin?The embeddedfieldstarted almostby accidentnot too manyyears ago.In the early 70s
Federico Faggin and manyothersat Intel andMotorolaintroduced the 4004, 8008, and 6800
microprocessors tothe engineering world. Originally intended for use in calculators andin
calculator-like applications, today, driven by evangelists like Faggin, the microprocessor has
becomeafundamental componentofvirtually everything we touch. With such widespread
application, the ensured safety and reliability ofsuch systems are absolutely essential.The embedded systemsfield has grownvirtually overnight from nonexistent several

go to encompassalmosteveryaspect of modernelectrical engineering and computing
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462 Chapter 11 Real-Time Kernels and Operating Systems

11.7 Consider implementing an embedded system to control a
traffic light as a foreground/background system. Each direction
supports a left turn (right turn if traffic normally drives on the
left hand side) and pedestrian-activated crosswalk control.
(a) Which tasks are foreground tasks?

(b) Which tasks are background tasks?

(c) Give a UMLstate diagram illustrating the behavior of the
system during a change from north-south green to east-west
green. Be certain to consider the operation with and without a
left (right) turn and with and withouta pedestrian.
(d) Give a UML sequence diagram for the events in part (c).

11.8 Repeat Problem 11.7 for a microwave cooker.

11.9 Repeat Problem 11.7 for a washing machine.

11.10 Repeat Problem 11.7 for a video-on-demand entertain-
ment system for a large hotel.

11.11 Consider implementing an embedded system to control
a traffic light as an RTOS-based system. Each direction sup-
ports a left turn (right turn if traffic normally drives on the left-
hand side) and pedestrian-activated crosswalk control.

(a) Which tasks are the major tasks?

(b) Give a UMLstate diagram illustrating the behavior of the
system during a change from north-south green to east-west
green. Be certain to consider the operation with and without a
left (right) turn and with and without a pedestrian.
(c) Give a UML sequencediagram for the events in part (c).

11.12 Repeat Problem 11.11 for a microwave cooker.

11.13 Repeat Problem 11.11 for a washing machine.

11.14 Repeat Problem 11.11 fora video-on-demand entertain-
mentsystem fora large hotel.

11.15 Provide a UMLclass diagram for a task control block
(TCB). Implement the design using a C struct data structure.

11.16 Design a method that would enable the dynamic alloca-
tion and deallocation of TCBsas tasks are created or terminated.

11.17 Modify the design in Example 11.1 to support a
dynamic numberoftasksin the task queue withoutusing malloc
and free (C) or new and delete (C++) while retaining the array

as the queue container.

11.18 Provide a UMLclass diagram for a task queue that sup-
ports the dynamic insertion and deletion oftasks.

¥
11.19 Implementthe task queue specified in Example 11.1jo
use a doubly linked list as the underlying data type for thequene
container.

11.20 Combinethe subsystems in Problem 11.16 and Problem
11.19.

11.21 Modify the design of the TCB in Problem 11.15 to sup.
port a task priority numberin the range of {0-9}. Assume 0is
the highest and 9 the lowestpriority.

Incorporate the modified TCB design into the task queue
design in Problem 11.19. Modify the access method to always
return the highestpriority task.

11.22 Modify the design of the TCB in Problem 11.15 to sup-
port the inclusion ofan estimate of execution time numberinthe
range of {0-99}.

Incorporate the modified TCB design into the task queue
design in Problem 11.19. Modify the access method to always
return the shortesttask.

11.23 Give a high-level description of howthe system in Fig-
ure P11.22 works. You should not need more than 10 lines.

 
Figure P11.22

11.24 Write aC program to implementthe design given in the
data/control flow diagram in Problem 11.23.
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| THINGS TO LOOK FOR...
¢ Therole of time in embedded designs.

¢ Thedefinitions of reactive and time-based systems.

¢ The differences between preemptive and nonpreemptive systems.

| ¢ The need foreffectively scheduling the use of the system CPU(s).
¢ Thecriteria for making scheduling decisions.

¢ Common scheduling algorithms.

¢ Real-time scheduling considerations.

¢ Howscheduling algorithms might be evaluated.

| ¢ Methodsfor intertask communication.
| ¢ Thecritical section problem and several solutions.

¢ Methods for task synchronization.

12.0 INTRODUCTION

| In the previous chapter weintroduced some ofthe basic concepts and methods involved in
controlling multitasking systems. Welearnedthat foreground / background systemscan be
effective underreal-time constraints and that the basic responsibilities of the operating sys-
tem comprise task scheduling, intertask communication,and task dispatch. In addition, we
introduced some ofthe issues associated with the context switch in preemptable systems.

In this chapter, we will examine the scheduling problem and intertask communication
in greater detail. The resource managementaspects of task scheduling and dispatch will be
covered in the following chapter. We will open by continuing the discussion oftime and the
critical role it plays in the design of embedded applications by introducing the concepts of

| reactive, time-based systems_reactive and time-based systems. Wewill present anddiscuss various metrics for specifying
and assessing a task schedule. Wewill then investigate several different scheduling algo-
rithms and analyze task synchronization and intertask communication in somedetail. The
focus will be primarily from the perspectiveofeither a kernel-based or more complete oper-
ating system-based controlstrategy.
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| Chapter 12 Tasks and Task Management

1 TIME, TIME-BASED SYSTEMS, AND REACTIVE SYSTEMS

1.1 Time

absolute, relative

interval

duration

Wehavealreadybriefly encountered time and the importantrole it plays in the design and
execution of embedded applications. We will now explore that role in greater detail,

Wedefine two different measures of time: absolute and relative, based on what the
measurementis referenced to. Absolute time is based on real-world time;relativetimeis
measured with respect to somereference. Timeis further qualified as either an interval ot
a duration: these are distinct. An interval is marked by specific start and endtimes; a dura-
tion is a relative time measure. Equal intervals must have the samestart times and the same
stop times; nonequal intervals can have the same duration. This difference is captured in
Figure 12.0.

EqualIntervals << —Durations

EqualIntervals ae ceDurations Figure 12.0 Equal Intervalsand Equal Durations

«1.2 Reactive and Time-Based Systems
reactive, time based

time-based SYStems
absolute, relative

following an interyal

_ Periodic
periodic, Periog;c

€Xecution times
Jitter

delay

hard, hard deadtine

Embedded systemsare classified into two broad categories: reactive and time based. Reac-
tive systems, as the name suggests, contain tasks that are initiated by some event that may
be either internal or externalto the system. Aninternal event maybe an elapsed time ora
temporal bound on data that has been exceeded. An external eventis the recognition of a
sWitch that has been activated or an external responseto an internally generated command,

for example.Typically, the initiating events are asynchronousto the normalactivity ofthe
system, Foreground/background systemsare a good exampleofthoseclassed as reactive.

Time-based systems are those systems whose behavioris controlled by time. Such a
relationship can be absolute—an action must occurat a specific time; relative—an action
must occurafter or before somereference;orfollowing an interval—anaction must occur
at a specified time with respect to some reference. The behaviorin time-based systems is
Senerally synchronouswith a timing elementof one form or another. Time-shared systems
ae a good exampleofthose classed as time based.

The relevanceoftime in embedded applications becomes clear whentryingto schedule
tasks and threads, that is, deciding when and how often each is executed. Tasksor threads
that are initiated with repeating duration betweeninvocationsare called periodic; otherwise
they are designated as aperiodic. A repeating durationis called the period. Thetimeto com-
Plete a task is called the execution time.

Ina periodic system,variation in the evoking eventis called jitter. The time between
the €Voking event and the intended action is called the delay. When designinga system,
cach Context in whichit is anticipated that the system will be operating must be examined
© determine the significanceofjitter and delay with respect to specified time constraints,

Anaction that must occurbya specified time is defined as hard orissaid to have a hard
€dline A missed deadline in such cases is considered to be a partial or total system fail.

|
|

|
|
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soft real-time

firm real-time

predictability

when, how

periodic

12.1 Time, Time-Based Systems, and Reactive Systems 465

ure. A system is defined as hard real-time if it contains one or more tasks containing such
constraints. Such systems may have other tasks that do not have temporal deadlines. The
major focus, however,is on the hard deadlines.

Systems with relaxed time constraints are defined as soft real-time. Such systems may
meettheir deadlines on average. Soft real-time systems maybe soft in several ways:

* Relaxationofthe constraintthat missing the deadline constitutes system failure. Such
a system maytolerate missing the specific deadline provided some other deadline or
timeliness constraint is met—the average throughput, for example.

¢ Evaluating the correctness of timeliness as a gradation of values rather than pass
orfail.

Systemswith tasks that have somerelaxed constraints as well as hard deadlines are defined
as firm real-time.

Real-time systems are those in which correctness demandstimeliness. Most such sys-
temscarefully manage resources with respect to maintainingthe predictability of timeliness
constraints. Such predictability gives us a measure of accuracy with which onecanstate in
advance when and how an action will occur. We elaborate by annotating the durations,
events,jitter, and actions. Figure 12.1 illustrates a periodic system typical of a time-based
design.

 
Time

Figure 12.1 Task Activity in a Periodic Time-Based System

In the figure, the period of the recurrenceofthe tasks is defined. The evoking event
occurs with respectto the start of the period. The first rectangle expresses the variation in
the actual invocation with respect to the intended. Suchjitter may arise from variations in
the system’s ability to respondto a timer expiring, for example. Once the eventoccurs, the
second rectangle capturesthe delay in getting the task started. Whenthe task beginsto exe-
cute,the third rectangle accounts foranyinitialization or similar operations that must occur
before the intendedaction takes place. Theintended action occurs during the time indicated
by the fourth rectangle. After the action completes,the fifth rectangle mirrors the entry
actions with any necessary cleanup before the task completes. The sixth rectangle accounts
for variation in exiting the task.

The diagram also marksthe latesttime at whichthe intended action could complete and
still meet the time constraints onthe period. The duration between the completion deadline
andthestart of the next cycle is equal to that between the endofthe action and the end of
the exitjitter.
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Figure 12.2 Task Activity in an Aperiodic Foreground/Background Design

aperiodic Figure 12.2 illustrates an aperiodic system thatis typical of a foreground/background
design. Notice how the minimum and maximum times are specified.

The invocation of aperiodic tasks is not fixed in time—they are asynchronoustothe
operation of the core system. Thus, there can be nojitter because there is no expected time

interarrival time for the initiating event. The duration between suchtasksis called interarrivaltime. Sucha
timeis critical when one needs to determine how to schedule real-time tasks. Under such

circumstances, the lower bound on interarrival time must be identified. Such things as the
maximum numberof events occurring within a given time interval mayalso need to be
considered.

Table 12.0 captures timeliness constraints with respect to whetherthe taskis soft or
hard real-time.

Table 12.0 Hard and Soft Real-Time Timeliness Constraints 

Property Nonreal-time Soft Real-time Hard Real-time

Deterministic No Possibly Yes
Predictable No Possibly Yes
Consequencesof late computation Noeffect Degraded performance Failure
Critical reliability No Yes Yes
Response dictated by external events No Yes Yes
Timing analysis possible No Analytic (sometimes) Analytic, stochastic

stochastic simulation simulation 

Atthis point, we should be sufficiently comfortable with some ofthe terminology that
we can start to investigate the control of embedded systemsin greater detail. Wewill begin
with the problem oftask scheduling.

»2 TASK SCHEDULING

Howefficiently and effectively a task moves through the various queuesalongthe control
path followingits arrival and howeffectively and efficiently the CPUisutilized during such
a movementestablish the quality of the embedded design. An essential componentofthat
control strategy is the algorithm used to schedule the allocation of the CPU.

In a multitasking system, the main objective is to have some process using the CPU a
all times. Such a scheme maximizes the usage of that resource. Which taskis running at any
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schedulable

deterministically schedulable
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specific time is based on a number ofcriteria.It is the scheduler’s responsibility to ensure
that the CPUis efficiently utilized and that the various jobs are executed in such an order
as to meet any required constraints.

Whenworking with a scheduling algorithm, one mustalso consider the priority of the
task. Priority is assigned by the designer and is based on a variety of differentcriteria. We
will examinethese shortly. Suchcriteria are used to resolve which task to execute when
more than one is waiting and ready to execute. Tasks with higherpriority execute prefer-
entially over those with lowerpriority.

In a real-time context, a task that can be determined to always meetits timeliness con-
straints is said to be schedulable. A task that can be guaranteed to always meetall deadlines
is said to be deterministically schedulable. Such a situation occurs when an event's worst
case responsetimeis less than or equal to the task’s deadline. When all tasks can be sched-
uled, the overall system can be scheduled.

Scheduling decisions must be madeduring the design phase of the system development
since such decisions involve trade-offs that affect and optimize the overall performance of
the system. Whenthe system specification stipulates hard deadlines, one must ensure that
the implementingtasks and their associated actions can meet every deadline. Soft deadlines
naturally give more flexibility.

12.2.1 CPU Utilization

CPU Utilization

In additionto satisfying time constraints, a goal in formulating a task scheduleis to keep the
CPUasbusyaspossible, ideally close to 100%, but with some margin for additional tasks.
Such a metric is referred to as CPUutilization. In a practical system, utilization should
range between 40% for a lightly loaded system and 90% foronethatis heavily loaded.

Fora single periodic task, CPU utilization is given as

uy =e / pj (12.0)

u,_fraction of time task keeps CPU busy
e, execution time
p; for periodic task is the period 

Onecan express a similar relationship for aperiodic tasks.
CPUutilization information can be used in conjunction with a sequence diagram to aid

in assessing wheneachof the tasks can and needsto run.

12.2.2 Scheduling Decisions

running, waiting

running, ready

waiting, ready

Twokey elementsofreal-time design, repeatability and predictability, are absolutely essen-
tial in the context of hard deadlines. To ensure predictability, one must completely under-
stand and define the timing characteristics of each task and properly schedule those tasks
using a predictable scheduling algorithm.The first step in developing a robust scheduleis
knowing when a scheduling decision must be made.

Scheduling decisions are made underthe following four conditions:

1. A process switches from the running to the waiting state—initiated by an I/O request.
2. A process switches from the running to the ready state—when aninterrupt occurs.
3. A process switches from the waiting to the ready state—the completionof I/O activity.
4. A process terminates.
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Asynchronous Interrupt Event Driven

_

Oneofthe simplest scheduling schemes is asynchronousinterrupt eventdriven. Certainly,
the asynchronous nature of the schemecalls into question the use of the word “schedule”
Under such an approach,the system is constrained to operate in a basic one-lineinfinite
loop until an interrupting eventoccurs, as is illustrated in the code fragment shown in Figure
12.3. As such,the design is a special case of the foreground/background model. Inthis case,
the design has no background tasks. The design can also be considered tobe reactive,

global variable declarations

isr set up
function prototypes
void main (void)

{
local variable declarations

while(1); if task loop
}
ISRs

function definitions Figure 12.3. An Event-Driven
Schedule Algorithm

Whenan interrupting event occurs, flow of control jumpsto the associated ISR where
the designated task is executed; flow then resumesin the infinite loop. Generally,the event
originates from some external source. We will look at an extension to the event-driven
approach in which the event derives from a system timer.

The overall behavior of such a system can be difficult to analyze because ofthe non-
deterministic nature of asynchronous interrupts. However, it is rather straightforward to
determine the postevent behavior for systems with a single interrupt or the behavior ofthe
highest priority interrupt in systems with more than one interrupt.

Polled and Polled with a Timing Element

Thebasic polled algorithm is amongthe simplest and fastest algorithms. The system con-
tinually loops, waiting for an eventto occur. The difference between thepolled algorithm
andthe eventdrivenis that the polled algorithm is continually testing the valueofthe polled
signal looking for a state change. Theinterrupt-driven design, on the other hand, does noth-
ing until the event occurs. Only then does it respond. Schematically, the algorithmisgiven
as shownin Figure 12.4.

Such a scheme workswell fora single task. It is completely deterministic. The time to
respondto the event is computable and bounded. In the worstcase, let’s assume the event
occurs immediately after the test instruction. Under such a circumstance, the response time
is the length of the loop. Polled with a timing eventis a simple extension. The scheme uses
a timing element to ensure a delay action after a polled event is true. Such a technique
deskewsthe incoming signals.

The polled modelis also a special case of the foreground/background model.In con-
trast to the event-driven schedule, the polled model has no foreground tasks. The design
implementsa reactive system.
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global variable declarations

function prototypes
void main (void)
{

local variable declarations

while(1) II task loop
{ /I test state of each signal in polled set

if then construct
or

switch statement

}
}

function definitions Figure 12.4 A Polling-Based
Schedule Algorithm

The next approach implements the flow of control throughthetaskset as a finite automaton
or state machine. The twobasic implementationsofthe finite-state machine (FSM), Mealy
and Moore,are distinguished by the implementation of the output function: in Mealy the
outputis a function ofthe currentstate and the input, and in Moore the outputis a function
of the currentstate only. The basic machine can be expressed asillustrated in Figure 12.5.

Next State and
Output FunctionInput Queue

Figure 12.5 A Basic State
Machine Model

 
The state machine caneasily be implemented aseithera set of case statements,as an if-then,
orif-then-else construct.

Someofthe limitations of such an approach begin with the theoreticallimit on the com-
putational powerofthe finite-state machine. Usingstatesis notefficient, and the state space
explosion for large problems makesthe approach impractical for systems with large num-
bers of inputs. There is a rich set of variations on the basic FSM, however, some of which
addressthe variouslimitationsof the basic implementation. A state-based designis reactive
in nature.

12.3.4 Synchronous Interrupt Event Driven

timing

The next level of sophistication entails constraining the asynchronous event used in the
openingalgorithm to onethat is synchronous, based on a timer. Such a system continually
loops until interrupted by a timing signal (whichis typicallyinternally generated). The tim-
ing/interrupt eventtriggers a context switch to an ISR that managesit. A schedule based on
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time-sharing systems

a periodic eventis defined as fixed rate.In contrast, an aperiodic scheduleis defined as spo-
radic. Such a synchronous interrupt-based scheme can work with multiple tasks and is the
basis for time-sharing systems. The design is an example ofa time-based system, although
it is reacting to a special interrupt.

12.3.5 Combined Interrupt Event Driven

A simplevariation on the two interrupt event-driven designs is to permit both synchronous
and asynchronousinterrupts. In such a system,priority is used to select amongtasksthat are
ready whenthe timinginterrupt occurs.Ifmultiple tasks are permitted to have the same pri-
ority, then selection from among ready tasks proceeds in a round robin fashion. Naturally,
higherpriority tasks will be given preference at any time.

12.3.6 Foreground—Background

foreground-background A system utilizing aforeground—background flow of control strategy implements a com-
foreground bination of interrupt and noninterrupt-driven tasks. The former are designated the fore-
background ground tasks and the latter the background tasks. The backgroundtasks can be interrupted

at any time by anyof the foregroundtasks and are thus operating at the lowestpriority. The
interrupt-driven processes implementthe real-time aspects of the application; the interrupt
events may be either synchronousor asynchronous. All of the previous algorithms are spe-
cial cases of foreground/background designs in which either the foreground(polled sys-
tems)or the background (interrupt based) componentis missing.

12.3.7. Time-Shared Systems

In a time-shared system, tasks may or may notall be equally important. Whenall are given
the same amountoftime, the schedule is periodic, and when theallocation is based on pri-
ority, the scheduleis aperiodic. Several of the more commonalgorithmsare examined in the
ensuing paragraphs.

12.3.7.1 First-Come First-Served

A very simple algorithmisfirst-comefirst-served andis easily managed with a FIFO queue.
Whena process enters the ready queue, the task control block is linkedto the tailofthe
queue. When the CPU becomes free,it is allocated to the processat the head ofthe queue,
The currently running processis removed from the queue. Such an approachis nonpreemp-
tive and can be troublesomein a system with real-time constraints.

12.3.7.2 Shortest Job First

Theshortestjob first schedule assumes that the CPU is used in bursts ofactivity. Each task
has associated with it an estimate of how muchtime the job will need whennextgiven the
CPU.Theestimate is based on measured lengths of previous CPU usage. Thealgorithm can
be either preemptive or nonpreemptive. With a preemptive schedule, the currently running
process can be interrupted by one with a shorter remaining time to completion.

12.3.7.3 Round Robin

The round robin algorithm is designed especially for time-shared systems.It is similar to
first-comefirst-served, with preemption added to switch between processes. A small unit of

10
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time called time quantum or slice is defined, and the ready queueis treated as a circular
queue. The scheduler walks the queue, allocating the CPU to each process for one time
slice. If a process completes in less than its allocated time, it releases the CPU; otherwise,
the processis interrupted when time expires andit’s put at the end ofqueue. New processes
are addedto the tail of the queue. Observethatif the time slice is increased to infinity, round
robin becomesa first-come first-served scheduler.

2.3.8 Priority Schedule

rate-monotonic

static, fixed

Shortest job first is a special case of the more general priority scheduling class of algo-
rithms. A priority is associated with each process, and the CPUisallocated to the process
with the highest priority. Equal priority jobs are scheduled first-come first-served or in
round robin fashion. The major problem with a priority schedule is the potential for indef-
inite blocking or starving—priority inversion. The algorithms can be either preemptive or
nonpreemptive.

12.3.8.1 Rate-Monotonic

With a preemptive schedule,the currently running process can be interrupted by any other
task with a higher priority. A special class of priority-driven algorithms called rate-
monotonic was initially developed in 1973 and has been updated overthe years.In the basic
algorithm,priority is assigned based on execution period; the shorter the period, the higher
the priority.

Priorities that are determined andassigned at design time and then remain fixed during
executionare said to useastatic orfixed scheduling policy. Theability to schedule a set of
tasks is computed asa bound onutilization of the CPU as shown in Eq. 12.1.

F Bsa")
izo'

e = Execution timeofthe task

p = Period ofthe task
 

This approach makesthe following assumptions.

¢ The deadline for each task is equalto its period.

* Anytask can be preemptedat any time.

The expression on the right-hand side gives a bound on CPUutilization; the boundis
extreme,thatis, worst case.If it cannot be met, a more detailed analysis must be performed
to prove whetherornot the task can be scheduled. The above equation sets a CPU utilization
bound at 69%.Practically, the bound could be relaxed to around 88%,and the taskscanstill
be scheduled.

The basic algorithm given above simplifies system analysis. Schedulingis static, and
the worst case occurs whenall the jobs mustbe started simultaneously. Formalanalysis that
is beyondthe scope ofthis text leads us to the rate-monotonic schedule also knownasthe

critical zone theorem critical zone theorem.

11



12

wir

Chapter 12 Tasks and Task Management

stable

earliest deadline

least laxity

Critical Zone Theorem

If the computed utilizationis less than the utilization bound, then the system is guaranteed to meet
all task deadlines in all task orderings. 

It can be shown that rate-monotonic systems are the optimal fixed rate scheduling
method.If a rate-monotonic schedule cannot be found, then no other fixed rate scheme will

work. The algorithm is defined as stable, which meansthat as additional, lower priority
tasks are added to the system,the higherpriority tasks can still meet their deadlines even if
lowerpriority tasks fail to do so. The initial algorithm bases assurance uponthe assumption
that there is no task blocking. The basic algorithm can be modified to include blockingas
illustrated in Eq.12.2.

1
b -=ft <a(2 3 } (12.2)Pn- 1

The terms b; give the maximum timetask i can be
blocked by a lowerpriority task
 

With a nonpreemptive schedule,a currently arriving higherpriority processis placed at the
head of the ready queue.

12.3.8.2 Earliest Deadline

A dynamic variation on the rate-monotonic algorithm is called earliest deadline. The ear-
liest deadline schedule uses a dynamic algorithm with priority assigned based onthe task
with the closest deadline. The schedule must be established and modified during runtime,
for only then can the deadline(s) be assessed.

A setoftasks is considered schedulableif the sum of the task loadingis less than 100%.
It is considered optimalin the sense thatif a task can be scheduled by otheralgorithms, then
it can be scheduled bythe earliest deadline.

The algorithm is not considered stable. If the runtime task load rises above 100%, some
task may miss its deadline. Generally, it is not possible to predict which task willfail. This
uncertainty adds greater runtime complexity. The scheduler must continually determine
whichtask to execute next whenever such decisions must be made. Such analytical methods
are more complex than fixed priority cases.

12.3.8.3 Least Laxity

The /east laxity algorithmis similar to the earliest deadline with slightly tighter constraints.
In additionto the deadline, the time to execute the task is considered. Taskpriority is based
onthe followingrelationship. It should be clear that a task with negative laxity cannot meet
its deadline.

laxity = deadline — execution time (12.3)

The schedule is then based on the metric using ascending laxity. On paperit is a rather
straightforward concept. However, it means that one must knowthe exactvalueofthe exe-

12
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criticality
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cutiontime,or at least an upper bound onit. Furthermore,the values must be updated with
each system change.

Theleast laxity algorithm can be utilized in systems with a mixture ofhard and soft
deadlines. Hard real-time tasks can be given priority over those with less rigid constraints.
However,it has weaknesses similar to those found with the earliest deadline algorithm;that
is, it is not stable. In addition, it has a greater runtime burden than the fixed schedule
schemes. Thealgorithm tends to devote CPU cyclesto tasks that are clearly going to be late
and thereby causes more tasks to miss deadlines.

12.3.8.4 Maximum Urgency

The maximum-urgency-first algorithm includes features of both the rate-monotonic and the
least laxity algorithms.Asa first cut, it assigns priority according to the task’s period,as is
done with the rate-monotonic algorithm. Next, a binary criticalitytask parameteris added.
Thecriticality parameteris used to decompose the tasks into twosets: critical and noncrit-
ical. Then the least laxity algorithm is applied to those in the critical set. The criticality
parameter and the priority assignment are assessed at runtime.

If no critical tasks are waiting, then tasks from the noncritical set are scheduled.
Because thecritical set is based on the rate-monotonicalgorithm, the schedule canbe struc-
tured so thatno critical task fails to meetits deadline.

The majoradvantageofthe algorithmis the simplicity of the static priority component
and reduced runtime burden compared with full least laxity. The algorithm, however, lacks
someflexibility. The rate-monotonic component assumes unconstrained preemption. Typ-
ically, short deviations are well tolerated; longer deviations can lead to missed deadlines.

Maximum-urgency-first is best applied to tasks that are well understood and for which
blocking constraints are easy to determine. The dynamicscheduling contribution from least
laxity potentially can compensate by elevating a task’s priority. The algorithm has someof
the runtime complexity of pure least laxity and is best applied to tasks that can vary in their
ability to miss deadlines. It can be thoughtof primarily as a rate-monotonic algorithm with
some runtime checkingto ensure that deadlines can be met.

12.4 REAL-TIME SCHEDULING CONSIDERATIONS

resource reservation

A real-time system maybe hard orsoft real-time, and the task scheduling may be static or
dynamic.For a dynamic hard real-time schedule, the process is submitted along withastate-
mentofthe time required to compute and to do I/O.If, following assessmentofthe task’s
requirements, the scheduler accepts the task, it guarantees that the task will complete on
time. Otherwise,it rejects the task as nonschedulable. Such a guarantee calls for resource
reservation and requires the scheduler to know exactly how long each operating system
function takes along with a completion time guarantee. Sucha restriction is impossible for
systems with secondary storage or using virtual memory algorithms.

A softreal-time scheduleis less restrictive. Such a schedule does require thatcritical pro-
cesses havepriority overthelesscritical. Implementinga soft real-time system requires care-
ful design of the scheduler andotherrelated aspectsofthe operating system. Thereis a further
requirementforpriority scheduling. Real-time processes must havethe highestpriority, and
that priority must not degrade over time. Such a constraintis relatively easy to ensure. Fur-
thermore,the dispatch latency must be small; thus, system calls must be preemptable.

Such a requirementcan be accomplished in several ways. One approachisto insert pre-
emption points where the system can checktosee if a high-priority process needsto be run.
Alternatively, the entire kernel can be made preemptable. In such a case, all kernel data
structures mustbe protected, and one must have synchronization methods.
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conflict phase, dispatch The preemption process has two components: a conflict phase and a dispatch phase,

phase Duringthe conflict phase, preemption ofany process runningin the kernelis permitted. The :
lowerpriority process must release needed resources. The next step is a context switch to
the high-priority process.In the dispatch phase, the process moves from the ready state to
the runstate.

12.5 ALGORITHM EVALUATION

With the plethora of algorithms and each having its own parameters, selecting the proper |
and appropriate one can be difficult. To begin the evaluation, one mustfirst establish assess-
mentcriteria. For example, CPU utilization, response time, or throughput maybe the most
critical factors in a design. Next, the candidate algorithms must be evaluated against the
selection criteria. Once again, there are a variety of methods.

(2.5.1 Deterministic Modeling

analytic evaluation A major class of methods is called analytic evaluation. The approachuses the candidate
algorithm and a representative system workload to produce a formula or number from

deterministic modeling—which to evaluate the algorithm. One such method is called deterministic modeling. To see
how this works,considerthe following processes and workloads.

Process Burst Time

Pl 10
P2 20
P3 3
P4 7
PS 12

Figures 12.6a-c illustrate the results of evaluating the following scheduling algorithms
against the example workload.

¢ First-comefirst-served

¢ Shortest job first
¢ Round robin

first-comefirst-served Starting with thefirst-come first-served, each algorithm will be evaluated with the goal of
achieving the shortest average wait time.

First-Come First-Served

P1-10 P2-29 P3-3 P4-7 P5-12

 
P41 0
P2 10

P3 32 Average 28 time units

P4 42 Figure 12.6a The First-
P5 49 ComeFirst-Served Algorithm
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It is assumed that the jobs arrive into the system in the order shown. With this algo-
rithm,the average wait time is computed to be 28 time units.

shortestjobfirst Nextis the shortestjobfirst schedule.

Shortest Job First

P3-3 P4-7 P1-10 P5-12 P2-29

Process Waiting Time
P3 0
P4 3

Pi 10 Average 13 time units

P5 20 Figure 12.6b The Shortest
P2 32 Job First Algorithm

Now,the average wait is 13 time units. The algorithm achieves a two to one improve-
mentover the FIFO schedule.

round robin For, the round robin algorithm,the timeslice is set to 10 time units. Under such a con-
straint, jobs P1, P3, and P4 will completein their allotted time. P2 and P5 will have to be
preempted andreturned to the queue.

Round Robin

P1-10 P2-10 P3-3P4-7 P5-10 P2-10 P5-2 P2-9

Process Waiting Time
P41 0

P2 32

P3 20 Average 23 time units

P4 23 Figure 12.6¢ The Round
P5 40 Robin Algorithm

shortestjobfirst Nowthe average wait is 23 time units. In the above example, clearly the shortest job
first algorithm should be the choicesince it performsthe best against the specified metric.

As can be seen, deterministic modeling is simple and fast, but it does require exact
knowledgeofthe process times, which often canbe difficult to establish. One obvious solu-
tion is to measurethe process times over repeated executions. Such data collection can be
done more easily in the embedded world than in the applications world because one gener-
ally knowsthe task mix in advance.

32 Queuing Models

If the system being designed is one in which the processes can vary from day to day, there
maybe nostatic set of processes and times that can be used in a deterministic model.

Statistical studies have shownthat task execution generally consists of a cycle of CPU
execution followed by I/O activity. The CPU and I/O bursts alternate until the job is fin-
ished. The frequencyofthe bursts tends to be fairly predictable andis typically independent
of machineorprocess.Asafirst-order approximation, such behavior can be modeled as the
exponential graph given in Figure 12.7. One can measure or compute the distribution of
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Little's Formula

5.3 Simulation

Frequency
Figure 12.7. CPU or I/O Burst

Burst Duration Duration vs. Frequency

CPU and I/O bursts overa collection of tasks and determine a similar distribution for pro-
cess arrival times. Based on these two distributions, for most algorithms,it is possible to
compute average throughput, utilization, waiting times, and so on.

The computer can be modeled as a collection or network of servers, with each server
having an associated queue. Knowing the arrival and service rates, one can compute utili-
zation, the average queue length—n, and the average wait time—w. The averagearrival time
is specified as A. Thus, if the system is in steady state, the number of processes leaving a
queueis equal to the numberof processes arriving, and one can write,

The expressionrelating the three variables is knownas Little'sformula. The approachis use-
ful because itis valid for any schedulingalgorithm. Knowing any twovariables, one cancom-
pute the third. Thoughuseful for comparing algorithms,it has limitations. The mathematics
of complexalgorithmsanddistributionsis difficult to work with. Thearrivalandservicedis-
tributionsare complex, and the queuing models are only an approximationofthereal system.

To produce a more accurate evaluation of a scheduling algorithm,onecanuse simulations,
Such an approach requires models of the computer system and the processesas well as
appropriate data to drive the simulation. Often such data is collected fromatraceofactual
processes by recording the actual events on a real system. Simulation can be expensive, but
it is growing in popularity and is becoming an increasingly powerfulandeffectivetool.

5.4 Implementation

Asanotheralternative, one can simply build andtest the system. Certainly,this is the most
accurate method. Once again,the difficulty is the cost.

.6 TASKS, THREADS, AND COMMUNICATION

.6.1 Getting Started

exchanging data

synchronizing,
sharing resources

A multitasking/multithreading system supports multiple tasks, and those tasks will have one
or more threads. Important jobs in any multitasking system include exchanging data
betweentasksand between threads, synchronizingtasks andthreads, and sharing resources,

In the not too recent past, such activities were limited primarily to tasks or threads
within a single microprocessor. Today,one finds a growing use of FPGA-based designs uti-
lizing devices that support the inclusion of multiple microprocessor cores withinasingle-
gate array. Consequently, it is not uncommon for communication, synchronization, and
sharing to involve tasks on multiple processors. We will find that certain assumptions can
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be made whentasks are localized that cannot be made when working with multiple distrib-
uted processors or other centers of computation.

12.6.2 Intertask/Interthread Communication

information

place, places

control, synchronization

places

shared variables, messages

Whentasksare operating independently, systems have few if any conflicts, chances for cor-
ruption, or contentions. Real systems, the interesting ones, must deal with the challenge of
such problems.In real-world systems, resource sharing and intertask synchronization and
communication must take place in a robust, safe, and reliable manner. Interaction between
tasks maybe director indirect and must be synchronized and coordinated. We wantto pre-
vent race conditions—conditions under whichthe outcomeofa computation depends on the
order in which tasks execute. Such an exchangeisillustrated in Figure 12.8.

Figure 12.8 Intertask Communication

Wesee, then, that interaction and interchange among tasks requires three basic com-
ponents:the informationthatis to be interchanged,the places where the information can be
found, and where it is ultimately to be put, coupled with the conventions that govern the
interaction and interchange. These requirementsare captured in the following modelof
interprocess communication and synchronization.

¢ The information—the data or signals being moved
* The place or places from which the information is moved to or from
¢ The control and synchronization of actions and the movementofthe information

In such a model, the places—thatis, the source and destination(s) for the exchange—
are identified variously by named variables or by pointer variables holding memory
addresses. Control and coordination comprises a number of different techniques ranging
from flagsorstatusbits to interrupts or managed accessintocritical areas underthe control
of semaphores or monitors. Information is movedeither through shared variables, or mes-
sages on bussesinternal to the microprocessorthat (exceptin rare circumstances) were of
little immediate concern to us.

Let’s begin our study of intertask communication and synchronization by looking at the
shared information component. Such sharing can occur ina variety ofways. In subsequent chap-
ters, we will extend the modelto include centers of control outside of the core microprocessor.

12.6.3 Shared Variables

Such sharing can occurin a variety of ways. Wewill begin with the simplest model: shared
global variables.
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global variables

shared buffer
producer

consumer

shared double buffer

ping-pong buffer

12.6.3.1 Global Variables

One fundamental solution for exchanging data among tasks is a shared memory environ.
ment. In such an environment, global variables can be a very effective mechanism for shar-
ing information. Global variables have the obvious problemsthat arise when twoor more
tasks require the ability to read a piece ofglobal data and potentially modify its value, The
major advantageofglobalsis that they do not haveto be copied to the stack during a context
switch. By obviating the need for such copying,critical time in hard real-time systems can
be saved. Properly managed, global variables can be an effective tool.

12.6.3.2 Shared Buffer

A shared buffer is an exchange technique in which two processes share a commonset of
memory locationsas seen in the data flow diagram in Figure 12.9. A producerofthe data
puts it into the buffer, and a consumer removesit. Once again, there are several obvious
problems.Ifone process is faster than the other, the potential for overrun or underrunarises,
Clearly, identifying the proper buffersize (for the application) and accessprotocoliscritical
to avoiding such problems. Even with the proper buffer size, the producer and consumer
must always checkthestate of the buffer before inserting or removingan item.

Task TO Task T1

— Figure 12.9 Intertask Communication
Shared Buffer Using a Shared Buffer

Good design practice recommends adding methods of the form

bool isFull() or bool isEmpty()  
to the public interface of the container. Such methods should always be invoked prior toa
read from or write to the buffer.

12.6.3.3 Shared Double Buffer—Ping-Pong Buffer

The shared double buffer model permits twotasks to share two (or more) commonsets of
memory locations. Shownin the data and control flow diagram in Figure 12.10,the config-
uration is also called a ping-pong buffer.

Shared Buffer B1 

 
Figure 12.10 Intertask Communication

Shared Buffer BO Using a Shared Double Buffer
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Several control schemes can be used with a ping-pong buffer. One implementation
begins with both buffers being empty. TO is designated as the producer and T1 as the con-
sumer. During operation, task TO will write to buffer BO untilit is full. In the meantime, T1
is blocked because there is no data available. Once BOis filled, TO will signal T1 and switch
to writing to buffer B1.

TI can now begin reading the data from BO. When T1 has removed all the data from
BO,it signals TO that the buffer is empty.IfTO has filled B1, T1 can begin reading from that
buffer; otherwiseit waits. Similarly, if TO finishes writing to B1 before T1 has emptied BO,
then it must block. The operation ofthe buffer scheme is illustrated in the two skeletal code
fragments in Figure 12.11. Such an approach can be a very effective “buffer” between pro-
cesses that are running at different rates. One buffer is being filled while the other is being
emptied. Improved robustness requires that the consumer block onalack of data and the
producer mustavoid overrunningthe buffer; thus, it blocks on a full buffer.

Task TO Task T1

while(1) while(1)

if (BO == EMPTY) if (BO == FULL)
repeat repeat

produce item in nextBO consumeitem in nextBO
until (BO == FULL) until (BO == EMPTY)
signal (T1, FULLBO) signal (TO, EMPTYBO)

endif endif

if (B1 == EMPTY) if (B1 == FULL)
repeat repeat

produce item in nextB1 consumeitem in nextB1
until (B1 == FULL) until (B1 == EMPTY)
signal (T1, FULLB1) signal (TO, EMPTYB1)

endif endif

end while end while

Figure 12.11 Two Tasks Exchanging Information Using a Shared Buffer

A secondvarianton the ping-pongbufferutilizes more than two buffers. Considerthat
wehave twotasks, TO and T1; thefirst task can producedata at a rate of 4 MHz,butthe sec-
ond can only consume at 1 MHz.To further complicate the problem,let’s also assume that
the buffer can only be written to at a 1 MHz rate. An implementation to solve the problem
is given in the data and control flow diagram in Figure 12.12.

Shared Buffers B2 and B3

Figure 12.12 Information Sharing
Between Tasks Executing at Different
Speeds
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The executionofthe synchronization schemeis given in the pseudo-code fragments in
Figure 12.13. Each bufferis written to at the 1-MHzrate. The buffers are filled in bursts in
TO and read at a more uniform rate in T1.

Task TO Task T1

while(1) - while(1)

if (B3 == EMPTY) if (B3 == FULL)
repeat repeat

produce item in nextBO consume item in nextBO
produce item in nextB1 consume item in nextB1
produce item in nextB2 consumeitem in nextB2
produce item in nextB3 consumeitem in nextB3

until (B3 == FULL) until (B3 == EMPTY)

signal (T1, FULLB3) signal (TO, EMPTYB3)
endif endif

end while end while

Figure 12.13 Information Sharing Between Tasks Executing at Different Speeds

12.6.3.4 Ring Buffer

ring buffer A ring buffer scheme uses a FIFO structure asillustrated in the accompanying schematic
representation in Figure 12.14, The structure permits simultaneous input and outputusing
head andtail pointers. Task TO, the producer, adds data to the buffer, and task T1, the con-
sumer, removesit. As with the other buffers, one must take precautionsto properly manage
overflow and underflow.

Task TOOC
head

Task T1

tail

Figure 12.14 Information Sharing
Using a Ring Buffer

12.6.3.5 Mailbox

mailbox A mailbox is another data structure with access semantics that are similar to those used for

the queue. Two or more tasks can use the mailbox to pass data or for synchronization. Gen-
erally, one finds mailboxes included in full-featured operating systems. Twooperationson

post,pend_the datastructure are defined: a write operation called post and a read operationcalledpend.
Whena task posts data to the mailbox, a flag associated with the mailboxisraised,indi-

cating thatdata is available. A task that may be pendingor waitingon thatflagis alerted and
can then read the data,resetting the flag.
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interprocess communication
send, receive, pend, post
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The pend and postoperations presentthe following public interface:

post(mailbox, data) // post to mailbox

pend (mailbox, data) // pend on mailbox 
Atfirst blush, the pend operation may appear to be the sameas a poll becauseapoll task

continually interrogates the polled variable (occupying the CPU) looking for a changein
state ofthe signal. In contrast, however, the pending task is suspended (giving up the CPU),
whilethere is no data available only to be awakened when data becomes available. Thus,in
the case of a polling operation, the CPU is devoted to testing the state of the poll signal,
whereas the pend operation frees the CPUto anothertask. A variety of things can be passed
through a mailbox,a single bit or flag, a single data word, a pointer to a data buffer, or a
more elaborate message.

The data and control flow diagram is given in Figure 12.15.

Task TO Task T1

 
Figure 12.15 Information Sharing

mailbox Using Messages and a Mailbox

Onestraightforward implementation of the mailbox data type utilizes a queue as the
underlying container. In the basic implementation, the queue is of length one andthus,the
post operation fills the mailbox precluding further posts until a pend operation takes place
to emptythe mailbox.If several tasks are pending onaflag, the enabled task resets theflag.
Such a schemeblocks multiple accesses to the resource from a single flag. Other implemen-
tations extend the queue length, thereby supporting a queue of pending elementsrather than
a single entry. Such a scheme may be useful whenthere are multiple independentcopies of
a critical resource. Another variation on this latter design utilizes a priority queue and
thence permits a priority to be assigned to each message. The associated pend operationwill
always read the highest priority messagefirst.

The methodsforintertask communicationdiscussed upto this point have relied on a mutu-
ally agreed upon memory locationto at least begin the exchange. Today's embedded appli-
cations are becoming increasingly distributed. With such an expansion, the need for
synchronization and information interchange remains and, to some extent, increases.

To execute such an exchange, one can build on the concept of mailboxes. Using a
mailbox-based approach, data—now the message—is sent to a named mailbox or destina-
tion. The named mailbox now becomesthe address of the message destination. The mes-
sage may or may notbe buffered at the source of the message—a source mailbox orat the
destination—a destination mailbox. Such a scheme, however, is not mutually exclusive
with shared memory.

A message-based approach,called an interprocess communicationfacility (IPC), sup-
ports two operations, send and receive. These are analogousto the pend and post operations
used for mailboxes. Continuing the analogy, messages may be offixed or variable size. If
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directly, indirectly

TO T1

T2 T3

Figure 12.16 Four
Fully Interconnected
Tasks

tasks TO and T1 wish to use messages to exchange information, they mustfirst establish a
communication link and then proceed to send and receive the messages.

As noted earlier, with the increasing use of multiprocessor core FPGAs, the communi-
cation link can be between processors within the same gate array as well as between phys-
ically and geographically separated microprocessors.

As one begins to think about message exchange, several questions immediatelyarise,
* Howisthe link established?

* Canthe link be associated with multiple tasks?

* How manylinksare there betweena pair of tasks?

¢ Whatis the link capacity, and are there buffers?

¢ Whatis the message size?
* Are links unidirectional or bidirectional?

Wewill look at several of these questions but defer the last twoto a later chapterin which
we present a more in-depth discussion of networking and remote systems.

Whenconsidering implementation methods, one may choose

¢ Direct/indirect communication

¢ Symmetric/asymmetric addressing

¢ Auto or explicit buffering

¢ Send by copy or reference

¢ Fixed or variable message size

12.6.4.1 Communication

A message can be moved from oneplaceto another, either directly or indirectly, via some
intermediate point or points. Each way has advantages and disadvantages.

DIRECT

Whenusing a direct communication scheme, each process must explicitly namethe sender!
receiver of the message. Messagesare logically of the form

send (T1, message) // send messageto task T1

receive (TO, message) // receive message from task TO 
Thelink is automatically established between every pair of processesor threads within

a process. For a system with four different processes, the configuration in Figure 12.16
gives full, bidirectional interconnection amongall of the processes. Several important
points need to be considered with such an implementation:

¢ The individual tasks may or maynotbe physically collocated. On one extreme,they may
be within the same FPGA.Onthe other, they could be in several different countries.

* Full interconnectivity is not efficient for larger numbers of tasks. A hierarchical
schemein whicha smaller subsetofthe tasks is so interconnected may be more feasi-
ble to implement and manage. Consider the Internet as a good model.

Usinga direct communication scheme, each task only needs to knoweach other’sidentity;
thatis, the link is associated with only two processes. The link may be unidirectional or bidi-
rectional.
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Task TO
network Task T1

Figure 12.17 Information
Exchange Between Two

Buffer BO Buffer B1 Tasks over a Network

The exchangecan be expressed in a modified data flow diagram in Figure 12.17. Note
that a bufferis associated with each process,although this may notbe the case in all imple-
mentations. More specifically, the buffer will probably be attached with an I/O task.

  

EXAMPLE 12.0 Considerthe skeletal structure between two tasks—a producer task, TO and consumertask, Tl. Task
TO produces the data andstores it in a buffer it shares with the send task. The send task takes the data
from the buffer and formats it into a messagethatit sends as the payload in a messageto task T1, the
consumertask. Tl then reverses the process.

The activities by both tasks during the exchangeare first expressed in the activity diagram in Fig-
ure 12.18 and then in the sequence diagram in Figure 12.19.

Producer Consumer

  
Figure 12.18 Activity Diagram Illustrating Figure 12.19 Sequence Diagram Illustrating a
a Producer-Consumer Exchange Producer-Consumer Exchange

Finally, the code fragment shown in Figure 12.20 reflects the operation of the twotasks.

while(t) while)

ace item in nextBO recelve(TO, nextB1)

apd (T1, nextBO) folate item in nextB1
end while end while

Figure 12.20 Code FragmentIllustrating a Producer-Consumer Exchange0————————————————
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symmetrical addressing

asymmetric addressing

Observethat the scheme uses symmetrical addressing; the sender and receiver mus
name each other. The disadvantage of such an approachis thatit ties the process name to
the implementation, thereby making future changes more difficult.

If asymmetric addressing is used, the sender only namesthe recipient.

INDIRECT

Withan indirect approach, messages are sent to or received from a shared variable, gener-
ally in the form of a mailbox. Thus,

send (MO, message) // send message to mailbox MO

receive (MO, message) // receive message from mailboxMO 
The link is established only if the tasks/threads have a shared mailboxorsimilar con-

tainer. The link may be associated with multiple processes, and there may be multiple links
between processes. As with the direct scheme, the link may be unidirectional orbidirec-
tional. The modified data flow diagram takes the form shownin Figure 12.21, in which two
tasksare illustrated. The interconnecting links are shownasbidirectional.

 

mailbox

network

Buffer BO Buffer B1

Task TO Task T1 eS)
Figure 12.21 Indirect Information Exchange Between Two Tasks
over a Network Using a Shared Mailbox

Now,considerthree processes: TO, T1, and T2,all of which wish to exchange messages
via the shared mailbox MO. Furthermore,let TO send and T1 and T2 receive. The question
of who gets the message, T1 or T2,arises.

One possible solutionis to associate the link with at most two processes. Thus,only one
processis allowed to receive at a time. As an alternative approach, the system couldselect
a receiver. A third approach can be based on the ownerof the mailbox.

If a task ownsthe mailbox, one can easily distinguish betweenthe owner, who can only
receive (there is no reason to send a messageto ourselves other than as a built-intest), and
the user, who can only send. Since each mailbox has a unique owner,thereis no ambiguity.
If the system ownsthe mailbox, then it exists independent of any process orthread.

12.6.4.2 Buffering

A buffer or buffers may be associated with the link. Error managementaside,for the
moment, buffering establishes the number of messages that can be safely sentoutonto the
link with the assurance thatthey will be received properly at the destination. If messages are
sent too quickly, the receiver may not have sufficient time to accept and process one mes-
sage before the next onearrives.
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Three possible buffering schemes can be identified.

* Thelink has zero capacity.
That is, the link cannot store messages. The sender must wait for the receiver to

rendezvous accept the messageeither by delaying or through a handshake. Such a scheme is
Idle RQ protocol called a rendezvous or an Idle RQ protocol.

¢ The link has bounded capacity.
Associated with the link is a message queueof length n. If there is space remaining
when the senderwishes to transmit, a message can be placed into the queue and the
sender can continue. Otherwise the sender must wait for space.

¢ If the link has unbounded capacity, it can be viewed as having infinite length.
The sender can post a message and continue. There is no wait. It is important to rec-
ognize that the criterion here is that the sender does not have to wait. If the receiver
can remove the incoming data quickly enough, a buffer size of one will suffice and

Continuous RQ protocol canstill be called unbounded. Such a schemeis called a Continuous RQ protocol.

All of the approachesto intertask communication that we have discussed are captured
in Figure 12.22.

 
Figure 12.22 Alternative Approachesfor Intertask Communication

12.7 TASK COOPERATION, SYNCHRONIZATION, AND SHARING

In addition to sharing information,the tasks in a multitasking system or the processors in a
multiprocessor system are often charged with cooperating/synchronizing with each other as
they execute the application. Cooperating tasks (and threads) or processors can affect or be
affected by other tasks (and threads) or processors. They may directly share a logical
address space (both code and data) or be allowed to share data only through anyof the var-
ious shared variable models that have been discussed. Such concurrent access to common
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data can result in data inconsistency, aberrant or unexpected system behavior,and poten-
tially complete system failure.

Critical Sections and Synchronization

Northern Scotland is beautiful, rugged, and lightly populated. There are few roads,with litte
traffic. Manyofthe roads are narrow,bucolic, single-lane driving challenges populated with
passing places and sometimes even narrow bridges as seen in the accompanyingsimple draw-
ing in Figure 12.23. As the twocars arrive,the bridge clearly presents a problemsince itis only
wide enough fora single car to cross at any time. Not having both vehicles simultaneously
occupyingthiscritical section of the road is most certainly beneficialto all concerned.

If each car is modeled as a process and the bridge as a shared resource,the problem is
expressed using the data flow diagram in Figure 12.24.

 

~» Card Cari
@

'@

2 bridge
Figure 12.24 A Shared Variable

Figure 12.23 A Critical Section Critical Section

Onepossible solution to the problem is to control accessto the bridge byplacing a rock
on the edgeof the bridge. When a car approaches the bridge and wantsto cross,it must stop
first, pick up the rock, drive across, and then put the rock back on the otherside ofthe
bridge. If the rock is not available, the car must wait.

Of course,it is necessary to make several underlying assumptionsfor the solution to be
feasible. The first assumption is that no one decides to see how far they can throw the rock
or forgets to return it. Second, two people don’t arrive simultaneously and decide to fight
over the rock. If two people do try to grab the rock at the sametime(in the olden days we
may have had clan warfare), today we have learned to play nice and share—after you;oh
no, after you.The third assumptionis that the musical group from England doesn’t gorolling
off with it as a souvenir.

The data flow diagram is extended andillustrated in Figure 12.25 in orderto add con-
trol, and the design begins to lookabit like a mailbox.

Figure 12.25 Adding Control to
Managea Critical Section
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Let’s examine how concurrentaccess to a shared resource can be manifestin a design.
Consider the problem that subsequently arises in the accompanying pseudo-code and code
fragments. Implemented is a simple data transfer between twotasks, one a producerand the
other a consumer, via a shared buffer. The buffer has a limited capacity of n items. The
transfer must be managed to ensure that the producer does nottry to put data into the buffer
whenit is full and the consumer mustnot try to take data out when the buffer is empty. A
variable count provides a measure of the numberofitems in the buffer. It is incremented
whenan item is added and decremented whenone is removed. The data flow diagram for
the shared buffer is given in Figure 12.26.

Task TO Task T1

Figure 12.26 Producer-Consumer
Shared Buffer BO-nitems Exchange Through a Shared n Item Buffer

 

The behavior of the system is first captured in the state chart in Figure 12.27. Observe
notfull_that for the producertask, TO,the transition from idle to the write state is guarded by the not

not empty_full condition on the buffers. Similarly,the transitioninto the read state is guarded by the not
empty condition in the consumer diagram.

oDaaa) ——>@
Consumer Task T1

Seeee a)—=@
Figure 12.27 State Chart Diagram Modeling a Producer-Consumer Information Exchange

The problemis then expressed in pseudo code (see Figure 12.28).

Task TO - Producer Task T1 - Consumer

while(1) while(1)
If not full If not empty

add item get item
incrementcount decrement count

else else

wait for space wait for item
end while end while

Figure 12.28 Pseudo-Code Modeling a Producer-Consumer Information Exchange
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synchronization,
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noncritical code
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end while
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The C code fragments are given in Figure 12.29.

 Task TO - Producer Task T1 - Consumer
int in = 0; int out = 0;
while(1) while(1)
{ { 4]

II produce an item nextTO while (count == 0); // wait for item
II wait for room nextT1 = BOfout];

while (count == MAXSIZE); out = (out + 1) % MAXSIZE;
BOfin] = nextT0; count--;
in = (in + 1) % MAXSIZE; // consume an item nextT1
count++; }

}

Figure 12.29 C Code Fragment Modeling a Producer—ConsumerInformation Exchange

As with the attempts at simultaneous access to the bridge, there is a potential problem
with simultaneous access to count. The value of the variable count depends on which task
accesses it and in whichorder. Because the two tasks are running asynchronously,the vari-
able may have anyofthree different values at any instantin time. Likethe bridge, countrep-
resents a critical piece of data or critical section shared between the two processes, T
and T1.

In general, a critical section is a resource that several tasks may be sharing suchas an
I/O port or a segment of memory in which they are reading and writing commonvariables,
Such variables maybe as simple as a single bit or as complexasa file or a table. As was the
goal in crossing the Scottish bridge, while a task is working with a pieceof data or some
other resource in a critical section, we want to prevent access byall other processes. That
is, one wants to ensure mutually exclusive access.

The need to control access to a shared resource or to commondata givesrise to one
form of process or processor synchronization that is called mutual exclusion synchroniza-
tion. A second form of synchronization is called condition synchronization.For the case of
mutual exclusion synchronization, the objective is to make certain that two processes are
notin theircritical sections at the same time. Condition synchronization, on the otherhand,
requires that a process delay or block until a specified condition is true(orfalse).

The need to share and to coordinate access exists only if there is more than one task or
processor that wishes to use a nonsharable resource or to modify commondata atthe same
time. This is a key point. If the resource is sharable orif the tasks are executing read only
operations, there will be no problem.

As we sought to accomplish with the simple bridge management schemes,the solution
to the critical section problem requires a control algorithm or protocolthat regulates access
to the shared area. At a high level, the protocol should be suchthat a task wishingto access
the critical section should checkto see if anyoneelse is using the variable;if not, announce
to all other tasksthatit is now goingto use the variable, do its work,andthentell everyone
whenit is finished.

Anabstract model of the structure of a task with a critical section can be depicted as
shownin Figure 12.30.

The code relevantto the critical section is enclosed in the three rectangles shown inthe
figure. The top rectangle, the entry section, acts as the gatekeeper controlling access to the
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critical region. The bottom rectangle, the exit section, serves to tell the world that the task
that had been usingthe critical variable is now finished.

Anysolutionto thecritical section problem mustsatisfy the following requirements.

* It must ensure mutual exclusionin the critical region.
If a taskis in thecritical section, no other task maybe allowed in.

¢ It must prevent deadlock.
If two or more tasksare trying to enterthe critical section, one must succeed.

¢ It must ensure progress throughthecritical section.
If no task is in the critical section and someother task wishes to enter, only tasks that
are not in the exit section rectangle can affect which task enters the critical section
next. Furthermore, a task wishing to enter cannot be prohibited from doing so
indefinitely.

* The solution must ensure bounded waiting.

An upperlimit mustbe set on the number oftimes a lowerpriority task can be blocked
by one with a higher priority once it has made a requestto enter.
Let’s examineseveral possible solutions to the critical section problem. We will begin

with a flag-based approach.Prior to doing so, however, we introduce the word atomic as a
qualifier to an operation.

Atomic Operation
Onethat is guaranteed to terminate andis indivisible when applied to either examining a program
variable or modifying the state of such a variable. 

Indivisible simply meansthat, once started, the operation carries through to completion
without interrupt. From a coarse-grained perspective, the operation appears as a single
statement; from a fine-grained view,the operation may actually comprise several steps. The
full sequence of steps must be guaranteed to complete and to do so uninterrupted.

To protectacriticalsection,thefirst goal is to ensure mutually exclusive access. This exclu-
sion can be accomplished using flags embedded in an atomic operation. The method is illus-
trated using two flags and two processes. Expansion to a greater number of processes
follows logically.

Define two processes, TO and T1. Let them share a critical section. Define two Boolean
flags, TOFlag and T1 Flag, to mark which processis in the critical section. Finally, define the
atomic operation, await, which is expressed in pseudo code as shownin Figure 12.31.

await( condition )
{

statements

} variable. Figure 12.31 Await Statement
Pseudo-Code Model

Condition is a Boolean expression on whicha task, thread, or processor waits untilit
evaluates to true. Statements comprise a set of actions that are to be performed when the
condition evaluates to true. If the condition evaluates to true, execution proceeds through
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await the statements comprising the body of the await construct. An importantassumption here
awaiting is that when a processis awaiting a condition, other processes have the opportunity to run, )

Otherwisethere is a deadlock.

Using the await operation, one can now reexaminethe earlier shared buffer problem,
The await statements are expressed, one for each task, as

 
12.7.3 Ta

await(!T1Flag) {TOFlag = true;}
await (!TOFlag){T1Flag = true;}

|

await Next, the await statements are used to control accessto the critical section—the yari-

count able count. First, we look at the producer (see Figure 12.32a).

Task TO - Producer

int in = 0;

while(1)
{

i produce an item nextTO
while (count == n); /} wait for room
BOfin] = nextTO;

in = (in+ 1) %n;
await( !T1Flag ){TOFlag =true;} _—‘// entry section
count++; // critical section

TOFlag = false; // exit section
}

Figure 12.32a Managing a Critical Section Using the Await
Statement—Producer Side

Then welook at the consumer(Figure 12.32b).

Task T1 - Consumer

int out = 0;

while(1)

{
while (count == 0); // wait for item

nextT1 = BOfout};
out = (out + 1) % n;

await( ITOFlag ) {T1Flag = true;} // entry section
count--; // critical section

T1Flag = false; // exit section

i consume an item nextT1 12.7.4 |
}

Figure 12.32b Managing a Critical Section Using the Await
Statement—Consumer Side
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It is rather straightforward to show that this schemesatisfies the first three conditions for
solving the critical section problem. Ensuring eventual access is a bit more involved and is
contingenton the scheduling policy.

3 Token Passing

4 Interrupts

Anotherpossible solution to the shared buffer problem is an extension of the rock-passing
protocol developed for the Scottish bridge problem. Wedefine a flag or token. To ensure
sharing ofthe data, only onetokenis issued. The token is continuously passed from task to
task; any task wishing to accessthecritical section can only do so whenit has the token as
illustrated in the state chart in Figure 12.33. The transition from state A to state B, from
whichtheaccess to the shared variable occurs,is guarded by the requirementof possessing
the token.

TaskTi
Access Buffer [have token}

Figure 12.33 State Chart Modeling a Token Passing Protocolas a Solution to the
Critical Section Problem

  

Although there is now controlled access to the critical section, several problemsarise
immediately:

1. A task or processor that does not wantto share holds onto the token forever.

2. The task or processor with the token crashes for an extended time.

3. The tokengets lost or corrupted because ofnoise.

4. Thetask or process with the token terminatesor leaves the system withoutreleasing
the token.

5. How does oneidentify a new task or processorthat gets added to the system?

One possible solution to all of these problemsis to borrow an idea from our network col-
leagues. A system-level task, charged with managing the token,is added. The task includes
a watchdogtimer. Each timethe tokenis released, the timeris reset. If the timer expires, a
ping messageissentto all tasks or processors querying for the token. If no one responds, a
new tokenis generated.

Borrowing again from the network people, each time a task or processor enters or
leaves the system,it must register with the token managementtask. Alternatively, the sys-
tem task could periodically query for new entries into the system.

It is evidentthat such a protocolsatisfies all of the requirements stipulated above and
thus does solve thecritical section problem. The approach, however, adds a significant
intra- and intersystem communication burdenas well as extra overhead to each task.

Another approachto solving the buffer problem centers on managinginterrupts. Since the
problem only arises in a single-processor context when preemption is allowed, preventing
preemption solves it. Disallowingall preemptionis a bit too extreme in mostcases. Taking
a more surgical approach offers a more practical path.
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entry

entry

7.5 Semaphores

semaphore

atomic

proberen
to test, verhogen,

to increment

wait

signal, test
set

wait, test, set

Referring backto the earlier figure describing a task withacritical section, we shouli
be able to solve the problemif interrupts are disabled when entering the rectangle labeled
entry section and reenabled in the section labeled exit section.

Using such an approach, one can encounter someofthe sameproblemsdiscovered with
a token-based method. Specifically,ifa task implements a long orinfinite loopinits critical
section, interrupts may be disabled for an extended period.

The problem can be solved with a variation on the solution developed forthetoken
based scheme.Rather than disabling all interrupts, when the entry code segmentis entered,
all interrupts below a specified level are disabled or masked. A timerthat can interrupt ata
level abovethat set by the maskis enabled. If the timer expires, the system can preempt the
offending task and handleit as is appropriate for the design.

Onceagain, an interrupt-based approach meets the requirementsfor solvingthe critical
section problem. The one caveatis that such an approach will not be effective in a multi-
processor approachutilizing shared memory since we only havetheability to manageinter-
rupts on our own processor.

A protocolto protect a critical section was suggested by Professor Edsger Wybe Dijkstra,
a distinguished computerscience pioneer from Rotterdam, The Netherlands. Dr. Dijksira
has madesignificant contributionsto almost every aspect of the field of computingscience.

Ashis solution to the critical section problem, he devised whatis called a semaphore,
In its simplest form, a semaphore is a Boolean variable or an integer—S thatcanbe accessed
only through two atomic operations:

wait - P(S)
signal - V{S}

Theletters P and V are the first letters of the Dutch words proberen, which meansto
test, and verhogen, which meansto increment. Atthis point in the discussion,the value of
a semaphore will reflect whether or not access to the critical variable is available. The word
“atomic” qualifying the access operations for the semaphore is important, as was discussed
earlier for the await operation.

The wait operation tests the value of the semaphore,andifit is false, sets it to true, The
signal operationsets the valueto false. The wait operation performsits job in twosteps: test,
then set. These steps must be seen from outside of the wait as a single, atomic operation,

The sequence of events diagrammed in Figure 12.34 should notbe possible.Inthe sit-
uation presented, the two tasks, TO and T1, are executing. TO currently has the CPU and
needs to enterthe critical section. It executes the wait. If the test and set operation is not
atomic, TO could complete the test portion and see that the resource is available.In the
meantime, task T1, which has a higherpriority, interrupts and also needs the resource. It,

T1 interrupt and execute a wait

T1: wait
T1

 
test set

TO: wait
Figure 12.34 A Nonatomic

test Modelof a Flag Usedto Protect a
Critical Section 
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wait 00, executes the wait, whichit is allowed to complete. Task T1 then exits, and TO resumes
where it left off andsets the flag. Both processes now believethat they have mutually exclu-
sive access to the critical area.

Aslongas neither task changes the valueofthecritical variable, everything will work
as expected. However, a write operation by either task can potentially create a serious
problem.

The operations may be defined by the code fragments presented in Figure 12.35.
Observethe similarity with the await operation.

wait(s) signal(s)
{ {

while (s); s = FALSE;

s = TRUE; }
}
s initialized to FALSE

Figure 12.35 A Model of Semaphore Behavior

await Bear in mind that, as with the await control statement, although shown as severalsteps, the
wait must executeas a single, atomic operation. Lest the readerthink that the semicolonfol-
lowing whileisin error,it is not. Such a constructforces a task to blockas long as the sema-
phore isset.

lest, set Thetest and set operation (abbreviated in various texts as TS, TAS, or TNS)is imple-
mented as a hardware instruction on many processors.

The semaphore can nowbe used to protecta critical resource as demonstrated in the
two code fragments presented in Figure 12.36.

Task TO Task T1

{ {

wait(s) wait(s)
critical section critical section

signals) signal(s)

} }

Figure 12.36 Protecting a Critical Section with a Semaphore

Thetask that executes the wait(s)first will gain access to thecritical section. The sec-
ondtask will block, waiting for the other task to execute the signal. Thereafter, it, too, can
proceed.

Process Synchronization

One can use the semaphore ina slightly different way to force the execution orderof several
asynchronoustasks.For the basic case, consider an application with two such tasks, TO and
T1, which are cooperating ona portionofthe application. Task TO containsa function f(s),
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Task TO Task T1

{ {

fist); datene: I wait
signal(sync); _—_// signal g(s2);

} }

Figure 12.37 Using a Semaphore to Control the Order of Execution

and task T1 contains a function, g(s;). Their execution orderis critical; the function f(s)
must be executed before g(s,). To achieve such a synchronization, we define the semaphore
sync andinitialize it to TRUE. The code fragments in Figure 12.37 illustrate the design.

Observethat because syncis initialized to TRUE, T1 will execute g(s>) only after T0
executes statementf(s)).

2.7.7. Spin Lock and Busy Waiting

busy waiting

spin lock

Theone disadvantage of using semaphores for synchronization as we have described earlier
is that when a wait for a shared resource or event, for example, is encountered,the encoun-
tering process is blocked and mustloop continuously while waiting. Such a phenomenonis
called busy waiting. Under such a condition, the waiting processes waste CPU cycles that
other processes could use productively. The lock on the critical sectionis called a spin lock
because the process spins while waiting for the lock to open. Of course, the advantage of
suchalockis that there is no context switch which can take significanttime.If the lock is
expected to be held for only a short time, the spin lock can beparticularly usefulin time-
critical situations.

2.7.8 Counting Semaphores

binary semaphores

counting semaphores

wait

block

waiting

signal
ready

block, wakeup

The semaphores we have looked at are called binary semaphores; they can takeoneither
one of two values. The definition can be expanded slightly to permit the semaphore to take
on a range of values from 0 to N-1; such semaphoresare called counting semaphores.

Each such semaphore has an integer value and (potentially) a list of associated pro-
cesses. Whena process executes a wait operation and the semaphore is not available,rather
than wait the process can block itself. Through the block operation, the process placesitself
in a waiting queue associated with the semaphore. The state of the process is changed to
waiting, and control is transferred to the scheduler. The blocked process can be restarted
when someothertask executes a signal operation. The restart operation is initiated by a
wakeup operation that places the task in the readystate and into the ready queue. Counting
semaphorescan be particularly useful when we must managea poolofidentical resources.

The definition of the semaphore operations is modified slightly, as seen in the code
fragments in Figure 12.38. Nonetheless, the modeled operation of the semaphore remains
atomic. The semaphore now defined assisinitialized to 0.

Note that the block operation suspendsthe invoking process and the wakeupresumes
execution of the blocked process. Both operations are provided by operating system calls.
Observethatthe waiting list can be implemented bya linked list and perhaps implement as
FIFOora priority queue.
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wait(s) | signal(s)

s=st1; $=s-1;

if(s>1) if (s >1)
{ {

add process to waiting queue; remove process from waiting queue;
block; wakeup(p);

} }
} }

Figure 12.38 A Code Fragment Modeling a Counting Semaphore

12.8 TALKING AND SHARINGIN SPACE

So far, we have discussed the problems of sharing, cooperation, and synchronization among
asynchronoustasks. Let’s look at an application in which wecanbeginto use these concepts.

12.8.1 The Bounded Buffer Problem

EXAMPLE12.1

First let’s describe the objective. One of the major goals in designing embedded applica-
tionsis to ensure that they perform in a highly robust mannerthat tolerates faults and mis-
use. Consider the following problem.

The application is to build the data managementportion of an extensible digital imaging systemto be
used on the next generation Rovers that will engage in an ongoing exploration of Mars.

The goal of the missionis to conduct a series of detailed studies of the Martian surface and sur-
rounding environment. The system is configured with several cameras that can continuouslycollect
a variety of image data. The data mayinclude infrared scans, atmospheric analysis, or topographic
mapping.

The imaging system is mounted on the Rover. Data is collected in a buffer and then uploaded to
an orbiting satellite that will subsequently transmit the image data to any one of a numberoftracking
stations on the Earth.

Because the objective is to map or sample as muchofthe environment as possible during each
mission as data is collected,it is stored into any one ofa set of N smaller buffers rather than one large
one. With such a scheme,there is no waiting for the one buffer to be emptied before scanning can
begin again, thereby maximizingthe transfer on both sides. Thus, as each bufferisfilled, image data
is directed to the next free buffer. So as not to miss communication with one ofthe various Earth sta-

tions, the mother ship mustupload the collected data as soon as it becomes available.
The block diagram in Figure 12.39 illustrates the system.

oa ° |7 2

SS er i Wh
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Figure 12.39 Information Sharing Utilizing an n Buffer Design
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To solve the problem we first identify the essential requirements.
There are a couple of things that must be managed:the count of the number offree/full buffen

and controlled access to a specific buffer for reading and writing the image data.
Next, we work on a solution.

The imaging system is a producer ofdata andthe satellite is a consumer. Wewilluse semaphores
to manageaccess to the variables specifying the numberoffull or empty buffers and thence access to
those buffers. To begin, we define the semaphores:

mutex Provides mutual exclusion for accesses to buffer pool—initialized to the value |

empty Count number of empty buffers—initialized to n-1

full Count number offull buffers—initialized to 0

The algorithm works as follows.
The producerwill check to see if there are empty buffers, if so, wait for exclusive access to the

buffer pool. Once access is gained, the producerwill add the data, then exit. On the consumer side, the
consumerwill see if any buffers have data available; if so, will wait for exclusive access. When the
buffer pool is open, the consumerwill retrieve the data andexit.

The producer code fragmentis illustrated in Figure 12.40.

Task T0—-Produce—-Rover Side

while(1)

produce an item TOltem

wait(empty); / wait for available buffer
wait(mutex); /! buffer available

/! wait for exclusive access to buffer pool

add TOltem to buffer;  // copy image data to buffer

signal(rnutax); // signal buffer pool available
signal(full); // signal data available

end while

Figure 12.40 A Solution to the Bounded Buffer Problem: The Producer Side

The consumercode fragmentis illustrated as shown in Figure 12.41.

Task T1-Consume—Satellite Side

while(1)
wait(full); / wait for data to become available

wait(mutex); / wait for exclusive access to buffer pool

remove T1Item from buffer; // retrieve image data

signal(mutex); // signal buffer poolavailable
signal(empty); // signal date read

consume item Tiltem // use image data

end while

Figure 12.41 A Solution to the Bounded Buffer Problem: The ConsumerSide
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pies problem just described is a classic synchronization problem known as the Bounded BufferProblem.
 

2 The Readers and Writers Problem

readers, writers

readers-writers

wrtSem

A new engineer proposes that since there are a numberofbuffers, the imaging system can
be enhanced by permitting data to be collected from several cameras at the same time and
stored in one of the buffers. Also, data can be uploaded using several links and thereby
speed up that process as well.

To demonstrate its operation, the engineer quickly puts together a simple modelof the
system. It works well most ofthe time, but occasionally data gets corrupted and he or she
cannot understand why.

The proposed design exhibits one of the classic problems. We have a data object that
must be shared among several concurrentprocesses. Some may want to upload (read) and
others may wantto store (write). The processes are referred to as readers and writers.

Whenoperating, if multiple readers access the data simultaneously, there is no prob-
lem.If a writer and any other process access the shared data simultaneously, then there is
the potential for a big problem.This problem is referred to as the readers-writers problem.
There are several variations to the problem.

First Readers-Writers: No reader waits unless a writer has obtained access of shared
variable.

Second Readers-Writers: Once a writer is ready, it performs the write as soon as
possible. If a writer is waiting, no new readerstarted. 

Let’s see how the young engineer’s problem can be solved. Wewill present a solution
to the first readers-writers problem.To start, we define the following terms.

Semaphores
mutex, wrtSem,both initialized to |

mutex

Used to ensure mutual exclusion when numReaders is updated
wrtSem

Used to ensure mutual exclusion for writer access

numReaders

Integer count of the numberof readers currently accessing the shared buffer pool,
initialize to 0

Each writer process must check for exclusive access to the buffer pool before writing.
Weensure this by protecting the pool with the semaphore wrtSem. The code fragment for
the writer is given in Figure 12.42.

As manyreaders as desired are permitted, provided that no other process is accessing
the buffer pool to changethe data. The code fragmentforthe readeris given in Figure 12.43.

Observe thatin the entry section ofthe critical section,if the entering task is not the
only reader, then, there mustalready be other readers. Such a condition implies there cannot
be any writers. Otherwise, one must check to ensure that there are no writers before
proceeding.
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The semaphores wehave studied are a fundamental method for synchronism. However,
they are a low-level mechanism,andit is easy to make errors with them. Analternate solu-
tion uses a data type called a monitor. Monitors are program modulesthatoffer more struc-
ture than semaphores, with an implementation that can be as efficient.

A monitor is a data abstraction mechanism that encapsulates a representation of an
abstract object. The monitor provides a public interface as the only meansby which internal
data may be manipulated. Note thatthis is similar to a class in either C++ or Java. The mon-
itor contains an internal (private) variable to store the object’s state and procedures (meth-
odsor function members) that implement the operations on the object. Mutual exclusion is
satisfied by ensuring that procedures in the same monitor cannot execute simultaneously.
Conditional synchronization is provided through condition variables.

A monitoris used to group a representation and implementation of a shared resource.
It has an interface and a body. The (public) interface specifies those operations provided by
the resource, while the body contains variables that representthe state of the resource. Inter-
nal procedures implement the operations specified in the interface. The monitor can be
schematically illustrated as shown in Figure 12.44.

monitor monName

{
initialization statements

procedures
permanent variables

} Figure 12.44 The Monitor—A
Typical Structure

The procedures implement the visible operations. All processes in the monitor share
the permanentvariables. They are denoted permanent because theyretain their values on
exit as long as the monitorexists. Such behavior occurs in C or C++ with static variables.
The procedures may also havelocal variables.

Byvirtue of being an abstract data type (ADT),the monitoris a distinct scope. Only the
procedure namesare visible outside of the monitor—the public interface. Permanentvari-
ables can only be changed through one ofthe visible procedures. Statements within the
monitor cannotaffect variables outside the monitor, that is, those in a different scope. Per-

manentvariablesare initialized before any procedure is called. Theinitialization is accom-
plished by executinginitialization procedures when the monitorinstanceis created.

The majordifference between the monitor and a class in C++ orJavais that the monitor
is shared by multiple concurrently executing processes or threads. Consequently, the
threadsor processesusing a monitor may require mutual exclusion to the monitor variables
as well as synchronization to ensure that the monitor state is conducive to continued
execution.

Mutual exclusion is usually implicit; synchronization is implementedexplicitly. Dif-
ferent processes require different forms of synchronization. The implementation of the nec-
essary synchronization is accomplished through condition variables. An external task or
thread calls a monitor procedure. The procedure is active if a thread or task is executing a
statementin the procedure. At most one instance of a monitor procedure is active at any one
time. The simultaneous invocation of two different procedures or two invocations of the
sameprocedure is not permitted.
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Bydefinition, the procedures execute with mutual exclusionthatis ensured by thelan-
guage library and operating system. Mutual exclusionis generally implemented by using
locks or semaphores and by inhibiting certain interrupts. ;

.9.1 Condition Variables

cond

wait

signal

Signal and Continue

nonpreemptive

Signal and Wait,

preemptive

calls

entry queue
return, wait

Condition variables are used as part of the synchronization process and are intended todelay
a task orthread that cannot safely continue until the monitor’s state satisfies some Boolean _
condition. Note that condition variables are similar to the guard conditions in UML state

charts. They are then used to awakenthe delayed process once the condition becomes true,
A condition variable is an instance of a variable of type cond.

cond myCondVar;

The declaration can only occur inside the monitor. The value of the condition variableisa
queueof delayed processes.Initially, the queue is empty. The value on the queue can only
be accessed indirectly, for example,to test its state.

empty (myCondVar) ;

A thread can block on a condition variable:

wait (myCondVar) ;

Execution of the wait causes the task to moveto the rear of the queue andto relinquish
exclusive access to the monitor. A blocked process is awakened using

signal (myCondvVar) ;

Execution ofa signal causes the task at the head of the queue to awaken.
Observethat the execution of signal seems to cause a dilemma. Upon execution, two

tasks havethe potential to execute: the awakenedtask and the signaling task. Such a situa-
tion seems to contradict the requirementthat only a single task or thread canbe activein the
monitorat any one time.

There are two possible pathsfor resolution:

¢ Signal and Continue—thesignaling task continues, and the awakened task resumes at

some later time. Such a schemeis considered nonpreemptive; the process executing
the signal retains exclusive control of the monitor.

¢ Signal and Wait—isconsidered to be preemptive. The task executingthe signal relin-
quishes control and passes the lock to the awakened task. The awakened process pre-
emptsthe signaling process.

The process is described in Figure 12.45.
The operation/synchronization occurs as follows. A task calls a monitor procedure, If

another task is executing in the monitor,the caller is placed into the entry queue. When the
monitor becomesfree, as a result of a return or wait, one task moves from the entry queue
into the monitor.
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Signal and Wait

Figure 12.45 A State Diagram Modelfor a Monitor

If no othertasks are executing, the calling task passes through the entry queue and
begins executing immediately. If the task executes wait on a condition variable while exe-
cuting in the monitor, it enters the queue associated with that variable.

Signal and Continue Whenthe task executes a Signal and Continue on a condition variable, the task at the
entry, Signal and Wait_head ofthe associated queue now movesto the entry queue.If a task executes a Signal and

Wait on a condition variable,the task at the head ofthe associated queue movesto the mon-
itor and the task executing in the monitor movesto the entry queue.

12.9.2 Bounded Buffer Problem with Monitor

Let’s revisit the bounded buffer problem and implement the design with a monitor. As
before, there is a pool of n buffers. We will assume that each can hold one item.

Define a monitor boundedBuffer.
Define the following condition variables:

notEmpty
Signaled when buffer count > 0
Tracks empty buffers, initialized to 0

notFull

Signaled when buffer count < n-1
Tracksfull buffers, Initialized to 0

Define the procedures:

put(data)
Puts data into a buffer when space available

get(data)
Gets data from a buffer when data available

Define the protected entity:

bufferPool
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The monitor can be implemented as shown in Figure 12.46.

monitor boundBuffer
bufferPoo!;
count = 0;

cond notEmpty; i signaled when count > 0
cond notFull; // signaled when count < n

put(anitem)
{

while(count == n) wait (notFull);
put anitem into a buffer
signal (notEmpty);

}

get(anitem)
{

while(count == 0) wait (notEmpty);
get anitem from a buffer
signal (notFull);

}

Figure 12.46 A Monitor Solution to the Bounded Buffer Problem

Code fragmentsfor the implementationare illustrated in Figure 12.47.

Producer Consumer

while(1) while(1)

caitioa item anltem boundBuffer.get(anitem)

foundsuitecabteniion\ ropaiik item anitem

end while end while

Figure 12.47 Using the Monitorin the Producer and the Consumerto Solve the
Bounded Buffer Problem

12.10 STARVATION

12.11 DEADLOCKS

deadlock

When working with semaphores and monitors, a potential problem called starvationexists,
That is, one process is permanently prevented from running. Sucha situation can occur
whena process is waiting within a monitor or semaphore and otherprocesses are added or
removed in LIFO order.

Whenworking in a multitasking environment, one can create a second problemcalled a
deadlock. A deadlock occurs when each processin a set of processes needs resources that
are held by other processesin that set in order to continue. Wewill study the deadlock prob-
lem and examineseveral possible solutions in depth in the next chapter.
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12.12 SUMMARY

Inthis chapter we continued the discussionof time and the crit-
ical role it plays in the design ofembedded applicationsby intro-
ducing the concepts of reactive and time-based systems. We
have studied, in somedetail, the basic responsibilities of task
scheduling and intertask communication in the operating sys-
tem. We have examined a numberofdifferentcriteria for assess-
ing scheduling algorithms; we learned the difference between
static and dynamic scheduling, and we looked at several algo-
rithms in each category.

12.13 REVIEW QUESTIONS

Time, Time-Based Systems, Reactive Systems

12.1 What is the difference between aninterval and a dura-
tion?

12.2 What is a time-based embedded system? a reactive
embedded system?

12.3. Whatis the difference between a periodic and an aperi-
odic event or operation?

12.4 Explain what is meant by delay in an embedded applica-
tion; by jitter,

12.5 What is meant by the expressions hard or hard deadline
ina real-time embedded context?

12.6 Whatis firm real-time? soft real-time?

Scheduling

12.7. What is meant when a task is said to be schedulable?
deterministically schedulable?

128 What is CPU utilization? Whyis it important?

12.9 When are scheduling decisions made?

12.10 Whatis the difference betweena preemptive and a non-
preemptive system?

12.11 Several scheduling criteria were outlined in the chapter.
What are these?

12.12 What are the different scheduling algorithmsidentified
in the chapter?

12.13 Whatis deterministic modeling? a queuing model?
12,14 Whatis simulation? emulation? Whatis the difference
between them?

Intertask Communication

12.15 What are the three primary components that make up
the intertask communication modelintroduced in this chapter?
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Wehave looked at two categories ofintertask communica-
tion—shared variables and message exchange—and at several
ways by which we can implement those strategies. We have
learned that a side effect of using shared data is the need for
coordinated access by the tasks and threads comprisingthe sys-
tem. We haveseen that such a shared data, called a critical sec-
tion, can be managedby several methods, including semaphores
and monitors. Finally, we studied several classical models for
shared data problems and how such problems can be solved
using semaphores and monitors.

12.16 One method introduced in the chapter for exchanging
information between tasks was called shared variables. What
does this mean?

12.17 Message exchange was introduced as another means by
which information might be exchanged between tasks in an
embedded application. What does this mean?

12.18 Whatis a rendezvous in a message exchange model?

12.19 Whatis a buffer in a message exchange model?

Task Cooperation, Synchronization,
and Sharing

12.20 Whatis a critical section?

12.21 Describe what is meant by the entry and exit sections
with respectto a critical section.

12.22 Whatrequirements mustbe metin orderto solvea crit-
ical section problem?

12.23 What is meant by the expression atomic operation?

12.24 Whatdoes the expression fest and set mean?

12.25 What is a semaphore?

12.26 Discuss how a semaphore can be used to solve the crit-
ical section problem.

12.27 Whatis a spin lock?

12.28 Whatis a counting semaphore?

12.29 Whatis the bounded buffer problem?

12.30 Whatis the readers and writers problem?
12.31 Whatis a monitor?

12.32 How does a monitor meet the specified requirements
for solving a critical section problem?
12.33 Whatis starvation?

12.34 Whatis a deadlock?
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12.14 THOUGHT QUESTIONS

Time, Time-Based Systems, Reactive Systems

12.1 Whatis the difference between absolute time and relative

time? Give two examples of each in an embedded application.

12.2 Give two examples ofperiodic and aperiodic events or
operations in an embedded application.

Scheduling

12.3. Give an example of an embedded application for which
each ofthe scheduling criteria discussed in the chapter mightbe
best suited. Explain and justify your answer.

12.4 The chapterintroduces several different scheduling algo-
rithms. For each algorithm presented, give an example of an
embedded application for which the algorithm might be best
suited. Explain and justify your answer.

Intertask Communication

12.5 The chapter introduced several shared variable models.
Identify each of these and explain how each works.

12.6 For each of the shared variable models, identify a
strength and a weakness.

12.7 Give an example of an embedded application in which
each of the shared variable models might be used. Explain and
justify your choice.

12.8 Explain how message exchangeas a means for exchang-
ing information between tasks in an embedded application
might work.

12.9 Discuss the advantages and disadvantages of message
exchange versusshared variables in an embedded application.

12.10 Explainthe difference between direct and indirect com-
munication in a message exchange model? Give an example of
each and explain the pros and cons of each approach in your
selected applications.

12.11 Explain the difference between symmetric and asym-
metric addressing in a message exchange model. Give an exam-

12.15 PROBLEMS

12.1 Present a UML sequence diagram toillustrate the behav-
ior of an embedded design comprising fourtasksinthe polled set.

12.2 Complete the design of the basic polled algorithm given
in Figure 12.4 for a system with four tasks in the polled set.
Model each task as a mod N, counter that is incremented each
time the task is polled.

12.3. You have a digital event, a positive transition on a signal
line, that you must respond to within 40 p sec. Asthe designer,
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ple of each and explain the pros and cons of each approachi
your selected applications.

12.12 Several different buffering schemes were introduced
Whatwere these? Give several advantages and disadvantagesf
each approach.

12.13 Give an example of an embedded application in whid —
each of the buffering schemes mightbe used. Explain andjay |
tify your choice,

Task Cooperation, Synchronization,
and Sharing

12.14 Give an example ofa critical section in an embedded
application and explain whyit exists.

12.15 Why should a test and set operation be atomic?

12.16 The chapter presents several alternate solutions to the
critical section problem. Describe each and discuss its advar-
tages and disadvantages.

12.17 Discuss the advantages and disadvantages of using a
counting versus binary semaphore in embedded applications.

12.18 Give several examples of embedded applications ia
whicha binary or counting semaphore is used. Explain andjus-
tify your choice in each case.

12.19 What real-world problem is the bounded buffer prob-
lem modeling?

12.20 Give several examples of embedded applications cor-
taining a bounded buffer problem.

12.21 What real-world problem is the readers and writes
problem modeling?

12.22 Give several examples of embedded applications con
taining a readers and writers problem.

12.23. How does a monitor differ from a binary semaphore!
counting semaphore?

12.24 Explain the purpose of condition variables in a monitor.

you need to determine the best wayto handle sucha signal. You
have two choices,polling or an interrupt. Youare in a design
review and mustpresent a case justifying one or the other,

(a) Present the pros and consofpolling.

(b) Presentthe pros and consofan interrupt-based scheme,
(c) For a polled scheme, give a detailed description of neces-
sary steps prior to polling, during polling, andafter the event
occurs. Be specific.
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(d) For an interrupt-based scheme, give a detailed description
ofnecessary steps prior to the interrupt, duringthe interrupt, and
after the interrupt has been handled. Be specific.

(e) What happens in both cases (polled andinterrupt)if all
interrupts are globally disabled?

(f) What happensin the interrupt case if no ISRis set upat the
interrupt vector location?

12.4 You haveatask that must respondto an external event at
five different times during a cycle. For twoofthe times, t) and
t;, the response is considered hard real-time and for three of the
times, ty, ty, ty, the response is considered soft real-time as
shown in Figure P12.48.

time _..

to bh

Figure P12.48

te ts ty

As the designer, you can choose only one of the following
methods to accommodate the external event: polled, interrupt,
or polling an interrupt. Discuss the advantages and disadvan-
tages of each method.

12.5 Design an embedded system to controla traffic lightuti-
lizing a state-based schedule. Each direction supportsa left turn
(right turn if traffic normally drives on the left-hand side) and
pedestrian-activated crosswalk control.

12.6 Design an embedded system to control a portable per-
sonal entertainment system utilizing a state-based schedule. The
system must support the ability to: turn on / select a song to
play, play the song, suspendplaying, replay a song,turn off.

12.7 Implementafirst-comefirst-served scheduling algorithm
utilizing a doubly linked list based task queue.

12.8 Repeat Problem 12.7 for a shortest job first scheduling
algorithm.

12.9 Repeat Problem 12.7 for a round robin scheduling
algorithm.

12.10 An embedded system has three processes with the fol-
lowing execution times and periods: P1(4, 16), P2(3, 12),
P3(2,8).

(a) What is the CPU utilization for such a system?

(b) Can the set of tasks be scheduled using a rate-monotonic
schedule?

(c) Ifthe set of tasks can be scheduled, give the UML sequence
diagram for the schedule.

12.11 An embedded system has three processes with the fol-
lowing execution times and periods: P1(4, 16), P2(3, 8),
P3(2,7).
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(a) What is the CPU utilization for such a system?
(b) Can the set of tasks be scheduled using a rate-monotonic
schedule?

(c) If not, what changes would have to be made to enable the
set of tasks to be scheduled using a rate-monotonic schedule?

12.12 An embedded system has five processes with the fol-
lowing execution times and periods: P1(5,40), P2(5, 60),
P3(4, 16), P4(6, 48), P5(12, 96).

(a) Whatis the CPUutilization for such a system?
(b) Can the set of tasks be scheduled using a rate-monotonic
schedule?

(c) Ifthe set of tasks can be scheduled, give the UML sequence
diagram for the schedule.

12.13 An embedded system has three processes with the fol-
lowing execution times and periods: P1(4, 16), P2(3, 8),
P3(2, 7).

(a) Whatis the CPU utilization for such a system?

(b) Can the set of tasks be scheduled using an earliest deadline
schedule?

(c) If the set of tasks can be scheduled, give the UML sequence
diagram for the schedule.

12.14 Provide a C algorithm to schedule a set of three tasks
using an earliest deadline schedule.

12.15 Repeat Problem 12.14 fora least laxity schedule.

12.16 An embedded system has the following three jobs, pro-
cesses, and resources. Devise a schedule using the shortest job
first algorithm that will achieve optimum utilization of
resources and system throughput.

 

3 Jobs: Jl, J2, J3
3 Resources: A/D
3 Processes: Measure M

CPU Compute C
vO Output O

Time Time Time

Hoes edie©297otAthen Units

MI 1 MI 2 MI 4
Cl 1 cl 3 cl 3
M2 2 M2 1 M2 2
C2 3 C2 2 C2 2
Ol 3 M3 2 M3 3
M3 2 = 3 C3 3
C3 I Ol 2 Ol 2
02 1

Total 14 15 18 

12.17 Repeat Problem 12.16 using a rate-monotonic schedule.

12.18 Repeat Problem 12.16 using an earliestdeadline schedule.
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12.19 An embedded application is designed as three tasks.
The requirementsfor each are given in the following table. 

 Task Priority Period Time Units

1 1 d 2
2 2 16 4
3 3 31 7 

(a) Can the three tasks be scheduled using a nonpreemptive
scheduling scheme? Why or why not? If so, show the schedule
using a UML sequence diagram.
(b) Can the three tasks be scheduled using a preemptive sched-
uling scheme? Why or whynot? If so, show the schedule using
a UML sequence diagram.

(c) Can the three tasks be scheduled using a time slice schedul-
ing scheme? Why or why not? If so, what is the value of the
time slice to ensure minimum average wait time for all three
tasks. Show the schedule using a UML sequence diagram.

12.20 Give a UMLclass diagram for a buffer that can be
shared between two tasks.

12.21 Provide a C implementation of the buffer specified by
the class diagram in Problem 12.20.

12.22 Provide a Verilog model of the buffer specified by the
class diagram in Problem 12.20.

12.23 Give a UMLclass diagram for a ping-pong buffer that
can be shared between twotasks.

12.24 Give a UML sequence diagram for the operation of a
ping-pong buffer.

12.25 Provide a C implementation of the ping-pong buffer
specified by the class diagram in Problem 12.24.

12.26 Provide a Verilog modelofthe ping-pongbuffer speci-
fied by the class diagram in Problem 12.24.

12.27 Give a UML classdiagram for a ring buffer that can be
shared between twotasks.

12.28 Provide a C implementation ofthe ring buffer specified
by the class diagram in Problem 12.27.

12.29 Provide a Verilog modelof the ring buffer specified by
the class diagram in Problem 12.27.

12.30 A shared memory scheme is to be used as a means of
exchanging blocks of data between two tasks, Ty and T;. The
number of blocks of data to be exchanged andtheir location is
not fixed.

(a) Give a data/control flow diagram for the shared memory
system.

(b) Explain how your memory system works using a UML
sequence diagram and by describing a complete cycle that
includes the following: Write by Ty—Read by T;—Write by
T,—Read by Ty. Be certain to explain how each task knows
when and how muchto read or write.

(c) How would your design changeif three tasks were involved
in the exchange?
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12.31 As the chief engineer for Make Me Rich Consultancy,
you have been hired bya start-up embedded systems company
Inside Your Stuff, Ltd. It seemsthat they have designed (inless
than two weeks) a hard real-time control system for Fasten
Yours Processes, Etc. The control system supports the follow.
ing two operations on a collection of data items,ap, a), @...8,5,

get (i)—Returns the value ofa;

put(i, aValue)—Assigns a Valueto a;

The control system has three asynchronousprocesses that mus
perform the following transactions:
po: x = read (j}; y = read (i); write (j, 52); write (i, 2);
pl: x = read (k}; write (i, 43); y = read (3); write {k, 72);
p2: write (k, 25); x = read (i); y = read (3); write {i, 2);

Occasionally, the system produces incorrect results and
Fastern Yours Processes, Etc. is threatening to retum the sys
tem. It is now 3:30 in the morning and youare at the Fasten
Yours Processessite with a not so happy customer and a system
that is runningpretty slowly.

(a) When Inside Your Stuff, Ltd. said they had designed a hard
real-time system, what did they mean?

(b) Can you identify the problem and explain whyit is occur-
ring?

(c) Can you propose a fix? Explain why yoursolution wil
solve the problem?

12.32 A colleague has built a simulationofa portion of atek-
communications block. He explains that the system uses a
shared buffer that accepts blocks of characters from a measur-
ment process P| and forward blocks of data to the output pro-
cess, P2. He has written the following routines, one for P| aud
one for P2.

full = 0
max = buffer size
plGenerate( )
{

while (full < max)
{

buffer(head) = anItem;
(head = head + 1) mod max;
full++;

}

full =
max = buffer size
p2Transmit( }

{
while (full > 0)
{

aniItem = buffer (head);
{head = head - 1) mod max;
full--;
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Occasionally the system either loses data or forwards incorrect
data.

(a) Can you explain why?
(b) Please propose (in detail) a wayto fix the problem. Modify
the existing code as necessary.

(c) Show how yourdesign solves the problem.

12.33 In the pastry cornerof the kitchen of a small restaurant,
we find two world-class chefs, grumpy Pierre des Oeufs and
Jean “la loupe” Farouche, who despise each other, Nonetheless,
they must work in the sameplace and share the sameresources.
Each is responsible for a different kind of cookie. Here are the
recipes:

Jean la loupe
Preheat oven to 190 C

Mix | cup of water with
1 cup of flour
add | cup of sugar
add | egg
Bakein oven for 5 minutes

Grumpy Pierre
Mix | cup of milk with
2eggs
add 1 cup of sugar
add | cup of flour
Bake in oven at 170 C for

10 minutes

In the kitchen, we have,

Onegiant carton of milk

Onegiantcrate of eggs

Two large sugar bowls

One large containerofflour

One cold water tap

One small oventhat has space for one batch of cookies

The previous consultant who tried to schedule the work of
Pierre and Jean had a sudden job change to CinqueTerre onthe
Italian Riviera where he now spendshis days sun-drying porcini
mushrooms.

Your predecessor was actually quite clever and modeled the
two chefs as processes. You find the following bits of code
(encrusted with cookie dough) and partially implemented chef
processes. Please complete the design.

You have the following nonatomic(they can be interrupted)
subroutines available:

getEggs{ numEggs } // retrieves numEggs from the crate
// of eggs

getFlour( numCups ) // retrieves numCups from the flour
// container

getMilk{ numCups } // retrieves and pours numCups from
// milk carton

getSugar( numCups } // retrieves numCups from the
// sugar bowl

getWater( numCups } // retrieves numCups from the tap
putIntoOven{ numMinutes }// puts cookie tray into oven for

// numMinutes
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setOvenTemp{ numDegrees }// sets oven temperature to
// numDegrees

Initialize the following semaphores:
Semaphore eggCrate =
Semaphore flourContainer =
Semaphore sugarBowl =
Semaphore waterTap =
Semaphore oven =
Semaphore milkCarton =

Complete the two chef processes:
process grumpyPierre( )
{
}
process jeanlaLoup( })
{
}

12.34 A now defunct engineering firm was hired to design the
switching system in a small town railway station. Their final
design appears as shown in Figure P12.49.

Signal 2 Signal! Train 1Y

al by 
Figure P12.49

Signals 1 and 2 may be Red, Yellow, or Blue.
If Train | is approaching Platform 1, it must turn Signal 2,

then Signal1, to Blue before proceeding. Similarly,if Train 2 is
approaching Station 2, it must turn Signal 1, then Signal 2 to
Red.

A train may only changethe signal (to Red or Blue) if the
signal is in the Yellowstate.

WhenTrain | leaves Station 1, it must turn Signal 1, then
Signal 2, to Yellow. Similarly, when Train 2 leaves Station 2,it
must turn Signal2, then Signal 1, to Yellow.

(a) Are there any problems with the scheme described above?
If so, identify what they are.

(b) Will such a scheme preventcollisions? Justify your answer.
If not, propose a solution that will.

(c) Will such a scheme prevent deadlocks? Justify your
answer.If not, propose a solution that will.
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Chapter 13
 

Deadlocks

THINGS TO LOOK FOR...

¢ Scheduling tasks and resource management.

¢ The problem of deadlock in a shared resource environment.

* The necessary and sufficient conditions for deadlock to occur.

¢ Howto prevent, avoid, and detect deadlocks.
¢ How to recoverfrom a deadlockstate.

13.0 INTRODUCTION

deadlock

In the previous two chapters, we have addressed several importantaspects of task manage-
ment in embedded systems; among these were scheduling task execution andintertask com-
munication. In this chapter, we will examine aspects of the scheduling and dispatchof tasks
with respect to managing task demands for resources. To that end, wewill introduce the
problem of deadlock in a shared-resource, multitasking environment. Wewill identify the
necessary and sufficient conditions for deadlock to occur. First, we examine waysto pre-
ventor avoid deadlock, and then we study methodsfor detecting a deadlockif, despite best
efforts, a deadlock does occur. We conclude by presenting several techniques for recover-
ing from a deadlockstate.

13.1 SHARING RESOURCES

510

A multitasking or multiprocessing embedded system hasa finite numberofresources such
as timers, analog-to-digital converters, digital-to-analog converters, and I/O ports. Often
several tasks may compete for those resources. When such a request is madeandif the
requested resources are not available, the task or processor blocks. The implementation of
a semaphore or monitor with waiting queue, for example, can result in a situation in which
two or more processes wait indefinitely. Such a situation is called a deadlock.

Consider the following simple problem in which there are two tasks, TO and T1, and
two resources, RI and R2. Let each task have two counting semaphores, SO andS1. Fur-
thermore, let each need both resources to execute its job. Now,let

TO set wait(S0} // wait for R1 increment SO (= 1)
Tl set wait(S1) // wait for R2 increment S1 (= 1)

Nowlet

TO set wait(S1) // wait for R2 increment S1 (= 2)
Tl set wait(S0) // wait for Rl increment SO (= 2)
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The system is now stuck; neither process can continue.
Todaythe problem of deadlocks is treated rather casually. As systems become more

complex and the number of tasks and threads increases, the problem will have to be
addressed.

13.2 SYSTEM MODEL

tasks
resources

identical resources

dissimilar resources

To begin, we formulate a modelof the deadlock problem. Any embedded system has a lim-
ited numberofresources. On one hand,if all systems were architected as a single task or if
all the tasks in a multiple-task system have mutually exclusive resource demands, deadlocks
cannot occur. Onthe other hand, for most designs, as tasks enter the system,they are going
to need those resources. If the system is going to support preemptive multitasking, those
resourceswill have to be shared. Making this same statement another way, one can saythat
from the perspective of a single task, a deadlock is not a problem. When analyzing dead-
locks—their cause,prevention, detection, and correction—the problem mustbe considered
from a system level. One must take into consideration all of the tasks in the system.

A first high-level model decomposes the problem into twopieces:a set of tasks and a
set of resources. Tasksare largely equivalent; resources are not. One can, therefore, form
a coarse-grained partition on the set of resources. One possible partition decomposesthe set
into two groups—those that are identical and those that are not. Although such a decompo-
sition seems reasonable, one must quantify what constitutes identical resources and what
distinguishes them from those that are not. Unlike the factors that were considered when
decomposinga problem statementinto functional blocks, such a process for resources is a
bit more straightforward.

Forthe current model,identical resources are considered to be those for which multiple

interchangeable copies of the same resource exist. For example, if the system has two
analog-to-digital converters, two digital-to-analog converters,three serial I/O ports, or eight
memory buffers, then one can considerinstances of each type of resource to be interchange-
able. Allocation of any one to a task may be sufficient. On the other hand, dissimilar
resources are those that are unique for one reason or another. Of these, for example, there
maybe only a single copy suchas the highest priority interruptor a single serial I/O port.
The currentstate of the model can be expressed graphically as in Figure 13.0.

Resources

Tasks

 @

©)

@
Figure 13.0 System State

*] Dissimilar as a Collection of Tasks and
Resources
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