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Introduction

Computer graphics started with the display of data on hardcopy plotters and cathode ray
tube (CRT) screens soon after the introduction of computers themselves. It has grown to
include the creation, storage, and manipulation of models and images of objects. These
models come from a diverse and expanding set of fields, and include physical, mathemati-
cal, engineering, architectural, and even conceptual (abstract) structures, natural phenome-
na, and so on. Computer graphics today is largely interactive: The user controls the
contents, structure, and appearance of objects and of their displayed images by using input
devices, such as a keyboard, mouse, or touch-sensitive panel on the screen. Because of the
close relationship between the input devices and the display, the handling of such devices is
included in the study of computer graphics.

Until the early 1980s, computer graphics was a small, specialized field, largely because
the hardware was expensive and graphics-based application programs that were easy to use
and cost-effective were few. Then, personal computers with built-in raster graphics
displays—such as the Xerox Star and, later, the mass-produced, even less expensive Apple
Macintosh and the IBM PC and its clones—popularized the use of bitmap graphics for
user-computer interaction. A bitmap is a ones and zeros representation of the rectangular
array of points (pixels or pels, short for **picture elements’”) on the screen. Once bitmap
graphics became affordable, an explosion of easy-to-use and inexpensive graphics-based
applications soon followed. Graphics-based user interfaces allowed millions of new users to
control simple, low-cost application programs, such as spreadsheets, word processors, and
drawing programs.

The concept of a “*desktop’ now became a popular metaphor for organizing screen
space. By means of a window manager, the user could create, position, and resize
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2  Introduction

rectangular screen areas, called windows, that acted as virtual graphics terminals, each
running an application, This allowed users to switch among multiple activities just by
pointing at the desired window, typically with the mouse. Like pieces of paper on a messy
desk, windows could overlap arbitrarily. Also part of this desktop metaphor were displays
of icons that represented not just data files and application programs, but also common
office objects, such as file cabinets, mailboxes, printers, and trashcans, that performed the
computer-operation equivalents of their real-life counterparts. Direct manipulation of
objects via ‘‘pointing and clicking’’ replaced much of the typing of the arcane commands
used in earlier operating systems and computer applications. Thus, users could select icons
to activate the corresponding programs or objects, or select buttons on pull-down or pop-up
screen menus to make choices. Today, almost all interactive application programs, even
those for manipulating text (e.g., word processors) or numerical data (e.g., spreadsheet
programs), use graphics extensively in the user interface and for visualizing and
manipulating the application-specific objects. Graphical interaction via raster displays
(displays using bitmaps) has replaced most textual interaction with alphanumeric terminals.

Even people who do not use computers in their daily work encounter computer
graphics in television commercials and as cinematic special effects. Computer graphics is
no longer a rarity. It is an integral part of all computer user interfaces, and is indispensable
for visualizing two-dimensional (2D), three-dimensional (3D), and higher-dimensional
objects: Areas as diverse as education, science, engineering, medicine, commerce, the
military, advertising, and entertainment all rely on computer graphics. Learning how to
program and use computers now includes learning how to use simple 2D graphics as a
matter of routine.

1.1 IMAGE PROCESSING AS PICTURE ANALYSIS

Computer graphics concerns the pictorial synthesis of real or imaginary objects from their
computer-based models, whereas the related field of image processing (also called picture
processing) treats the converse process: the analysis of scenes, or the reconstruction of
models of 2D or 3D objects from their pictures. Picture analysis is important in many
arenas: aerial surveillance photographs, slow-scan television images of the moon or of
planets gathered from space probes, television images taken from an industrial robot's
“eye,”” chromosome scans, X-ray images, computerized axial tomography (CAT) scans,
and fingerprint analysis all exploit image-processing technology (see Color Plate 1.1).
Image processing has the subareas image enhancement, pattern detection and recognition,
and scene analysis and computer vision. lmage enhancement deals with improving image
quality by eliminating noise (extraneous or missing pixel data) or by enhancing contrast.
Pattern detection and recognition deal with detecting and clarifying standard patterns and
finding deviations (distortions) from these patterns. A particularly important example is
optical character recognition (OCR) technology, which allows for the economical bulk
input of pages of typeset, typewritten, or even handprinted characters. Scene analysis and
computer vision allow scientists to recognize and reconstruct a 3D model of a scene from
several 2D images. An example is an industrial robot sensing the relative sizes, shapes,
positions, and colors of parts on a conveyor belt.
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enormous and is growing rapidly as computers with graphics capabilities become
commodity products. Let’s look at a representative sample of these areas.

*  User interfaces. As we mentioned, most applications that run on personal computers
and workstations, and even those that run on terminals attached to time-shared computers
and network compute servers, have user interfaces that rely on desktop window systems to
manage multiple simultancous activities, and on point-and-click facilities to allow users to
select menu items, icons, and objects on the screen; typing is necessary only to input text to
be stored and manipulated. Word-processing, spreadsheet, and deskiop-publishing pro-
grams are typical applications that take advantage of such user-interface technigues. The
authors of this book used such programs to create both the text and the figures; then, the
publisher and their contractors produced the book using similar typesetting and drawing
software.

*  (Interactive) plotting in business, science, and technology. The next most common use
of graphics today is probably to create 2D and 3D graphs of mathematical, physical, and
economic functions; histograms, bar and pie charts; task-scheduling charts; inventory and
production charts; and the like. All these are used to present meaningfully and concisely the
trends and patterns gleaned from data, so as to clarify complex phenomena and to facilitate
informed decision making.

*  Office awtomation and electronic publishing. The use of graphics for the creation and
dissemination of information has increased enormously since the advent of desktop
publishing on personal computers. Many organizations whose publications used to be
printed by outside specialists can now produce printed materials inhouse. Office automa-
tion and electronic publishing can produce both traditional printed (hardcopy) documents
and electronic (softcopy) documents that contain text, tables, graphs, and other forms of
drawn or scanned-in graphics. Hypermedia systems that allow browsing of networks of
interlinked multimedia documents are proliferating (see Color Plate 1.2).

®  Computer-aided drafting and design. In computer-aided design (CAD), interactive
graphics is used to design components and systems of mechanical, electrical, electrome-
chanical, and electronic devices, including structures such as buildings, automobile bodies,
airplane and ship hulls, very large-scale-integrated (VLSI) chips, optical systems, and
telephone and computer networks. Sometimes, the user merely wants to produce the precise
drawings of components and assemblies, as for online drafting or architectural blueprints.
Color Plate 1.8 shows an example of such a 3D design program, intended for nonprofession-
als: a **customize your own patio deck’” program used in lumber yards. More frequently,
however, the emphasis is on interacting with a computer-based model of the component or
system being designed in order to test, for example, its structural, electrical, or thermal
properties. Often, the model is interpreted by a simulator that feeds back the behavior of the
system to the user for further interactive design and test cycles. After objects have been
designed, utility programs can posiprocess the design database to make parts lists, to
process *‘bills of materials,”" to define numerical control tapes for cutting or drilling parts,
and so on.

®  Simulation and animation for scientific visualization and entertainment. Computer-
produced animated movies and displays of the time-varying behavior of real and simulated
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gray-scale or color systems. These techniques specify gradations in intensity of neighboring
pixels at edges of primitives, rather than setting pixels to maximum or zero intensity only;
see Chapters 3, 14, and 19 for further discussion of this important topic.

1.5.2 Input Technology

Input technology has also improved greatly over the years. The clumsy, fragile light pen of
vector systems has been replaced by the ubiquitous mouse (first developed by office-
automation pioneer Doug Engelbart in the mid-sixties [ENGE68]), the data tablet, and the
transparent, touch-sensitive panel mounted on the screen. Even fancier input devices that
supply not just (x, y) locations on the screen, but also 3D and even higher-dimensional input
values (degrees of freedom), are becoming common, as discussed in Chapter 8. Audio
communication also has exciting potential, since it allows hands-free input and natural
output of simple instructions, feedback, and so on. With the standard input devices, the
user can specify operations or picture components by typing or drawing new information or
by pointing to existing information on the screen. These interactions require no knowledge
of programming and only a little keyboard use: The user makes choices simply by selecting
menu buttons or icons, answers questions by checking options or typing a few characters in
a form, places copies of predefined symbols on the screen, draws by indicating consecutive
endpoints to be connected by straight lines or interpolated by smooth curves, paints by
moving the cursor over the screen, and fills closed areas bounded by polygons or paint
contours with shades of gray, colors, or various patterns.

1.5.3 Software Portability and Graphics Standards

Steady advances in hardware technology have thus made possible the evolution of graphics
displays from one-of-a-kind special output devices to the standard human interface to the
computer. We may well wonder whether software has kept pace. For example, to what
extent have early difficulties with overly complex, cumbersome, and expensive graphics
systems and application software been resolved? Many of these difficulties arose from the
primitive graphics software that was available, and in general there has been a long, slow
process of maturation in such software. We have moved from low-level, device-dependent
packages supplied by manufacturers for their particular display devices to higher-level,
device-independent packages. These packages can drive a wide variety of display devices,
from laser printers and plotters to film recorders and high-performance real-time displays.
The main purpose of using a device-independent package in conjunction with a high-level
programming language is to promote application-program portability. This portability is
provided in much the same way as a high-level, machine-independent language (such as
FORTRAN, Pascal, or C) provides portability: by isolating the programmer from most
machine peculiarities and providing language features readily implemented on a broad
range of processors. “‘Programmer portability’’ is also enhanced in that programmers can
now move from system to system, or even from installation to installation, and find familiar
software.

A general awareness of the need for standards in such device-independent graphics
packages arose in the mid-seventies and culminated in a specification for a 3D Core
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graphics processor with a separate pixmap is introduced, and a wide range of graphics-
processor functionalities is discussed in Section 4.3.3. Section 4.3.4 discusses ways in
which the pixmap can be integrated back into the CPU’s address space, given the existence

of a graphics processor,

4.3.1 Simple Raster Display System

The simplest and most common raster display system organization is shown in Fig. 4.18.
The relation between memory and the CPU is exactly the same as in a nongraphics
computer system. However, a portion of the memory also serves as the pixmap. The video
controller displays the image defined in the frame buffer, accessing the memory through a
separate access port as often as the raster-scan rate dictates. In many systems, a fixed
portion of memory is permanently allocated to the frame buffer, whereas some systems
have several interchangeable memory areas (sometimes called pages in the personal-
computer world). Yet other systems can designate (via a register) any part of memory for the
frame buffer. In this case, the system may be organized as shown in Fig. 4.19, or the entire
system memory may be dual-ported.

The application program and graphics subroutine package share the system memory
and are executed by the CPU. The graphics package includes scan-conversion procedures,
so that when the application program calls, say, SRGP_lineCoord (x/, yl/, x2, y2), the
graphics package can set the appropriate pixels in the frame buffer (details on scan-
conversion procedures were given in Chapter 3). Because the frame buffer is in the address
space of the CPU, the graphics package can easily access it to set pixels and to implement
the PixBlt instructions described in Chapter 2.

The video controller cycles through the frame buffer, one scan line at a time, typically
60 times per second. Memory reference addresses are generated in synchrony with the
raster scan, and the contents of the memory are used to control the CRT beam’s intensity or

CPU Peripheral
devices

Fig. 4.18 A common raster display system architecture. A dedicated portion of the
system memory is dual-ported, so that it can be accessed directly by the video
controller, without the system bus being tied up.
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Fig. 4.19 A simple raster display system architecture. Because the frame buffer may
be stored anywhere in system memory, the video controller accesses the memory via
the system bus.

color. The video controller is organized as shown in Fig. 4.20. The raster-scan generator
produces deflection signals that generate the raster scan; it also controls the X and Y address
registers, which in turn define the memory location to be accessed next.
Assume that the frame buffer is addressed in x from 0 to x,, and in y from 0 to y,;
then, at the start of a refresh cycle, the X address register is set to zero and the Y register is
set to y,,, (the top scan line). As the first scan line is generated, the X address is
incremented up through x,_.. Each pixel value is fetched and is used to control the intensity
of the CRT beam. After the first scan line, the X address is reset to zero and the Y address is
decremented by one. The process continues until the last scan line (y = 0) is generated.

Set or decrement

Data Intensity

Fig. 4.20 Logical organization of the video controller.

Horizontal
and vertical
deflection
signals
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At the rask level, we might compare interaction techniques using different devices for
the same task. Thus, we might assert that experienced users can often enter commands
more quickly via function keys or a keyboard than via menu selection, or that users can pick
displayed objects more quickly using a mouse than they can using a joystick or cursor
control keys.

At the dialogue level, we consider not just individual interaction tasks, but also
sequences of such tasks. Hand movements between devices take time: Although the
positioning task is generally faster with a mouse than with cursor-control keys, cursor-
control keys may be faster than a mouse if the user’s hands are already on the keyboard and
will need to be on the keyboard for the next task in sequence after the cursor is repositioned.
Dialogue-level issues are discussed in Chapter 9, where we deal with constructing complete
user interfaces from the building blocks introduced in this chapter. Much confusion can be
avoided when we think about devices if we keep these three levels in mind.

Important considerations at the device level, discussed in this section, are the device
footprints (the foorprint of a piece of equipment is the work area it occupies), operator
fatigue, and device resolution. Other important device issues—such as cost, reliability, and
maintainability—change too quickly with technological innovation to be discussed here.
Also omitted are the details of connecting devices to computers; by far the most common
means is the serial asynchronous RS-232 terminal interface, generally making interfacing
quite simple.

8.1.1 Locator Devices

It is useful to classify locator devices according to three independent characteristics:
absolute or relative, direct or indirect, and discrete or continuous.

Absolute devices, such as a data tablet or touch panel, have a frame of reference, or
origin, and report positions with respect to that origin. Relative devices—such as mice,
trackballs, and velocity-control joysticks—have no absolute origin and report only changes
from their former position. A relative device can be used to specify an arbitrarily large
change in position: A user can move a mouse along the desk top, lift it up and place it back
at its initial starting position, and move it again. A data tablet can be piogrammed to behave
as a relative device: The first (x, y) coordinate position read after the pen goc from **far’’ to
“‘near’’ state (i.e., close to the tablet) is subtracted from all subsequently read coordinates
to yield only the change in x and y, which is added to the previous (x, y) position. This
process is continued until the pen again goes to “*far’” state.

Relative devices cannot be used readily for digitizing drawings, whereas absolute
devices can be. The advantage of a relative device is that the application program can
reposition the cursor anywhere on the screen.

With a direct device—such as a light pen or touch screen—the user points directly at
the screen with a finger or surrogate finger; with an indirect device—such as a tablet,
mouse, or joystick—the user moves a cursor on the screen using a device not on the screen.
New forms of eye-hand coordination must be learned for the latter; the proliferation of
computer games in homes and arcades, however, is creating an environment in which many
casual computer users have already learned these skills. However, direct pointing can cause
arm fatigue, especially among casual users.
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Fig. 8.8 A menu within a scrolling window. The user controls scrolling by selecting the
up and down arrows or by dragging the square in the scroll bar.

to be paged or scrolled through. A scroll bar of the type used in many window managers
allows all the relevant scrolling and paging commands to be presented in a concise way. A
fast keyboard-oriented alternative to pointing at the scrolling commands can also be
provided; for instance, the arrow keys can be used to scroll the window, and the shift key
can be combined with the arrow keys to move the selection within the visible window, as
shown in Fig. 8.8. In the limit, the size of the window can be reduced to a single menu
item, yielding a **slot-machine’” menu of the type shown in Fig. 8.9.

With a hierarchical menu, the user first selects from the choice set at the top of the
hierarchy, which causes a second choice set to be available. The process is repeated until a
leaf node (i.e., an element of the choice set itself) of the hierarchy tree is selected. As with
hierarchical object selection, navigation mechanisms need to be provided so that the user
can go back up the hierarchy if an incorrect subtree was selected. Visual feedback to give
the user some sense of place within the hierarchy is also needed.

Menu hierarchies can be presented in several ways. Of course, successive levels of the
hierarchy can replace one another on the display as further choices are made, but this does
not give the user much sense of position within the hierarchy. The cascading hierarchy, as
depicted in Fig. 8.10, is more attractive. Enough of each menu must be revealed that the
complete highlighted selection path is visible, and some means must be used to indicate
whether a menu item is a leaf node or is the name of a lower-level menu (in the figure, the
right-pointing arrow fills this role). Another arrangement is to show just the name of each

Current Menu ltem <

%
( Accept ) { Cancel )

Fig. 8.9 A small menu-selection window. Only one menu item appears at a time. The
scroll arrows are used to change the current menu item, which is selected when the
Accept button is chosen.
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Fig. 8.10 A pop-up hierarchical menu. (a) The first menu appears where the cursor is,
in response to a button-down action. The cursor can be moved up and down to select
the desired typeface. (b) The cursor is then moved to the right to bring up the second
menu. (c) The process is repeated for the third menu.

selection made thus far in traversing down the hierarchy, plus all the selections available at
the current level.

A panel hierarchy is another way to depict a hierarchy, as shown in Fig. 8.11; it takes
up somewhat more room than the cascading hierarchy. If the hierarchy is not too large, an
explicit tree showing the entire hierarchy can also be displayed.

When we design a hierarchical menu, the issue of depth versus breadth is always
present. Snowberry et al. [SNOWE3] found experimentally that selection time and accuracy
improve when broader menus with fewer levels of selection are used. Similar results are
reported by Landauer and Nachbar [LANDSS] and by other researchers. However, these

Famvuily [ I'ypeiace

Fig. 8.11 A hierarchical-selection menu. The leftmost column represents the top level;
the children of the selected item in this column are shown in the next column; and so on.
If there is no selected item, then the columns to the right are blank. (Courtesy of NeXT,
Inc. © 1989 NeXT, Inc.)
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maintaining visual continuity. An attractive feature in pop-up menus is to highlight initially
the most recently made selection from the choice set if the most recently selected item is
more likely to be selected a second time than is another item, positioning the menu so the
cursor is on that item. Alternatively, if the menu is ordered by frequency of use, the most
frequently used command can be highlighted initially and should also be in the middle (not
at the top) of the menu, to minimize cursor movements in selecting other items.

Pop-up and other appearing menus conserve precious screen space—one of the
user-interface designer’s most valuable commodities. Their use is facilitated by a fast
RasterOp instruction, as discussed in Chapters 2 and 19.

Pop-up menus often can be context-sensitive. In several window-manager systems, if
the cursor is in the window banner (the top heading of the window), commands involving
window manipulation appear in the menu; if the cursor is in the window proper, commands
concerning the application itself appear (which commands appear can depend on the type of
object under the cursor); otherwise, commands for creating new windows appear in the
menu. This context-sensitivity may initially be confusing to the novice, but is powerful once
understood.

Unlike pop-up menus, pull-down and pull-out menus are anchored in a menu bar along
an edge of the screen. The Apple Macintosh, Microsoft Windows, and Microsoft
Presentation Manager all use pull-down menus. Macintosh menus, shown in Fig 8.13, also
illustrate accelerator keys and context sensitivity. Pull-out menus, an alternative to
pull-down menus, are shown in Fig. 8.14. Both types of menus have a two-level hierarchy:
The menu bar is the first level, and the pull-down or pull-out menu is the second. Pull-down
and pull-out menus can be activated explicitly or implicitly. In explicit activation, a button
depression, once the cursor is in the menu bar, makes the second-level menu appear; the
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Fig. 8.13 A Macintosh pull-down menu. The last menu item is gray rather than black,
indicating that it is currently not available for selection (the currently selected object, an
arc, does not have corners to be rounded). The Undo command is also gray, because
the previously executed command cannot be undone. Abbreviations are accelerator
keys for power users. (Copyright 1988 Claris Corporation. All rights reserved.)
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Fig. 8.39 Line surrounded by a gravity field, to aid picking points on the line: If the
cursor falls within the field, it is snapped to the line.

8.3.3 Dynamic Manipulation

It is not sufficient to create lines, rectangles, and so on. In many situations, the user must be
able to modify previously created geometric entities.

Dragging moves a selected symbol from one position to another under control of a
cursor, as in Fig. 8.40. A button-down action typically starts the dragging (in some cases,
the button-down is also used 10 select the symbol under the cursor to be dragged); then, a
button-up freezes the symbol in place, so that further movements of the cursor have no
effect on it. This button-down—drag-button-up sequence is often called click-and-drag
interaction.

Dynamic rotation of an object can be done in a similar way, except that we must be able
to identify the point or axis about which the rotation is to occur. A convenient strategy is (o
have the system show the current center of rotation and to allow the user to modify it as
desired. Figure 8.41 shows one such scenario. Note that the same approach can be used for
scaling, with the center of scaling, rather than that of rotation, being specified by the user.

The concept of handles is useful to provide scaling of an object, without making the
user think explicitly about where the center of scaling is. Figure 8.42 shows an object with
eight handles, which are displayed as small squares at the corners and on the sides of the
imaginary box surrounding the object. The user selects one of the handles and drags it to
scale the object. If the handle is on a corner, then the corner diagonally opposite is locked in
place. If the handle is in the middle of a side, then the opposite side is locked in place.

Position cursor over Symbol is
mnbamm 1o acki Wmm synmollodmhm

Fig. 8.40 Dragging a symbol into a new position.
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Fig. 8.41 Dynamic rotation.

When this technique is integrated into a complete user interface, the handles appear only
when the object is selected to be operated on. Handles are also a unique visual code to
indicate that an object is selected, since other visual codings (e.g., line thickness, dashed
lines, or changed intensity) might also be used as part of the drawing itself. (Blinking is
another unique visual code, but tends to be distracting and annoying.)

Button actions on this Button actions on this
withwr:ntm handle move only handie move only
handies to appear right side of rectangle corner of rectangle

Fig. 8.42 Handles used to reshape objects.
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Dialogue
Design

We have described the fundamental building blocks from which the interface to an
interactive graphics system is crafted—interaction devices, techniques, and tasks. Let us
now consider how to assemble these building blocks into a usable and pleasing form.
User-interface design is still at least partly an art, not a science, and thus some of what we
offer is an attitude toward the design of interactive systems, and some specific dos and
don’ts that, if applied creatively, can help to focus attention on the human factors, also
called the ergonomics, of an interactive system.

The key goals in user-interface design are increase in speed of learning, and in speed of
use, reduction of error rate, encouragement of rapid recall of how to use the interface, and
increase in attractiveness to potential users and buyers.

Speed of learning concerns how long a new user takes to achieve a given proficiency
with a system. It is especially important for systems that are to be used infrequently by any
one individual: Users are generally unwilling to spend hours learning a system that they will
use for just minutes a week!

Speed of use concerns how long an experienced user requires to perform some specific
task with a system. It is critical when a person is to use a system repeatedly for a significant
amount of time.

The error rate measures the number of user errors per interaction. The error rate affects
both speed of learning and speed of use; if it is easy to make mistakes with the system,
learning takes longer and speed of use is reduced because the user must correct any
mistakes. However, error rate must be a separate design objective for applications in which
even one error is unacceptable—for example, air-traffic control, nuclear-power-plant

391
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control, and strategic military command and control systems. Such systems often trade off
some speed of use for a lower error rate.

Rapid recall of how to use the system is another distinct design objective, since a user
may be away from a system for weeks, and then return for casual or intensive use. The
system should *‘come back'" quickly to the user.

Antractiveness of the interface is a real marketplace concern. Of course, liking a system
or a feature is not necessarily the same as being facile with it. In numerous experiments
comparing two alternative designs, subjects state a strong preference for one design but
indeed perform faster with the other.

It is sometimes said that systems cannot be both easy to learn and fast to use. Although
there was certainly a time when this was often true, we have learned how to satisfy multiple
design objectives. The simplest and most common approach to combining speed of use and
ease of learning is to provide a ““starter kit"" of basic commands that are designed for the
beginning user, but are only a subset of the overall command set. This starter kit is made
available from menus, to facilitate case of learning. All the commands, both starter and
advanced, are available through the keyboard or function keys, to facilitate speed of use.
Some advanced commands are sometimes put in the menus also, typically at lower levels of
hierarchy, where they can be accessed by users who do not yet know their keyboard
equivalents.

We should recognize that speed of learning is a relative term. A system with 10
commands is faster to learn than is one with 100 commands, in that users will be able to
understand what each of the 10 commands does more quickly than they can what 100 do.
But if the application for which the interface is designed requires rich functionality, the 10
commands may have to be used in creative and imaginative ways that are difficult to learn,
whereas the 100 commands may map quite readily onto the needs of the application.

In the final analysis, meeting even one of these objectives is no mean task. There are
unfortunately few absolutes in user-interface design. Appropriate choices depend on many
different factors, including the design objectives, user characteristics, the environment of
use, available hardware and software resources, and budgets. It is especially important that
the user-interface designer’s ego be submerged, so that the user’s needs, not the designer’s,
are the driving factor. There is no room for a designer with quick, off-the-cuff answers,
Good design requires careful consideration of many issues and patience in testing
prototypes with real users.

9.1 THE FORM AND CONTENT OF USER-COMPUTER DIALOGUES

The concept of a user—computer dialogue is central to interactive system design, and there
are helpful analogies between user-computer and person—person dialogues. After all,
people have developed effective ways of communicating, and it makes sense to learn what
we can from these years of experience. Dialogues typically involve gestures and words: In
fact, people may have communicated with gestures, sounds, and images (cave pictures,
Egyptian hieroglyphics) even before phonetic languages were developed. Computer
graphics frees us from the limitations of purely verbal interactions with computers and
enables us to use images as an additional communication modality.
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For output, the notion of sequence includes spatial and temporal factors. Therefore,
output sequencing includes the 2D and 3D layout of a display, as well as any temporal
variation in the form of the display. The units of meaning in the output sequence, as in the
input sequence, cannot be further decomposed without loss of meaning; for example, a
transistor symbol has meaning for a circuit designer, whereas the individual lines making up
the symbol do not have meaning. The meanings are often conveyed graphically by symbols
and drawings, and can also be conveyed by sequences of characters.

The hardware binding design, also called the lexical design, is also part of the form of
an interface. The binding determines how input and output units of meaning are actually
formed from hardware primitives. The input primitives are whatever input devices are
available, and the output primitives are the shapes (such as lines and characters) and their
attributes (such as color and font) provided by the graphics subroutine package. Thus, for
input, hardware binding is the design or selection of interaction techniques, as discussed in
Chapter 8. For output, hardware binding design is the combining of display primitives and
attributes to form icons and other symbols.

To illustrate these ideas, let us consider a simple furniture-layout program. lts
conceptual design has as objects a room and different pieces of furniture. The relation
between the objects is that the room contains the furniture. The operations on the furniture
objects are Create, Delete, Move, Rotate, and Select; the operations on the room object are
Save and Restore. The functional design is the detailed elaboration of the meanings of these
relations and operations.

The sequence design might be to select first an object and then an operation on that
object. The hardware-binding component of the input language might be to use a mouse to
select commands from the menu, to select furniture objects, and to provide locations. The
sequence of the output design defines the screen arrangement, including its partitioning into
different areas and the exact placement of menus, prompts, and error messages. The
hardware-binding level of the output design includes the text font, the line thickness and
color, the color of filled regions, and the way in which output primitives are combined to
create the furniture symbols.

Section 9.2 discusses some of the fundamental forms a user interface can take; Section
9.3 presents a set of design guidelines that applies to all four design levels. In Section 9.4,
we present issues specific to input sequencing and binding; in Section 9.5, we describe
visual design rules for output sequencing and binding. Section 9.6 outlines an overall
methodology for user-interface design.

9.2 USER-INTERFACE STYLES

Three common styles for user—computer interfaces are what you see is what you get, direct
manipulation, and iconic. In this section, we discuss each of these related but distinct ideas,
considering their applicability, their advantages and disadvantages, and their relation to one
another. There is also a brief discussion of other styles of user—computer interaction: menu
selection, command languages, natural-language dialogue, and question—answer dialogue.
These are not emphasized, because they are not unique to graphics. (Menus are the closest,
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but their use certainly predates graphics. Graphics does, however, permit use of icons rather
than of text as menu elements, and provides richer possibilites for text typefaces and fonts
and for menu decorations.) None of these styles are mutually exclusive; successful
interfaces often meld elements of several styles to meet design objectives not readily met by
one style alone.

9.2.1 What You See Is What You Get

What you see is what you get, or WYSIWYG (pronounced wiz-ee-wig), is fundamental to
interactive graphics. The representation with which the user interacts on the display in a
WYSIWYG interface is essentially the same as the image ultimately created by the
application. Most, but not all, interactive graphics applications have some WYSIWYG
component.

Many text editors (most assuredly a graphics application) have WYSIWYG interfaces.
Text that is to be printed in boldface characters is displayed in boldface characters. With a
non-WYSIWYG editor, the user sees control codes in the text. For example,

In this sentence, we show @b(bold), @i(italic), and @ub(underlined bold) text.
specifies the following hardcopy output:
In this sentence, we show bold, italic, and underlined bold text.
A non-WYSIWYG specification of a mathematical equation might be something like
@f(@i(u)@sub(max) — @i(u)@sub(min), @i(x)@sub(max) — @i(x)@sub(min))
to create the desired result

um_umin'
'x'll'hll_'xl'lin

In such non-WYSIWYG systems, users must translate between their mental image of
the desired results and the control codes. Confirmation that the control codes reproduce the
mental image is not given until the coded input is processed.

WYSIWYG has some drawbacks. Whenever the spatial and intensity or color
resolution of the screen differs from that of the hardcopy device, it is difficult to create an
exact match between the two. Chapter 13 discusses problems that arise in accurately
reproducing color. More important, some applications cannot be implemented with a pure
WYSIWYG interface. Consider first text processing, the most common WYSIWYG
application. Many text processors provide heading categories to define the visual
characteristics of chapter, section, subsection, and other headings. Thus, ‘‘heading type"’
is an object property that must be visually represented. But the heading type is not part of
the final hardcopy, and thus, by definition, cannot be part of the display either. There are
simple solutions, such as showing heading-type codes in the left margin of the display, but
they are counter to the WYSIWYG philosophy. It is for this reason that WYSIWYG is
sometimes called **what you see is all you get.”” As a second example, the robot arm in Fig.
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7.1 does not reveal the existence of hierarchical relationships between the robot’s body,
arms, and so on, and it certainly does not show these relationships. These examples are
intended not as indictments of WYSIWYG but rather as reminders of its limitations.

9.2.2 Direct Manipulation

A direct-manipulation user interface is one in which the objects, attributes, or relations that
can be operated on are represented visually; operations are invoked by actions performed on
the visual representations, typically using a mouse. That is, commands are not invoked
explicitly by such traditional means as menu selection or keyboarding; rather, the command
is implicit in the action on the visual representation. This representation may be text, such
as the name of an object or property, or a more general graphic image, such as an icon.
Later in this section, we discuss the circumstances under which textual and iconic forms of
visual representation are appropriate.

The Macintosh interface uses direct manipulation in part, as shown in Fig. 9.1. Disks
and files are represented as icons. Dragging a file's icon from one disk to another copies the
file from one disk to the other; dragging to the trashcan icon deletes the file. In the earlier
Xerox Star, dragging a file to a printer icon printed the file. Shneiderman [SHNES83], who
coined the phrase ‘‘direct manipulation,”” discusses other examples of this technique.

Direct manipulation is sometimes presented as being the best user-interface style. It is
certainly quite powerful and is especially easy to learn. But the Macintosh interface can be
slow for experienced users in that they are forced to use direct manipulation when another

& File Edit View Special

Utilities
52K in folder

19 ttems 11353K available

S & &

Switcher Boot Configure Examing File

Fig. 9.1 The Macintosh screen. In the upper right is a disk icon; just below it is a
directory icon, which is gray-toned to indicate that it is open. At the left is the open
directory, with named icons representing the files within it. A file, represented by the
icon outline around the cursor, is being dragged to the trashcan at the lower right.
(Screen graphics © Apple Computer, Inc.)
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style would generally be faster. Printing the file *‘Chapter 9" with direct manipulation
requires the visual representation of the file to be found and selected, then the Print
command is involved. Finding the file icon might involve scrolling through a large
collection of icons. If the user knows the name of the file, typing “*Print Chapter 9" is
faster. Similarly, deleting all files of type *‘txt’’ requires finding and selecting each such file
and dragging it to a trash can. Much faster is the UNIX-style command “‘rm *.txt"", which
uses the wild card * to find all files whose names end in **.txt.””

An interface combining direct manipulation with command-language facilities can be
faster to use than is one depending solely on direct manipulation. Note that direct
manipulation encourages the use of longer, more descriptive names, and this tends to offset
some of the speed gained from using typed commands. Some applications, such as
programming, do not lend themselves to direct manipulation [HUTC86], except for simple
introductory flowchart-oriented learning or for those constructs that in specialized cases can
be demonstrated by example [MAULS9; MYERS6].

Direct-manipulation interfaces typically incorporate other interface styles, usually
commands invoked with menus or the keyboard. For instance, in most drafting programs,
the user rotates an object with a command, not simply by pointing at it, grabbing a handle
(as in Section 8.3.3), and rotating the handle. Indeed, it is often difficult to construct an
interface in which all commands have direct-manipulation actions. This reinforces the point
that a single interaction style may not be sufficient for a user interface: Mixing several styles
is often better than is adhering slavishly to one style.

The form fill-in user interface is another type of direct manipulation. Here a form is
filled in by pointing at a field and then typing, or by selecting from a list (a selection set)
one of several possible values for the field. The limited functional domain of form fill-in
and its obvious correspondence to filling in real forms makes direct manipulation a natural
choice.

WYSIWYG and direct manipulation are separate and distinct concepts. For instance,
the textual representation of a graphics image can be modified via direct manipulation, and
the graphical image of a WYSIWYG system can be modified purely by a command-
language interface. Especially when used together, however, the two concepts are powerful,
easy to learn, and reasonably fast to use, as many successful user interfaces have
demonstrated.

9.2.3 Iconic User Interfaces

An icon is a pictorial representation of an object, an action, a property, or some other
concept. The user-interface designer often has the choice of using icons or words to
represent such concepts. Note that the use of icons is not related to the direct-manipulation
issue: Text can be directly manipulated just as well as icons can, and text can represent
concepts, sometimes better than icons can.

Which is better, text or icons? As with most user-interface design questions, the answer
is, “‘it depends.’" Icons have many advantages. Well-designed icons can be recognized more
quickly than can words, and may also take less screen space. If carefully designed, icons
can be language-independent, allowing an interface to be used in different countries.

o
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Fig. 9.2 Icons used to represent common office objects.

Icon design has at least three separate goals, whose importance depends on the specific
application at hand:

1. Recognition—how quickly and accurately the meaning of the icon can be recognized
2. Remembering—how well the icon’s meaning can be remembered once learned
3. Discrimination—how well one icon can be distinguished from another.

See [BEWLS83] for a report on experiments with several alternative icon designs; see
[HEMES2; MARCB84] for further discussion of icon-design issues.

Icons that represent objects can be designed relatively easily; Fig. 9.2 shows a
collection of such icons from various programs. Properties of objects can also be
represented easily if each of their values can be given an appropriate visual representation.
This certainly can be done for the properties used in interactive graphics editors, such as
line thickness, texture, and font. Numeric values can be represented with a gauge or dial
icon, as in Fig. 8.21.

Actions on objects (that is, commands) can also be represented by icons. There are
several design strategies for doing this. First, the command icon can represent the object
used in the real world to perform the action. Thus, scissors can be used for Cut, a brush for
Paste, and a magnifying glass for Zoom. Figure 9.3 shows a collection of such command
icons. These icons are potentially difficult to learn, since the user must first recognize what
the icon is, then understand what the object represented does. This two-step understanding
process is inherently less desirable than is the one-step process of merely recognizing what
object an icon represents. To complicate matters further, suppose that the object might be
used for several different actions. A brush, for example, can be used for spreading paste (to

Paint bucket for Pencil for drawing lines
& area fill (?
ay can for painti Eraser for deletion
@ vs:rﬁrh dot pattern - &
Brush for painti Pointer for selecting
.6 solid area e * objects

Fig. 9.3 Command icons representing objects used to perform the corresponding
command. (Copyright 1988 Claris Corporation. All rights reserved.)
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Fig. 9.4 Command icons indicating geo- Fig. 9.5 Several abstract command
metric transformations by showing a icons for some of the actions depicted
square before and after the commands are in Fig. 9.4. Not all geometric operations
applied. can be represented in this way.

paste something in place), and also for spreading paint (to color something). If both Paste
and Paint could reasonably be commands in the same application, the brush icon could be
ambiguous. Of course, sometimes only one interpretation will make sense for a given
application.

Another design strategy for command icons is to show the command’s before and after
effects, as in Fig. 9.4 and Color Plates 1.19-1.21. This works well if the representations for
the object (or objects) are compact. If the command can operate on many different types of
objects, however, then the specific object represented in the icon can mislead the user into
thinking that the command is less general than it really is.

The NeXT user interface, implemented on a two-bit-per-pixel display, uses icons for a
variety of purposes, as seen in Color Plate 1.22.

A final design approach is to find a more abstract representation for the action. Typical
examples are shown in Fig. 9.5. These representations can depend on some cultural-specific
concept, such as the octagonal stop-sign silhouette, or can be more generic, such as X for
Delete.

E;*”%*\é%@

(f)
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Fig. 9.6 Icons that represent Macintosh programs. What does each icon represent? In
most cases, the icons suggest the type of information that is operated on or created.
See Exercise 9.14 for the answers.
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Fig. 9.7 The contents of a disk directory represented with icons and text. The icons
help to distinguish one file from another. (Certain screen graphics @ Apple Computer,
Inc.) '

Arbitrarily designed icons are not necessarily especially recognizable. Figure 9.6
shows a large number of icons used to represent Macintosh programs. We challenge you to
guess what each program does! However, once learned, these icons seem to function
reasonably well for remembering and discrimination.

Many visual interfaces to operating systems use icons to discriminate among files used
by different application programs. All files created by an application share the same icon. If
a directory or disk contains many different types of files, then the discrimination allowed by
the icon shapes is useful (see Fig. 9.7). If all the files are of the same type, however, this
discrimination is of no use whatsoever (see Fig. 9.8).

Icons can be poorly used. Some users dislike icons such as the trashcan, contending
that such ideas are juvenile, “‘cute,”” and beneath their dignity. The designer may or may
not agree with such an evaluation, but the user’s opinion is usually more important than is

EJS===== Chapter 7 ===o=—01}3|

S5 items 11439 in disk TS81K available
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Fig. 9.8 The contents of a disk directory represented with icons and text. Since the
files are all of the same type, the icons do not help to distinguish one file from another,
and simply take up extra space. (Computer screen graphics @ Apple Computer, Inc.)
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of error recovery: for instance, the position of an object being dragged into place is easy to
change.

9.3.5 Accommodate Multiple Skill Levels

Many interactive graphics systems must be designed for a spectrum of users, ranging from
the completely new and inexperienced user through the user who has worked with the
system for thousands of hours. Methods of making a system usable at all skill levels are
accelerators, prompts, help, extensibility, and hiding complexity.

New users normally are most comfortable with menus, forms, and other dialogue styles
that provide considerable prompting, because this prompting tells them what to do and
facilitates learning. More experienced users, however, place more value on speed of use,
which requires use of function keys and keyboard commands. Fast interaction techniques
that replace slower ones are called accelerators. Typical accelerators, such as one-letter
commands to supplement mouse-based menu selection, have been illustrated in previous
sections. The Sapphire window manager [MYERS84], taking this idea even further,
provides three rather than two ways to invoke some commands: pointing at different areas of
the window banner and clicking different mouse buttons, a standard pop-up menu, and
keyboard commands.

The Macintosh uses accelerators for some menu commands, as was shown in Fig.
8.13. Another approach is to number menu commands, so that a number can be typed from
the keyboard, or a command can be selected with the cursor, Alternatively, the command
name or abbreviation could be typed.

One of the fastest accelerators is the use of multiple clicks on a mouse button. For
instance, the Macintosh user can select a file (represented as an icon) by clicking the mouse
button with the cursor on the icon. Opening the file, the typical next step, can be done with
a menu selection, an accelerator key, or an immediate second button click. The two rapid
clicks are considerably faster than is either of the other two methods. From within
applications, another scheme is used to open files, as illustrated in Fig. 9.14. The dialogue
box permits a file name to be selected either by pointing or by typing. If the name is typed,

Select a Document:
Chapter 9

0O Chap 9 - Human. | i 107K available

0O Chap 9 color plates |

D Chap 9 Fig Coptions | i (Eject]) |
0O Chap 9 TOC o el (Dn ‘
0 Chapter 9 very old o (Concet) : ( )

0 Ewercise for Chap 9 [ Read Only

Fig. 9.14 Opening files from within a Macintosh program. The user enters the Open
command, either by menu selection or with a two-key chord, causing the dialogue box
to appear. The highlighted file can be opened with the “open’’ button or with the
carriage-return key. The user can highlight a new file by selecting it with the cursor or by
typing some or all of its name. Therefore, the user can open a file using only the
keyboard, by entering the two-key chord, a partial file name, and the return key.
{Computer screen graphics © Apple Computer, Inc.)
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The general concept of factoring is important for several reasons. First, new users do
not need to be concerned with factored parameters that have default values, which improves
learning speed. Values for factored parameters do not need to be specified unless the current
values are unacceptable, which improves speed of use. Factoring out the object from the
command creates the concept of a CSO, a natural one for interactive graphics with its
pointing devices. Finally, factoring reduces or eliminates the short-term modes created by
prefix commands with multiple parameters. Factoring has been incorporated into a
user-interface design tool so that the designer can request that specific parameters be
factored; the necessary auxiliary command (Select_object) is introduced automatically
[FOLERY).

There are several variations on the CSO concept. First, when an object is created, it
does not need 1o become the CSO if there is already a CSO. Similarly, when the CSO is
deleted, some other object (the most recent CSO or an object close to the CSO) can become
the new CSO. In addition, a currently selected set (CSS) made of up several selected objects
can be used.

9.5 VISUAL DESIGN

The visual design of a user—computer interface affects both the user’s initial impression of
the interface and the system's longer-term usefulness. Visual design comprises all the
graphic elements of an interface, including overall screen layout, menu and form design, use
of color, information codings, and placement of individual units of information with
respect 1o one another. Good visual design strives for clarity, consistency, and attractive

appearance.

9.5.1 Visual Clarity

If the meaning of an image is readily apparent to the viewer, we have visual clarity. An
important way (o achieve visual clarity is to use the visual organization of information to
reinforce and emphasize the underlying logical organization. There are just a few basic
visual-organization rules for accomplishing this end. Their use can have a major influence,
as some of the examples will show. These rules, which have been used by graphic designers
for centuries [MARCSO0], were codified by the Gestalt psychologist Wertheimer [WERT39]
in the 1930s. They describe how a viewer organizes individual visual stimuli into larger
overall forms (hence the term Gestalr, literally “*shape’ or *‘form,”” which denotes an
emphasis on the whole, rather than on the constituent parts).

The visual-organization rules concern similarity, proximity, closure, and good
continuation. The rule of similarity states that two visual stimuli that have a common
property are seen as belonging together. Likewise, the rule of proximiry states that two
visual stimuli that are close to each other are seen as belonging together. The rule of closure
says that, if a set of stimuli almost encloses an area or could be interpreted as enclosing an
area, the viewer sees the area. The good-continuation rule states that, given a juncture of
lines, the viewer sees as continuous those lines that are smoothly connected.
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A MAJOR CATEGORY

A LESS MAJOR CATEGORY

AN EVEN LESS MAJOR CATEGORY
AN EVEN LESS MAJOR CATEGORY
THE LEAST MAJOR CATEGORY
THE LEAST MAJOR CATEGORY

AN EVEN LESS MAJOR CATEGORY

(a)

A MAJOR CATEGORY
A LESS MAJOR CATEGORY
An even less major category

An even less major category
The least major category
The least major category
An even less major category

(b)

A MAJOR CATEGORY
A LESS MAJOR CATEGORY
An even less major category
An even less major category
The least major category
The least major category
An even less major category

(c)

Fig. 9.19 Three designs presenting the same information. (a) The design uses no
visual reinforcement. (b) The design uses a hierarchy of typographical styles (all caps
boldface, all caps, caps and lowercase, smaller font caps and lowercase) to bond
together like elements by similarity. (c) The design adds indentation, another type of
similarity, further to bond together like elements.

When ignored or misused, the organization rules can give false visual cues and can
make the viewer infer the wrong logical organization. Figure 9.20 gives an example of false
visual cues and shows how to correct them with more vertical spacing and less horizontal
spacing. Figure 9.21(a) shows a similar situation.

Recall that the objective of using these principles is to achieve visual clarity by
reinforcing logical relationships. Other objectives in placing information are to minimize the
eye movements necessary as the user acquires the various units of information required for a
task, and fe minimize the hand movemenis required to mave a cursor between the parts of
the screen that must be accessed for a task. These objectives may be contradictory; the
designer's task is to find the best solution.
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Fig. 9.23 The graphic alphabet used in many Macintosh applications. The square
choice boxes indicate alternatives, of which several may be selected at once. The round
choice circles, called “'radio buttons,”” indicate mutually exclusive alternatives; only one
may be selected. The rounded-corner rectangles indicate actions that can be selected
with the mouse. In addition, the action surrounded by the bold border can be selected
with the return key on the keyboard. The rectangles indicate data fields that can be

edited. (& Apple Computer, Inc.)

9.14, 9.17, and 9.21 are examples of these dialogue boxes, and Fig. 9.23 shows their
graphic alphabet. Similarly, Fig. 9.24 shows the use of a small graphic alphabet to build
icons, and Fig. 9.25 shows a single-element graphic alphabet.

Consistency must be maintained among as well as within single images; a consistent set
of rules must be applied from one image to another. In coding, for example, it is
unacceptable for the meaning of dashed lines to change from one part of an application to
another. For placement consistency, keep the same information in the same relative position
from one image or screen to the next, so that the user can locate information more quickly.

9.5.4 Layout Principles

Individual elements of a screen not only must be carefully designed, but also, to work
together, must all be well placed in an overall context. Three basic layout rules are balance,

0 & 3z 8 w =
File Program Painting Text Chart Drawing
{on a grid)

(a)

@ @ & @

Paint Word-processing Charting Drawing
program program program program
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Fig. &24 (a) A graphics alphabet. (b) Ilcons formed by combining elements of the
alphabet.
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Fig. 9.25 Several different icons, all created from a single shape representing a
window.

gridding, and proportion. Figure 9.26 shows two different designs for the same screen.
Design (a) is balanced, nicely framing the center and drawing the eye to this area. Design
(b) is unbalanced, and unnecessarily draws the eye to the right side of the area. Design (b)
also has a slight irregularity in the upper right corner: the base lines of the scroll bar arrow
and the pointer icon are not quite aligned. The eye is needlessly drawn to such meaningless
discontinuities.

Figure 9.27 shows the benefits of using empty space between different areas, and also
illustrates the concept of gridding; in cases (b) and (c), the sides of the three areas are all
aligned on a grid, so there is a neatness, an aesthetic appeal, lacking in (a) and (d). Figure
9.28 further emphasizes the detrimental effects of not using a grid. [FEIN88] discusses an
expert system that generates and uses design grids.

Proportion deals with the size of rectangular areas that are laid out on a grid. Certain
ratios of the lengths of a rectangle’s two sides are more aesthetically pleasing than are
others, and have been used since Greco-Roman times. The ratios are those of the square,
which is 1:1; of the square root, 1:1.414; of the golden rectangle, 1:1.618; and of the
double square, 1:2. The double square is especially useful, because two horizontal double
squares can be placed next to a vertical double square to maintain a grid. These and other
design rules are discussed in [MARCB0; MARCS84; PARKSE].

EN=== untitled ' Untitled

Fig. 9.26 Two alternative screen designs. Design (a) is balanced; design (b) emphasiz-
es the right side. (Copyright 1988 Claris Corporation. All rights reserved.)



