
puter Graphics
PRINCIPLES AND PRACTICE

Foley • van Dam • Feiner • Hughes
SECOND EDITION in C

THE SYSTEMS PROGRAMMING SERIES

EX-1021
Microsoft Inc. v. LiTL LLC

THE
SYSTEMS
PROGRAMMING
SERIES

Computer
Graphics:

Principles and
Practice

SECOND EDITION in C

Foley • \lan Dam • Feiner • l-Iughes ,

SECOND EDITION IN C

Computer Graphics
PRINCIPLES AND PRACTICE

James D. Foley
Georgia Institute of Technology

Andries van Dam
Brown University

Steven K. Feiner
Columbia University

John F. Hughes
Brown University

..,..,
ADDISON-WESLEY PUBLISHING COMPANY

Reading, Massachusetts • Menlo Park, California • New York
Don MiUs, Ontario • Wokingharn, England • Amsterdam • Bonn

Sydney • Singapore • Tok)Q • Madrid • San Juan • Milan • Paris

Sponsoring Editor: Peter S. Gordon
Production Supervisor: Bette J. Aaronson
Production Supervisor for the C edition: Juliet Silveri
Copy Editor: Lyn Dupre
Text Designer: Herb Caswell
Technical Art Consultant: Joseph K. Vetere
Illustrators: C&C Associates
Cover Designer: Marshall Henrichs
Manufacturing Manager: Roy Logan

This book is in the Addison-Wesley Systems Programming Series
Consulting editors: IBM Editorial Board

Library of Congress Cataloging-in-Publication Data

Computer graphics: principles and practice I James D. Foley . . . [et
a!.]. - 2nd ed. in C.

p. em.
Includes bibliographical references and index.
ISBN 0-201-84840-6
1. Computer graphics. I. Foley, James D. , 1942-

T385.C5735 1996
006.6'6-dc20 95-13631

CIP

Reprinted with corrections, July 1997.

Cover: " Dutch Interior," after Vermeer, by J. Wallace, M. Cohen, and D. Greenberg, Cornell University
(Copyright © 1987 Cornell University , Program of Computer Graphics .)

Many qf the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks . Where those designations appear in this book, and Addison-Wesley was aware of a trademark
claim, the designations have been printed in initial caps or all caps.

The programs and applications presented in this book have been included for their instructional value. They are
not guaranteed for any particular purpose . The publisher and the author do not offer any warranties or
representations, nor do they accept any liabilities with respect to the programs or applications .

Reprinted with corrections November 1992, November 1993, and July 1995.

Copyright© 1996, 1990 by Addison-Wesley Publishing Company , Inc.

All rights reserved . No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form or by any means , electronic , mechanical, photocopying, recording, or otherwise, without the prior
written permission of the publisher. Printed in the United States of America.

6 7 8 9 10-DOC-99 98 97

ith th
n erlb in

,

Introduction

Computer graphics started with the display of data on hardcopy plotters and cathode ray
tube (CRT) screens soon after the introduction of computers themselves. It has grown to
include the creation, storage, and manipulation of models and images of objects, These
models come from a diverse and expanding set of fields, and include physical, mathemati-

= engineering, architectural, and even conceptual (abstract) structures, natural phenome-. and so on. Computer graphics today is largely interactive: The user controls theat structure, and appearance of objects and of their displayed images by using input
devices, such as a keyboard, mouse, or touch-sensitive panel on the screen. Because of the
close relationship between the input devices and the display, the handling of such devices is
included in the study of computer graphics.

Until the early 1980s, computer graphics was a small, specialized field, largely because
the hardware was expensive and graphics-based application programs that were easy to use
and cost-effective were few. Then, personal computers with built-in raster graphics
displays—such as the Xerox Star and,later, the mass-produced, even less expensive Apple
Macintosh and the IBM PC and its clones—popularized the use of bitmap graphics for
user-computer interaction. A bitmap is a ones and zeros representation of the rectangular
array of points (pixels or pels, short for ‘picture elements’’) on the screen. Once bitmap
graphics became affordable, an explosion of easy-to-use and inexpensive graphics-based
applications soon followed. Graphics-baseduser interfaces allowed millions of new users to
control simple, low-cost application programs, such as spreadsheets, word processors, and
drawing programs.

The concept of a ‘‘desktop"’’ now became a popular metaphor for organizing screen
space. By means of a window manager, the user could create, position, and resize

1

2 Introduction

rectangular screen areas , cal led windows, that acted as virtual graphics terminals, each
running an application. This allowed users to switch among multiple activities just by
pointing at the desired window, typically with the mouse. Like pieces of paper on a messy
desk, windows could overlap arbitrarily. Also part of this desktop metaphor were displays
of icons that represented not just data files and application programs, but also common
office objects, such as file cabinets, mailboxes, printers, and trasbcans, that performed the
computer-operation equivalents of their real-life counterparts. Direct manipultJtion of
objects via "pointing and clicking" replaced much of the typing of the arcane commands
used in earlier operating systems and computer applications. Thus, users could select icons
to activate the corresponding programs or objects, or select buttons on pull-down or pop-up
screen menus to make choices. Today, almost all interactive application programs, even
those for manipulating text (e.g., word processors) or numerical data (e.g., spreadsheet
programs), use graphics extensively in the user interface and for visualizing and
manipulating the application-specific objects. Graphical interaction via raster displays
(displays using bitmaps) has replaced most textual interaction with alphanumeric terminals.

Even people who do not use computers in their daily work encounter computer
graphics in television commercials and as cinematic special effects. Computer graphics is
no longer a rarity. It is an integral part of all computer user interfaces, and is indispensable
for visualizing two-dimensional (20) , three-dimensional (30), and higher-dimensional
objects: Areas as diverse as education, science, engineering, medicine, commerce, the
military , advertising, and entertainment all rely on computer graphics. Learning how to
program and use computers now includes learning how to use simple 20 graphics as a
matter of routine.

1.1 IMAGE PROCESSING AS PICTURE ANALYSIS

Computer graphics concerns the pictorial synthesis of real or imaginary objects from their
computer-based models , whereas the related field of ifllllge processing (also called picture
processing) treats the converse process: the analysis of scenes, or the reconstruction of
models of 20 or 30 objects from their pictures. Picture analysis is important in many
arenas: aerial surveillance photographs , slow-scan television images of the moon or of
planets gathered from space probes, television images taken from an industrial robot's
"eye," chromosome scans , X-ray images, computerized axial tomography (CAT) scans,
and fingerprint analysis all exploit image-processing technology (see Color Plate 1.1).
Image processing has the subareas image enhancement, pa11ern detection and recognitiofl,
and scene analysis and compwer vision. Image enhancement deals with improving image
quality by eliminating noise (extraneous or missing pixel data) or by enhancing contrast.
Pattern detection and recognition deal with detecting and clarifying standard patterns and
finding deviations (distortions) from these patterns. A particularly important example is
optical character recognition (OCR) technology, which allows for the economical bulk
input of pages of typeset, typewritten, or even handprinted characters. Scene analysis and
computer vision allow scientists to recognize and reconstruct a 30 model of a scene from
several 20 images. An example is an industri.al robot sensing the relative sizes, shapes,
positions, and colors of parts on a conveyor belt.

11.3

•

1.3 Representative Uses of Computer Graphics 5

enormous and is growing rapidly as computers with graphics capabilities become
commodity products. Let's look at a representative sample of these areas.

« User interfaces. As we mentioned, most applications that run on personal computers
and workstations, and even those that run on terminals attached to time-shared computers
and network compute servers, have user interfaces that rely on desktop window systems to
manage multiple simultaneous activities, and on point-and-click facilities to allowusers to
select menu items, icons, and objects on the screen; typing is necessary only to input text to
be stored and manipulated. Word-processing, spreadsheet, and desktop-publishing pro-
grams are typical applications that take advantage of such user-interface techniques. The
authors of this book used such programs to create both the text and the figures; then, the
publisher and their contractors produced the book using similar typesetting and drawing
software.

= (Interactive) plotting in business, science, and technology. The next most common use
of graphics today is probably to create 2D and 3D graphs of mathematical, physical, and
economic functions; histograms, bar and pie charts; task-scheduling charts; inventory and
production charts; and the like. All these are used to present meaningfully and concisely the
trends and patterns gleaned from data, so as to clarify complex phenomena and to facilitate
informed decision making.

* Office automation and electronic publishing. The use of graphics for the creation and
dissemination of information has increased enormously since the advent of desktop
publishing on personal computers, Many organizations whose publications used to be
printed by outside specialists can now produce printed materials inhouse. Office automa-
tion and electronic publishing can produce both traditional printed (hardcopy) documents
and electronic (softcopy) documents that contain text, tables, graphs, and other forms of
drawn or scanned-in graphics. Hypermedia systems that allow browsing of networks of
interlinked multimedia documents are proliferating (see Color Plate I.2).

* Computer-aided drafting and design. In computer-aided design (CAD), interactive
graphics is used to design components and systems of mechanical, electrical, electrome-
chanical, and electronic devices, including structures such as buildings, automobile bodies,
airplane and ship hulls, very large-scale-integrated (VLSI) chips, optical systems, and
telephone and computer networks. Sometimes, the user merely wants to produce the precise
drawings of components and assemblies, as for online drafting or architectural blueprints.
Color Plate 1.8 shows an example of such a 3D design program, intended for nonprofession-
als; a *‘customize your own patio deck"’ program used in lumber yards. More frequently,
however, the emphasis is on interacting with a computer-based model of the component or
system being designed in order to test, for example, its structural, electrical, or thermal
properties. Often, the model is interpreted by a simulator that feeds back the behavior of the
system to the user for further interactive design and test cycles. After objects have been
designed, utility programs can postprocess the design database to make parts lists, to
process ‘‘bills of materials,’* to define numerical control tapes for cutting or drilling parts,
and so on.

* Simulation and animation for scientific visualization and entertainment. Computer-
produced animated movies and displays of the time-varying behavior of real and simulated

1Develapment of Harr,dw re and Software fo:r Computer ·Graphics 15

or coLr nns. Th t b iques pe il'y g d tio :in · ·1en ·ty of n. ighboring
1 at edges ,of prim'tives, rathe than setting pi e.ls to maxim mo zero intensity nly;
Chap r, , 14, and 19 fl r fun:h . r di cu of tlf important topi, .

1.5 2 Input Technology

[nput technulo :y h.a , ;al , improved ready over th year • Th, du , fTagi le lj h · pen of
voo1or y tern ha bee: repla d by th ·. ubiguJt u n . evel ;ped by office-
ut mation pi ne · · · · rnbart in the mid~ i.xd [ENGE68JI), . · d m hm 1, and the

transparent . · · · mo n.ted n the , · .. , en · t devices that
·upply n t · he - ·reen, but al o 30 a · · aJ in.p t.

u~ . (egre . ·m , boo m·ng m . ·· udio
o mm nrca:tfon also ha.... ex ili pot· ntiaJ , ~nee i:t allows hands-free input nd natuiram
outp · im · • uuc1;· o , fi .. · and o on. With · tandard inpu cf vio • th
user • _ · · i ation pj -'- · . by typin ' ~. in:g new in.fbrmaf on or
b pointing ro ·. · in:formarion · screen. These ino tio, require n !knowledg
o · progr · · ·, . y a little keyboard use·: · · imply by electing
- nu butt ·. . - · by 'h few driara te. - 1in

rm p~ , . - ·. 1. n ! ~ · ra\VS · . -a ing conse utive
p in lirl or , · lated b "moorh 12 ve • paints by

moving the c ·. r lhe and fill ar . bmm eel by potyg, n or p~t'nt
,ntoun with . of _ ~ o

1.5.3 Software Portab~llcy· and Graphics Standards

· teady adv.me · · . dware te hnol y ave thus made Je the evo ut · on · · · · · c ·
displ ry: from a-kind p iall · u put • · . ' , · h moo, in ·. · 11h

mputer. . l 'W'Onder hether • · if · · aim · · ·
extent have · u tie · · .· . d ex.pen
y rem · and · ft · resolved?' · .· aihi - ·

primitive grap th · ·. it - d has been
prooess o mat · · n uch ·. oft.ware. ~ . ·.
. l!JlppJied by rnanu acwrers for their particular di y o • · ·

pend m . p d ive a v i p
pri.nre · . pJ m re an h~., -tj

pur o . ing a devic.e-i dependent packag in c-0 ~u · w·th a higb-l :vet
programm · n.g u · prom · , appliootion~progrom pona · · '· . • Thi · portabiWity i ·
pl"(} · · 100 in m 'l way . · a high-leve.1 1 m hine-inde1 nt l nguag (u h
FORTRAN ' - · or C) provid portability: b · t' ng di programmer from mosll:
machine ' - a d ·p ·· · "i, I n · ua · fe readily amp 'emented n I ro d
rag f p - • 'Pti gJ -r portabmly' ' i nhooc d in th:at pro ra,nm · can
now m ve , · en to yst 01 ,or even rorr ins . n ro • , taUabo ,, nd fir d fanuliar
oft-ware.

A general awarene . f th ne d for tandard in uch d vice-independent g · phic
packages aw s in the mid- rrties and culminat d in a - - i cation for a D re

166 Graphics Hardware

graphics processor with a separate pixmap is introduced, and a wide range of graphics­
processor functionalities is discussed in Section 4.3.3. Section 4.3.4 discusses ways in
which the pixmap can be integrated back into the CPU's address space, given the existence
of a graphics processor.

4 .3.1 Simple Raster Display System

The simplest and most common raster display system organjzation is shown in Fig. 4.18.
The relation between memory and the CPU is exactly the same as in a nongraphics
computer system. However, a portion of the memory also serves as the pixmap. The video
controller displays the image defined in the frame buffer, accessing the memory through a
separate access port as often as the raster-scan rate dictates. In many systems, a fixed
portion of memory is permanently allocated to the frame buffer, whereas some systems
have several interchangeable memory areas (sometimes called pages in the personal­
computer world). Yet other systems can designate (via a register) any part of memory for the
frame buffer. In this case, the system may be organized as shown in Fig. 4.19, or the entire
system memory may be dual-ported.

The application program and graphics subroutine package share the system memory
and are executed by the CPU. The graphics package includes scan-conversion procedures,
so that when the application progrdm calls, say, SRGP_IineCoord (xl , yl , x2, y2), the
graphics package can set the appropriate pixels in the frame buffer (details on scan­
conversion procedures were given in Chapter 3). Because the frame buffer is in the address
space of the CPU, the graphics package can easily access it to set pixels and to implement
the Pix Bit instructions described in Chapter 2.

The video controller cyc.les through the frdme buffer, one scan line at a time, typically
60 times per second. Memory reference addresses are generated in synchrony with the
raster scan, and the contents of the memory are used to control the CRT beam's intensity or

CPU Peripheral
devices

/\

< I DUI >
~

8 System Frame Video
memory buffer controller

Fig. 4. 18 A common raster display system architecture. A dedicated portion of the
system memory is dual-ported. so that it can be accessed directly by the video
controller, without the system bus being tied up.

4.3 Raster-scan Display Systems 167

CPU Peripheral
devices

A

(......

System Video Monitor
memory controller

Fig. 4 .19 A s imple raster display system architecture. Because the frame buffer may
be stored anyw here in system memory, the video controller accesses the memory via
the system bus.

color. The video controller is organized as shown in Fig. 4.20. The raster-scan generator
produces deflection signals that generate the raster scan; it also controls the X and Y address
registers, which in turn define the memory location to be accessed next.

Assume that the frame buffer is addressed in x from 0 to x,.. and in y from 0 to y.,.,.;
then, ai the start of a refresh cycle, the X address register is set to zero and the Y register is
set to Ymu (the top scan line). As the first scan line is generated, the X address is
incremented up through x...,.. Each pixel value is fetched and is used to control the intensity
of the CRT beam. After the first scan line, the X address is reset to zero and the Y address is
decremented by one. The process continues until the last scan line (y = 0) is generated .

....

M

• ~
m

0

r ,

'1'._

....- X llddl II

u.. ~
llddt u

~
r--

I.- Yaddlcu

Data Pial -. 'illlue(l)

~ Set or increment

L-
RM.I'«<It ~ ,....

~ Set or decrement

Horizontal
and vertical
deflection
signals

Intensity
or color

Fig. 4 .20 logical organization of the video controller.

3.50 lrnpld Devices. Techn,:que -. and Interaction Tasks

I . · .mi ht compare interacti.on techniqu- u ing differelll d . ·ces
th am t k. Thus we might a ·m1 th.a experienced users Ml o .' n nter 1comrnand
m · - · · via runcti -o or .a key ard 1than via m _ nu I • lion that u rs can pi

~1ec,ts m re q y us'ng a. mou than th -y can usm a joysti.ok or -u or

d I ,gue l l , we con jder ·u t indi · -- 'ntera u n · · . also
h task . Hand m · • ,- · n _ talce f m : • ·

-rall fast r with an with ursor-cont ,
- ·trol r th n m u e i m ·, .are ahiead
m n ed to be on the .keyboard r · t t k in equ n after th 01Jrsor · .
i ail · d · cus.~ pier 9. h re ·we d'eru with coo t _ _ . e

w _r i· .e. uildiog b~ock intmduood ·n p · nfusion ,can
, voided · ' ·. d ·· · eep ·n mmd.

l · I vel d. · · are th · elev· e
lp l . ui . . ,. · . . ·. 0

. . and · · _ p .rt d
ma·nt in bi · · · , · y with . no 1n
Al · ,e noecting d ioe to _ mpu,te ; b . _ nunon

· · I ronou R - ·. · 2 termma1 int rface gen -rally m kin in , rf iDg

a.·1.1 Locator Devi.ices

h i u ful, 1to 1 - :j -r d vi · t . "nd_pend nt har -:teri ·jc :
b Jute r · u . u~ .

av - a [· . referen e· r
·. d jn · . respec , a ongm. . . ·,w d-:Vi su h mi •
tra kballs and · . tm1 jo ic a ·gm and :repo ,t nly _h;mges
from th -ir former po i-i.on. A re ati b · _ ao aribitradly large
change in positi n: A u er ,can move am use al g th_ p Ii up, an pla · it back

· · · ' . it & ain. A data tab) t can be piogrammed t behave
a ·, · . po ·tion read -· · · · · • · · m ·• tar; m

, · ' U'a ted from au O 11dinates
t yi Id _ . . m an · , c i ded to the , iti n. Thi ,
·process is con inued until gain · · • · · .

Relative dev·ces can - . - i : · d a i . rea ab olu -,
· · · can b . _ · of a. rel e,,. th~ p · pro_ ram can
repOSiition the u.rsor an on th - .c11 en .

. ith a direct device as light pen . r t u h reen--th _ _ · po,i nt directly a
the reen with a fin urrogate fing r~ with an indir,e_ t d .· · uch as a abt ,

· urs r n . menu im _ ad. oton th ·-re n.
mu t be learned for th- latter;, the pr ' "feraf

comput h · - do · an en ironm nt in whth ·
casu · , r use ' an . d · . However. d' re t pointing can
arm fat . e pe i a users.

8.2

shift - i
to move
selection up
using keyboard

shift - J.
to move selection
down using
keyboard

font
get
Insert

morg1n
print
put
repeot

Basic Interaction Task.s

T to scroll window
up using keyboard

J. to scroll window
down using keyboard

365

Fig. 8 .8 A menu within a scrolling window. The user controls scrolling by selecting the
up and down arrows or by dragging the square in the scroll bar.

to be paged or scrolled through. A scroll bar of the type used in many window managers
allows all the relevant scrolling and paging commands to be presented in a concise way. A
'fast keyboard-oriented alternative to pointing at the scrolling commands can also be
provided; for instance, the arrow keys can be used to scroll the window, and the shift k.ey
can be combined with the arrow keys to move the selection within the visible window, as
shown in Fig. 8.8. In the limit, the si.ze of the window can be reduced to a single menu
item, yielding a "slot-machine" menu of the type shown in Fig. 8.9.

With a hierarchical menu, the user first selects from the choice set at the top of the
hierarchy, which causes a second choice set to be available. The process is repeated until a
leaf node (i.e., ao element of the choice set itseJO of the hierarchy tree is selected. As with
hierarchical object selection, navigation mechanisms need to be provided so that the user
can go back up the hierarchy if an incorrect subtree was selected. Visual feedback. to give
the user some sense of place within the hierarchy is also needed.

Menu hierarchies can be presented in several ways. Of course, successive levels of the
hierarchy can replace one another on the display as further choices are made, but this does
not give the user much sense of position within the hierarchy. The cascadi11g hierarchy, as
depicted in Fig. 8.10, is more attractive. Enough of each menu must be revealed that the
complete highlighted selection path is visible, and some means must be used to indicate
whether a menu item is a leaf node or is the name of a lower-level menu (in the figure, the
right-pointing arrow fills this role). Another arrangement is to show just the name of each

Current Menu Item g
(Accep t) (Cancer)

Fig. 8 .9 A small menu-selection window . Only one menu item appears at a time. The
scroll arrows are used to change the current menu item, which is selected when the
Accept button is chosen.

366 Input Devices. Techniques. and Interaction Tasks

(a) (b) (C)

Fig. 8 .1 0 A pop-up hierarchical menu. (a) The first menu appears where the cursor is,
in response to a button-down action. The cursor can be moved up and down to select
the desired typeface. (b) The cursor Is then moved to the right to bring up the second
menu. (c) The process is repeated for the third menu.

selection made thus far in traversing down the hierarchy, plus all the selections available at
the current level.

A panel hierarchy is another way to depict a hierarchy, as shown in Fig. 8. 11 ; it takes
up somewhat more room than the cascading hierarchy. lf the hierarchy is not too large, an
explicit tree showing the entire hierarchy can also be displayed.

When we design a hierarchical menu, the issue of depth versus breadth is always
present. Snowberry et al. [SNOW83) found experimentally that selection time and accuracy
improve when broader menus with fewer levels of selection are used. Similar results are
reported by Landauer and Nachbar ILAND85) and by other researehers. However, these

Fig. 8 .11 A hierarchical-selection menu. The leftmost column represents the top level;
the children of the selected item in this column are shown in the next column; and so on.
If there is no selected Item, then the columns to the right are blank. (Courtesy of NeXT.
Inc.@ 1989 NeXT, Inc.)

368 Input Devices, Techniques, and Interaction Tasks

maintaining visual continuity. An attractive feature in pop-up menus is to highlight initially
the most recently made selection from the choice set if the most recently selected item is
more likely to be selected a second time than is another item, positioning the menu so the
cursor is on that item. Alternatively, if the menu is ordered by frequency of use, the most
frequently used command can be highlighted initially and should also be in the middle (not
at the top) of the menu, to minimize cursor movements in selecting other items.

Pop-up and other appearing menus conserve precious screen space-one of the
user-interface designer's most valuable commodities. Their use is facilitated by a fast
RasterOp instruction , as discussed in Chapters 2 and 19.

Pop-up menus often can be context-sensitive. In several window-manager systems, if
the cursor is in the window banner (the top heading of the window) , commands involving
window manipulation appear in tbe menu; if the cursor is in the window proper, commands
concerning the application itself appear (which commands appear can depend on the type of
object under the cursor); otherwise, commands for creating new windows appear in the
menu. This context-sensitivity may initially be confusing to the novice, but is powerful once
understood.

Unlike pop-up menus, pull-down and pull-out menus are anchored in a menu bar along
an edge of the screen. The Apple Macintosh, Microsoft Windows, and Microsoft
Presentation Manager all use pull-down menus. Macintosh menus , shown in Fig 8.13, also
illustrate accelerator keys and context sensitivity. Pull-out menus , an alternative to
pull-down menus, are shown in Fig. 8.14. Both types of menus have a two-level hierarchy:
The menu bar is the first level, and the pull-down or pull-out menu is the second. Pull-down
and pull-out menus can be activated explicitly or implicitly. Ln explicit activation, a button
depression, once the cursor is in the menu bar, makes the second-level menu appear; the

Cut
Copy
Paste
Ctear

Duplicate
Select All

......

eursoi

··············
• •• ' 0

Release ;
b11ttn.-

Fig. 8 .13 A Macintosh pull-down menu. The last menu item is gray rather than black,
indicating that it is currently not available for selection (the currently selected object, an
arc, does not have corners to be rounded). The Undo command is also gray, because
the previously executed command cannot be undone. Abbreviations are accelerator
keys for power users. (Copyright 1988 Claris Corporation. All rights reserved.)

II ut D_

8.3.3 ID n---'m'ic Mani

s. _ndl ilnte ~c 1i

p k ng po'nts ,on th

· . In man itu , · ,ns th u mu: t he

mbol ·mo n ~ - · po · ·on.

[ci]
~

s :.3

ffik::ta11kQl8 i

,n - - ,
- th r UD'i

a
d

moliing
with
wn

D

Co p

-0
s -Cil

ssible
tions

F 1. ,8 41 Dynamjc 1rottnon.

F· g. 1 .42 H_ ndl bj _c •

9
Dialogue

Design

We have described the fundamental building blocks from which the interface to an
interactive graphics system is crafted-interaction devices, techniques, and tasks . Let us
now consider how to assemble these building blocks into a usable and pleasing form.
User-inrerface design is still at least partly an art, not a science, and thus some of what we
offer is an attitude toward the design of interactive systems, and some specific dos and
don'ts that, if applied creatively, can help to focus attention on the lmm(m fac/Ors, also
called the ergonomics, of an interactive system.

The key goals in user-interface design are increase in speed of learning, and in speed of
use, reduction of error rate, encouragement of rapid recall of how to use the interface, and
increase in attractiveness to potential users and buyers.

Speed of learning concerns how long a new user takes to achieve a given proficiency
with a system. It is especially important for systems that are to be used infrequenlly by any
one individual: Users are generally unwilling to spend hours learning a system that they will
usc for just minutes a week!

Speed of use concerns how long an experienced user requires to perform some specific
task with a system. It is critical when a person is to use a system repeatedly for a significant
amount of time.

The error rare measures the number of user errors per interaction. The error rate affects
both speed of learning and speed of use; if it is easy to make mistakes with the system,
learning takes longer and speed of use is reduced because the user must correct any
mistakes. However, error rate must be a separate design objective for applications in which
even one error is unacceptable-for example, air-traffic control, nuclear-power-plant

391

392 Dialogue Design

control. and strategic military command and coniJOI systems. Such systems often trade off
some speed of use for a lower error rate.

Rapid recall of how to use the system is another distinct design objective, since a user
may be aw.ty from a system for weeks, and then return for casual or intensive use. The
system should "come back" quickly to the user.

A11ractiveness of the interface is a real marketplace concern. Of course, liking a syst.em
or a feature is not necessarily the same as being facile with it. Ln numerous experiments
comparing two alternative designs, subjects state a strong preference for one design but
indeed perform faster with the other.

It is sometimes said that systems cannot be both easy to learn and fast to use. Although
there was certainly a time when this was often true. we have learned how to satisfy multiple
design objectives. The simplest and most common approach to combining speed of use and
case of learning is to provide a "starter kit" of basic commands that are designed for the
beginning user, but are only a subset of the overall command set. This starter kit is made
available from menus, to facilitate ease of learning. All the commands, both starter and
advanced. are available through the keyboard or function keys, to facilitate speed of use.
Some advanced commands are sometimes put in the menus also, typically at lower levels of
hierarchy, where they can be accessed by users who do n01 yet know their keyboard
equivalents.

We should recognize that speed of learning is a relative term. A system with 10
commands is faster to learn than is one with I 00 commands, in that users will be able to
understand what each of the 10 commands does more quickly than they can what 100 do.
But if the application for which the interface is designed requires rich functionality. the 10
commands may have to be used in creative and imaginative wo~ys that are difficult to learn.
whereas the 100 commands may map quite readily onto the needs of the application.

In the final analysis , meeting even one of these objectives is no mean task. There are
unfortunately few absolutes in user-interface design. Appropriate choices depend on many
different factors, including the design objectives, user characteristics, the environment of
use , available hardware and softwJre resources, and budgets. It is especially important that
the user-interface designer's ego be submerged, so that the user's needs, not the designer's,
are the driving factor. There is no room for a designer with quick, off-the-cuff answers.
Good design requires careful consideration of many issues and patience in testing
prototypes with real users .

9 .1 THE FORM AND CONTENT OF USER-COMPUTER DIALOGUES

The concept of a ttSu-<omputer dialogue is central to interactive system design, and there
are helpful analogies between user-oomputer and person-person dialogues. After all,
people have developed effective ways of communicating, and it makes sense to learn what
we can from these years of experience. Dialogues typically involve gestures and words: In
fact, people may have communicated with gestures, sounds, and images (cave pictures.
Egyptian hieroglyphics) even before ph<>netic languages ~'Cre developed. Computer
graphics frees us from tbe limitations of purely verbal interactions with computers and
enables us to use images as an additional communication modality.

3

m,gh be to

9.2 USER NTERFACE STV1LES

396 Dialogue Design

but their use certainly predates graphics. Graphics does, however, permit use of icons rather
than of text as menu elements, and provides richer possibilites for text typefaces and fonts
and for menu decorations.) None of these styles are mutually exclusive; successful
interfaces often meld elements of several styles to meet design objectives not readily met by
one style alone.

9 .2 .1 What You See Is What You Get

What you see is what you get, or WYSIWYG (pronounced wiz-ee-wig) , is fundamental to
interactive graphics. The representation with which the user interacts on the display in a
WYSIWYG interface is essentially the same as the image ultimately created by the
application. Most, but not all, interactive graphics applications have some WYSIWYG
component.

Many text editors (most assuredly a graphics application) have WYSIWYG interfaces.
Text that is to be printed in boldface characters is displayed in boldface characters. With a
non-WYSIWYG editor, the user sees control codes in the text. For example,

In this sentence, we show @b(bold) , @i(italic), and @ub(underlined bold) text.

specifies the following hardcopy output

In this sentence, we show bold, italic, and underlined bold text.

A non-WYSIWYG specification of a mathematical equation might be something like

@f(@i(u)@sub(roax) - @i(u)@sub(roin) ,@i(x)@sub(max) - @ i(x)@sub(min))

to create the desired result

lo such non-WYS£WYG systems, users must translate between their mental image of
the desired results and the control codes. Confirmation that the control codes reproduce the
mental image is not given until the coded input is processed.

WYSIWYG has some drawbacks. Whenever the spatial and intensity or color
resolution of the screen differs from that of the hardcopy device , it is difficult to create an
exact match between the two. Chapter 13 discusses problems that arise in accurately
reproducing color. More important, some applications cannot be implemented with a pure
WYSIWYG interface. Consider first text processing, the most common WYSIWYG
application. Many text processors provide heading categories to define the visual
characteristics of chapter, section, subsection, and other headings . Thus, " heading type"
is an object property that must be visually represented. But the heading type is not part of
the final hardcopy, and thus, by definition, cannot be part of the display either. There are
simple solutions, such as showing beading-type codes in the left margin of the display, but
they are counter to the WYSIWYG philosophy. It is for this reason that WYSIWYG is
sometimes called • 'what you see is all you get.'' As a second example, the robot arm in Fig.

9.2 User- nterface ,Styles

7 .1 d n , t :re al th exi t n hL rarchical relation hip b tween th robot'· body
arm .and -o on, and it -rt inly does n -h w h. e rel· ti n hip . Th exarnpl , re·
int nded not as indi tm n · WYSIWYG butt the.r as r minders , - ' t limitat1 ns

9.2 .2 Direct: Manipulation

A dire 1-manipula1ion , rim rfac_· j on in whi h th objec -, attribu~ or relations 'that
can be operated on are represented i uaHy: , perat' n .are in . ,ed ti n performed , n
·th _ -L ual! rep_ _ : _ nt:uion~ typicaHy u in -- a mou .. Th t i , ommands Ill' n t in oked
expJ icidy by such tradi-mnal means as menu el cti n r ' yboard ing · :ra h r . the mman
·. imp i i't in th · acti n ,on th _ •. uai r _pre-. oration. Thi rapfi s oration may be rext uch
a th _ narn of an obj: tor pr~perty.,. or ai more general graphic image. -uoh as an icon .
. Later m thi section we discu · -the • ircumstances under which textual nd i n~ 'form of
vi ual representati n are app·11 ri re.

Th M cin · hint rf c u d·rect man·puLtion in part, a h wn in ig. 9. 1. Di k
and fil__ are r _pr~_ :11 _ d as k:on . Draggin,g a fi1 , icon rom on. di . to anoth r c pi:es th. -
6Je from on disk to th oth r; dragging to h trashcan ·con d -lete , th~ Hie. In th · rher
Xerox · tar dragging a file to pr· nter iron print d th Ii l • · hnieid rm n [SHNE] h ·
c ined th phi se · •direct manipulation.' dL _u. __ e-s th r " ampl , o, thi techniqu _ .

. o ·rect manipulafon i om _tlm pres -nied as bein th bet u ·er-int:erfac tyl . lt is
certainly quit -p werful and i espec· J,y e t , learn. But 'th , a int int rfao an be
]ow ·fi r peri n __ d users. in that th y am,_ forced r. u di · pul ti n wh n anoth._ r

.. L

li: _J~ Ml)Vfl' ••••

Fig. 91.1 The Mac n~osh sc1r,ee111. In the upper right is. a disk ·con, l st be ow tt is. a
directory icon, wh"ch is gray-toned o ind.tea ,e that it is, open. At the left is the ope:n
directory. wi~h named icons repre·senting the files within it A fiile, re,pr,esented by ti e
icon outrne· around the, ou sor, ·s. being d agged to the ·trashcan at. the, lowe· right.
(Screen graph·cs , Apple Computer, I c.),

398 D aloguer D · gn

en ra11y be fa t _r. Pr·nting 01 _· fil " hapter 9' i h , irect m _ipuLf
i u-1 r pres ntaf n f th 61 - to und ~n cted th n th Print

and i i. . Fi ding th fil icon migh · nvolve .- rolling through ai largi '
· · - · - r kn th name of th file, typing 1• Prin:t I hapter 9 ' j ,

_ . · - · g aU fi t" require fi mf ng and electi -g e h ·u h Je,
and can . . · u _ fh _ _· man 'rm"' .txf •. whi h.
uses ' ' au fi

"" m _ direc a m . n with d- - ·a faciiitie , can be
i d pendin on d" 'p n. ote that direct

m · · u . 111 • o longer, more descr· -• · · - d o offi _t
, I • from using typed com h as

prog:r:· mm in · ot I nd them eJv to d irecl m ni.puia ple
wnlrodu t ry hart-oriented learning or for ·th · can
b - demon trted b _ ampl 9 ·

Dir · •I ti ,n in~ . - rate • th .r inte -
mm·n· m nu r th ' ~n _tan -· in m

1 _ t ith , mma · - · tm a hand]
d ro aung th h - n difficult to cO!n truct ,an

.. n in which alJ c mmand ha direct-man.·pulaf · . -· -i nforces the point
th· · ·n , · rl ot be uffi ient. for a 'nterfac - · ral tyI- ·

r a ·- hi o ty1e.
tiU-i.n u -r in e anoth -· . f · man·pulati n. Here a fo m j

nt.' d t by ng from , n. t a cti n _ t
· · r (. The Umited f · · d -m in rm fi I-in

- ofi r;al frm ·
' i .

WY IWYG :Rd direct manipul· ti n are · paratc and di tin concepts. For in. tanc
h textual repi,e ntali n of graphi ,. imag · -.- ,n be m ified ·a direct man'puJation and
h graphical ima c of a WYSIWY syst m __ n b m dified purely by a rcommand­

hm ua - · n , dace. · peci an · wh n used t tiler. h we,"- r ·the 'two , ncep are powe ful -
and na -l.y ast to u a man uc ful u:. · l1it rf have

9.2 .3 Iconic User lnterfa1ces

Jl icmi L a pi _ ·o 1 • action. property, r m m r
on. -p ·. T n ch i e of u ing · con r wom ·

represen uch co · • · c • · not rel Jed ·, 'th - dire t mam ul d n
l ue: n · ru1ipula . JU ' . _ v.i _ l as i n can. and 'tex 10 pr nt

nc_pt i ·
WI tte:r user-·nt - - -~· n qu - :ons t -r

i -• Icon , ha: m arny ad ant · · · Uaides an be recogn
1

than ,c n word may also ta n . fuHy d, ig
llao ag ~ind p nd • aU w·ng an interface to be used in differ ne. countr'·es,.

9.2 User-Interface· St~tes 399

/'

-
_ ,

- 0
IF"g. 9.2 lconis, us,ed o rep1'1esent common o,ffioe objects.

loon desig , h- -t lea t:lue . pat ,~- g . al . wh ~ . importanc d pend _nth ped'fic
appH_ation at han. 1:

I . ~ co, nition--how quiokJ · · m crling • f th icon an be re o. ·11i ... d

2. Rern mb ri,1 -~:now weU th · con m · an rem mbered. no]earn d
Di. eritnination-h w we.II on _ loon. ,can b di tinouished from ,another.

L8 , 1i r ith ' ral a]t rn-tive i n d . ign-·
M ,_ 84] fi r furth: r di us n~d - ·go i

tih _t ·repre en:t bj be · re), tivel · . '9.2. hows ·
coll of uch icon fi u programs. !Properti • al be
:rr presented asily i ach ,of th · lu c -, an approptiat rep _ _ tion
TM. e mi nl can be don fo ropert i n intern. tive graphic editors. uch a
tine thickn tex ure and fo um·n .n be repres,n d with ,a gauge r did
· n ·o Fi :S,,21.

at mman, . - r, presented b · n . The:r are
:severa I d . . · · · icon c•-,n · -- o.bj 1

u ·din . n be used ru h Ii r
and .• m gJJifying g . m.

· T · · are potentiaHy difficult t in · u r mu t _ niz · hat.
th · i on i;t, th 111 und and . hat th. bject repre ented does. 'Thi two- ,tep understanding
pro · · ntJ J,ess, d - i rable 1han i th o tep proces of m re " ognizing bat
object a · presents mplic te mruer fun . that bj, ,t might be
u _d fi r ____ Jfltli_nt . A blilli h. _or exampl ._ u -eel for din pa

rn::l Paint bu et for
l.S2!J area till

~ Spray can or paJmL g
l.J!.I wlth dot pa •er

ri7 Brush for pai lti:ng
L5l!J sold ar,ea

[lJ Penci l for drawing 'lines

I g II Erase tor deletion

r;-1 Pointe to:r selecting
~ objecis

f ig. 9 .3 Command icons r,epresenting ,objects used to perform the corresponding
command. (Copyright 1 :988 Claris, C,o rpora :ion. A II li'lig hts reserve di.)

400 Di logu D s1:gn

□ □

□ ◊

□ □!
□ CJ

□ D
□ L7

Translate

Aotate

Uniform sea e

Horizon I scale

VerticaJ scare

,Shear

(\.
)

)

Roat

T,ranslate

Shear

!Fig. 9,_4 Command icons, "nd"catiing, geo
metric ransforma ions by howing ai
sq, are before and after the commands are,
app ied.

Fig. 9. 5 Sev,eral abstract ,command
ico s, or ome of the actions dep·c- ed
in :Fig. '9.4. Not all ,geome ric operafons
can be represented ·n this way.

m thi · · pJaoe , nd al o ~ r _ in p .. nt
_ _t 1.d - ·ona ly be comma: · .e sam a the c · Jd be

m · ' 1 .m tim , nl ma r a gi :n
appl

· rategy c mm· th command'' before and after
and - J 1 • work I. if h 11 pres ntati.on
are com mmand perat _ on man diffi rent types of
_ t t represented ·n d · an mU ad th u r ·nto

t , . ral than it re U i .
ted on at bit-per-pi I di pla -

ariefy lat I. 22.
A · find a m re ab 1 ~a t ,-, pr, ntation for th _. acti o. Typi I

- arnpl. rep _n a,· ns can depend on som cultural- pe-e·fi
~illioo~ rM u~~Xb

{a) (c (d) (e (1}

(g) (hi (i) (J) (I}

Fig .. 9.6 lc,ons that repre en M ,cin osh programs. What does each icon represent? In
mo•s . cases, the icons ugg,e -t the y:pe of information tha is opera ed on or created.
See Exerc·s,e 9.14 for he answers.

9.2 User Interface S,tyles

jec s·

f'ig 9:.CS219

fig. 9 . 7 The contents o·f a disk directory represented with icons and te t. he ·cons.
help, to, dis· ing1uish ,one file f :om another. (Certain screen gra1phic: Apple Computer,
I o.) -

Arbitrarily d ially recogni:z.ab_.. Figu 9 .
ho , a lar nu i n repres nt p an
uess what each pmgram . owever on th ~ i

rea n bl ' member·ng and di rimmnati n.
Ma . . "ting ~ m · · · · t among l ed

b different · · n program ,. AU fit crea · . an a ha ·_ th · m i n. I
a. directory or d' k · m · ypes f fl di crimination aUoo d b
th ·coo h · · ee al same type • thi
d·. _rimjnati n i f no · .

J n can " poorly u • ch th lrash
that u h id as -- - ju nu - C th: i . nit - i
not a r -e with uh an alu _t tll u pini llS

55 tt ms

[:jl [:j [:) [:)
Fi 7.H_ 12 Fi~ 7 .l>R ig17.SKJETCH Fig 7 .1

Fig. 9.8 The· contents of a disk directory represen ed with ico • and t · . Since 1he
fi'le are, all of the same, type, he icon do not h Ip o distinguish one 111a from .an.omer,
and , ·imply take up ex·,ra space. (Comipu er screen graphics, Apple Computer, I c.J

411

9 .3. Aoeommoda

Iner ·Li . gr: ph_

F - - cin
- -- a

- n
I

•
•

omputer. lnc.,t

4 18 Dialogue Design

The general concept of factoring is important for several reasons. First, new users do
not need to be concerned with factored parameters that have default values, which improves
learning speed. Values for factored parameters do not need to be specified unless the current
values are unacceptable, which improves speed of use. Factoring out the object from the
command creates the concept of a CSO, a natural one for interactive graphics with its
pointing devices. Finally, factoring reduces or eliminates the short-term modes created by
prefix commands with multiple paro~meters. Factoring has been incorporated into a
user-interface design tool so that the designer can request that specific parameters be
factored; the necessary auxiliary command (SelecLobject) is introduced automatically
(FOLE891.

There are several variations on the CSO concept. First, when an object is created, it
does not need to become the CSO if there is already a CSO. Similarly, when the CSO is
deleted. some other object (the most recent CSO or an object close to the CSO) can become
the new CSO. In addition , a current ly selected set (CSS) made of up several selected objects
can be used.

9.5 VISUAL DESIGN

The visual design of a user-computer interface affects both the user's initial impression of
the interface and the system's longer-term usefulness. Visual design comprises all the
graphic element~ of an interface, including overall screen layout , menu and form design , use
of color, information codings, and placement of individual units of information with
respect to one another. Good visual design strives for clarity. consistency, and attractive
appearance.

9.5.1 Visual Clarity

If the meaning of an image is readily apparent to the viewer, we have visual clarity. An
important wJy to achieve visual clarity is to use the visual organization of information to
reinforce and emphasize the underlying logical organization. There are just a few basic
visual-organization rules for accomplishing this end. Their use can have a major innuence ,
as some of the examples will show. These rules , which have been used by graphic designers
for centuries (MARC80], were codified by the Gestalt ps}dlologist Wertheimer [WERT39]
in the 1930s. They describe how a viewer organizes individual visual stimuli into larger
overall forms (hence the term GBtalt. literally "shape" or " form," which denotes an
emphasis on the whole, rather than on the constituent parts).

The visual-organization rules concern simi larity, proximity, closure, and good
continuation. The rule of similarity states that two visual stimuli that have a common
property are seen as belonging together. Likewise, the rule of proximity states that two
visual stimuli that are close to each other are seen as belonging together. The rule of closure
says that, if a set of stimuli almost encloses an area or oould be interpreted as enclosing an
area, the viewer sees the area. The gQOd-continumion rule states that , given a juncture of
lines, the viewer sees as continuous those lines that are smoothly connected.

9 .5 Visual Design 421

A MAJOR CATEGORY
A LESS MAJOR CATEGORY
AN EVEN LESS MAJOR CATEGORY
AN EVEN LESS MAJOR CATEGORY
THE LEAST MAJOR CATEGORY
THE LEAST MAJOR CATEGORY
AN EVEN LESS MAJOR CATEGORY

(a)

A MAJOR CATEGORY
A LESS MAJOR CATEGORY
An even less major category
An even less major category
The leas t major category
The least major category

An even less major category
(b)

A MAJOR CATEGORY
A LESS MAJOR CATEGORY

An even less major category
An even less major category

The least major category
The least major category

An even less major category
(c)

Fig. 9.19 Three designs presenting the same information. (a) The design uses no
visual reinforcement. (b) The design uses a hierarchy of typographical styles (all caps
boldface, all caps, caps and lowercase. smaller font caps and lowercase) to bond
together like elements by simila rity. (c) The design adds indentation, another type of
similarity, furthe r to bond together like elements.

When ignored or misused, the organization rules can give false visual cues and can
make the viewer infer the wrong logical organization. Figure 9.20 gives an example of false
visual cues and shows how to correct them with more vertical spacing and less horizontal
spacing. Figure 9.21 (a) shows a similar situation.

Recall that the objective of using these principles is to achieve visual clarity by
reinforcing logical relationships. Other objectives in placing information are to minimize the
eye movements necessary as the user acquires the various units of information required for a
task, and to minimize the hand movements required to move a cursor between the parts of
the screen that must be accessed for a task. These objectives may be contr.tdktory; the
designer's task is to find the best solution.

426 Dialogue Design

®
0
0

I OK I
Cancel

1 1i

0 11

1 II

Fig. 9 .23 The graphic alphabet used in many Macintosh applications. The square
choice boxes indicate alternatives, of w hich several may be selected at once. The round
choice circles, called "radio buttons," indicate mutually exclusive alternatives; only one
may be selected. The rounded-corner rectangles indicate actions that can be selected
with the mouse. In addition, the action surrounded by the bold border can be selected
with the return key on the keyboard. The rectangles indicate data fl81ds that can be
edited. (~ Apple Computer, Inc.)

9.14, 9.17, and 9.21 are examples of these dialogue boxes, and Fig. 9.23 shows their
graphic alphabeL Similarly, Fig. 9.24 shows the use of a small graphic alphabet to build
icons, and Fig. 9.25 shows a single-element graphic alphabet.

Consistency must be maintained among as well as within single images; a consistent set
of rules must be applied from one image to another. In coding, for ClUU11ple. it is
unacceptable for the meaning of dashed lines to change from one part of an application to
another. For placement consistency, keep the same information in the same relative position
from one image or screen to the next, so that the user can locate information more quickly.

9.5.4 Layout Principles

Individual elements of a screen not only must be carefully designed, but also, to work
together, must all be well placed in an overall contexL Three basic layout rules are balance,

F"lle Program

Paint
file

~

~=
Painting

(a)

~
Text
file

~ .
Paint Word·processing

program program
(b)

~ - lad : !0: -"""" :o::
Text Chart Drawing

(on a grid)

~ ~ .
Chart Drawing

file file

~ ~
Charting Drawing
program program

Fig. 9.24 (a) A graphics alphabet. (b) Icons formed by combining elements of the
alphabet.

9 .5

Move Resize Bring
to top

Send to
bottom

Visual Design 427

DO
DO
lite the
screen

Untilethe
screen

Fig. 9 .25 Several different icons, all created from a single shape representing a
window.

gridding, and proportion. Figure 9.26 shows two different designs for the same screen.
Design (a) is balanced, nicely framing the center and drawing the eye to this area. Design
(b) is unbalanced, and unnecessarily draws the eye to the right side of the area. Design (b)
also has a slight irregularity in the upper right comer: the base lines of the scroll bar arrow
and the pointer icon are not quite aligned. The eye is needlessly drawn to such meaningless
discontinuities.

Figure 9.27 shows the benefits of using empty space between different areas, and also
illustrates the concept of gridding; in cases (b) and (c), the sides of the three areas are all
aligned on a grid, so there is a neatness, an aesthetic appeal, lacking in (a) and (d). Figure
9.28 further emphasizes the detrimental effects of not using a grid. [FEIN88] discusses an
expert system that generates and uses design grids.

Proportion deals with the size of rectangular areas that are laid out on a grid. Certain
ratios of the lengths of a rectangle 's two sides are more aesthetically pleasing than are
others, and have been used since Greco-Roman times. The ratios are those of the square,
which is 1:1; of the square root, 1:1.414; of the golden rectangle, 1:1.618; and of the
double square, I :2. The double square is especially useful, because two horizontal double
squares can be placed next to a vertical double square to ma.intain a grid. These and other
design rules are discussed in [MARCSO; MARC84; PARK88].

(a) (b)

Fig. 9 .26 Two alternative screen designs. Design (a) is balanced; design (b) emphasiz­
es the right side. (Copyright 1988 Ctaris Corporation. All rights reserved.)

