READING A SKETCH BY HUNCH

by

James Richard laggart

Submitted in Partial Fulfillment of the Requirements

for the Degree of

Master of Science

at the

Massachusetts Institute of Technology

May, 1973

Signature of Author Department of Electrical Engineering, May 11, 1973 Certified by Thesis Supervisor (Academic)

Accepted by Chairman, Departmental Committee on Graduate Students

Valve Exhibit 1067 Valve v. Immersion

READING A SKETCH BY HUNCH

bγ

James Richard Taggart

Submitted to the Department of Electrical Engineering on May 11, 1973 in partial fulfillment of the requirements for the Degree of Master of Science.

ABSTRACT

This thesis describes the development of a computer system, HUNCH, intended to provide a simple means for a person to communicate with a computer his ideas through the medium of sketching. The emphasis is not on developing a computer system which produces finished quality drawings from sketched input, but rather on having the computer understand what is meant by the sketch. An overview of the intended goals of such a system is described, along with a comparison to other systems of sketch recognition. A history of the development of HUNCH is given to snow the reader the evolution of the ideas invoked by HUNCH as it currently stands. A description of how HUNCH performs a data reduction pass to simplify and structure the sketch is given. Finally, a proposal for a graphical compiler is made to permit development of a system which would be able to understand sketches of a predefined class.

Thesis Supervisor: Nicholas P. Negroponte Title: Pssociate Frofessor of Architecture

ACKNOWLEDGEMENTS

It is traditional to thark everybody in the world in this section. Special reference must be made to Nick Negroponte for providing the inspiration, and to the NSF and Project MAC for providing the means for keeping body and soul together while the project was carried out. There are also nameless millions who have contributed over the years to the development of HUNCH, especially Doris Ju and Cindy C Connell who had to work under my direction, and Mike Miller and Chris Herot, who have been bricks throughout. Leon Groisser should be thanked for providing a needed boot at a crucial moment. Finally, a nod to Archie the Prchitect, for whom this system has been developed. TABLE OF CONTENTS

ABSTRACT

ACKNOWLEDGEMENTS

TABLE OF CONTENTS

ORGANIZATION

SECTION I: OVERVIEW; Why am I here? GOALS OTHER SYSTEMS LETLOWN WHAT HUNCH DOES AND DOES NOT HAREWARE USED BY HUNCH

SECTION II: PAST: How did H get here? READING AND REDISPLAYING--DRAW/SHOW SQUIGGLES EXTRACTING LINE SEGMENTS--STRAIT/STRAIN RATE/PRESSURH INTERSECTIONS--INSECT HORIZONTALIZING AND VERTICALIZING--LEVEL CURVES EDITING

SECTION III: PRESENT: Where am I now?

SECTION IV: FUTURE: Where dc we go from here? DESCRIPTION OF A SKETCH EXISTING KNOWN SETS LINE SET ATTRIBUTES OTHER KNOWN SETS FEATURES AND SET ATTRIBUTES RECURSE

REFERENCES

APPENDIX I: EXISTING DATA STRUCTUFE

APPENDIX II: THE GRID FACILITIES

APPENDIX III: LISTINGS OF STRAIM

The body of this paper is divided into four parts: overview, past, present, and future. The first part of the paper is a look at the goals for developing an interactive sketching system. Other implimentations of computer systems are described, and how they matched up to the defined goals is discussed. The second part is a history of events from its inception to HUNCH in its present state. Such a description seems important for two reasons. First, while the way HUNCE works can be understood without the history attached, why HUNCH exists as it is, and the motivation for the fourth part of the paper needs as part of its explanation how the ideas were derived and which ideas were discarded. HUNCH in its present form appears to be a regression from earlier successes. The motivation for this change of state is best explained by describing the sequence of events which led to the current state. Second, some of what has been learned about sketch recognition through the development of HUNCH is represented only by certain elements which are NOT included, perhaps despite earlier versions with these features. The knowledge gained by failures and changes of attitude over time is almost as great as that which currently is known. This history of HUNCH, then, is an attempt to apprise the reader of this knowledge.

The third part of the paper is a description of how the system as it currently exists is run. An extensive description of how

straight line data is extracted from the raw sketched input is included. This description not only shows how the more complicated portions of HUNCH work, but also indicates the philosophy of how operations are performed in a HUNCH-like way. From this outlook, one can see how other functions, which might be added to the HUNCH system later, would be implemented.

The last section of the paper may be looked on as conclusions and indications for future work. As it exists now, HUNCH falls short of its stated goals by quite a distance. Its biggest shortcoming is in its inability to derive a higher level description from a sketch. The last section provides the frame of mind which one might need in order to begin solving this inability. The solution proposed is neither complete nor rigorous, and in that sense, it seems strangely inconclusive. The only explanation I can offer is that the solution proposed seems to solve all the challenges I can think of, although sometimes the thinking required seems unnecessarily baroque. There must be simpler solutions, but finding them can only come with further experience.

I. OVERVIEW

Why am I here?

GOALS

There have been many computer systems developed which purport to let the user sketch using a computer. The user is placed before a console display of some sort, handed something which looks like a pen, perhaps is given some instruction in how to use the system, and is told to fraw. It is reasonable to wonder in abstract, if one had such a system, what would he want it to do. There seem to be two answers: first, the system should help in the construction and storage of graphical images. Second, the system should act as an aide in the development of the information the sketch is meant to convey.

Under the first goal, when pictures can be constructed out of elements, saved, modified, and recalled at a later time, the designer has a useful time-saving tool for handling pictorial data. Repetitive elements need only be described once to the system. Representations of the complete structure can then be evoked with only a single stroke of the pen. Thus, instead of laboring hours over a drawing, the designer can describe the whole drawing to the computer using many previously defined elements, and the computer can construct the complete, finished work. Similarly, if two drawings are the same, with only minor

variations, the designer can construct one of them and store it away. He can then modify a copy of the saved image to match it to the second intended drawing, saving himself the trouble of constructing the drawing essentially twice.

More complicated than the first goal of a sketching system, one might ask a system to perform some more abstract operations on the sketch. A person uses sketches for two purposes: to convey information to other people which is difficult to transmit verbally, and to act as a sort of physical memory, in a sense, conveying information to himself. Cnce the sketch has been commited to paper, the user can modify it to change the information it contains. This act can be prompted either by the ebb and flow of the dialogue with the observer, or by a change in the sketcher's own idea brought about by the feed-back loop running between brain, hand, paper, and eye. In either case, the sketch is important because of the intended meanings it contains. In a similar way, it is useful for a computer system being used as a sketching tool to be able to attach some meaning to the objects being sketched.

The result of such a dialogue is that the information contained in the interaction is greater than the amount of information which could be contained in the sketch alone, or which the user could carry around in his head. Thus, one would like a computer system for sketching to be alert enough to be able to affect a

dialogue with the user. It would need to be knowledgeable enough about the subject matter being sketched to be able to ask reasonable (intelligent?) questions, and perhaps offer some information of its own. In short, the computer should be able to enter into a dialogue with the user, in much the same way as a person observing the sketch being created might interact. Such a provocative system would tend to maximize the amount of information generated in a sketching session.

OTHER SYSTEMS

Computer systems which have been developed to date tend to be divided into two classes, reflecting to a certain extent the two goals for a computer sketching system. The first class, historically, is that which uses some specialized set of functins, keys, or symbols in the process of sketching. Input was accomplished by invoking a function (key, e.g.), which told the computer what the user was intending to do, with the ultimate goal of permitting the computer to store, retrieve, and assist in modifying a drawing. In response to the user's request, the system performed some output which accomplished the action specified. The second sort of computer system seen uses a limited set of known symbols, and attempts to map the user's sketched ikons, usually irawn on a data tablet, into these symbols. In this case, the computer does not know in advance exactly what the user is going to do. What the user intended

must be inferred from the match of the sketched item to the known symbols, and the computer is usually expected to take some action as a result of the recognition of the symbol. Because of this level of guessing, such systems are not infallible, but this objection is matched by a comparable improvement in the ease of input (In the first class of sketch handling programs, it should be noted, the computer is incapable of making a mistake; only the user).

The most notable example of the first sort of program is Ivan Sutherland's SKETCHFAD (Sutherland, 1963), particularly since it was the first attempt at communicating a visual image between user and computer in an interactive manner. In its stated goals, however, SKETCHPAD was to be a system unlike drawing with pencil and paper, because interacting with a computer was seen to be a totally different kind of experience. Using primitives common to all line drawings (line segments, points, and arcs of circles), the user creates symbols, structures, and composites of these images. To increase the power of the interaction, certain functions could be applied to previously defined images. Thus, when the user laid down two lines, he could indicate to the system that he wanted them to be parallel or perpendicular, and the system performed the requisite steps to make them exactly that way. Thus, the user could be inaccurate in his original layout and yet get a highly specific output of his final image. Furthermore, since the user was not drawing symbols for the

P0

system to recognize, the kinds of graphic images the system could accept was unrestricted.

For such freedom, the user pays a penalty, however. The system of light pen on display and function keys utilized by SKETCHPAD bears no relation to the normal means of communicating an idea graphically. The fairly demanding system of input required by such a system would tend to interfere with the creative thinking The user is concentrating so hard on getting the process. drawing into the machine that is difficult to think about what he is drawing. IEM is marketing a new system similar to SKETCHPAD which uses a tablet instead of a light pen (Saderholm, 1973). While this hardware is an improvement over the old setpoint-rubber-band-line, it still relys on a set of function buttons on the tablet to relay commands to the system. The degree of explicitness required in such systems quickly generates tedium sufficient to offset any preference over the less complicated job of digitizing the data. Any sense of natural graphical communication is lost. Furthermore, since the computer is operating continuously in "slave" mode, it can add no information to the dialogue. Thus, an important potential is lost.

In the second class of computer systems, the computer does add information of its own to the dialoge in its interpretation of the sketched symbols of the user. Although this approach is

primarily found in character recognition programs , perhaps the most notable example is the GRAIL system developed by the Rand Corporation (Ellis, et. al., 1969). Besides recognizing the alphabet and decimal digits, it could also handle a set of flow charting symbols (rectargles, triangles, and so forth), and lines connecting these symbols. Using the Rand data tablet, the user drew his flow chart and labeled it. As each symbol was drawn, the system identified it, and the rough display of the user's line was replaced by the machine's representation of the symbol, appropriately scaled and positioned. Because of the level of inference making, the program was capable of making mistakes. In order to allow for errors and to permit the user to change his mind, one of the symbols recognized by the system was the scribbling out motion normally used by people to cross out an error or a misplaced line. The symbol was called a "squiggle," and caused any line or symbol which appeared beneath it to disappear. Cnce the flow chart was completed, the user could ascribe specific functions to the symbols of the flow chart and see what happened when the flow chart was "run." It provided a neat way of seeing information which might otherwise have been too difficult to visualize.

Systems in the GRAIL class are quite attractive, since they provide a sort of interaction which is very natural and familiar to the experience of the probable user. Drawing with a pen on paper is an experience common to most people, and GRAIL's

replication of this experience is not bad. On the other hand, these pattern recognition systems can only handle a limited class of inputs. Given an unrecognizable symbol, the system is lost. This problem is partially overcome in many character recognition systems by having a "learning" mode, where the system samples the individual user's representation of the symbols it knows, thereby adapting its models for the symbols to the habits of the individual user. There are two limitations usually imposed, however. First, the user's representation usually can not deviate beyond some accepted boundary conditions. For example, a character recognition program normally accepts either script or printed characters, but not both. Thus, a user who mixes his characters would inevitbly be mis-understood. Second, it is usually impossible for the user to define symbols of his own. Thus, if a mathematician wished to user a character recognition system for the alphabet, he might be hampered by the inability of the program to accept Greek symbols; similarly, a Russian translator would have to start all over. Furthermore, as the number of symbols recognized by the system is increased, typically, the frequency of error increases at a much faster This phenomenon occurs because the system can not use rate. clues about the interaction between elements in a sketch. If a character recognition system had difficulty distinguishing between U's and J's, for example, it would be useful to look to see if the preceeding character was a Q (in English, anyway).

LETCOWN

It would be nice to be able to claim to have developed the alert, provocative, interactive system mentioned in the earlier section. The system which has been developed, HUNCH, falls short of this goal, however. Provocative it is, although not in the manner described above. It is also moderately interactive. It does not, however, carry on anything which can be called a dialogue. ..yet. Lialcgue implies purpose and a developing context, and although HUNCH does know a few tricks, once it has performed, all it can do is walk off stage.

The name HUNCH is defived from the methods it uses to achieve its ultimate goal. It uses guesses about implied intensions to determine what the sketcher PROBABLY meant. In that sense, it is similar to the character recognition systems discussed. It does not have a set of patterns it is trying to match, however. Rather, it attempts to extract from the stream of input data the primitives which make it up: line segments, arcs of curves, end points of lines. Once the data has been so compressed and structured, these components can be combined to form objects of a higher order. This second step is not as well understood, since it requires extensive knowledge about the subject matter being sketched to accomplish this goal.

Because its knowledge is somewhat more limited than a human's, it would appear that HUNCH is at a disadvantage when it comes to reading a sketch. If it was limited to those cues available to human, that claim would probably be true. However, because of the way the data is collected, FUNCE can use some information unavailable to the human onlooker. Inherent in the way the data is sampled is the sequence in which the sketch was drawn, the pressure on the pen at a particular time, and the rate at which the user was drawing.

These cues provide additional information which the program can use to make decisions. In general, for example, the faster the user draws, the less accurate he is. Furthermore, if he is drawing rapidly, it can usually be inferred that he is not interested in the fine detail of his line, but rather in the grosser features of what he is drawing. When it encounters a rapidly drawn line, then, EUNCH is prepared to make bigger assumptions and to permit greater inaccuracies before declaring one line segment ended and a second one begun. Similarly, if the user is drawing slowly with great deliberation, then nearly every bend or tweak in the line is preserved.

Pressure can also be sensed to provide cues to the intentions of the user. Here, the role variations of pressure in a sketch is not so clear. It appears, however that pressure variations occur in quanta; a user typically draws in no more than three or four

pressure ranges. An initial inference is that pressure behaves something like inverse rate--that is, the harder a person pushes, the greater the detail implied. The cue to look for, however, is the quantum pressure change, not the small variations across a line.

WHAT HUNCH DOES AND FOES NOT

Sketching can be considered to be a kind of graphical language. A person can read a sketch if he knows the rules for making a sketch, and if he knows the symbols used in the sketch--syntax and semantics. In order to carry on a useful dialogue, you have to have both. The HUNCH system does a reasonable job at providing a large portion of the syntax. It is one of the goals of this paper to outline a means of supplying some of the semantics.

The sketch, as received by HUNCH, is one long serial stream of data. The system tries to apply some structure to this data, to make the search for meaning more manageable. In a sense, the solution developed so far still leaves the computer doing what it does well--number crunching. In the process of discovering the structure of the sketch, massive amounts of data are reduced to a collection of points and relations between points. It performs these operations with uncanny accuracy, using only local information about the dynamics of the line.

The relations formed are ooiy phose based on information explicit in the data, such as the aforementioned rate and pressure, continuity of line, and sequence. Attempts to apply further relations to the data failed for various reasons described later, and in fact, appear inevitably doomed without the application of some semantic guides. Some of those relations attempted include latching of two known points, and horizontalizing and verticalizing lines in a sketch which appear nearly so. These functions failed largely because HUNCH was unable to judge those situations in which those relations might or might not apply. Thus, it applied them indiscriminately to any set of lines which fell within its guide-lines. The result inevi; tably was a severe distortion of the original sketch. Parenthetically, it should be noted that if input was limited to those sketches where the rule was always appropriate, HUNCH solved the problems with distinction. Thus, the problem was not in the rule, but in when to apply the rule. Given any rule, there is always a condition where, applied indiscriminately, the rule will fail (including this one). Thus, some means is needed to guide the system about when a particular relation might be appropriate.

The final output of the system is not intended to be a "working drawing" with all extraneous lines eliminated, all corners squared, and all lines straight and parallel. Rather it is intended that the output be the description of the sketch which

might correspond in some way to the vertal description a human might make of the sketch having observed it. The structure of this description would be hierarchical, having at its top the major features of the sketch, at its interim levels the elements which combine to make up ; these features, and at the bottom the individual line segments of which the sketch is made. The interaction of the various elements in the description provides contextural information. This information can be used to augment the rules about relations between lines which got us into trouble before to provide the guide-lines about when a particular rule might be applied. Furthermore, it helps to avoid the difficulties systems of the GRAIL class get into when called upon to recognize a large number of different elements. The context limits the number of plausible elements which may be used, preventing the system from drifting too far afield.

Unfortunatiely, this desirable description has not been implemented in any form. In order to derive such a description, the system needs to know what the elements are for which it should be searching (wired in to most systems). While in most types of sketches the number of these elemetns is not large, it has never been clear how one would specify these elements for the system. The description offered in the last section of this paper is a first attempt at making such a specification possible.

HARDWARE USED BY HUNCH

HUNCH runs on the Architecture Machine, a family of Interdata mini-computers, running under a disk resident operating system. The original sketch is read from a Sylvania data tablet, and can be stored on a wariety of mass storage devices. The Sylvania tablet is (was) the Cadillac of data tablets, offering resolution to three thousandths of an inch, constant rate data sampling, and a clear tablet. This clear tablet means that it can either be drawn on as with other tablets, or it can be placed in front of the display and used in a manner similar to a light pen. Both of these modes are used by various parts of HUNCH. The tablet samples data at a constant rate (two hundred times per second). sending off to the computer twelve tits of x- and twelve of y-coordinate data at each sample. The tablet can also sense a limited capability for a z-dimension (three bits), such that it can tell if the pen is touching, is in the near field (about one half inch), is in the far field (up to four inches), or is away from the tablet. This feature suggested a logical extension, and the pen was modified to be able to sense pressure--how hard the penman is pressing on the paper. A load cell (a sort of transverse strain gauge) has been built into the shaft of the pen, taking the thrust from the top of the ball point pen cartridge. It can measure pressure from a fraction of an ounce This load is converted into a digital signal up to a pound. which is sent as a six-bit number to the computer. Each pressure

sample is associated with the point read when the sample was taken.

The display is not crucial to HUNCH, although it is useful for demonstration and debugging purposes. Because of the amount of data developed by the data tablet and the complicated pictures possible, it would be impossible to maintain a flicker free image on a refreshing display. After ten seconds of drawing, the screen would have two thousand vectors on it. HUNCH uses an ARDS storage tube, which effectively avoids this difficulty. Although it is difficult to dynamically modify the image on a storage tube, there is very little need to do so in a sketching environment. The difficulty of erasing is not unlike that the user experiences when drawing with ren on paper, anyway. Rather than erasing, the user just gets a clean sheet of paper. The ARDS has a limited dynamic mode, called write-through, which permits the dynamic alteration of a limited number of lines. This feature is adequate for those rare occasions when a picture must be modified.

While the sketch is being initially stored, it can be displayed in an exact mimic of the original. The ARDS is a relatively slow display, however, and the time taken to display the image reduces the sample rate which can be obtained from the tablet. Thus, the resulting stored sketch is less detailed. To overcome this difficulty, display while drawing can be suppressed. The stored

sketch can, of course, be replayed to the display. During times when the pen is not touching the tablet, a real time clock is sampled, so that the length of pauses in drawing can also be stored. The replayed sketch, then, can be an exact replica of the dynamic development of the original.

The addition of pressure sensitivity demanded an additional feature for the data display--some method for showing variations in pressure. The ARDS was altered such that its focus could be modified under computer control. Thus, while the tube normally displayed a thin, sharp line, by defocusing the beam slightly, the width of that Line could be increased up to an eighth of an inch. This feature is integrated with the load cell in the pressure pen such that the width of the line varies as a function of the (original or redisplayed) pressure (Figure 1). This line variation greatly enhances the visual effect of the display, since it provides a better feel for pressure than the line output of a ball point pen can provide.

Figure l.

II. PAST

How Did I Get Here?

READING AND REDISPLAYING--DRAW/SHOW

In the spring of 1970, the Architecture Machine Group obtained its Sylvania tablet, and embarked on an experiment to discover about reading a sketch by computer. The tablet was an ideal device for this experiment, having the natural feel of pen on paper, while at the same time providing a fast, accurate, time-dependent sampling of the sketch as it was created. The first programs written, naturally enough, were programs to read and save the data from a sketch, DRAW, and to redisplay the stored data, SHOW. DRAW senses the z-position of the pen, only recording data when the pen touches the tablet. The maximum distance the pen is away from the tablet (near or far field) is recorded as a flag in the stream of data whenever the pen leaves the tablet. The distinction of the z-fields is not used by any part of the program to date. It is thought, however, that the degree of pen lift may be useful for providing some clues into logical separation of the sketch into sub-sections, divided by higher lifts of the pen.

Where the pen went: while it was not in contact with the tablet could be read from the data, and there was some discussion at the

time about whether or not this information should be saved. Since at the time, we did not know what information was going to become important, we were leery of discarding any obtainable information. The use to which pen-up information could have been put was unclear at the time (it is still so), however, and space limitations for storage of data were relatively severe at the time. It was decided, therefore, to discard this data.

DRAW begins by sensing the position of the pen in the z-field. When the pen touches down, DRAW records a far-field pen-lift flag and the x- and y-copriinate; of the first point. With the recent addition of pressure sensitivity, the value of pressure is also saved. It then continues to read successive points and pressures, storing them away and (optionally) displaying them on the storage tube. When the pen is lifted from the tablet, DRAW waits for the pen to be replaced and saves the pen-up flag recording the farthest field reached by the pen and the time the pen was lifted. IRWW continues to read and save data in this manner until the pen is lifted away from the tablet field and then signals that the drawing is complete.

Once the data has been saved, it can be redisplayed by a call to the program SHOW. When this program was run for the first time, it caused the sort of serendipidous discovery which occasionally provides direction for research. Although it seems obvious in hind-sight, the effect the time based sampling of data would have

on the data itself had not occurred to anyone. Since the tablet samples data at a constant frequency (200 times per second), the distance the pen covers between samples is a direct function of how fast the pen is moving. Obviously--now--the faster the pen is going, the greater the fistance it will cover in a two hundredth of a second--the farther apart the recorded points will be. The effect of this fact, of course, is that SHOW not only redisplays the original sketch, but also it replays the sketch at exactly the same rate it was originally drawn. Inherent in the way the data is stored is the data is stored is the RATE at which the line was drawn.

This fact provided the ground on which HUNCH is built. It may be assumed that the speed at which a person draws reflects in some way his degree of purposefulness, his detailed interest in exactly what he is sketching. Fore specifically, it is usually true that if a person is frawing quickly, he is not as interested in detail as he is when drawing slowly. In a quick sketch, the person is usually interested in the general impression his lines make, rather than in the exact reproduction of those lines. Conversely, a slowly drawn sketch may often be painstakingly detailed. In this case, the position of each line becomes important, and the sketcher wants his drawing to be seen exactly as drawn.

SQUIGGLES

One special purpose kind of line is detected "on the fly." As mentioned in the description of the GRAIL system, the scribbling out motion has a special meaning. If drawn over previously drawn lines, it means that the earlier lines are to be crossed out. If filling an open area, the scribble implies that the area is to be shaded. In either case, the exact configuration of the line is not as important as the area it covers. Thus, it is not critical to submit the line to exact analysis. In order to extract these scribbles from the raw data, a "squiggle" recognizer was devised as a part of IRPW. Coincidentally, Rand's use of a squiggle, even the to the name itself, was not discovered until after the one in HUNCH hac been developed.

A squiggle is characterized by several things. First of all, it has many changes of direction. It is usually drawn at a fairly high rate of speed, however, so it is not confused with the curving line of a driveway, for example. Finally these changes of direction form a sawtooth pattern (they are neither too spread out nor too sharp), so that a squiggle is not confused with a wobbly fast straight line nor with a line which has been heavily overtraced (Figure 2).

When the pen is placed on the paper, the squiggle recognizer begins searching the data as it is read for sharp changes of

direction, called extremes. Since a squiggle must be drawn quickly, the program expects to find many of these extremes before many points have been read. In fact, if the required number of extremes have not been found before a maximum number of points have been read, the program decides that the line is not a squiggle, and it quits looking. If the requisite minimum extremes do fall within the limit, then the position of these extremes is examined for the sawtooth pattern. If the extremes are too spread out or too close together (separated by angles greater than 9 degrees or less than 10 degrees), then the squiggle is rejected. Finally, the total rotation of lines connecting the extremes is compared to some maximum allowable value. If it falls above this maximum, the squiggle is rejected (this check is added because the person who

implemented the algorithm objected to the fact that flowers were recognized as squiggle: (Figure 3)). Having passed all these tests, the line is recognized as a squiggle. The beginning point of the line is tagged, so that subsequent programs can recognize the line as a squiggle to be treated as a special case.

EXTRACTING LINE SEGMENTS--STRAIT/STRAIN

After the discovery of the rate dependence of the data, it was decided that the next step FUNCE should undertake would be to try to extract from the original data the straight line segments of which it consists. It would make its decisions by searching the sequential, raw data for "significant" changes of direction, tempering these decisions by taking into account the rate (and later the pressure) at which the line was produced. A more detailed account of how this program works follows in Section III. This section covers how the program arrived at the state it is in now.

The original attempt at a solution was a set of programs which eventually became known as STRAIT. This original version calculated the tangents of segments defined by connecting pairs of points in the raw data. It then looked for differences in these tangents, comparing the change in tangent to some value. If the change was greater than this threshold value, it was determined that one segment ended and another began. This solution quickly turnel out to be a mistake. Because the tangent is so non-linear (going to infinity for a vertical line), the threshold level had to vary as a function of the direction of the segment. Furthermore, when dealing with infinity on a finite state machine, one quickly becomes embroiled in roundoff and overflow difficulties. As a result, this original approach was

abandoned, and a calculation of the arctangent of the segment was substituted. Except for a discontinuity in the arctangent function around zero radians, it has the attractive feature of being linear everywhere else. Thus, the threshold problem became direction independent. Furthermore, since the arctangent is limited to values between zero and two pi, the difficulties with infinity were eliminated.

Figure 4.

It is the nature of a sketch that although a sharp corner is intended, it is rarely achieved. Instead, the two segments meeting at the corner are connected by some circular arc. Furthermore, since the drawer has to slow down in order to negotiate the corner and still be drawing where he intends afterwards, points tend to collect at corners. As a result of these facts, the first point fallin above the threshold for a corner: could not be assumed to be the actual intended position of the corner. In fact, because the (sharp) corner might actually be represented by an arc, there is no guarantee that the intended corner exists in the data at all (Figure 4). The only reliable way of determining the intended position of a corner is to determine the two segments lying on either side of the corner, and then to calculate algebraically the intersection of these two

lines. This was the approach taken in STRAIT. Once a segment has been discovered by an instance of a change of arctangent greater than the threshold, its endpoints are saved. When a second segment is found, then, the intersection of the two segments is calculated and used as the common endpoint of the two segments.

The result of such calculations is the creation of points and links between points which represent lines. When a pen-lift flag is found, the points on either side of it are saved as the end and the beginning of a segment. When the position of a corner is calculated, that point too is saved. To represent a line between two points, a link is created which contains information about which two points are connected, the rate at which the particular line was drawn, and the greatest pressure reached across the line. This structure is the output of the program STRAIT.

In order to cut down even firther on the amount of data to be saved, and to maximize the inferred information in the final structure, STRAIT had a program which looked for implied "latches." When two points fall near each other, people will often mentally connect them as if they were a single point. STRAIT tried to do the same thing. In Figure 5, the first and last point of the line fall near each other. STRAIT decided that they were intended to be the same point, and latched them (The raw sketch appears at the beginning of Section IV).

Figure 5.

The method for performing this operation is similar to that for finding corners. Each time a new point is determined, the list of existing points is searched for points nearby. In order to be considered near, the fistance between the new point and each point on the list is compared to some threshold limit. If the distance is less than that threshold, the point is considered near. If no point falls below the threshold, then the new point is added to the structure with the appropriate link to any points which may be related by lines. If at least one point is found below the threshold distance away, the nearest point to the new point is considered to be the intended match. Links are created between this point and any related points, and the new point is not saved. Initially it was thought that the tendency would be for people to draw lines to known points, so the initial position of a known point was unmodified, and the direction of the new line was modified to take it to the known point. Subsequent experience seems to indicate that people tend to correct earlier errors in positioning points by drawing subsequent lines to where

the point should preferably have been. A somewhat better treatment, therefore, would have been to move the old point to the position of the new point, or at least to average the two points somehow. Difficulties with the whole latching scheme later tended to render the whole approach suspect, however, so this minor modification was never implemented.

The output structure of STRAIT, then, represented the minimum number of line segments and points which could describe the sketch, subject to some threshold values. For certain classes of sketches, this assumption proves to be entirely adequate; using these simple principles, STRAIT's handling of such a sketch is remarkable (Figure 6). STRAIT had several severe short-comings, however, which tended to point away from its existing mode of operation to some more complex handling of the data.

One difficulty came in the problem of handling overtracing. The tendency to retrace a line already drawn is a normal behavior on the part of a human user of the system. The method for finding corners was inadequate for handling the small angles commonly resulting from retracing a line. The precision of the computer was inadequate for sharp angles, due to roundoff errors and a tendency to wind up dividing by zero. Calculating the algebraic position of a corner between two lines which are nearly colinear resulted in frequent, severe misplacing of the common point. To combat this difficulty when calculating a corner, an additional

Figure 6.

routine was added to check specifically if the angle between the two lines was very small. For a small angle, using the calculated intersection is dangerous. Instead, an effort is made to find the point at which the line changed direction--the locally extreme point on the line. In such an instance, this extreme is used as the common point between the two segments. In the case of a sharp angle, the corner can not be very rounded, so the error induced by using a real data point on a corner is small. Unlike the case of a wider angle, furthermore, such an error causes little change in the direction of the line (this fact, after all, is what makes calculating the intersection so difficult).

The introduction of overtracing causes a vast proliferation of segment endpoints in a stetch. One of the restrictions on the class of sketches STRAIT could handle well is that the sketch must have a fairly diffuse distribution of corners and endpoints. When the density of points increases locally, then segments begin to become wrongly latched (see Figure 7, the proverbial sketch of Aunt Fifi's house). The addition of overtracing only

Figure 74

aggravates the problem. The decision to latch or not to latch is not a purely local decision. Who should have authority to make such a decision is a point which is still under debate. The last part of this paper is one proposal at a solution. At any rate, it seemed futile to try to continue with the solution used by STRAIT, so a variation was developed which eliminated the latching step (STRFIN, SIRAIghten with No latching). This seemingly backward step is justified as a basis for the groundwork for future development. We already know one method which will not work.

RATE/PRESSURE

Mildly glossed over in the above discussion of finding straight line data was the role that rate and pressure played. The original version of STRAIT had no measurement of rate or pressure; the various threshild values applied were constant throughout the program. After the basic routines were functioning more or less correctly, a method for figuring rate was determined (see description in Section III). Once the rate that a line had been drawn was calculated, that value could be applied to a function for figuring the various thresholds. Nominally, for a faster line, the thresholds were higher. The effect of this additional function on STRAIT was striking. There was an immediate, marked improvement in the decisions STRAIT was making about the data. In order for earlier versions of STRAIT

to work, the thresholds had to be set quite low to allow for the comparatively small changes of direction which occur when a line is being drawn slowly. Similar difficulties arose for latching. The effect of this limitation was to cause STRAIT to permit many more corners than were actually intended. If the thresholds were increased, STRAIT began to miss intended corners on slow lines. The addition of a rate measurement permitted application of a more liberal threshold for fast lines, a more conservative one for slowly irawn ones.

One side effect of this treatment was that STRAIT (and also STRAIN) became fairly sensitive to the "hand" of the user. Different individuals have different styles of sketching. Some people can sketch quite accurately at a very high rate of speed; others are not so accurate. Thus, the value of the thresholds for one person at a particular rate might not be appropriate for another person at that rate. In a pathalogical case, one can imagine a person who drew quite smoothly when moving his hand rapidly, but who suffered from palsey when moving his hand slowly. In order to work properly for an individual, then, STRAIT has to be tunei to each user's hand. Several methods for discovering the proper tuning for a particular person have been tried. The only one which works at all successfully is intuitive manual adjustment of parameters.

One program was written which tried to to the tuning job implicitly. The way the value of a threshold is determined is by applying the rate to a polynomial function:

TH=A*(Rate)**3+B*(Rate)**2+C*(Rate)+D

Rate varies between a value of zero and a value of fifteen. The various parameters (A,E,C,D) are a function of the hand of the indivual user. Because of the complexity of tuning the parameters manually, the value of A was normally set to zero, reducing the polynomial to a quadratic. In such a case, the effect of the various parameters car be seen to be as follows:

At low rates, 1 predominates.

At high rates (assuming the value of B is a small fraction), the C term is dominant.

For the middle ranges, the value of the fraction B determines which way the function curves and the degree of curvature.

It was thought, then, that the various parts these parameters played at various rates could be separated and treated individually. Thus, the tuning program asked for a set figure (a square) drawn at a slow rate. It then juggled its D parameters until it got a four-lined, four-cornered figure. The program then asked for a quickly drawn square, and modified its C
parameter until it got a value that made the figure fit. Finally, it took a square drawn at a moderate speed and set the B parameters. While the program frequently could come up with a solution, almost equally often it could not find a value for one or more of its parameters which was satisfactory. Part of the problem derived from the limits which had to be placed on the values the parameters could take. In order to provide some starting point for the program and to prevent the arrival at some totally unreasonable parameter values, each of the parameters had an upper and a lower bound for the values it could take. In many cases, however, rather than settling on an intermediate value for a parameter, the program had a tendency to slide to one limit or the other. To compensate, the other parameters would become equally skewed. It is difficult to speculate on why this error tended to occur, but it appears likely that it was caused in part by the inter-relation of the parameters. Experience in manual tuning of the parameters seems to indicate that it may not always be true that the parameters can be separately tuned. Occasionally a better set of parameters was arrived at if, while increasing the value of one parameter, another parameter was comparably reduced. Since the implicit tuning program knew nothing about this technique (which appears to be largely intuitive, anyway), its results were often inadequate. At any rate, that particular experiment has been abandoned.

With the ability to sense pressure, a new variable has been introduced into the system. How this parameter should affect the behavior of HUNCH is not certain yet, as we have not lived with it for very long. It seems reasonable to assume that a heavily drawn line requires more detailed analysis than a light line. This effect can be accomplished by using pressure to offset rate. As the pressure increases, it applies more drag to the line, slowing down the calculated rate. Thus, a quickly drawn line, drawn at great pressure, receives as detailed an examination as a slow and deliberately frawn line at any pressure. The rate is made to vary as a function of pressure according to the equasion:

16-Fressure

Rate=Rate* ----- (0<Pressure<15)

16

This function has the interesting side effect that its impact varies as the rate it is operating on changes. At high rate, a moderate change in pressure (say from zero to four) cause a comparative change in rate (from fifteen to eleven). At a slow rate, the effect is less (three to two, e.g.). This fact is rather attractive, intuitively, but the overall effect has never been evaluated.

INTERSECTIONS--INSECT

Because of the way the data is generated and stored, there is no reason to believe that if two lines cross each other, their intersection actually exists in the raw data. This problem aside, in the process of searching for straight line segments described above, it is impossible to find intersections at the same time. Nonetheless, it is not unreasonable to want to know about the existence of intersections. In fact, for some applications, the finding of crossings and related Tintersections, is a great aid toward solution of the particular problem (Negroponte 1972). In order to locate these points, then, a program to find them was developed, INSECT (from INterSECTion).

INSECT uses a brute force method for locating intersections of lines in a sketch. The first line isscovered is compared to all the other lines found, and the algebraic intersection of the line and each subsequent line is calculated. As these points of intersection are found, they are compared to the endpoints of the two lines being worked on to see if the intersection falls between, or within some delta (varying according to rate, as usual) of the endpoints. Intersections falling outside these limits are discarded. Those falling within the limits are considered to be discovered intersections (Figure 8). If the intersection falls within the threshold of one of the endpoints

Figure 8.

of the two lines, that point is moved to the coordinates of the intersection, the other line of the pair is broken, and the endpoint is made the common end of the two new segments. If the intersection falls well within the ends of the two segments, a new point is added to the structure, and both lines are broken and attached to it. The second line in the structure is then compared to all subsequent lines; the third; and so on. The resulting structure has all intersections and T-joints inserted in appropriate places in the straightened version of the sketch.

It can be seen that the amount of calculation which must be done by this method goes up as the factorial of the number of lines in the sketch. This load is clearly unacceptable. As a sketch becomes more complicated, with overtracing for example, the amount of calculation goes up astronomically while the number of useful results does not. It seems reasonable to say that we are

40E

willing to make N linear passes through the data (where N is a small integer--we are willing to look at each line N times), but we do not wish to pay the cost of even one pass through the data which is worse than linear. It took a long time to come up with a solution better than INSECT for finding intersections, and the better method has not been implemented yet.

We have a method for mapping a sketch, raw or straightened, on to a large array (existing on a fast-access fixed-head disk). For a complete description, see Appendix II. With a bit of cleverness, the straightened data can be mapped into two grids (or one two-bit grid), such that if the mapping program discovers that the bit in the first grid is already on (a bit being a point on a line in the straightened data), it turns on the equivalent bit in the second grid. It can be seen that, if every line in the straightened data is mapped on to the grid once, the only points which could appear on the second grid would be those points where two lines intersected. Thus, in order to include the intersections in the data structure, it would be simply a matter of reading points from the second grid which relate to lines in the straightened fata. If a bit is found to be on, then, it is an intersection, and the coordinates of that point could be inserted into the line currently being tested. The extration of all intersections would require only two linear passes through the data for a complete solution: one to map on to the grid, one to read for intersections.

It should be obvious that this solution does not find T-joints which were near misses (Figure &A). This objection is not entirely bad, however. Since the method for finding T-joints in INSECT used the same kind of "latching" described for STRAIT, it was prone to the same kinds of difficulties. Essentially, this problem comes up whenever there is an attempt to apply a local decision to a situation which requires more global information. This error occurs where there is an attempt either to remove or to add information which can not be directly derived from the available raw data, where the data is extrapolated across empty space. Thus, the loss of this "missed T-joint" capability only parallels the removal of latching which turned STRAIT into STRAIN. If one wished to recover this ability for some particular application, one could take windows off the grid around the points in a sketch and look for lines which cross these windows.

HORIZONTALIZING ANI VERTICALIZING--LEVEL

In an architectural context, lines which are horizontal or vertical have special meaning. This effect occurs because we live in a gravitational system which makes building horizontally or vertically a more reasonable way to construct buildings than any other way. Since the applications for HUNCH were considered to be primarily architectural, it was decided that it should be able to place a special meaning to lines which were horizontal or

vertical. The program LEVEL was written to search the straightened data for lines which could be implied to be horizontal or vertical. It calculated the restricted arctangent (between zero and pi/2) of each straightened line segment, and compared it to a pair of rate-dependent threshold values. If the line fell above the upper threshold, it was considered to be a vertical line, and the coordinates of its endpoints were adjusted so that the line was forced exactly vertical. Similarly, if it fell below the lower threshold, it was eventually forced exactly horizontal. This program attempted to take into account the implied continuity of lines. If one kine was found to fit one of the thresholds, the lines connecting to the points on either end of the segment were examined to see if any of them fit the threshold the same way. If a line was found continuing in the same direction, its second endpoint was also searched for a continuing line. This process was repeated until no further continuing lines were found. Then the positions of all of the points found to be part of the continuous horizontal or vertical were adjusted at once, so that the

Figure 9

continuity was preserved (Figure 9). This need arises from the desirability of preserving continuity, and from the danger of moving one point without examining the points around it. There could exist a condition whe e a line which falls outside of the thresholds is moved within them by the leveling of one of its endpoints being acted on at another segment. Thus, if the points were adjusted independently, information from the original data might be lost by the partial treatment of a line segment. This approach made LEVEL perform as well: as it could be expected to, but since it used the same extremely local information about line segments that latching and intersection finding do, it suffered from the same kind of indiscriminating errors that those two functions make. Thus, while serving as an educational and jazzy exercise, its usefulness is questionable.

CURVES

One of the first decisions made in the development of HUNCH was on the subject of cureves. Curves are somewhat more difficult to handle than straight lines, since they are more difficult to define. A straight line, after all, can be represented by two points. A curve requires at least three, and it is not at all clear which three are appropriate. Furthermore, in a sketch, it was difficult to come to grips with the problem of differentiating a curve from a wobbly straight line or from a very sloppily drawn corner. In Figure 10, for example, it is

not even clear to a human whether that is a sketch of badly drawn rectangle or of a a super-elipse.

As a result of these difficulties, it was initially decided to side-step the issue by Figure 10. refusing curves as valid input. This decision can be partially justified on the grounds that, in the assumed architectural context, curves just do not occur that frequently. Avant guarde architects aside, the vast majority of buildings have straight walls and flat ceilings (Negroponte, 1973). Thus, while ignoring the problem of curves imposed a limitation on HUNCH, the resulting simplification of the goals seemed to get us a long way before it became a problem.

The immediate goal of HUNCH, then, was to look for straight lines. The approach used has a rather interesting side effect if the program is presented a curve. Since corners are defined by finding two line segments and calculating their intersection, a curve becomes simply a very long corner. Once a curve starts, no further action is taken by the straightening program until the curve ends. This fact makes the operation of HUNCH on curves rather unpredictable. In fact, it may be said that the way HUNCH operates is the worst possible way to handle curves there is: HUNCH will make worse decisions about curves than any other method of data reduction from sketches. The most extreme case of

failure is shown in Figure 11. In 11A, HUNCH found a straight line segment at the beginning at at the end of the stroke. They have been emphasized in 11B. It decided that everything in between the two segments was a corner, and calculated the intersection of the two segments, to define the position of the corner between the two segments. The results are shown is 11C.

While the initial assumption about the importance of curves still appears valid, over the years it has become a bit of a thorn in the side. The first thing anyone does in a demonstration of HUNCH is to throw a curve at it. As a result, it was decided to try to find a method for at least recognizing curves. If HUNCH knew a curve existed, that would be sufficient to keep it from being confused. Furthermore, in a sketch, the actual shpe of a curve is not as important as is the recognition of its existence. The user is not likely to care whether the curve is a parabola, circular arc, sine curve, or part of a complex polynomial. He will care if it gets straightened, however.

С

Figure 11.

The initial approach taken to try to recognize curves was to use the mathematics of the line to cause the curves to stand out. The slope of a sketched line (its farst derivative) changes along its length. In the case of a straight line, the variations are small around some constant value. At a corner, the first derivative undergoes a discontinuity. For a curve, the first derivative is constantly changing, smoothly. If one looks at the second derivative of a line, then, that of a straight line will be zero, or nearly so. A corner would have a spike around the discontinuity, and a curve would be identified by some fairly uniform, non-zero value. Unfortunately, due to the method of sampling data, the theory does not work when put into practice. Local variations in the data tend to over-ride the actual data from the second derivative. Figure 12 shows some samples of sketches and the first and second derivatives associated. Any positive value in the second derivative is lost in noise from the data.

Another approach which shows more promise is to capitalize on the poor curve handling ability of the straightening pass of HUNCH. One way to make EUNCE handle a curve better has always been to draw it more slowly, since that would cause the curve to be segmented into smaller kines. In fact, small variations in the parameters used to determine the minimum bend which defines a corner result in rabically different behavior of HUNCH on curves while having only minor effects on the analysis of straight

,

lines. Figure 13 shows a sketch consisting of both lines and curves, and three analyses by HUNCH of the sketch, using different rate parameters. It can be seen that while the variation of the analysis of the straight lines is slight, there are vast differences in the handling of the curves. Note that the handling of the roundef courner (at (a)) is done correctly in all cases. The implications of this discovery are not fully investigated yet. Although this approach was first proposed over a year ago, it was not tried until recently, after the first approach had been thoroughly discredited.

EDITING

Since HUNCH frequently makes mistakes (largely due to objections previously discussed), it seemed desirable to implement a means of editing the resulting structure. Since this editing was ultimately accomplished by explicit commands, their implementation has no direct bearing on the philosophy behind HUNCH. Their description is included for completeness, however.

To edit a sketch one needs the ability to perform four functions: the ability to add a point; the ability to remove a point; the ability to link a line to a point; and the ability to break such a link. The workhorse of the editing package is a program called MOVE. By pointing with the stylus of the tablet, the user can grab a point in the displayed structure and move it

to some other position in the display. If the new position falls close to another point, all the lines attached to that point are latched to the newly positioned point, and the other point is deleted. A point can be slid down a line that it is on until it becomes latched with the other end of the line and the extra point deleted. Points may also be deleted by a program called CLEAN, which eliminates slight bends in otherwise straight lines. Since this process over-rides a decision made in the straightening pass, however, this program is extremely timid

To add a point, there is a program called BEND. If the stylus is pointed at the line to which the point is to be added, the line is broken, and a new point is added to the line at the location indicated. This point may then be moved or latched, as in MOVE

Finally, there is a program called DETACH which breaks links between points. The user draws a line across those lines in the display which he wants detached from a given point. A new point is created, offset slightly from the point in question, and the crossed lines are detached from the old point and latched to the new one. The program decides which point is to be detached from by finding the common endpoint of the lines drawn across. If there is only one line crossed, it decides which end of the line segment the intersection is closer to, and detaches from there.

III. PRESENT

Where Am I Now

Let us step through HUNCH's resolution of a sketch. The user invokes the command DRAW, and draws Figure 14, a rectangle. The drawing was done in one stroke in a counter-clockwise direction from the upper right. The signifies that the drawing is complete, and the file containing the data is closed. The actual data points stored by the program are shown in Figure 15. The distance between the points gives some indication of the rate at which the line was drawn. It can be observed that the first half of the square was drawn at a fairly rapid rate, while the last half was drawn more slowly. Since the pressure sensitive pen was not available when this sample was taken, the pressures associated with the data in this sketch are all zero.

Figure 14.

The sketch is now ready to be examined for straight line segments. This pass at the data is described as separate from the DRAW routine, but there is no inherent reason for the two operations to be separated. With minor modifications, the command STRAIN could be integrated with the draw phase. In that case, the search for line segments could be done "on the fly." Under the present scheme, the straight line finding pass at the data is invoked by the command STRAIN.

The body of the work in finding line segments is bound up in three routines: NOEND, TANGNT, and TRNTST. These routines provide the main interface between the program and the raw data, and they are usually called in sequence, in the order they were named above. NOEND performs lookanead, data management, and parameter setting. TANGNT, a slight misnomer from historical reasons, calculates the arctangent of a line over a segment. TRNTST determines the difference between two successive arctangents.

NOEND is perhaps the most subtly complicated program in the system, since it apparently does so little and is responsible for so much. The first thing NOEND does is to call the routines which calculate the current applicable rate and pressure. RATER does not calculate the rate at every point, since the rate does not fluctuate greatly over a very small area and since the method of calculating rate works over a range of points around the

current one. In order to minimize the effect one anomalous point could have on calculateion of rate, a method of calculation was chosen which examines points near the current point. Rate is considered to be an inverse function of the number of points sampled before the line has travele some set distance, approximately three eithths of an inch. The current point pointer is temporarily backed up a few points, so that the sample will likely fall across the current point, rather than one side or the other of it. Then a points traversed counter is bumped, and the distance between the new current point and its following point is calculated. This length is compared to the fixed distance, and if greater, the calculation is complete. Otherwise, the current point counter is incremented, the counter bumped, and the next distance is calculated. The length of this segment is summed with the length from previous calculations, and the sum is compared to the fixed length. This process is repeated until either the fixed length is exceeded or until the points traversed counter exceeds sixteen. The difference between the points traversed couner and sixteen equals the rate (0-15, a reputable computer-based numbering system). The pressure at the original current point is then normalized to fall in the 0 to 15 range as well, and this value is applied inversely to the rate (see Section II, Rate/Pressure).

This calculated rate is then applied to the user's parameter polynomial,

TANDIF=A*Rate**3+B*Rate**2+C*Rate+D

where A, B, C, and D are parameters unique to the user for this application of the function. TANDIF is the maximum allowable change in arctangent before STRAIN decides that a corner was intended. Thus, the degree of turn which determines a corner is a function of the individual user and the local rate he is drawing at any given time.

The next task NOEND has is to check to see if it is going to run out of data. STRAIN is going to calculate the arctangent of a segment connecting the current point to a point some interval down the data (usually two points away). The reason for using this interval, rather than simply calculating for the segment between the current point and its successor is that such an approach would make the program to susceptible to local jigs in the line. By skipping a point or two in between, extremely local variations in the line tend to be smoothed out, while major changes in direction are unaffected. However, there are two events which must be watched for across this interval. First, since the data exists in a fixed buffer, NOEND must check to make sure that the end of the buffer has not been reached. If this is the case, the ramaining data in the buffer is flushed, and more data is fetched. Second, and more important, the data across the interval: must be checked for "pen-up" flags. Such a flag indicates that the line being looked at has ended. If a pen-up

flag is encountered, a special exit is required to a subroutine called ENDSEG. At the end of a segment, no more calculation can be done on the current line, so loose ends must be tied up, and the program must be reinitialized to begin a new segment. ENDSEG will be discussed later.

NOEND has one more function to perform; it checks for extremes on a line. As it examines the points on the line, it sends each point to a subroutine called EXTRUR. This routine checks to find out if the line has changed direction more than ninety degrees over the last few points. Such an occurrence is called an extreme. If searching for extremes seems redundant to the main-line search for corners, it is. The information developed by EXTRUR is used later by subroutine CFSA (Check For Small Angles), however, and therefore must be found. Note, this EXTRUR is the same as the routine called in the search for extremes defining squiggles.

Finding no ends of lines across the next interval, NOEND loads the x- and y-coordinates of the current pointer value it was handed (or the first point in the new buffer, if the end of the buffer was reached), and returns. The next step is a call to subroutine TANGNT. This routine increments the current point counter by the interval (two points), and gets the x-length and the y-length for the segment between the previous and the new current points. Using these values, TANGNT calculates the

arctangent of that segment, resulting in a value between zero and two-pi. This number is added to the top of a circular list of arctangents for later access, and TANGNT returns.

The third member of the trilogy, TRATST, obviously can not be called until TANGNT has been called at least twice. After the second call to TANGNT, the list of arctangents is handed to TRNTST, which calculates the difference between the top two arctangents on the list. Because of the discontinuity of the arctangent function around two-pi, TRNTST has to worry about lines in this vicinity (a pair of nearly colinear, horizontal lines could return an arctangent difference of nearly two-pi). The exact difference of the arctangents is not as important as the magnitude of the difference, so TRNTST gets around the discontinuity by returning the lesser value of the following functions:

Difference=[Arctangent(1)-Arctangent(2)]

=2*Pi-|Arctangent(1)-Arctangent(2)|

It can be seen that in the horizontal line case, the routine would return the correct value.

The power of these three routines can be shown by seeing how STRAIN uses them in its search for line segments. The first buffer of data is fetched and the currnet point pointer is set to

the first point in the buffer (194,x;540,y in the sample sketch). STRAIN is going to try to deal with two line segments at a time. 1) Since the first point obviously begins a segment, its x- and y-coordinates are saved in an array called THOLD; a pointer to this location is stored as the first element in a second array called CORNER; and a pointer to the point's sequential position in the original data is stored as the first element in an array called LATP. Furthermore, a flag is set in RATE to signal that a new TANDIF parameter should be calculated, and a call is made to Since the interval is currently set to two points, no NOEND. endpoints or end of buffer is encountered. The rate is found to be 14, the x-coordinate 194, and the y-coordinate 540. When stored, the maximum rate reached while drawing the line segment is associated with the line for furture reference. Since this is the first data examined, the associated rate must be the greatest found, so it is set aside for later comparison. A call is made to TANGNT, and the arctangent of the first segment, between the first and third points is calculated (6.27) and stored on the circular list TAN. This arctangent is the only one on the list, so a call to TRATST would be futile at this point. 2) The current point counter is incremented to the second point in the buffer and NOEND is called again. RATER does not need to recalculate yet; there is no endpoint across the next interval, which lies entirely in the buffer. Therefore, NOEND returns with x equal to 98, y at 547, and rate the same as before. The rate is not greater than that previously determined, so the saved

value is unchanged. TANGNT is called and adds the arctangent of the second segment (6.22) toTAN. TRNTST is now called; it returns the magnitude of the difference between the two arctangents, DIFFERENCE=(5. This difference is compared to TANDIF, which for this user drawing at rate 14 has a value of .19. The change in direction falls well below this value, so no start of corner is determined. STRAIN returns to 2), increments the current point counter, and continues.

3) This loop continues until point 7 is reached. The x- and y-coordinates of point 7 are -6&7 and 531, respectively. The arctangent of the segment between points 7 and 9 is .25. At point 8, however, the arctangent has changed to .62. Meanwhile, the rate has changed to 15, so the value of TANDIF is .20. Thus, when TRNTST returns a change of arctangent of .37, something happens.

4) The significant bend in the line indicates that the line is entering a corner. The current point counter is backed up one point, so that it points to the end of the first straight segment. The x- and y-coordinates of this point are stored in THOLD, and a pointer to this data is stored in the second element of CORNER. The current point counter then goes into DATP.
5) A call is made to subroutine LINE, which calculates the slope of the line segment defined by the points indicated by the first two elements in GCRNER. This information will be of use later, so the slope is stored in the third element of CORNER.

The maximum rate reached across the segment (15) is stored in a location called RMAX1.

Because of a tendency to make rounded, rather than sharp, corners when sketching, it can not e assumed that a corner occurs at a single point in the original sketch. To cope with this problem, STRAIN searches for the straight line segments on either side fo the corner. Using these segments, then, the algebraic intersection of these lines is calculated, and this intersection is edfinde to be the corner connecting the two segments.

6) This method for calculating corners renders the data between line segments valueless. The collection of points which make up the corner in the raw data are useful only where they help to define where the second segment begins. Just as the corner was defined to begin where the change in arctangent was greater than TANDIF, the corner is defined to end and a new segment to begin where the delta arctangent falls below this limit. Thus, once the start of the corner is found, a new cycle of calling NOEND, TANGNT, and TRNTST is begun. Because the current point counter was backed up one point, the first results of the first cycle are the same as those described in 3) shove. Since .37 is greater than TANDIF, the corner is continued. The next cycle, on point 9 results in an arctangent of 1.66. The difference between this value and the arctangent of the previous segment is .44, which is still greater than TANDIF.

7) This cycle is repeated until between points 10 and 11 the difference in arctangents has fallen to .13. This small change in direction indicates that a new segment has started. 8) The current point counter is backed up one point to get it to the first point in the segment (since the difference in arctangents was small, the segment must have started with the previous point). This point is preserved in THOLD and CORNER. CORNER is examined to see if it contains information about two segments, so the corner between the segments can be calculated. In fact, only one segment has been found and the starting point of a second one. Since no calculation can be made until the second segment is found, STRAIN returns to 2) to search for it, saving the data in the appropriate locations in CORNER and THOLD.

TABLE A

.

DATP	CORNER	THOLD	
		x	У
1	->	194	540
7	->	-687	531
-	1	-	-
11.	->	-7:43	431
20	->	-727	-7 91
-	-4668	-	-
23	->	-719	-745

By the time the routine gets back to 8), the current point counter has made its way up to 23, and a second corner has been delimited. DATP, CURNER, and THOLD have the values shown in Table A.

There are now two segments, so their intersection can be calculated. An examination of Table A shows that one would expect the corner to fall between -687 and -743 in the x-direction, and between 531 and 431 in the y-direction--approximately. Once this intersection has been determined, the exact endroints of the first line segment in the sketch are known, and may be saved. Therefore, let us digress from the original sketch and see how this step is performed. First, the angle between the two segments defined in CORNER 9) is checked to see if it is very small, in subroutine CFSA (Check For Small Angles). For very tight angles, such as occur in overtracing, the precision of the arithmetic permitted by the computer was found to be inadequate. The calculated intersections of lines at small angles were frequently found to be highly inaccurate. Is a result of this difficuly, the actual raw data was deemed preferable to calculated data for determining corners at small angles. Calls to EXTRMR from NOEND have previously determined if any extremes exist along the line so far. CFSA first determines the arctangents of the two segments defined in CORNER, then checks the difference between these arctangents to see if the two segments qualify. It then looks to

see if there are any extremes. If so, the point of interest must have an associated point number which falls somewhere between the indices of the midpoints of the two segments in CORNER. The "average" point numbers of the two segments are calculated, therefore, and the list of extremes is searched for one with an index which falls between these values. If one is found, and if the angle between the segments is small enough, then CFSA returns the x- and y-coordinates of these extremes as the location of the corner between the two segments. Parenthetically, if no such extreme is found, but the angle is still small, then the value returned is the second and of the first segment. If the angle is not small, then CFSF just does a little house-cleaning, discarding extremes already passed, and returns.

In the case of the sample sketch, while an extreme was found, the angle between the segments is nearly ninety degrees. This angle is too large to be considered, so CFSA returns no value. b0) The corner must be calculated, a task performed by CFIX. Since two points on each of two line segments in CORNER are known, the formulas for each of the lines (Y=A*X+B) can be calculated. "A" for each line is the slope, calculated by LINE, contained in slot 3 and slot 6 of CCRNER for the first and second lines respectively. "B" can be determined by: B=Y-A*X1. This equasion can be calculated by taking either of the known points in CORNER, getting its x- and y-coordinates, and substituting. Once the formulas for the two segments are known, another fact

can be applied--at the intersection, X1=X2 and Y1=Y2. Therefore:

```
A1 + X + B1 = A2 + X + B2
```

and:

B2-B1. X(intersection)= ------A1-A2

Once X(intersection) is known, it can be substituted into the formulas for either of the lines to determine Y(intersection). In the interest of accuracy, in fact, X(intersection) is substituted into both formulas, and the resulting Y which causes the least change in arctangent from those of the two segments in CORNER (there is bound to be some slight adjustment) is used as Y(intersection).

The above description is true in most cases. However, there is a special case which arises when one of the lines is nearly vertical, as is the case in the second line segment of the sample sketch. When a line becomes vertical, its slope becomes infinite. Dealing with infinite, or large, numbers in a computer becomes difficult, since one begins to encounter round-off and overflow difficulties. There is one saving grace, however. A line is vertical because there is only a small variation in its x-coordinate across its length. In this case, there can be little error in assuming that the x-coordinate of the

intersection is the same as the x-coordinate of the point of the vertical line segment nearer the proposed corner (in the case of the sample sketch, the x-coordinate of point 11, x=-743). This value can then be substituted into the formula for the other line in CORNER, to determine the y-coordinate of the intersection. This approach is the one which CFIX takes, returning the values X(intersection)=-743, Y(intersection)=530. If both lines are nearly vertical, then the discovery of an implied corner was a mistake. The two segments are merged into one, and the program returns to look for a second segment.

Since both ends of the first segment have been determined, 11) the first segment can be saved by a call to LINER. The data about straight line segments is stored in a variably sized structure; a more complete description of the data structure can be found in Appendix I. Generally, the data which is stored about the endpoints is as follows: the x- and y-coordinates of the two endpoints of the line segment; the index of the position in the raw data where the point was first discovered (the first point in the stroke, or the beginning point of a corner); and a flag indicating whether the point was immediately preceeded or followed by a pen-lift flag. The line is stored as a relation between the two endpoint, holding information about the maximum rate and pressure attained while the line was drawn. Absence of such a relation means that no line was discovered between two points. A point can have as many line relations associated with it as necessary to represent the picture, but in the current

approach, a point can have either one or two lines related to it after the initial pass at finding straight lines. On the segment just discovered, the first point will have a single associated relation, one with the second point. The second point, being a corner, is related to the first point (the same relation, in fact), and eventually to a third point which will define the second corner discovered. Since no latching is done at this pass, there can be no more than two lines associated with a point.

12) Once the segment has been saved, it can be discarded from CORNER, THOLD, and DATP. The beginning point of the second segment is shifted to the first position in CORNER, and the remaining data is shifted down accordingly in the various arrays.

Then the pointer in CORNER to the first point in THOLD is changed to point to the second point just saved by LINE. This second point will be used instead of the numbers in THOLD as one end of the next segment defined, the next time LINE is called. The common endpoint will thus be defined.

The state of the program has now returned to where it was after the first corner was discovered. The only difference is in the data in the various arrays (see Table B).

TABLE B

DATP	CORNER	THOLD	
		×	У
11	->P01N1	r(2)	~~~~
200	->	-727	-751
-	-4568	-	-
23	~ >	-719	-745

As it did before, therefore, STRAIN loops back to 2) and continues. The second corner is determined, and because the rate slowed toward the erd of the line, the third turn in the line is broken into several corners. STRAIN has now gotten to point 84 looking for a corner to end, so it can go to determine the seventh segment. When it picks up point 84 in a call to NOEND, however, it is discovered that the data element is a pen up flag; the line has ended. Since there are no more corners to be found on this line, the program branches to ENDSEG, which deals with end conditions of lines.

13) ENDSEG basically deals with the end of a line the same way the beginning of the line was handled in 1). Since the last point in the line obviously ends a line segment, the current point counter is backed up one before the pen-up flag. A pointer to this point is placed in CORNER, and its index is saved in

DATP, along with the pen lift flag (Note that since this point will be disposed of immediately, there is no need to save its coordinates in THOLD. There is no danger of the data being overlaid by a refill of the buffer). LINE is called to figure the slope. Two segments have been determined thus, so the corner between them can be calculated by a call to CFSA or CFIX. Then the first segment can be saved by LINER.

14) Finally, since the end point of the stroke is known exactly, from the data, no calculation needs to be done to determine the last point of the last segment. It can be saved directily by LINER. Once this operation has been done, all the information which can be determined directly from the stroke has been dealt with. CORNER is cleared, and STRAIN returns to 1) to look for more data.

There are two other possible cases which might have to be dealt with by ENDSEG, however. One is that the beginning of a corner has been found, but the curve of the corner has not terminated at the point where the pen lift flag is encountered, as is the case in the sample sketch. An this instance, there is little choice but to ignore the data occuring after the corner began. There is no way to calculate a position for this final corner, so it is simply fropped. This rarely results in any major distortion of the sketch, but occasionally, an entire final line is dropped if the line is sufficiently curved to fool the program (See the discussion on curves, in Section II). The calculation for this

case is essentially the same as in 13). The second case, which occurs more frequently, is that of a single straight line segment. If the pen is lifted before any corner is drawn, ENDSEG has no interimecorner to find. In this case (i.e. CORNER only has two or three cells filled in), EFSA and CFIX are not needed, and the two points (first and last on the stroke) can be saved directly by LINER. In either case, all the information which can be found on the stroke is done with and CORNER is cleared.

When STRAIN returns to 1) the pick up another line, it discovers that there is no more data; it is done. The completely STRAINed sketch appears in Figure 16. The data is stored in a structure of points and lines described in Appendix I, and is accessible to other programs for further analysis. The above description covers essentially all the steps required to create this structure, covering all the special cases. The only likely extension is that which will enable the system to recognize and describe curves.

IV. FUTURE

Where Do We Go from Here?

DESCRIPTION OF A SKEICH

Having examined all that has occurred since HUNCH was begun, let us go back a bit to look at the original goals, particularly, the development of a hierarchical description of the sketch. The output of the straightening pass at the data is a two level structure of lines and points. While this structure makes the data much more manageable, it is not much of a step toward a description of the sketch in any normal human sense.

To elucidate what is meant by "a normal human description," let us try to generate one from a particular sketch. Eigure 17 is a sketch of a house plan, much simplified. A verbal description which one might expect from a human is as follows:

1. It has 5 rooms

2. Rooms 1 and 6 have access to the outside; room 6 through one door, room 1 through two.

3. All the rooms are rectanglular, having four walls, except rooms 3 and 6 which have six walls each.

4. Room 1 is connected to the outside through (doors in) its left and right walls, and to room 2 through its bottom wall.

Fügure 17a.

,

Higure 17b.

5. Room 2 has access to room 1 through its top wall, and to rooms 3 and 4 through its bottom wall.

6. Room 3 is connected we room 2 through its top wall, and to rooms 4 and 5 through two doors and one door, respectively, in its bottom wall.

And so forth.

This verbal description is not complete. One might wish to describe the exact configuration of rooms 3 and 5, to enumerate which walls were on the perimeter of the building and which walls were shared by the various rooms. The verbal description does not even specify a unique house plan. However, it does supply sufficient information such that some specific questions could be asked about the relationships between the rooms ("What rooms would I cross going from room 1 to room 5?"), about the overall accounting for the building ("How many rooms? doors?"), and about specific parts of the sketch ("ow big is room 3?"). (Note that while the last question is not specifically answerable from the description, the area which has to be examined to determine the answer is considerably restricted.

In order to generate such a description, a person (or program) needs to know what kinds of elements might be found in a sketch, what kinds of questions are going to be asked about these elements, and how to recognize the various elements represented in the sketch. In the sample sketch, there are basically three elements: walls, doors, and rooms. The kinds of questions one

might be asked are about position, relative size, and relationships between elements. If the information is stored in some reasonably structured way, thele questions ought to be easy to answer, once the various elements have been found.

The recognition of elements is perhaps the most difficult requirement. In the sample sketch, three different representations were used for doors (Figure 17b). In this simple case, then, what are some of the cues people use to identify the three elements which comprise the sample sketch?

To find the rooms in a plan, one would look for areas enclosed by sets of lines which define walls and which do not enclose other rooms.

Walls are characterized by sets of fairly long colinear, continuous lines which appear at the edges of areas which are rooms. They may have dcors in them. They comprise most of the lines in a plan sketch.

Doors may be characterized by the fact that they appear in walls. They may be represented by a break in an otherwise colinear wall or a set of (probably) short lines bracketing a break in the perimeter of a room. These short lines will probably be perpendicular to the lines which make up the wall in which the break occurs. Finally, there may be a line about the same length as the break in the wall which lies at a small angle
to the wall in which the break occurs, and which shares a common end point with those points making up one end of the break.

The seeming circularity of some of the definitions (a wall is an edge of a room, and a room is limited by its walls) is an asset of such a description. One can apply one rule tentatively (take a guess at a room, for example), and then use the consequence of this guess to draw other conclusions. Eventually, one will either come to a sclution, or because of the circularity of definition, one will arrive at a contradiction. If the description were completely directed and acyclic, one could drift farther and farther from the facts after an erroneous guess without ever noticing that anything was wrong.

In order to have a computer program which can construct a descriptive structure for a particular class of sketches, then, one must be able to specify to the program what features to look for and how the program is to go about recognizing these features. The process of recognizing features seems to require the application of those functions already discredited in earlier discussion: latching, horizontalizing, verticalizing, parallelizing, perpendicularizing, conlinearizing, normalizing, and continuing. While this is true, in this case the functions are applied in some context. Earlier attempts were simply exercises in investigating how the HUNCH approach could be applied to solving these various functions. The result was a

program which knew a rule and which applied that rule under all conditions. The effect of this method was that the rule was applied under conditions where it was possible but not appropriate. In the proposed solution, the program would have some idea about when the rule could reasonably be applied while searching for a specific item.

Using this system, the user would name a set of features which would be searched for in a particular class of sketches. The names of these features will provide the means of describing the sketch, and relationships between the features will provide clues to the hierarchy for the description (a kind of precedence relation). Once the features have been named, the user would describe the attributes of each feature which would be searched for in a given sketch. In general, a feature consists of a set of points, or lines, or perhaps other features, or a combination of these elements. Identifying whether a part of a sketch is a particular feature involves matching elements of the sketch to attributes of the set describing that feature. For example, an attribute of a one element set consisting of a straight line segment is the direction in which the segment lies; another attribute is the length of the segment. The process of telling the program how to recognize a particular class of sketch involves naming a set of features and then describing attributes of the sets which determine a feature. This description will provide a structure against which sets of lines and features will be matched by the program providing the description of the sketch.

EXISTING KNOWN SETS

After a sketch has been processed by STRAIN, the output of the operation can be considered to be two sets: a set of lines and a set of points. These two sets are the primitive sets from which the rest of the description will be derived. Furthermore, the elements of these sets each have their own set of primitive attributes.

The most basic element of a sketch is a point. It has two primitive attributes: position and sequence. The initial value of position is the obvious one--simply, where in the coordinates of the tablet the point lies. Later analysis might require changing this value (a three-dimensional mapping, for example). Sequence can be taken to be the temporal position of the point. In the process of straightening the sketch, the index of a point, in the original steam of data, which is the start of a corner or an end of a stroke is saved and associated with that point in the straightened data structure. These two basic attributes, then, provide a one-to-one mapping from a point number into a three-dimensional space/time volume.

There is another attribute of a point which should be considered; that is, it can define one end of a line segment. In the straightened data structure, the role this attribute can play is fixed, since there are at most two line segments which can have a given point as an endpoint. This attribute was not

included in the discussion of primitive attributes, however, because in defining features, one might wish to construct lines not appearing in the original sketch. Thus the manifestation of this attribute might change under varying circumstances. More properly, this attribute of a point will be reserved for the discussion of the relationships between points.

A larger set of attributes is associated with a line segment. As with points, there are two obvious primitive attributes: direction and magnitude. The direction can initially be taken to be the arctangent of the line relative to the positive horizontal direction of the tablet. Its magnitude is its length, using the tablet coordinate system. As with the position of a point, the value of either of these attributes might have to be changed if the line is mapped into three-space. In the process of straightening, the fastest rate and the greatest pressure reached while drawing a particular line are associated in the structure with the line. These attributes suggest others which might be considered at some later date, if the means of input should be modified. One can imagine a line having width, color, texture, even thickness. Finally, as the inverse of the point attribute, two attributes of a line segment are the points which define its ends. Unlike the point example, the two endpoints of a segment are fixed, so these attributes are unchanging.

Given these two sets, some analysis of a sketch is possible, as

long as that analysis is related to some absolute scale. One might wish to examine all the lines longer than a certain minimum length, or, those lying in a particular direction. The process of looking for horizontal and vertical lines requires just this sort of analysis. Most analysis requires the ability to distinguish relationships between sets of points or lines, however; there is no absolute background against which the measurement takes place. Because of this need, there must be the capability to describe relationships between points and lines which can be assigned as attributes to sets. These primitives are discussed in the next section.

LINE SET ATTRIBUTES

In describing the features of a sketch, one uses words like parallel, perpendicular, angle, corner, near, and so forth. It is proposed in this section to define a set of primitives which can be applied to lines to test them for these descriptors, and to describe how the procedures which establish the existence of these attributes might be implemented. Given these primitives (and some other, more general ones described in a later section), one can describe the attributes of a set of element, which would make up a feature of a sketch.

PARALLELISM: In most sketches, there are preferred directions. In the sketch of the house plan of the average house, the great

majority of the lines would fall into two perpendicular directions. In an axonometric sketch, there would be three preferred directions. A histogram of the direction of the lines in a sketch versus either the number of occurrences of a given direction, or the total length of line in a particular direction, or a combination of both, will show peaks at the various preferred directions with a fairly narrow standard deviation (Figure 18). It is a simple matter to divide th sketch into families of lines, using the valleys between the preferred directions as division guide-lines. One could user rate and pressure to influence the decision, as far as allowable deviation is concerned. Some sort of average direction could be used to define the family which was implied, and this identifier for the family could be associated with each line in the straightened data structure. A set of lines could be considered parallel, then, if they all belonged to the same family.

Figure 18.

COLINEARITY: Once the family of a line is determined, the family identifier can be used to calculate the x- or y-intercept of that line. The result of this calculation could also be associated with each line in the structure. It is likely that intercepts would tend to fall in groups as arctangents do. A set of lines could be said to be colinear, then, if the set had the attribute of parallelism, and if each element of the same, or nearly the same, x- or y-intercept. Again, the definition of near could be subject to rate and pressure data influence.

In the strictest sense, a set of lines can be CONTINUITY: defined to be continuous if the set is conlinear, and if there are no "breaks" in the line. More specifically, a line is unbroken if there is never a case where, scanning from left to rght (or from top to bottom), the right-most end of the line segment is encountered before the left-most end of another line segment is found, if there are still line segments to the right. Normally, one would wish to include instances of "near continuity," where the break in the line is small, in this definition of coatinuity. This modification of the definition is somewhat risky, since it is prone to the same difficulties encountered in earlier latching attempts. A way to get around this objection would be either never to apply the weak continuity rule until other analysis had failed to provide a satisfactory result, or to flag a weakly continuous set, such that later difficulties might be resolved with a minimum of searching for

the error. In any case, it should be noted that this form of latching is only applied in a fairly explicit set of circumstances: the distance is small, and the lines to be latched are colinear.

With the above primitives, one could make a generous stab at reducing the complexity of a heavily overtraced sketch. A "Meta-line" could be defined as a feature of the sketch having the attribute that each Meta-line in the sketch would consist of a set of continuous line segments. The endpoints of the Reta-line would be the left- and right-most points which were attributes of the lines making up the set (in some cases, the tor- and bottom-most points would be used), and the deviation in the y-intercept of the lines in the set could be used to define a width for the Meta-line. Once this information had been determined, further analysis could proceed exclusively at the Jeta-line level. It would not usually be the case, however, that an analysis would proceed in an exclusively bottom-up manner, as described above. The example does show how the attributes of a set night simply be related with fairly powerful results. SEQUENCE: If the set of points, a point which ends a line segment must be preceeded immediately by the point which began the segment. Similarly, the following sequential point is either the end of a line eminating from the point in question, or it is the beginning of the next line to be started. At any rate, the straightened data structure contains the complete sequence in

which all the lines in the sketch were drawn. Two lines are in sequence, then, if the second point in one line is either the first point on the other one, or it immediately preceeds the first point in the second line--or vice versa. A Dashed-line could be defined as a set of lines which are colinear, non-continuous, and in sequence.

The intersection of two lines forms an angle. ANGULARITY: Angles seem to perform two functions in a sketch: they permit definition of relationships between non-parallel lines ("line A is perpendicular to line B"), and they indicate intended changes of direction (as at corners). An angle provides a relationship between two (sets of) lines, and it consists of two defining elem nts: a pair of lines or line sets and a magnitude. The position of the angle can be taken to be the point of intersection of the two lines. The magnitude of the angle between line A and Line E can be taken to be that solution of the following two equasinons which is non-negative and less than PI: Magintude=B.direstion-A.direction or Maginiude=PI+B.direction-A.direction Note that this method of measureing the magnitude makes the value of the result depend on which line is mentioned first; #ngle.hagnitude(lineA,lineB) = PI - Angle.Magnitude(lineB,lineA).

Since an angle has two sides, this distinction is important. To compare the magnitudes of two angles, he must first be certain that he is measuring the angles from the same side.

Where the corner between two lines exists, this definition of an angle is fairly simple to handle. In those cases where two lines do not physically intersect, however, the problem becomes more complex. One would like to create a point for the intersection, and then construct lines from it to the ends of the two lines whose angle is to be measured ("Construct point P, such that line(P,B) is colinear with line(A,B) and line(P,D) is colinear with line(C.D). . . "). This desire leads to the need for the ability to describe a "working point" and a "working line." Two functions are needed to modify ; the point-line structure: the first, P=Setpoint(X, X), adds a point to the structure at location (X,Y) on the tablet (or perhaps some modification of the above to allow for three-dimensional positioning). The arguments of the function would serve to establish the position attribute of the element. Since the point did not appear in the original data, it has no sequence attribute. A pointer to this new point would be returned in P. The second function is L=Line(A,B); it constructs a line between points A and B and assigns L a pointer to it. The direction and length attributes can be calculated, while other attributes (rate, pressure, and so forth) are undefined. Once a point or a line has been created, it can be taken as an element in any set defined by the attributes described above. Thus, one might examine a sequence of points to see if they were colinear by constructing lines between them and then examining the lines. Similarly, the distance between two parallel lines segments could be found by constructing a line perpendicular to the lines from

one of the endpoints of the lines. By adding to the structure the intersection point of this line with the other of the parallel lines, the length of the constructed segment is determined. The value of this length is the distance between the two lines.

OTHER KNOWN SETS

While experimenting with primitives to describe features, one keeps arriving at a need to define a set with an attribute of area. For example, in the house plan, a room is an area enclosed by walls. Similarly, in an axonometric sketch, a surface of a solid can be described as an area enclosed by edges. It seems necessary, then, to define an extension to the current structure for a set of areas.

The attributes of an area are similar to those of a line. Corresponding to the line's attribute of length is the area's attribute of magnitude--the amount of area encompassed. This attribute can be defined by the number of tablet coordinate squares enclosed by the area. Corresponding to the endpoints associated with a line is the perimeter of the area. Unlike the endpoint attribute, which has a fixed number of elements, the perimeter of an area consists of an indefinite number of elements; it is a variable length list of pointers to features in the sketch which defines the set of elements containing the area.

Note that the set of elements defining the perimeter might change as the analysis of the sketch proceeds. The perimeter of an area might initially consist of a set of line segments. As these segments are absorbed into the description of features of the sketch, these features would be substituted for the lines. Thus, when the lines defining the room in a house plan are included in the description of the walls in the plan, the walls become the defining elements of the room. With the perimeter attribute of an area, however, it seems reasonable to extend the attributes of a line to include the attribute that a line is an element of the perimeter of an area, just as a point was described as one end of a line segment.

Other attributes which might be associated with an area are reflected in those of a line. An area could have an attribute of orientation, which would be defined as the direction perpendicular to the plane in which the area lies. Initially, the orientation of all areas would be the same--perpendicular to the plane of the tablet. In the case of a sketch of a three-dimensional object, however, this orientation might change (as might the magnitude attribute). While an area does not have either the attributes of rate or pressure, it could have color, texture, or thickness.

Having gone this far, it seems reasonable to propose that a further extension to the structure be added to permit the

definition of volumes. Just as the description of features in two dimensions led to the necessity of describing areas, it is inevitable that the need for descriptions of volumes will arise. Like areas, a volume would have the attributes of magnitude and perimeter, although the perimeter would consist of a set of areas. Orientation does not seem to be relevant in the description of a volume, but color and texture seem possible, along with density, center of mass, opacity, and just about anything else.

FEATURES AND SET ATTRIBUTES

Features may be defined by enumerating the attributes which must hold for elements of the set comprising the feature. Some of these features may be defined in terms of those attributes already described, as the Meta-line was defined. There are other attributes which will prove useful, however, which operate on sets in general, rather than on the specialized set described above.

BOOLEAN OPERATORS: The three operators AND, OR, and NOT specifically, may be used either as modifiers to attributes or as operators on sets. As an attribute modifier, the operators can specify that a particular condition may NOT occur, that either of two conditions may hold, or that a pair of attributes must hold

("colinear & ¬continuous V ¬colinear. . ."). As a set operator, the booleans would act as the Union, Intersection, and Set-Subtraction operators, permitting the concatenation of sets and the subsetting of sets (Wall::=Wall & Door V Wall & Wall. . .). The effect of such an operation on the description structure would be the addition of an element with links down to those elements being concatenated (or in the case of a subtraction, the creation of two elements linked to the original set from below).

NUMBER: A set may have to have a particular number of elements (or features). There must be a means of specifying that number, then, and of comparing a number of elements against that number. A rectangle, for example, implies an area with four edges in its perimeter set. Once an area has been isolated, the number of its edges must be compared to the number of edges specified for the set, to see if it is less than, equal to or greater than the required number.

Similarly, since some attributes return values other than boolean values, the relative magnitude of these values should be comparable, addable, subtractable, and so forth. This requirement implies that either numbers of elements or value of attributes must be countable and able to be operated on by the normal arithmetic functions.

SIMILARITY/EQUALITY: Two sets are equal if all the attributes

of both sets and of all the elements of each set are equal. Two sets are similar if the values of the specified attributes are the same. In the absence of an attribute, a particular feature is similar to a feature name if it is in that feature class. Thus:

rectl==rect2 if everything is the sime. rectl<=>rect2 if rectl.width=rect2.width & rectl.length=rect2.length rectl<=>Rectangle if rect1 is in the class of features called Rectangle.

These working definitions permit the comparison of sets by permitting the user to define what he means by two sets being similar. In a case where it is desirable to define features which are similar but which may have minor variations, this ability can greatly similify the definition process.

MEMBERSHIP: A particular element has the property that it either does or does not belong to a particular set. In the hierarchical description, if an element belongs to a set, there will be a vertical path from that element linking it to the set name (Wall e Area.Ferimeter).

RECURSE

In order to demonstrate low the functions defined above might operate, the features mentioned in describing the sketch at the beginning of this section will be defined in terms of these functions. The sketch had basically three features: Rooms, Walls, and Doors. The third paragraph on page 72 gives a verbal description of what a person might look for in recognizing these features. Table C gives a translation of this description into the set of attributes defined in this section. In order to complete this definition, three auxiliary features were defined: Breaks, Clusters, and Metalines. The description of a door mentioned that it was indicated by a break in a wall. This description implies that what is meant by a break is known, so it has to be defined as a feature as well. The other two features are defined merely to help simplify the descriptions. A meta line is defined formally in the same way it was described earlier in the text. A cluster is simply a collection of points no farther distant from one another than some distance, whose magnitude is defined by the rates of the lines which the points defire.

The notation used to define the features is a sort of bastardized set notation. A glossary of the notation is given in Table D. While the circularity of the definitions for Door indicates that more work is desirable to make this method of

describing features more humane, it does show that such a method is a viable approach to the problem. This statement is reenforced by the fact that is had no idea about how the formal definition was going to be implemented until after. I had defined all the sets described in this section. Since I was able to do the formal definition using only those sets, it can be argued that they are at least sufficient to accomplish the job at hand.

TABLE C

```
Room::=R | R<=>Area & ( \landRl | Rl<=>Room & (R & Rl) \land== R)
         *A room is an area which contains no other rooms
Room.Perimeter<=>R.Perimeter
Wall::=W | W<=>Metaline
    V Door
    V W1 & W2 | \lambda1<=>\lambdaall & \lambda2<=>Wall & \lambda1\Lambda==W2
           & Il e Wl & L2 e W2 & {L1,12}.Continuous
         *F wall is the concatenation of two continuous walls
    V W | R<=>Room & W e Room.Perimeter
Metaline::=S | S=={L | L<=>Line} & S.Continuous
Metaline.Direction<=>L.Lirection
Metaline.Endpoint=={Fl,P2} | 11 e S & 12 e S
& Pl e Ll.Endpoint & P2 e L2.Endpoint
         & (AL3 | 13 e S & Pl e 13. Endpoint
               \& P1.X < P3.X \& P2.X > P3.X
         *The endpoints of a Metaline are those with the Maximum
               and Minimum X-coordinates
Metaline.Length<=>line(Pl,P2).length
Cluster::=C | C=={P | P<=>Foint} & Pl e C & F2 e C
    & Ll | Pl e Ll.Endpoint & L2 | P2 e L2.Endpoint
    & L=Line(Pl,P2) & L.Magnitude < F(Il.Rate,L2.Rate)
         *A cluster is a set of points such that the length of a line
               between any two points in the set is less than some
               function of the rates of the lines of which those two
               points are endpoints
```

(Table C, continued) $Break::= E \mid B == \{C_1, C_2 \mid U \mid <=> C \mid uster \& C_2 <=> C \mid uster \& C_1 \wedge == C_2$ & (¬L | L<=>Line & L.Endpoint e 🗉 & L.Endpoint e C2) & (¬(3 | C3<=>Cluster & Fl Cl & F2 e C2 & P3 e C3 & Ll=Line(Pl,P2) & L2=Line(Pl,P3) & L3=Line(P2,P3) & {Ll,L2,L3).Colinear & Ll.Magnitude > L2.Magnitude & Ll.Magnitude > L3.Magnitude) *A break is a set of two clusters with no line having one endpoint in each cluster, and with no cluster lying between the two clusters Ereak.Direction<=>Ll.Direction Loor::=D | L=={C1,C2 | (Cl<=>Cluster & (P | P e Cl & P e Ll.Endpoint | Il $\in W \& W \leq \gg$ []) & C2<=>Cluster & (2 | P e C2 & P e L2.Endpoint | L2 e W & W<=>W & {Cl.C2}<=>3reak & {L1,L2}.Colinear) *A door is a pair of clusters which have as elements the endpoints of a pair of colinear walls surrounding a break V ((S1 | S1<=>Metline) & (S2 | S2<=>Metaline) & {Sl,S2}.Parallel & Cl<=>Cluster & C2<=>(luster & {C1,C2}<=>Break & Pl | Fl e Sl.Enapoint & Pl e Cl & P2 | P2 e S2.Endpoint & P2 e C2 & Line(Pl,P2) e R.Perimeter | R<=>Room & D.Direction-Sl.Direction= +-Pi/2 } *or a pair of clusters forming a break which are endpoints of a pair of parallel metalines such that a line connecting the endpoints is on the perimeter of a room and perpendicular to the direction of the metalines

(Table C, continued)

V D1 | D1=={D,L | D<=>Door & L<=>Metaline & Cl e I & C2 e D & P | P e L.Enipoint & (P e Cl V P e C2) & L.Direction-Loor.Direction < Fi/4} *or a door with a line projecting from one of its clusters at an angle less than 45 degrees

Door.Direction<=>Break.Direction

TABLE D

Symbol	Meaning
::= ::=	is define. to be
{•••}	is the set
1	such that
V	or
Śr	and
-	not
e	is an element of the set
ххх•ууу	the attribute yyy of set xxx is true
= =	the set is equal to
<=>	the set is similar to
()	group delimiters (to aid in reading this stuff)

REFERENCES

- Ellias, T.O., J.F. Heafner, and W.L. Sibley, THE GRAIL PROJECT: AN EXPERIMENT IN MAN-MACHINE COMMUNICATION, The Rand Corporation, Memorandum RM-5999-ARPA, September, 1969.
- Negroponte, Nicholas P., THE ARCHITECTURE MACHINE, MIT Press, 1970.

, MACHINE RECOGNITION AND INFERENCE MAKING IN COMPUTER AIDS TO ARCHITECTURE, Proposal to the National Science Foundation, 1973.

______, and James Taggart, "HUNCH--An Experiment in Sketch Recognition," EIRA PROCEEDINGS, edited by William Mitchel, January 1972. (also in COMPUTER GRIPHICS, edited by W. Giloi, Berlin, 1971).

- Saderholm, B.V., "Paper 'Keyboard' Runs Experimental IBM System," IBM Release #03-030873, Yorktown Heights, New York, March, 1973.
- Sutherland, I.E, "Sketchpad: A Man-Machine Graphical Communications System," AFIPS Proceedings, 1963.

Appendix I EXISTING DATA STRUCTURE

Appendix I is reprinted from MACHINE RECOGNITION AND INFERENCE MAKING IN COMPUTER AIDS TO ARCHITECTURE EXISTING DATA STRUCTURE

In any complex system, it usually becomes true sooner or later that there is a demand for a data structure with a varying number of elements of varying size. The data structures available from Fortran are inadequate. Consequently, the General Purpose Structure was developed for users of the operating system. The structure is created and modified by a set of function calls which can be made from Fortran to the system. These permit creation and deletion of structures, and they permit the addition, subtraction, modification and accessing of data elements in the structure. The structure is created in free storage made available by supervisor calls to the operating system, and, therefore, is limited in size only by the physical size of the memory of the machine in which it resides.

The structure has three constituent elements: a Structure Pointer Block, a set of points, and a set of links. They are related in a somewhat hierarchial fashion. Since there may be more than one structure in the system being accessed at a given time, they are separately identified by a Structure Pointer Block. Each Block consists of six data elements containing information about the particular structure: a pointer to the first point of the structure; a count of the number of points in the initial point block of the structure; a flag indicating if any points have been dropped; the size of a link, or zero, if link size is not fixed; the virtual point number of the last point created; and a pointer to the next Structure Pointer Block available in the system, if there is one.

Points are currently allocated in blocks of seven at a time, in order to increase the ease with which they are manipulated. Each point consists of four data items, two of which may be accessed by the user as general purpose arguments. (Typically, they are used as the x- and y-coordinates of a point in

÷

a display of some sort. Extending the number of arguments from two to some higher number is a simple extension being contemplated.) The other two arguments are a pointer to the first link associated with the point, and the point's number. As points are created, they are assigned a point number, sequentially from one for the first point created. In order to avoid confusion as more points are added and deleted, this number is fixed. Thus, even though a slot in a point allocation block may be reused, the numbers of the points on either side of it do not change, and the numbers of new points as they are created are monotonically increasing. The virtual point number of any newly created point wil be one more than the number of the last point created as indicated by the Structure Pointer Block, and the Block will be modified accordingly.

A link is a means of establishing a relation between two points. A request to add a link between two points appends a copy of the link requested to the link chain pointed to by the third data field in a point. A link consists of at least two fields: a pointer to the point being linked to, and a pointer to the next link on the chain. The size of the links in a structure may be constant or varying. If at creation time, the structure is declared to have uniform links, the size of a link is stored in the Structure Block Pointer, and that size is used throughout. Otherwise, the size of a link is declared at the time the link is created and stored in a field of the link itself. Links may have between four and sixty addressable fields. A field is four bits wide (and thus may contain a number beetween 0 and 15), and fields may be addressed singly or in groups of up to four (generating a sixteen bit wide field). The first four fields in a link are used for the pointer to the point linked to. The next four are for the next link pointer, but they are not addressable. The next field contains the link size if it is non-uniform. The remaining fields are free to be used for storage of any information about the relationship between the two points desired.

In order to create a structure, the

L

user makes a function call of the form: PTR=CONSTR(size) where size is the size of the links in the structure if uniform, or zero if varying. CONSTR sets up a Structure Pointer Block, allocates space for the first seven points, and returns to PTR the address of the Structure Pointer Block created. All further calls referencing this structure take this pointer as their first argument. Since any call with an improper Structure Pointer Block specified can only lead to disaster, the other calls check to see whether the address handed in future argument list points to a valid Block (hence the pointer as the last element in a Block). An invalid block causes the system to type out an error message and halt. This is the only fatal error. Other errors, if they occur, are returned as results from the function, and a message is printed on an output device available to the user consisting of a two letter code. The first letter specifies in which function the error occurred, and the second letter specifies what the error was. Most errors are caused by faulty argument passing, either by requesting an impossible change or asking for information from non-existant links. In the case where a change is requested. if an error is detected, the change does not occur. In some instances the returned error code can be useful in programming. For instance, since links can be referred to by sequential number, in order to access every link associated with a given point, a counter specifying the number of the link to be accessed could be increased by one until an error returns saying there is no such link. Then the program knows it has finished. Similarly, to establish if a link between two points exists, any reference to that link specified by those two points will return an error code if no such link exists.

Other function calls are as follows:

Function Calls

To add a point to the structure PN=PADD(PTR,VALUE,VALUE1) returns the virtual point number of the point added or -1 if there was an error. Since each point can have two arguments associated with it directly, they are set by VALUE & VALUE1. The error code is Pn.

To add a link to the structure x=LADD(PTR,PN,PN1,SIZE) PN & PN1 specify the points between which the link is to be added. SIZE specifies the number of fields in the link (required whether or not the SIZE is uniform). The error code is Ln.

To access or modify an argument in a point x=GPOINT(PTR,PN,AFGN,VALUE) sets VALUE equal to the contents of ARGN of point PN. The error code is Hn.

To access or modify a set of fields in a link x=GPFLDR(PTR,PN,LN,NO,WIDTH,VALUE) x=PPFLDR(PTR,PN,PN1,NO,WIDTH,VALUE) returns in VALUE the contents of the specified field(s) in the link specified by PN,LN or the link between points PN,PN1. Note that the difference between the two calls is simply that GPFLDk specifies a link by link number while PPFLDR specifies a link by passing the two points the link connects. The error code is kn.

x=GPFLDF(PTR,PN,LN,NO,WIDTH,VALUE) x=PPFLDF(PTR,PN,PN1,NO,WIDTH,VALUE)puts VALUE truncated to the size specified by WIDTH into the specified field. The difference between the two calls is the same as above. The error code is Fn.

To delete a link from the structure x=LDROP(PIR,PN,LN) x=LLDROP(PTR,PN,PN1) removes the specified link. The error code is En.

To delete a point from the structure x=PDROP(PTR, PN, [COLLECT]) drops the specified point from the structure ONLY if the point has no remaining links. If COLLECT is requested, points are garbage collected after every 8 drops. The error code is Dn.

Appendix II THE GRID FACILITIES

Appendix II is reprinted from MACHINE RECOGNITION AND INFERENCE MAKING IN COMPUTER AIDS TO ARCHITECTURE

DISK GRID PACKAGE

The grid package provides the FORTRAN user with a set of x-y addressable grids (up to 1024 by 1024 bits) which are used to store sketches and more generally, data from a number of graphics input terminals including the Sylvania Data Tablet for drawings made by hand and a television camera for input of predrawn sketches. This type of storage medium allows a sketch to become completely independent of time and provides a computer scratch pad for analysis of complex configurations.

Each grid is stored as a bit map on a fixed head disk storage device, with each 1024 point line represented by a 123 byte record. A gria can consist of between 1 and 1024 such lines, and any number of separate grid: may be used, limited only by the capacity of the disk. When a 1024 by 1024 grid is used to represent a sketch drawn with the Sylvania Tablet, which addresses 4096 by 4096 points, a bit is set on the grid if a line drawn c. the tablet passed through a sq.:r 4 by 4 tablet coordinates in size. When used with the television camera, each line of video data is stored one after another until the entire sketch or drawing is scanned.

The data on the grid is accessed by means of an assembly language program which transfers a "window" of arbitrary width and height from the grid to a FORTRAN user's array in core. Likewise, data may he transfered from a FORTRAN array to the grid. In addition, a scale may be specified so that one element of the array can represent anything from one bit ir the grid to the entire grid, with the value returned equal to the number of bits set within that portion of the specified window. At the largest scale, with the array containing the entire grid, most details are too small to affect the mapping into the array, leaving only the outlines of the major forms, as when the human eye views a scene from a distance. Since an image of the original sketch is now in core,

the entire sketch can be examined very easily, in much less time than it would take to scar a magnetic tape containing the original positions. Based upon the shapes, voids, bodies, etc. found by scanning the array, a program can select areas of the sketch to be examined in greater detail. As the scale, hence the size of the window, is decreased, more and more details appear. Usually there is some scale, about 3 or 4, at which most of the important features are present but at which noise from minor movements of the pen is absent. Features of the sketch found at smaller scales are usually of no significance as far as position-dependent interpretations are concerned, since they are usually the kind of noise ignored by a human examining a drawing.

Data can be entered into a grid from a variety of sources, including magnetic tape, a vidicon camera, and directly from a FORTRAN program. The most common method takes its input from a magnetic tape or disk file produced by the DRAW program in HUNCH, consisting of a list of pen coordinates measured at constant intervals. These coordinates are converted to grid coordinates and the appropriate bits set on the disk. If two successive points are more than one grid unit apart, as often happens with lines drawn at high velocity, the intervening points are interpolated, so that the bit image on the disk approximates the appearance of the completed sketch. Thus the programmer need not burden himself with the problem of connecting points, which would be very difficult in the time-independent context of the gria. Since most drawings are smaller than the maximum size of the grid, the conversion program automatically reduces the size of the grid to the size of the sketch, saving both disk space and access time. Another input source is a television camera which enables the grid to replicate a completed paper sketch. Data conversion in this case is very simple, as the vidicon scans line by line, just as the grid is organized on the disk. It is also possible to set bits in the grid directly from a FORTRAN program, by means of an assembly language routine which maps a FORTRAN array onto the disk, in a manner aralogous to the

window program described above. Finally, there is a complete set of entry points which enable the assembly language programmer to set and retrieve single bits and to access individual lines in the grid.

Following are examples of 5 of the more important of the 15 FORTRAN callable entry points in the grid package.

•

Subroutine DISPLW

Furpose

The purpose of the subroutine is to display the contents of an array on the ARDS.

Usage

INTEGER*2 ARRAY(XDIM, YDIM), DENSTY, SDIM, YLIM, GRIDF, LISPF

CALL DISPLW(ARRAY, DENSTY, XDIM, YDIM, GRIDF, DISPF)

The subroutine draws a grid XDIM by YDIM and fills in trose squares whose corresponding array elements are not equal to zero.

ARRAY	is the array.
DENSTY	is the number of fill-in lines to be drawn per square. Optional default is 4.
XDIM Ydim	describe the array. Both are optional. XDI: defaults to 32. YDIM defaults to XDII.
GRIDF	specifies if the grid is to be drawn. = 0 no grid = 1 grid (the default)
DISPF	allows the grid to be drawn without filling in the squares. = () no fill in display = 1 fill in (the default)

- 1 fill in with the number of hits

Subroutine GRDSK

Purpose The purpose of the subroutine GRDSK is to convert a drawing from time-dependent magnetic tape to position-dependent disk. Usage CALL GRDSK(IDISPL, ICNVRT, IERASE, GCB) All arguments are optional, if omitted, the default is assumed. If IDISPL = 0 drawing will not be displayed (default). = 1 drawing will be displayed as it is converted. If ICNVRT = 0 no conversion will take place. = 1 conversion will take place (default). The ICNVRT option allows the displaying to original drawing from tape. If IERASE = 0 the drawing will be placed on the grid along with any previous drawing. any previous drawing will be erased = 1 (default is to the value of ICNVRT)

GCB is the Grid Control Block (see INIGRD)

DIMENSION ARRAY (XDIM, YDIM)

CALL WWWDOW(ARRAY, SCALE, XBIAS, YBIAS, IERK, DRAW, XIIY, YDIM, GCB) All arguments have the same meaning as in subroutine WINDOW. For any element of ARRAY equal to zero, no action is taken. For any non-zero elements the corresponding bit in the grid is turned on. Note Since no action is taken for ARRAY entries of zero, the original bit value is retained for that entry in the grid. Subroutine INIGRE Purpose The purpose of the subroutine INIGRD is to initialize the disk constants table and to define one or more grius. Usage INTEGER*2 TAPE(66), GCB1(271), SIZE1, GCB2(79), SIZE2 SIZE1=4SIZE2=1CALL INIGRD (TAPE, GCB1, SIZE1, GCB2, SIZE2, ... GCB4, SIZE4) Only the first three arguments are required, allowing the definition of one to four grids. TAPE is an array 132 bytes, long used for magnetic tape. GCBl is an array ($128 \times SIZEI$) + 30 bytes long. SIZEl specifies the length of the buffer in lines. Note This program must be called before any other grid system subroutines. The first 6 elements of a grid control block (GCB) specify information about the corresponding grid. If the user calls INIGRD, these values are filled in automatically, and the first GCB specified is established as the default for other fortran-callable subroutines. Alternatively, the user may fill in these values himself as follows: DC x*2000* Disk address of start of grid BIAS BADTRK DC x FFFF Can be used to specify bad track on disk NLIB DC 4 Number of lines in buffer (SIZE) BOTLIN DC 0 Number of first line in grid DC 1023 DC 0 Number of top line in grid TOPLIN LEFT RIGHT DC 1023 DC A(BUFFER) Address of buffer BFST DS 14 Used by the system BUFFER DS SIZE*128

ł

Subroutine WINDOW

```
Purpose
     The purpose of the subroutine WINDOW is to transfer a
     portion of the grid to a FORTRAN array.
Usage
     INTERGER*2 ARRAY (XDIM, YDIM), SCALE, XBIAS, YBIAS, IERR,
     DRAW, XDIM, YDIM
     CALL WINDOW (ARRAY, SCALE, XBIAS, YBIAS, IERR, DRAW, XIIF,
     YDIM)
     The grid consists of 1024 by 1024 squares numbered as shown:
     Thus one square of the grid corresponds to four units on
     the Sylvania tablet.
     SCALE
                 specifies how many grid squares correspond to one
                 element of the array. The value of each element
                of the array is the number of gria squares "turned
on" within the corresponding spot on the gric.
     XBIAS
                specify the location of the lower left hand corne:
     YBIAS
                of the window.
     IERR
                = 0 if all is well
                = 1 if the specified parameters would force the
                      window off the tablet. The values of XBIAS
and YBIAS will be modified in the FORTRAL
                      program to make the window fall within the
                range of the tablet.
= 2 if the SCALE*LARGEST_DIMENSION 1024 (the
                      size of the tablet). The valve will be
                      adjusted.
     DRAW
                 is an optional variable.
                I = A square will be drawn on the ARDS corresponding
to the portion of the original drawing included
in the window.
                # = No square will be drawn (the default).
     XDIM
                is an optional variable which specifies the dimension
                in the X direction. Default is 32.
     YDIM ·
                is an optional variable which specifies the dimension
                in the X direction. Default is to the value of X'IM.
     GCB
                 is an optional variable which specifies the grid to
                be used (see INIGRD).
```

Subroutine WWWDOW

```
Purpose
```

The purpose of subroutine WWWCOW is to write out an array on the grid.

Usage INTEGER*2(ARRAY, SCALE, XBIAS, YBIAS, IERR, DRAW, XDIM, YDIM)

Appendix III COMPUTER LISTINGS FOR STRAIN

0000R 20000R 20000R 20000R 20000R 20000R 20000R			EXTRN EXTRN EXTRN EXTRN EXTRN EXTRN ENTRY	DSKTAP, SKIP, BSTORE DISKST, INITAF PTMAX, JNAME HNDN, GETLAT MARK, IODEV OFFSET, TANIR V, CONSTR, PTMAX PTCALC, PERROR, PRLOOP
0000		STORE STORE2	EQU	0 2
± 000 6		INCREM	EQU	6
-		* CALL * * * * *	PTCALC	STATUS, SCRATCH. ARR, SC. LENGTH, [N STFTUS=>(J-CK =>-1 STORAGE NOT ALLOCA => 1 RAN OUT OF SPACE SCRATCH. RR=>33*6 BYTE ARRAY SC.LENGTH=>SIZE OF AFRAY IN H
		★ ★ ★. ★	IF IF IF	NO NUMBER, LAITIALAZE & STRAIT NUMBER NEGATIVE, ONTINUE NUMBER NON-NEGATIVE, STRAIGHTEN (O=1)
10000R	4300 0024R		В	PTCALC
0004R		SAVER	D S	32
0022R		SAV15	EQU	*-2
0024R	D000	PICALC	STA	O, SAVER
.0028R	48AF 0000		.LH	(15) 0 نو 0 ا
002CR	C5 #/		CLHI	b0,4
0030R	4280		BL	LONE
0034R	C5AC		CLHI	10,8
0038R	4380		BNL	ОК
003CR	0044R C8A)(THT	b0,-1
°0040R	1300 01240		В	PERRICR
0044R		OK	SVC	1, R E W
0048R	48AF		.I.H	10,4(15)

	0004				
00408	2686		AIS	10. INCREM	
004ER	40A0		SIH	BC , OHFSET	
•••	0000F			;	
0052R	48D0		LH	13.DSKTAF	
	0000F			- • · - ·	
0056R	4330		ΒZ	NOEN	
	006ER				
+005AR	48DF		LH	13,6(15)	
	0005			-	
005ER	4AAD		AH	DC +0 (13)	
	00001			1	
0062R	4AAD		AH	DC,0(13)	
	0000				
0066R	CBAO		SHI	10, INCREM+INCHE	M
	000C				
006AR	40A0		STH	LO, EN DN	
	0000F				
006ER	41F0	NOEN	BAL	15, UUNSTR	
	0000F		5.4	*	
20072k	0004			4	
00/4R	UISER		DC		
00/6K	40EU 00005		STE	14,PTMAX	
00780	0000r 40m0		τu	DC MBDV	****
UUTAR	40 <i>H</i> 0 00005		រក	DUPIERS	LAKKED
00750	6000r		STE	DA. DISKST	
UU/ER	0000F			00 0 10 NO 1	
	00001	*READ I	N THE	FIRST BLOCK OF I	A TA
0082R	4850	*READ I	N THE LH	FIRST BLOCK OF IN 5.DSKTAP	A TA
0082R	4850 0054R	*READ I	N THE LH	FIRST BLOCK OF I 5, DSKTAP	АТА
0082R 0086R	4850 0054R 4210	*READ []	N THE LH BM	FIRST BLOCK OF I 5, dsktap tapei	A 1A
0082R 0086R	4850 0054R 4210 20092R	*READ I	N THE LH BM	FIRST BLOCK OF I 5, dsktap Tapei	A IA
0082R 0086R 008AR	4850 0054R 4210 0092R 4220	*READ I	N THE LH BM BP	FIRST BLOCK OF I 5, dsktap Tapei Pass	A TA
0082R 0086R 008AR	4850 0054R 4210 0092R 4220 00DCR	*READ I	N THE LH BM BP	FIRST BLOCK OF I 5, dsktap Tapei Pass	ата
0082R 0086R 008AR 008ER	4850 0054R 4210 0092R 4220 00DCR 4300	*READ I	N THE LH BM BP B	FIRST BLOCK OF I 5, DSKTAP TAPEI PASS NODAT	A TA
0082R 0086R 008AR 008ER	4850 0054R 4210 0092R 4220 00DCR 4300 00EER	*READ I	N THE LH BM BP B	FIRST BLOCK OF I 5, DSKTAP TAPEI PASS NODAT	A TA
0082R 0086R 008AR 008ER 0092R	4850 4850 4210 0092R 4220 00DCR 4300 200EER C8A0	*READ I	N THE LH BM BP B LHI	FIRST BLOCK OF I 5, DSKTAP TAPEI PASS Nodat 10,-1	A 1A
0082R 0086R 008AR 008ER 0092R	4850 0054R 4210 0092R 4220 00DCR 4300 00EER C8A0 FFFF	*READ I	N THE LH BM BP B LHI	FIRST BLOCK OF I 5, DSKTAP TAPEI PASS Nodat 10, -1	A 1A
0082R 0086R 008AR 008ER 0092R 0096R	4850 0054R 4210 0092R 4220 00DCR 4300 00EER C8A0 FFFF 40R0	*READ I	N THE LH BM BP B LHI STH	FIRST BLOCK OF I 5, DSKTAP TAPEI PASS NODAT 10,-1 10, DISKST	A 1A
0082R 0086R 008AR 008ER 0092R 0096R	4850 0054R 4210 0092R 4220 00DCR 4300 00EER C8A0 FEFF 40A0 0080R 4950	*READ I	N THE LH BM BP B LHI STH	FIRST BLOCK OF IN 5, DSKTAP TAPEI PASS NODAT 10, -1 10, DISKST	A 1A
0082R 0086R 008AR 008ER 0092R 0096R 009AR	4850 4850 4210 0054R 4210 0092R 4220 00DCR 4300 00EER C8A0 FEFF 40A0 0080R 48F0 0022R	*READ I	N THE LH BM BP LHI STH LH	FIRST BLOCK OF IN 5, DSKTAP TAPEI PASS NODAT 10, -1 10, DISKST 15, SAVER+3J.	A 1A
0082R 0086R 008AR 008ER 0092R 0096R 009AR	4850 0054R 4210 0092R 4220 00DCR 4300 00EER C8A0 FFFF 40A0 0080R 48F0 0022R 498 F	*READ I	N THE LH BM BP B LHI STH LH	FIRST BLOCK OF I 5, DSKTAP TAPEI PASS NODAT 10, -1 10, DISKST 15, SAVER+3J. 10, 0(15)	A 1A
0082R 0086R 008AR 008ER 0092R 0096R 009AR 009ER	4850 0054R 4210 0092R 4220 00DCR 4300 00EER C8A0 FFFF 40A0 0080R 48F0 0022R 48AF	*READ I	N THE LH BM BP B LHI STH LH LH	FIRST BLOCK OF I 5, DSKTAP TAPEI PASS NODAT 10, -1 10, DISKST 15, SAVER+3J. 10, 0(15)	A 1A
0082R 0086R 008AR 008ER 0092R 0096R 009AR 009ER	4850 0054R 4210 0092R 4220 00DCR 4300 00EER C8A0 FEFF 40A0 0080R 48F0 0022R 48AF 0000 C5A0	*READ I	N THE LH BM BP B LHI STH LH LH	FIRST BLOCK OF I 5, DSKTAP TAPEI PASS NODAT 10, -1 10, DISKST 15, SAVER+3J. 10,0(15) 10,10	A 1A
0082R 0086R 008AR 008ER 0092R 0096R 009AR 009ER 0092R	4850 0054R 4210 0092R 4220 000DCR 4300 00EER C8A0 FFFF 40A0 0080R 48F0 0080R 48F0 0022R 48AF 0000 C5A0 000A	*READ I	N THE LH BM BP LHI STH LH LH LH CLHI	FIRST BLOCK OF I 5, DSKTAP TAPEI PASS NODAT 10, -1 10, DISKST 15, SAVER+3J. 10, 0(15) 10, 10	A 1A
0082R 0086R 008AR 008ER 0092R 0096R 009AR 009ER 009ER	4850 0054R 4210 0092R 4220 00DCR 4300 00EER C8A0 FFFF 40A0 0080R 48F0 0080R 48F0 0022R 48AF 0000 C5A0 000A 438)	*READ I	N THE LH BM BP B LHI STH LH LH CLHI BNL	FIRST BLOCK OF I 5, DSKTAP TAPEI PASS NODAT 10, -1 10, DISKST 15, SAVER+3J. 10, 0(15) 10, 10 COUNT	A 1A
0082R 0086R 008AR 008ER 0092R 0096R 009AR 009ER 009ER 00A2R	4850 0054R 4210 0092R 4220 00DCR 4300 00EER C8A0 FFFF 40A0 0080R 48F0 0080R 48F0 0022R 48AF 0000 C5A0 000A 438) 00B0R	*READ I	N THE LH BM BP B LHI STH LH LH CLHI BNL	FIRST BLOCK OF I 5, DSKTAP TAPEI PASS NODAT 10, -1 10, DISKST 15, SAVER+3J. 10, 0(15) 10, 10 COUNT	A 1A
0082R 0086R 008AR 008ER 0092R 0096R 009AR 009AR 009AR 00A2R 00A6R	4850 0054R 4210 0092R 4220 00DCR 4300 00EER C8A0 FFFF 40A0 0080R 48F0 0080R 48F0 00022R 48AF 0000 C5A0 000A 438 0000A 438 0000A 438 0000A 438 0000A	*READ I	N THE LH BM BP B LHI STH LH LH CLHI BNL XHR	FIRST BLOCK OF II 5, DSKTAP TAPEI PASS NODAT 10, -1 10, DISKST 15, SAVER+3J. 10, 0(15) 10, 10 COUNT 10, 10	A 1A
0082R 0086R 008AR 008ER 0092R 0096R 009AR 009ER 009ER 00A2R 00A6R	4850 0054R 4210 0092R 4220 00DCR 4300 00EER C8A0 FEFF 40A0 0080R 48F0 0022R 48AF 0000 C5A0 000A 438 0000R 07AA 4300	*READ I	N THE BM BP B LHI STH LH LH CLHI BNL XHR B	FIRST BLOCK OF IN 5, DSKTAP TAPEI PASS NODAT 10, -1 10, DISKST 15, SAVER+3J. 10, 0(15) 10, 10 COUNT 10, 10 INIT	A 1A

OOBOR	48DF	COUNT	LH	13,8(15)
00B4R	48AD		LH	10,0(13)
	0000			
0088R	421U		ВM	PASS
OOBCR	C8BA		LHI	11,1(1)3
OOCOR	403 D		STH	11,0(13)
00C4R	41F0	INIT	BAL	15, INI FAP
00C8R	C5AD	CHECK	CLHI	10,2
OOCCR	4280 4280		36	PASS
00 D 0 R	001CR 41F '_		BAL	15,SKIP
00D4R	CBA0		SHI	10,1
00088	0001 4300		R	СНЕСК
UUD UN	00 C8 R		2	
OODCR	48D0 0050R	PASS	LH	13, OFFSET
00E0R	48E0		LH	14, ENDS
00E4R	26E5		AIS	14. INCREM-1
00E6R	41B0		BAL	15, GETEAT
OOEAR	4200		NOP	TCNE
	0130R	*CTT D0		DOT ITNE ENT
ODEER	4890	NODAT	LH	9,0FFSET
00F2R	C8A0		LHI	10;X*F0D)]
00F6R	F000 4589		CLH	13, STORE(9)
OOFAR	0000 4330		BE	GO
OOFER	0006R		1.Н	10.DSKLAP
gor en	:0084 R		2	
0102R	4210 .00 C R		BM	PASS
0106R	2796	GO	SIS	9, INCREM
0108R	40 A 9		STF	10,STORE (9)
010CR	C8B0		LHI	14,GOTIT
0110R	E180		SVC	8, UNAME
0114R	0000F 07 AA	GOTIT	хнь	10.DC
******				106

0]	16R	40A9		STH	10,STORE2(9)
:0]	LIAR	40A0		STH	IC , ESTORE
		0000F			
			*GO STRI	AIGHTEN	
0 1	ller	41001		BAL	🗄 T AN DR V
		30000F			
01	22 R	DJAA		XHR	10,10
0	24R	48 B	PERROR	LH	15, SAV15
		0022R			
:0]	128R	48BF		TH	11,2(15)
		0002			-
2 0]		40AB		STH	D0.00(11)
		0000			
0	30R	48Đ0	DONE	LH	15.LSKTAF
÷.		N100 R			
.01	346	4310		BNM	EXTT
.01	LIIN	01368		2	2711
:01	387	41 B0		BAI.	15.SKTP
	LOON	00028			10,0001
:01	300	CREO	FXIT	LHT	15.X MOD!
U.	LJCK	0000	LAII	1 /11 1	
01	100	19 DC		1.6	14 TODEV
0.	1401	4000		<u>1</u> .11	14,10DLV
01	AAD	QDED		SCE	14 13
01		1200		אנט	9 *-2
U	140K	4239		DIC) ,
0.1	4 15 15	0144A		100	14 15
01		JAEL		N.DR T.M	
U.	L4CX	00040		L.F.	-U, SHYER
.0.	600	ADTE		กบ	15 (01)5)
، ن ،	LOUK	4 8.1 1		rn -	1 JUNE JUNE JUNE
0	I SAT	0205		DE	15
U.	L 34 M	USUr		BR	10
.03	156R	C8 #0	PRI.00P	1HT	10.1
		0001			
.01	SAR	4300		B	PERRCR
***		0124R		-	
) 0 .	ISER	000C	SIZE	D C	12
Ō	60R	C002	REW	DC	X * COO 2*,0
• •		00.00			•
0 1	L64R			END	
NO	ERROI	RS			
* B3	STORE	E 011CR			
CI	HECK	100C8F			
* C(ONSTI	R 0070R			
c	OUNT	OOBOR			
* D	ISKS	C 0098R			
D.	ONE	01305			
* D	SKTAI	P 0132R			
* 51	NDN	00525			
۲3 ا	(TT	013CR			
ه منه					

*	CETDAT	OOF88
	C0	01:06 F
	60 7 77	01148
	TNCELM	0006
	INCRED	0000
_	INII	UUC4R
<u>.</u>	INTIAP	NUCOR
*	IDDEV	0142R
*	MARK	1007CF
	NODAT	OOEER
	NO EN)006ER
*	OFFSET	OOFOR
	OK	30044 F
	PASS	OODCR
★	PERROR	0124F
*	PRLOOP	0156R
*	PTCALC	0024K
★	PTMAX	0078R
	REW	→0160R
	SAV15	0022R
	SAVER	;0004F
	SIZE	015ER
★	SKIF	013AF
	STORE	0000
	STORE2	>0002
*	TANDRV	0120R
	TAPEI	10092F
*	UNAME	0112R

*1	ANDRV, CSTART, ENDSEG, CFIX, AND INTERS USE 'CO
★ .	TO STORE POINTERS TO THE BEGINNING AND END
*	SEGMENTS. WHEN FILLED, THE AFRFY "CORNER"
★.	CORNER(0) POINTER TO OST POINT ON 1ST L
*	COFNER(2) PTR TO LAST FT ON SEGMENT BEF
*	CORNER(4) SLOPE OF THE IST SEGMENT(DY/
*	(WHICH MOVES DECIMAL FLACE 6 BITS
★.	CORNER(6) POINTER TO 1ST POINT AFTER TH
*	IST P/CINT OF 2N & SECMENTS
★.	CORNER(8) POINTER TO LAST POINT ON 2ND
*	CORNER(A) SLICPE OF 2NI SEGMENT
★.	CORNER(C) POINTER TO START OF 3RD SEGME
*	THIS SERIES CAN EITHER BE CUT OFF AT CORNER
*	IF THE PEN IS LIFTED

20000R 0000R 2000R 2000R 2000R 0000R 0000R 2000R 2000R 2000R			EXTRN EXTRN EXTRN EXTRN EXTRN EXTRN ENTRY EXTRN EXTRN	SAVEC, EOB, PUSHE START, ENDSEG RATER, EXIRMA, SE DISKST, GETDAT INTERV, RIEST, C, R TANGNT, TRNTST, T TANDRV, RETER, C TANDRV RETER, COR OFFSET, DSKIAP	R,GETSQ X,SEY MAX2,HMAX2 ANDIF NEXT,NOEND N
0000		STORE	EOU	0	
r0002		SIGRE2	EQL	2	
8000		PTSIZE	EQU	8	
0006		INCREM	EQU	6	
OODDR	4000	TANDRV	STH	O, RETERN	
98,000	0130R 0255		SUD	5 5	
0004R	4050		STE	5.CORNCT	FOR "CCRNFR" LT
	0000F				TOR COMPLE HI
2000AR	4050		STH	5, IAIP	
	0000F		0.0.1	N CERCO	
MUUUER	4D-0 0000F		BAL	n ,0£150	
0012R	OB77	TANDRI	SHR	7,7	ENTRY FOR BEGIN
0014R	4070		STH	7.RMAX2	INII FASTEST DW
00105	0000F		d m + -	7	
UNTRK	40/0		STH	/,PMAX2	LARDEST PR

•

001CR	0000F 4820		LH	2, CORNCT	CEI CCRNER PO
00205	000BR	CNEVT	t 11	ነ ሮምርዬፑ/ፅነ	
-UUZUR	0000	CNEXI	. г п	1,51;CRE())	KA I KI KN ENDY
0024R	C910 F000		CHI	1,X ". F000 "	
r0028R	4220		BP	FLAG'. D	
002CR	0030R		XER	7 ,7	
002ER	4070		STH	7, SQFLAG	
0032R	10088R D1889		LHR	8,9	
0034R	4881		SH	8, CEFSET	
:0038R	48DC		LH	13, DISKST	
0020T	0000F		CI III	107	
UUSCR	0007		PLLL	13,1	
0040R	OASD		AHR	8,13	SET UP BACK POI
0042R	C410		NHI	1,X°C003.	IO BLOCK ON DIS
	0000				
0046R	0618		OHR	1,8	INDICATE ENDPOI
0048R	4012		SIF	I, LATP(2)	AND SAVE
0010-	DOUER		B.T.C	O (TN COTH	
UU4CR	2696	PROWL	AIS	9, INCREM	
UUALR	4090 C		LTH	9. ENUM	
00520	A 280		91	TOW	
UUJZA	007AR		50	DON	
0056R	4330		BE	LOW	
005AR	48D0		LH	13, DSKIAP	
00550	0000F		37		
UUSER	4330 :015ER	4	DL	ENDER	
0062R	48D0		LH	13, OFFSET	
0066R	48E0		LH	14, ENDN	
006BR	CAFO		АНТ	14. INCREM-1	
	0005				
UUBER	41FU 10000F		BAL	15, GETDAI	
0072R	4200		NOP	ENDFL	
0076R	4890		LH	9,OFFSEI	
	:0064R				• • • • • • • • • • • • • • • • • • •
007AR	2671	LON	AIS	1,1	INDICATE A STAR
607CR	4300		В	UNEXT	LOOF AGAIN
	UUZUR				
0080R	:0877	FLAGEL	.LhR	F I	WHER NUT AT END

10082R	4331 ⁰		ΒZ	NEND	rook	FOR S	START
0086R	C870		LHI	7 🔉			
-000 D	0000	COTIAC	T O'I	+ . 7			
ACODR.	1000	201740	PEQC OD				
UUSAR	4221		BP	PBUMP			
	'004CR						
008ER	C870		LHI	7,X*800)			
	8000						
0092R	4570		CLH	7.SEX			
• • • • •	30000F			•			
00960	4330		AF	NOSO			
00000	10000D			N05Q			
003 85	4070		T 11	7 (70051)			
003 AK	48/9		LH	1.SIURE()]			
	0000		a	3			
UUJER	4570		CLH	1.SEX			
	60094R						
00A2R	4230.		BNE	NOSQ			
	300 C O R						
00A6R	4879		LH	7, STORE2(9)			
*****	:0002			• • • • • • • • • • • • • • • • • • • •			
94400	4570		CT.H	7.584			
V V N N N	20000F		CHR	,,			
DODED	A 2 3 0		BNE	NOCO			
UUNER	42J9.		ONE	403 Č			
00020	1100		0.01	17 CEMCO			
UUBSK	4100		BAL	J. GEISU			
	NUTUR						
0086R	2471		LIS	1,1			
JOOB8R	4070		STH	7,SQ.ILAG			
	0088R						
COBCR	4 3 /≈0		B	PEUMF			
	004CR						
:00COR	4 D90	NOSQ	EAL	H,SAVEC			
	0000F			,			
00C4R	C8#0	STEND	LHI	10,X*800*			
	0800			•			
\$00C8R	40 B0		STF	PO.RTESTC	FORCI	E IMME	DIATE
	00005						
100CCP	0855		51 F	5 <u>5</u>			
UUCCV UUCCV	A100'		RET	I NOEND	CET 1	CT 91	CHE
UUCER	-100- -100-		DAD	J. NOL ND	ا السدي		, CHE
00000	ALOD		DBF	T THE MICH OF			I DOD
UUDZK	4100		DAP	I I ANGNI	JEI P	ancian	run
	100001			- 0			
UUDBR	2652		AIS	5,2			
200D8R	4 DCO	NEND	BAL	MO, NOIENL	CET 1	EXI I	T, CH
	OOFOR						
NODCR	4 D*+0		BAL	M, TANGNT	(ET]	NEXI 1	ARCTAN
	00D4R						
COEOR	410-0		BAL	J , TRATST	CHECI	K FOR	CHFNG
	0000F			,			-
.00F4F	4510		CLH	1. TANDIF	ST'	I GREI	TER T
	00005			_ ,		*	
	000.01						

n)

00E8R	4220		BP	CSTART	źES:	CORNER	HAS
DDECR	4300 0018R		в	NEND	ELSE	RETURN	FOR
		*					

*THIS ROUTINE CHECKS FOR END OF SEGMEN'S FLAG * DATA WITHIN AN INTERVAL OF CURRENT POINTER * 1F IT FINDS ONE, EXI' IS TO ENDSEG

OOFOR	4000°	NOEND	STH	0,EXII	
00F4R	41F01		BAL	15, PUSHER	RATURNS WITH PR
00F8R	41F91		BAL	15, RATER	
00FCR 00FER	0.889 0.889		LHR LHR	8,9 D0,9	
010DR	4 A A O		AH	10, INTERV	GET POINTER TO
0104R	1000F 4818	LOOP	LH	1,STORE(8)	LOOK TO SE E IF
01)3R	C910 F000		CHI	1,X*F000*	
010CR	4320 0000F		BNP	EN DS E G	
0110 R	4980 0068R		Сн	8, ENDN	M I OUT OF DAT
0114R	4320 013CR		BNP	ENUF	NO . 30 ON
0118R	0.889 41 D(LHR BAL	11.9 15.FCB	YES, SAVE OUD POINT
0))FR	0000F		LE	13.0F55T	
01225	0078R		11		
UIZZR	0112R		LU	14 / 2NDN	
0126R	CAE0 0005		AHI	14, INCREM-1	
+012AR	41 B0 007 0 R		BAL	15,GETDA1	
012ER	4200 0000		NOP	31	
0130R 0132R	C889	REIERN	EÇU LHI	*-2 8,-INCREM(9)	
0136R	0898		LHR	9,8	RESE1 REGISTERS
0138K	C8A8 0102R		THI	DU, INTERV(D)	
013CR	05 98	ENLF	CLHR	9,8	

4336		BE	NEXT 1	
U148R 20818		LER	13.8	
41201 :0000F		BAL	15, EXTRME	JOOK FOR SMALL
CA801	NEXTL	AHI	8, INCREM	GO FUR NEW POIN
05A8		CLHR	10,8	LF PAST END
4380 01070P		BNL	LOOP	CF NEXT INTERVA
4819 0000		LH	1,STCRE(9)	XON FE OK
4839		TH	3,STORE2(9)	
4300 015AR		В	*	
••	EXIT	EQU	*-2	
	4330 0148R 20818 41201 20000F CA801 00006 05A8 4380 01014R 4819 0000 4839 0002 4300 015AR	4330 0148R 30818 41201 0000F CA801 NEXT1 0006 05A8 4380 01014R 4819 0000 4839 0000 4839 0002 43000 015AR EXIT	4336 BE 0148R LHR 0818 LHR 41701 BAL 0000F BAL 0000F CLHR 0380 BNI 0006 BNI 0104R HH 4819 LH 0000 B 4839 LH 0002 B 015AR EXIT	4336 BE NEXT1 0148R LER 13,8 41601 BAL 15,EXTRMS 00000F BAL 15,EXTRMS 00006 CLHR 8,INCREM 0006 BNL 10,8 4380 ENI LOOP 0104R LH 1,STCRE(9) 0000 LH 3,STORE2(9) 0002 E * 4300 B * 015AR EXIT FQU

015ER	481.0	ENDFL	LH	O.RETERN
	0 130R			-
0162R	0300		BR	11
0164R			END	

★	CNEXI	0020F
*	CORNCT	001ER
*	CSTART	IGOEAK
* .	DATP	DD4AR
*	DISKST	:003AK
*	DSKTAP	005CR
	ENDFL	015EF
*	ENDN	0124R
×	ENDSEG	OLOER
	ENUF	01 3CR
*	EOB	011CR
	EXIT	015CR
*	EXTRMR	0146F
	FLAGED	0080R
★	GETDAT	012CF
★.	GETSQ	00B4R
	INCREM	:0006
*	INTERV	013AR
	LOOP	:01:04 F
	LOW	007AR
	NEND)00D8K
	NEXT1	0148R
*	NOENC	:00F0F
	NOSQ	OOCOR
*	OFFSET	0120F
	PBUMP	004CR

★.	PMAX2	001AR
	PTSIZE	10008
*	PUSHER	00F6R
*	RATER	COFAF
★	RETERN	0130R
*	RMAX 2)0016 R
*	RTESTC	OOCAR
*	SAVEC	JOOC2 R
★.	SEX	OOADR
*	SEY	JOOACE
	SQFLAG	0088R
	STENE	900C4K
	STORE	0000
	STORE2	0002
*	TANDIF	00E6R
*	TANDRI	20012F
*	TANDRV	0000R
*	TANGNT	DODER
★.	TRNTST	DDE2R

-

0000R			ENTRY	GETSQ, SEX, SEY
0007		WRK2	EQU	7
0000R 20002R	0777 4070 00588	GETSQ	XHR STH	WRK2,WRK2 WRK2,DATH
0006R			SV C	l,RISQ
'000AR	487/ 0062R		ΗГ	WRK2,STAT
2000ER	43 D0 001ER		BNM	NGENI
0012R	C870 8000	NOLATA	THI	WRK2,X*8000*
0016R	4070 006ar		SIH	WRK2,SEX
»001AR	43⊡0 005er		B	EXIT
001ER	4870 0058r	NOEND	LH	hrk2, dath
#0022R	43300 0012r		ΕZ	NOEAIA
0026R	2772 4330		SIS BZ	hrk2,2 SQF
002CR	0042R E1172		SVC	l, RDSQ
0030R	4870		LH	RK2, DATA
0034R	2771	RDLOOP	SIS	NRK2,1
:0036R	4210 0000r		BM	GETSQ
003AR	E1 00 0060R		SVC	I,RISQ
003ER	43))0 0034R		В	RILCOP
0042 k	E1 D0 0060R	SQIF	SVC	1,RLSQ
0046R	E110 0060R		SVC	l,RESQ
004AR	487)(0068R		IH	WRK2, DATH
004ER	4070 005ar		STH	WRK2,SEX
0052R	E110 0060R		SVC	l,RISQ
UU56R	4870 0058R		1H	WRK2, LATA
UUSAR	40 BU 006 CR		STH	WRKZ,SEY
UUSER	:U 3 00	EXIT	BR	٩Ç

20060R 0062R 0064R 0066R 0066R 0068R 0058R	4002 0000 0068R 0069R 0000 0000	RDSQ STAT DAIA SEX SEX	EC DC EC DC EC DC	λ * 400 2 * 9. LATA DATA+1 20 0. 10
006CF 006ER	0000	SEY	IC END	¥0

	LATA	10068R	
	EXIT	005ER	
★	GETSQ	JCOOOF	
	NODATA	D D 12R	
	NOENL)0 01 EK	
	RDLOOP	0034R	
	RDSQ	10060k	
★.	SEX	006AR	
*	SEY	1006CK	
	SQF	0042R	
	STAT	10062 K	
	WRK2	0007	

0000R 0000R			ENTRY: EXIRN	PUSHER, FMAX 1., FMAX2, RFFIG INTERV
000.4 0006		STORE4 INCREM	EQU EQU	, 6
70000R	D0D0 002FR	PUSHER	STM	14,SAV2
0004R	08E9		LHR	14,9
- UUU5R ⇒0008r	08F9 4A.BC		LHR Ah	15,9 15.INTERV
000CB	0000F	LOOD	T 11	
UUUCR	40 E 0004	LUUP	LH	3C, STURE4(14)
0010R	CC 0		SEHL	JC, 2
0014R	450		CLH	¥0, PMAX2
:0018R	004CR 4280		BL	LOP1
-001 CB	0020R		COL	
JOUICK	004CR		214	J. PMAXZ
0020R	26E6	HOFL	AIS	14, INCREM
0022R	0.5FE		CLHR	15,14
UU24R	4380		ENL	LOOP
:0028R			LM	14,SFV2
00205	002ER		BR	15
002ER		SAV2	ĽS	4
:0032R	DODO	RPFIG	SIM	14, SAV 2
0036R	C8:P0		LHI	15,16
6020 -	0010			
00208	0.950	SIXTEN	EUL	×-2
:0034K	UDFU DCFB		S NK Mud	
003ER	4 DEO		DH	IA. SIXTEN
	0038R		<i>D</i>	
0042R	088F		LHR	11,15
-0044R	DIEO		LM	14,SFV2
0048R	002ER 030F		BR	15
004BR	0000	PMAXI	τr	11
0 4CR	0007	PMAX2	DC	Ĵ.
004ER			END	

HOP1 0020R

	INCREM	0005
*	INTERV	3000AF
	LOOP	000CR
★	FMAX 1	3004AK
*	PMAX2	004CR
*	FUSHER)0000 k
*	RPFIG	DD32 R
	SAV2	1002EK
	SIXTEN	DD 38R
	STORE4	0004

0000R 10000R 10000R 10000R 10000R 10000R 10000R 10000R 10000R			ENTRY ENTRY EXTRN EXTRN EXTRN EXTRN EXTRN EXTRN	CSTART, LINE, TANFAC, SLOPER, SLOPE SAVEC, THELL DAIP NOENI, TRUTST, TANDIF, TANGNT FANDRI, TAN, FEORN CORNET, CERNER, INTERV DISKST, RTESTC INTERH, REAX 1, KEAX2 OFFSET
0000 90002		STORE STORE2	EQU EQU	0
		*REGIST * * * * * * *	ERS:	0EA1 1WORKING 2CCENCT 3 4 9STORE POINTER 11-
0006		INCREM	EQU	6
0000R 0002R 0004R	2796 2752 4820 0000F	CSTART	SIS SIS LH	S, INCREM 5,2 2,COKNCT
0008R 00 3 AR	2622 4107 007FR		AIS BAL	2,2 D. Savec
000ER	4810		LH	l,DISKST
0012R	CD10		SLHL	1,7
0016R 0018R	0809 4B00 0000F		LHR SH	0.9 D-,OFFSET
001CR 001ER	OA NG 4012		AHF STH	1,)(1, DATP(2)
0022R	40200 0006B		STH	, CORNCT
0026R	4100 00000		BAL	1, LINE
002AR	4107	NCENDI	BAL	J., NOEND
002ER	4100		BAL), TANGNT
0032R	4100		BAL	a, TRNTST
0036R :0038R	0000F 0811 4330		LHR BZ	1,1 NCENE1

	00200			
003CR	4510		CLH	l,TANDIF
0040R	10000F 4380		BNL	NCEND 1
	002AR			
0044R	2796		SIS	9, INCREM
0046R	4820		LH	2,COKNCT
	0024R			~)
UU4AK	2622		ALS	L.L) CAVEC
UU4CK	410 ¹		BHL	J. J AV EL
00500	4 9 0 7 E K		LH	A.DISKST
00 JON	10010R			***
0054R	CDOO		SLHL	0,7
••••	:0007			
0058R	0.889		LHR	11,9
005AR	4BB0		SH	11, OFFSET
	001AR			
005ER	20 AVO B		AHR	96,11
0060R	4002		STH	0, DAIP(2)
	0020R			donudm
0064R	4020		STH	CURNUT
00680	2622		ATS	2.2
.0050K	2022 C520		CLHI	2.8
- o o o n A	0008		00	
006CR		VIII	FQU	*-2
005ER	4230		BNE	FCORN
	10000F			
0072R	48B0		ГН	11.RMAX2
	0000F		dana	11
0076R	4080		STH	II, RHAXI
00780	100001		a	TANDOT
UUTAR	4300. 90000F		b	IANDAI
	00001	**		
		*		
007ER	4010	SAVEC	SIH	1,SAV1
	ODA 4R			
0082R	40 AU		STE	FU,SFVA
00960	UUABR		របរ	DC THOIT
JUOOK	01300		TUT	FOFINOLL
108AR	.0222		AHR	10.2
8.0800	OAA2		AHR	10.2
008ER	4819		IH	1,STCRE(9)
~~~ ~	0000		-	-
16092R	401A		SIF	1, STCRE(10)
	0000			
.0096R	4819		.LH	1, STORE2(9)
	0002			

.

009AR	401A		STH	1,STORE2(1))
009ER	40A2		STH	10CORNER(2)
	0000F			
00A2R	C810		LHI	1,0
00A4R		SAVI	EOU	*-2
OOAGR	C8A0		IHI	LO,0
	0000	<b></b>		
ODA8R	0.20.1	SAVA	EQL	*-2
UJAAK	1004 F	*	DK	ñ e.
OOACR		LINE	EQU	<b>★</b> .
BOOACR	CB5!	OUI	SHI	5,2
OOBOR	4835		Iн	1. TBR(5)
<b>UUDU</b> R	0000F		- 4- 11	L I I HIVE JI
00B4R	:0855		.I-HR	5,5
OOB6R	4320		BNP	OKT
OOBAR	C510		стнт	1.x*644F*
	64AE		CDILL	
OOBCR		TWOPI	EQU	*-2
OOBER	4330 00a cp		BE	CUT
100 C 2 R	40 BC	ОКТ	STH	I.TAN
	OOB2R	••••		
00C6R	4820		LH	2,CORNCT
OOCAR	0066R 41 PC		RDI	15.SIGPER
	OODGR		DAL	IS BE OF LK
OOCER	4020		SIH	2, CORNCT
000000	00C8R		1.7.6	5 0
00D2R	0300		BR	3, Z
	••••	*	210	•
000000	6050	*		16 1116
UUDOK	40FU OOF4R	SLUPER	STH	13,813
OODAR	4812		HI.	1,CORNER(2)
	ODAOR			
HUDER	483L 0000		LE	3,STURE(1)
00E2R	4851		LE	5,STORE2(1)
	0002			
OOE6R	2722		SIS	2,2
UNFRK	41" 1 Ogf68		BAG	15,SLOPE1
00ECR	2624		AIS	2,4
ODEER	4052		SIH	E.COKNER(2)
200 <b>0</b> 22	DODCR		D	+
HUF Z K	4 JI ©U		ц Ц	^

	00F2R			
ODF4R	~~	H15	EOU	*-2
•••		*		
		*.		
00F6R	4812	SLCPEl	LH	1, CORNER(2)
	OOFOR			•
OOFAR	4851		SE	5.STORE2(1)
	0007			
COFFR	4831		SE	3.STCRE(1)
NOT LR	0000		•••	<b>JJJJJJJJJJJJJ</b>
01:02R	4231		BN7	FINTIF
O DOLK	010CP		0110	1 4 4 4 4 4
0106F	2431		115	3.1
01000	<u>A</u> r <u>A</u> <u></u>		MH	4.VTTT
OT DOV	006CP		1881	799111
01170	4 C 4 0	FINITE	สน	A TANFAC
ULJER	101305	FIGTIE		TILATIC
01100	01341		ГИР	7 4
01100	0074	LOOFL	1 L R	R R
01140	0003			A 3
01165	4040 10505		OILD	<b>1</b> 13 2 5
OILOR	4220		DNC	0,J 17
UTTOR	44JU		DNE	JV
01100	OLJOK ULJOK		di up	7 /
ULICK	1274			1 <b>1 4</b> 0 V
ULLER	4239		BNE	UK
01000	0138R		1.110	4 <b>A</b>
UIZZK	0844		LINK 07	4,4 2V
U124K	4330		52	UK
0100-	U138K		0.5	M T 3111/1
0128R	4210		B.	MINUS
	0134 R			
012CR	C850		uHI	5,X*/FFF*
	/FFF			~ ••
0130R	4300		В	UK
	UI38R			C
0134R	C85U	MINUS	L H I	2.X.8000.
0100-	0000	<b>.</b>	20	
U138R	U 37F	UK	BK	12
01 7	0040	*	DC	·
UIJAR	0040	TANFAC	DC TC	A * 4 U *
UISCR		THULD	LD	32
015CR			END	

* CORNCT 300D0k * CORNER 00F8R * CSTART 30000k * DATP 0062R * DISKST 30052k * FCORN 0070R

	FINITE	010CR
	H15	00F4F
	INCREM	0006
*7	*INTERH	90000
*:	*INTERV	0000
*	LINE	DOACF
	LOOP1	0110R
	MINUS	-0134F
	NCENDL	002AR
*	NOENE	2002CF
★.	OFFSET	005CR
	OK	-0138F
	OKT	ODC2R
	OUT	HOACE
*	RMAXI	0078R
*	RMAX2	30074F
**	RTESTC	0000
	SAVI	300A4F
	SAVA	00A8R
*	SAVEC	3007EK
★.	SLOPEl	ODF6R
*	SLOPER	00 D6 F
	STORE	0000
	STORE2	20 <b>00</b> 2
*	TAN	00C4R
*	TANDIF	003EK
*	TANDRI	007CR
×	TANFAC	:013AR
*.	TANGNT	0030R
*	THOLL	013Ck
*	TRNTST	0034R
	TWOPI	OBCF
	VIII	006CR

***********************

.

.

00000 0000 0000R			EXTRN ENTRY ENTRY	STABS, ATANUR TAN, DIST, INTERH TANGNT, TRNTST, IN ERV-, TANDIF
0006		INCREM	EQU	6
0000		STORE	EQL	31 2
0002		JIUKEZ	rõo	2
		<b>*</b> .		
		· አ ት. ሞክአርእባ		
		* IANGNI	LI KEI Sechen'	ADS POINTS FROM SIGRE, FINDS DEL TC FINDS BDCTLENS OF BNCIF
		*. 1	ND ST	RES IT IN A LIST OF ARGLE
		* F	I HAS	STERE(9)
		* R3	HAS S	STORE2(9)
		* R	9 HAS	INDEX FROM POHNTS
		* R.	5 HAS 1	TAN INDEX
		* R	4 WCRK	ING
		* R	5 BAL	ATANUR, STABS
			U RETU	R.N. ADDRESS
		*		
0000R	4A90	TANGNT	AH	9,INTERV
00014R	4B39		SH	3,STORE2(9) DELTA Y
00)BR	4B19		SH	1.STORE(9) DELTA X
000CR	4230 0028R		BNZ	FINIFE
0010R	2411		LIS	1,1
0012R	0833		LHR	3,3
0014R	4230		BNZ	ENLARG
	0024R			
0018R	C810 64 b f	NIL	LHI	1,X*64AE*
001AR	• me	TWOPI	EOU	*-2
OOLCR	4015		STE	1,TAN(5)
•	00C2R			
0020R	<b>43</b> 0::0		. <b>B</b>	ENIT
	0054R			<b>2</b> •
0024R	CF30	ENLARG	SLHA	<b>ن 4</b>
000000	0004	PTN7#P	ពត	
OUZOR	41 Fat	FINITE	DAL	TJ\$T121
002CR	40 D0		SIH	l, CELTAX
0030R	4030		STH	3, DELTAY
0034R	41.BC		BAL	15, AIANUE
	00001		124	

0038R	010CR		DC	A(DELIAY)
003AR	ODOAR		LC.	A(DFLTAX)
00300	AINED		DC	D(DNGLE)
-002rp	40 30		TE	
UUJER	40 00		.1.12	LAMULE
	OTUER			
-0042R	4830		LH	3,ANULE+2
	<b>0</b> 110R			
.0046R	CEIO		SLHA	1.12
<b>UU</b> IUN	0007		02111	- / 10
	d E D C		0.011.0	2 3
UU4AK			SKHH	J, J
	0003			
004ER	OA13		AHR	1,3
0050R	4015		STH	1,TAN(5)
	00 C 2 R			
0054R	C450	ENDT	NHT	5.X*3F*
	0035	2		
ODEOD	4015		CTI	1 11 11 11 1 1 1
00204	4013		21H	L, IANIJI
	UUCZR			
005CR	4B90		SH	9, INTERV
	. <b>O</b> D06R			
0060R	2696		AIS	9. INCREM
:0062R	0300		BR	11
- COULA	.0.000	*	- T n n k	C BT B LIST OF BROTHNESSTS TO S
		*	ייסטני	TDE OCCUDE CONFLIEDE STATTE SERM
		*	n 10	JEN UCCURS SUPENDERE VIIHIN ILEN
		<b>A</b> ·		
		×		
		*USES RI	EGS DIF	RETURN), 1, 2, 5( WHICH HAS VALUE OF
		*USES RI *	EGS OIF	RETURN), 1, 2, 5( WHICH HAS VALUE OF TAN CHECKED), 15(BAL)
		*-USES RI ★ ★-	EGS O(F	RETURN), 1, 2, 5( WHICH HAS VALUE OF TAN CHECKED), 15 (BAL)
•0064R	i08 <b>4</b> 5	*USES RI * *. TRNTST	EGS O(F	RETURN), 1, 2, 5( WHICH HAS VALUE OF TAN CHECKED), 15(BAL) 4, 5
0064R	0845	*USES RI * * TRNTST	EGS O(F .1HR LH	RETURN), 1, 2, 5( WHICH HAS VALUE OF TAN CHECKED), 15(BAL) 4, 5
0064R 0066R	0845 4815	*USES RI * *- TRNTST	LHR LH	RETURN), 1, 2, 5(WHICH HAS VALUE OF TAN CHECKED), 15(BAL) 4, 5 1, TAN(5)
0064R 0066R	0845 4815 00C2R	*USES RI * * TRNTST	EGS O(F .1HR LH	RETURN), 1,2,5(WHICH HAS VALUE OF TAN CHECKED), 15(BAL) 4,5 1,TAN(5)
0064R 0066R 006AR	0845 4815 00C2R 4910	*USES RI * *. TRNTST	EGS O(F .lhr Lh Ch	RETURN), 1,2,5(WHICH HAS VALUE OF TAN CHECKED), 15(BAL) 4,5 1,TAN(5) 1,TWOPI
0064R 0066R 006AR	0845 4815 00C2R 4910 001AR	*USES RI * *. TRNTST	EGS O(F .1HR LH CH	RETURN), 1, 2, 5( WHICH HAS VALUE OF TAN CHECKED), 15(BAL) 4,5 1,TAN(5) 1,TWOPL
0064R 0066R 006AR 006ER	0845 4815 00C2R 4910 001AR 4380	*USES RI * *. TRNTST	EGS O(F .lhr Lh Ch BNL	<pre>RETURN), 1, 2, 5( WHICH HAS VALUE OF TAN CHECKED), 15(BAL) 4,5 1,TAN(5) 1,TWOPL ZERO</pre>
0064R 0066R 006AR 006ER	0845 4815 00C2R 4910 001AR 4380 00A2R	*USES RI * *. TRNTST	EGS O(F .lhr Lh Ch BNL	RETURN), 1, 2, 5( WHICH HAS VALUE OF TAN CHECKED), 15(BAL) 4,5 1,TAN(5) 1,TWOPI ZERO
0064k 0066r 006Ar 006Er 0072r	0845 4815 00C2R 4910 001AR 4380 00A2R 2742	*USES RI * *. TRNTST PILOOP	EGS O(F .LHR LH CH BNL SIS	<pre>RETURN), 1, 2, 5( WHICH HAS VALUE OF TAN CHECKED), 15(BAL) 4,5 1,TAN(5) 1,TWOPI- ZERO 4,2</pre>
0064F 0066R 006AR 006ER 0072R	0845 4815 00C2R 4910 001AR 4380 00A2R 2742 42 20	*USES RI * *. TRNTST PILOOP	EGS O(F LHR LH CH BNL SIS BM	<pre>RETURN), 1, 2, 5( WHICH HAS VALUE OF TAN CHECKED), 15(BAL) 4,5 1,TAN(5) 1,TAN(5) 1,TWOPI- ZERO 4,2 ZERC</pre>
0064R 0066R 006AR 006ER 0072R	0845 4815 00C2R 4910 001AR 4380 00A2R 2742 42⊉0 00A2R	*USES RI * *. TRNTST PILCOP	EGS O(F LHR LH CH BNL SIS BM	RETURN), 1, 2, 5( WHICH HAS VALUE OF TAN CHECKED), 15(BAL) 4, 5 1, TAN(5) 1, TWOPI ZERO 4, 2 ZERC
0064F 0066R 006AR 006ER 0072R 0074F	0845 4815 00C2R 4910 001AR 4380 00A2R 2742 42 №0 00A2R 4814	*USES RI * *. TRNTST PILOOP	EGS O(F LHR LH CH BNL SIS BM	RETURN), 1, 2, 5( WHICH HAS VALUE OF TAN CHECKED), 15(BAL) 4, 5 1, TAN(5) 1, TWOPI ZERO 4, 2 ZERC
0064F 0066R 006AR 006ER 0072R 0074F	0845 4815 00C2R 4910 001AR 4380 00A2R 2742 4210 00A2R 4814 00C2B	*USES RI * *. TRNTST PILOOP	EGS O(F LHR LH CH BNL SIS BM LH	A.5   1.TAN (5)   L.TWOPL   ZERO   1.TAN(4)
0064F 0066R 006AR 006ER 0072R 0074F 0078F	0845 4815 00C2R 4910 001AR 4380 00A2R 2742 4210 00A2R 4814 00C2R	*USES RI * *. TRNTST PILOOP	EGS O(F LHR LH CH BNL SIS BM LH	<pre>RETURN), 1, 2, 5( WHICH HAS VALUE OF TAN CHECKED), 15(BAL) 4, 5 1, TAN(5) 1, TWOPI ZERO 4, 2 ZERC 1, TAN(4) </pre>
0064F 0066R 006AR 006ER 0072R 0074F 0078F	0845 4815 00C2R 4910 001AR 4380 00A2R 2742 4210 00A2R 4814 00C2R 4510	*USES RI * *. TRNTST PILOOP	EGS O(F LHR LH CH BNL SIS BM LH CLF	<pre>RETURN), 1, 2, 5( WHICH HAS VALUE OF TAN CHECKED), 15(BAL) 4, 5 1, TAN(5) 1, TWOPI ZERO 4, 2 ZERC 1, TAN(4) 1, TWOPI</pre>
0064F 0066R 006AR 006ER 0072R 0074F 0078F	0845 4815 00C2R 4910 001AR 4380 00A2R 2742 4210 00A2R 4814 00C2R 4510 001AR	*USES RI * *. TRNTST PILCOP	EGS O(F IHR LH CH BNL SIS BM IH CLH	<pre>RETURN), 1, 2, 5( WHICH HAS VALUE OF TAN CHECKED), 15(BAL) 4, 5 1, TAN(5) 1, TWOPI. ZERO 4, 2 ZERC 1, TAN(4) 1, TWOPI</pre>
0064F 0066R 006AR 006ER 0072R 0074F 0078F 007CR	0845 4815 00C2R 4910 001AR 4380 00A2R 2742 4210 00A2R 4814 00C2R 4510 001AR 433⊮	*USES RI * *. TRNTST PILOOP	EGS O(F IHR LH CH BNL SIS BM IH CLF .EE	<pre>RETURN), 1, 2, 5( WHICH HAS VALUE OF TAN CHECKED), 15(BAL) 4, 5 1, TAN(5) 1, TWOPI ZERO 4, 2 ZERC 1, TAN(4) 1, TWOPI FILCOP</pre>
0064F 0066R 006AR 006ER 0072R 0074F 0078F 007CR	0845 4815 00C2R 4910 001AR 4380 00A2R 2742 4210 00A2R 4814 00C2R 4510 001AR 433⊮ 0072R	*USES RI * *. TRNTST	EGS O(F LHR LH CH BNL SIS BM LH CLF .EE	A.5   1.TAN (5)   I.TWOPI   ZERO   1.TAN(4)   1.TWOPI
0064 0066 006A 006E 0072 0074 0078 0078 007C 0080 0084 0084 0084 0084 0084 0084 008	0845 4815 00C2R 4910 001AR 4380 00A2R 2742 4210 00A2R 4814 00C2R 4510 001AR 4331 0072R 4815	*USES RI * *. TRNTST	EGS O(F IHR LH CH BNL SIS BM IH CLF .EE SH	<pre>RETURN), 1, 2, 5( WHICH HAS VALUE OF TAN CHECKED), 15(BAL) 4,5 1,TAN(5) 1,TAN(5) 1,TWOPI ZERO 4,2 ZERC 1,TAN(4) 1,TWCPI PILCOP 1,TAN(5)</pre>
0064 0066 006A 006E 0072 0074 0078 0078 007C 0080 0084 R	0845 4815 00C2R 4910 001AR 4380 00A2R 2742 4210 00A2R 4814 00C2R 4510 001AR 4331 0072R 4815 0072R	*USES RI * *. TRNTST	EGS O(F LHR LH CH BNL SIS BM LH CLH .EE SH	RETURN), 1, 2, 5( WHICH HAS VALUE OF TAN CHECKED), 15 (BAL)         4,5         1,TAN(5)         1,TWOPI.         ZERO         4,2         ZERC         1,TAN(4)         1,TWOPI.         FILGOP         1,TAN(5)
0064 0066 006A 006E 0072 0074 0074 0076 0076 0080 0084 0084 0085	0845 4815 00C2R 4910 001AR 4380 00A2R 2742 4210 00A2R 4814 00C2R 4510 001AR 4510 001AR 4331 0072R 4B15 00C2R	*USES RI * *. TRNTST	EGS O(F IHR LH CH BNL SIS BM IH CLF EE SH BDI	RETURN), 1, 2, 5( WHICH HAS VALUE OF TAN CHECKED), 15 (BAL)         4,5         1,TAN(5)         1,TWOPI.         ZERO         4,2         ZERC         1,TAN(4)         1,TWOPI         FILGOP         1,TAN(5)
0064 0066 006A 006E 0072 0074 0074 0070 0080 0084 0084 0088 0088	0845 4815 00C2R 4910 001AR 4380 00A2R 2742 42 №0 00A2R 4814 00C2R 45 №0 001AR 433% 0072R 4B15 00C2R 4B15 00C2R	*USES RI * *. TRNTST PILOOP	EGS O(F LHR LH CH BNL SIS BM LH CLH LEE SH BAL	RETURN), 1, 2, 5( WHICH HAS VALUE OF TAN CHECKED), 15 (BAL)         4,5         1,TAN(5)         1,TWOPI.         ZERO         4,2         ZERC         1,TAN(4)         1,TWOPI.         FILGOP         1,TAN(5)         15,STABS
00064F 0006AR 0006AR 00072R 0074F 0078F 0078R 007CR 0080R 0084R	0845 4815 00C2R 4910 001AR 4380 00A2R 2742 42 №0 00A2R 4814 00C2R 45 №0 001AR 433% 0072R 4B15 00C2R 41.₽% 0000F	*USES RI * *. TRNTST PILOOP	EGS O(F LHR LH CH BNL SIS BM LH CLH EE SH BAL	RETURN), 1, 2, 5( WHICH HAS VALUE OF TAN CHECKED), 15(BAL) 4,5 1,TAN(5) 1,TAN(5) 1,TWOPI ZERO 4,2 ZERC 1,TAN(4) 1,TWCPI FILGOP 1,TAN(5) 15,STABS
0064F 0066R 006AR 006ER 0072R 0074F 0078F 0078R 0070R 0080R 0084R	0845 4815 00C2R 4910 001AR 4380 00A2R 2742 4210 00A2R 4814 00C2R 4510 001AR 4337 0072R 4B15 00C2R 41P 0000F 0821	*USES RI * *. TRNTST PILOOP	EGS O(F IHR LH CH BNL SIS BM IH CLF EE SH BAL IHR	RETURN), 1, 2, 5( WHICH HAS VALUE OF TAN CHECKED), 15 (BAL) 4, 5 1, TAN (5) 1, TAN (5) 1, TWOPI ZERO 4, 2 ZERC 1, TAN (4) 1, TWOPI FILCOP 1, TAN (5) 15, STABS 2, 1
0064F 0066R 006AR 006ER 0072R 0074F 0078F 0078R 0080R 0084R 0084R	0845 4815 00C2R 4910 001AR 4380 00A2R 2742 4210 00A2R 4814 00C2R 4510 001AR 4337 0072R 4B15 00C2R 41P 0000F 0821 4B10	*USES RI * *. TRNTST PILOOP	EGS O(F IHR LH CH BNL SIS BM IH CLF EE SH BAL IHR SH	RETURN), 1, 2, 5( WHICH HAS VALUE OF TAN CHECKED), 15 (BAL)         4,5         1,TAN(5)         1,TWOPI.         ZERO         4,2         ZERC         1,TAN(4)         1,TWOPI         PILCOP         1,TAN(5)         15,STABS         2.1         1,TWOPI.

)(092R	41 B		BAL	15,STABS
20096R	0521		CLHR	2,1
0098R	4380		BNL	END
00968	009ER		I.HR	1.2
ICO9ER	2652	ENC	AIS	5,2
DOADR	03090		BR	1_
100226	:0811	ZERO	SHR	1.1
00A4R	43000		B	END
	:009ER			
		*		
		★.		
:00A8R	0873	DIST	LHR	7,3
ODAAR	08D1		LHR	13,1
HOACR	OCCD		MHR	12,13
DOAER	0.067		MHR	6,7
DOBOR	OAL7		AER	13,7
OOB2R	UEC6		ACHR	12,6
UUB4K	00000			12,12
UUDDK	023r C5D0	DICTEI	CIUT	13 8 1901
NODOK	0010	DISIL	CTULT	TILV RO
OOBCR	42.80		BL	NIL
	0018R		-	
100C0F	031F		BR	15
		*		
		*		
00C2R		TAN	DS	66
-U104R		TANDIF	E 5	2
0105K		INTERV	тс П2	L
אסטיטי		DELTAY	05	2
:010CR		DELTAY	ES	2
				-

٠

AT ACW	
010ER	ANGLE
:0110R	ANGLE2
0112R	

## NO ERRORS

ANGLE	010EK
ANGLE2	0110R
ATANUR	20036F
DELTAX	<b>010</b> AR
DELTAY	:010CR
DIST	00A8R
DISTFL	00B8K
END	009ER
	ANGLE ANGLE2 ATANUR DELTAX DELTAY DIST DISTFL END

DS ĽS END 22

.

ENDT	0054R
ENLARG	-0024F
FINITE	0028R
INCREM	.0006
INTERH	0108R
INTERV	10106 K
NIL	0018R
FILOOP	0072R
STABS	0094R
STORE	0000
STORE2	0002
TAN	00C2F
TANDIF	0104R
TANGNT	10000 F
TRNTST	0054R
TWOFI	2001AR
ZERO	UDA2R
	ENDT ENLARG FINITE INCREM INTERH INTERV NIL FILOOP STABS STORE STORE2 TAN TANDIF TANGNT TRNTST TWOFI ZERO

• •

******

.

•

		*RATER	READJUS	STS RATES EVERY	12 POINTS
		*THIS V	ERSION	USES A GENERAL	FUNCTION
		* INTE	RH = II	NTERV = INTERVAL	BETWEEN SLOPE C
		* DELT	H1 = D	ELT11 = CX FOR H	ND 10 END MATCH
		* DELTI	H2 = DI	ELT22 = DY FOR E	ND TO END MATCH
		* DELT	H3 = D	ELTA3 = Y DIF .1M	CHEKR (CFIX)
		* DELT	$14 = \mathbf{DI}$	ELTA4 = DX FOR I	NIERSECIIJNS
		* DELT	H5 = DI	ELTA5 = DY FOR I	NTERSECTIONS
		* TAND	[H = T]	ANDIF = ANGLE CH	ANGE PERMISSIBLE
		*			
		*			
		* DELT	Al-3:	1/32 IN. TO 3/8	IN.
		★.		12 COUNTS + 8	(RATE)
		* DELT	A4-5:	1/16 IN. TO 3/8	+ IN.
		*.		23 COUNTS + 8	(RATE)
		* INTE	RV = 4	*(18 - K)/2 (S	KIP # TO & POINT
		* TAND	[F = P]	[/90 + (PI/9 ] *	R) (4 TO 34 DEGR
		*			
		*.			
				-	
0005		INCREM	EQU	5	
OODOR			EXTRN	INTERV, RFFIG	
20000R			EXTRN	INTERH, TANLIF	
OODOR			ENTRY	TANDIH, RATER, RM	AX1, RMAX2, RTESTC
10000R			ENTRY	T1, EIGHTH	
0000R			EXTRN	FUNCT, OFFSET	
		STORE	EQU	Ú,	
10002		STUREZ	ΕŲU	۷	
00000	A O THE	00000	T 11	ጉብ ከሞርሮምር	UN N ENOUGH DOTH
UUUUR	40 M ¹	RAIER	TU	EU,RIESIC	HAV ENOUGH PUIN
00040	UIUAR ADDC		<b>R1</b> )		
UUU4R	4 <i>A A</i>		нп	DO, INI ERV	ELAPSED SINCE I
00080	40 b 0		ຕານ	MI DTECT	
OUUOR	40 <i>H</i> 0 01080		51 F.	LU,RIESIA	AEFIGURED THE P
-000CE	ASTR		CIL	ЪП ртгст	TE NO
NOUCK	010CP		CDE	DV / RIESI	IF NO
00105	0285		<b>B1.</b> E	15	PETIEN
00128	4000		STH	0.500	FLSE SET HP FOR
<b>VVI</b> LK	OOBER		0111	04010	
00168	4090		STH	9.579	
¢ v z o n	00C2R				
OOLAR	4050		STH	15.ST15	
0 0 L III.	00(6R		• • • •	20,0110	
001EB	C819		LHT	101-INCREM-TUCR	FM(9)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	FFFA				
00228	1766		XHR	6.6	
.0024P	AUL 6:0		STE	6.1 FNGTH	
*****1	01108			- F W w + 1 + 7 + 3 +	
0028R	0080		IHI	12.X * 900(*	
			100	aagee ower	
			120		

002CR	F000 2796	LOWER	SIS	9.INCREM	L.00K	AH ER D
002ER	459! 0000F		CLH	S, CFFSET		
0032R	4280		Bl	UPl		
-0036R	0046R 49:C9		CH	12, STORE (9)		
003AK	0000 4310		BNM	UPl		
003ER	0046R :05A9		CLFR	b0,9		
0040R	4280 002CR		9 L	LOWER		
0044R	2102	unl	BTFS	0,2 6 INCOLM		
0046R	2696 4889	LOOPL	LH	11.STORE(9)	OTHER	WISE
004CR	-0000 48D9		LH	13, STORE2(9)	STEP	THRU GETLE
00508	0 0 02 2696		AIS	9.INCREM	ro co	ME JP
-0052 k	41.R0 0008R		BAL	15, GETL	WITH	RATE
-0056R	C500		CLHI	6.4		
005AR	4280		EL	LOOP1		
:005ER	48D0	NOW	LH	13,LENGIH		
0062R	C8B0		LHI	11,16		
0066R	OCCB		MHR	12,11		
0068R	4 DC 0 00 E 8 R		дн	12, EIGHTH		
006CR	OACC		AHR	12,12		
006ER	45.00 00E8R		CLE	12,EIGHTH		
:0072R	2382		BFFS	8,2		
0074R	26D1		AIS	13,1		
0076R	108 LD		LHR	13,13		
0078R	223 2		BFBS	3,2		
:007AR	OCA6		MHR	BC ,6		
007 CR	O DA D		DHR	10,13		
007ER	086 B		LHR	ε,11		
0080R	C880) -0010	LONG	LHI	11,16		
0034R	C560 0010		CLHI	6,16		
0088R	4320 10090R		BNP	RATEJP		
008CR	C860 0010		LHI	6,16		
0090R	OBB6	RATEUP	SHR	11,6	र11 स	AS RATE
			129			

0092R	41F)]		BAL	15, RPFIG
	10000F			
0096R	4580.		CLH	LL, RMAX Z
	0114R			
009AR	4280		3L	PARAMS
	100 A 2 R		-	
009 E R	40B0.		STH	LL.RMAX2
	10114R		_	
ODA2R	41001	PARAMS	BAL	0. T1
	00F4R			
00A6R	40D0		STH	13, TANDIH
	BODDER			
OOAAR	C8D0	SAV12	LHI	13, INCREM+ INCREM
	3000C			
OOAER	40D01		STH	L3, INTERV
	:0006R			
00B2R	40D0:		STH	L3, IN TERH
	10000F			
00B6R	0 B99		SHR	9,9
:00B8R	4090		STH	9,RTEST C
	0 10AR			
OOBCR	C 8) : 0		IHI	30,30
	0000			
OBER		STC	ΕQΊ	*-2
OOCOR	C890]		LHI	9,0
	:0000			
OOC2R		ST9	EQU	*-2
OOC4R	43140		В	*
	00C 4R			
00C6R		ST15	EQI	*-2

00C8R	2661	GETL	AIS	6,1		
OCAR	4889		LH	LO,STORE(9)		
	0000					
OOCER	C9A0		CHI	¥0,X*B00C*		
	F00D1			-		
:00D2R	4320		ENP	NOW		
	005ER					
:00D6R	OBEA		SHR	11,00		
00D8R	4BD9		SH	13, STORE2(9)		
	0002					
00DCR	OCAB		MHR	10.11		
QUDER	OCCD		MHR	12,13		
ODEOR	OABD		AHR	11,13		
COF2R	4 A BI		AH	11. LENGTH		
	01108					
00562	C5B0		CLHT	11.x*130C*	(X + 45 +	CITINTS)*
. COLON	1300		C 2111	lija 1999		GCONIDI
00585	1 J W 54 (FTCUTH	FOI	*-?		
TODEOR		Froutu	rõr	L		

DOEAR	4380 00808		ENL	LONG
COEER	40B0		STE	11, L'ENGTH
)00F2R	0110R 03CF		BR	15
00F4R	41F02 10000F	Tl	BAL	15, FUNCT
00F8R	0000	ATL	DC	0.
OOFAR	0064		DC	b00
ODFCR	0000	BTl	DC	011
)OOFER	0064		EC	POC
0100R	0300	CTL	DC	768
.0102R	0064		БС	100
0104R)28A	DTL	DC	650
:0106R	:0000F		DC	A(TANDIF)
0108R	0300		BR	i.

2010AR		RIESTC	DS	ź
010CR	0030	RTEST	DC	48
OIDER		TANDIH	D S	2
Olior		LENGTH	DS	2
·0112R		RMAX 1	D S	2
0114R		RMAX2	DS	4
0116R			END	

	ATL.	00F8R
	BTl	HOFCR
	CTL	0100R
	DTl	:0104R
*	EIGHTH	00E8R
*	FUNCI	00F6K
	GETL	00C8R
	INCREM	:0006
×	INTERH	00B4R
★	INTERV	00B0k
	LENGTH	0110R
	LONG	30080k
	LOOPL	0048R
	LOWER	002CF
	NOW	005ER
★	OFFSET	30030K
	PARAMS	00A2R
*	RATER	10000F
	RATEUP	0090R

★	RMAXI	0112R
*	RMAX2	20114R
*	RPFIG	0094R
	RTESI	OLOCR
★	RTESTC	010AR
	SAV12	HAADO
	STO	OOBER
	ST15)00C6R
	ST9	00C2R
	STORE)0000
	STORE2	0002
★	11)00F4R
★.	TANDIF	0106R
*	TANDIH	OLOER
	UPl	0046R

0000R			ENTRY	FUNCT
		*FUNCTI	0NR	11 = RATE
		* FIR	ATE) = AI	\"(RATE)**3+B "(RATE)**2+CC"(RAT
		* WHE	RE P',	B', & C' HAVE NEGATIVE EXPONENT
0000R	0 8DB	FUNCT	LHR	13,11
30002R	OCCB		MHR	12,11
000.4R	OCCB		MHR	12,11
0006R	4CCF		MH	12,0(15)
	0000			
)000AR	4DCF		DH	12,2:15)
	0002			
000ER	1A80		.LHR	10,13
0 0 10R	0 8DB		LHR	13,11
20012R	OCCB		MHR	12,11
0014R	4 CC F		мн	12,4(15)
	0004			
0018R	4 DC F		DH	12,6(15)
	0006			
001CR	DAAD		AHR	10,13
OOLER	8180°		LHR	
0020R	4CCF		MH	12,8(15)
	0008			
0024R	4 DCF		DH	12,10(15)
00000	JUUUA		A +7	
0028R	4ADF		AH	13,12(15)
00000			R 11D	10 11
UUZLR	UADA		AHR	13,14,3EX
UUZER	48UF		.L·h	12,14(15)
00220	DUUL		CTU	131(112)
JUUJZR	40DC		SIL	
00265	1205		מ	16(15)
UU JOK	4 JUL 0 0 1 0		E	10(157
00385	UUIU		ENT	
VAC UO-			ENL	
NO ERROI	RS			
* FUNCT	0000R			

0000R 30000R 30000R 30000R 30000R 30000R 50000R 50000R 70000R			EXTRN EXTRN EXTRN EXTRN EXTRN EXTRN ENTRY ENTRY ENTRY EXTRN EXTRN	PMAX1, PMAX2 RMAX1, RMAX2 CORNCT, IN TERV, CO CFIX, LINDER TANDRI, IN TERH, DA LISKST, CITSA GOT BAC, LINER2, CI LINER2, HOLDEN ENDSEG, FCORN THOL1, BSTORE OFFSET	DRNER, LINE LYP ENDER
30000 /		STORE	EQU	ж	
0002		STORE2	EQU	2	
0004		STORE4	rF₫.f	4	
0000		STUREC	FÕO	12	
0035		INCREM	EQU	6	
000DR	482 1 0000F	ENDSEG	LH	2,CORNCT	
00).4R	4080 00BCR		STH	8,HOLD	
0008R	2686		AIS	8, INCREM	
-000AR	4898		LH	9,STORE(E)	
	0000				
-000ER	C990		CHI	5,X "F000"	IF TWO FLAGS, G
	F000.				
BUUIZR	42 <i>0</i> 1		BP	SKIP	
00160	NOIOR		100	1 0	NTO DECIGTER
00100	4013 4013	CKID	CUT	2 THORMATHORM	INIU REGISTER
00101	0000	DVIL	201	or incaent incaen	
001CR	0898		LHR	9.8	29 POINTS 2 POI
DOLER	C4 E0		NHI	1.X*C000*	
	C000			•	
-0022R	48)0		.LH)C, LISKST	
	0000F				
0026R	CD 0		SLHL	ac.,7	
	0007		• • •		
UUZAR	4069		LER	6,9 6 0 FF 0 6 M	
UUZLR	4 80 U		5 n	o, UFF SE1	
0030R	0616		OHR	1.6	
0032R	0610		OHR		
0034R	C520		CLHI	2,10	
	1000A				
0038R	4330		BE	GOT1	
	005AR				
003CR	C520		CLHI	2,4	
	0004		_		
			134		

0040R	4330		BE	GOT1
	005AR			
0044 R	2622		AI:S	2,2
0046R	4092		STH	9,CORNER(2)
	0000F			
004AR	4012		STH	L,DATP(2)
	10000F			
004ER	4020		STH	, CORNCT
	30002R			
0052R	4100		BAL	LINE .
	0000F			
0056R	430D		В	GOT 2
	0062R			
005AR	2722	GOT1	SIS	2,2
005CR	4012		SIE	1, IATP(2)
	004CR			
70800k	2622		AIS	2,2
0062R	C520	GOT2	CLHI	2,4
	0004			
0066R	4330		BE	LINER2
	00 A 2 R			
006AR	4100	GOTTEN	BAL	0, CFSA
	0000F			
006ER	4100		BAL), CFIX
	0000F			
0072R	00A2R		DC	LINER2
0074R	4800	GOIBAC	LH	6,PMAX1
	0000F			-
20078R	CDOC		SLHL	6,4
	00014			
±007CR	466		OH	6,RMAX1
	0000F			
#0080R	0B22		SHR	2,2
0.082R	4100		BAL	·LINER
	:0000F			
0086R	2626		AIS	2,6
0088R	486		LF	6,PMAX2
	0000F			
008CR	CDO		SLHL	6,4
	000.4			
11:090R	466)		0 H	6,RMAX2
	0000F			
10094R	4 D G O		BAI	N,LINLR
	0084R			
0098R	0B22		.SHR	2,2
009AR	4020		STH	, CORNCT
	0050R			
009ER	4300		В	ENDED
	OOEAR			
00A2R	4860	LINER2	LH	6,PMAX2
	1008AR			
00A6R	CD60		SLHL	5,4
			125	

	000.4			
ICOAAR	466		OE	6.RMPX2
,	0032R			••••
OAER	0B22		SHR	2,2
OOBOR	4100		BAL.	LINER
	0096R			•
00B4R	0B 22		SHR	2,2
OOB6R	4020		STH	Z.CORNCT
	009CR			
		*		
ODBAR	C890.	ENDED	LHI	9,0
	>0000			
OOBCR		HOLDEN	EQU	*2
+00BCR		HOLD	EQU	*-2
OOBER	4020		STH	2,DATP
	005ER			·
00C2R	0711		XHR	1,1
'00C4R	40 00		STH	I.ESTORE
	0000F			
00C8R	48 10	ENCER	.IH	I.INTER
	0000F			
DOCCE	40 h0		STF	1. TNTERV
	DOODF			
RUDDOR	4 30/0		P	TANEST
~~ ~ ~ ~ ~ ~ 1	00005		L .	
	NO NO NO LO A	*		

		★ .		
00D4R	4000	FCGRN	EAL	H,CFSA
	005CR			
200D8R	4 D00		BAI)(,CFIX
	0070R			
XUODCR	014CR		DC	CENDER
OODER	4860		LH	6,PMAX1
	0076R			
00E2R	C D6 0		SLHL	5,4
	0004			
00E6R	4660		0 H	6,RMAX1
	007ER			
OOEAR	4820		LH	2,RMAX2
	DOACR			
OOEER	4020		STH	2,RMAX1
	00E8R			
00F2R	4820		LH	2,PMAX2
	:00A4R			
00F6R	4020		STH	2.PMAX1
	ODEOR			
OOFAR	0B22		SHR	2,2
POFCR	4 D 10		BAL	M.,LIN R
			13/2	

	00 E 2 R			
0100R	2626		AIS	2,6
:0102R	:0744		XHR	4,4
0104R	4832	SHLOOP	ĹН	3, DATP(2)
	DOCOR			
01082	4034		STH	DATP(4)
01000	01068		0211	
01000	2642		ATC	1 2
OLOCK	2042		RIJ RTC	1,4 0, 0
ALUER	2022		ALC	2,2
OTTOR	0000		CTHI	2,14
0114-	TUUUE			
0114R	4280		Rr	SHLOOP
	0 D04 R			
0118R	2742		SIS	4,2
;011AR	4040		STH	4,CGRNCT
	00B8R			
011ER	C830		LHI	3, THOLD
	0000F			
0122R	DOBO		STM	14.SAV2
	0152R			•
0126R	0722		XHR	2.2
01288	בשות	STLOOP	LM	14.x*C*(3)
VILUN	0000C	512001		
01200	D053		STM	14 (113)
VIZCA	:0000		5111	14,013,
01200	2624		n T C	2 /
ULJUK	2034		MT2	5,4
UIJZR	2021		HT2	
U134R	C520.		CLHI	2,4
	0004			
0138R	4280		BL	STLOOP
	0128R			
013CR	2454		LIS	5,4
013ER	242A		LIS	2,10
0140R	4832		ыH	3, CORNER(2)
	0048R			•
0144R	4035		STH	CORSER(5)
• • • • • •	0142R			•
0148R	DIED		LM	14.SAV2
• - • • •	0152R			
01402	0 BB 9	CENDER	LHR	11.9
014FP	Δ3000 Δ3000	- 11 12 12 12 12 12 12 12 12 12 12 12 12	B	FNDER
OLICA	00782		L.	لا منه مه ۲۵ سه
	JUCON	*		
01500		CRV2	nc	
015CD		SHV2	בע	<i>‡</i>
UT20K			ENU	

★.	BSTORE	00C6R
×	CENDER	014CF
*	CFIX	OODAR
★	CFSA	\$00D6R
★.	CORNCT	011CR

★.	CORNER	0146R
*	DATF	30 1 O A K
*	DISKST	0024R
	ENDEL	OOBAR
	ENDER	00C8R
*	ENDSEG)0000F
★	FCORN	00D4R
	GOTl	1005AR
	GOT2	0052R
*	GOTBAC	20074 R
	GOTTEN	006AR
	HOLL	OOBCF
★.	HOLDEN	ODBCR
	INCREM	:0006
*	INTERH	OOCAR
*	INTERV	OOCER
*	LINE	0054R
*	LINER	OOFEF
*.	LINER 2	00A2R
*	OFFSET	DOZEK
*	PMAX1	00F8R
*	PMAX2	00F4K
* -	RMAXI	OOFUR
×	KMAX2	NUECK
	SAVZ	UI52R
	SHLUUP	U1U4k
	SKIP	ODIOR
	SILUUP	UIZOR
	STOKE	
	SIUREZ CTODES	0002
	SIURE4	000.4 3000.0
*	DIUKEL	000C
*	THNDAL	0002X
~	TUAPT	ULCUR

.

) C) C	COOOR DODDR COOOR DOOOR			ENTRY EXTRN EXTRN EXTRN	CFSA, MINIM ATANUR, CORNER, DAI P, BSTORE STABS, INDEX, STOREX, STOREY KIT, CFRTRN, PTMAX, GPOINT
()(0000 0002		STORE Store2	EQU EQL	0` ź
e	3258 54ae		PI TWOPI	EQU EQU	X * 3258 * X * 64AE *
C	8.00		CORNR	EQU	8
C	0000R	4000.	CFSA	STH	, BACK+2
0 : (0004R 0006R	260 4 4000		AIS STH	0.4 D., CFRTRN IIA CFIX
1	0 00 AR	C880		IHI.	CORNR, CCINER
:(0 00 er	4828 0007		LH	2,2(CORNR)
:1	0 0 12 R	4832		I.H	3,STORE(2)
:1	0016R	4842		ΓH	4, STCRE2(2)
: (DOLAR	4828		LH	2 DC (CORNR)
۶ (DOLER	0000 48⊉0 0000F		.LH	L,PTRAX
,	0022R	4811		LH	1,6(1)
1	0026R	0512		CLHR	1,2
(0028R	4280 00588		BL	GOONL
(002CR	4020. 01908		STH	2,ANGLE
C	030R	41F0		BAL	15, GPOINT
r	10340	0000r		DC	10.
H	034R	00208			PT.MAX
C	1038R	0190R		DC	ANGLE
1	DUJAR	0188R		DC	ONE
0	103CR	018CR		DC	DELTAX
2	003ER	4190 0032R		BAL	15, GFOINT
	042 F	XODOA		D C	P C
ſ	1044R	0036R		DC	PTMAX
1	1046R	0190R		DC	ANGLE
Ĉ	1048R	018AR		DC	rwo
-	DO4AR	018ER		DC	DELTAY
(004CR	4B30		3 H	, DELTAX

	018CR					
0050R	4 B 41		SH	4, CEITAY		
	018ER		-			
5UU54R	4 3000 00502		В	GUTAN		
0058R	4B32	GOON1	SH	3.STCRE(2)		
	0000					
/005CR	4B42		SE	4, STCRE2(2)		
	000.2	C 0 8 3 1	n n:T	14 B. M. L. D.		
UUDUK	4 DUU 01628	GUIAN	BUL	J . AINK		
0064R	102K		LHR	1,5		
0066R	4828		LH	2,61CORNR)		
00080	0006			2 (0003043)		
UUDAR	4832		ьH	3, STURE(2)		
006ER	4842		LН	4,STORE2(2)		
	0002			•		
0072R	4828		LH	2,8(CORNE)		
00769	40208		cu	2 CT028/2)		
DOLOK	4032		ы	2,5IUREV21		
007 A R	4B42		SH	4,STORE2(2)		
	0002			• • • • • •		
007ER	4100		BAL	1, ATNR		
00828	0162K		SHR	1.5		
:0084R	41/B0		BAL	15.STABS		
	0000F			• · · · · ·		
0088R	C5 10		CLHI	l,PI		
00800	3258 4290		זמ	CONDED		
JUUUCK	4200 0098R			CONFFR		
+0090R	C851		LHI	5, TWOP 1		
	64AE			F \		
20094R	0851			5,1		
0098R	C5 10	COMPAR	CLHI	1.X"600"	AA 20	DEGREES
	0600					
)009AR	1000	MINIM	EQU	*-2		
UUACK	4280. :00382		RL	GUUN		
OUAOR	C810.		LHI	1,-1		
	FFFF					
00A4R	4300		B	G00N+2		
00700	OULAR	CODN	νυσ	1 1		
HOAAR	4010	GUUN	ANK STH	L/L LSFLAG+2		
	0158R			-purkast − * £.		
COAER	4010		STH	1, NO/EX+2		
	010ER		T 11			
UUBZK	40 ¥U		LH	I, ESTURE		

•

01188	4874		5.н	7.STORE(4)	
0114K	000CR				
0114R	4841		-H	4, CORNER(1)	
0112R	OA21		AHR	2,1	
0110 R	2412		LIS	1,2	
	0000				
010.CR	C8201	NOEX	LHI	2,0	
	>OOECR				
01 3 8r	4280		3 L	CLOOP	
0106R	:0521		CLHR	2,1	
0104R	2622	NEXT	AIS	2.2	
A 1 A **	0124R			2 2	
0100R	4380		BNL	FOUND	
	OOEER				
OOFCR	4542	HNEXT	CLH	4, INDEX(2)	
	0104R				
00F8R	4300		B	NEXT	
	ODOER				
00F4R	4020		STH	s,NOEX+2	
	700FCR				
OOFOR	4280		BL	HNEXT	
	:0000F				
ODECR	4532	CLOOP	CLH	3, INDEX(2)	
OOEAR	:0722		XHR	2,2	
	0001				
OOEGR	CC40		SRHL	4,1	CET "AVELAGE" I
00E4R	DA42		AHR	4,2	
	3FFF				
00EOR	C420		NHI	2.X"3FFF"	
	10008				
00 DCR	4828		LH	2,8(DAT)	
	3FFF		-	-	
00D8R	C440		NHI	4,X*3FFF*	
	0006				
00 D4R	4848		ьH	4,6(DAT)	
	10001			-	
DODOR	CC30		SRHL	3,1	GET "AVERAGE" I
HOCER	0A32		AHR	3,2	
	3FFF		** * * *	an (23 - 1 an 2 2 2)	
OOCAR	C420		NHI	2.X*3FFF*	
-UUCON	0002		1 2 2 2	~ # 6 * * 13 1	
:00065	4828		LB	2.2(IAT)	
A C C A	3FFF		*****	wyst ows <u>L</u>	
MOC2R	C430		NHT	3.X "3FFF"	
A Q D E A	0000		ة 4 1 .	in provinsi and a single and a	
OOBFF	4838		ГН	EDULAT)	
UUDAN	00005		* * * *	1. 11 T B 10 11 T 7	
	C881	JULI	L L L L L L L L L L L L L L L L L L L		
0008	VEUCK	חמת	ក្លារ	8	
UUBOK	4334. 01:000		04	NUEX	
00000	0000F		.) 77	NOEX	
	A A A A A				

	0000			
011 ap			71	2 676772141
UTICK	4034		Tr.	J, 51 UKE2 (4)
	UUJZ		_	
0120R	430		В	SHIFT
	01 2CR			
:0124R	4872	FOUND	.L.H	7,STGREX (2)
	0000F			
0128R	4832		LH	3.STOREY(2)
••••	00005		.	
01200	0744	CUTET	YUD	A. A
01208	-U/99 7/C7	SHILT	NHN UTC	7 7 7
DIZER	4972	CI CODI	111	
OTOR	4062	CLUUPI	LH	C, SICREX (2)
	UIZER		-	
0134R	4064		S14	c,STOREX (4)
	0 132R			
0138R	4862		LF	E,STCREY(2)
	012 AR			
013CR	4064		STI	(A)
	013AR			•
01400	4862		LE	E.TNEFX(2)
01401	NOFFR 1002			C FINDER (E)
01//D	AUCA		CTL	6 INFEV(A)
10144K	4004 01400		DIL	UPINDEAL41
01405	UI42K			A (C
UI40k	UA45		ALK	4,0
U14AR	UA25		AHR	4,5
1014CR	0521		CLHR	2,1
014ER	4280		BL	CLOOPL
	0130R			
0152R	4040		STH	4,BSTORE
	00 E4 R			
0156R	C840	SFLAG	THI	4.0
	0000			•
015AR	4210	BACK	BM	★,
VIJAR	01500	Shen		
01550	1300		a	Y TP
UIJER	40000		D	A 11
	UUUUF			
0100-	1020		C1 (15 1.1	
U162R	4030.	ATNR	STH	, DELTAX
	018CR			
0166R	4040		STH	4, DELTAY
	018 ER			
016AR	41F01		BAL	15, ATANUR
	30000F			
016ER	018CR		DC	DELTAX
0170R	:018ER		DC	DELTAY
0172R	0190R		DC	ANGLE
01740	4891		ĨH	5.ANCLE
·** • 38	01900		÷ • •	₩ g + + 61 % 64 60
01700	1860		114	6 BNICIE+2
OTIOK	4004 01320		ن د سط .	UJAN CHEFZ
01305	UIJ ZK		CT 117	E 12
OTICR	Cr 50		STHW	3,14
			142	

	2000£			
0130R	C E 6 0		SRHA	5,3
	0003			
0184R	0A56		AHR	5,6
0186R	0300		BR)Ľ
-0188 F	:0001	ONE	EC	1
018AR	00)2	TWO	DC	1
+018CR	:0000	DELTAX	IC	÷0
018ER	0000	DELTAY	DC	ì
:0190R	: 00 00	ANGLE	D C	0نر 0(
	0000			
0194R			END	

	ANGLE	0190R
*	ATANUR	016CF
	ATNR	0162R
	BACK	015AF
*	BSTORE	0154R
★	CFRIRN	0008R
*	CFSA	0000R
	CLOOF	BOOECF
	CLOOPl	01 30R
	COMPAR	10098 k
*	CORNER	0116R
	CORNR	>0008
	DAT	0008
*	DATP	HOBCE
	DELTAX	018CR
	DELTAY	1018ER
	FOUND	0124R
	GOON	100A8 K
	GOONL	0058R
	GOTAN)0060F
*	GPOINT	0040R
	HNEXI	DOFCE
*	INDEX	0146R
*	MINIM	009AF
	NEXT	0104R
	NOEX	POLOCE
	ONE	U188R
	PI	3258
π.	PTMAX	0044R
	SFLAG	01565
	SHIFT	012CR
*	STABS)0086 F
	STORE	0000
	STORE2	10002
*	STOREX	U136R
×	STOREY	DIJER
	TWO	ULBAR

.

- TWOPI 64AE * XIT 90160F

•

...3

;

• .

•.•
	*ENTRY BAL C.CFIX * THIS ROUTINE TAKES 2 LINE SEGMENTS * IN *CORNER* & CALCULATHS THEIR INTERSEC * THE INTERSECTION IS STORED HIGH IN * STORE AND THE POINTERS TO THE INTERSECT * IN CORNER ARE ALTERED TO IT *
	*R0BAL; B & D FROM BD *R1WRKG *R2WRKG,PTR TO CORVEX IN SLOPED *R3B,D FROM BD; Y FRILM EY,DY *R4WRKG *R5WRKG *R6WRKG; PTR TO HJLD IN SLOPED *R7WRKG *R12-BAL SETTER *R14-EAL SLOPED *R15-BAL SLOPE1,STABS,BD,BY,DY
	<pre>* Y1=AX1+B * Y2=CX2+C * AT INTERSECTION: * Y1=Y2 * X1=X2 * THEREFORE: AX+B=CX+D AT INTERS * AX-CX=D-B * X(A-C)=C-B * X(INTERS)=(D-B)/(A-C) * Y(INTERS)=A*X(INTERS)+B= *. C*X(I TERS)+D</pre>
0000R 0000R 0000R 0000R 0000R 0000R	ENTRY CFIX, DELMA3, CHRTRN, XIT EXTRN CORNCT, SLOPER EXTRN INOUTS EXTRN DATP, THOLD EXTRN CORNER, STABS EXTRN ATANUR
0000 90002 000E 9000C	STORE EQU O STORE2 EQU 2 STOREE EQU 14 STOREC EQU 12
20000R 4000 0238R 20004K 2442 0005R 41F 1 2008ER 003DR 4000	CFIX STE W, RETRN LIS 4,2 SET FTR TO GET BAL 15, BD JET 5 STH 0.8
UVUAA TUUU	145

	030ER			
4000ER	2448	LIS	4.8	LET FTR TO GET
0010R	41F92	BA.	15,BD	GIT D
	008ER			
0014R	4000	STH	0 , D	
	:0310R			
0018R	C900	CHI	0, X • 3 000	IF D<9001
	9000	2.44		
UUICR	4211	8 M	o XY	LINEZ 15 VERTIC
00305		CUT	0 VII 0001	TC 5.700 '
UUZUR	2000	CHI	0.4 X 1 000	1F 07/001
00248	A 220	AP	× Y Y	LINE2 TO VERTIC
0923A	100C6R	51	JAL	DINCE IS VENILC
0028R	4810	LH	L.B	
	030ER		•	
002CR	C910	CHI	1,X*3000*	IF B<9001
	9000			
0030R	4210	BM	DXY	LINEL IS VERTIC
	0164R			
09.34R	C910	CHI	L,X-/000-	1F B>/0012
00202	AUUU A 220	an	DVV	ITNEL TT VEDMTE
NN38K	422U	8 K	DXI	LIMET TO VERTIC
00308	NRIO'	S H R	1.0	R = R - D
003ER	42 A)	BIC	4.BOT r	JE SIB. FRILS.S.
CUSER	ODDAR	010	.,	
0042R	40:0	MH),TANFAC	ADD IN RICUNDOFF
	031CR			
0046R	244R	LIS	4,10	
0048R	4854	ΓH	5,COR/ER(4)	15 HAS C*TANFAC
	10000F	a	A C	
004CR	2/46	515		TE-1(_5)+0500000
UU4ER	4004 00x10	.cn	J, CURNER (4)	AU-ICTAINIANFAC
00528	1094R	THE	2.46	
0054R	0831	LHR	3.1	
.0056R	/0D05	LHR	00,5	FL HIS X AT COR
	*		=(D-B) *TANF	GC/((A-C)*TANFA
-0058R	20531	CLHR	3,1	
005AR	4230	BNE	CHECK	CHECK FOR DIV F
	OLSAR		~ ~ ~	
005ER	0520	CLHR	2,0	TE NONE CO MO C
UUBUR	42 <i>3</i> 0	BNE	CHECK	IF NUME GU TU U
00645	UIDAK MOII	TUE	1 1	
00660	A 330 ~	27 97	CHECK	
JOOOK		<u> </u>	ψ11 <i>μ</i> ωω1Χ	
006AR	C550	CLHI	5,1	
ar — - 	:0001		• -	
006ER	4330	BE	CHECK	
	:019AR			
		146		

0072R	4810	LH	1,E	CTHERWISE ONE	L
	030ER.				
.0076 R	41 :B0	BAL	15,STABS	DECIDE WHICH	
	0000F				
:007AR	0801	THE	10,1		
007CR	48101	LH	1,D		
	20310R				
0080R	41F01	BAL	15,STABS	AND GO TO APPR	D
	0078R				
0084R	0510	CLHR	1,0		
:0086R	438r	BNL	EXY		
	00C6R				
1008AR	4300	В	DXY		
	0154R				

**** * × *ENTRY BAL 15, BD * THIS ROUTINE EXTRACTS B FROM THE *. EQUASION Y=AX+B * B = Y - AX*****-008ER 4814 BD LH 1, CORNER (4) F4=PIR TC 2NE L 0050R 0092R 4831 3,STORE(1) K=E A TH 0000 20096R 2642 4,2 F4 H.S PTR TO AIS 0098R 41C0 BAL 12.SETTER LF RETURNED .00 A4 R R3 HAS AX ELSE X LATHERCEFT MEAF INFIN * * 009CR 4801 J_STORE2(1) LH ROTHAS Y 0002 OOAOR OB03 0,3 SHR $R \exists = B$ 15 00A2R 030F BR

		*				
		*ENTRY	BAL 12	2.SETTER		
		*	R3 HAS	X ON EN	ITRY	
		*	R4 = PTR	TO SLOP	E JF LINE	(A)
		*	$k^{2}/3 =$	AX CN E	EX I'I	
		★ .				
00A4R	4C24	SEITER	MH	2,CONN	ER(4)	
	0090R					
:00A8R	0852		LHR	5,2		
OOAAR	0863		L.HR	6,3		
NOACK	4231		BNZ	HOP		
	00B4R					
			-			

00B0R 00B2R	0822 033C 4D20	нор	LHR BFCR DH	2,2 3,12 	REMOVE SUINDAEE
UUUTK	031CR	1101	DII	JI NALAC	REHOVE ROOMBOTT
00B8R XOOBAR OOBCR	0536 023C 0525		CLHR BICR CLHR	3,6 3,12 2,5	CHECK FOR DIVID If None Return
DOBER 00COR	023C C800		BICR Lhi	3,12 0,x*80003	ELSE LOAD RO=B=
00C4R	03)F	*	BR	15	RETURN TO CALLE
		* 7	*****	****	
		* ENTRY	E (B)	XY	1000
		* YOU I	USE BX	ARE IDENTICAL EXC Y WHEN LINE2 IS '	VERIICAL
		* USE I	DCY WHI	EN LINEL IS VERT	ICAL.
		*WITH ON *LINE WI	E LINI	E VERTICAL, X ALO	DNG THAT TE YO'I
		*TAKE AN	V X NE	AR THE INTERSECT	ION, IT CAN
		*BE SAFI	ELY AS:	SUMED TO BE THE SUBSTITUTION OF	X AI THE
		*THE EQU	UASION	FOR THE CTHEF L	INE GIVES
		*YI INTER	RS)		
00000	1010	* ¤ V V	тu	1 8	
UULOK	4010. 030ER	DAI	цц		
OOCAR	C910		CHI	1,X*9000*	SEE IF BOTH LIN
OOCER	4210 0058P		BM	BOTH	
00D2R	C910 7000		СНІ	1,X*7000*	
00D6R	4320 01488		BNP	NOT	1.F NOT GO TO N
OUDAR	48F0	BOTH	LH	15, RETRN	LF FOM INTERS
OODER	480F		GH	0,0(15)	
00E2R	C500		CLHI	0.,INOUTS	
00E6R	0330		BER		RETURN
200E8R	2442		LIS	4,2	
OOEAR	2438		LIS	3,8	ELSE YOU HAVE A
OUECR	0824		LHR	2,4	
			148		

OOEER	4813	LOOP	.LH	1, CORNER(3)	FOE	GET 1	& T]	
10 F2 F	UUA 6R		C m 1'		100	COM	1 O D	NEN
acurz R	4014		21.1	L, CURNER 14 J	10	LUUK	FUR	NEX
-00r6p	A012		T L 1	1 5870/21				
UUPOK	401J 0000F		"TU	I, LRIP(J)				
MOCRD	A014		CTU	Ι ΓΒΤΡΙΑΙ				
*00LVV	00585		JIN					
MOFER	00F0R		AFE	3.2				
01005	0142		AHR	4.2				
10102R	C54		CINT	4.8				
	00038		0-1/2					
:01'06R	4280		BL	LOOP				
	OOEER							
:010AR	4840		LH	4, COKNCT				
	0000F							
3010ER	2746		SIS	4,6				
0110R	4040		STH	4,CORNCT				
	ODOCR							
0114R	41F 1		BAL	15,SLOPER				
611	0000F		<	0				
0118R	C830_		LHI	3, THOLD				
01100			870	2 4				
OLICK	2034		T N AT 2	3,4 A CTCDEC(3)				
ULLER	4045		<u>1</u> . 11	4,51 CREC () /				
0122P	<u>4043</u>		STI	A.STORF(3)				
VILLIN	0000		011	4701.0KE (3)				
0126R	4843		LH	4.STCREE(3)				
••••	000E		-					
012AR	4043		STE	4, STCRE2 (3)				
	0002			-				
012ER	2638		AIS	3,8				
0130R	4843		LH	4,STOREC(3)				
	2000¢							
0134R	4043		STH	4,STORE(3)				
	0000							
0138R	4843		LH	4,STOREE(3)				
01200	ADAD		CTI	* CTORE 2/2)				
UIJCK	49.45		21 H	1,510RE2151				
01408	48F0		Г.Н	15. RETRN				
OL TOK	0238R							
0144R	480F		Г.Н	0.0(15)				
	0000		2	••••				
0148R	0300		BR	β. [™] . Σ				
014AK	2446	NOI	LIS	4,6	GE I	END	CF L	INE
014CR	4824		ĹН	2, CORNERIA)	NEAH	REST	INTE	RSE
	00.F4R							
0 150R	4812		LH	L,STORE(2)	JET	ITS	X CO	ORD
	0000			1			. 	
0154R	41F0_		BAL	15,BY	CAL	CULAT	ΕY	
			149	1				

.

0158R	017ER 4030		STH	3, 41		
:015CR	03JAR 4030		STH	3 , Y2	STORE IT	FOR L1
0160R	4300 01AAR		В	CHEKR	SKIP CALC	ULATIO
-0164R	2442	DXY	LIS	4,2		
0 166R	4824		LH	2, CORNER(4)		
	014ER					
016AR	4812		LH	l,STORE(2)		
	0000					
016ER	41F91		BAL	15.DY		
	018CR		d m	t # 1		
0172R	4030		STH),Y1		
	3030AR		d m 11	а ил		
0176R	4030		STH	3,12		
01775	0JUCR			duevo		
UI/AR	4300		В	UNEKA		
	FULAAK					

		*			
		*ENTRY F	BAL 15.	(B)Y	
		* BY &	DY ARE	IDENTICAL: THEY	ARE
		* USED	TO CAL	CULATE Y WHEN >	IS
		* KNOWN	L 8Y	IS USED FOR LINE	El: DY
		* EUD I			
		TON ENTI	TILL DI	HAS X-COLED AT	74F
			114 R.L 1966/977(IN COURD AT	
			COLLIC LON DO	IN Incij	
		NUN REIU	JKN, KJ	HAS I	
		*	. 115	2 1	
01/ER	0831	BI	LHK	3,1	
:0180R	2444		LIS	4,4	a : m . n . v
0182R	4100		BAL	12, SETTER	GET AX
	00 A 4 R				-
0186R	4A30		AH	3,B	L = AX +
	-030ER				
018AR	030F		BR	1.5	
					•
-018CF	0831	DY	LHR	.3.1	
018FP	2444		i. IS	4.10	
01000	<u> </u>		PAL.	12.SHTTEL	
OLDON	008/0				
01040	112		nu	зг	
UI34K	482		л11	J # L	
	0 JUK		D.D.	15	
30138 K	UJUF		BK	10	
			150		

		*			
019AR	41F0E	CHECK	BAL	15,BY	GET Y AT INTERS
019ER	4030		STH	3.Yl	FOR LINE1
01A2R	41F91		BAL	15.DY	GET INTERSECTIO
01A6R	4030		STH	3,¥2	FOR LINE2
	AJUSCA				
		* *	YOU VE	NOW GOT TWO P	ASSIBLE INTERSECTIO
		*)	(.Y] &	X.Y2. YOU WOL	ILD LIKE TO FIND
		*	FIND TH	E ONE WHICH T	S CLOSEST
		* . 7	THE	INTENDED CORNE	ER ER
		*EIND 3	THE LIN	LE ALONG WHICH	THE DIFFERENCE
×	•••	* IN L	INE SLO	PE	
******	******	******	******	*****	****
		* IS G1	REATER	(BETWEEN X,Y1	& X,Y2) THEN FIND
		* THE)	(,Y COO	RD WHICH GIVES	5 THE LINE THE SLOP
		* CLOSI	ER TC 1	HE ONE ORIGIN	ALLY CALCULATED
		★.			
01AAR	4010	CHEKR	STH	1,H1	
	0218R				
Olaer	J.B66		SHR	6,6	
Olbor	OB22		SHR	2,2	
01B2R	41:12		BAL	14, SLOPED	GET DIF BETWEEN
	:023ER				
		★ -		FJRI	INES X, YI-CORNERIU
01060	40301	×	/1 m 17	λ,	YZ-CIRNEROU)
UIBOR	4010		SIH	I, DEGI	STURE THE DIFFE
01070	1031AK		1.10	2 C	
UIBAR 01DCD	2420		110		
	Z404		LL2 DB(LA CLODED	TIME FOR CORNER
UIDER	41		DAG	14,560760	SAME FOR CORNER
01020	ASIO		CT U	1 DEL 1	TATE SHIT HE TAKE
UICZR	4319		СБЦ		FIND WHICH LINE
01000	UJIAK		2 10 1	COND	
UTCOK	4J09		Divis	SCND	
010 80	JDCC		eun	۲. ۲	
DICAR	1.000		o rix U tec	0,0 0 0	
	2422		1212 177	4,4) CODNED121	
DICER	4014 01600		ьц	L . CURNERIZJ	
	OTOOK		151		
			121		

*

OID2R	0722		XHR	2,2	
01D4R	4300 10FP		В	RETL	
01D8R	2426	SCND	LIS	2.6	
:01DAR	4812	5 611 5	IH	L.CORNER(2)	
	OIDOR				
DIDER	4851	REIL	LH	5,STCRE2(1)	
	0002				
ULEZR	4831		LH	3,STCRE(1)	
01565	000 0		PBI	15 PTFFFT	
OLFOR	0288R		DAL	LJBUIFFER	
•O1EAR	4816		LH	1,HOID(6)	
	0312R			• ***	
Oleer	/0B15		SHR	1,5	CET DIF BETW CA
		*.		SLOPE FOR X, YI	& SUOPE OF
01005	4150	*	0.81	LINE SEGMENT N	VEA REST
OTFOR	4100 -02608		BAG	13, PI TEST	
01F4R	4010		STH	J.DFL	
V L · I · ·	031AR				
01F8R	4816		LH	l,HOLD1(6)	
	10314R				
OlfCR	OB15		SHR	1,5	AME FOR X.Y2
UIFER	41 DU		EAL	13,PITEST	
02020	UZDAR AS BO		CIN	1 1-611	LIND DUTCH TO I
UZUZA	031AR		CLI		FIND WRITE IS F
0206R	4280		BL	SEC	
	0212R				
020AR	4834		LH	3,.91	LOAD R3 WITH NE
03055	03JAR		D	5 7 8 3	
UZUER	430×0		E	RETZ	
02126	4834	SEC	IH	3. 12	
	030CR				
0216R	C87 0	RET2	LHI	7,10	
03105	0000		501	+ <u>0</u>	
02108	2416	71 L Y T T	EUL ITC	1.6	
021CR	4841	A11	111	4.COENER(1)	GET FOINTER TO
¢ CICN	DIDCR		- -		CLI IGINILA IO
0220R	4074		STH	J,STORE(4)	
	0000		_		
0224R	4034		STF	3,STORE2(4)	
(0))	00J.2		CTC	1 4	
NJ220K	2/14 19/1		2T2	L_{14}	
A T T V	1021ER			TICORNERLE	
022ER	4074		STH	7,STORE(4)	
	0000				
0232R	4034		STH	3,STORE2(4)	
			152		

) (
- 2
-2
. 2

	*	
	*ENT	RY BAL 14,5LOPED
	*	R15BAL
•	* -	R14RETURN ADDR
	*	R2CORNER PTR
	*	R1STABS(SLOPE DIF) ON RETURN
	*	R6FIR TC HCLE
	* .	R3,R5NRKC

023ER	4850 03088	SLOPED	LH	5,¥1		
0242R	4830 0218R		LH	3,H1	41 HAS X	COORD
0246R	41F01 0288R		BAL.	15, DIFFER		
024AR	4056 0312R		STH	5,HOLD(6)	R5=SLOPE	(X,Y1-
024ER	4830 0218R		LH	3,H1		
0252R	4850 .030CR		LH	5,¥2		
0256R	41F0] 0288R		BAL	15, DIFFER		
025AR	4056 0314 R		STH	HOLD1(6)	R5=SLOPE	(X,¥2-
025ER	4816 0312R		LH	l,HOLD(6)		
0262R	0B15		SHR	1,5		
0264 R	41D0		EAL	13,PITEST		
00000 E	UZ6AR DZ0F	FWT	D.T.			
UZOOR	USUE	LXII	BK	14		
026AR	41F11 20082R	PITEST	BAL	15,STABS		
026ER	C510 3257		CLHI	1,X*3257*		
0270R		PI	EQU	*-2		
0272R	028D		BTCR	8,13		
0274R	4230		BNE	NOTBAC		
	027CR		5 June -			
			153			

:0278R)0B11		Shr	1,1
)27AR	03)D		BR	13
:027CR	C820	NOIBAC	LHI	2,X'64AE'
	64AE			
:027ER		IWOPI	'EQU	*-2
0280R	O B12		SHR	1,2
)0282R	41.BC		BAL	15,STABS
	026CR			
0286 R	- 03 0D		ER	13
0288R	40 B0	DIFFER	STH	IS,HCLDF
6 6 6 6 6	03028		.	
UZ8CK	4812		TH	L.CORNER(2)
600e-	UZZCR			
UZYUR	0875		Lhk	1,5
0292R	0843		LHR	4,5
U294R	4851		SH	5,STORE2(1)
	0092		C 1:	3 48 00 5 4 3 1
10298R	4831		5E	3,STURE(1)
.000dr	0000		BTC	• •
UZSUK	2022		EL2	4,2
UZYEX	4812		LH	L. CURNERIZI
0.08.00	PUZOER		1.7.0	2 2
UZAZK			515	2,2
UZA4R	4 D / L		3E	I, SIUREZ(II
02890			C Li	6 CT CDE(1)
UZNOK	404L 0000		un	4, SI UKEVII
02702	20817		TUD	17
02ACK	416		BBL	15.STARS
W ZALK	0284 R		DIVE	19491492
0.2B2R	4010		STH	1.TEMPH
* <u>2</u> 0 0 K	0216R			
02B6R	0814		LHR	1.4
02B85	41F0		EAL	15.STABS
	02BOR			•
02BCR	6110		AHM	1, TEMPH
	02D6R			
O2COR	0815		LHR	1,5
02C2R	41F 1		BAL	15,STABS
	02 EAR			
02C6R	4010		STH	l,TEMPH1
	02 L 2 R			
02CAR	0813		LHR	1,3
(02CCR	41 B0		EAL	15,STABS
	02C4R			
O2DOR	CADO		PHI)(م (
	0000			'
:02D2R		TEMPH1	EQU	*-2
02D4R	C510		CLHI	1,0
	-0000			
02D6R		TEMPH	EQU	*-2
			154	

021	ON 4000		BNL	UK
	OZEOR			
020	DCR J.857		L HR	5,7
¥02I	DER : 10834		LhR	3,4
02E	OR 4030	0 K	STH	DELTAX
	0320R			
025	48 4050		сти	5 DELEAV
025	N3 1ED		DIN	Jediki
0.75	OD ALES		0.04	
UZE	OK 41		BAL	15, ATANUR
	40000F			
0.2E	CR 031ER		DC	A(DELTAY), A(DELTAX), AIANGLE)
	0320R			
	0 322R			
02F	2R 485		TF	5.ANLLE
~	N 722R			0 f 1111 < D 11
025	1922L		тц	2 RN(1E2
021			Ln	J, AN CLEZ
	UJZ4K		6 7 .	C 10
:UZF	AR CEST		SLHA	5,12
	2.000			
:02F	ER CE3C		SRHA	3,3
	0003			
030	28 0A53		AHR	5.3
0.20	AR 4300		a	*
0.50	02010		D	
0.20	7 20 CU CU	HOLDE	CON	+ 2
0.2.0	DK	HOLDE	εųυ	~-Z
030 030	8 R A R	DELTA3	IS	2
030 031 031 031 031 031 031 031 031 032 032 032 032 032 032 ANG ANG ANG ANG BD BOT EXY	CK ER OK 2R 4 K 6 R CR 0040 ER CR 0040 ER 0 R 2 R 4 K 6 R LE 0322 K LE 0324 R NUR 030 ER 032 ER 032 ER 032 ER 032 ER 032 ER 032 ER 032 ER 032 ER 0 8 F 8 F	Y2 B D HOLD HOLD1 HOLD2 HOLD3 DEL1 TANFAC DELTAY DELTAX ANGLE ANGLE2	DS IS DS IS DS IS DS IS IS END	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
030 031 031 031 031 031 031 031 032 032 032 032 032 032 ANG ANG ANG ANG BD BOT EXY BY	CK ER OK 2R 4K 6R 8K AR CR 20040 ER OR 2R 4K 6R LE 20322R LE 20324R NUR 22EAK 030ER 030ER 1008ER H 00DAR \$00C6K 017ER	Y2 B C HOLD HOLD1 HOLD2 HOLD3 DEL1 TANFAC DELTAY DELTAX ANGLE ANGLE2	DS IS DS IS DS IS DS IS DS IS END	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
030 031 031 031 031 031 031 031 032 032 032 032 032 032 032 032 032 032	CK ER OK 2R 4K 6R 8K AR CR 0040 ER OR 2R 4K 6R LE 0322K LE2 0324R NUR 02EAK 030ER 008ER H 00DAR 500C6K 017ER X 0000K	Y2 B E HOLD HOLD1 HOLD2 HOLD3 DEL1 TANFAC DELTAY DELTAX ANGLE ANGLE2	DS IS DS IS DS IS DS IS DS IS END	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

-	d P D E D M	.02201
^	CERTRN	10238M
	CHECK	019AR
	CHEKR	OLAAF
*	CORNCT	0112R
*	CORNER	02005
	D	02105
*	ር ሽጥር	100ECE
		00100
	DEFT	USTAR
^	DELIAJ	10308K
	DELTAX	U 320R
	DELTAY	7031EK
	DIFFER	0288R
	EXY	(0164K
	DY	018CR
	EXII	0268F
	Hl	0218R
	HOLD	03125
	HOLDI	03148
		10316E
	NOLDZ	00100
	NOLDZ	USION
	HOLDE	NOULU
	HUP	UUB4R
×	INUUIS	PUUE4K
	LUUP	UUEER
	NUT	UI4Ah
	NOTBAC	0.27CR
	OK)02E0R
	ΡΙ	0270R
	PITEST	026AK
	RETL	01 DER
	RET2)0216F
	RETRN	0238R
	SCND) 01 D8 F
	SEC	0212R
	SETTER	200A4F
	SLOPED	J.23ER
*	SLOPER	0116 k
★	STABS	02CER
	STORE	00000
	STORE2	0002
	STOREC	000C
	STOREE	ODDE
	TANFAC)031CF
	TEMPH	02D6R
	TEMPHI	02D2F
×	THOLD	OIIAR
	TWOPT	1027FF
*	XTT	02122
	V1	103005
	v2	0.2025
	14	N JUL N

•

40000R 0000R 40000R 40000R 40000R 40000R 40000R 40000R				EEEEEEEEE	NTI NTE XTE XTE XTE XTE NTI XTE	RY RN RN RN RN RY RN	I (F I I F	DEL IN COR PRL LAC DAT FLI TM	T ER NI OC D P NI AX	ll,DEL R,DELT ER,GPt DP,WNW ,PPF1D E,FLDN	T22 Al, DE INT OVE DF, FAI	L: D	r a 2
0000 0006		STORE STORE6		E E	ວູນ ວູນ			6					
		*REGS: * * * *	0 1 2 3 4		R E'	TUI	R N A 1	I, B Ins	AL (C ORNE T			
		★ ★. ★. ★.	5 6 7 8 0 6 7 8 0	5	CO	NT	H I	INS	ł	RMAX			
		* * *	$10 \\ 12 \\ 13 \\ 13 \\ 19$	2	PT MU DA	R LT TA	Ti Ii) L PLY CHA	IN N	NE ENI LIVIDE GES	D FROM E	1	→ L00 P
0000R	4000	LINER	1.	ָ ร	TH	L	(),R	E	r n			
	OOCOR			_									
00).4R	4020 00 88 8			S	TH		-	2 , H	[0]	60			
00)BR	4090			S	ΤH		•	9 , H	[0]	LD2			
000CR	4060°			S	TH		Į	5 , H	R	ATE			
00100	0148R			ſ	บ			1 1	157	r]]			
OUTUR	4810 0140R			L	n								
0014R	4010			S	TH			1 , D)EI	LTAL			
0018R	4810 [°]			L	Н			1,0	DE	L r 2 2			
00100	0142R			c	ידי			I T	רבו ובו	רמז ז			
UUICR	4010 .013ER			J	11			.,.	/ L a 1	U I N C			
0020R	4812			L	Н			1,0)A)	[P(2)			
0024R	4210			E	BM			GEI	P	T			
00205	.0030R			٢	บ			រេដ	10	י חסיד			
U028R	4819 015ER			L	л			L ភ្ ព	10				
002CR	4012 00005			2	STH			l., C	:0	RNERIZ	2)		
003 0 r	41FN	GETPT		E	3AL 157	7		15,	, P	LOOP2			

	UULOK			X2
009CR	41F 😳		BAL	15, GPOINT
	+0090R			
OOAOR	A(00		DC	10.
OOA2R	:0094R		DD	ΡΤΓΑλ
00A4R	0146R		DC	FLINE+2
0016R	015AR		D.C.	TWO
ODADA	002398		חר	¥2
OGAGA	C894		Інт	9 ¥1 ·
UUNNK	0070		·****	2 F X X
0.0.0.0.0	OUC ZR		TILT	12 V 2
UUAEK			rui	16886
	UUCOR			M CHUCKE
OOBZR	4 Duu		BAL	M, WNWUNE
	OODUF			
,00B6R	C820	REIRY2	LHI	2,00
	0000			,
-00B8R		HOLD	EQU	*-2
D JBAR	C890		LHI	9,HOLD2
	OOBCR			
DORCR		HOLD2	EOU	*-2
DORFE	4 31 40		B	*
V. ODLA	NUBER		-	
00000	OODER	DETDN	FOI	*-2
OUCON		*	100	£.
10002E		vl	27	2
JUULZK			22	L
UUC4R		Y L	D2	2
00C6R		X2	LS	2
00C8R		¥2	DS	2
		*		
				10
HOCAR	D000	PL00P2	STF	IZ,SAV4
	0 134R			
COCER	4060		SIF	6,SAV6+2
,	0 130R			
00025				
UUUZK	48A2		LH	DO, CCRNER(2)
UDZR	48A2 002er		LH	DO, CCRNER(2)
.00DGR	4882 002er 4800		LH LF	DO, CCRNEK(2) 6, PTMAX
OOD6R	482 002ER 4800 0082R		LH Lh	DO, CCRNEK(2) 6, PTMAX
00D2R	48 E2 002ER 4800 00A 2R 45 B6		LH LF CLF	D0,CCRNEK(2) 6,PTMAX 10.6(6)
00D2R 00D6R 00DAR	48 A2 002ER 4860 00A2R 45 A6 0005		LH LF CLH	10, CCRNEK(2) 6, PTMAX 10, 6(6)
00D2R	48 A2 002ER 4800 00A2R 45 A6 0006 4280		LH LF CLF BI	DO, CCRNER(2) 6, PTMAX 10, 6(6) KNOWN
OODER	48 E2 002ER 4800 00A2R 45 A6 0006 4280 012 BP		LH LF CLH BL	DO, CCRNER (2) 6, PTMAX 10, 616) KNOWN
00D2R 00D6R 00DAR 00DER	48 A2 002ER 4860 00A2R 45 A6 0006 4280 012AR		LH LH CLH BL BF	DO, CCRNER(2) 6, PTMAX 10, 616) KNOWN
-00D2R -00D6R #00DAR 00DER #00E2R	48 A2 002ER 4860 00A2R 45 A6 0006 4280 012AR 4330 012AR		LH LF CLH BL BE	DO, CCRNER(2) 6, PTMAX 10, 616) KNOWN KNCWN
00000000000000000000000000000000000000	48 E2 002ER 4860 00A2R 45 A6 0006 4280 012AR 4330 012AR		LH LF CLH BL BE	DO, CCRNER(2) 6, PTMAX 10, 6(6) KNOWN KNOWN
OODER OODER OODER OODER	48 E2 002ER 4860 00A2R 45 A6 0006 4280 012AR 4330 012AR 40 A0		LH LF CLH BL BE STH	DO, CCRNER(2) 6, PTMAX 10, 6(6) KNOWN KNOWN KNCWN DO, X
00D2R 00D6R 00DAR 00DER 00E2R 00E6R	48 E2 002ER 4860 00A2R 45 A6 0006 4280 012AR 4330 012AR 40 A0 00F8R		LH LF CLH BL BE STF	DO, CCRNER(2) 6, PTMAX 10, 6(6) KNOWN KNOWN BO, X
00000000000000000000000000000000000000	48 E2 002ER 4860 00A2R 45 A6 0006 4280 012AR 4330 012AR 40 A0 00F8R 26 A2		LH LF CLH BL BE STF AIS	DO, CCRNER(2) 6, PTMAX 10, 6(6) KNOWN KNOWN BO, X DO, 2
OODDER OODDER OODER OOEER OOEER OOEER	48 E2 002ER 4800 00A2R 45 A6 0006 4280 012AR 4330 012AR 40 A0 00F8R 26 A2 40 A0		LH LF CLH BL BE STH AIS STH	DO, CCRNEK(2) 6, PTMAX 10, 6(6) KNOWN KNOWN KNOWN DO, X DO, 2 10, Y
00002R 00000000000000000000000000000000	48 A2 002ER 4800 00A2R 45 A6 0006 4280 012AR 4330 012AR 40 A0 00F8R 26 A2 40 A0 00F8R		LH LF CLH BL BE STH AIS STH	DO, CCRNEK(2) 6, PTMAX 10, 6(6) KNOWN KNOWN KNOWN DO, X DO, 2 10, Y
OOD2R OODAR OODAR OODER OOE6R OOE6R OOE6R OOECR	48 A2 002ER 4800 00A2R 45 A6 0006 4280 012AR 4330 012AR 40A0 00F8R 26 A2 40A0 00F8R 26 A2 40A0		LH LF CLF BL BE STF AIS STH BAL	DO, CCRNEK(2) 6, PTMAX 10, 6(6) KNOWN KNOWN KNOWN DO, X DO, 2 10, Y 15, PADD
00000000000000000000000000000000000000	48 A2 002ER 4800 00A2R 45 A6 0006 4280 012AR 4330 012AR 40A0 00F8R 26 A2 40A0 00F8R 26 A2 40A0 00FAR 41F0		LH LF CLH BL BE STH AIS STH BAL	DO, GCRNEK(2) 6, PTMAX 10, 6(6) KNOWN KNOWN KNOWN DO, X DO, 2 10, Y 15, PADD
OODDER OODDER OODER OOEDER OOEDER OOEDER OOEDER OOEDER	48 A2 002ER 4860 00A2R 45 A6 0006 4280 012AR 4330 012AR 40A0 00F8R 26 A2 40A0 00F8R 26 A2 40A0 00F8R 41F0 0000F 0008		LH IF CLH BL BE STH AIS STH BAL DC	DO, CCRNEK(2) 6, PTMAX 10,6(6) KNOWN KNOWN E0,X E0,2 10,Y 15, PADD 8
OOD2R OODAR OODAR OODER OOECR OOECR OOECR OOFOR OOF4R	48 A2 002ER 4860 00A2R 45 A6 0006 4280 012AR 4330 012AR 40A0 00F8R 26 A2 40A0 00F8R 26 A2 40A0 00F8R 41F0 0000F 0008		LH IF CLH BL BE STH AIS STH BAL DC	DO, CCRNEK(2) 6, PTMAX 10, 6(6) KNOWN KNOWN E0, X E0, 2 10, Y 15, PADD 8

00F6R	00D8R		DC	PTMAX
JOOF8R	>00000	Х	DI)r
OJFAR	0000	Y	DC	-
OOFCR	OSAE		LHR	RO.14
OOFER	40E0		STH	14.VPV
UUI DR	01508		0111	
01070	AIRT		3 B i	
O I O Z K	11. ···		Dru	LJIJIADD
01075	00408		50	101
ULUDK	UUUA		DC	10.
EULOSK	UUFER		DC	PTEAX
DIDAR	OISUR		DC	VPN
DLOCR	014ER		DC	ZERO
Older	0156R		DC	LSIZE
0110R	48 E2		LH	13, EATP(2)
	0022R			
-0114R	40D0		STH	13.PLACE
	0 152R			•••••••
0118R	41 BO		BAI	15.PPFLDF
	00508			
(0))CF	:000F		TC	14
OTIER	010.82		חר	DTMLV
.0120P	01 5.0x		DC DC	UDN
A120A	01/ED			
0122R	014EA			LERU FILED
0124K	0134K			FIFELZ
UIZOR	014CK		DC	FUUR
ULZOR	UISZR		EC	FLACE
UIZAR	DICU.	KNOWN	LM	12, SAV4
	0134R			
012 ER	C850	SAV6	LHI	6,0
	0000			
0132R	03)F		BR	15
		★ .		
0134R		SAV4	DS	٤
013CR		DELTAL	DS	2
013ER		DELTA2	TS	2
0140R		DELTII	DS	2
01425			27	5
0144R		FLINE	กร	2
01465		FI TNE2	70 70	2
01400	0000	LINE2	ר <u>ה</u>	2
DI4OK	10000	CT7E	DC TC	10
0146R		DILE		12
OLACK	UU 4	FUUR	DC	4
UI4ER	10 00 0	ZERU		10
ULSUR		VPN	DC	
UISZR		PLACE	LC .	J'
U154R	0033	FIELD2	DC	9
0156R	DOOC	LSIZE	D 1	12
0158R	0001	ONE	DC	1
015AR	0002	TWO	DC	4
015CR	0007	FIELDl	DC	7
015ER	0000	HOLDPT	CC	21
			1/_^	
			JOU	•

END

NO	ERRORS

★	CORNER	00D4R
*	DATP	0112R
★	DELT11	0140R
*	DELT22	0142F
* /	DELTAL	013CR
*	DELTA2	:013ER
	FIELDL	015CR
	FIELC2	:0154F
*	FLINE	0144R
*	FLINE2	0146 F
	FOUR	014CR
	GETPT	30030F
*	GPOINT	009ER
	HOLD	900B8K
	HOLD2	OOBCR
	HOLDPT	015EF
	HRATE	0148R
	KNOWN	012AK
*	LADD	0104R
*	LINER	40000F
	LSIZE	0156R
4	ONE	0158F
Χ.	PADD	UUF 2R
	PLACE	0152k
÷	PLUUPZ	UUUUAR
÷	PPILLF	UIIAF
*	PRLUUP	0070K
î	DETEN	PULLER ODCOP
	DETDV2	MOREE
	CDVA	01348
	SAVA	1012FF
	SIZE	01448
	STORE	0000
	STORE6	0006
	TWO	015AK
	VPN	0150R
*	WNWONE	00B4F
	X	00F8R
	X1	DBOC2R
	X 2	00C6R
	Y	MOOFAR
	Yl	00C4R
	¥2	HOCSE
	ZERO	014ER

004CR	4280.		BL	NEXT	PT IS EXTREME I
00508	200EAR 4570		CI.H	7.CPFAT1	4863+015530192
UU JØK	013ER		CDII	I J OREALL	HBONT DIFF NIJZ
0054R	4280		BL	EXTREM	
00500	0070R			53 A A 99	
0028R	4 JUU -00 E B B		В	VEXT	ELSE LOJK AT NE
005CR	45701	LOWLM	CLH	7.SMALL	PT IS FXTREME T
	013CR		•=	· • • • • • • • • • • • • • • • • • • •	
0060R	4380		BNL	NEXT	FE6E>-DIFF>FB40
00640	ASTO		CT U	7 CMBTI	
00041	0140R		CUII		
0068R	4380		BNL	EXTREM	
0054-	0070R		-		
UUBCR	4 JUU		В	NEXT	ELSE LOOK AT NE
0070R	48B0	EXTREM	LH	11.BSTORE	
	0182R		2		
0074R	CBBO		SHI	11,2	
00700	0002		a NM		
UUTOR	4310 0084R		DINM	DIESI	
007CR	CABO.		AHI	11,2	
	0002		_		
DUSOR	4300 00 B C B		8	GOES	
0084R	CADO	DTEST	AHT	13. TNCREM	
	0006				
0088R	48FD		LH	15, STORE(13)	
00800	OOZAR		' 1 f	7 000000121	
UUSCR	407D		u.n	7,510AC2(15)	
0090R	4BFB		5 H	15, STOREX(11)	
00345	0154R		a	7. 480.0000000000000000000000000000000000	
UU94R	48/8 0166 P		SH	/,STUREY(11)	
0098R	OCEF		MHR	14,15	
1009AR	0C67		MHR	6,7	
009CR	CBDO		SHI	13, INCREM	
90400			ант	11.2	
VVRVR	0002		nni		
00A4R	OAF7		AHR	15,7	
OOA6R	OEE6		ACHR	14,6	
UUABR	USEE			14,14	
AUUHAN	425" 0086R		ENZ	GUES	
OAER	45 P		CLH	15,MIN	EE JF EXTREMES
	0138R			-	
00B2R	4280		EL	NEXT	
			162	_	

OOEAR

00B6R	4870	GOES	LH	7, IISKST
OORBE	0000F CD70		SI HI.	7.7
100DVV	0007		D.T.IIT	, , ,
OOBER	08FD		LHR	15,13
OOCOR	4BF0		SH	15,0FFSEI
	0000F			
00C4R	0.67F		OHR	7,15
UDCOR	40/B		514	/,INLEX(II)
OOCAR	48FD		Lb	15.STORE(13)
o o c nik	008AR			
HOCER	40FE		STF	15,STOREX(11)
	0154R			
00D2R	48FD		LH	15,STORE2(13)
00065	UU5EK		ርጥኒ	15 CTOPES()))
OUDOR	40FB		211	13,310KLIVIII
ODAR	CAB		AHI	11,2
	0002			
ODER	40B0		STI	11, ESTORE
60 2 22	0182R		C T 11	E CT CT C
UUEZR	4 U 5 U 0 1 9 6 P		SIR	0,200r3
00568	4300		в	TNCK
OOFOR	ODF2R		D	21.01
ODEAR	48 P [NEXT	LH	15,SLOF2
	0184R			
OEER	40F0		STH	15,SLOF3
00F2D	VI80K	TNCP	STH	5 51.0.22
JUOFZR	01848	INCK	511	JJJJUIZ
00F6R	01010	BACK	EQU	*
00F6R	C 85 0	SAV5	LHI	5,0
	0000			F N -
OOFAR	C 85 0	SAVE	LHI	b,U
NUEES	0000 r 870	SAV7	і.нт	7.0
001 EK	:0000	SAT /	0112	•
0102R	C830	SAV11	LHI	11,0
	0000			
0136R	C8D0	SAVIJ	LHI	13,0
פמחנס	C8E01	SAVIA	г.нт	14.0
OTOWY		JULT		1 I F W
OLDER	4300	SAV15	в	*
~~~~~	ODOER			

.

.

0006		INCREM	EQU	6	
00000			CVTDN	מייח בב מייח בבי איים	MILD
UUUUK			ENTDV	TEC	INOR
0000K			CNTDV	170 770	
20000 C			ENIDV	BETORE SLOP2.SI	LA CREBT GREBTI
A0000K			ENTOV	SMALL SMALL TAN	I STOREY STOREY
			ENTRY	NTN. INDEX	LYDIOREX DIOREI
100000			FYTRN	STORE STORE2	
10000R			EXIRN	OFFSET, DISKST	
		*			
		*. EVTDME		ייים מים ייח היוססבא	IT DOTNT TN DIR
40000 P	4060	CYTOMD	CTL CTL	5 CHV5+2	I FOINT IN RIS
AUUUR	4050	EAIRIK	211	J; JR ( J + Z	
000AD	ACCO		STE	6 SAV6+2	
VEQUAL	4000 00579		<b>J</b> 11.	0,54,0,2	
48000	4070		STI	7. SAV7+2	
OUDOR	01000		511	7.57.47.2	
1000CR	4080		STE	11.SAV11+2	
JOUCK	0104R		011		
(00)0R	4000		STH	13.SAV13+2	
OULUK	01)BR				
0014R	40E0		STH	14,SAV14+2	
	010CR			• -	
:0018R	40.F0		STH	15,SFV15+2	
	<b>0</b> 110R				
:001CR	485L		LF.	5,STORE(13)	R5=X2
	0000F				
0020R	486 E		ΓE	6,STORE2(13)	<b>F</b> 6=X5
	0000F				
0024R	CBD	GO	SHI	13, INCREM	
	000.6			5	
0028R	487D		LF	/,STORE(13)	
	OOIER		a 1 1 T	7	
NUZCR	0570		CTHI	7,X°8000°	
00205	8000		DT	<u> </u>	
UUJUR	4330		DE	60	
1021D	0024K		CUD	57	x2-x1
00260			SU SU	5 5702521131	V2-V1
00204	400D 0022P		JU	5,510(E2(15)	
00300	A16 )		BIJ.	14. TBN]	CALL ARCTAN SUR
UUJAR	415 ·		DRU	LT/INNL	CALL ARCIAN 505
00355	4870		1. <b>H</b>	7.56023	
UUJER	- <b>0</b> 1860				
00420	01000		SHP	7.5	BECAUSE RE=0 IN
9 <b>04</b> 28 90428	Δ2 kΩ		PM	LOWLM	-9.0<1ST SLOP<+9
VEFUU-	00500		۰ <b>۵</b> سک		
00480	4570		CLE	7. GREAT	NOT STORED AS 1
ACCTON	01348		. د مد ب	· • • • • • • • • • •	and an

0112R	4050	TAN 1	STH	⊃,DX	
01168	UI /AR 4050		ናጥሀ	5 DV	
UTION	0178R		JIII	3 8 0 1	
OllAr	41F7		BAL	15. ATANUR	CALL FLOATING P
• • • • • •	0000F				
<b>0</b> 11ER	0178R		DC	A(DY), A(DX), 3.( R)	ESULT)
	017AR				
	017CR			-	
0124R	4850		.LF	5,RESULT	TC EXPRESS FLOA
01205	UITCR		CINB	F 0	
UIZOK			STER	J≠0	IN UNE HALF WUR
01205	4860		TE	6 FRBCTN	
OI2CN	017ER		- <b>A</b> . <b>B</b> .	OFIRELA	
0130R	CEOF		SRHA	6.7	SC THAT THE GRD
	000.7				
0134R	'0A56		ALR	5,6	.35 IST SIGNIFIC
0136R	03)E		BR	1.4	
0138R	0211	MIN	ГC	X*211*	
013AR	0192	GREAT	DC	X'0192'	-I/2 OR 90 DEGR
OLJCR	FE6E	SMALL	DC	X".FE6E	-F1/2 CR -90 DE
01 AOD	U.486	GREATL	DC	Λ°U480° Υ™ΈΣΑ("	3-P1/2 UK 2/U DE
0140R	r D-yru	TNDFX	DC DS	18	-3F1/2 0g -2/0
:0154R		STOREX	I S	18	
0166R		STOREY	DS	18	
.0178R		ĽΥ	I S	2	
017AR		DX	DS	2	
017CR		RESULT	ES	2	
017ER		FRACTN	DS	2	
-U18UR				2	
UISTK		BOINE	5 5 5	۷	
N186P		STURS	92 72	<b>L</b>	
0188R			END		

.

NO ERRORS

*	ATANUR	011CR
	EACK	00F6F
★.	BSTORE	0182R
*	DISKST	00B8F
	DTEST	0084R
	ГX	:017AF
	DY	<b>017</b> 8R
	EXTREM	30070K
*	EXTRMR	0000R
	FRACIN	017EF
	<b>G</b> 0	0024R
	GOES	)COB6 F
*	GREAT	<b>0</b> 13AR
★	GREATL	013EF

	INCR	OOF2F
	INCREM	0006
*	INDEX	0142 K
	LOWLM	005CR
*	MIN	)0138K
	NEXT	ODEAR
*	OFFSET	DOC2R
	RESULT	017CR
	SAVII	0102K
	SAV13	0106R
	SAV14	OLOAR
	SAV15	010ER
	SAV5	00F6R
	SAV6	OOFAR
	SAV7	OOFER
*	SLOP2	0184R
*	SLOF3	)0186 k
*	SMALL	013CR
*	SMALL 1	0140R
*	STORE	OOCCR
<b>*</b>	STORE2	00D4R
*	STOREX	0154R
*	STOREY	0166 F
*	TAG	0180R
*	TAN1	0112F

****