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Central processing unit o

From Wikipedia, the free encyclopedia

"CPU" redirects here. For other uses, see CPU (disambiguation)

A Central Processing Unit (CPU} is a machine that can execute computer programs. This broad definition can easily be applied to many early
computers that existed long before the term "CPU” ever came into widespread usage. The term itself and its initialism have been in use in the
computer industry at least since the early 1960s (Weik 1961). The form. design and implementation of CPUs have changed dramatically since
the earliest examples, but their fundamental operation has remained much the same

Early CPUs were custom-designed as a part of a larger, sometimes one-of-a-kind, computer. However, this costly method of designing custom
CPUs for a particular application has largely given way to the development of mass-produced processors that are suited for one or many
purposes. This standardization trend generally began in the era of discrete transistor mainframes and minicomputers and has rapidly accelerated
with the popularization of the integrated circuit (IC). The IC has allowed increasingly complex CPUs to be designed and manufactured to
tolerances on the order of nanometers. Both the miniaturization and standardization of CPUs have increased the presence of these digital E}jl?i[‘l_ljlﬂjéwaﬁ%%%éuilr‘
devices in modern life far beyond the limited application of dedicated computing machines. Moedern microprocessors appear in everything from il
automobiles to cell phones to children’s toys. Die of an Intel 304860X2 micropracessor &
(actual size: 12x6.75 mm) in its packaging
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History of CPUs [edit]

Main article: History of general purpose CPUs

Prior to the advent of machines that resemble today's CPUs, computers such as the ENIAC had to be physically rewired in order to perform
different tasks. These machines are often referred to as "fixed-program computers,” since they had to be physically reconfigured in order to run a
different program. Since the term "CPU" is generally defined as a software (computer pragram) execution device, the earliest devices that could
rightly be called CPUs came with the advent of the stored-program computer.

The idea of a stored-program computer was already present during ENIAC's design, but was initially omitted s the machine could be finished
sooner. On June 30, 1945, before ENIAC was even completed, mathematician John von Neumann distributed the paper entitled "First Draft of a
Report on the EDVAC." It outlined the design of a stored-program computer that would eventually be completed in August 1949 (von Neumann
1945). EDVAC was designed to perform a certain number of instructions (or operations) of various types. These instructions could be combined
to create useful programs for the EDVAC to run. Significantly, the programs written for EDVAC were stored in high-speed computer memaory
rather than specified by the physical wiring of the computer. This evercame a severe limitation of ENIAC, which was the large amount of time and
effort it took to reconfigure the computer to perform a new task. With von Neumann's design, the program, or software, that EDVAC ran could be
changad simply by changing the contents of the computer's memory (1]

While von Neumann is most often credited with the design of the stored-program computer because of his design of EDVAC, others before him
such as Konrad Zuse had suggested similar ideas. Additionally, the so-called Harvard architecture of the Harvard Mark |, which was completed
before EDVAC, also utilized a stored-program design using punched paper tape rather than electronic memory. The key difference between the
von Meumann and Harvard architectures is that the latter separates the storage and treatment of CPU instructions and data, while the former

uses the same memory space for both. Most medern CPUs are primarily von Neumann in design, but elements of the Harvard architecture are

commenly seen as well EDVAC. ane of the first elecironic stored
program computers.

Being digital devices, all CPUs deal with discrete states and therefore require some kind of switching elements to differentiate between and

change these states. Prior to commercial acceptance of the transistor, electrical relays and vacuum tubes (thermionic valves) were commonly

used as switching elements. Although these had distinct speed advantages over earlier, purely mechanical designs, they were unreliable for various reasons. For example, building direct current
sequential logic circuits out of relays requires additional hardware to cope with the problem of contact bounce. While vacuum tubes do not suffer from contact bounce, they must heat up before
bacoming fully operational and eventually stop functioning altogethar 121 Usually, whan a tube failed. the CPU would have to be diagnosad to locate the failing componant so it could be replaced
Therefore, early electronic (vacuum tube based) computers were generally faster but less reliable than electromechanical (relay based) computers

Tube computers like EDVAC tended to average eight hours between failures, whereas relay computers like the (slower, but earlier) Harvard Mark | failed very rarely (Weik 1961:238). In the end
tube based CPUs became dominant because the significant speed advantages afforded generally outweighed the reliability problems. Most of these early synchronous CPUs ran at low clock
rates compared to modem microelectronic designs (see below for a discussion of clock rate). Clock signal frequencies ranging from 100 kHz to 4 MHz were very common at this time, limited
largely by the speed of the switching devices they were built with.

Discrete transistor and IC CPUs [edit]

The design complexity of CPUs increased as various technologies facilitated building smaller and more reliable electronic
devices. The first such improvement came with the advent of the transistor. Transistorized CPUs during the 1950s and 1960s
no longer had to be built out of bulky, unreliable, and fragile switching elements like vacuum tubes and electrical relays. With
this improvement more complex and reliable CPUs were built onto one or several printed circuit boards containing discrete
(individual) components.
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During this period, a method of manufacturing many transistors in a compact space gained popularity. The integrated circuit
(IC) allowed a large number of transistors to be manufactured on a single semiconductor-based die, or "chip.” At first only very
basic non-specialized digital circuits such as NOR gates were miniaturized into ICs. CPUs based upon these "building block™
ICs are generally referred to as "small-scale integration” ($5I) devices. S8I ICs, such as the ones used in the Apollo guidance
computer, usually contained transistor counts numbering in multiples of ten. To build an entire CPU out of SS1 ICs required
thousands of individual chips, but still consumed much less space and power than earlier discrete transistor designs. As
microelectronic technology advanced, an increasing number of transistors were placed on ICs, thus decreasing the quantity of
individual ICs needed for a complete CPU. MSI and LSI {(medium- and large-scale integration) ICs increased transistor counts
to hundreds, and then thousands.

"
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In 1964 IBM introduced its System/360 computer architecture which was used in a series of computers that could run the same CPU, core memory, and extemal bus interface of a DEC PDP-G/I. &
programs with different speed and performance. This was significant at a time when most electronic computers were e

incompatible with one another, even those made by the same manufacturer. To facilitate this improvement, IBM utilized the

concept of a microprogram (often called "microcode”), which still sees widespread usage in modem CPUs (Amdahl ef s/ 1954). The System/360 architecture was so popular that it dominated the
mainframe computer market for the decades and left a legacy that is still continued by similar modern computers like the IBM zSeries. In the same year (1964), Digital Equipment Corporation
(DEC) introduced another influential computer aimed at the scientific and research markets, the PDP-8. DEC would later introduce the extremely popular PDP-11 line that originally was built with
S5 ICs but was eventually implemented with LS| compenents once these became practical. In stark contrast with its SS1 and MSI predecessers, the first LS| implementation of the PDP-11
contained a CPU compesed of only four LS integrated circuits (Digital Equipment Corporation 1975).

Transistor-based computers had several distinct advantages over their predecessors. Aside from facilitating increased reliability and lower power consumption, transistors also allowed CPUs to
operate at much higher speeds because of the short switching time of a transistor in comparison to a tube or relay. Thanks to both the increased reliability as well as the dramatically increased
speed of the switching elements (which were almaost exclusively transistors by this time), CPU clock rates in the tens of megahertz were obtained during this period. Additionally, while discrete

transistor and IC CPUs were in heavy usage, new high-performance designs like SIMD (Single Instruction Multiple Data) vector processors began to appear. These early experimental designs

later gave rise to the era of specialized supercomputers like those made by Cray Inc.

Microprocessors [edit]
Main article: Microprocessor

The introduction of the microprocessor in the 1970s significantly affected the design and implementation of CPUs. Since the introduction of the
first microprocessor (the Intel 4004) in 1970 and the first widely used microprocessor {the Intel 8080) in 1974, this class of CPUs has almost
completely overtaken all other central processing unit impl itation methods. Mai and minicomputer manufacturers of the time:
launched proprietary IC development programs to upgrade their older computer architectures, and eventually produced instruction set compatible
microprocessors that were backward-compatible with their older hardware and software. Combined with the advent and eventual vast success of
the now ubiquitous personal computer, the term "CPU" is now applied almost exclusively to microprocessors.

Previous generations of CPUs were implemented as discrete components and numerous small integrated circuits (ICs) on one or more circuit
boards. Microprocessors, on the other hand, are CPUs manufactured on a very small number of ICs; usually just one. The overall smaller CPU
size as a result of being implemented on a single die means faster switching time because of physical factors like decreased gate parasitic
capacitance. This has allowed synchronous microprocessors to have clock rates ranging from tens of megahertz to several gigahertz.
Additionally, as the ability to construct exceedingly small transistors on an IC has increased, the complexity and number of transistors in a single

. ) o X . . X . . The integrated circuit from an Intel 5742, an 8-&
CPU has increased dramatically. This widely observed trend is described by Moore's law, which has proven to be a fairly accurate predictor of bit microcontrolier thal includes a CPU running at
the growth of CPU (and other IC) complexity to date. 12 MHz, 128 bytes of RAM, 2048 bytes of

While the complexity, size, construction, and general form of CPUs have changed drastically over the past sixty years, it is notable that the basic EREL Il DIEEE:)

design and function has not changed much at all. Almost all common CPUs today can be very accurately described as von Neumann stored-
program machines. As the aforementioned Moore's law continues to hold true, concerns have arisen about the limits of integrated circuit
transistor technology. Extreme miniaturization of electronic gates is causing the effects of phenomena like electromigration and subthreshold
leakage to become much more significant. These newer concemns are among the many factors causing researchers to investigate new methods
of computing such as the quantum computer, as well as to expand the usage of parallelism and other methods that extend the usefulness of the
classical von Neumann model

CPU operation [edit]

The fundamental operation of most CPUs, regardless of the physical form they take, is to execute a sequence of stored instructions called a
program.The program is represented by a series of numbers that are kept in some kind of computer memory. There are four steps that nearly all
von Neumann CPUs use in their operation: fetch, decode, execute, and writeback

The first step, fetch, involves retrieving an instruction (which is represented by a number or sequence of numbers) from program memory. The Intel 8043602 microprocessor in a ceramic &
location in program memory is determined by a program counter (PC), which stores a number that identifies the current position in the program. FGApackage.

In other words, the program counter keeps track of the CPU's place in the current program. After an instruction is fetched, the PC is incremented

by the length of the instruction word in terms of memory units [ Often the instruction to be fetched must be retrieved from relatively slow memory, causing the CPU to stall while waiting for the
instruction to be returned. This issue is largely addressed in modern processors by caches and pipeline architectures (see below)

The instruction that the CPU fetches fram memory is used to determine what the CPU is to do. In the decode step, the instruction is broken up inte parts that have significance to other portions of
the CPU. The way in which the numerical instruction value is interpreted is defined by the CPU's instruction set architecture(I1SA). 1l Often, one group of numbers in the instruction, called the
opcode, indicates which operation to perform. The remaining parts of the number usually provide information required for that instruction, such as operands for an addition operation. Such
operands may be given as a constant value (called an immediate value), or as a place to locate a value: a register or a memory address, as determined by some addressing mode. In older
designs the portions of the CPU responsible for instruction decoding were unchangeable hardware devices. However, in more abstract and complicated CPUs and 1SAs. a microprogram is often
used to assist in translating instructions into various configuration signals for the CPU. This microprogram is sometimes rewritable so that it can be modified to change the way the CPU decodes
instructions even after it has been manufactured

After the fetch and decode steps, the execute step is performed. During this step, various portions of the CPU are connected so they can perform the desired operation. If, for instance, an
addition operation was requested, an arithmetic logic unit (ALU) will be connected to a set of inputs and a set of cutputs. The inputs provide the numbers to be added. and the outputs will contain
the final sum. The ALU contains the circuitry to perform simple arithmetic and logical operations on the inputs (like addition and bitwise operations). If the addition operation preduces a result too
large for the CPU to handle, an arithmetic overflow flag in a flags register may also be sst

The final step, writeback, simply "writes back” the results of the execute step to some form of memory. Very often the results are written to some internal CPU register for quick access by
subsequent instructions. In other cases results may be written to slower, but cheaper and larger, main memory. Some types of instructions manipulate the program counter rather than directly
produce result data These are generally called “jumps” and facilitate behavior like loops, conditional program execution (through the use of a conditional jump). and functions in programs %]
Many instructions will also change the state of digits in a "flags” register. These flags can be used to influence how a program behaves, since they often indicate the outcome of various
operations. For example, one type of "compare” instruction considers two values and sets a number in the flags register according to which one is greater. This flag could then be used by a later
jump instruction to determine program flow.

After the execution of the instruction and writeback of the resulting data, the entire process repeats, with the next instruction cycle normally fetching the next-in-sequence instruction because of
the incremented value in the program counter. If the completed instruction was a jump, the program counter will be modified to contain the address of the instruction that was jumped to, and
program execution continues nermally. In more complex CPUs than the one described here, multiple instructions can be fetched, decoded, and executed simultaneously. This section describes
what is generally referred to as the "Classic RISC pipeline,” which in fact is guite commen amoeng the simple CPUs used in many electronic devices (often called microcontroller). It largely ignores
the important role of CPU cache, and therefore the access stage of the pipeline

Design and implementation [edit]
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Main article: CPU design

Integer range [edit] Prerequisites

The way a CPU represents numbers is a design choice that affects the most basic ways in which the device functions. Some early digital computers used an electrical | Computer architecture
model of the common decimal (base ten) numeral system to represent numbers internally. A few other computers have used more exotic numeral systems like ternary
(base three). Nearly all modem CPUs represent numbers in binary form, with each digit being represented by some two-valued physical quantity such as a "high” or
“low” voltage. [

Digital circuits

Related to number representation is the size and precision of numbers that a CPU can represent. In the case of a binary CPU, a bit refers to one
significant place in the numbers a CPU deals with. The number of bits (or numeral places) a CPU uses to represent numbers is often called
"word size”, "bit width”, "data path width", or "integer precision” when dealing with strictly integer numbers (as opposed to floating point). This
number differs between architectures, and often within different parts of the very same CPU. For example, an 8-bit CPU deals with a range of
numbers that can be represented by sight binary digits {sach digit having two possible valuss), that is, 2% or 256 discrete numbers_ In effect,
integer size sets a hardware limit on the range of integers the software run by the CPU can utilize ["]

MOS 6502 microprocessor in a dual in-line &
package, an extremely popular 8-bit design Integer range can also affect the number of locations in memory the CPU can address (locate). For example, if a binary CPU uses 32 bits to
represent a memory address, and each memory address represents one octet (8 bits), the maximum quantity of memory that CPU can address
is 232 octets, or 4 GiB. This is a very simple view of CPU address space, and many designs use more complex addressing methods like paging in order ta locate more memory than their intager
range would allow with a flat address space.

Higher levels of integer range require more structures to deal with the additional digits, and therefore more complexity, size, power usage, and general expense. It is not at all uncommon,
therefore, to see 4- or 8-bit microcontrollers used in modern applications, even though CPUs with much higher range (such as 16, 32, 64, even 128-bit) are available. The simpler microcontrollers
are usually cheaper, use less power, and therefore dissipate less heat, all of which can be major design considerations for electronic devices. However, in higher-end applications, the benefits
afforded by the extra range (most often the additional address space) are more significant and often affect design choices. To gain some of the advantages afforded by both lower and higher bit
lengths, many CPUs are designed with different bit widths for different portions of the device. For example, the IBM System/370 used a CPU that was primarily 32 bit, but it used 128-bit precision
inside its floating point units to facilitate greater accuracy and range in floating peint numbers (Amdahl et /. 1964). Many later CPU designs use similar mixed bit width, especially when the
processor is meant for general-purpose usage where a reasonable balance of integer and floating point capability is required.

Clock rate [edit]
Main article: Clock rate

Most CPUs, and indeed most sequential logic devices, are synchronous in nature ¥l That is, they are designed and operate on assumptions about a synchronization signal. This signal, known as
a clock signal, usually takes the form of a periodic square wave. By calculating the maximum time that electrical signals can move in various branches of a CPU's many circuits, the designers
can select an appropriate period for the clock signal

This period must be longer than the amount of time it takes for a signal to move, or propagate, in the waorst-case scenario. In setting the clock period to a value well above the worst-case
propagation delay, it is pessible to design the entire CPU and the way it moves data around the "edges” of the rising and falling clock signal. This has the advantage of simplifying the CPU
significantly, both from & design perspective and a component-count perspective. However, it also camies the disadvantage that the entire CPU must wait on its slowest elements, even though
some portions of it are much faster. This limitation has largely been compensated for by various methods of increasing CPU parallelism (see below)

However architectural improvements alone do not solve all of the drawbacks of globally synchronous CPUs. For example, a clock signal is subject to the delays of any other electrical signal
Higher clock rates in increasingly complex CPUs make it more difficult to keep the clock signal in phase (synchronized) throughout the entire unit. This has led many medern CPUs to require
multiple identical clock signals to be provided in order to avoid delaying a single signal significantly enough to cause the CPU to malfunction. Another major issue as clock rates increase
dramatically is the amount of heat that is dissipated by the CPU. The constantly changing clock causes many components to switch regardless of whether they are being used at that time. In
general, a component that is switching uses more energy than an element in a static state. Therefore, as clock rate increases, so does heat dissipation, causing the CPU to require mare effective
cooling solutions.

One method of dealing with the switching of unneeded components is called clock gating, which involves turning off the clock signal to unnesded components (effectively disabling them)

Howaver this is often regardad as difficult to implement and therefors does not see common usage outside of very low-power designs =] Another method of addressing some of the problams with
a global clock signal is the removal of the clock signal altogether. While removing the global clock signal makes the design process considerably more complex in many ways, asynchronous {or
clockless) designs carry marked advantages in power consumption and heat dissipation in comparisen with similar synchronous designs. While somewhat uncommen, entire asynchronous CPUs
have been built without utilizing a global clock signal. Two notable examples of this are the ARM compliant AMULET and the MIPS R3000 compatible MiniMIPS. Rather than totally removing the
clock signal, some CPU designs allow certain portions of the device to be asynchronous, such as using asynchronous ALUs in conjunction with superscalar pipelining to achieve some arithmetic
performance gains. While it is not altogether clear whether totally asynchroneus designs can perform at a comparable or better level than their synchronous counterparts, it is evident that they do
at least excel in simpler math operations. This, combined with their excellent power consumption and heat dissipation properties, makes them very suitable for embedded computers (Garside ef
al. 1999).

Parallelism [edil]
Main article: Parallel computing

The description of the basic operation of a CPU offered in the previcus section describes the simplest form that a CPU can take. This

type of CPU, usually referred to as subscalar, operates on and executes one instruction on one or two pieces of data at a time "F ‘DD MEM|WB

, T [F[o B ven|we]
This process gives rise to an inherent inefficiency in subscalar CPUs. Since only one instruction is executed at a time, the entire CPU " [ 171 [ wew | we
must wait for that instruction to complete before proceeding to the next instruction. As a result the subscalar CPU gets "hung up” on Mu\;el of a subscalar CPU. Nofice that it takes fitcen &2
instructions which take more than one clock cycle to complete execution. Even adding a second execution unit (see below) does not cycles fo complete three instructions.
improve performance much; rather than one pathway being hung up, now two pathways are hung up and the number of unused
transistors is increased. This design, wherein the CPU's execution resources can operate on only one instruction at a time, can only possibly reach scalar performance (one instruction per clock)
However, the performance is nearly always subscalar (less than one instruction per cycle).

Attempts to achieve scalar and better performance have resulted in a variety of design methodologies that cause the CPU to behave less linearly and more in parallel. When referring to
parallelism in CPUs, two terms are generally used to classify these design techniques. Instruction level parallelism (ILP) seeks to increase the rate at which instructions are executed within a CPU
(that is, to increase the utilization of on-die execution resources), and thread level parallelism (TLP) purposes to increase the number of threads (effectively individual programs) that a CPU can
execute simultaneously. Each methodology differs both in the ways in which they are implemented, as well as the relative effectiveness they afford in increasing the CPU's performance for an
application 110!

Instruction level parallelism [edit]
Main articles Instruction pipslining and Superscalar

One of the simplest methods used to accomplish increased parallelism is to begin the first steps of instruction fetching and decoding

[. IF_| ID | EX |MEM before the prier instruction finishes executing. This is the simplest form of a technigue known as instruction pipelining, and is utilized

| F | D Ex we

I | F D MEM WB in almost all modem general-purpose CPUs. Pipelining allows more than one instruction to be executed at any given time by breaking
. I F EX MEM WB down the execution pathway into discrete stages. This separation can be compared to an assembly line, in which an instruction is made
D EX MEM WB maore complete at each stage until it exits the execution pipeline and is retired

Basic five-stage pipeline. In the best case scenario, this & Pipelining does, however, introduce the possibility for a situation where the result of the previous operation is needed to complete the
pipeline can sustain a completion rate of one instruction per  next operation; a condition often termed data dependency conflict. To cope with this, additional care must be taken to check for these
cycle. sorts of conditions and delay a portion of the instruction pipeline if this occurs. Naturally, accomplishing this requires additional circuitry,
so pipelined processors are more complex than subscalar ones (though not very significantly so). A pipelined processor can become
wvery nearly scalar, inhibited only by pipeline stalls (an instruction spanding more than one clock cycle in a stage)
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Further improvement upon the idea of instruction pipelining led to the development of a method that decreases the idle time of CPU
compaonents even further. Designs that are said to be superscalar include a long instruction pipeline and multiple identical execution
units, [FUYnh 2003] 15 4 superscalar pipeline, multiple instructions are read and passed to a dispatcher, which decides whether or not the
instructions can be executed in parallel (simultanecusly). If so they are dispatched to available execution units, resulting in the ability for

F__ID | EX MEM

F_ 1D | EX MEM
IF | D EX | wB
F | D EX | we

several instructions to be executed simultaneously. In general, the more instructions a superscalar CPU is able to dispatch - F D MEM| wWB
simultaneously to waiting execution units, the more instructions will be completed in a given cycle IF 1D MEM| WB
Most of the difficulty in the design of a super scalar CPU architecture lies in creating an effective dispatcher. The dispatcher needs to be | ;:: I Ei m;m V\‘ts

able to quickly and correctly determine whether instructions can be executed in parallel, as well as dispatch them in such a way as to
keep as many execution units busy as possible. This requires that the instruction pipeline is filled as often as possible and gives rise to
the need in superscalar architectures for significant amounts of CPU cache. It also makes hazard-aveiding techniques like branch - A h . h

o X N N . o . B N Simple superscalar pipeline. By fetching and dispatching®-
prediction, speculative execution, and out-of-order execution crucial to maintaining high levels of performance. By attempting to predict two instrucBons al a ime, 3 maximum of fwo insucbons:
which branch (er path) a conditional instruction will take, the CPU can minimize the number of times that the entire pipeline must wait per cycle can be completed.
until a conditional instruction is completed. Speculative execution often provides modest performance increases by executing portions of
code that may or may not be needed after a conditional operation completes. Qut-of-order execution somewhat rearranges the order in which instructions are executed to reduce delays due to
data dependencies.

D | EX MEM| w8
D | EX [MEM| W8

In the case where a portion of the CPU is superscalar and part is not, the part which is not suffers a performance penalty due to scheduling stalls. The original Intel Pentium (P5) had two
superscalar ALUs which could accept one instruction per clock each, but its FPU could not accept one instruction per clock. Thus the P5 was integer superscalar but not floating peint superscalar.
Intel's successor to the Pentium architecture, P6, added superscalar capabilities to its floating point features, and therefore afforded a significant increase in floating point instruction performance.

Both simple pipelining and superscalar design increase a CPU's ILP by allowing a single procassor to complete execution of instructions at rates surpassing one instruction per cycle (IPC). m
Most modarn CPU designs are at least somewhat superscalar, and nearly all general purpose CPUs designed in the last decade are superscalar. In later years some of the emphasis in designing
high-ILP computers has been moved out of the CPU's hardware and into its software interface, or ISA. The strategy of the very long instruction word (VLIW) causes some ILP to become implied
directly by the software, reducing the amount of work the CPU must perform to boost ILP and thereby reducing the design's complexity.

Thread level parallelism [edit]

Another strategy of achieving performance is to execute multiple programs or threads in parallel. This area of research is known as parallel computing. In Flynn's taxonomy, this strategy is known
as Multiple Instructions-Multiple Data or MIMD.

One technology used for this purpose was multiprocessing (MP). The initial flavor of this technology is known as symmetric multiprocessing (SMP), where a small number of CPUs share a
coherent view of their memory system. In this scheme, each CPU has additional hardware to maintain a constantly up-te-date view of memory. By avoiding stale views of memory, the CPUs can
cooperate on the same program and programs can migrate from one CPU te another. To increase the number of cooperating CPUs beyond a handful, schemes such as non-uniform memory
access (NUMA) and directory-based coherence protocols were introduced in the 1990s. SMP systems are limited to a small number of CPUs while NUMA systems have been built with thousands
of processors. Initially, multiprocessing was built using multiple discrete CPUs and boards to implement the interconnect between the processors. When the processors and their interconnect are
all implemented on a single silicon chip, the technology is known as a multi-core microprocessor.

It was later recognized that finer-grain parallelism existed with a single program. A single program might have several threads (or functions) that could be executed separately or in parallel. Some
of earliest examples of this technology implemented input/output processing such as direct memory access as a separate thread from the computation thread. Amore general approach to this
technology was intreduced in the 1970s when systems were designed to run multiple computation threads in parallel. This technolegy is known as multi-threading (MT). This approach is
considered more cost-effective than multiprocessing, as only a small number of companents within a CPU is replicated in order to support MT as opposed to the entire CPU in the case of MP. In
MT, the execution units and the memary system including the caches are shared among multiple threads. The downside of MT is that the hardware support for multithreading is more visible to
software than that of MP and thus supervisor software like operating systems have to undergo larger changes to support MT. Cne type of MT that was implemented is known as block
multithreading, where one thread is executed until it is stalled waiting for data to return from external memory. In this scheme, the CPU would then quickly switch to another thread which is ready
to run, the switch often done in one CPU clock cycle. Another type of MT is known as simultaneous multithreading, where instructions of multiple threads are executed in parallel within one CPU
clock cycle.

For several decades from the 1970s to early 2000s, the focus in designing high performance general purpose CPUs was largely on achieving high ILP through technologies such as pipelining,
caches, superscalar execution, Out-of-order execution, etc. This trend culminated in large, power-hungry CPUs such as the Intel Pentium 4. By the early 2000s, CPU designers were thwarted
from achieving higher performance from ILP techniques due to the growing disparity between CPU operating frequencies and main memory operating frequencies as well as escalating CPU
power dissipation owing to more esoteric ILP techniques.

CPU designers then borrowed ideas from commercial computing markets such as transaction processing, where the aggregate performance of multiple programs, alse known as throughput
computing, was more important than the performance of a single thread or program

This reversal of emphasis is evidenced by the proliferation of dual and multiple core CMP (chip-level multiprocessing) designs and notably, Intel's newer designs resembling its less superscalar
PG architecture. Late designs in several processor families exhibit CMP, including the x86-64 Opteron and Athlon 64 X2, the SPARC UltraSPARC T1, IBM POWER4 and POWERS, as well as
several video game console CPUs like the Xbox 360’ friple-core PowerPC design, and the PS3's 8-core Cell microprocessor.

Data parallelism [edit]
Main articles: Vector processor and SIMD

Aless common but increasingly important paradigm of CPUs (and indeed, computing in general) deals with data parallelism. The processors discussed earlier are all referred to as some type of
scalar device.['? As the name implies, vector processors deal with multiple pieces of data in the context of one instruction. This contrasts with scalar processors, which deal with one piece of data
for every instruction. Using Flynn's taxonomy, these two schemes of dealing with data are generally referred to as SISD (single instruction, single data) and SIMD (single instruction, multiple
data), respectively. The great utility in creating CPUs that deal with vectors of data lies in optimizing tasks that tend to require the same operation (for example, a sum or a dot product) to be:
performed on a large set of data. Some classic examples of these types of tasks are multimedia applications {images, video, and sound), as well as many types of scientific and engineering
tasks. Whereas a scalar CPU must complete the entire process of fetching, decoding, and executing each instruction and value in a set of data, a vector CPU can perform a single operation on a
comparatively large set of data with one instruction. Of course, this is only possible when the application tends to require many steps which apply one operation to a large set of data

Waost early vector CPUs, such as the Cray-1, were associated almost exclusively with scientific research and cryptography applications. However, as multimedia has largely shifted to digital
media, the need for some form of SIMD in general-purpose CPUs has become significant. Shortly after floating point execution units started to become commonplace to include in general-
purpose processors, specifications for and impl ations of SIMD ion units also began to appear for general-purpose CPUs. Some of these early SIMD specifications like Intel's MMX
were integer-only. This proved to be a significant impediment for some software developers, since many of the applications that benefit from SIMD primarily deal with floating point numbers
Progressively, these early designs were refined and remade into some of the common, modern SIMD specifications, which are usually asscciated with one 1SA. Some notable modern examples
are Intel's SSE and the PowerPC-related AltiVec (also known as VMX).[”]

See also [edit]
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Notes [edit]

1. * While EDVAC was designed a few years before ENIAC was built. ENIAC was actually refrofitted to execute stored programs in 1948, somewhat before EDVAC was completed. Therefore, ENIAC became a
stored program computer before EDVAC was completed. even though stored program capabilities were originally omitted from ENIAC's design due to cost and schedule concerns.
* Vacuum tubes eventually stop functioning in the course of normal operation due to the slow contamination of their cathodes that occurs when the tubes are in use. Additionally, sometimes the tube's vacuum

r

seal can leak, which accelerates the cathode contamination. See vacuum tube
3.~ Since the program counter counts memory sddresses and not instructions, it is incremented by the number of memary units that the instruction ward contains. In the case of simple fixed-length instruction
word ISAs, this is always the same number. For example, a fixed-length 32-bit instruction word 1S4 that uses S-bit memory words would always increment the PC by 4 (except in the case of jumps). 1S4s that
use variable lengih instruction words,increment the PC by the number of memory words corresponding lo the last instruction’s length
. * Because the instruction set architecture of a CPU is fundamental fo its interface and usage. it is often used as a classification of the “type” of CPU. For example. a "PowerPC CPU™ uses some variant of the
PowerPC ISA. A system can execule a different ISA by running an emulator.
5. * Some early computers like the Harvard Mark | did not support any kind of “jump” instruction, effectively limifing the complexity of the programs they could run. It is largely for this reason that these computers
are often not considered to contain a CPU proper, despite their close similarity as stored program computers.

IS

@

. The physical concept of vollage is an analog one by its nature, practically having an infinite range of possible values. For the purpose of physical representation of binary numbers, sef ranges of voltages are
defined as one or zera. These ranges are usually influenced by the circuit designs and operational parameters of the swilching elements used to create the CPU, such as a transistor's threshold level

-

. % While a CPU's infeger size sefs a limit on integer ranges, this can (and often is) overcome using a combination of software and hardware techniques. By using additional memory, software can represent
inlegers many magnitudes larger than the CPU can. Sometimes the CPU's ISA will even facilitale operafions on integers larger than it can nafively represent by providing instructions te make large infeger
arithmetic relatively quick. While this method of dealing with large integers is somewhat slower than ufilizing a CPU with higher integer size, it is a reasenable frade-off in cases where natively supporting the full
inleger range needed vould be cost-prohibitive. See Arbitrary-precision aritimetic for more details on purely software-supported arbitrary-sized infegers.

. ™ In fact, all synchronous CPUs use a combination of sequential logic and combinatorial logic. (See boolean logic)

* One notable late CPU design that uses clock gating is that of the IBM PowerPC-based Xbox 360. It ufilizes extensive clock gating in order to reduce the power r of the ed
console it is used in. (Brown 2005)

© o

=

. * Neither ILP nor TLP is inherently superior over the other; they are simply different means by which to increase CPU parallelism. As such, they both have advantages and disadvantages, which are often
determined by the type of software that the processor is intended fo run. High-TLP CPUs are often used in applications that lend themselves well fo being split up info numerous smaller applications, se-called
“embarrassingly parallel problems." Frequently, a computational problem that can be solved quickly with high TLP design sirategies like SMP take significantly more time on high ILP devices like superscalar
CPUs, and vice versa

.~ Best-case scenario (or peak) IPC rates in very superscalar architectures are difficult o maintain since it is impossible to keep the instruction pipeline filled all the time. Therefore, in highly superscalar CPUs.
average sustained IPC is often discussed rather than peak IPC.
~ Earlier the term scalar was used to compare the IPC (instructions per cycle) count afforded by various ILP methods. Here the term is used in the strictly mathematical sense to contrast with vectors. See
scalar (mathematics) and Vector (geometric),

]

@

~ Although SSE/SSE2/SSE3 have superseded MMX in Inlef's general purpose CPUs, later 14-32 designs still support MMX_ This is usually accomplished by providing most of the MMX functionality with the
same hardwars that supports the much more expansive SSE instruction ssts
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External links [adil]

Microprocessor designers - - - N
Listen to this article (2 parts) - {infa)

= Advanced Micro DevicesD - Advanced Micro Devices, a designer of primarily x86-compatible personal computer CPUs. Part 1[0 - Fart 215}
= ARM Ltd &) - ARM Ltd, one of the few CPU designers that profits solely by licensing their designs rather than manufacturing them. ARM This audio file was crazted from a ravision
architecture microprocessors are among the most popular in the world for embedded applications. @) dated 2006-06-13, an: not reflect

subsequent edits o the articls. (Audio
help)
More spoken articles

Freescale Semiconductor ) (formerly of Motorola) - Freescale Semiconductor, designer of several embedded and SoC PowerPC based
processors,

IBM Microelectronics £ - Microelectronics division of IBM, which is responsible for many POWER and PowerPC based designs.
the CPUs utilized in late video game consoles.

cluding many of

Intel Corp @) - Intel, a maker of several notable CPU lines, including 1A-32, 1A-64, and XScale. Also a producer of various peripheral chips for use with their CPUs.

MIPS Technologies &) - MIPS Technologies, developers of the MIPS architecture, a pioneer in RISC designs

= NEC Electronics @ - NEC Electronics £}, developers of the 78K0 8-bit Architecture @ , 7T8K0R 16-bit Architecture &) , and V850 32-bit Architecture &)

= Sun Mi & - Sun Mi , developers of the SPARC architecture, a RISC design.

= Texas Instruments & - Texas Instruments semiconductor division. Designs and manufactures several types of low-power microcontrollers among their many other semiconductor products.
= TransmetaS) - Transmeta Corporation. Creators of low-power x86 compatibles like Crusoe and Efficeon.

= VIATechnologies &) - Taiwanese maker of low-power x86-compatible CPUs
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