
Micron Technology Inc. et al.
Ex. 1022, Cover-1

Microcomputer
Interfacing

HAROLD S. STONE
UNIVERSITY OF MASSACHUSETTS, AMHERST

..,~ ADDISON-WESLEY PUBLISHING COMPANY

READING, MASSACHUSETTS

MENLO PARK, CALIFORNIA

LONDON

AMSTERDAM

DON MILLS, ONTARIO

SYDNEY

Micron Technology Inc. et al.
Ex. 1022, Cover-2

This book is in the ADDISON-WESLEY SERIES IN ELECTRIC ENGINEERING

SPONSORING EDITOR: Tom Robbins

PRODUCTION EDITOR: Marilee Sorotskin

TEXT DESIGNER: Herb Caswell

ILLUSTRATOR: Jay's Publishers Service Inc.

COVER DESIGN AND ILLUSTRATOR: T. A. Philbrook

ART COORDINATOR: Joseph Vetere

PRODUCTION MANAGER: Sue Zom

PRODUCTION COORDINATOR: Helen Wythe

The text of this book was composed in Times Roman on a Mergenthaler 202 by Information
Sciences Corporation and was printed by R. R. Donnelley and Sons.

Library of Congress Cataloging in Publication Data

Stone, Harold S., 1938-

Microcomputing interfacing.

Bibliography: p.

1. Interface circuits.
I. Title. TK7868.158S76
ISBN 0-201-07403-6

2. Microcomputers-Circuits.
621.3819'5835 81-17619

AACRZ

Copyright © 1982 by Addison-Wesley Publishing Company, Inc.

All rights reserved. No part of this book may be reproduced, st~~ed in a retrieval system, or transmitted, in any
form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written
permission of the publisher. Printed in the United States of America. Printed simultaneously in Canada.

ISBN 0-201-07403-6
ABCDEFGIIDK-00-898765432

Micron Technology Inc. et al.
Ex. 1022, Cover-3

TO THE REVOLUTION

"The old order changeth, yielding place to new ... "
Alfred, Lord Tennyson

To see a world in a grain of sand
And a heaven in a wild flower,
Hold infinity in the palm of your hand
And eternity in an hour.

William Blake

Micron Technology Inc. et al.
Ex. 1022, Cover-4

INSTRUCTOR'S PREFACE

In decades to come historians will look back to the 70s and 80s as the era of the Com­
puter Revolution. Just as the Industrial Revolution marks the period when people learned
to harness energy to drive machinery, so the Computer Revolution marks the period when
people have learned to harness microelectronics for control and for information process­
ing. Within of a decade of its introduction, the microprocessor made an enormous impact
on the way we live and work. Who can recall the annoying difficulty of doing long divi­
sion by hand, to say nothing of such transcendental calculations as compound interest,
square roots, and trigonometry? Today's electronic calculator places all of these calcula­
tions at your fingertips at essentially zero cost. But the calculators of the early 70s were
only precursors of the innovations to come.

The microprocessor has spawned the personal computer, the small-business com­
puter, the word processor, the data communications network, the automotive computer,
and the intelligent telephone branch exchange. Yet this is still only a beginning. The
microprocessor has been used in instruments and appliances in place of mechanical or
discrete electric components. In such applications it yields lower cost, greater reliability,
and greater functionality than former designs. But the microprocessor also makes possible
a new technology that heretofore has not existed. In the laboratory, the logic analyzer is a
microprocessor-controlled oscilloscope that enables the engineer to capture and analyze
electronic waveforms in a manner that had never been possible before. In medicine, the
microprocessor has led to the CAT-scanner and the ultrasonic scanner that have dramati­
cally improved the ability to diagnose illnesses. In merchandising, the point-of-sales ter­
minal that reads product labels automatically provides greater control of inventory, as
well as faster, more accurate handling of sales. The microprocessor-controlled reading
machine that automatically scans printed text and speaks the words it sees aloud has
brought new vision to the blind. The main limitation on the innovative applications of
microprocessors today is not technological, but rather one of imagination and skill.

To help surmount the human limitation, this textbook is offered as one way to intro­
duce the student to basic principles of microprocessor technology. A primary goal is to in­
crease the pool of innovators. It is oriented to an undergraduate curriculum, and is ideally
suited for juniors and seniors in a Computer Engineering, Electrical Engineering, or Com­
puter Science program. A course based on this text will give the student a strong founda­
tion in techniques for connecting computers to peripherals and communications devices,
and in the methodology for programming the computer to control external devices in real
time.

The well-prepared reader has had instruction in hardware, software, electronics, and
mathematics. But the material presented here is modular so that an instructor can skip por-

v

Micron Technology Inc. et al.
Ex. 1022, p. v

vi Instructor's Preface

tions of the text that refer to topics that students at particular institutions will not yet have
mastered. A breakdown of the prerequisites is as follows:

1. All Chapters: The student should have some exposure to microprocessors and logic
design through such textbooks as Blakeslee (1979), Klingman (1977), Kraft and Toy
(1979), Krutz (1980), or Peatman (1977). This general type of textbook introdu~es
the student to the logic components, design techniques, and the structure of digital
computers. The student should be comfortable 'with assembly language, but need not
have extensive skills in this area. It is desirable for the student to have read such text­
books as Gear (1980) or Wakerly (1981) that cover assembly language for many dif­
ferent machines.

2. Chapter 2, Transmission Lines. Prior exposure to transmission-line theory is helpful
for Chapter 2, but not absolutely necessary. The chapter is self-contained in that all
background required to support the physical concepts is developed within the
chapter. In curricula in which the electronic aspects of interfacing have been omitted,
the instructor may choose to skip portions of Chapter 2 (grounding, shielding, and
transmission lines), Chapter 3 (bus interconnections), and Chapter 7 (magnetic­
recording techniques).

3. Chapter 7, Linear Systems. Some results and equations in this chapter are cited from
other sources rather than derived in the chapter. A student should know Laplace
transforms and transfer functions for full appreciation of this material. The exercises
require a knowledge of electronics as well. The material may be skipped at institu­
tions that teach microprocessor interfacing earlier than linear systems.

4. Chapter 9, High-Level Language Programming. The student should be familiar with
sorne high-level language such as Pascal, ALGOL, Ada, PL-I, FORTRAN, or
COBOL. The notation in the chapter is basically Pascal, but should be quite under­
standable for readers familiar with any of the first four languages cited here. Where
the only high-level language in the curriculum is FORTRAN or COBOL, before the
students read Chapter 9, the instructor may wish to incorporate a brief tutorial on a
block -structured language.

The presentation of material in the text is three-tiered. Each chapter contains

1. Basic principles.
2. Applications of the principles in present technology.
3. Specific examples of the use of the principles.

Principles are stressed by necessity. Principles tend to be the foundation of expertise.
They tend to change very slowly, if at all, over long periods of time. Details and specific
facts quickly become obsolete. In the microprocessor industry, new generations of
memory and microprocessors appear every two to three years. This means that details
taught to a sophomore will be obsolete by the time that sophomore graduates. A curricu­
lum must, therefore, rest on the principles that support the technology. The student must
master these first, and must learn to apply them. As the industry advances and the specific
details change, the student must be able to adapt to these new details without outside in-

Micron Technology Inc. et al.
Ex. 1022, p. vi

Instructor's Preface vii

struction. Therefore, a college curriculum should prepare the student for self-education in
the future. To do so requires a thorough foundation in basic principles.

The nine chapters in this text are more than sufficient for a semester course in micro­
processor interfacing. The instructor can easily select a subset of material to adapt the text
to any particular curriculum. Core material that should be in all curricula consists of

Chapter 1, basic microcomputer structure
Chapter 3, bus interconnections
Chapter 5, serial interfacing
Chapter 6, parallel interfacing
Chapter 9, software development

Curricula in which electronic design and logic design is stressed should add

Chapter 2, grounding, shielding, and transmission-line techniques
Chapter 4, memories

Curricula that stress the use of the microcomputer as a control element should incorporate

Chapter 7, magnetic-recording techniques
Chapter 8, CRT-controller design

Now let's tum to methods of instruction for the material. Lectures should be coupled
with a computer laboratory in which the student can perform simple interfacing experi­
ments including the development of elementary control software. The experimental la­
boratory in conjunction with the course should occupy roughly three hours per week and
should be followed later in the curriculum by one or more project-design laboratories de­
voted to microprocessor-based designs. The project-design laboratory gives the student an
opportunity to integrate information from many subject areas, such as interfacing tech­
niques, software development, and communications.

The experiments in the text are sufficient for a full semester of laboratory work. The
reason for an experimental orientation instead of a design orientation is that the informa­
tion is passed quickly and efficiently when the student does not have to design and debug
the bulk of the experimental apparatus. The student uses existing equipment and commer­
cially available boards to learn the principles of interfacing. The student exercises the
equipment through small digital project boards and simple interfacing software. By ob­
serving the behavior of the equipment on oscilloscopes and logic analyzers, the student
learns about such basic notions as noise reduction, electrical loading, timing, hysteresis,
handshaking, skew, etc. The experiments in a laboratory should demonstrate various
phenomena and should illustrate preferred approaches for dealing with fundamental prob­
lems. After completing the experimental lab, the student should be well prepared for sub­
sequent project-design labs.

It would be rather ironic in this age of high technology to approach microprocessor
education in a totally traditional form. This textbook is an example of a technology that is
centuries old. Obviously, the printed word is an effective way for presenting information
because it would not have survived to this day if it were not. But can we do better? In par-

Micron Technology Inc. et al.
Ex. 1022, p. vii

viii Instructor's Preface

ticular instances, new technology enables one person to do in one day what formerly took
four people to do in a week. Can new technology help the academic community educate
students more effectively and efficiently? The search for a better way has led this author
to develop an instructional syste~ for this course consisting of this text plus a set of color
video tapes. Tapes are produced by the Association for Media-Based Education for En­
gineers (AMCEE) at Georgia Institute of Technology in Atlanta, Georgia. The tap(;!s may
be ordered by writing to Addison-Wesley Publishing Company, Reading, MA 01867; At­
tention: Tom Robbins, Acquisitions Editor, Computer Engineering.

The instructional system is modular in that the text stands on its own and can be used
in the traditional ways. The tapes too are self-contained and can be used independently.
Together, the tapes and the text make up an instructional system that is far more effective
than either medium by itself.

To see how the two work together, consider the material on transmission lines in
Chapter 2. The student is told about reflections on transmission lines and how ~ermina­
tions can remove or reduce reflections. The student has to see this to appreciate the ideas
fully. Experiments illustrating the ideas are demonstrated on the video tapes. Because the
experiments show waveforms changing in time, and show them with their normal spikes
and jitter rather than as idealized waveforms, the student gains experience with the real
world rather than an artificial one. The key here is that there is information in the dynam­
ics of the video image as it changes in time. That information is lost when the image is
photographed or drafted as a figure in a textbook. When specific comparisons are made on
the videotape, the images appear in rapid succession so that the student can quickly grasp
what similarities and differences exist. The behavior of a phase-locked loop acquiring
phase lock appears vividly on video as a sudden change of frequency of a voltage­
controlled oscillator. The jitter in the oscillator at the threshold of acquisition is clearly
visible. How can this information be displayed in a textbook? For waveforms changing in
time, the video image is clearly superior to the printed image.

This author has often prepared classroom or laboratory demonstrations to illustrate
basic ideas. The effort involved in setting up a demonstration is considerable and notal­
ways successful. Some demonstrations work well on the bench, but fail when the equip­
ment is moved to the classroom. A probe may fall off, or a connection might not be tight,
or a noise "glitch" may cause the logic to latch in a failure mode. The experiments on the
video tape all work correctly. They were carefully set up and video taped in operation so
that the course instructor need not repeat the effort in the setup nor take the risk of the ex­
periment failing.

The video medium leads to a better presentation of the waveforms than does the ac­
tual physical equipment. The physical size of an oscilloscope or logic-analyzer display is
only 10 to 20 em square, which is too small for a classroom of 30 students. This forces the
instructor to set up the experiments in a laboratory and demonstrate them to small groups
of students so that each has an opportunity to study the principles being demonstrated.
Apart from the inefficiency of this method, it does not resolve the basic difficulty of
pointing to specific places on a small display screen. Pointing at the images is not very
effective because the instructor's hand tends to block large portions of the display from

Micron Technology Inc. et al.
Ex. 1022, p. viii

Instructor's Preface ix

view. However, the image of the same display on the video tapes is superior to the oscillo­
scope because the image is enlarged. Moreover, electronic superposition techniques per­
mit the instructor to point to and label the most highly detailed parts of a waveform with
no obstruction of view to other parts of the image. The video tapes relate the wavefmm to
a schematic by using zoom and pan to illustrate various regions of the schematic, with
those images juxtaposed between images of waveforms that appear at selected points on
the schematic. The information is presented at an extraordinarily fast pace compared with
classroom discussion, yet is easily comprehensible because of the way the video medium
is used to advantage. Should the student wish to review specific waveforms, it is a very
simple matter to rewind to the point of interest and play the material again. Consequently,
the video tapes are an extremely attractive solution to the laboratory demonstration prob­
lem. There is no setup overhead, the equipment is inexpensive, and video is more effec­
tive than the laboratory equipment itself for reaching large groups of people. The tapes,
like the text, are prepared in a modular fashion so th;1t the instructor can select specific
material to support lectures and laboratory work.

Because of rapid changes in microprocessors still to come, we anticipate future edi­
tions of the textbook and video tapes to be issued at regular intervals with new chapters
incorporated to cover various technological advances and to maintain a blend of basic
principles and current technology. To find out what new material or supplementary texts
are available, write to Tom Robbins at the address on page x.

Many people beside the author have made substantial contributions to the textbook
and video tapes: The author owes a deep debt of gratitude in particular to John Wakerly
for his timely and thoughtful comments throughout the project development. Other
manuscript reviewers have added their unique perspectives and have helped to create a
better textbook than the author could have done in their absence. Among the many re­
viewers were Jack Lipovski, Martha Sloan, Jacob Abraham, Ed Brockert, and Dominique
Thiebaut. 'fhrough John Fitch's skills in video production and direction, I was able to
develop the accompanying video-tape course, but he deserves the bulk of the credit for
showing the author the power of the medium and the techniques for tapping its unique
capabilities. Tom Robbins, the acquisitions editor for the project, maintained his
enthusiasm for the project from our very first phone conversation through the difficult
times of final book production. His management activities behind the scenes freed the au.,.
thor from many frivolous problems, and let the author focus his activity on the textbook
itself. Marilee Sorotskin's gift for the details of editing and consistency added materially
to the quality of the exposition. Finally, the dislc operating-system for the word processor
on which the book was developed was written by my wife, Jan Stone. Her support both as
a spouse and as a live-in systems programmer was extraordinary, and was a critical in­
gredient in the project development.

Amherst, Massachusetts
May1982

H.S.S.

Micron Technology Inc. et al.
Ex. 1022, p. ix

READER'S PREFACE

This book is intended for both the undergraduate and the professional reader. Undergradu­
ates should be majors in a computer engineering or enrolled in a computer science pro­
gram that has exposed them to logic design, assembly-language programming, and a
high-level language prior to using this textbook. The professional reader with training in
electrical engineering, computer science, or other technical areas is likely to have a sound
technical background but needs to brush up on microprocessor technology. This reader
will find it useful to browse through the book to learn the major subject areas discussed,
and then to concentrate on the unfamiliar material.

Topics are covered three different ways. Each chapter opens with a discussion of
basic principles, followed by methods for applying these principles. The chapters close
with detailed examples of the principles put to use. The principles are the foundations of
microprocessor technology and will continue to be as important in the next decade as they
are today. However, the devices available change rapidly as technology advances. The
processors, memories, and I/0 ports that a student learns about in a sophomore laboratory
are obsolete by the time student graduates. Only the principles remain relatively stable
within this time frame.

To put this textbook to best use, the reader should learn the principles first, then how
to apply them using current technology. The examples in the textbook illustrate practical
designs that use real devices available in 1982. Armed with detailed specifications of new
devices and with the basic information contained in this textbook, the reader should no
difficulty adapting to the most modem devices.

An essential part of the undergraduate learning experience is the experimental lab as­
sociated with the textbook. The experiments clarify the principles. Practice in applying
the principles can come in the experimental lab or in a later project-design laboratory.

The professional reader undoubtedly has had some laboratory experience. Although
having an experimental lab while reading is useful, it may not be necessary for those
readers who have older degrees in Computer Engineering or Computer Science and who
wish to use this book to bring themselves up to date. These readers should focus on very
specific topics. They will probably be able to absorb the material through reading without
conducting the lab experiments. Some readers may have sufficient equipment at their
disposal in their companies to be able to conduct selected·experiments where the experi­
ments are central to the learnivg process. Several demonstrations are available on color
video tapes and may be accessible to the professional through a company library or short­
course. In any case, the professional reader should have the experience and maturity to
recognize what topics in the textbook must be mastered and to devise a strategy for mas­
tering them.

X

Micron Technology Inc. et al.
Ex. 1022, p. x

Reader's Preface xi

There are several reader objectives that this book addresses. Readers who are or who
wish to become professional designers will find the material to be quite relevant to their
work. These readers need a thorough background in electronics and logic design in addi­
tion to the material taught in this text. Additional background in transmission lines (for
Chapter 2) and linear systems (for Chapter 7) may also be useful. Another group of
readers will be concerned with connecting microcomputers to I/0 devices or to other
microcomputers, and will probably use existing interfaces instead of designing new ones.
This group of readers should focus attention on Chapters I (microprocessor structures), 5
(serial interfacing), 6 (parallel interfacing), and 9 (software development). Chapter 2
(shielding, grounding, and transmission lines) may be helpful if the reader must specify
the physical connections between systems. Chapter 3 (bus interconnections) covers proto­
cols and timing questions that may also be important issues when configuring complex
systems.

Another reader of the textbook may be strong in software and relatively weak in elec­
tronics. A typical reader of this type may wish to control VO through software without
becoming expert in logic design. This reader will find Chapter 9 (software development)
especially illuminating, and will also find topics of interest in Chapters 1 (microprocessor
structures), 4 (memories and DMA), 5 (serial interfacing), 6 (parallel interfacing), 7
(magnetic-recording techniques), and 8 (CRT-controller design).

The color video tapes associated with the textbook are an extremely effective way of
observing the principles in action. We particularly recommend the tapes for readers who
have limited access to experimental equipment because they provide vivid demonstrations
of several of the more important experiments. The professional may find a short-course
environment with video tapes to be an effective means of learning the material, not only
as a way of observing experiments, but as an opportunity to raise and answer questions
through class discussions.

I am most interested in the readers' reactions to this textbook. The intended audience
is quite broad with diverse skills and backgrounds. Discussions that are over the head of
some readers may be too basic and trivial for others. Comments on the strengths and
weaknesses of the material in the context of its use are greatly appreciated and may
strongly influence future revisions of the material.

Amherst, Massachusetts
Mayl982

H.S.S.

Micron Technology Inc. et al.
Ex. 1022, p. xi

CONTENTS

xii

Instructor's Preface
Reader's Preface

1 Microcomputer Structures

v
X

1

1.1 Basic microcomputer structure 1
1.2 The memory interlace 6
1.3 The I/0 interlace 11

I/0 port structure and I/0 transactions 11
Interrupts 15
The interrupt interlace 19
Device identification 21
I/0 port addressing 23

1.4 The DMA interlace 25
1.5 I/0 strategy: Program-controlled versus interrupt -driven 28
1. 6 Memory and I/0 interfaces for typical microprocessors 31

History and background reading 39

2 Shielding, Grounding, and Transmission-Line
Techniques

2.1 Grounding and shielding
Shielding techniques
Balanced interconnections

2.2 Transmission-line techniques
Point-to-point transmission
Applications
Graphical methods

2.3 Putting the techniques into practice
Intra-board connections
Backplane connections
Board-to-board connections
Chassis-to-chassis connections

Other source material
Experiments
Problems

42

43
45
51
54
55
61
68
71
71
72
78
82

82
83
86

Micron Technology Inc. et al.
Ex. 1022, p. xii

Contents xiii

3 Bus Interconnections 88
3.1 Bus functions 88
3.2 The bus handshake 90

Synchronous buses 91
Asynchronous buses 95
Semisynchronous buses 98

3.3 Arbitration protocols 100
3.4 Asynchronous timing difficulties 107
3.5 Interrupt -request arbitration 109
3.6 Examples of existing bus protocols 110
3.7 Examples of bus arbitration 115
Other reading 121
Experiments 123
Problems 124

4 Memories 126

4.1 Types of memory 126
General characteristics of semiconductor memory 127
Static random-access memory (RAM) 134
Read-only memory (ROM) 134
Dynamic RAM 136

4.2 Memory systems 143
Arbitration policy 143
Synchronization 146

4.3 DMA controllers 148
4.4 Examples of DMA controllers 152

The i8257 DMA controller 152
The Am9517 DMA Controller 154
The MC6844 DMA controller 155

Other reading 157
Experiments 157

5 Serial Interfacing 161
5.1 Serial I/0 protocols 163
5.2 Asynchronous protocols 165

The RS-232-C interface 167
The 20-rnilliampere current interface 171
The RS-422, RS-423, and RS-449 interfaces 174

5.3 Synchronous interfaces 178
The BISYNC protocol 181
The IIDLC protocol 182

Micron Technology Inc. et al.
Ex. 1022, p. xiii

xiv Contents

5.4 Implementations of serial interfaces 185
Rise-time control for cross-talk reduction 185
Isolation 187
Flow control on serial1inks 190

5.5 Interface devices 192
Asynchronous interfacing with the MC6850 192
The BISYNC interface 194
The i8251 for asynchronous and synchronous links 194
HDLC interfacing 197

Other reading and source material 201
Experiments 202
Problems 204

6 Parallel Interfacing 206

6.1 Parallel port characteristics 207
Open-collector outputs 207
Tri-state outputs 212
Control lines 215

6.2 The IEEE-488 instrument bus 215
Functional description of the IEEE-488 bus 218

6.3 Integrated circuits for parallel interfaces 227
Interface chips for the IEEE-488 bus 233

Other reading and source material 240
Experiments 240
Problems 243

7 Magnetic-Recording Techniques 245

7.1 Tape interfaces 246
Principles of phase-locked loops 252
Example of an interface with a phase-locked loop 261

7.2 Magnetic-disk recording techniques 265
Disk-controller design 271
Examples of practical disk interfaces 276

Other reading and source material 289
Experiments 289
Problems 290

8 CRT -Controller Design 292

8.1 System description of a typical CRT controller 292
The controller software 295
Keyboard scanning 296
CRT timing considerations 300

Micron Technology Inc. et al.
Ex. 1022, p. xiv

Contents XV

8.2 The CRT-controller chip 304
The clocking and timing functions 305
Cursor functions 307
Scrolling 308
Other Controller Functions 309

8.3 A sampling of CRT -controller chips 310
A basic controller: The SMC 5027 310
The Intel8275 CRT controller 312
The Signetics 267X CRT chip set 313
A video display controller: The 6847/68047 315

Other reading and source material 317
Experiments 318

9 Software Development 320

9.1 Software development methodology 321
Top-down design and iterative refinement 321
An example: File merging 322
Translation to assembly language 327
Pragmatics of assembly language 333

9.2 Software for l/0 control 336
Coroutines: Structure and implementation 336
File filters: An application of coroutines 339
Coroutines for l/0 control 347
A detailed example of an l/0 controller 350

Other source material 362

Bibliography 363

Appendix A: The ASCII Code 368

Appendix B: The RS-232-C Standard 369

Appendix C: The RS-449 Standard 370

Appendix D: IEEE-4881nterface Messages 372

Index/ Glossary 373

Micron Technology Inc. et al.
Ex. 1022, p. xv

1 I MICROCOMPUTER STRUCTURES

This chapter reviews the general characteristics of microcomputer systems. We focus here
on the functional description of the major components and on the system structure. By
understanding these facets of microcomputers, we will be able to select among several al­
ternative approaches to interfacing and to work easily with both software and hardware to
put together complex systems. The functional descriptions in this chapter treat data and
control flow exclusively, and ignore specific details of timing and electronics. Later
chapters carefully delve into these details and should be sufficient to prepare the reader for
practical interface design. This chapter, like those that follow, opens with a general
description of the major concepts presented and ends with specific examples to illustrate
actual implementations of the concepts.

1.1 BASIC MICROCOMPUTER STRUCTURE

A very simple microcomputer system is composed of three types of modules typically
connected as shown in Fig. 1.1. The components are

1. a microprocessor, which contains the control logic and arithmetic unit of the system,
2. a memory, which holds programs and data, and
3. an input/output (VQ) system, which contains one or more pmis that connect to such

external devices as terminals, disks, printers, and communications modems.

Fig. l.l(a) shows a single bus system through which the memory and VO system com­
municate with the processor. In this system the processor is the master controller. It ini­
tiates all activity on the bus by issuing commands to the memory and I/0 systems. The
bus carries only one transaction at a time, s.o that commands are issued sequentially, one
at a time. The memory and VO syste]lls respond to the commands, but do not issue com­
mands in turn. If we monitor what happens on the bl.ls over a period of time, we see the
processor issuing a sequence of commands, with each command directed to a particular
port or memory cell. One type of command instructs the destination to accept data from
the processor, and the data from the processor accoqJ.panies the command. Another type
of command tells the destination to return data to the processor, and the destination replies
by sending the requested data back to the processor. So the flow of information is from the
processor to memory and VO, with flow in the reverse direction in response to processor
cbmmands.

A slightly different fUTangement is shown in Fig. l.l(b). Here the I/0 and memory
systems have independent paths to the processor rather than a shareq path as in Fig.

Micron Technology Inc. et al.
Ex. 1042, 1

2 Microcomputer Structures

Microprocessor

I I I
Microprocessor

I
Memory I/0

port
I/0 Memory
port

I I
External External
device device

(a) (b)

FIGURE 1.1 The basic structure of microcomputer: (a) One-path system; (b) two-path system.

1.1(a). Because the paths are separate and independent, two different transactions can be
active at the same time, one on each bus. That is, the processor can issue commands to
memory while simultaneously issuing commands to the I/0 system. This form of mi­
croprocessor has I/0 bus control embedded on a chip, together with other conventional
microprocessor functions.

The idea of embedding additional functions on chip, such as the ability to control I/0
and memory independently, has been carried much further than Fig. 1.1 (b) indicates. The
I/0 ports themselves have been integrated with the processor, so that a microprocessor
can be connected directly to external devices and does not need supporting I/O-port chips.
In addition, such processors often include a substantial amount of memory integrated with
the other functions on one chip. In this form, the microprocessor is truly a single-chip mi­
crocomputer, since it contains all of the functions shown in Fig. 1.1 (a).

In either of the systems shown in Fig. 1.1, the basic system behavior is the same. The
processor interaction with memory is typically a repetition of the sequence below:

1. Fetch an instruction from memory.
2. Execute the instruction, possibly reading data from or writing data to memory.

A special processor register, the program counter, controls which instruction to execute
next. The execution of each instruction modifies the program counter in a prescribed way,
so that when the processor has executed one instruction, the program counter has been up­
dated to indicate a new instruction to execute. The execution qf a single instruction, in
general, involves one or more additional bus transactions that depend on the instruction
executed. For example, the processor may read from or write to memory to exchange data

Micron Technology Inc. et al.
Ex. 1042, 2

1.1 Basic Microcomputer Structure 3

between internal registers and memory. For VO transactions the processor may obtain
status or data from an VO port or send instructions or data to a port. Even though the pro­
cessor performs no bus transactions during the execution phase of an instruction, the pro­
cessor may alter internal registers other than the program counter, which every instruction
updates. Figure 1.2 shows an instruction execution graphically, including the relative
timing of the memory transactions and the independent activity of the processor.

Processor

Request an
instruction

Update program
counter

Memory

READ

FIGURE 1.2 The time sequencing for
processor/memory interactions during the
execution of a single instruction.

The VO interface described thus far appears to behave much like a memory interface.
The processor can read data from and write data to memory or to the VO system using the
same type of interface for both memory and VO. Some computers have a shared common
bus for memory and VO, so for these computer systems the processor-memory interface is
essentially the same as the processor-VO interface. But VO is somewhat different from
memory because of timing and synchronization, in that an VO interface actually has a su­
perset of the memory-interface functions.

Memory cycles require a fixed maximum time, and memory responds to a processor
command within this fixed time. The VO system, however, has to control or sense events
external to the cpmputer whose timing is totally independent of the computer timing.
When a processor issues a command to an VO port to accept a datum from an outside
source, that datum can arrive at any time in the future (if it arrives at all), and the state of
the processor at the time of arrival is unpredictable. To deal with data moving to and from

Micron Technology Inc. et al.
Ex. 1042, 3

4 Microcomputer Structures

the external world, the processor needs to be able to synchronize its activities to the exter­
nal events. Most implementations support two general types of synchronization described
in more detail below. These are

1. interrupts, and
2. periodic status checking,

where interrupts are port-initiated and status checks are processor-initiated.
The I/0 subsystem synchronizes its activity to the processor when external events oc­

cur through a service request transmitted to the computer over the I/0 bus. This signal,
usually called an interrupt request, provides one means for I/0 synchronization. The
other way to synchronize is for the processor to interrogate the port for status information.
Port interrogation is normally an I/O-read transaction on the bus, and the port returns
status rather than data. Of course, if the port replies that no event has occurred, the pro­
cessor has to interrogate again. However, when a port signals an interrupt, the interrupt
signal is maintained as an active signal on an input pin of the microprocessor until it is ac­
knowledged by the processor; the processor does not have to issue periodic I/O-bus trans­
actions to read the interrupt signal.

Given this basic information concerning the function of major components in a mi­
crocomputer system, consider the structuring of a system to serve particular needs. Figure
1.1 has two different configurations of modules. Which of these is preferred and why?
Before trying to answer these questions, consider what kinds of answers are suitable.
Design problems have many different solutions. Sometimes there is no best solution, and
all solutions are compromises of one sort or another. In most cases, however, the best
solution depends on the application, and different approaches must be used for different
situations. Technology also plays a significant role in biasing design decisions. What is
best in 1980 will not necessarily be the best in 1990. What is rejected as infeasible in 1980
might be standard practice in 1990. The key to being able to make intelligent selections
from several alternatives is the ability to understand the options available, the require­
ments of the application, and the capabilities of current technology.

Returning to Fig. 1.1, we see the chief difference in the systems is whether there are
one or two data paths connected to the processor. The system with two data paths could
conceivably have simultaneous transactions on both paths and thus could be somewhat
faster than the one-path system. More logic is required to run two paths concurrently than
for a single path. Hence, the microprocessor in Fig. 1.1(b) may be somewhat more com­
plex than the one in Fig. l.l(a). Actually, because of the extra logic required to control
I/0 and memory concurrently on one chip, a microprocessor with two paths typically is
less complex in other respects. Technology limits the amount of logic that can be put on a
single chip; so that as complexity is added to enhance some particular functions, other
functions have to be abandoned. Only advances in technology permit a net increase in
chip complexity. Therefore, if we compare two systems configured as shown in Fig. 1.1
and using microprocessors of the same vintage, we would expect the processor with two
independent data paths to lack some of the facilities of the processor with only one data
path.

Micron Technology Inc. et al.
Ex. 1042, 4

1.1 Basic Microcomputer Structure 5

Memory DMA controller

FIGURE 1.3 A microcomputer with a direct memory-access controller.

There is another difference between the systems that is brought out more clearly by
Fig. 1.3. Here we see a separate module known as a direct memmy-access (DMA) con­
troller incorporated in the microcomputer system. The DMA controller can issue com­
mands to the memory that behave exactly like the commands issued by the processor. In
this sense, the DMA controller is a second processor in the system, but it is dedicated to
an 110 function. As shown in the figure, the DMA controller connects one or more 110
ports directly to memory so that data can be transferred between these ports and memory
without going through the processor, and with no direct program intervention. Instead,
the 110 data stream passes through the DMA controller, but much faster and more effi­
ciently than through the processor because the DMA channel is specialized to the data­
transfer task.

The system shown in Fig. 1.3 has but a single path to memory so that no more than
one memory transaction can be in progress at a time. Hence, when DMA is active, the
processor must be idle; and, conversely, DMA is idle when the processor is active. DMA
controllers are normally used for devices that transmit data in bursts, especially high­
speed bursts such as blocks of data stored on disks. These bursts are frequently of such
high-speed that no microprocessor can control the data transfers on a byte-by-byte basis
by executing instructions to process each successive byte.

The sole data path in Fig. l.l(a) can be used to support DMA transfers simply by
making one of the ports into a DMA channel, which in tum is connected to one or more
I/0 ports. The 110 ports in the two-path system in Fig. 1.1 (b), however, are connected to
the processor, and not to memory. Any port to be controlled by a DMA controller must be
connected to a DMA controller that has access to memory, as does the controller shown in
Fig. 1.3. Hence, one way to incorporate DMAintoFig. l.l(b) is to connect the DMAcon-

Micron Technology Inc. et al.
Ex. 1042, 5

6 Microcomputer Structures

troller between the memory bus and 1/0 bus. The controller then provides a direct path
from the 1/0 port to memory that can be used in place of the path through the processor.
However, a controller that bridges two buses is more complex and probably more costly
than the simpler one-bus controller shown in Fig. 1.3.

Returning to the questions concerning which configuration in Fig. 1.1 is better and
why, we conclude, on the one hand, that the one-path structure is less complex than the
other, and provides more readily for DMA. On the other hand, for non-DMA applica­
tions, the two-path system integrates some 1/0 functions on the processor chip, and
thereby may reduce the need for specific chips related to the I/O-bus interface. Moreover,
if the 1/0 bus can truly run concurrently with the memory bus and if both paths are kept
busy simultaneously, the two-bus organization has the higher performance. At the
present, microprocessors that have two-path capability tend to be designed for minimal
parts count, and are most heavily used in low-end applications. Communications control­
lers, data-acquisition systems, and disk-controllers are three typical applications that re­
quire a low-cost, high 1/0 performance microprocessor. The processor with on-chip 1/0
may be more satisfactory for these applications. For applications less sensitive to the cost
of a few 1/0 chips, the one-bus processor may be preferable, especially if the application
benefits from any additional computational functions that can be integrated in the proces­
sor, thus trading off the enhanced 1/0 functions inherent in the two-bus processor. Office
and small-business applications, as well as limited scientific applications tend to have
these characteristics and are candidates for the one-bus microprocessor.

In the future, decisions of this nature will be even more complex as new variations in
microprocessor architecture emerge. One current trend is to reduce many chips to one
chip. This is best exemplified by the single-chip computer that combines memory, 1/0,
and processor. Another trend is to provide for greater parallelism and independence of
operation -one product of which is the dual-processor chip that combines two indepen­
dent microprocessors. More changes of this type will come at what may be a bewildering
pace. This textbook should provide the reader enough basic principles and detailed infor­
mation to evaluate and use the evolving technology.

This completes our discussion of the gross details of the interactions among proces­
sors, memories, and 1/0 systems. The next sections expand on these interactions, provid­
ing more detail about the exchanged information. When we review real systems at the
end of this chapter, we will see various ways the functions and interactions have been im­
plemented. (Timing and other details required for logic design are left to later chapters.)

1.2 THE MEMORY INTERFACE

Conventional main-memory systems are random-access memories, often called RAM in
computer jargon. In these systems all data are stored in frxed-sized chunks called words,
and each word in memory has a unique address. Access to data is made by address; that is,
for each memory operation the processor supplies the address of the datum, and the ad­
dress uniquely determines where the access is to be made. Each memory operation takes a
fixed length of time, and is usually called a memory cycle. The term "random-access" in

Micron Technology Inc. et al.
Ex. 1042, 6

1.2 The Memory Interface 7

this context means that data can be accessed in arbitrary, random order and that the
access-time is, per cycle, a fixed constant independent of the sequence of items accessed.
A memory that is not a random-access memory has access times that depend on the se­
quence of accesses. For example, a magnetic tape can access the next item on the tape in
one tape READ operation, but hundreds or thousands of read operations are required to
access data on the tape in regions far from the present head location. Memory systems that
have the strictly sequential property of magnetic tapes are called sequential-access
memories.

Magnetic disks with movable heads have some sequential-like and some random-like
characteristics. The head can be moved to any track at random, but once the head is at a
desired track, data on the track are accessed sequentially. Actually, even the track-to­
track movement is not random-access. Track-to-track movement is sequential by track.
Remote tracks take longer to reach'than nearby tracks. Even though the time required to
move to a remote track may be considerable, the head movement of a disk is very much
faster than the delays suffered in such a purely sequential memory as a tape on which the
processor must access all data between the current head position and the final head posi­
tion. The moving-head disk is analogous to a phonograph, and head positioning
corresponds to moving the phonograph arm to a specific band of music. By moving the
arm to the desired band, you do not listen to the music skipped. Hence, moving-head
disks are typically viewed as quite different from sequential-access memory tapes. The
term direct-access memory is often applied to such disks to make this distinction.

Returning to the structure of random-access memory, we find each word is composed
of bits, and the number of bits per word is called the word length of memory. Accesses
between processor and memory exchange one word (or part of a word) at a time, but never
more than one word. Each memory transaction reads one word from or writes one word
into a given address, but does not operate on words at more than one address. When a pro­
cessor must access a block of memory, the processor,generates a stream of accesses and
supplies an address with each access. It is possible to access a part of a word in one tran­
saction, and some memory systems are built to give this added flexibility.

The number of bits per word has been steadily increasing over the years, so that today
one can find microprocessors with word sizes of 4, 8, 16, and 32 bits. The first micropro­
cessor, the Intel 4004, has a 4-bit word. Device technology in 1970 precluded anything
larger than this. By the mid-70s word size had climbed to 8-bits in the 8008 and 8080 fam­
ilies from Intel and in the 6800 family from Motorola and American Microsystems. The
microprocessor industry entered the 80s with the introduction of micros with 16-bit words
in the Z8000 family from Zilog and the 8086 (iAPX86) family from Intel. The Motorola
MC68000 family of microprocessors was introduced for memories organized in 1.6-bit
words, but is readily upgradable to 32-bit word memories. Intel's iAPX-432 is unques­
tionably organized for 32-bit words.

Typical word-organized memory is shown in Fig. 1.4, with each word in memory
having a unique address, and the addresses are successive integers starting at 0. Figure
1.4, however, does not show the individual bits, and it does not describe the word length
of memory. Memory systems are becoming more complex than the system of Fig. 1.4 be-

Micron Technology Inc. et al.
Ex. 1042, 7

8 Microcomputer Structures

cause of the added flexibility of access to partial words as well as to full words. One way
of organizing memory for this purpose is shown in Fig. 1.5(a). In this memory, words are
16-bits long. Since character data are typically eight bits per character, the system is
designed to give access as easily to 8-bit data as to 16-bit data. The usual convention is to
call an 8-bit datum a byte and a i 6-bit datum a word. (Some microprocessor literature
refers to 16-bit data as "halfwords.") To facilitate access to both bytes and words, each
byte is given a unique integer address, with the integers running sequentially starting at 0.
A word then consists of two adj¢ bytes, and a word access is made by supplying the
address of one of the bytes in that word with a function signal indicating that the access is
to a word, not a byte.

BYTE
ADDRESSES: 131 132 133 134 135 136

).-----.--'-----r--------.-~~~~..-----r, \

Data cell for word with address 13 1

FIGURE 1.4 A word-organized memory.

There are several possible ways to organize a memory into both words and bytes, and
it is rather unfortunate that the industry has not settled on a standard way to do this.
Whereas there are both advantages and disadvantages to each of these schemes, there are
severe difficulties in compatibility and data exchaqge among the computers that use dif­
ferent schemes. A few of these schemes are illustrated in Fig. 1. 5.

In Fig. 1.5(a), the addressing scheme requires word data to have an even-numbered
address. Each word, then, consists of two bytes, cme byte with an even address and the
other byte at the next higher odd address. The address of the word is the address of the
even byte. Arbitrarily, the byte with the least significant address is stored as the least sig­
nificant byte of the word. TlJ.is is the scheme used in the LSI-11 microcomputer. The fact
that words must be located on even-address boundaries tends to be constraining. In con­
trast, Fig. 1.5(b) shows a memory in which words occupy successive integer &ddfesses
and_ the words overlap. This scheme is used in the Intel 8086 (iAPX86) microprocessor.
The overlapping of words eliminates completely the problem of structuring data to force
full words to lie on even-numbered address boundaries, and thus eliminates one unneces­
sary level of programming difficulty.

But Fig. 1.5(b) is not necessarily the best solution either. There are two possible ways
of building a word from two successive bytes. The first comprises schemes in both Fig.
1.5(a) and (b), both of which treat the byte with the ·least significant address as the least
significant byte of the word. The other choice, as shown in Fig.l.5(c), is to treat the byte
with the least address as the most significant byte of the word. This scheme is used in the
6800-family of processors. (This family uses byte-organized memory, and accesses to

Micron Technology Inc. et al.
Ex. 1042, 8

1.2 The Memory Interface 9

words require two successive byte accesses.) One of the obvious advantages of the
scheme in Fig. 1.5(c) over that in Fig. 1.5(b) is simply an advantage in the human inter­
face. Program listings, memory dumps, and many similar software support tools typically
give the contents of memory byte-by-byte in order of ascending address. This inherently
places bytes with lower addresses to the left of bytes with higher addresses; in other
words, the lower the address, the more significant position. A programiner has to reverse
the positions of the bytes mentally in order to interpret their correct meaning. Consider,
for example, the fragments of program listings shqwn in Fig. 1.6(a) for an 8086 and Fig.
1.6(b) for a 6800 microprocessor. Notice that the bytes for the address in the 8086 frag­
ment appear in reverse order in the listing, but they appear in the correct order in the 6800
listing.

BYTE
ADDRESSES: 130 131 132 133 134 135 136

I I

: *
\

Word 132

(a)

BYTE
ADDRESSES: 130 131 132 133 134 135 136

I I

: $: : ~ :
J

Word 131 Word 134

(b)

BYTE
ADDRESSES: 130 131 132 133 134 135 136

I I

: : : : : :

\
1 l 1 l

Word 131 Word 134

(c)

FIGURE 1.5 (a) AnLSI-11 memory; (b) an 8086 memory; (c) a 6800 memory.

Micron Technology Inc. et al.
Ex. 1042, 9

10 Microcomputer Structures

The human-interface problem illustrated in Fig. 1.6 does not give a complete picture
of relative advantages and disadvantages of the several approaches to memory organiza­
tion. In fact, practice is not standardized because there is no clearly ''best'' decision. The
resulting chaotic state of affairs is felt whenever programs, data, or the programmers
themselves move from one kind of memory system to another. See Cohen (1981) for a
humorous, but rather revealing exposition of this standardization problem.

OPCODE ADDRESS
FE

7E
1300
1416

(a)

LDX
JHP

1300
1416

OPCODE ADDRESS

A1
EA

0013 HOV AX,1300
1614 1214 JMP 1416,1412

(b)

FIGURE 1.6 Fragments of assembly language programs: (a) 680 0 program; (b) 8086 program.

From the functional description of memory, we can now see the types of signals that
must be exchanged between a memory and a microprocessor. These are shown in Fig.
1.7. Obviously there must be lines that carry address and data information. For READ,
the address lines are activated by the microprocessor, and the data accessed are returned
on the data lines by the memory. For WRITE, the microprocessor supplies both the ad­
dress and data. During a cycle in which IDLE is asserted, the memory is inactive. The
lines labeled READ, WRITE, and IDLE force the memory into one of three of its possible
modes. The actual signal lines or wires used in microprocessor systems may differ from
those shown in the figure in the manner in which information is encoded or multiplexed,
but every memory system requires at least these three modes.

Address bus /
/

Data bus /
/

READ

Microprocessor WRITE Memory
IDLE

~.§.1.l2X. ______

SIZE ----------+

FIGURE 1. 7 A processor/memory interface.

Micron Technology Inc. et al.
Ex. 1042, 10

1.3 The 1/0 Interface 11

Dotted lines shown in the figure represent lines that appear in some, but not neces­
sarily all systems. The line labeled SIZE indicates that an item accessed is a word or part
word. If the memory system supports access to both 8-bit bytes and 16-bit bytes, then
SIZE determines (encodes) whether the access is to 8 or 16 bits. Typically, SIZE is not
used in READ operations because the processor can select from a full word the informa­
tion needed for the access. But WRITE operations do use the SIZE field. Up to one full
word of data can be altered by a WRITE operation. If, for example, the processor needs
to update a single byte, it must supply the address of the byte and specify a SIZE of one
byte. In this case, the memory system perturbs only that part of the word that is to be
rewritten and leaves all other bits in the word unchanged.

The other dotted line is labeled READY and represents a signal from the memory to
the processor. When we reach a discussion of timing of memory transactions in Chapter
4, we will discover that slow circuits and long propagation delays can lengthen the
response time of a memory to the extent that it cannot respond within the worst-case
memory cycle time. The READY line is used to "stretch" the memory cycle time in sys­
tems where this is necessary. In effect, the processor initiates a memory transaction, then
freezes until the READY indicates that it is safe to continue. A READY line permits the
designer to intermix fast and slow memory chips and to design a system that is able to run
at the speed of the fast memory for accesses made there. While many popular micros have
a READY input, many others do not and thereby force memory accesses to complete
within one clock cycle. There is a firm upper bound on the memory access-time of these
microprocessors, including delays suffered from propagation along data paths. With a
READY signal, arbitrarily slow memories (or peripheral devices that are connected to the
processor as memory) can be accommodated.

The signals shown in Fig. 1.7 cover the great bulk of microcomputer memory sys­
tems. These are the signals that we assume present in the remainder of this textbook when
we consider interfaces between memory and processor.

1.3 THE 1/0 INTERFACE

At this point we tum our attention to the internal behavior and functional description of
the I/0 system. The I/0 system is basically a very small external memory whose registers
are connected to peripheral devices. A typical port]n this type of system contains one,
possibly two, and more rarely eight to sixteen registers. The registers hold data in transit
from computer to peripheral or from peripheral to computer, or they hold control informa­
tion. The I/0 port also contains logic for controlling data transfer between the port and
external devices.

1/0 Port Structure and 1/0 Transactions

The first computers did not have separate I/0 ports. I/0 onJhese machines was performed
solely through the accumulator. In the late 40s and early 50s, the extra cost of a separate
I/0 system was very high, and the returns were rather risky because the extra logic could

Micron Technology Inc. et al.
Ex. 1042, 11

12 Microcomputer Structures

well reduce the system reliability to the extent that gains in I/0 efficiency were
outweighed by the diminished system availability. The disadvantage of this scheme is that
when an accumulator is busy with I/0 if cannot be used for other purposes. Consequently,
programs with extensive I/0 had computation speeds severely limited by the I/0 data­
transfer rates. Very early in the development of computers, buffered I/0 was introduced
and became commonplace. By buffered I!O, we refer to the use of one or more separate
registers through which data are transferred between the computer and external devices. If
an external device communicates with a special I/0 register for data transfer instead of
with the accumulator, then the accumulator can be used for other calculations while the
I/0 is in progress. The buffer has evolved to what, in a microcomputer, we call an /10
port. The principal function of an I/0 port is to serve as a way station for data in transit
between the computer and the external world. A second function of an I/0 port is to pro­
vide the control logic and signals between the computer and the outside world that is
necessary for data transfer.

The structure of a very simple I/0 port is shown in Fig. 1.8. Here we see the data reg­
ister (for data in transit), a control register to hold commands from the processor to the
port, and a status register accessible to the processor that tells the computer what is hap­
pening or what has recently occurred during the data transfer. By incorporating a status
register in the port, the port provides a means for a processor to monitor I/0 activity and to
be able to exchange data with the port when it is safe to do so.

Interactions with the I/0 subsystem fall into two broad classes-program-controlled
and interrupt-driven. Program-controlled IJO, the type of interaction in which all transac-

,~ I' Microcomputer Interface

I COMMAND I I STATUS I I DATA
J

,)~'control lines ,~VData lines

Device interface

FIGURE 1.8 The structure of a typical I/0 port.

Micron Technology Inc. et al.
Ex. 1042, 12

1.3 The 1/0 Interface 13

tions are initiated by an executing program, is shown for both READ and WRITE transac­
tions below:

I/O READ

1. Test the status register of the port and wait for READY. (A new command cannot be
issued if one is already in progress.)

2. Pass a READ command to the control register of the port. After initiating the READ,
the microprocessor can make other calculations. When the processor reaches a point
at which it must accept the I/0 datum, it proceeds to the next step.

3. Test the status register of the port and wait for READY.
4. Read the data register into the processor. Perform Step 2 next, without retesting the

status register to see if a new READ can be initiated.

I/O WRITE

1. Test the status register of the port and wait for READY.
2. Transfer the next output datum to the data register of port.
3. Transfer a WRITE command to the control register of the port. The processor passes

control to other tasks that can be performed while the I/0 operation proceeds con­
currently.

Figure 1.9 is the flow-diagram of a program-controlled I/0 transaction. During the
time a port is busy, the processor can execute instructions related to a different computa­
tion or can initiate other I/0 activity. This occurs, as shown in Fig. 1.9, after the processor
issues a new command and enters a normal execution state. When the processor reaches
the point at which one more datum can be transferred through an I/0 port, it executes in­
structions that interrogate the port status again. In Fig. 1.9 this activity appears at the top
of the flow chart.

A graphic illustration of the timing for I/0 READ and I/0 WRITE appears in Fig.
1.10. Observe how I/0 and program execution proceed concurrently because of the
buffering of I/0 through a port. For the READ, the concurrent activity begins immedi­
ately after issuing the I/0 READ or I/0 WRITE command to the port. Timing variations
shown in the figure illustrate situations in which the port is idle, waiting for the processor,
and in which the processor is idle, waiting for the port.

As a concrete example, consider a port connected to a typical external cathode-ray
tube (CRT) terminal. We assume the port transfers 30 characters per second; thus the port
is busy for about 33 ms for each character transferred. The processor can spend part or all
of the 33 ms on other tasks. If the processor completes the other tasks before the 33 ms is
through, the processor loops at the I/0 READ or I/0 WRITE Step 1 while waiting for the
operation to terminate. Should the processor take longer than 33 ms, the I/0 port will
complete its operation before the processor interrogates the port for status. A buffer for
additional tasks for the I/0 port might be part of the port itself, which would permit the
port to initiate new operations from the collection of tasks waiting to be done. If it is not

Micron Technology Inc. et al.
Ex. 1042, 13

14 Microcomputer Structures

possible to buffer tasks, or if the task buffer empties, the UO port will be idle until it is in­
terrogated by the processor and given new tasks to perform.

For a system that contains a single UO device, the speed improvement from buffering
data transfers through an UO port is at most a factor of 2 over that of a system with no
buffering and no concurrency. The reason is simply that an unbuffered system takes a
time equal to the sum of UO and computation times, whereas a buffered system takes a
time at least equal to the maximum of UO and computation times. But given any two
numbers A and B, the sum A + B is never more than twice the largest of the numbers.
Hence, overlapping computation with UO activity can never boost performance by more
than a factor of 2.

Then why is there so much concern about UO efficiency and concurrent UO? The rea­
son is clear when you look at UO-intensive systems. More important than overlapping UO

NO

MICROPROCESSOR

Request Status

Ready?

YES

Request datum
(for READ)

Transmit datum
(for WRITE)

I/O PORT

Report datum
(for READ)

Accept datum
(for WRITE)

Accept next
command and

initiate new
1/0 operation

FIGURE 1.9 A typical program-controlled I/0 transaction.

Micron Technology Inc. et al.
Ex. 1042, 14

1.3 The 1/0 Interface 15

I/0

READ READ I READ READ

Microprocessor

Execute Execute

(a) I/0 READ

I/0

WRITE I wRITE I WRITE WRITE

Microprocessor

Execute Execute

2,3

(b) I/0 WRITE

FIGURE 1.10 Timing for 1/0 operations. (Numbers refer to steps that
occur at corresponding times.)

with computation is the need to overlap the I/0 for one device with the l/0 for another. In
fact, if there are N devices in a system, then execution time without buffering is the sum
of theN IJO times and computation time, whereas with buffering, execution time can be
brought down to the neighborhood of the longest of these times. The improvement in this
case is at most a factor of N + I. Although this factor is rarely achieved in general­
purpose systems, factors of 3 to 5 are frequently attained. In special cases, such as control
of multiple terminals in transaction-processing systems, the factor might be inuch higher.

The cost of I/0 ports has been brought down dramatically through the use of large­
scale integration (LSI), so that basic powerful chips now cost only a few dollars. The cost
of several I/0 ports may increase the system retail price of a computer by a few hundred
dollars, but if performance gains are factors of 3 to 5, then the expenditure is well justi­
fied.

Interrupts

We indicated in the opening pages of this chapter that there are at least two general stra­
tegies for I/0, one initiated by the processor (program-controlled I/0 as treated above)
and the other initiated by the port (interrupt-driven 110). Like program-controlled I/0,
interrupt-driven I/0 runs concurrently with processor execution. The difference between
the two is the mechanism for detecting when an I/0 port has completed an operation. For

Micron Technology Inc. et al.
Ex. 1042, 15

16 Microcomputer Structures

program-controlled 1/0, the processor interrogates the port. For interrupt-driven 1/0, the
port generates a signal to the processor, called an interrupt request, at the completion of
an operation. The processor responds to this request, recognizes that the device is no
longer busy, and initiates a new transaction. Thus there is ho need to interrogate the port
to find if the port is ready. the interrupt request conveys the ready information. On the
other hand, the interrupt request does not indicate which port is ready, so that part of the
interrupt transaction involves port identification as follows:

I/O READ

1. The processor signals the port to enable the port irtterrupt. In this state, the port as­
serts a level signal on the INTERRUPT REQUEST signal line when the port detects
that an 1/0 operation has terminated. (If the port interrupt is disabled, then the port
will not assert INTERRUPT REQUEST when ready, but will indicate its status con­
tinuously in a status register that can be read by the processor.) As part of this transac­
tion the processbr also initiates a READ opetation, during which the port reads exter­
nal data. At the conclusion of this step, the processor turns to other computations
while the 1/0 port is busy accepting data frbm an external device.

2. The 1/0 port completes the data transfer and asserts an INTERRUPT REQUEST sig­
nal.

3. When the INTERRUPT REQUEST is first asserted, the processor may be in an unin­
terruptible state. At a later time when interrupts are permitted, the processor inter­
rupts its current activity and begins a device-identification transaction. Device iden­
tification can be implemented many different ways. Three different ways are
a) The processor transmits a signal to the 1/0 system as a whole that it is now ac­

knowledging an interrupt request. The highest-priority port with a pending re­
quest responds to the broadcast signal by placing its identifier on the 1/0 bus. The
processor accepts the identifier, and initiates execution at an address that is a
function of that identifier. In effect, the port identifier forces the processor to
branch to a subroutine for servicing that particular port.

b) The processor transmits a signal to each port individually, starting with the
highest ptiority port and moving in descending priority to the port with the lowest
priority. Each port responds to this interrogation with a reply that indicates
whether it has art active interrupt request. When the processor first detects an ac­
tive request, it discontinues the device-identification process, and branches to a
subroutine that processes the port that requested service. If only one device can
post an interrupt at any given time, the device-identification transaction can be
omitted.

c) The processor has at least as many distinct interrupt request lines as there are 1/0
ports, and each port asserts a different line. When the processor responds to an in­
terrupt it branches to a location that is a function of the highest-priority request as­
serted at the time of the branch. This location contains the first instruction of a
subroutine that processes the corresponding 1/0 port.

Micron Technology Inc. et al.
Ex. 1042, 16

1.3 The 1/0 Interface 17

4. If, in the process of identifying the highest priority requester, the device­
identification step does not acknowJedge an interrupt, then the software that
processes the specific port issues an acknowledgment to the port that it is responding
to the port's interrupt request. If the port receives the acknowledgement during de­
vice identification or subsequently, the port responds to the acknowledgment by re­
moving its request.

5. The processor executes a program that accepts the datum read, and issues another
READ command at this point if more data are to be transferred. At the conclusion of
the I/0 transaction, the processor returns to the intetrupted program.

I/O WRITE

1. The processor enables the interrupt request of the I/0 port, and transmits to the port
an output datum and a WRITE command.

2. The processor returns to other activities while the port transfers the datum to an exter­
nal device. When the data transfer is complete, the port asserts the INTERRUPT RE­
QUEST signal.

3. At a later tirrie, the processor suspends its current processing, and identifies the inter-
rupting port. .

4. The processor issues an INTERRUPT ACKNOWLEDGE to the device identified in
Step 3. This device (and only this device) removes its interrupt request. (This can be
part of the device identification as indicated for the READ transaction.)

5. If the processor has additiortlil data to transfer, it passes another datum and a WRITE
command to the port. In any case, the processor returns to the program suspended
when the interrupt activity began.

The READ and WRITE transactions are essentially the same, except for minor differ­
ences relating to the direction of data flow. Steps 2, 3, and4 are identical for the two func­
tions.

Figure 1.11 shows the interrupt-driven I/0 transaction. Compare this to Fig. 1.9 to
see the differences between interrupt-driven I/0 and the program-controlled I/0 described
earlier,

There is sorhe confusion in the use of the term ''interrupt.'' Some writers intend it to
mean the request in Step 1, whereas to others it refers to the processor actions in Step 2.
These are quite distinct, even though both are invoked during an interrupt transaction.
Step 2 conveys an idea that is closer to the dictionary meaning of the word. In Step 2,
when the processor first responds to the I/0 port, the processor has reached a point at
which the program in progress can be suspended temporarity while the processor initiates
new I/0 operations. When the I/0 processing has been completed, the processor returns to
the suspended program. The term ''interrUpt,'' then, refers to the act of suspending one
prograni, temporarily executing another, and then continuing with the suspended
program.

Note that the processor does not, in general, respond immediately to an interrupt re­
quest. Hence, an interrupt request must be held continuously until it is acknowledged.

Micron Technology Inc. et al.
Ex. 1042, 17

18 Microcomputer Structures

MICROPROCESSOR I/0 PORT

I I Data transfer to I external device I Normal execution

1
I

Transfer complete; assert

I INTERRUPT REQUEST

I Uninterruptible execution L I

!
I Suspend program; identify device I

I L----------+1: Respond to device identification I

I Acknowledge interrupt I I

I L-------+1:: Remove INTERRUPT REQUEST I

I Read or Write I/0 data I
.I Accept or report I/0 data I .I

I Initiate a new I/0 operation I
I

I
I .I Start a new data transfer I I

I Return to suspended program I

FIGURE 1.11 A typical interrupt-driven I/0 transaction.

Note also that when the processor does honor an interrupt request, it honors only one.
Hence, if two or more requests are pending when the processor interrupt occurs, the
interrupt-acknowledge transaction is recognized by exactly one I/0 port, and only that
port removes its interrupt request. All other requests remain pending. At a later time each
of these will be honored, but one at a time, by a similar interrupt-acknowledge transac­
tion.

The processor must, in general, have some mechanism for temporarily disabling its
interrupt response, and for reenabling that response at a later time. Consider, for exam­
ple, a processor that polls the ports sequentially during the device-identification transac­
tion. The ports hold their requests pending during this transaction, since no port was ac­
knowledged when the processor initiated the poll. If the interrupt system is not disabled at
this time, then the pending requests will interrupt the processor continuously during the

Micron Technology Inc. et al.
Ex. 1042, 18

1.3 The 1/0 Interface 19

polling sequence, and the processor will not complete the poll. Therefore, any processor
that requires polling for device identification must automatically disable interrupt requests
when an interrupt occurs. Many processors have a status bit called an interrupt mask for
this purpose. When the mask is on, the interrupt system is enabled; otherwise it is dis­
abled. The mask is usually controllable by program, but it also changes state automati­
cally when an interrupt occurs and prevents any further interrupts until the processor has a
chance to process the present one and further interrupts can be permitted again.

Some processors offer both maskable and nonmaskable interrupts: The former are
controlled by an internal interrupt mask, and the latter are not. When a nonmaskable inter­
rupt request appears, the processor :10nors that request at the end of execution of the
current instruction, and there is no way for the processor to disable the interrupt. To
prevent repeated interrupts from a single nonmaskable-interrupt request, the request must
be edge-triggered and not level sensitive. Because the processor must sense a transition on
the nonmaskable interrupt line, it is somewhat risky to drive this line from more than one
source. The problem is that while one request is pending, the signal line is held in a fixed
state. If any other request occurs on this line during this period, the active edge of the later
request cannot be sensed by the microprocessor.

The Interrupt Interface

A suitable interface for implementing interrupt transactions is shown in Fig. 1.12. In this
case, a port ID functions as a memory address. Each port has a unique identifier in much
the same way that each word of memory has a unique address. The processor issues a port
ID to access a port just as it issues a memory address to access a word of memory. Carry­
ing the comparison with memory somewhat further, we see the three control lines­
labeled respectively, PORT READ, PORT WRITE, and PORT IDLE-that control the
timing and direction of information transfer between the processor and the port. When
PORT WRITE is asserted, the processor transmits information on the data lines to the
port. Conversely, when PORT READ is asserted, the processor requests information from
the port to be sent on the data lines. When PORT IDLE is asserted, the interface is inac­
tive.

Because a port possibly contains many registers, the port ID is not sufficient in itself
to identify the register accessed during any given transaction. Most ports have at least a
data register and a command/status register. Writing into the latter register includes in­
structions to the port to read or write, and enables or disables the interrupt request. The
READY/NOT READY status of the port is also usually held in this register, and is ac­
cessed by the processor for program-controlled VO. Figure 1.12 shows a
COMMAND/DATA line that qualifies a port transaction to distinguish access to the
command/status register from access to the VO data register. The COMMAND/DATA
line actually functions as a secondary ID, and can be implemented in several lines to dis­
tinguish among many more functions than just COMMAND and DATA; the figure indi­
cates the secondary ID function of this line in parentheses.

Micron Technology Inc. et al.
Ex. 1042, 19

M

20 Microcomputer Structures

Separate lines are shown for both INTERRUPT REQUEST and INTERRUPT AC­
KNOWLEDGE. Actually, only the INTERRUPT REQUEST function must have a
separate line. The INTERRUPT ACKNOWLEDGE function can be implemented as one
of the functions carried on the secondary ID (COMMAND/DATA) line.

icroprocessor

Port ID /
/

Data /

PORTWRITE /

PORT READ

PORT IDLE

COMMAND/DATA (ID)

INTERRUPT REQUEST

INTERRUPT ACKNOWLEDGE

~viceiD -----,
i

Priority
resolver

I/0 port

IRQ
~

~
RRUPT REQUES'(}rNTE

and IN
} lines t

TERRUPT ACKNOWLEDGE
o other ports

FIGURE 1.12 A typical microprocessor/input-output port interface.

Figure 1.12 also shows as a dotted line the signal necessary to resolve device identifi­
cation when a processor responds to an interrupt request. Interrupt-request lines from
each port converge on a module labeled ''priority resolver,'' whose output is a device ID
that is transmitted to the processor. Device identification is implemented in so many dif­
ferent ways that no single figure can do it justice. The dotted line, therefore, at best con­
veys the intent that the priority resolver is not universal and that actual implementations
may differ greatly from that shown. Those implementations without priority resolvers
connect the interrupt request lines from all ports in an OR fashion, so that the micropro­
cessor observes a request if any port raises one. In such systems the interrupt-acknowl­
edge signal from the microprocessor is usually returned to the port on the bus-interface

Micron Technology Inc. et al.
Ex. 1042, 20

1.3 The 1/0 Interface 21

lines in the fonn of a command, since without a primity resolver the only way to direct the
acknowledge to a particular pmt is through the pmt-address lines on the UO bus. (We
treat this topic in more detail later in this chapter.)

Device Identification

We have hinted that there are several different ways in practice to implement device iden­
tification. The two most popular methods are~ and vectored internmu.

Polling is a software technique for device identification that is used where no
hardware support for device identification exists. Since many 4-bit and 8-bit microproces­
sors were designed in the early part of the 70s when logic complexity on one chip was
quite limited, polling is the usual method for device identification on such processors.
The logic supports interrupts only to the extent that when an interrupt is honored, the pro­
cessor saves its present state and sets its program counter to a fixed address. Once control
passes to that address, it is up to the UO program there to interrogate the ports that may
have caused an interrupt, and to process UO for the first port discovered to have a request
pending. If several ports are active simultaneously, the UO program should interrogate
them in the order of priority, running from the most important to the least important. Nor­
mally the high-perfonnance devices are queried before the low-performance devices,
although there are valid reasons to do the opposite. Whereas a high-performance device
with substantial internal buffering can be idle safely for a short period between data
transfers, a low-speed device without internal buffering may actually lose data if idle for
too long a time. In this case, it is wiser to avoid lost data, and to treat the low-performance
device before the high-perfom1ance one, at the risk of degrading performance slightly.

When a large group of devices- say, a collection of video terminals- are all of the
same priority, the polling sequence should favor no particular device. Here a suitable
polling algorithm queries the terminals in a fixed order until it finds one with a request.
For the next interrupt, the polling algorithm continues polling terminals in sequence from
where it left off on the last interrupt. This round-robin scheme gives equal weighting to all
terminals on the average.

We mentioned that hardware required to support polling is minimal. The hardware
must do at least the following actions in executing a microprocessor interrupt:

1. Disable additional interrupts long enough to petform the next two steps and to ac­
knowledge the interrupt to the interrupting port,

2. Save enough of the present state of the processor to enable a retum to the interrupted
routine, and

3. Load a new program counter from a fixed location (or jump to a fixed location in
memory).

The state saved must include the program counter plus other machine status that cannot
otherwise be saved. Some microprocessors save more than this when executing an inter­
rupt. The other items saved are status bits and general registers that are very likely to be

Micron Technology Inc. et al.
Ex. 1042, 21

22 Microcomputer Structures

modified by the intetrupt program when it takes control. Since any register or status word
altered by an interrupt program must be preserved prior to being modified, software in­
structions will have to save them unless the hardware saves them first. Before the interrupt
program returns to the interrupted routine, the altered registers are first restored to their
original values. The more information automatically saved by the intem1pt hardware, the
less that needs saving by the interrupt software. But state saving can be taken too far. Any
data saved by interrupt hardware that is not altered by the interrupt program need not have
been saved, and the burden of saving and restoring this data lowers performance unneces­
sarily.

One of the necessities mentioned above is that interrupts must be disabled at least un­
til a new program counter is loaded. The reason for this is that the microprocessor honors
an interrupt by initiating a sequence of operations that culminates in setting a new value in
the program counter. What happens if an interrupt occurs while executing this sequence?
The program counter determines where an interrupted program will be reinitiated. But the
interrupt sequence built into the hardware has no accessible program counter associated
with it, so that there is no way to store information about where this sequence should be
reinitiated. The only restart information that can be preserved is the new program
counter, which contains a valid restart point only when the interrupt sequence has ter­
minated.

Let us focus on the other method for device identification-vectored interrupts. Vec­
tored interrupts identify a requesting port through hardware that selects the highest prior­
ity requester from among all the ports with interrupts pending. The priority-resolution
hardware returns a port ID to the processor, either in response to a query from interrupt
software or in response to the INTERRUPT ACKNOWLEDGE signal generated when an
interrupt is honored. The processor then uses the port ID as an index into a table, andre­
trieves an entry point to an VO subroutine for the corresponding port. The ''vectoring'' in
this· case is the transformation of the port ID into a starting address so that control is
passed directly to the proper routine without first going through a costly polling operation
to find which port needs service. We cannot say much about the process that maps the port
ID into a subroutine address because almost every microprocessor uses a scheme unique
to that processor. Figure 1.12 shows the priority resolver as a device external to the pro­
cessor. The resolver can be embedded in the micro itself, distributed through the VO ports
(with each port containing a part of the resolver function), or can be implemented in a
separate module as shown in the figure. Chapter 3 provides more details about methods of
resolving priority conflicts.

Micros with no internal capability for vectored interrupts can be given this capability
through the use of an external priority resolver. Interrupt requests are passed to the
resolver, as shown in Fig. ,1.12, which in tum requests an interrupt from the processor.
The software in the processor interrogates the priority resolver for the ID of the highest­
priority requester, and thus avoids the polling sequence. Interrupt acknowledgment is then
done by the device service-routine, which removes the interrupt request. A more sophisti­
cated approach has the priority resolver acknowledge the highest-priority port when it re­
ports that port's ID to the processor. This approach is suitable when all VO ports have an

Micron Technology Inc. et al.
Ex. 1042, 22

1.3 The 1/0 Interface 23

identical means for accepting an INTERRUPT ACKNOWLEDGE signal. However, the
I/0 port interrupt interface is not standardized today, so that priority resolvers tend to im­
plement one type of INTERRUPT ACKNOWLEDGE function or none at all.

1/0 Port Addressing

Because of.the great similarity between memory and I/0 interfaces, the I/0 and memory
functions often share address and data lines. Two ways of sharing the memory and I/0
port interface are common today. They are shown in Fig. 1.13. The first method, called
isolqtgd TLQ. treats ports and memory on the shared lines differently, and uses controls to
distinguish between the two. The figure shows a line labeled MEMORY/PORT used for
this purpose. When MEMORY is asserted, the address lines carry a memory address, and
memory responds to the requesL When PORT is asserted, memory is disabled, and the
I/0 system responds to the requeSt. Thus, the MEMORY/PORT signal isolates the ad­
dress space·ofports from the address space of memory. The figure does not show the in­
terrupt and device identification lines. These lines are rarely shared between memory and
I/0, and they simply should be superimposed on the figure.

The second way of combining memory and I/0 functions is called mgmqcy-mqnneci
l/0. In this case, there is no difference whatsoever between memory and I/0 accesses. All
accesses are treated as memory accesses. Each port is selected by access to some specific
address (or range of adaresses), and memory does not respond to addresses reserved for
I/0. Each distinct port function has a unique memory address. To issue a command, the
processor w1ites to the command-register address. To accept data, the processor reads
from the data-buffer address.

Processors that utilize port addresses as distinguished from memory addresses must
have special instructions for reading from and writing into ports. Typically the instruction
repertoire contains:

IN REG, PORT Read data from the port whose ID is PORT

into register REG.

OUT REG, PORT Write data from register REG to the port

whose ID is PORT.

To differentiate between commands and data, some repertoires have additional I/0 in­
structions such as STATUS or CMD, which are are just like IN and OUT, respectively,
except that the processor signals the port tl2at these are control transactions, not data trans­
actions. Another way to achieve the same end is to allocate a secondary port address that
specifies a function for that port. Hence, a full port ID can be, say, 10 bits, of which the
first five select one of 32 ports, and the second five specify one of 32 functions for each
port. This reduces the instruction repertoire required for I/0 functions to just IN and
OUT.

Micron Technology Inc. et al.
Ex. 1042, 23

24 Microcomputer Structures

Address or port ID
/ / , /

Data
/ /

/

MEMORY/PORT
Microprocessor

READ

WRITE

IDLE I
l l l

Memory I/0 port

(a)

Memory address
~ /

Data // //

/ /

READ

WRITE

Microprocessor IDLE I Address detector I

Memory I/0 port

(b)

FIGURE 1.13 (a) The isolated-I/O method for implementing a common interface with
I/0 ports and memory; the signal line MEMORY/PORT differentiates between memory
and I/0 operations. (b) Memory-mapped I/0: The address detector selects the I/0 port
when it reads an address that selects one ofthe port functions.

Micron Technology Inc. et al.
Ex. 1042, 24

1.4 The DMA Interface 25

Of the two ways to combine VO and memory functions, neither is clearly better than
the other. Memory-mapped VO reduces the instruction repertoire slightly, while also
reducing addressable memory by the amount of address space allocated to I/0. Port ad­
dressing takes away no address space, but adds a small complication to the repertoire.
When VO instructions are implemented without the full range of address-modification
functions, VO becomes somewhat awkward to program~ In any event, memory-mapped
VO is an option for all implementations, even for microprocessors with VO instructions
and port facilities. It is mandatory only for microprocessors that have no other way to im­
plement I/O.

1.4 THE DMA INTERFACE

DMA adds one more level of complexity to the VO interface because a DMA controller
has independent access to memory. One set of wires can carry at most one transaction at a
time. If DMA and a microprocessor share the signal wires to memory, there must be some
mechanism to arbitrate which shall have access to memory when both attempt to do so at
the same time.

Let us examine the data flow and functional behavior of a DMA transaction.

1. The processor transmits the following information to a DMA controller:
a) Beginning address in memory.
b) Block length (number of words to transfer).
c) Direction (memory-to-device or device-to-memory).
d) PortiO.
e) End of block action (interrupt request or no interrupt request).

2. The processor returns to other activities while the DMA controller starts the data
transfer.

3. Each time the DMA controller accesses memory, it synchronizes this memory re­
quest with an idle period of the processor. To do this synchronization, the DMA con­
troller can either
a) force ;m immediate disabling of the processor, or
b) reque~t a halt of the processor, and await an acknowledgment, or
c) time the DMA access to a clock interval or status signal of the processor that sig­

nals an idle cycle.
4. When the DMA controller accesses an VO port or memory, it uses the same func­

tional control signals as used by the processor. VO port activity can be performed on
dedicated lines that do not have to be synchronized with the processor.

5. At the completion ofthe block transfer, the DMA controller raises an interrupt re­
quest if the interrupts 'lfe armed, and otherwise indicates completion in its status re­
gister.

6. The processor recognizes VO completion (either by an interrupt or by reading the
status register); thereafter the activity between the processor and the DMA controller
follows the normal post-completion activity of any I/0 port.

Micron Technology Inc. et al.
Ex. 1042, 25

26 Microcomputer Structures

This description shows that a DMA controller is treated as a standard port before and after
a block transfer. During a block transfer, the DMA controller must have the additional ca­
pability to synchronize with the processor.

The description also shows just how a DMA controller improves performance. The
DMA controller has built into it the program for moving a stream of data between
memory and an UO port. When instructions are built-in, at the very least, the controller
does not have to read these instructions from memory and execute them one-by-one.
Moreover, the controller can perfmm several of the elementary actions in parallel,
whereas the actions have to be programmed sequentially when implemented with
software in the processor. For example, the controller decrements a counter each time it
moves a datum. It can overlap the subtraction with memory access, and avoid a time
penalty for the arithmetic instructions a program has to execute. Therefore, a DMA con­
troller can achieve a much higher performance for block transfers than can be obtained in
software alone. DMA is most frequently used for high-speed UO, especially tape and
disk. Fast disks and tapes move blocks of data at speeds much greater than any program
can control, and therefore must be interfaced to computers through DMA controllers.

DMA transfers by their nature, though high in performance, do slow down the pro­
cessor if the DMA forces the processor to halt temporarily for each UO data access. The
degradation in processing speed is imperceptible if the processor normally has idle cycles
that the DMA controller can use to advantage. But if the processor makes heavy use of
available memory cycles, performance degradation during DMA block transfers becomes
quite noticeable. Of course, degradation would be much worse without DMA if the
transfers were done entirely by software.

The DMA interface with the memory, UO, and microprocessor is shown in Fig. 1.14.
In this figure, the UO ports under DMA control are attached solely to the DMA controller.
Signal lines are the same ones that normally interface the ports to the processor. The
memory control lines in this figure are the conventional ones we have seen earlier, except
that both the processor and the DMA controller exercise the lines in this figure. The new
lines are the HALT and HALT ACKNOWLEDGE lines. These are the ones that syn­
chronize the DMA controller to the processor. When the DMA controller needs to access
memory, it requests the processor to halt, by asserting the HALT signal. The processor
responds with a HALT ACKNOWLEDGE at a later time, at which point the DMA con­
troller takes control of memory. When the DMA controller has completed its activity, it
removes its HALT request, and the processor continues from the point of suspension, re­
moving its HALT ACKNOWLEDGE in the meantime.

The dotted line shown indicates an IMMEDIATE HALT type of DMA request. The
more usual HALT request may take several clock cycles for the processor to ac­
knowledge. HALT ACKNOWLEDGE signifies that the processor has relinquished
memory control indefinitely; the DMA controller is free to make as many accesses to
memory as necessary before returning control to the processor. The delay in response to a
HALT request comes about because the processor must reach a state in which it can
suspend processing. Data held in dynamic registers that are refreshed during normal pro­
cessing must be moved to static registers, or execution must move to the point where

Micron Technology Inc. et al.
Ex. 1042, 26

1.4 The DMA Interface 27

these data are no !onger necessary. The purpose of the IMMEDIATE HALT line is to
avoid the delay associated with the normal HALT request, but there are severe restrictions
placed on the use of IMMEDIATE HALT. Typically, the IMMEDIATE HALT can be
used only briefly, for at most one or two accesses, before there is a danger that the proces­
sor will not be able to recover its state correctly and return to the suspended activity.

IMMEDIATE HALT .._ ________
HALT

HALT ACKNOWLEDGE Port ID /

Data//

Address / "
Microprocessor Data

/ DMA controller COMMAND/DATA I/0 port
/

READ /

WRITE

IDLE

1
I Memory I

FIGURE 1.14 A typical direct memory-access controller interface.

The IDLE status line can also be used fruitfully by DMA controllers that have the
luxury of delaying data transfers until an IDLE point is reached. This makes good sense in
systems where IDLE occurs frequent! y, say on the order of 20 to 30% of the memory cy­
cles. Then there is no need to halt the processor, and DMA is able to achieve high data
rates with virtually no impact on processor performance.

Note the inherent efficiency of DMA operations as compared to interrupt-controlled
I/0. DMA operations require only one memory cycle to transfer each byte, plus perhaps
up to two memory cycles per byte transferred to obtain and relinquish control of the bus.
For each byte transferred by an interrupt program, additional processor and memory cy­
cles are required to save status at the time of the interrupt, fetch the instructions for the
transfer, and to restore status to return to the interrupted program. The number of memory
cycles required to transfer a single byte this way is typically no fewer than 10, and more
usually 20 to 30 cycles. Since DMA operations do not require processor assistance, the
state of the processor is not disrupted by DMA, and there is no need to store and retrieve
state in conjunction with a DMA operation. Also since the DMA controller is internally

Micron Technology Inc. et al.
Ex. 1042, 27

28 Microcomputer Structures

programmed to transfer data blocks, the controller does not have to fetch from memory
individual instructions for a block-transfer operation, and no time is lost to instruction
fetches.

1.5 1/0 STRATEGY: PROGRAM-CONTROLLED VERSUS
INTERRUPT -DRIVEN

Our guided tour of I/0 control has been preoccupied with what options are available and
how to use them. Now we tum to the question of which method to choose and why. In this
section we give criteria for choosing one I/0 strategy over another, and offer advice for
structuring microcomputer systems for highest performance, while providing for the sim­
plest and most reliable software support possible.

To review the differences between program-controlled I/0 and interrupt-driven I/0,
we mention that their major differences are the following points:

1. Interrupt-driven I/0 must save an interrupted program's state at the start of an inter­
rupt program, and restore that state before returning to the interrupted program. No
state saving is required for program-controlled I/0.

2. Interrupt-driven I/0 must use software or hardware or both to find which device has
posted an interrupt. Program-controlled I/0 inherently performs this action when
reading device status to determine if a device is ready.

3. Program-controlled I/0 must use software testing to determine when a device is
ready; interrupt-dtiven I/0 provides this information automatically when an interrupt
request is posted.

4. When a program runs several devices concurrently, the program can respond to I/0
requests with much shorter latency when the I/0 is interrupt-driven than when it is
program-controlled.

In Point 1, the overhead burden is greater for interrupt-dtiven I/0 because of state saving.
The burden for interrupts in Point 2 is negligible if a system has vectored interrupts. But it
can be severe if vectored interrupts are not available and many different devices can be
active simultaneously.

For program-controlled 1/0 the performance degradation problem of Point 3 is
strongly related to the latency problem of Point 4. There is a clearly a trade-off between
the two. Latency for program-controlled I/0 is reduced as the frequency of status check­
ing is increased. But this in tum increases the number of machine cycles lost to status
checks.

The normal approach to keeping latency low in program-controlled I/0 is to poll the
active devices in a cyclic or in a priority order. While polling tends to keep latency low, it
does so at the cost of cycles wasted checking status. Therefore the polling should be
scheduled frequently enough to meet the latency requirements, but not so frequently as to
impair perfommnce. This assumes that there is productive computation that can be per­
formed when the processor is not busy polling. In the special case of a system dedicated to
the control of multiple I/0 devices, performance degradation from polling may not be a
problem because there is no application program that can use available machine cycles.

Micron Technology Inc. et al.
Ex. 1042, 28

1.5 1/0 Strategy: Program-Controlled Versus Interrupt-Driven 29

From Point 1 we conclude that program-controlled I/0 in general can yield higher
transfer rates than interrupt-driven I/0. The problem, of course, is that program­
controlled I/0 may also yield higher latency times for responding to I/0 devices that re­
quire service. The major reason for controlling I/0 through interrupts is to reduce latency.

While interrupt-driven I/0 is a useful and practical method for achieving low-latency
responses to external signals, it is often more costly to develop and debug than software
that uses programmed polls to control I/0. InteiTupt-driven software is potentially inter­
ruptible at any point. The programmer must be aware of this possibility and must plan the
program to work correctly regardless of external events that trigger interrupt requests and
the sequence in which these events occur. The programmer must make explicit decisions
about when to turn on and off interrupts for all or part of the I/0 system.

Let's contrast these aspects of interrupt-driven I/0 with polling. In the absence of in­
terrupts, subroutines run to completion once they are begun. Hence, the programmer
need not deal with the problem of when to disable and enable interrupts for the entire sys­
tem or for selected devices. Issues relating to such things as nesting of interrupts and reen­
trant programming are absent or much less critical than in interrupt-driven systems. Poll­
ing software, however, generally does have to deal with situations in which the system
must respond to a specified external event within a fixed minimum time. When a real­
time constraint dictates performance, polling software becomes relatively more difficult
to write than it is in absence of such constraints. The cost of creating a reliable, efficient
interrupt-driven system may be somewhat higher than that of a polled I/0 system, and
therefore polled I/0 is preferred when it can easily meet the latency requirements. When
real-time constraints dictate that interrupts must be used, it may be possible to run a few
critical devices under interrupt control and to use polling to run the remaining ones. This
may yield somewhat simpler software than software that is entirely interrupt-driven.

Why is interrupt-driven software more complex than polling software? The problem
lies in the difficulty in understanding interrupt-driven programs. Between any two in­
structions an interrupt request may interject a totally different, possibly conflicting, sub­
program execution. Every line of code in the handler and in the interruptible code has to
be written to satisfy global conventions in order for the interrupts to work correctly. The
conventions avoid conflicts by dictating which variables can be accessed, when they can
be accessed, and how to communicate information between the interrupt-driven code and
the interruptible code. Skilled programmers can master the techniques of writing interrupt
programs and can create successful, efficient interrupt systems. Unskilled programmers
violate the conventions, or fail to design correct conventions in the first place.

To illustrate the difficulties of interrupt programs, consider the events that occur
when an interrupt occurs in a microprocessor. The status of the processor at the time of the
interrupt has to be saved, and most implementations save the status on a push-down stack.
This presumes that the machine-register stack pointer is pointing at a stack when the inter­
rupt occurs. If a programmer elects to do a "tricky" algorithm, and momentarily in the
algorithm the stack pointer is altered to point to the interior of a data structure, then an in­
terrupt will overwrite part of that data structure but only if it occurs just at that time.
Hence, as a general rule the stack pointer must never point to anything but a stack. Yet

Micron Technology Inc. et al.
Ex. 1042, 29

30 Microcomputer Structures

this rule is rarely mentioned in a manufacturer's documentation for microprocessors and
seldom appears in textbooks. In fact, early editions of the popular texts by Eckhouse
(1975) and Gill (1978) violated this convention in the instruction sequence that initializes
the stack pointer, even in examples that demonstrate the interrupt system. Every one of
these examples fails in an interrupt environment when an interrupt occurs at a critical
point in the program. Although the failures are so infrequent that they are almost unno­
ticeable, they do indeed occur. Hence, the programmer (or author) can exercise code and
believe that it works correctly, and yet the code may not be at all suitable for production
use.

If rigid conventions and programming skill are prerequisites for writing interrupt pro­
grams, they are insufficient in themselves to surmount the difficulty of debugging faulty
interrupt programs. The programmer must have good software tools such as emulators
and simulators to aid in diagnosing and correcting bugs in interrupt-driven software. In re­
cent years the microprocessor itself has come to the rescue in such tools as logic analyzers
and in-circuit emulators that can store a history of real-time activity for post-malfunction
analysis. But for these tools as well as software tools, the tools are useful primarily after a
failure occurs. If a failure is truly a rare, time-dependent event, the major obstacle in
repairing the problem is to recreate the conditions for the failure. Finding and correcting a
bug in interrupt-driven I/0 might therefore be a difficult and time-consuming exercise.
The basic problem is that interrupt -driven programs are more complex than ordinary pro­
grams because of the former's unpredictable changes in the flow of execution.

Given that a useful strategy is to incorporate program-controlled I/0 unless
interrupt-driven I/0 is mandatory, then what conditions force the decision to interrupt­
driven I/0? The two following program attributes are key factors in forcing a decision to­
ward the use of interrupts:

1. The program has long periods of computation unbroken by calls to the I/0 system.
2. One or more I/0 devices has a real-time deadline, with a costly recovery procedure if

the deadline is missed.

A reasonable approach to reducing overall programming complexity at the expense
of extra hardware is to dedicate a microprocessor to one or more real-time tasks that can
be handled by such a dedicated micro in a program-controlled fashion. This microproces­
sor then interfaces with a second microprocessor for processing data in the absence of
real-time deadlines. The dedicated micro plays the role of a high-speed buffer that
smooths peak data-transfer requirements, and provides a "graceful" transition between
the relatively poor latency of the central microprocessor and the tight real-time constraints
of the I/0 device.

Although programming complexity may be reduced in a two-processor system be­
cause of the simplification of some of the real-time I/0 programs, running two processors
in place of one processor does have additional costs, particularly because the two proces­
sors have to be synchronized to each other. The basic problem is that an external device
has to be synchronized to the computer. The interrupt system is but one way to implement
the synchronization. If the designer chooses to use a dedicated I/0 processor, and not use

Micron Technology Inc. et al.
Ex. 1042, 30

1.6 Memory and 1/0 Interfaces for Typical Microprocessors 31

an interrupt-driven approach, then the synchronization activity is moved to the interrace
between processors. The two-processor software might well be less complex than
software for one processor, and part of the reduction in complexity is likely to be attribut­
able to the simplification or elimination of interrupt-driven software. But all solutions, by
necessity, must have some means of synchronizing external events to the central proces­
sor. If this mechanism does not use the interrupt system, then the software must do some­
thing else. Synchronization cannot be absent.

A dedicated microprocessor was once thought to be an intolerably expensive and
uneconomical approach to the real-time problem. Today the approach is viable in many
applications. In fact, the dual-processor chip has made its appearance because of the
issues we have addressed here. The idea in the dual-processor chip is to allocate one of the
processors to the control of high-speed I/0 while the other processor perrorms other sys­
tem functions. Two processors should yield higher perrormance than one processor, and if
our comments are correct, the software for a two-processor system may be somewhat less
complex than the equivalent software implemented on a single processor.

1.6 MEMORY AND 1/0 INTERFACES FOR TYPICAL MICROPROCESSORS

In this section we show the memory and I/0 interraces of several microprocessors to illus­
trate how they fit the general structure outlined in this chapter.

Clocks/(2)

TSC"

DBE
} IMMEDIATE HALT

HALTL

BA JnMA
Address (16)

6800 /

Data" /(8)

R/W~'L

VMA

NMIL

IRQL J Interrupts

FIGURE 1.15 Interface signals for the 6800 microprocessor.

Figure 1.15 shows a very simple interrace for the 6800 family. This microprocessor
uses memory mapping for I/0 so there are no lines for dealing with I/0 ports specifically.
However, note the following lines and observe their functions:

Micron Technology Inc. et al.
Ex. 1042, 31

32 Microcomputer Structures

l. RJW Land VMA (Read/Write and Valid Memory Address). These lines encode the
READ, WRITE and IDLE ihates as shown in Table 1.1. The suffix "L" denotes a
signal that is asserted in the low (logic 0) state. Hence, when the signal line RJW Lis
in the I state, READ is asserted, and when in the 0 state, WRITE is asserted. (See the
table. The notation differs from the manufacturer's notation, which denotes a low­
asserted signal by an overbar.)

TABLEl.l 6800 Memory-Interface
Signal Encoding

State R!WL VMA

READ 1 1
WRITE 0 1
IDLE X 0

2. HALT L and BA. This is the DMA interface for HALT and HALT AC­
KNOWLEDGE, respectively. (BA denotes "bus available".)

3. IRQ L and NMI L. The~e are two different interrupt request lines. NMI L is a non­
maskable interrupt; IRQ Lis a standard (maskable) interrupt request. NMI Lis edge­
triggered because there is no way to disable it within tqe processor, and a kvel­
sensitive signal would interrupt repeatedly. The 6800 USf1S interrupt vectoring (two
different vector addres~es) to distinguish between NMI L and IRQ L, but requires
polling or an external priority resolver to identify devices whose request lines are
connected together to IRQ L or NMJ: L.

4. TSC, DBE, and clocks. These lines form an IMMEDIATE HALT type ofDMA in­
terface. TSC (tri-state control) disconnects the address lipes from the processor, and
DBE (data bus enable) disconnects the data lines. With thes~ disconnected, a DMA
controller can put its own signals on these buses to initiate a DMA transfer. However,
since the microprocessor is immediately disconnected from memory by TSC and
DBE control, and in order to guarantee that the program in execution does not fail, 'it
is necessary for the microproc~SS!Jr to accomplish in the same clock period what it
would normally do if DMA did not occur. The DMA controller must "stretch the
clock'' so that the lengthened cycle is. long enough for both the DMA and the pro­
cessor to access memory. DMA controllers thus have access to the clock generator
mechanism to lengthen clock cycles as required and thus permit both a DMA access
and a normal processor access to occur in one cycle.

The 6800 has no interrupt acknowledge line, and no hardware on chip to support device
identification other than the ability to vector between IRQ Land NMI L requests.

The 6502, representative of the 6500 family produced by ~ommodore Semiconduc­
tor, is illustrated in Fig. 1.16. This particular member of the family is made to be almost
pin-for-pin compatible with the 6800, so that the address, data, and read/write signals are

Micron Technology Inc. et al.
Ex. 1042, 32

1.6 Memory and 1/0 Interfaces for Typical Microprocessors 33

identical with those of the 6800. This processor lacks a VMA signal, and thus a memory
reference is requested on every cycle. (Some references are simply ignored by the pro­
cessor, and would become IDLE cycles if a VMA signal were available.) The ROY signal
is use<:! by slow memory and peripheral devices to lengthen the cycle time of the processor
by an integral, number of clock cycles. ·

Addre~ (16)

-:
Data(~)

6502
R/WL

RDY

J Memory

NMIL

IRQL } Interrupts

FIGURE 1.16 Interface signals for the 6502.

Like the 6800, the 6502 has two interrupt request lines, one maskable (IRQ L) and
one unmaskable (NMI L). Each of these interrupts has its own vector address where the
processor finds the address of an interrupt program to run. When many devices are tied to
one interrupt request line, the device identification is done by polling or by external prior­
ity resolution.

A different type of interface is used in the 8080, 8085, 8086 family of microproces­
sors. Th~, which is obsolete, is shown in Fig. 1.17. Memory interface signals follow
the convention of this chapter with DBIN signifying READ and WR L signifying WRITE.
The absence of either of these signals is an IDU~ cycle for memory.

Although we treat the address and data lipes as belonging to the memory interface,
the 8080 uses these lines for the I/0 port interface as well. The 8080 combines the
memory and I/0 fuqctions by using the address lines to carry either memory addresses or
port addresses.

Address and d~ta are on separate lines in this processor. But the processor is pack­
aged as a chip with only 40 pins, so that this leaves too few lines for other functions.
Hence, other functions are multiplexed on the data lines. The SYNC signal line signifies
whether the data lines contain status information or true data. At the start of each memory
cycle the processor reports its status by setting SYNC to 1 and placing the status on the
data lines. Externat latches are supposed to use SYNC as a latch enable, and to capture the

Micron Technology Inc. et al.
Ex. 1042, 33

34 Microcomputer Structures

status bits for controlling I/0 or DMA. The eight status bits show the type of cycle
(memory or I/0), and other status as described in Table 1.2. The individual functions of
the static bits and their encoding are given in Table 1.2.

ress J16)
.-

Add

~~
Data/Stajt~s (8)

SYNC,

DBIN

WRL

8080 READY

WAIT
·-

HOLD

HOLDA }
INT

INTE }

FIGURE 1.17 Interface signals for the 8080.

Memory
and 1/0

DMA

Interrupts

Note that the signals INP (I/0 input) and OUT (I/0 output) dictate whether the opera­
tion is an I/0 operation or a memory operation. If neither is asserted, the operation is a
memory operation; otherwise it is an I/0 operation and the address bus contains a port ID.
MEMR denotes ''memory read,'' which is a READ signal asserted only for memory
operations, but WO Lis a WRITE signal that is asserted for both memory write and out­
put operations.

Several nonmultiplexed status and control pins are dedicated to the slow memory and
DMA functions. Two pins determine the way the processor will respond to slow memory
and devices. Cycle lengthening is requested by the extemallogic on the READY line, and
the 8080 acknowledges this request by asserting WAIT. DMA requests are entered
through HOLD, which serves the HALT function. Status line HOLDA responds with the
HALT ACKNOWLEDGE condition when the 8080 reaches a stopping point. (The 8080
also produces a multiplexed status signal called HALT A, which indicates when the 8080
has executed a HALT instruction. This status does not carry the response to a DMA re­
quest.)

Two signals and one status indication define the interrupt interface. INT posts an in­
terrupt request to the 8080. External devices can sense whether or not interrupts are en­
abled by sampling the INTE pin, which holds the value of the interrupt-enable flip/flop.
The INT A state is one of the control states listed in Table 1.2 that is entered whenever the
8080 responds to an interrupt. INT A provides a very clever and simple mechanism for
vectoring 8080 interrupts. External logic can sense the INT A state and force onto the data

Micron Technology Inc. et al.
Ex. 1042, 34

1.6 Memory and 1/0 Interfaces for Typical Microprocessors 35

bus an instruction that is essentially a jump instruction with an externally specified start-
ing address. Therefore, an external priority resolver can force a jump to a starting address
that is a function of the port ID with the highest priority-pending interrupt. In this way the
INTA-status response provides crucial information for determining precisely when to
pass a port ID to the processor to initiate a vectored branch to an interrupt program.

TABLE1.2 8080 State Information Encoding

INTA WOL STACK HLTA OUT Ml INP MEMR
STATE Do D1 D2 D3 D4 Ds D6 D7

Instruction FETCH 0 1 0 0 0 1 0 1
READ (memory) 0 1 0 0 0 0 0 1
WRITE(memory) 0 0 0 0 0 0 0 0
READ (stack) 0 1 1 0 0 0 0 1
WRITE (stack) 0 0 1 0 0 0 0 0
READ(I/0) 0 1 0 0 0 0 1 0
WRITE(I/0) 0 0 0 0 1 0 0 0
Interrupt Acknowledge 1 I 0 0 0 1 0 0
HALT instruction 0 1 0 1 0 0 0 1
Interrupt acknowledge 1 1 0 1 0 1 0 0

and HALT instruction

The 8085 shown in Fig. 1.18 takes a different approach to putting more than 40 dif­
ferent functions onto 40 pins. Here we see address and data on shared signal lines and
status signals on dedicated pins. In contrast, the 8080 dedicates pins to address signals,
and shares status with data. In the case of the 8085, there are 16lines total for address and
data. Eight of the lines are multiplexed between the low byte of address and the data lines.
Signal ALE (address latch enable), when asserted indicates the presence of an address on
those lines, and otherwise signifies that they hold data. The DMA lines HOLD and
HOLDA are dedicated to specific pins, as are the interrupt lines INTR (interrupt request)
and INTA L (interrupt acknowledge). The 8085 has four other lines for intenupt requests
that have a variety of characteristics. These are the lines labeled RST 5.5 (RESTART
5.5), RST 6.5, RST 7.5, and TRAP. All interrupts vector to distinct locations in memory,
and all except TRAP are maskable. RST denotes a RESTART instruction that is executed
when any RST interrupt is honored. This is essentially a subroutine call to a different ad­
dress for each different type of RST. INTR is compatible with the 8080 INTR signal, and
does not force the processor to any specific location when the request is honored. The
external device must sense the INTA condition and force a RESTART instruction onto the
bus to supply the starting address of an interrupt program. TRAP is simply a nonmaskable
interrupt that vectors to a specific location. There is a priority ordering among the inter­
rupts to resolve what to do when two or more different types of interrupt requests are
raised.

Micron Technology Inc. et al.
Ex. 1042, 35

36 Microcomputer Structures

On-chip port {
to external

device

SID

SOD 8085

Low addres:y/Data (8)

Highaddrts:y(8)

ALE /

RD L

WR L

10/ML

READY

HOLD

HLDA

TRAP

RST 5.5
RST 6.5
RST 7.5
INTR
INTA L

FIGURE 1.18 Interconnections for the 8085.

-

J

l

Memory
and 1/0

DMA

Interrupts

The sharing of memory and VO functions is controlled by the lines labeled IO/M L,
RD L, WR L, and READY. The IO/M L signal line distinguishes between port functions
and memory functions, while RD Land WR L are, respectively, the READ and WRITE
signals. (If neither is asserted, the state of the system is IDLE.) READY is a processor in­
put that is used by slow devices and memory, and that forces the processor to use an in­
tegral number of extra cycles while waiting for READY to be asserted after initiating an
operation. The 8085 differs slightly from the 8080 in the implementation of slow devices
in that the 8085 does not produce a WAIT signal when it is delayed by an asserted
READY signal.

One final aspect of the 8085 is worth citing here. Note the lines SID and SOD, which
respectively carry serial-input data and serial-output data. The 8085 has a built-in VO port
for serial data, and these two lines interface with that port. Hence in this regard the 8085's
serial lines fit the structure of the VO lines with a direct path to the processor as shown in
Fig. 1.1 (b), except that the port is internal to the processor rather than external to it as
shown in the figure.

Another descendent of the 8080, the Zilog Z80, is shown in Fig. 1.19. In some
respects the Z80 functional characteristics are like the 6800. Note the separate address and
data lines. Note also the INT Land NMI L lines and the absence of a dedicated interrupt
acknowledge line. The DMA control lines are BUSRQ L for the HALT function and
BUSAK L for the HALT ACKNOWLEDGE function. All of these signals follow the
general structure of the 6800 signals. The memory interface, however, follows that of the
8080/8085 family. To distinguish between memory and VO requests, the lines labeled

Micron Technology Inc. et al.
Ex. 1042, 36

1.6 Memory and 1/0 Interfaces for Typical Microprocessors

Address / (16)

Data "/ (8)

MREQ/L

IORQL

WAIT L

RDL

Z80 WRL ·-
BUSRQ L

} BUSAK L

INTL

NMIL } Ml L,IACKL

FIGURE 1.19 The Z80 interface signals.

Memory
and I/0

DMA

Interrupts

37

MREQ L (memory request) and IORQ L (VO request) are asserted by the processor. RD L
and WR L indicate READ and WRITE functions, respectively, whereas WAIT Lis a sig­
nal generated externally by slow devices to lengthen memory cycles by an integral
number of clocks.

The interrupt-signal structure of the Z80 is similar to the 8080 family in that the Z80
has a means of acknowledging an interrupt request through signal lines other than those
that are part of the memory interface. The Z80 uses a line labeled Ml L!IACK L for two
distinct purposes. When this line and IORQ L are asserted low simultaneously, the pro­
cessor is signaling an interrupt acknowledge. Otherwise, when Ml Lis asserted low, the
processor is signaling that it is in the first machine cycle (the instruction-fetch) cycle of an
instruction. Because the interrupt-acknowledge function does not make use of the
memory bus, the Z80 can use this bus for a response back from the port to identify the port
and then use the port ID to vector the processor to a particular VO program. The Z80 has

C
three different modes that have this capability in conjunction with interrupt requests. They
are

1. No vectoring. (Invoking an interrupt handler at a specific address.)
2. 8080-compatible. (Accepting a RESTART (RST) instruction from the port in

response to lACK to force the processor to one of eight possible addresses.)
3. Expanded vector. (Accepting a 7-bit port code that, when added to a base address of

an interrupt-vector table, selects one of 128 possible entry points.)

Moving into the so-called 16-bit processor family reveals the same functions but
more severe pin constraints. These processors have 16 bits of data, and normally have a

Micron Technology Inc. et al.
Ex. 1042, 37

38 Microcomputer Structures

means for generating addresses of 20 to 24 bits. It is very difficult to fit all of these func­
tions into 40 pins, and therefore many advanced processors have 48 to 64 pins. The 8086
shown in Fig. 1.20 squeezes all of its functions into only 40 pins. To do so, it has two
modes of operation. A "minimum" mode uses the available pins for single-processor
configuration functions. In this mode several control signals are developed on individual
pins. In "maximum" mode, the pins are redefined to perform functions useful for mul­
tiprocessor configurations. In order to increase the number of control signals, functions
that are assigned individual pins in minimum mode are grouped together and produced by
a smaller set of pins in an encoded fashion. One input pin, the MN/MX L pin, forces the
8086 into either minimum or maximum mode. Figure 1.20 shows the processor configura­
tion for minimum mode, which corresponds to the discussion in this chapter. (Functions
available in maximum mode relate to multiprocessor control functions, and are not treated
in this textbook.)

BHE L }
Low address// Data (16) .-

/

High address(..-Status (4)

ALE /

M/IOL

RD

Mode[
control

WRL
MN/MXL 8086

READY (Minimum Mode) ·-

HOLD

HLDA }
INTR

NMI }
INTAL

FIGURE 1.20 The interface signals of the 8086 in minimum mode.

Access size

Memory
and l/0

DMA

Interrupts

Even in minimum mode, the 16 data lines and 20 address lines are too numerous to be
assigned separate pins. Hence·, the 8086 multiplexes the 16 data bits with the 16 low­
address bits. The address-latch enable line (ALE) indicates whether the address/data lines
carry an address or a datum.

Interrupt request lines are INTR and NJ\11, and the INTA L control line indicates an
interrupt acknowledge. The NJ\11 interrupt is nonmaskable, whereas INTR is a maskable
request line. An NMI request transfers control to a unique specific address and is typically

Micron Technology Inc. et al.
Ex. 1042, 38

History and Background Reading 39

asserted by at most one device. If more than one device is able to make NMI requests, the
processor then polls an external resolver to identify the requester. INTR requests are fully
vectored. The highest-priority intenupting port returns a single-byte ID in response to the
INTA L signal produced by the processor. External logic is required to select the highest­
priority port, but the logic is not very complex. The processor then uses the port ID to cal­
culate an offset in an intenupt vector table, and retrieves the starting address of the inter­
rupt program for that port.

Memory interface signals follow the general conventions for the 8080/8085/Z80 fam­
ily. M/10 L distinguishes between memory and 1/0 functions on the address/data lines.
RD and WR L are the READ and WRITE functions, respectively. READY is an input
from slow memory or devices that lengthen the transaction by an integral number of clock
cycles. The 8086, like the 8085 and Z80, does not produce a WAIT output on a status
line. This particular information has turned out to be superfluous, and is unlikely to show
up again in later generations of the 8080 family. The DMA interface is HOLD for a HALT
request and HLDA for a HALT ACKNOWLEDGE. Four other lines are multiplexed to
hold the four most significant bits of a 20-bit address or 4 additional status bits whose
function describes the type of memory access.

Because the 8086 supports both 8-bit and 16-bit accesses, it must distinguish among
the two types of access in the memory interface. This is done through the BHE L (high­
byte enable) signal. When used in conjunction with the least significant address line, this
control bit can facilitate access to 16-bit data that lies either on even-address or odd­
address boundaries, as well as access to a single byte instead of a full word. The idea is
that memory is organized into two banks of 8-bit bytes, one bank for even byte-addresses
and the other for odd byte-addresses. For access to 16-bit words, both banks are active.
For access to single bytes, only one of the two banks is active. BHE L plays the role of the
select line for the odd-address bank, and AO L has the same role for the even-address
bank. To access a full word on an even-address boundary, both BHE L and AO L are as­
serted. Both banks respond. To access a single byte in either bank, the corre~ponding
select signal is asserted. When a full word lies on an odd-boundary, two cycles are re­
quired, since the data on the address lines A1 through A19 are different for the two bytes
that make up the word. In this case, the 8086 accesses the bytes sequentially, first the byte
at the odd-address, then the byte at the next higher even-address. Thus BHE Lis used to
facilitate both boundary crossing and the SIZE function mentioned earlier in this chapter.

HISTORY AND BACKGROUND READING

Noyce and Hoff (1981) trace the historical development of microprocessors in an interest­
ing discussion of the evolution of the industry. Hoff is recognized as the inventor of the
first microprocessor, the Intel 4004, which was first developed in 1969-1970 and mar­
keted in 1971. The idea of putting together a complete processor on a chip had been in
many people's heads all through the 1960s as the semiconductor industry produced chips
of ever greater complexity. Calculator chips produced in the late 1960s were gradually
gaining in capability and led toward the evolution to microprocessors. Hoff's project, in

Micron Technology Inc. et al.
Ex. 1042, 39

40 Microcomputer Structures

fact, came as a direct result of an effort to build low-cost, high-performance calculators
for Busicom, a Japanese firm that has since folded operations. The key idea in Hoff's ap­
proach was to use a general-purpose processor with RAM and ROM to implement the cal­
culator functions instead of using the highly specialized functional chips with a shift­
register memory that was the more conventional approach. Hoff also pushed chip-design
technology by using chips with roughly 2000 transistors, which was about four times the
density of more conventional calculator chips. Hoff's design team demonstrated that a
general-purpose 4-bit processor was more cost-effective than the conventional design. But
even more important was the fact that the 4004 was inherently a general-purpose device
that could find use in many applications. The.se broad applications promised high­
production volumes that translated into low unit cost. We know today how correct that
reasoning was. The microprocessors and peripheral support chips in high-volume produc­
tion today typically cost just a few dollars.

The 4004 did not lastthe decade. It indeed was revolutionary, but once the micro­
processor concept was proved to be sound, major development efforts quickly led to the
superior processors that supplanted the 4004. In 1972, less than one year after the public
introduction of the 4004, Intel produced the 8008, an 8-bit processor that was far more
powerful than the 4-bit 4004. At first the public reaction to microprocessors was slow. A
new idea has to be significapt to overcome the resistance to changing present design and
production methods. Within a year or two of the introduction of the 8008 microprocessor,
most industries had discoverec:l the power of the microprocessor and were planning new
products based on these devices. The 8080's appearance in 1974 had a significant impact
on showing what can be done with microprocessor technology. The microprocessor revo­
lution had begun. By 1980, more than 100 different microprocessors had been produced,
and sales had reached annual rates of tens of millions of units.

With the technology growing so fast, it becomes an almost impossible jo~ to keep
pace with new offerings of processors, memories, and peripherals. The best sources of in­
formation are the manufacturers themselves~ Major U.S. microprocessor manufacturers
(in alphabetical order) include Advanced Micro D~vices (AMD), American Microsys­
tems (AMI), Commodore Semiconductor, Fairchilp, General Instrument, Harris, Intel,
lntersil, Mostek, Motorola, National, RCA, Rockwell, Signetics, Texas Instruments, and
Zilog. (This list omits companies such as DEC, HP, and IBM that use their production
internally and do not generally market chips to the public.) Osborne and Kane (1978, Vol.
2 and Vol. 3) m;tintain an extensive and reasonably current collection of material on
microprocessors and peripherals chips. These volumes maintain extensive practical infor­
mation concerning particular chips in additiop to the manufacturers' original specification
sheets. ·

Textbooks on microprocessors began to appear en masse in the mid-1970s with the
growing popJJlarity of the 8080. Microprocessor texts tend to fit into four major areas­
logic design, systems design, software, and interfacing. Among the texts that are oriented
more strongly to hardware are Doty (1979); Johnson, et al. (1979); Fletcher (1980);
Givone and Roesser (1980); and Wiatrowski and House (1980). These texts show
methods of logic design based on microprocessor technology. A somewhat different ap-

Micron Technology Inc. et al.
Ex. 1042, 40

History and Background Reading 41

proach is taken by the systems-design texts, which generally describe microprocessors in
some detail, and show how to use their capabilities in practical systems. These texts tend
to put more emphasis on programming and less emphasis on logic design than do the
logiC-design texts. Among the texts that have appeared in this area are Barna and Porat
(1976), Hilburn and Julich (1976), Soucek (1976), Klingman (1977), Peatman (1977),
Leventhal (1978), Kraft and Toy (1979), and Krutz (1980). Peatman, Kraft and Toy, and
Krutz make particularly good background reading for studying this textbook. Ogdin
(1980) and Wakerly (1981) treat programming microprocessors. Wakerly is quite effec­
tive in shedding light on the key ideas in programming, while covering an extremely
broad spectrum of machines. Interfacing microprocessors has only recently
emerged as the principal topic of texts. Two notable texts in this area are Artwick (1980)
and Lipovski (1980).

Micron Technology Inc. et al.
Ex. 1042, 41

2 I SHIELDING, GROUNDING, AND

TRANSMISSION-LINE TECHNIQUES

In the vast majority of microcomputer applications, the microprocessor serves as an ''in­
telligent" controller in addition to any other functions it performs. As a controller, the mi­
cro senses the activity taking placy around it and issues signals periodically to alter the
external activity. Micros in automobiles, video terminals, communications links, for ex­
ample, are almost completely dedicated to a control function. In the automobile, the mi­
cro positions mechanical actuators that govern air/fuel mixture and other ctitical parame­
ters of the internal-combustion engine. In the video terminal, the micro alters no physical
or mechanical devices but rather manages a reasonably complex, real-time I/0 system
that includes at least a keyboard, video display, and serial data link. In communications
systems, the control function includes message storing and forwarding, error detection
and recovery, and routing-table maintenance. Word processors and small-business sys­
tems use the microcomputer for substantially more than the control function, in that the
text manipulation and financial record-management computations that characterize these
systems are strongly computational rather than control in nature. Nevertheless, the control
function is present, and the ability to connect the microcomputer to external peripherals
such as printer, disk, and communications link is a critical ingredient in the system's ef­
fectiveness.

With the microprocessor almost universally operating as a controller of external de­
vices, there is an inherent need to understand how to interconnect a microcomputer to
other system components. This chapter treats the interconnection problem at the electrical
level where we see what is necessary for reliable and safe interconnection. Chapter 1
gives a view of the interfaces between the micro and memory and I/0 ports in terms of the
information that flows across the interfaces. That inforn1ation has to be converted into a
physical form such as voltage, current, or light when it is transported from one module to
another. This chapter treats these electrical aspects of the interconnections. The next
chapter deals with timing and logical control of the signals on the interconnections.

The electrical issues raised in this chapter are quite real and extremely important. In­
terfacing is so challenging in its nonelectrical aspects that we would much prefer to ignore
the electrical problems if only we could. Ideally we wish to connect points A and B on the
microcomputer with points C and Don a peripheral device, knowi11g that the voltages are
compatible, and then to ignore all other electrical aspects of this connection. But the
underlying physical laws that dictate what happens over this connection can work against
us. When connections that look deceptively simple are made improperly, the connections
can introduce excessive noise, lower reliability, and serious hazards. Certain techniques
for interconnections have evolved over the years, giving the system designer a wealth of

42

Micron Technology Inc. et al.
Ex. 1042, 42

2.1 Grounding and Shielding 43

sound ways for implementing interconnections. Standards exist for some important types
of interconnections so that at least in these instances, the designer can freely connect com­
ponents, following the rules of the standard, with relative assurance that the system will
function safely and reliably. But even with standard interconnections, unskilled designers
can and do make mistakes that negate the value of the standard.

This chapter provides the essential background in the physical principles from which
all methods of interconnection evolve. In the latter part of the chapter we look at some
basic techniques in current use to illustrate the principles.

2.1 GROUNDING AND SHIELDING

Interconnections are a major of source of noise in a computer system. Typically, inter­
connections are made through cables or backplanes whose lengths run from roughly 10
em to 10 m. When cabling is done improperly, electrical noise from motors, electrical
storms, or from nearby electronic equipment can easily couple into the cabling where it is
then indistinguishable from data and control signals. Electronic transmission on intercon­
necting cables, especially on long cables, simply does not behave the same as transmis­
sion on short interconnections. The basic physical principles are the same for both short
and long wires, but many effects are not noticeable on short interconnections, so these
connections can be made in the most straightforward possible manner with little risk. The
differences in behavior are second-order effects that are essentially indiscernible on short
conductors. It is very tempting to ignore these effects for long interconnections as well,
but if one does one finds that the effects are quite visible and that they can severely upset
the integrity of the interconnections if the interface fails to deal with the effects properly.

As an example of one such situation, consider the interconnection of two chassis,
each of which has a separate connection to ground, as shown in Fig. 2 .1. The ground point
shown in the figure is the electrical ground on the AC distribution system. (This ground is
accessible through the large round prong of 3-prong AC connectors required for grounded
equipment by the electrical code in the United States.) The signal ground within each of
the two chassis is connected to the chassis, and each chassis is connected to the electrical
ground of the AC system through the ground prong of the AC connector. If the two chassis
are located in the same cabinet or are in close physical proximity, then it is possible to
make a safe electrical connection between the chassis ground points on the two chassis.
This is shown in Fig. 2.1 (a), and is common practice for chassis that are mounted in the
same equipment rack. When all of the assumptions on physical proximity are met, the two
chassis are at the same potential, so that no current flows through the conductor that inter­
connects the two chassis ground points. (Actually, the potentials of the chassis could vary
a little, and a small current might flow through the conductor equalizing the potentials.)

Fig. 2.1(b) shows a situation in which the chassis are separated by a large physical
distance. The ground points in the figure are grounds on different AC connectors. Even
when the connectors lie in the same room, if the AC connectors are controlled by different
circuit breakers, the ground conductors may be totally separate and distinct conductors

Micron Technology Inc. et al.
Ex. 1042, 43

44 Shielding, Grounding, and Transmission-Line Techniques

whose only point in common is the connection point at the power entrance of the building.
If the two chassis lie in two different buildings, the grounds are not connected directly to­
gether by a conductor, but rather are each individually connected to an earth connection in
their respective buildings, and the earth provides a path for electrical flow between the
grounds. In this instance the ground potentials to which the chassis are attached may differ
by several volts.

(a)

(b)

FIGURE 2.1 (a) Two chassis grounded together; (b) two remote chassis,
separately grounded with large distanceD.

Note that a complete loop exists for ground currents with the loop running from the
grounding point for Chassis A, through Chassis A to Chassis B, then to B's grounding
point, and from there back to the ground point for A. If cables carrying alternating current
thread this loop, then the changing field produced by such cables induces a potential
across the ends of the loop (between the two grounding points), and a current will flow in
the loop. Since the impedance of the loop is rather low, a few volts potential difference
can produce several amperes of current, which could do severe damage to electrical com­
ponents rated for lower currents. Worse yet, electrical storms could momentarily cause

Micron Technology Inc. et al.
Ex. 1042, 44

2.1 Grounding and Shielding 45

very large potential differences while supplying the charged particles that make a massive
current flow possible. Under such circumstances the current flow can be sufficiently high
to bum cables and destroy electrical interfaces. So although the ground-to-ground connec­
tion in Fig. 2.l(a) is safe, the one in Fig. 2.l(b) is not, and violates electrical codes. Even
the safe ground-to-ground connection may be inadvisable in cases where the resulting
ground loop provides a means for coupling noise onto signal lines.

The ground-to-ground connection in Fig. 2.1 (a) creates a ground loop in this system
just as the same connection creates a ground loop in Fig. 2.l(b). The difference is that
close physical proximity in Fig. 2.l(a) guarantees that the ground loop is not threaded by
large numbers of power cables, nor is this loop likely to be threaded by a lightning strike.
But it is likely to be threaded by the equipment power cords and signal conductors in the
interface cabling, each of which induces a small residual current flow around the ground
loop. This flow creates a small voltage difference between the grounds in the two chassis
that shows up as a noise voltage, which could be mistaken for signal voltage.

This example makes the point that one should not arbitrarily connect equipment
grounds together. Our intuition tells us that all ground points are at the same potential. In
reality, ground potentials are not equal because current flow in the ground conductors
causes small voltage potentials to develop from one ground point to another. When we
confine our design efforts to one printed-circuit board and take precautions to use extra­
wide conductors for power distribution, to a certain extent our intuition that all ground
conductors are at the same potential is acceptable. Even though the intuition is incorrect,
potential differences may be sufficiently small to be ignored.

The situation is drastically different from a system-wide viewpoint. Potential differ­
ences in grounds from printed-circuit board to printed-circuit board can instantaneously
exceed logic threshold. From chassis to chassis, improper cabling can lead to ground po­
tential differences that have the shape of short signal pulses. They can and do lead to false
triggering of logic gates, and in some cases can set up spurious, stable oscillations.

The remainder of this section looks at the problem of grounds and shows basic shield­
ing and grounding techniques for minimizing noise coupled into computers.

Shielding Techniques

Electrical devices, particularly computer devices are sources of electrical radiation. Com­
puters have internal oscillators that run anywhere from less than 1 MHz to over 20 MHz;
terminals have horizontal oscillators that operate at about 16 kHz and dot oscillators that
operate up to 20 MHz or more. (The function of these oscillators is explained in more de­
tail later in this textbook in the chapter on CRT controllers.) AM radios act as small
transmitters at their internal oscillator frequency of 455kHz, while FM radios transmit at
their internal frequency of 10.7 MHz. The office, factory, and home have dozens of de­
vices that potentially pollute the electromagnetic spectrum with noise. (New regulations
in effect in the United States severely limit the interference that can be emitted by an elec­
tronic device. These regulations apply to items sold after January 1, 1981, but we must

Micron Technology Inc. et al.
Ex. 1042, 45

46 Shielding, Grounding, and Transmission-Line Techniques

still contend with the millions of polluters in place on that date.) Devices sold today that
meet the new regulations, nevertheless, generate electrical noise internally. They meet
the regulations through shielding and filtering that severely limit escaping radiation. In­
side these systems there is still substantial extraneous noise that can disrupt computation.

In any case, computers are susceptible to electronic interference, particularly to in­
terference pickup on interconnecting cables. The interference can originate from low fre­
quency AC power lines, from equipment that fails to meet present radiation statutes, or
from noise sources in the interior of equipment that conforms to the radiation statutes. Re­
gardless of the source of the noise, there are basic rules that dictate how to shield, ground,
and cable to minimize the noise coupling.

The most common and preferred way to reduce noise is to shield the equipment as
shown in Fig. 2.2. If a shield entirely encloses the volume it surrounds, then external
noise sources cannot alter the relative potentials of the conductors inside the shield. Exter­
nal noise sources can only raise or lower the potential of the shield and of all elements
within the shield. External noise cannot raise one internal point more than another. Since
the devices operate on potential differences, and external noise produces no such differ­
ences within the shield, the noise is effectively decoupled from the shielded electronics.
The physical reasoning for this property is rather simple to understand from an intuitive
point of view. We use a physical analogy to show the underlying principle.

0
Noise
source

FIGURE 2.2 A shield around a circuit prevents external noise
sources from influencing components within the shield.

Suppose for a moment that the shield is charged to a potential of I V with respect to
some ground point. What is the effect on the conductors inside the shield of this increase
in potential? A physical analog for potential is the height of a stretched membrane, where
the membrane is firmly fixed on its boundary at heights that correspond to boundary po­
tentials. Figure 2.3 illustrates a stretched membrane that gives the potential everywhere

Micron Technology Inc. et al.
Ex. 1042, 46

2.1 Grounding and Shielding 47

inside a square whose sides are fixed at potentials of 0 V and I V. The stretched mem­
brane analogy holds because the shape of the membrane and the voltage potential over the
square area both satisfy Poisson's equation,

a2v a2v
-+-=0
ax 2 ay 2 '

which holds for potential when there is no electrical charge in the interior of the square re­
gion. When the region contains electrical charge, the zero on the 1ight-hand side of the
equation is replaced by the charge density as a function of x andy. In the equation, the
variable Vis a function of the coordinates x andy, and the equation constrains the sum of
the second partial derivatives with respect to these variables. Since the equation holds for
both problems, and the height of the membrane in one problem is analogous to electrical
potential in the other, we can visualize the potential by looking at the height of the
stretched membrane.

Now consider a shield for a two-dimensional circuit like the one in Fig. 2.2. The
stretched membrane analogy indicates that when the shield is raised by 1 V, then the po­
tential everywhere inside the shield is raised by I V. (When we stretch a membrane over a
frame, all of whose edges lie in a horizontal plane, the membrane will lie entirely in that
same plane.) Since Poisson's equation is linear, if we raise the shield by k V, then the in­
fluence in the shield is k times the influence of a 1 V shield potential. Circuits within the
shield respond to potential differences, but the shield raises all points by the same poten­
tial. Therefore external charges create no potential differences within the shield, and the
net effect of the shield is to eliminate the influence of outside noise sources.

Although this argument is for two-dimensional shields, the same behavior holds true
in three-dimensions. That is, a three-dimensional shield that completely surrounds a
volume prevents external charges from influencing the interior of the volume.

v(-==-
I

T
v

_l

(a) (b)

FIGURE 2.3 (a) Rigid frame with one edge charge to V volts; (b) stretched membrane with
height equal to potential at corresponding points within the frame.

Micron Technology Inc. et al.
Ex. 1042, 47

48 Shielding, Grounding, and Transmission-Line Techniques

FIGURE 2.4 An amplifier within a shield.

FIGURE 2.5 Equivalent circuit for amplifier
inside a shield.

While the shield has the desirable effect of eliminating contributions due to external
noise, it has undesirable effects that we must take into consideration. We briefly review
the problems created by the shield, and illustrate how to resolve them. The interested
reader should consult the much more detailed and thorough discussion of this topic in Ott
(1976) and Morrison (1977).

Figure 2.4 shows ah amplifier within a shield, with the shield capacitance to the in­
put, output, and ground points of the amplifier illustrated symbolically as individual capa­
citors. These capacitances typically measur~ a few picofarads up to a few hundred pi­
cofarads, depending on the size of the shield and its proximity to the input, output, and
ground lines. The equivalent circuit for this amplifier is shown in Fig. 2.5. Note that the
capacitors between tqe output and the shield and between the ground and the shield form a
load impedance for the amplifier, with the two impedances in series. The shield is at the
midpoint of the series impedance, and thus reaches a voltage of V0 UT Z z/(Z 1 + Z 2), where
Z 1 and Z 2 are the respective impedances of capacitances C 1 and C 2. This voltage is in
tum fed back to the input of the amplifier through capacitance C 3. If the input impedance
of the amplifier is very high, we can assume that no current flows through C 3 into the am-

Micron Technology Inc. et al.
Ex. 1042, 48

2.1 Grounding and Shielding

FIGURE 2.6 Proper grounding of the
shieJd eliminates the feedback path through
Stray capacitance.

49

plifier, although there may be cun·ent flow through C 3 between the output stage of the
a~plifier and the output stage of the voltage source that feeds the amplifier. The effect of
the feedback is to attenuate thi! gain of the amplifier at high frequencies, which is a highly
undesirable side effect ofthe shielding. To eliminate this sidP effect, we must break the
feedback path. We simply ground the shield as shown in Fig. 2.6, and the feedback is
disconnected. This illustrates the first of two fundamental rules on proper grounding and
shielding stressed by Morrison (1977):

Rule 1: The shield of an electronic circuit must be connected to the signal ground of
that circuit in order to reduce or eliminate the feedback effects induced by the shield.

If all ground points were at the same potential, the first rule would tell us all we need
to know. But we realize now that ground is not well-defined. Should we choose a ground
point near the amplifier input? Should it be near the amplifier output? Or should the
ground point be somewhere else, distant from the amplifier? These questions are settled
by Rule 2 below.

To develop the reasoning for Rule 2, note in Fig. 2.7(a) a situation in which a signal
generated in Chassis A is passed to an amplifier in Chassis B. The two chassis are con­
nected together electrically through the shield. Within the shield between the two chassis
is a cable that carries both the signal wire and the ground reference point. This system has
a single point at which the input signal zero-reference point is tied to a ground reference,
and also a single point at which the shield is connected to the signal zero-reference point.

Consider what happens when those two connections arc made in different chassis as
shown in Fig. 2.7(a). In this case the zero-reference point for the signal is tied to ground in
Chassis A and to the shield in Chassis B. We have now created a ground loop in that there
is an electrical path from the Chassis A earth connection, through the ground-reference
wire to Chassis B, and from there to the shield connection. From this point the loop is cou­
pled capacitively to Chassis B eat1h ground, and from there through the earth to Chassis
A. Although the path is not closed with respect to DC current flow, it is closed with

Micron Technology Inc. et al.
Ex. 1042, 49

50 Shielding, Grounding, and Transmission-Line Techniques

respect to AC noise currents. We noted earlier that a closed loop is susceptible to noise
pickup due to changing flux from wires that thread the loop. In Fig. 2.7 we show a noise
source between the two earth connections that represents the effects of noise from grounds
at two different potentials. The ground voltage induces a current flow through the loop,
and the current flow on the ground-reference line causes a voltage drop on that line. With
current flowing on the ground-reference line, the voltage measured at the amplifier input
is not identical to the voltage as measured in Chassis A. The discrepancy is the voltage
drop in the ground-reference line due to noise, and the noise is coupled into the amplifier.

To create a faithful replica of the signal current at the amplifier input, we have to
eliminate insofar as possible the current flowing in the ground-reference line. The connec­
tion shown in Fig. 2.7(b) exhibits one such way of achieving the goal. By attaching the
shield to ground at the reference point of the input signal, the ground-reference line
between the chassis no longer participates in a ground loop, and thus current cannot flow
in this line. Current does flow in the shield, however, but this is not coupled into the
amplifier. So the key idea in Fig. 2.7 is to ground the shield in a manner that prevents
ground loop currents in ground-reference lines. The reference line cannot be an accurate
reference if there is a noise voltage drop on the line. We break the ground loop by choos­
ing the shield grounding point according to Morrison's second rule:

Rule 2: The shield should be connected to earth ground at the zero-voltage reference
point for the input signal.

Although Fig. 2.7(b) shows this connection made in Chassis A, it is equally permissible to
make both connections in Chassis B. When made in this manner, the zero-signal reference
for the input signal is not in the same chassis as the input source, but this is acceptable if
no noise current flows in the reference line. In fact, the noise currents flow through the
shield between chassis and not through the ground leg of the input circuit.

Chassis A Chassis B Chassis A Chassis B

Noise voltage Noise voltage

(a) (b)

FIGURE 2. 7 (a) Improper grounding of shield; (b) proper grounding of shield.

Micron Technology Inc. et al.
Ex. 1042, 50

2.1 Grounding and Shielding 51

Rules I and 2 provide the necessary guidance to show what to do, as a general rule,
with shields. There are, however, situations that arise in which one cannot connect all
shields to some common reference line because the interconnected devices may be at sub­
stantially different potentials. We modify our findings somewhat for such situations as
indicated in the next subsection.

Balanced Interconnections

Figure 2.8 shows two chassis connected directly together through the shield on the inter­
connection cable. Our earlier discussion stated that we cannot arbitrarily ground two
chassis together. What if these devices are several hundred meters apart? We are in seri­
ous trouble if we use the connection in Figure 2.8 when the chassis are in two different
buildings and thus are connected to earth through two separate ground points. Although
the noise voltage is effectively coupled out of the amplifier circuit, the current transients
on the shield could be enormous, especially during an electrical storm. We may discover
that the ground current is large enough to bum or otherwise damage the equipment. How
can we avoid the ground loop in the shield in those situations when a direct ground-to­
ground connection is hazardous?

FIGURE 2.8 A signal transmitted from one chassis to another. The distance
is so great that the shields cannot be safely connected. The connection shown is
improper.

Today's technology provides several possible solutions. Among those possible are

1. Fiber optic Iinlc
2. Optical isolator.
3. Balanced (double-ended) electrical connection.

The two optical methods use different optical technology. Fiber optic links, Method
1, use modulated light transmitted on optical fibers to transmit information. The optical
isolator of Method 2 is a single integrated device that contains both a light -emitting diode

Micron Technology Inc. et al.
Ex. 1042, 51

52 Shielding, Grounding, and Transmission-Line Techniques

and a light-sensitive transistor. When this type of device is used for driving interconnec­
tion cables, the signals are sent electrically between chassis, and the electrical isolation is
achieved by the optical isolator at one or both cable endpoints. The third method is one
that uses twisted-pair conductors for electrical signaling, with care taken to make connec­
tions such that external noise has minimum influence. For purposes of electrical isolation,
the first two methods are superior to the third because the optical coupling eliminates all
direct connections between chassis. However, at this writing, fiber optic links are in the
early stages of commercial availability, and are rather more expensive than twisted-pair
wire connections. (The relative costs could change in the future.) Optical isolators are rea­
sonable in cost, but generally have lower maximum transmission rates than twisted-pair
interconnections. So for the immediate future, the twisted pair is the most attractive inter­
connection for cabling over distances measured in hundreds of meters. When fiber optic
connections become less expensive or optical isolators attain higher bandwidths, the
electrical interconnection of the twisted pair will be much less attractive.

To make a direct connection between chassis with a twisted pair of conductors, we
must use balanced drivers and receivers shown in Fig. 2.9. The balanced driver has two
outputs, one of which is high and the other of which is low at any given time. Drivers are
constructed so that transitions on the two outputs occur simultaneously, or as nearly
simultaneously as technology permits. Transition delays may differ by at most a few
nanoseconds in typical devices. The balanced receiver is a comparator whose output is
high or low depending on which of the two inputs is at a higher potential. The receiver has
a very large input impedance to ground on both of its inputs, and the impedances to
ground are equal or nearly equal. We can represent the receiver as shown in Fig. 2.9(c) as
an ideal differential amplifier with two load resistors to ground.

(a) (b)

(c)

FIGURE 2.9 (a) A balanced driver; (b) a balanced
receiver; (c) the balanced receiver with input impedance
to ground.

Micron Technology Inc. et al.
Ex. 1042, 52

2.1 Grounding and Shielding 53

A B

._----------------------~~~------------------------

Noise voltage

FIGURE 2.10 Proper interconnection using balanced driver and receiver. The transmission
lines should be a twisted pair.

The proper interconnection of the driver to receiver appears in Fig. 2.10. The shields
of the two chassis are isolated electrically. When the two earth connections are at the
same potential, the current that flows through the interconnecting cable is limited by the
high input impedance to ground. Because the driver and receiver are balanced, both legs
of the cable have identical source impedances and load impedances. Current flow due to
signal potentials should be essentially zero or very low because of the high input im­
pedance. Hence the voltage produced at the output of the driver is equal to the voltage
impressed on the input of the receiver, since there is no voltage drop in the cable.

If the earth connections of the two chassis differ in potential, the voltage difference
causes a current flow in the loop that connects the two systems together. This is the loop
that runs from the earth connection on System A, through to the ground reference point on
the driver in A, through the twisted pair interconnection to the receiver, and from there
through the load resistors to ground, then to the earth point of B, and from there back to
the earth point of A. The important points about this noise voltage are that it raises the
voltage in both conductors in the twisted pair equally, and that in the two lines the incre­
mental current flows due to this noise voltage are equal. The current flows are determined
by the large load resistors, which are equal in the balanced receiver. Hence, with equal
currents flowing in the two conductors, the conductors' voltage drops that are caused by
noise will be equal, and the voltages impressed at the receiver input pins will each be re­
duced by the same amount, namely by the drop in the cables due to the noise voltage.
Note that the receiver inputs carry voltages equal to s (t) - n (t) and - s (t) - n (t),
respectively. The ideal receiver responds to the difference signal only, which is 2s(t),
and rejects the noise voltage. Real receivers amplify common-mode voltages as well as
differential-mode voltages, but the common-mode gain is many hundreds of times less
than the differential-mode gain. In this case the common-mode voltage is the average of
the two input signals, which is -n (t). Receivers with very high common-mode rejection

Micron Technology Inc. et al.
Ex. 1042, 53

54 Shielding, Grounding, and Transmission-Line Techniques

A B
~----------------------~~~----------------------~

Noise voltage

FIGURE 2.11 Proper interconnection using unbalanced driver. The transmission lines should
be a twisted pair.

can eliminate the noise voltage completely from digital signals, unless the noise voltage is
so large that it lies in an input region for which receiver common-mode rejection is
ineffective.

The key idea in the use of balanced interconnections is to accept the noise voltage be­
cause it is unavoidable, but to develop noise voltage equally on two different lines while
signal voltages are transmitted unequally on these lines. The receiver then uses the noise
voltage on one line to nullify the voltage on the other line, effectively subtracting out the
noise contribution. In the absence of balanced drivers, it is still possible to adapt this same
idea to conventional single-ended drivers as shown in Fig. 2.11. Here the ground point on
the driver amplifier is brought across with the single signal line, but the ground is not con­
nected to ground at Chassis B. Rather the ground is used as a reference signal in the dif­
ferential receiver, as in Fig. 2.10, so that the effects of noise voltages can be subtracted
from the signal voltages. In this case the signal lead carries s (t) - n (t) while the ground
lead carries -n (t). Hence the differential-mode voltage is s (t) and the common-mode
voltage is [s (t) /2] - n (t). The threshold for the receiver should be set halfway between
high and low signals, because this is the excursion range of the signal line with respect to
ground. In Fig. 2.10, the balanced receiver should have a zero threshold since the differ­
ence signals will be positive or negative in value, depending on the data transmitted. The
balanced line of Fig. 2.10 is preferred to the unbalanced line because it has higher noise
immunity (double the noise-voltage threshold).

2.2 TRANSMISSION-LINE TECHNIQUES

Designers of low-speed electronic circuits normally make the simplifying assumptions
that signal propagation over conductors is instantaneous (or nearly instantaneous), and
that the received signal is a faithful replica of the transmitted signal. In high-speed cir-

Micron Technology Inc. et al.
Ex. 1042, 54

2.2 Transmission-Line Techniques 55

cuits, transmission-line effects tend to distort signals on paths that are long compared to
the wavelength of the signals propagating on the paths. At 100 MHz, wires only a few
centimeters long show nonnegligible transmission-line effects. For 50 to 60 Hz, the ef­
fects are unnoticeable in ordinary wiring, but become visible on power transmission lines
that run a few hundred kilometers. Transmission-line considerations can generally be ig­
nored in the design of logic circuits that have clock rates from 1 to 10 MHz for paths con­
fined to one printed-circuit board, but there are noticeable transmission-line effects where
signals are bused from board to board, and severe effects where signals move from chassis
to chassis. Very high-speed equipment that runs with clock rates from 50 MHz to 100
MHz must normally treat even those signal lines confined to one circuit board as transmis­
sion lines, except possibly for very short lines. This is particularly true for the high-speed
nonsaturating logic families known as ECL (emitter-coupled logic) and CML (current­
mode logic). The remainder of this section investigates these effects, and illustrates how
to minimize signaling problems due to the effects.

Point-to-Point Transmission

To start this discussion, consider the transmission line shown in Fig. 2.12, in which a volt­
age is impressed on a line, and transmitted down that line to a load impedance ZL. From
electromagnetic theory, we know that the signal propagates along the transmission line at
the speed of light. Both voltage and current propagate together down the line. The
transmission line acts as a network of distributed inductance and capacitance as shown in
Fig. 2.13 in carrying the propagated signal. When the wave propagation equations are
solved, we find that everywhere on the line

where V0 is the propagated voltage, I 0 is the propagated current, and Z 0 is the wave im­
pedance of the line, which is a function solely of the inductance L and the conductor-to­
conductor capacitance C of the line where both L and C are measured per unit length.
Specifically,

Zo = -y!f..

Transmission line

FIGURE 2.12 A transmission line and load impedance.

Micron Technology Inc. et al.
Ex. 1042, 55

56 Shielding, Grounding, and Transmission-Line Techniques

L L L

L L L
(a)

+--JR

Io____.

I \ I
~.

Vo Zo :• VR ZL

\
<>

) 1
I
I

(b)

FIGURE 2.13 (a) The equivalent circuit for a transmission line;
(b) direct and reflected voltages and currents in line with
impedanceZ0 and load impedanceZL.

At the far end of the line, the ptopagating voltage and current meet the load resistance
ZL. At this point, as at every other point in the line, Ohm's law must be satisfied, but we
cannot satisfy it with V 0 and I 0 alone because, in general, V 0 /I 0 is not equal to ZL since
this ratio must equal Z 0. Ohm's law requires a reflected wave to appear at the far end of
the line and to propagate toward the source end. The initial voltage and current of the re­
flected wave are such that the direct and reflected wave together satisfy Ohm's law at the
load resistance. In a sense, the reflected wave is launched by the arrival of the direct
wave, with the mismatch of the load impedance detennining the initial state of the re­
flected wave. The reflected wave, like the direct wave, satisfies the wave equation in the
transmission lirie. Hence, for the reflected wave we have

VR = IRZo.

To develop an equation that describes the state of affairs at the load end, we use the sign
conventions shown in Fig. 2.13 where we see that the reflected voltage and direct voltage
are additive at the load, but the reflected current is in the opposite direction of the direct
current. Consequently, at the load we have

This gives three equations in the four variables V0 , VR, I 0 , and IR. Given any one vari­
able, we can solve for the other three. By eliminating I 0 and I R, we can solve for the ratio

Micron Technology Inc. et al.
Ex. 1042, 56

2.2 Transmission-Line Techniques 57

VRIV o, which is known as the reflection coefficient. With some simple algebraic manipu­
lation we find

VR ZL - Z 0

Vo ZL + Zo.

The reflection coefficient tells us the magnitude of the reflected wave as a function of the
voltage impressed on the line. Note that the reflected wave is not larger than the magni­
tude of the direct wave, and the reflected wave could have either the same or opposite po­
larity &s the direct wave. For a short cil'cljit load, the reflection coefficient is -1 and for
an open circuit the coefficient is + 1. These two conditions yield the maximum magnitude
of the reflection coefficient.

A very interesting and important situation arises when the load impedance ZL is
chosen to be equal to the wave impedance Z0 of the transmission line. In this case there­
flection coefficient is 0, and there is no reflected wave at all. We say in this case that the
load resistance is matched to the line. Note that if Z 0 is greater than ZL, the reflection
coefficient is negative, so that the reflected wave cancels, in part, the transmitted wave. If
Zo is less than ZL the reflection coefficient is positive and the reflected wave reinforces
the transmitted wave.

Now we consider several examples to show how various source and load impedances
cause different reflections to appear on the line. In Fig. 2.14, the far end is open, and the
reflection coefficient is + 1. Our physical intuition indicates that if we wait long enough
the line will charge to the full voltage V0 impressed on the line. If we have a small source

Source-end
voltage

Far-end
voltage

'----........rr--

Time

FIGURE 2.14 Voltage waveforms in an untenninated line.

Micron Technology Inc. et al.
Ex. 1042, 57

58 Shielding, Grounding, and Transmission-Line Techniques

impedance of Zs, so that the reflection coefficient at the source end is nearly, but not
quite -1, then the behavior of the line is as shown in the figure. Initially the voltage V0 is
impressed across the series load of Z5 and Z 0, so that V 0 Z 0 /(Z5 Z 0) is the magnitude of
the first direct wave down the line. The wave reflected back has an equal magnitude.
When the reflected wave reaches the source, it is reflected back negatively, at almost the
same amplitude. The voltage here is the sum of three different waves- the original direct
wave, the wave reflected at the far end, and the second direct wave. Since the reflected
wave from the far end and the second direct wave are very nearly equal but opposite in po­
larity, they almost cancel each other. Hence, the voltage at the near end is slightly above
the voltage of the first direct wave. The next reflected wave that arrives at the source is
negative in polarity and is reflected at almost the same magnitude with positive polarity.
The voltage at the source at this time then drops just slightly as the third direct wave is
launched down the line. This general behavior repeats for subsequent reflections so that
the voltage at the source end of the line oscillates above and below V 0, with the oscilla­
tions gradually dying out. At the far end, the maximum excursion from the asymptotic
voltage occurs after the first direct wave reaches that end. The voltage at this time is
roughly twice V0. After the second direct wave reaches the load, the voltage swings al­
most to 0. Subsequent reflections cause voltage swings that alternate above and below V 0 ,

with the amplitude of the swings gradually dying out. The waveforms shown are seldom
observed as sharp rectangular waveforms because of the very high frequencies in the tran­
sients that are difficult for oscilloscopes to capture. They do appear, however, in the form
of smooth transients with overexcursions and subsequent oscillation known as ringing.

Figure 2.15 illustrates a slight variation of the previous example. In this case the near
end is terminated with Z 0 to match it to the transmission line. The initial direct wave is
the voltage impressed on the series connection of Z 0 with the line impedance Z0 , so that
V 0 Z 0 /(Z 0 + Z 0) = V 0 I 2 travels down the line. At the far end the voltage jumps to V o,
because the reflected wave is equal to the incident wave. This wave travels back to the
source where it is absorbed by the matched impedance. When the reflected wave reaches
the source, the entire line is charged to V0. In this case one round-trip propagation charges
the entire line.

A line matched at the far end is shown in Fig. 2.16. This line has a load impedance of
Z 0. When a wave is impressed on this line it travels to the far end where it is absorbed
without reflection. When this termination is used, the source impedance is usually made
as small as possible so that nearly all of the output voltage appears at the far end.

A more complex situation appears in Fig. 2.17. In this figure, neither the source nor
the load impedances match the transmission line. This line has reflections that travel back
and forth on the line until the voltage reaches its asymptotic value. The values of the volt­
ages for the first few reflections are shown in the figure. The asymptotic voltage has to be
the voltage across ZL when it is in series with Z5 alone; that is,

VoZL
V ASYMP = ZL + Zs

The figure shows the voltage approaching this asymptote.

Micron Technology Inc. et al.
Ex. 1042, 58

2.2

Source-end
voltage

Far-end
voltage

Transmission-Line Techniques

Time-+

FIGURE 2.15 Voltage waveforms in a line terminated with a matched
impedance at the source end.

Source-end
voltage

Far-end
voltage

Time--+

FIGURE 2.16 Voltage waveforms in a line terminated with a far-end
matched impedance.

59

Micron Technology Inc. et al.
Ex. 1042, 59

60 Shielding, Grounding, and Transmission-Line Techniques

1 v-==-

Source-end
voltage

Far-end
voltage

0.84 0.82 0.82
0.6,....0 _ ___,,,----.. _______ _

0.90 0.81 0.82

FIGURE 2.17 Voltage wavefonns on a line with neither source- nor far-end
impedance matching.

270 SJ

The last few examples illustrate a general characteristic of terminations in transmis­
sion lines. When a transmission line is terminated by an impedance greater than Z0, the
positive reflection coefficient causes the reflected wave to reinforce the direct wave, and
we see the voltage increase after a reflection. If subsequent incident waves all have the
same polarity, then the voltage at the load increases monotonically in time. The envelope
of the step increments is exponential for a line with a single source and load, and is the su­
perposition of several exponentials for more complex situations. An oscilloscope trace of
a charging line shows the steps as smooth transitions, and the line appears to charge to its
asymptotic voltage exponentially.

Terminations that are less than Z 0 result in negative reflection coefficients. In these
cases, the reflected waves alternate signs, and the observed voltage oscillates above and
below the asymptotic value as demonstrated in Fig. 2.14. The resulting ringing has an ex­
ponential envelope for simple configurations, and is the sum of exponential decays in
more complex configurations. Thus overshoot is a by-product of a termination resistor
that is smaller than Z 0, and gradual line charging results from having a load resistor that is
larger than Z 0 . In a sense, the terminating resistor acts as a damping element. When it is
too small, the line voltages overshoot and oscillate. When it is too large, oscillations are
completely damped out, but the line voltage is prevented from rising rapidly to its final
value.

Micron Technology Inc. et al.
Ex. 1042, 60

2.2 Transmission-Line Techniques 61

Applications

Now that we know something about the behavior of transmission lines, how do we use
this information when interconnecting systems? For point-to-point lines with a single
source and single sink, the problem is relatively simple. Solutions become a good deal
more complex for lines with multiple sinks and sources. For the latter, most solutions are
at best engineering compromises. First we develop preferred termination techniques for
the point-to-point case, and then we deal with the more complex cases.

There are three interconnection methods that are in use for the point-to-point case:
The designer should do one of the following:

1. Wait long enough after each signal transition for the reflectiOilS on the line to die out,
and not attempt to reduce reflections through terminations on the transmission line.

2. Use a matched termination at the far end, thereby producing no reflections on the
line.

3. Use a matched termination at the source end, absorbing the wave reflected from the
far end.

For low-speed systems, waiting for several round-trip propagations is far easier to do than
anything else, and is the best solution. As speeds become more c1itical we would like to
limit waiting to a single one-way transmission time, or at most to a single round-trip time.
The second and third solutions are shown in Fig. 2.18. By matching at the load, the re­
flected wave is eliminated. However, this method results in considerable power dissi­
pated in the load. In this example, the driver gate is an open-collector gate in the 7406 or

(a)

~.....;____· -IG>
(b)

FIGURE 2.18 (a) Far-end matching; (b) source-end matching.

Micron Technology Inc. et al.
Ex. 1042, 61

62 Shielding, Grounding, and Transmission-Line Techniques

7407 family, and the load resistor is selected to match the cable impedance. Since con­
ductors like flat ribbon cables have a wave impedance on the order of 150 D., the driver
produces about 30 rnA when the voltage excursion is on the order of 4.5 V. The power
dissipation in the load resistor is about 60 to 65 mW for pulses that have 50% duty cycle.
Multiply this power dissipation by the number of signal lines, typically on the order of 30
to 50 for parallel interfaces, and we discover that two to three watts can be dissipated in
the terminating resistors. The power lost is largely wasted because it is expended solely
for noise reduction, not for computation or data storage. Other methods of termination can
reduce the power lost, but may increase the transient response time.

If the duty cycle is rather low with infrequent active pulses, matched termination at
the load becomes more attractive. For example, it is commonly used for floppy disk
drives where pulses have about a 5% duty cycle. With this low a duty cycle the power dis­
sipated reduces to about 6 mW, which is much more reasonable.

To avoid power dissipation, many systems use the source-matching method shown in
Fig. 2.18(b). This method generates a reflected wave, but the voltage at the far end climbs
to full value when the direct wave arrives if the impedance there is infinite. Hence, most
applications of this method require special line receivers with very high input im­
pedances. Standard transistor-transistor logic (TTL) gates have input impedances on the
order of a few thousand ohms, which disqualify them as line receivers.

In spite of the reflected wave produced by source termination, a source-terminated
line can be run at the same speed as a load-terminated line in the point-to-point configura­
tion. In both cases the output of an ideal transmission line is an exact replica of the input.
(Second-order effects not treated here tend to alter the rise time of transmitted signals as
they pass through a cable.) The source-terminated line, however, dissipates no power in a
constant-voltage state, whereas the load-terminated line dissipates considerable power in
one of the two logic states, depending on whether the load resistor is returned to ground or
to the supply voltage.

The disadvantages of source termination become more apparent when there are mul­
tiple taps on the line instead of a single load at the far end. The initial direct-wave voltage
on the source-terminated line is only half the final voltage. The direct wave reflects back­
ward at an infinite load impedance with a magnitude equal to the original magnitude. As
the reflected wave passes intermediate taps on the line, they attain their full and final volt­
age (provided that the taps themselves are infinite impedances, and infinitely short).
Hence, intem1ediate taps have to wait for up to one complete round trip before they have
the full output voltage available.

The tapped transmission line mentioned here becomes extremely difficult to analyze
when the taps are themselves short stubs of transmission lines. Figure 2.19 shows a single
driver feeding several receivers on a bus line. The receivers are each located at the end of
short stubs of transmission lines, and we assume that all stubs have the wave impedance
Zo of the main transmission line. In this situation there is no way to prevent multiple re­
flections from propagating on the line. The reflections all die out eventually, but depend­
ing on the locations of the taps and the impedances at the receivers, the reflections can
possibly reinforce each other at specific times and places on the transmission line, thereby
creating spurious pulses that easily are mistaken for signals.

Micron Technology Inc. et al.
Ex. 1042, 62

2.2

Waveform at
typical point

Time

Transmission-Line Techniques

FIGURE 2.19 A bus driving multiple receivers on a transmission line.

63

Taps on the transmission line cause reflected waves in two different ways. There are
reflections at the receiver ends of the stubs and at the taps themselves. Because the reflec­
tions are extremely troublesome, we might be tempted to eliminate the reflections in the
stub by matching the receivers to the line. The resulting low impedance rules out this ap­
proach. Moreover, no simple scheme can eliminate reflections produced at the taps where
the stubs are joined to the line. So we must live with the reflections somehow if we must
use the tapped line.

How do the reflected waves produced on the tapped line show up in the received
waveforms? As a wave propagates down a transmission line and reaches a stub, part of
the wave continues down the main line, part is diverted into the stub, and part is reflected
back toward the source. As the direct wave passes by a stub and a load impedance, a short
trough appears in the load voltage because of the energy diverted from the direct wave at
the stub. Meanwhile, unless the receiver is matched to the stub impedance, the wave
diverted into the stub is partially reflected back when it reaches a receiver input. The re­
flected wave returns down the stub to the tap on the transmission line where it reenters the
line, and propagates in both directions. (Part of this wave is also reflected backwards into
the stub towards the receiver.) If the stub has an infinite load impedance, all energy
diverted into the stub eventually works its way back onto the transmission line, although
many reflections in the stub may occur before all the energy is completely returned to the
line. If the stub load impedance is not infinite, then it drains energy from the line that
reduces the asymptotic voltage at the far end. In any case, the stub gives rise to a series of
reflections that propagate down the line just behind the direct wave. Since the stub is
presumably short compared to the line length, the several reflected voltages show up at
the far end as a collection of peaks and troughs as shown in Fig. 2.19. Note that multiple
reflections may reinforce or cancel each other, so that spurious troughs can be large

Micron Technology Inc. et al.
Ex. 1042, 63

64 Shielding, Grounding, and Transmission-Line Techniques

enough to cause a continuous signal to appear as two or more distinct pulses separated by
a null signal. "

To see how the complex reflections arise, let us examine the tapped transmission in
somewhat greater detail. Consider, for example, Fig. 2.20 which illustrates the im­
pedance encountered by a wave propagating down the bus. On a main bus segment the
wave impedance is a uniform Z 0. If we assume that the stub also has impedance Z 0 , the
parallel connection of two line impedances of Z 0 at the tap results in a local impedance of
Z 0 /2. Thus the reflection coefficient at the tap is -~,and is due simply to the wave im­
pedance of the stub in parallel with the line impedance, and is not due to any real load im­
pedance. Hence, there is a wave reflected back to the source whose magnitude is ~the
direct wave and opposite in polmity. But the direct wave still propagates forward into the
stub and down the main line. Now there are three waves on the line-a direct wave prop­
agating toward the load, a direct wave propagating into the stub, and a reflected wave
propagating back to the source.

FIGURE 2.20 Voltage and current relations in a tapped transmission line.

Figure 2.20 shows an artificial situati~:m in which all end points are matched to the
line impedance, and thus produce no reflections themselves. The asymptotic voltage
across the loads in this case is V 0 /3. This follows because the two loads of Z 0 are in paral­
lel to form an equivalent load impedance of Z 0 /2. This load is in series withZ0 , forming a
voltage divider with Z0 . Hence V 0 !3 appears across the load impedances, and twice this
(or 2V o /3) appears across the source impedance of Z 0. .

Now we verify that the three propagating waves behave as the asymptotic values
predict they should. At the source end, the driver sees a source impedance of Z 0 in series
with the transmission line that also has an impedance of Z 0 , so that the initial voltage

Micron Technology Inc. et al.
Ex. 1042, 64

2.2 Transmission-Line Techniques 65

splits equally across the source impedance and the line. Hence the initial direct wave has a
value V 0 !2. When this reaches the tap, a reflected wave of -(V0 /2)/3 = - V 0 !6 prop­
agates back to the source, where it drops the line input voltage to

Vo Vo Vo
- ---

3 2 6 .

At the tap, the reflected voltage drops the voltage immediately to V 0 !3. The current at
the tap point is (V0 /3)/(Z 0 /2). This current splits evenly in the branches of the tap, since
the impedances on the two branches are equal. Consequently, a current with a value of
V 0 !3Z0 flows in each branch; and since the impedance in each branch is Z 0, the waves
propagated in each branch have a voltage of V0 !3. Since no reflections occur at any end
of this line, the line reaches a steady state at a potential of V 0!3 after the direct waves and
tap reflection have reached their destinations. Thus, the transmission line calculations
agree with the asymptotic calculations. · ·

The circuit in Fig. 2.20 is not a practical circuit, but is shown only for illustrative pur­
poses. While matched termination eliminates end reflections, matched source termination
severely reduces voltage available at the load, and matched load termination greatly in­
creases the power that the driver must deliver. Moreover, matched tenninations cannot
eliminate the reflections caused by taps, so that impedance matching everywhere is nei­
ther desirable nor effective.

A more useful way of tapping onto a line is shown in Fig. 2.21. The tap is made with
a line whose wave impedance is very high; the stub is kept very short; and the receiver has
an infinite input impedance. The high impedance tap prevents the tap from draining signi­
ficant amounts of energy from the direct wave. The infinite impedance at the receiver re­
flects all waves that travel into the stub back down the stup to where they reenter the
transmission line. The short stub guarantees that waves diverted into the stub will reenter
the transmission line with as small a delay as possible.

Z>> z0

I
I ..

z ·~ .,
I

FIGURE 2.21 Ideal ways of tapping a transmission
line with a high-impedance short stub and a high-
impedance receiver. ·

The difficult problem in satisfying the demands of Fig. 2.21 is the problem of creat­
ing a high impedance stub. Wave impedances on transmission lines depend on line induct­
ance and capacitance, and are difficult to increase over a few hundred ohms. If the line
has an impedance of 75 n and the stub is an etched line on a circuit board with an im­
pedance of 200 to 300 n~ some power is still diverted into the stub, but it is only~ tot of

Micron Technology Inc. et al.
Ex. 1042, 65

66 Shielding, Grounding, and Transmission-Line Techniques

the power of the direct wave. When stubs are terminated with an infinite impedance, any
wave that enters the stub is reflected back to the bus. At the bus the wave splits, and prop­
agates in both directions on the bus, and reflects back into the stub. We have seen earlier
that subsequent reflections in the stub repeat this process until all of the stub energy is
returned to the transmission lirie, half in the source direction and half in the load
direction.

As long as reflections are small compared to the direct wave, the peaks and troughs
visible in the direct wave arising from stub reflections will be small and will die out as the
line charges to the impressed voltage. The depth of the troughs depend on the impedances
that terminate the stubs, and the decay time depends on the length of the stubs and the
length of the line. In critical applications, the transmission line should be routed to each
receiver input, so that stub length is essentially zero, and the wave impedance of the tap
should be as high as possible.

Another alternative used in practice is to eliminate all taps from buses. The signal is
transmitted using point-to-point driver and receiver pairs. Each receiver has a correspond­
ing driver that forwards the signal to the next point on the bus. This method increases the
delay in propagation time because signals pass through many receiver/driver pairs in mov­
ing from one end of the bus to the other, but each segment of the line is point to point and
can be terminated properly for noise-free operation.

The most complex situation encountered in practice is the one depicted in Fig. 2.22.
This figure shows a line with multiple taps in which each tap has both a driver and re­
ceiver. In this case, neither sources nor loads can be terminated because all termination
impedances are in parallel and will draw excessive power. This type of bus is used com­
monly in multi board applications, where each board is a tap on the bus line with a receiver
and'driver for each bus wire. Systems function satisfactorily without termination in the 1
to 10 MHz range when the bus is contained in a: single chassis, and has a length not
exceeding 0.2 to 0.3 m. As frequencies or distance or both increase, this busing method
breaks down because of the noise on the transmission line caused by all of the reflections.
The IEEE-488 bus standard covers a bus for peripheral devices that could be up to 20m at
500 K-bytes per second, and up to 10 m long to attain 1 M-bytes per second. To achieve
this type of performance, the standard recommends that each tap on the bus be that shown
in Fig. 2.22(b). Each device has a pull-up and pull-down resistor whose parallel
equivalent is about 2 k!1. The resistors act as a local voltage divider that sets the quiescent
voltage at about 3.3 V. Hence, when no active device drives the bus line, the line goes to a
logic 1. The termination at each device is too large to match the line impedance, but it
does absorb some of the energy that reaches it, and reduces the energy returned in re­
flected waves. As more devices are added to the bus, the effect of the termination resistors
is to create a greater burden on a gate that drives the bus. The IEEE standard states that the
bus can achieve a data rate of 500 K-bytes per second for buses up to 20m in length, with
up to one device per 2m of cable. An even higher data rate is achievable if the maximum
length of the cable is limited to 10m with up to one device per meter of cable. The higher
speed requires devices to be placed closer together, but the maximum number of devices
on the bus is not increased in spite of the closer proximity of devices. Loading effects
caused by additional devices on the bus tend to reduce the maximum speed.

Micron Technology Inc. et al.
Ex. 1042, 66

2.2 Transmission-Line Techniques

(a)

OUT

IN

(b)

FIGURE 2.22 (a) A transmission line with multiple drivers and receivers; (b) IEEE-488
bus-connection conventions.

67

A quite suitable technique for reducing noise is shown in Fig. 2.23, and is known as
active termination. Active termination is simply the termination of all bus lines through
matched impedances to a common power supply whose voltage is fixed at the logic
threshold, about half way between ON and OFF voltage levels. Although reflections will
occur on the line because of the taps on the line, any reflections that propagate to the end
of the line will be absorbed at the active terminator. The current supplied by the active ter­
minator need not be very large because the bulk of the current is supplied by the logic
power supply. In fact, if half of the lines are high and half are low, then current that flows
from high levels into the load resistors at the active terminator flows through the remain­
ing load resistors into the low lines, and the terminator supply delivers no current at all. It
only delivers current (or absorbs current) to correct current flow imbalances when the bus
lines are not evenly distributed among high and low levels. The active terminator also
reduces power dissipation in the termination resistors if the bus lines are about evenly dis­
tributed between high and low levels. If there are N bus lines, and the voltage across the
termination resistor is V /2, the power dissipation is

N(V 12)2
p ACI1VE = ---''--'-=--

Zo

Micron Technology Inc. et al.
Ex. 1042, 67

68 Shielding, Grounding, and Transmission-Line Techniques

while the power dissipated into a passive load to V for N /2 low bus lines is

(N/2)V2

p PASSIVE = z O = 2 p ACTIVE·

One last advantage accrues to active termination. The drivers commonly used for bus
systems are tri-state drivers that have a low, high, and off (or high-impedance) mode of
operation. When all drivers are off, an unterminated bus line is free to float up or down or
remain at its last potential, so that when a driver attempts to charge the line it may have to
charge the line by as much as V. Bus signaling must take this into account as a charging
delay for the line. With active termination, the bus is held at the logic threshold when all
drivers are off, so that no line has to be changed in potential by more than V 12. This
reduces the charging delay for long lines by about half.

-==- V THRESH

FIGURE 2.23 Active tennination of two transmission lines.

Graphical Methods

Transmission line analysis for linear loads as derived in previous sections requires only
simple algebra. For nonlinear loads, such as the input stages of gates and receivers or the
output stages of source drivers, computation becomes very difficult, but we can for­
tunately draw upon graphical techniques to show the behavior of the transmission lines.
The basic idea is outlined in Fig. 2.24. The figure shows a point-to-point transmission
line and a graph of the two curves that shows the voltage-current relationships at the
source and load ends of the line. The point of intersection of these curves is the unique
point that satisfies both relationships, and is therefore the steady-state operating point of
the line. Now suppose that the driver output is initially at 0 V, and changes suddenly to V
volts as a pulse is initiated on the line. Because the driver is impressing voltage on a
transmission line, the voltage and current must satisfy the source relationship of Fig. 2.24
and the transmission line equation V = IZ0 . These two equations are shown in Fig. 2.25,
and their point of intersection marks the voltage and current impressed on the line by the

Micron Technology Inc. et al.
Ex. 1042, 68

2.2 Transmission-Line Techniques

l
v

FIGURE 2.24 Voltage versus current at
driver and receiver for a transmission line.

69

initial signal. This is intersection point 1 in Fig. 2.25. At the load end of the line, the line
must obey the transmission equation V = IZ 0 as before, and the load curve shown in the
figure. The V in this case is the sum of the direct and reflected voltage, but the current is
the difference of direct and reflected current. To calculate the reflected voltage and re­
flected current, we simply draw a straight line from the source operating point with a
slope of -Z0 until it intersects the load curve. This new straight line represents a voltage
that adds to the direct wave voltage, but one whose current subtracts from the direct wave
current. The intersection point, then, shows the operating point at the load when the direct
wave arrives there. This intersection point is point 2 in Fig. 2.25.

By continuing this reasoning, we can determine the voltage at the source when there­
flected wave reaches the source by drawing a line with positive slope Z 0 from the load
operating point to its point of intersection with the source operating point. The figure
shows this intersection point as point 3, and it clearly is the sum of three voltages and
three currents due, respectively, to a direct wave, a wave reflected at the load, and a wave
reflected by the source. Note that the process can be continued; and if it is, it eventually
terminates with the intersections falling on the steady-state operating point. The voltages
at intersections 1, 3, 5, etc., when plotted as shown in Fig. 2.25, give the voltage at the
source as a function of time; and, similarly, the even-numbered intersections give the load
voltage.

The graphical method is extremely valuable in analyzing very high-speed circuits
where typically one type of driver and receiver are used through most of a design. The
voltage excursions derived from the graphical method hold regardless of the length of a
transmission line, with the length determining only the time scale of the voltage transi­
tions. So all transmission lines driven by one type of driver/receiver pair can be treated by
one graphical analysis. The analysis should consider the transition not only from low to

Micron Technology Inc. et al.
Ex. 1042, 69

70 Shielding, Grounding, and Transmission-Line Techniques

high voltages, as shown in Fig. 2.25, but from high to low as well. The voltage/current
relations are generally different at high and low driver outputs, so the results obtained by
high and low output analyses tend to be quite different. The analyses predict the ''ring­
ing'' waveform that will be present on the line during a transition, and they are useful in
establishing how long a wait is required before the signal becomes stable. If ringing is ex­
cessive for unterminated lines, the effects of termination can be calculated by using the
voltage/current relations for a terminated line in place of the source-output or load-input
curves used in Fig. 2.25.

Voltage at
source end

Voltage at
far end

l
v

2

1---+

7

3

4
6

Time

FIGURE 2.25 Graphical solution of voltage waveforms on a transmission line.

Micron Technology Inc. et al.
Ex. 1042, 70

2.3 Putting the Techniques into Practice 71

2.3 PUTTING THE TECHNIQUES INTO PRACTICE

There is a wealth of information in the prior sections of this chapter that illustrate the prin­
ciples governing the physical behavior of interconnections. In this section we examine a
number of implementation techniques based on those principles. The material is organ­
ized such that we start with small geometries and work toward larger ones. We start with
problems that appear within the confines of one circuit board, and work our way to back­
plane connections, board-to-board cabling, and finally chassis-to-chassis connections.

Intra-Board Connections

Circuits that operate under 10 MHz tend to be less sensitive to the problems raised earlier
than faster circuits. Nevertheless, long conductor runs that operate at 10 MHz and above
feel the transmission-line effects and need to be treated carefully. Otherwise, conservative
board layout with large conductors for power distribution and sufficient decoupling of all
components should be generally reliable and satisfactory.

Long runs often occur in memory systems, where system timing is also quite critical.
If memory cycle time has to be lengthened because of ringing on the bus lines, the per­
formance of the entire system degrades. Consequently, normal practice treats high-speed
memory as a source-terminated transmission line, as shown in Fig. 2.26.

Address drivers Address conductors

~ [] [] [] [] [] [Jf .. ·~
27 n Memory integrated circuits

FIGURE 2.26 Address lines in a memory treated as transmission lines with matched
source impedances.

This figure shows memory-address lines routed serially through a bank of chips,
which is in essence a tapped transmission line with extremely short stubs of very high im­
pedance. The conductor layout should be parallel straight lines of uniform separation to
establish a transmission path of uniform wave impedance. Memory chips should be uni­
formly spaced on the address conductors, with the pins of the chips directly over the
corresponding address conductors. When soldered to the conductors, the pins becorpe the
stubs of the taps on the transmission line. Uniform spacing has the effect of distri1:mtjng
input-pin capacitance uniformly on the line, thereby giving the line a uniform wave im­
pedance. For MOS memories, each input pin has a few picofarads of capacitance and a
very large resistive impedance. Consequently, if an address line visits say 20 chips, one
might expect about 100 pF of capacitance on the line, which is a fairly substantial capaci-

Micron Technology Inc. et al.
Ex. 1042, 71

72 Shielding, Grounding, and Transmission-Line Techniques

tive load to drive. But since the capacitance is distributed uniformly over the conductor
and not lumped at a single pin, the distributed capacitance and distributed line inductance
together make the conductor appear as a transmission line with a purely resistive im­
pedance, typically from 20 to 30 n.

If the line is not terminated, we have the situation depicted in Fig. 2.14, with notice­
able ringing when the address lines are asserted. The address lines must be stable before a
memory access can be made, so the effect of the ringing is to increase the delay between
address enable and memory access. Standard practice in high-speed memory designs calls
for source termination of the address lines with a small series resistor placed at the driven
end of each line as shown in Fig. 2.26. The source termination absorbs reflections causeq
by the taps, so that the line charges after aqout one round-trip propagation delay.

Another application of transmissipn-line theory that is prevalent in intra-board
designs is the use of an input diode to prevent a gate input from making large negative ex­
cursions. When a diode clamp is incorporated into the input circuit of a gate as shown in
Fig. 2.27(a), the V versus I characteristic of the gate input becomes that of Fig 2.27(b).
The input is clamped to a small negative voltage and will not follow large negative excur­
sions of an external signal. Although individual gates do not normally deliver large nega­
tive output voltages, such voltages can and do creep into systems because of reflected
voltages on transmission lines with negative reflection coefficients. Large negative excur­
sions show up as ringing, and greatly increase the settling time of gate inputs responding
to step changes of voltage. The diode clamp limits the negative excursion, bringing the
gate more quickly to its quiescent state. The diode clamps are integrated into virtually all
TTL gates at present, so that logic designers need not take special precautions regarding
the negative transients.

Backplane Connections

Board-to-board connections made with printed-circuit backplanes seldom exceed 0.2 to
0.3 m in length. At typical microprocessor speeds it is not necessary to use balanced
drivers and receivers for noise reduction for this type of connection, but some care in
grounding and signaling is still required. Backplanes normally take a "bus" approach in
which allmajor signallines are continuous across the backplane, and individual circuit
cards plug into the backplane to contact the lines as taps on a transmission line.

Active termination, as shown in Fig. 2.23, is the major technique for noise reduction
on the bus in use today, although many systems use no termination at all. Noise on back­
planes is unavoidable, however, as reflections from the several stubs on the bus inevitably
corrupt the signals. Active termination at best reduces settling time; it does not eliminate
the sources of the reflections at the taps where each circuit card attaches to the backplane.
In the face of the inherent noise on a bus, the bus must be sufficiently short to permit re­
flected waves to decay during the setup time of bus signals. Printed-circuit layout is very
critical in contributing to fast decay time. Drivers and receivers on the printed-circuit
card must be located as close to the bus connector as possible in order to keep the stub of
each tap as short as possible. High input-impedance on the receivers is essential as wel~ in

Micron Technology Inc. et al.
Ex. 1042, 72

2.3 Putting the Techniques into Practice 73

order to reflect most of the power that enters each stub back onto the bus. A sound, con­
servative policy limits each board to one driver and receiver per bus signal, thus eliminat­
ing reflections from multiple sources and sinks, and limiting the length of the stubs on the
boards.

(a) Circuit diagram.

Wit~
diode clamp

Without
diode clamp

l
v

1---+

(b) Input voltage versus input current.

FIGURE 2.27 A diode clamp on a gate
input to prevent large negative excursions of
voltage.

Micron Technology Inc. et al.
Ex. 1042, 73

74 Shielding, Grounding, and Transmission-Line Techniques

Special drivers and receivers are especially useful for backplane connections. Table
2.1 and Fig. 2.28 illu&trate some of the more popular bus drivers and receivers. The
7424X family is particularly advantageous for use as drivers, receivers, or transceivers.
Each member of this family is a 20-pin dual-inline package (DIP) with eight signal lines.
All devices have tri-state drivers with high-current output capability suitable for driving
several taps on a transmission line. The level of integration is high with respect to typical
levels for drivers and receivers, so that these devices make good use of board area. Table
2.1 gives the electrical characteristics for these packages for both the Schottky (S) and
low-power Schottky (LS) versions of the devices. The differences between the devices are
in delay, power consumption, and drive capability. The LS devices have roughly twice

74LS240
74S240

74LS242
74S242

74SL241
74S241

74LS243
74S243

74LS244
74S244

74LS245
74S245

FIGURE 2.28 Drivers and receivers (continued on next page).

Micron Technology Inc. et al.
Ex. 1042, 74

2.3

8T95
74365
74LS365

~
7414
74LSI4

Putting the Techniques into Practice

8838

8T96
74366
74LS366

~ 6 6

7406

8T97
74367
74LS367

~ 6 6

7407

FIGURE 2.28 (Continued.)

8T98
74368
74LS368

4

~
4 4

7438

75

the delay as the S devices, but they are still very fast. The net increase in delay through a
driver and receiver for LS overS-type devices is at most only about 18 ns, which is toler­
able for most systems in the 1 to 5 MHz range. LS logic dissipates much less power and
has half the input loading of S logic. For this reason the LS devices should be used wher­
ever possible. The major exceptions to this rule are high-speed microprocessor systems (8
to 10 MHz clock speed), and situations where the 24 rnA drive capability of LS logic is

Micron Technology Inc. et al.
Ex. 1042, 75

76 Shielding, Grounding, and Transmission-Line Techniques

pressed almost to the limit. In the latter case, it is possible to compromise and useS logic
for drivers (to attain the necessary drive capability), while using LS logic for receivers (to
reduce the loading as much as possible).

TABLE2.1 Popular Drivers and Receivers

Max Output Input
Device Type Delay Drive Load Packaging

74S24X DRVRJRCVR 9 ns 48mA 0.4mA 20-pin DIP (240,241 ,244,245)
14-pin DIP (242,243)

74LS24X DRVRJRCVR 18 ns 24mA 0.2mA 20-pin DIP (240,241 ,244,245)
14-pin DIP (242,243)

8T9X DRVRJRCVR 13 ns 48mA 0.4mA 16-pin DIP
7436X DRVRJRCVR 22 ns 32mA 1.6mA 16-pin DIP
74LS36X DRVRJRCVR 22ns 24mA 0.4mA 16-pinDIP
8838 DRVRJRCVR 27 ns 50 rnA 0.1mA 16-pinDIP
7414 RCVR 22ns 16mA 0.8mA 14-pinDIP
74LS14 RCVR 22 ns 8mA 0.4mA 14-pin DIP
7406 DRVR 23 ns 40mA 1.6mA 14-pinDIP
7407 DRVR 30ns 40mA 1.6mA 14-pinDIP
7438 DRVR 22 ns 48mA 1.6mA 14-pin DIP

All of the devices in the 7424X family have a small amount of noise immunity when
used as receivers because of hysteresis in the input circuits. The input-voltage threshold
for changing a logic 0 to a logic 1 is about 0.4 V higher than the threshold for changing a
logic 1 to a logic 0. Hence, a low signal has to move across a threshold, say 1.6 V to be
recognized as a logic 1. Mter crossing the threshold, the signal has to drop at least 0.4 V
lower to 1.2 V to be treated as a logic 0. Thus the gate can sustain roughly 0.4 V of noise
on the input while crossing the threshold without changing state.

Other popular driver/receiver chips in wide use are in the 8T9X (7436X) family. This
family has six driver/receivers per chip instead of eight as in the 7424X family, and has no
hysteresis for noise protection. Consequently the 7424X family is recommended over the
8T9X family for new designs. Another popular family of driver/receivers is the 8838 fam­
ily, also called DS8838, MC3438, and 8T38. These transceivers are intended for buses
with a characte1istic impedance of 120 D. Noise immunity for this family is very good be­
cause the parts have about 0.8 to 0.9 V of hysteresis. The packaging density is a little
lower than the 8-bit 74S245 and 74LS245 transceivers, but is greater than the other
74S24X and 74LS24X parts.

As manufacturers improve their products, advanced devices to replace the ones men­
tioned here will appear. TI, for example, has a new family of high-speed, low-power parts
with numbers 7464X that are pin-for-pin replacements for some of the 7424X parts. Simi­
larly, several manufacturers produce 81LS9X parts that are low-power Schottky replace­
ments for the 8T9X parts. The designer must stay abreast of new developments to be sure
to make the most intelligent selection of parts at any given time.

Micron Technology Inc. et al.
Ex. 1042, 76

2.3 Putting the Techniques into Practice 77

Open-collector drivers are used in bus-type systems where two or more gates drive a
signal line simultaneously. The most popular choices for this purpose are the 7406, 7407,
and 7438 drivers also shown in Fig. 2.28 and Table 2.1. These devices can be operated
more successfully in a matched-termination mode than can the tri-state drivers discussed
earlier. The key to this success is that the drive capability of these chips is compatible
with the termination resistance needed to match a transmission line. Assuming that a bus
on a backplane has a wave impedance of 150-200 n, the matching pull-up resistor draws
about 25 to 35 mA when the collector is in a low (logic 0) state. The 7438 device can
easily drive this and several receiver inputs simultaneously. A 7406 or 7407 can deliver
up to 30 mA, which is sufficient to drive a single load resistor of 150 nor more, provided
no other gate inputs load the bus. Thus all of these open-collector devices are typically
used in a configuration with matched termination at the load where the required load resis­
tor is returned to 5 V. The 7406 and 7407 are used in point-to-point systems, and the 7438
in bus systems with multiple drivers. Where termination is not critical, the 7406 and 7407
are used in bus-type systems, but with a higher pull-up resistance to decrease the drive re­
quirements at the risk of introducing transmission-line mismatch.

The last type of device worth mentioning is the 7414 family of Schmitt triggers.
These are frequently used as bus receivers, and have the advantage of larger noise immun­
ity than the 7424X family of drivers/receivers. With six receivers per device, the board
area consumed per device is roughly double that of the 8T9X family (which has both
drivers and receivers in one device) and more than double that of the 7424X
family.

In these bus-type systems, improper grounding is a major source of difficulty. The
problem is that over the length of a ground bus, large current transients can move various
points on the ground conductor away from 0 signal potential. Consider, for example, the
situation shown in Fig. 2.29. In this case a signal on the bus goes through a bus receiver,
and from there it enables a tri-state driver onto the bus. When the driver comes on, sud­
denly eight signal lines on this board sink current, say 15 mA per line. The current tran­
sient from these drivers is then roughly 0.1 A. Assume the ground line shown in the figure
carries the current transient, then moves suddenly above the ground-reference point for
the tri-state control signal. The tri-state control signal then drops below threshold relative
to the receiver ground point; and when it drops, the eight tri-state drivers shut down. The
sudden reduction in current flow through the ground lead returns the receiver ground
reference back to its original state where the tri-state control signal is again recognized as
a 1. The system then oscillates in this condition until the tri-state control signal is
removed. ·

Whereas a current transient ofO.l A appears to be too small to cause a problem of this
sort, in reality this type of problem appears all too often. Current transients can well
exceed the 0.1 A mentioned in the example because of two factors other than the actual
drive requirements of the bus. One factor is the current transient in TTL gates that occurs
when the gate switches between logic 0 and logic 1 on the output. The other factor is the
fact that the receivers of the driven signals will also experience current transients as they
change state in response to the data sensed on their inputs. If the instantaneous current

Micron Technology Inc. et al.
Ex. 1042, 77

78 Shielding, Grounding, and Transmission-Line Techniques

transient produces a noise voltage high-enough to shut down the tri-state drivers, the bus
will oscillate. The best way to avoid this type of problem is to provide high-capacity
power distribution conductors on the system backplane and on every circuit board.

---l
Transmitted enable 1

__r--t_ I ____r---t_
I

+----81

Transmitted data

..f1JL...fL

,---
1 Received enable

I
I

FIGURE 2.29 A stable oscillation of noise voltage on a ground wire.

Board-to-Board Connections

8

Noise
voltage

Connections between boards follow the rules of backplane connections when cables are
very short, say 0.2 to 0.3 min length. As cables increase in length, the interconnection
schemes must take into account such sources of noise as transmission line reflections,
cross-talk, and inadequate grounding. Our earlier discussion suggests that twisted-pair
conductors and differential drivers and receivers are the safest and most reliable intercon­
nection scheme. Cables composed of many twisted pairs of wires are widely available to
provide the basic interconnection technology. A sample of useful differential drivers and
receivers appears in Table 2.2. Configurations for matched terminations appear in Fig.
2.30. Figure 2.30(a) shows a matched load resistance returned to the power supply volt­
age. Since it is crucial to have an equal noise voltage drop on each arm of the twisted pair,

TABLE2.2 Balanced Drivers and Receivers

Max Output Input
Device Type Delay Drive Load Packaging

26LS31 DRVR 20ns 20rnA 0.4 rnA 16-pin DIP
26LS32 RCVR 25 ns 8rnA 2.8 rnA 16-pinDIP
MC3487 DRVR 20ns 48rnA 0.4 rnA 16-pin DIP
MC3486 RCVR 30ns 8rnA 0.1 rnA 16-pin DIP

Micron Technology Inc. et al.
Ex. 1042, 78

2.3 PuHing the Techniques into Practice 79

the termination resistance is split with half on each ann. The matched load resistors are re­
turned to ground in Fig. 2.30(b). Because none of the drivers discussed in the text can
drive a terminating resistor returned to ground, the load resistors for all of these drivers
should be returned to the power supply voltages shown in Fig. 2.30(a) rather than to those
shown in Fig. 2.30(b). Figure 2.30(c) shows the matched load resi~tance bridged across
the two outputs. This interconnection method has the same problem as Fig. 2.30(b) for
drivers that cannot drive a small resistance returned to a low voltage. The method is not
suitable for the drivers described in this chapter. The last method, source termination, is
shown in Fig. 2.30(d). Source termination is preferred to the load termination of Fig.
2.30(a) because of the former's low power consumption. However, source termination
does produce a reflection on the line that is absent when load termination is used, and the
reflection may cause a problem if several receivers are connected to the line at intermedi­
ate points. These receivers must wait longer to receive the full line voltage when source
termination is used than when load termination is used.

(a) Returned to VCC'

(b) Returned to ground

(c) Bridged across receiver.

(d) Matched at source.

FIGURE 2.30 Matched terminations on balanced lines.

Micron Technology Inc. et al.
Ex. 1042, 79

80 Shielding, Grounding, and Transmission-Line Techniques

ENABLES for
indicators

24

RESET

c RESET L =:o:J

+--24/ I Noise
voltage

/ Indicator
voltage

=:o:J

FIGURE 2.31 A problem due to inadequate grounding (often mistaken for a cross-talk problem).

One of the sources of noise that arise in board-to-board connections is that of cross
talk. Cross t<ilk refers to noise induced on a signal line by adjacent signals. Signals in adja­
cent lines couple to each other through both inductive and capacitive effects, and the cou­
pling tends to increase as the length of adjacent lines increases and as the spacing between
the lines decreases. Because shielding and grounding techniques that eliminate other
noise sources also reduce cross talk, we do not give special consideration to cross talk in
this textbook.

Flat-cable interconnections for board-to-board connections are widely used today be­
cause of the variety of connectors available and the convenience of attaching connectors
to the cables and boards. They are somewhat more noise sensitive than twisted-pair con­
ductors, but are quite usable in niany systems, provided that the cabling system follows
basic rules to deal with the problems of transmission-line mismatch, cross talk, and im­
proper ground reference. The techniques for terminating double-ended lines and single­
ended open-collector lines deal adequately with the transmission line problems. Many
systems that use flat cable rely on matched-load termination of single-ended signals using
7438 drivers.

Ground problems and cross talk problems are resolved by similar techniques so we
treat them together. (Signals coupled into nearby lines because of poor grounding are
often mistaken for cross talk.) A mistake often made in cabling systems is the lack of an
adequate ground return. Cable conductors have much less current capacity than do back­
plane conductors, and they carry cmTent over larger distances, so that changes in ground
reference levels are quite evident. The best policy is to use double-ended signals on ca-

Micron Technology Inc. et al.
Ex. 1042, 80

Other Source Material 81

(a) Using a grounded shieHI.

(b) Alternating ground conductors with signals.

FIGURE 2.32 Two.methods for improving grounding and
reducing cross talk in flat cable.

bles even though the conductors are not twisted together. The next best policy is to use
single-ended signals, but with one ground wire for every signal wire that carries a noimeg­
ligible current. Too many systems have failed because the designer expects three or four
conductors to return the gtound current produced by 20 to 30 drivers. The voltage drop on
so few conductors inevitably is large enough to alter the reference levels on receivers so
that they trigger improperiy when many signals change simultaneously. One disastrous
example of this mechanism is shown in Fig. 2. 31. This shows a cable between a micro­
computer and a control panel. The cable drives the control panel with indicator lights, and
receives from the control panel switch-position information. Suppose that the program
nins with all lights out until it reaches some specific point where it lights 24 indicators.
When the 24lines in the cable switch, the return current in the single ground lead causes it
to rise in potential. The RESET line from the front panel, which is high when unasserted,
appears to drop relative to ground at the computer.lf the voltage developed in the ground
wire is on the order of an instantaneous 1.5 V to 2.0 V, the computer may reset. Many
designers know the maxim, "When all but one wire in a cable change state simultane­
ously, that one will change too." Inadequate grounding is one reason for the truth of this
maxim.

Two ways of providing adequate grounding in flat cable are shown in Fig. 2.32. One
way is to provide a ground plane in the cable. This is usualiy a woven ground with high-

Micron Technology Inc. et al.
Ex. 1042, 81

82 Shielding, Grounding, and Transmission-Line Techniques

100 n lOOn

FIGURE 2.33 Ground/earth isolation in balanced lines. The earth ground on the chassis
is isolated from the logic ground (signal ground) by a resistor to prevent low-impedance
ground loops.

current capacity. The other way is to provide a ground-wire between every pair of signal
conductors. Both techniques reduce capacitive and inductive coupling between signal
wires, so they both serve to reduce cross talk. The high-current capacity reduces voltage
differentials on ground references. Thus good grounding solves both cross-talk and
ground-potential problems. In proposing either of these solutions, the designer must be
absolutely certain that the ground points at either end of the cable can be safely connected
together. This limits safe use of this technique to 10 to 20 m. For longer distances it is ab­
solutely essential to use double-ended signaling, which does not require remote devices to
be at identical ground potentials.

Chassis-to-Chassis Connections

If the chassis are close enough to have their grounds connected, the single-ended solutions
will be satisfactory. If not, double-ended signaling is required. A safe implementation is
shown in Fig. 2.33 w~ere we see the logic-ground reference isolated from earth ground by
a small resistor protecting against low-impedance ground loops.

OTHER SOURCE MATERIAL

Perhaps the most authoritative treatment of correct techniques for grounding and shielding
is the five volume series by White (1971). The first volume of the series addresses models

Micron Technology Inc. et al.
Ex. 1042, 82

Experiments 83

and sources of electrical noise. Volume 2 treats test methods and procedures. The most
pertinent material for our purposes is in Volume 3, which is directed towards methods for
controlling and reducing interference. Volumes 4 and 5, respectively, treat test instru­
mentation and interference-prediction techniques. The book by Morrison (1977) cited in
this chapter is quite readable and useful, although it is primarily directed toward nondigi­
tal applications and does not treat problems specific to interfacing computers. Ott (1976)
covers general problems in grounding and shielding and their solutions. This textbook is
easily adapted to the particular requirements of computer systems. Blakeslee (1979) has
produced a very good text on modern logic-design with two chapters covering problems
related to grounding, shielding, and transmission theory. Although the discussion is
necessarily less thorough than White, Morrison, and Ott, the textbook shows very clearly
how the noise problems surface in interfacing and digital design, and what techniques are
available to solve the problems.

The material on transmission lines and reflections is available in most undergraduate
textbooks on electricity and magnetism. Graphical methods for analyzing nonlinear
drivers and receivers are described in Blakeslee (1979). Recommended methods for mak­
ing electrical connections to computer buses appear in several published standards. Of
most interest are the IEEE-488 bus (IEEE, 1975), the IEEE-796 bus (IEEE-796 Bus
Working Group, 1980), and the IEEE standard version of S-100 bus (IEEE Task
696.1/D2, 1979).

EXPERIMENTS

2.1 Effects of shield capacitance. Construct a unity-gain amplifier as shown in Fig.
E -2.1. The three 100 pF capacitors model the capacitance of a shield, respectively,
to the input, ground, and outputs of an amplifier circuit. Observe the output of the
amplifier in response to a square wave input with the 100 pF capacitor to ground in
the circuit, and observe the output again with this capacitor shorted. Vary the fre­
quency of the square wave input to find frequencies at which the differences are most
dramatic.
When the capacitor is shorted, the feedback path from output to input is broken.
When the capacitor is in the circuit, the feedback path is active, and the output wave
form is distorted. What is the major effect of the feedback path? Construct a
mathematical model of the amplifier circuit, and calculate the behavior with and
without the shunt across the 100 pF capacitor to ground. Compare your calculations
to your observations.

2.2 Transmission line reflections. Obtain a 10-m length of 75 D coaxial cable, or any
other readily available coaxial cable with an impedance in the 50-150 D-range.
Construct a circuit that drives this transmission line with an open-collector 7407
driver as shown in Fig. E -2.2. The source resistor should be as close to the driver as
possible, and the wiring from the source resistor to the cable should be as short as

Micron Technology Inc. et al.
Ex. 1042, 83

84 Shielding, Grounding, and Transmission-Line Techniques

I Mn

loorFCKJ'oo,F
FIGURE E-2.1 Experimental setup for studying the effect
of shield capacitance.

FIGURE E-2.2 Experimental setup for observing reflections
on a transmission line.

possible. Observe the wavefonns at the cable input and output as a function of the
source and tennination resistance.
With the source resistance initially 0, set the load resistance to~. ~. 1, 2, and 3 times
the cable impedance. With the load impedance set equal to the cable impedance, set
the source resistance to ~. ~. 1, 2, and 3 times the cable impedance. For each of
these cases, calculate the wavefonns at the cable input and output as a function of
time, and compare the calculated answers to your observations.

2.3 Balanced versus unbalanced interconnections. Construct two . different
driver/receiver circuits as indicated in Fig. E-2.3. Circuit (a) is single-ended and
uses an open-collector driver connected to one input of an LM741. The other input is
connected to a fixed voltage at the logic threshold of about 1.4 V. Circuit (b) is

Micron Technology Inc. et al.
Ex. 1042, 84

Experiments 85

double-ended. The two drivers place complementary signals at the inputs of an
LM741. Generate a square wave of 10kHz to both circuits, and observe the LM741
outputs. The outputs should be square waves with sloping leading and falling edges.
Generate a square wave 15kHz from an independent generator, and couple the sig­
nal to the circuits through 0.1 f.LF capacitors as shown in the figure. Observe the out­
put of both the single-ended and double-ended receivers. Vary the noise source fre­
quency and amplitude. The noise should be quite visible on the output of the single­
ended receiver and virtually undetectable on the output of the double-ended receiver.
Repeat the experiment with the coupling capacitors replaced by 10 kO resistors. The
noise on the output of the single-ended circuit should be much more in evidence be­
cause of the direct coupling of the noise into the receiver circuit. Noise may be more
visible on the output of the double-ended circuit, but should still be significantly less
than the noise on the output of the singled-ended circuit.

n~ SV

~ _fLFl_ O.l11F

(a)

(b)

FIGURE E-2.3 Experimental setup for observing common-mode noise rejection in a
balanced line: (a) Single-ended transmission; (b) double-ended transmission.

Micron Technology Inc. et al.
Ex. 1042, 85

86 Shielding, Grounding, and Transmission-Line Techniques

PROBLEMS

2.1. Assume that a very long transmission line has a short stub, and that the stub is ter­
minated with an infinite impedance. Intuitively speaking, all energy that enters the
stub should be reflected back onto the line. The stub has no effect on the asymptotic
behavior of the voltage and current on the transmission line. Calculate the voltage at
the tap where the stub leaves the line, and at the open end of the stub in response to a
step voltage impressed at one end of the line. Show that the stub charges asymptoti­
cally to the full voltage on the line.

2.2. Assume that a transmission line has a length that requires 5T time units for a signal to
traverse. Assume also that there is a tap oflength Tlocated 2Tfrom the source end.
If the impedance of the line is Z0, the source-end and far-end impedances are each
2Z0, and the tap has an infinite termination impedance, what are the expected
waveforms for the source end of the line, the far end of the line, and the point of the
tap for the first 5T time units after impressing a unit step voltage on the line. Plot the
waveforms and show the asymptotic voltage on the line.

2.3. TTL logic has the following characteristics:
a) When an output is high, it has a voltage of 3.6 V with no load. The voltage drops

as current is drawn, and the apparent internal impedance is approximately 120
0. (Assume that this characteristic is linear.)

b) When the output is low, the voltage is 0.3 V. The voltage rises as current into the
output increases. Current flow is from the inputs driven by the gate into the gate
output. (The gate is acting as a current sink.) A typical gate can sink 16 rnA with
the voltage rising to about 0.8 V. (Assume that this is a linear rise).

c) A high gate input is at 2.0 V or more, and draws about 50 f.LA for all voltages
above2.0V.

d) A low gate input is below 0.8 V, and sources 1.6 rnA at 0.3 V. In the region
between 0.0 V and 0.8 V, the impedance of the gate is approximately 50 kO.
(Assume this is linear.) The gate input is clamped by a diode, so the diode cannot
go more negative than 0.6 V.

Use this description of TTL logic to draw curves for V versus I for high and low out­
puts and for high and low inputs. Fill in the unspecified parts of the curve with your
best guess (or intuitive interpolation).
Use the curves you have drawn to compute graphically the transmission line
behavior of a TTL gate driving a TTL gate over a transmission line of 150-0 im­
pedance. Compute and plot the response for a gate output going from high to low and
low to high.

2.4. Repeat the graphical solution of Problem 2.3 for a logic family whose output im­
pedance is 2 k 0 instead of 120 0. Show the response going from high to low and
from low to high. Comment on the advantages or disadvantages of the large output
impedance.

2.5. Repeat the graphical solution of Problem 2.3 for a gate that does not have an input
diode clamp to hold the input from going low. Assume that the V versus I curve for

Micron Technology Inc. et al.
Ex. 1042, 86

Problems 87

this problem is obtained by simply extrapolating the curve from the nearest region in
which the V versus I curve is defined. Comment on the advantages of the clamping
diode in TTL logic.

2.6. You are given a pair of devices with a transmission line running between them, and
you are to determine the maximum rate of transmission of signals between the de­
vices under various termination conditions. The transmission line receiver must have
a signal present for at least 10 ns at a voltage less than 0.8 V for a logic 0 or greater
than 2.0 V for a logic 1 in order for the device to produce this same signal on its out­
put. For voltage fluctuations above 2.0 V or below 0.8 V, with a duration less than
10 ns, the receiver output is not predictable. The source voltage is 3.3 V and 0.3 V
for logic 1 and logic 0, respectively. For this problem assume the idealized voltage
source is a battery connected to 3.3 V (for logic 1) or 0.3 V (for logic 0), even though
this model is not necessarily correct in actual practice.
Assume that signal propagation down the length of the line takes 10 ns. Calculate
the maximum signaling rate on the line for the following terminations.
a) Zero source impedance, Z 0 (matched) load impedance.
b) Z0 (matched) source impedance, infinite load impedance.
c) 3Z 0 source impedance, 9Z 0 load impedance.
d) 9Z0 source impedance, 3Z0 load impedance.
e) Assume that the line can be tapped at arbitrary points with stubs of zero length

and infinite impedance. What is the maximum signaling rate when the termina­
tions of part a are used? What is the maximum rate when the terminations of part
bare used?

f) Assume that a second receiver is tapped from the line so that the stubs to the two
receivers are both of equal length and the point of the tap is a 9-ns delay from the
transmitting end. Find a good way to terminate this line, and estimate the max­
imum signaling rate. Give a convincing argument that this termination method is
good.

Micron Technology Inc. et al.
Ex. 1042, 87

3 I BUS INTERCONNECTIONS

Now that we have covered both the high-level functional description of microcomputer~,
and have looked as well at the lowest-level of implementation details, we will work .our
way quickly into practical interfacing techniques. This chapter treats the data paths that
tie together the processor, memory, and I/0 modules of a microcomputer. The strategy
followed for these interconnections is similar across all microcomputers; they make use of
a general structure that we call a bus. A bus is a collection of signal lines that carry
moduie-to-module communications in a microcomputer. In almost all cases bus lines are
unbroken, and modules simply tap onto a bus by connecting their respective inputs and
outputs directly to corresponding bus signal lines. (The only exception to this rule 1s for
signal lines used for priority resolution, as described later in this chapter.)

For high-performance applications, buses must be restricted in length, thus limiting
their use to the short module-to-module connections within a computer chassis. Although
these buses can be extended from one chassis to another, performance and reliability
suffer as bus length increases. For the longer and lower-performance interconnections,
most microcomputer systems rely on special buses, quite separate from their high-speed
internal buses, or on other point-to-point connections in order to isolate the high-speed
buses from the long physical buses, thereby reducing the degradation caused by excessive
bus length. Exceptions to this practice occur in low-speed applications where the internal
bus runs slow enough to be extended to a second chassis with little or no petformance
penalty. With just one type of bus, the system avoids an additional burden of integrating
two distinct bus systems and protocols.

3.1 BUS FUNCTIONS

The signal lines that collectively form a bus break naturally into three groups as shown in
Fig. 3.1. One group of signals carries the basic information to be communicated on the
bus; the other two signal groups guarantee that the information is delivered during a bus
transaction. From the earlier discussion of the functional behavior of a microprocessor,
we know that the first group of signals carries such information as

1. memory address (or port ID),
2. data, and
3. command type (READ, WRITE, DATA, STATUS).

Since there are a vast number of different buses in use, there is a wide variation in just
what information is carried on the first group of lines. Generally speaking, this group car­
ries information that one module needs to convey to another in order to invoke a remote

88

Micron Technology Inc. et al.
Ex. 1042, 88

3.1 Bus Functions 89

Address, data, commands

Data transfer control

Arbitration

FIGURE 3.1 Bus signal and control lines.

function, response, or change of state in the remote module. In order to pass the informa­
tion, the bus itself has to be controlled and operated correctly. The other two groups are
dedicated to different aspects of the latter function.

The second group of signal lines controls the timing of the data transfer. This group is
often called the data handshake lines, and contains the signals that dictate when each indi­
vidual data transfer begins and ends. The handshake lines have a role analogous to traffic
lights on a roadway. The handshakes start and stop transactions, and they exert the same
functional control on all transactions regardless of transaction type.

The type of transaction comes into play on the third group of lines, the arbitration
lines; which give critical transactions priority over less critical ones when deciding what
transactions shall access the bus. This third group of lines arbitrates which module gains
access to the bus. The necessity for arbitration is due to the inherent problem that occurs
when two or more modules attempt to transmit infmmation simultaneously. If module A
spews forth a logic 0 while module B attempts to transmit a logic 1 at the same instant of
time, we say that there is a bus conflict. The signal actually delivered depends on the logic
family that drives the bus. A line driven by open-collector drivers moves to the 0 state
during any conflict, so that in the given example, the logic 1 output by module B is lost.
Then one or both modules lose data at the point of conflict, and what data are lost is
unpr~dictable. Hence, conflicts almost certainly result in a communications failure on the
bus. To ensure reliable communication, as a general rule only one module at a time can
transmit on the bus, although potentially all other modules can accept the transmission
and change state in response to it.

A bus conflict can be more disastrous than portrayed here. For example, what hap­
pens when tri-state drivers engage in a bus conflict? In this case, there is a possibility of
damaging the bus drivers because the conflict creates a low impedance path from V cc to
ground through the output stages of the conflicting gates. The high current through this

Micron Technology Inc. et al.
Ex. 1042, 89

90 Bus Interconnections

path can bum out both driving gates. If either gate fails in a shorted condition, the failure
could be in conflict with other driving gates on the same signal line, and bum them out as
well. If bus conflicts occur during an instruction-fetch cycle, the instruction received by
the processor is a corrupted version of its original form, and the incorrect version almost
inevitably wreaks havoc in the program.

The role of the arbitration lines is then very clearly defined. They guarantee that, at
most, one module at a time transmits on the bus. The first two groups of signals, the infor­
mation and handshake groups, are thus protected from conflict by the arbitration group.
The arbitration group has inherent conflicts because all potential transmitting devices use
these lines concurrently as part of the arbitration process. Therefore, in many buses the ar­
bitration lines are driven with open-collector devices, and the arbitration protocol depends
on the OR-function logic of the open-collector gate.

Later sections of this chapter treat various methods for implementing both the
handshake and arbitration protocols. Even though the context of the discussion is buses,
the protocols have a use that extends into other areas of microcomputers as well. For ex­
ample, an arbitration protocol for selecting one of several potential bus transmitters is also
suitable for selecting one of several VO ports in an interrupt -priority resolver.

3.2 THE BUS HANDSHAKE

Handshake protocols fall generally into three broad classes:

1. synchronous (clocked transfer, one clock period per transfer),
2. asynchronous (unclocked), and
3. semisynchronous (clocked transfer, one or more clock periods per transfer).

Since the specific function of the handshake lines is to indicate the beginning and end of a
data transfer, the handshake lines must somehow mark these points through voltage
changes in the handshake signals. Some buses have very complex, sequential timing for
each data transfer, perhaps requiring a number of different data to pass along the bus dur­
ing a single transaction. For these buses, the handshake lines signal the beginning and end
of each subcycle within the full cycle, as well as identifying the start and end of the full
cycle.

The three generic handshake techniques span a spectrum of different approaches from
complete control by a clock to no clock control whatsoever. Synchronous protocols are
among the easiest to implement because the only control signal is a clock oscillator. The
rising and falling edges of the clock signify, respectively, the beginning and end of a bus
cycle. All memories, peripherals, and processors on the bus are controlled by the same
clock oscillator so that modules operate in ''lock-step,'' advancing cycle by cycle as the
clock line ticks away. Not only are synchronous protocols the least complex of the three
protocols, but they also, in general, lead to the fastest transactions (provided that the
responding devices are fast enough to operate at the bus-clock speed).

Micron Technology Inc. et al.
Ex. 1042, 90

3.2 The Bus Handshake 91

Synchronous Buses

the timing of a typical synchronous protocol is illustrated in Fig. 3.2. The top waveform
is the bus clock, which synchronizes all modules to a common time base. (It is shown here
witfF.a 50% duty cycle, but the actual duty cycle differs for various synchronous buses.)
Address and data lines are shown on the next two waveforms. The addresses and data
reach their stable values at the beginning of the shaded area, retain their values through
the high half-cycle of the clock, and fall at the end of the trailing shaded area. Although
the, address and data lines are shown in the high-state during the active portion of the
clock, they actually can be in either a high or a low state, depending on the information
they convey. The figure actually shows the period during which the address and data lines
are stable, and does not show their logic values.

Clock I D D

WRITE READ WRITE

~ Setup, decode, and skew delay ~ Hold-and-skew delay

FIGURE 3.2 Timing for a synchronous bus.

There are several different reasons for the shaded area of the waveforms. Fig. 3.3
shows one source of logic delay in the address decoder of a receiving module on the bus.
The figure shows a bus transmitter, hereafter called a bus master, transmitting to are­
ceiver labeled bus slave. There are potentially many slaves on the bus, and the purpose of
the address lines is to select a single slave to respond to the bus transaction. Therefore, the
figure shows the address lines entering a decoder that detects the slave's address, which
then selects this specific slave by producing a signal that forces the slave to load data from
the bus when the clock reaches the active phase of its cycle. The decoder has to produce
its signal in advance of the rising of the edge of the clock, so that the address lines must be
stable for at least the duration of the logic delay through the decoder.

Micron Technology Inc. et al.
Ex. 1042, 91

92 Bus Interconnections

Clock

Data

Address

Bus master

FIGURE 3.3 Typical slave internal structure.

Another related effect that cannot be ignored is the setup time and hold time of logic
in the buffer. Setup time is the minimum amount of time that a control signal has to be
present on an input of a memory device before the clock triggers a transfer into the device.
Hold time is the minimum time that data has to be held stable on the inputs of a memory
device after a clock change triggers a transfer into that device. The setup time for the
diagram in Fig. 3.3 for a WRITE into the slave is the time required for the address lines to
be stable after they reach the buffer, but before applying a clock to the buffer. The hold
time in Fig. 3.2 depends on whether the bus operation is READ or WRITE. For .. a
WRITE, the hold time is the hold time of the buffer in the slave. For a READ, the hold
time is the hold time of the equivalent buffer in the master. In both cases, the addresses
and data must be stable for at least the duration of the hold time after the clock changes
state. Address and data lines need to have identical setup and hold times. If they are not
identical, the bus protocol must incorporate setup and hold times that are long enough to
satisfy the maximum of the address and data requirements.

In the light of the information on setup and hold times, let us return to Fig. 3.2 to con­
sider how these times are represented in the figure. For a WRITE operation, the master
transmits both addresses and data in advance of the rising edge of the clock. During this
time the slave decodes the address, and the data lines stabilize at the buffer. When the
clock rises, the selected slave initiates an internal WRITE operation, during which it
copies the data on its data lines into an address or register identified by the address lines.
If the slave is a memory chip, the subsequent delay accounts for the write-access time to
memory, usually on the order of 100 to 200 ns for moderate-speed metal-oxide silicon
(MOS) devices. Other devices can be bus slaves as well, including I/0 ports and discrete
registers. Some devices respond faster than the moderate-speed memory, but the fixed­
cycle time of the synchronous bus cannot take advantage of the faster response. The fall­
ing edge of the clock signifies the end of the bus cycle. At this time, the WRITE operation
is complete, and the slave can disconnect logically from the data lines.

Micron Technology Inc. et al.
Ex. 1042, 92

3.2 The Bus Handshake 93

The READ operation is similar to WRITE for the address lines, but data lines behave
differently. In this case the rising edge of the clock initiates a memory READ in the slave.
Some time after the clock rises, the data reaches the output buffer of the slave, which in
tum places the data on the bus. The data has to be on the bus at least one setup time before
the falling edge of the clock, where the setup time in question is the setup time of the
master's data buffer. The slave holds the data on the bus at least one hold time after the
falling edge of the clock in order to satisfy the hold-time requirements of the master.

Reexamination of Fig. 3.2 shows we have accounted for the general form of the
shaded area, although we have not accounted for exact lengths of time. Note that the setup
time is shown much longer than the hold time because the setup time includes the decod­
ing delay in the slave, as well as other factors we now examine.

Among the other sources of timing delay accounted in the shaded area is signal skew,
which is explained more fully in Fig. 3.4. The top two waveforms show the signals on two
address lines as they appear at the bus master. Both signals are assumed to change at
exactly the same instant for the purposes of this discussion although, in reality, the master
itself may produce these signals displaced slightly with respect to each other. The master
transmits the signals over the bus to the slave, which sees the signals as shown in the
lower two waveforms of the figure. Note that the signals no longer change at the same
instant of time, but now one changes D time units later than the other. This change in rela­
tive timing produced somewhere in the bus system is what we mean by skew.

Address line waveforms at bus master.

Address line waveforms at bus slave.

F1GURE 3.4 Skew in signal
transmission. The delay D is the
skew in the signals.

Micron Technology Inc. et al.
Ex. 1042, 93

94 Bus Interconnections

Several different sources of skew account for the delay. One source is a difference in
the propagation delays of the two signals because the signals follow slightly different
paths in going from master to slave. Propagation delays usually influence skew less than
the varying logic delays through gates on the path from master to slave. Gate delays may
vary from chip to chip by 10 to 20 ns, depending on the chip family. Since each of the bus
signals travels through a different set of gates, the end-to-end propagation time is rarely
the same for all bus signals. The rise time and fall time of a signal also affect skewing
delays. A gate recognizes a change in a signal when the signal voltage passes the gate
threshold. If capacitive effects stretch out the rise or fall time, there is an apparent
increase in the delay between the start of a signal transition and the time when the transi­
tion is recognized. Since this time also depends on the gate threshold, differences in gate
thresholds contribute to differences in skew in much the same way that rise and fall times
impact skew.

To compensate for skew, addresses must stabilize at least one maximum skew time
earlier than in the absence of skew, just in case some address line is delayed by skew rela­
tive to the rising edge of the clock. Hence the shaded area said to be setup time in Fig. 3.2
includes this skew time plus the decoding time and address setup time. Note also that the
hold time for data written includes skew to protect against problems caused by clock
skew. If the clock were delayed relative to the data during the propagation of the signals
from master to slave, then the apparent hold time of data at the slave is diminished by the
amount of the skew. Hence, for a WRITE cycle the master has to assert data for at least
one hold time plus one skew time after the clock edge falls.

It is interesting to consider the effects of propagation delays on hold time. For the
READ operation, propagation delays actually reduce the hold time somewhat, whereas
for WRITE operations they have no effect unless increases in propagation delay tend to
increase clock skew also. Consider the READ in Fig. 3.2, for example, and observe what
happens if there are significant propagation delays between master and slave. When the
master drops the clock signal at the end of the cycle, the output data at the slave remains
stable at the master's input buffer for at least one round-trip propagation time between
master and slave. This is true because the clock edge change has to propagate from master
to slave, and the resulting changes on the data lines then propagate back to the master.
Technically speaking, a slave can reduce hold time by the amount of a propagation delay,
but in practice it is very difficult to do so. The propagation time delay depends on the rel­
ative positions of the master and slave on the bus, and this varies from configuration to
configuration. Yet the slave module has to be engineered to work in every configuration,
so that at best the slave can take advantage of the shortest propagation delay that can occur
in any configuration. This delay is so unpredictable, and likely to be very small in any
event, that it is rarely worthwhile to consider.

This brings us to the end of our discussion of the details of Fig. 3 .2. To summarize the
effects that limit the bus bandwidth, we have

1. setup time of data and control signals before clocking data into a buffer,
2. address decode delay,

Micron Technology Inc. et al.
Ex. 1042, 94

3.2 The Bus Handshake 95

3. skew time of address and data signals relative to a rising and to a falling clock edge,
4. hold time of data at a buffer input, after clocking data into the buffer, and
5. one round-trip propagation delay (for the READ operation).

The bus cycle time cannot be smaller than

T SETUP + T DECODE + 2T sKEw + MAX(T HOLD• T RT-PRop),

where the MAX operation recognizes that propagation delay can be overlapped with hold
time. If the cycle time of a bus is shorter than the time given here, the signaling rate fails
to meet the signal specifications for modules that connect to that bus, so that incorrect or
unreliable computations may result. Even this upper limit on bandwidth is overly optimis­
tic. In practical situations, the master itself has an internal delay between transactions,
and the slave has a nonzero access time, both of which increase the minimum cycle time
and decrease realizable bandwidth.

The primary advantage of the synchronous system is simplicity. Data transfers are
controlled through a single signal, and the data transfers run with minimal overhead in
terms of skew, setup, hold, and propagation delays. However, the synchronous bus has a
serious problem in dealing with slow slaves connected to the bus. The synchronous bus
described thus far cannot accommodate devices whose access time is greater than the time
available during a clock period. With the given bus protocol, the clock rate has to be set
slow enough to satisfy the slowest device on the bus where the device's response time in­
cludes the effect of propagation delays due to physical separation. But this reduces the
bandwidth for all transactions, and the slow device has thereby decreased the potential
system performance even though the slow device is rarely accessed.

Asynchronous Buses

For the computer that drives a mix of devices with widely varying access times, the syn­
chronous protocol may be inappropriate because the bus runs at the speed of the slowest
device. Intuitively speaking, it is advantageous to have fast transactions for fast devices
and slow transactions for slow or distant devices, so that transaction time varies with the
device rather than being fixed for all time by a system clock. The timing and control sig­
nals for a typical asynchronous bus that has these characteristics appear in Fig. 3.5.

This bus is said to be a fully interlocked asynchronous bus, and is by far the most pop­
ular asynchronous protocol in use today. The DEC Unibus for the PDP-11 family is one
notable implementation of this protocol (Digital Equipment, 1979). The term fully inter­
locked stems from the way the two control signals work together during a bus transaction.
The control signals in the figure are called MASTER and SLAVE, and take the name of
the module that produces their respective signals. The interlocked protocol requires
changes to alternate between the control signals and to occur sequentially, with a change
in one signal arming the other for its subsequent change. By interlocking in this manner,
the information on address and data lines is guaranteed to be transmitted without conflict
and without loss or duplication by the bus.

Micron Technology Inc. et al.
Ex. 1042, 95

96 Bus Interconnections

I~
MASTER

~~~~ ~ ~" 
,.~ 

SLAVE 

·""r~ ~v "-'~ "-' 

WRITE READ 

~ Skew and decode m Skew only 

FIGURE 3.5 Timing for a Mly interlocked asynchronous bus. 

For the WRITE transaction, the bus master places address and data on the bus. After 
a delay to allow for skew, decoding, and setup time, the bus master raises MASTER, 
which signifies to the slave that the data can be accepted. Raising MASTER thus triggers 
a slave memory to initiate a WRlTE cycle, and latches data into a slave buffer register. In 
any case, action at the slave takes place only after MASTER is a~serted. 

While the slave is busy copying data in response to MASTER, the SLAVE signal 
remains low. When copying is completed, the slave module raises SLAVE to signify, 
"I've got it." The handshake continues with MASTER going low ("I see you've got it"), 
and SLAVE going low ("I see you see I've got it"). The last two transitions are part of a 
sequence to guarantee that neither MASTER nor SLAVE changes too quickly. SLAVE 
stays high as shown in the figure until the MASTER signal goes low, thus ensuring that 
the high SLAVE signal has been observed and acted upoJ1. ·Only then does SLAVE go 
low. Similarly, a new transaction cannot be initiated until S):...A VE goes low signifying the 
end of the present transaction. Hence the rising edge of MASTER (and the transitions on 
the address and data lines) are interlocked to the fall of SJ..,A VE. 

A READ transaction is very similar to a WRlTE, with the high value of MASTER in­
itiating the operation at the slave after the bus master places an address on the bus. 
SLAVE goes high after the slave module accesses the datum requested and places it on 
the bus. In this context, a high value on SLAVE sig!lifies, "The READ is complete." 

Micron Technology Inc. et al. 
Ex. 1042, 96



3.2 The Bus Handshake 97 

This triggers the master to load its buffer from the bus. During this period SLAVE must 
remain high, ~nd the data lines must be stable. If the slave were to change these signals 
prematurely, the master could read incorrect information. When the master has completed 
its acceptance of data, it drops MASTER ("I've got it"), and then SLAVE drops ("I see 
you've got it''). 

The reasons for the interlocking become clear when we consider how a partially inter­
locked protocol can fail. Consider the two situations shown in Fig. 3.6. In Fig. 3.6(a), we 
permit SLAVE to drop a fixed tiine after it rises, without waiting for MASTER to drop. 
Likewise, we also remove the interlock between the falling edge of SLAVE and the lead­
ing edge of MASTER. Also in Fig 3.6(a), SLAVE goes down well before MASTER 
does, and we see that the transfer is done safely. The dotted lines show SLAVE delayed 
somewhat with respect to MASTER, possibly because of long propagation delays or sig­
nal skew. In t)lis case, if MASTER drops and rises &gain while SLAVE is high, it may 
mistake the high value of SLAVE fdr a response to the next transfer. This situation is 
shown in Fig. 3.6(b). Now the master may remove data and addresses too quickly from 
the bus for the slave to accept the new data. As a result, one transaction is lost. 

MASTER 

SLAVE 

(a) (b) 

FIGURE 3.6 Examples of signaling with a partially 
interlocked asynchronous protocol. · · 

Although partial interlocking as shown in Fig. 3.6 lacks the safety of full interlock­
ing, it can be made safe provided that master and slaves adhere to a strict set of timing 
constraints on the noninterlocked transitions. The adva11tage of eliminating part of the in­
terlocking is that the bus transaction can be made a little faster so that the bus bandwidth 
can be greater than it would be in a fully interlocked protocol. But tight constraints usu­
ally result in higher manufacturing cost, making the partially interlocked protocols less 
desirable in general, although useful in specific applications where the extra expense is 
justified. 

Returning to Fig. 3.5, we note in this protocol shaded areas that represent roles simi­
lar to those represented by the shaded areas of the synchronous protocol. Addresses have 
to be raised before MASTER at least early enough to permit address decoding and buffer 
setup, and to protect against skew on the address lines relative to MASTER. Hold times 
are not shown specifically, but exist nevertheless. Hold time is usually incorporated into 

Micron Technology Inc. et al. 
Ex. 1042, 97



98 Bus Interconnections 

the slave by delaying the SLAVE signal one hold time after a WRITE is completed, or 
after presenting data on the bus for a READ. Obviously, the hold time can equally well 
be incorporated into the master, with the SLAVE signal being presented concurrently 
with an event while the master delays its actions one hold time after receiving a transition 
on SLAVE. Whichever of these techniques is used in a protocol, that technique has to be 
used consistently for all slave and master modules, for otherwise the protocol will not 
work correctly. Deskewing data and address signals relative to MASTER and SLAVE can 
normally be combined with hold time, since skew effects are treated by inserting delays in 
the protocol, in much the way that delays for hold time are inserted into a protocol. 

The wide acceptance of the fully interlocked asynchronous protocol is largely due to 
its reliability and its general efficiency in dealing with devices that have a broad range of 
response times over long buses. But the protocol is inherently slower than the synchro­
nous protocol because of extra propagation delays. The minimum cycle time for a READ 
operation must account for 

1. deskew (and setup time) of addresses to slave, 
2. address decode at slave, 
3. deskew (and hold time) of data returned by slave, and 
4. two round-trip propagation delays of MASTER and SLAVE signals. 

The first three items in this list are comparable to those for synchronous buses, but the 
propagation delay for the fully interlocked handshake is double that of a clocked bus. In­
formation is passed up and down the bus twice per transaction for asynchronous buses, but 
only once for synchronous buses. The second round trip is omitted for synchronous proto­
cols because the devices are known in advance to respond within a fixed maximum time. 
The purpose of the second round trip for an asynchronous bus is to convey completion in­
formation that is not bounded in advance. 

Semisynchronous Buses 

Because the propagation delays of the asynchronous bus severely limit maximum 
bandwidth, many bus designers have turned to "hybrid" buses that combine the advan­
tages of synchronous and asynchronous buses. One such bus is the semisynchronous bus 
that appears in Fig. 3.7. This bus has two control signals, CLOCK (from the master) and 
WAIT (from the slave). In some sense the signals play the role of MASTER and SLAVE 
for the asynchronous bus, but the propagation delays are half those of the asynchronous 
bus because a single round trip is all that is necessary for a successful handshake. For fast 
devices, the bus is essentially a synchronous bus controlled by the clock alone. If a slave 
is fast enough to respond in one clock cycle, it does not raise WAIT, and the semisynchro­
nous bus behaves like a synchronous bus. If the slave cannot respond in one cycle, it 
raises the WAIT signal, and the master halts. Subsequent clock cycles find the master 
idle as long as WAIT is asserted. When the slave can respond, it drops WAIT, and the 
master accepts the slave response using the timing of the standard synchronous protocol. 
The semisynchronous bus thus has the speed of the synchronous bus and versatility of the 

Micron Technology Inc. et al. 
Ex. 1042, 98



3.2 The Bus Handshake 99 

CLOCK DODD DOD 
ADDREss! I n1 II 

M to S S toM M to S S toM 

DATA D 01 D 
WRITE D 
READ D 
WAIT 0 

FIGURE 3. 7 A semisynchronous bus with cycle times increased by aWAIT signal. 

asynchronous bus. However, the length of the semisynchronous bus is limited by there­
quirement that WAIT must be asserted within a fixed period of time. So these buses can­
not have an indefinitely long length, but there is no equivalent timing constraint for asyn­
chronous buses. 

Another way to retain the advantage of the fast synchronous protocol while accom­
modating slow devices is with the use of a "split-cycle" protocol as shown in Fig. 3.8. In 
this case a READ is split into two separate transactions. During the first transaction, the · 
bus master transmits an address to a slave, and then disconnects from the bus. Other mas­
ters then use the bus until the slave is able to return the requested data. At this point, the 
slave initiates the second part of the split cycle by accessing the bus as a master and 
transmitting the data to the requesting module, which responds as a slave. The split cycle 
places a greater burden on the master and slave modules because each type of module 
must have the logic to assume both master and slave roles. Moreover, the bus protocol as­
sumes that many different bus masters access the bus at different times, so that every 
module must also contain the logic for bus arbitration protocol in order to gain access to 
the bus as a master. 

The split-cycle protocol differs slightly in the information passed on the bus from the 
protocols studied above. For a READ transaction the master supplies a unique identifier 
for itself together with the address of the requested data so that the slave can return the re­
quested data to the master. In fact, the master identifier is the address used during the 
second part of the split cycle, and both halves of a READ follow the protocol of a WRITE 
cycle. 

Micron Technology Inc. et al. 
Ex. 1042, 99



1 00 Bus Interconnections 

ADDRESS 

MASTER 

SLAVE 

DATA 

Master transmits 
address to slave 

Bus idle 
(Available for other 

transactions) 

Slave transmits 
Data to master 

FIGURE 3.8 A split-cycle protocol READ transaction. 

Clearly the performance of a split-cycle protocol depends on being able to use the bus 
time between the cycle halves for other transactions. Thus the protocol is most suitable 
for systems with multiple processors or multiple DMA devices on the bus; it makes little 
sense for low-performance systems. This type of protocol is used in high-performance 
minicomputers such as DEC's V AX-111780, but has rarely been used in microcomputers 
until the introduction of the Intel iAPX- 432 in 1981. 

3.3 ARBITRATION PROTOCOLS 

The purpose of arbitration has been discussed earlier, namely to guarantee conflict-free 
access to a bus. Bus arbitration is absolutely essential in systems that have two or more 
bus masters, and is not necessary for systems that have but a single master. But even in the 
latter case, the lines and logic required for arbitration are normally included in general­
purpose modules so that these modules can be used in both contexts. Also, a system ini­
tially configured without DMA can be upgraded to a system with DMA, with the required 
arbitration facilities already in place. 

One of the simplest possible arbitration techniques is called a daisy chain, and is 
shown in Fig. 3.9. The idea is that a single arbiter (the microprocessor itself in a single­
processor system with DMA) has exclusive access to the bus until a request for access 
comes from a DMA device or other processor (identified as the small modules in the fig­
ure.) In response to a REQUEST signal, the arbiter issues a GRANT. This signal passes 

Micron Technology Inc. et al. 
Ex. 1042, 100



3.3 Arbitration Protocols 101 

GRANT 
IN OUT IN OUT IN OUT IN 

Bus master REQUEST 
OUT IN OUT IN OUT IN OUT 

FIGURE 3.9 Daisy-chained bus arbitration (2 wires). 

sequentially through the other potential bus masters. The first requesting module that re­
ceives GRANT takes control of the bus for one transaction. While that module has control 
of the bus, it does not pass the GRANT to the next module on the bus. Consequently, no 
other module has access to the bus. 

Typical timing of this protocol appears in Fig. 3 .10. The first transaction shows a par­
ticular module generating a REQUEST, and eventually receiving a GRANT. For this 
transaction, there is no REQUEST into the module, and no GRANT is passed on by the 
module. For the next transaction the module is inactive. It receives a REQUEST, which it 
repeats. When a GRANT appears later, it passes this on to the lower-priority modules. For 
the last transaction the module both generates a REQUEST and receives a REQUEST. 
The module maintains an active output on REQUEST through its bus transaction and 
through that of the lower priority device. When the GRANT reaches the module in 
response to the REQUEST, the module takes control of the bus and maintains an inactive 
output on GRANT. At the conclusion of its transaction, it passes GRANT down the daisy 
chain because the REQUEST input is still active. 

REQUEST 

IN 

REQUEST~ 
OUT 

GRANT 
IN 

GRANT 
OUT 

0 

~Local request. 

IRI 

D 

D D 

FIGURE 3.10 Daisy-chain timing. 

Micron Technology Inc. et al. 
Ex. 1042, 101



1 02 Bus Interconnections 

The sequential flow of GRANT is crucial in this case. The protocol attempts to grant 
high-priority requests before low-priority requests, so that GRANT is routed to the 
modules in the order of priority. In essence, each module in succession is offered access 
to the bus; and the first that has a pending request accepts access. 

Although the protocol appears to have all the desired characteristics, it has timing 
hazards that can lead to bus failures unless special precautions are taken to eliminate the 
hazards. Let us first investigate what problems exist, then show a popular 3-wire protocol 
that is hazard-free. 

The arbitration protocol we have described appears to work correctly, because one 
module at a time receives the opportunity to take control, and therefore only one module 
can be granted bus control for any specific cycle. Once a module begins a cycle, that cy­
cle must run to completion. If a higher-priority module wrests control of the bus away 
from a lower-priority module in the midst of a cycle, the aborted cycle may appear to be 
correct to the bus master or bus slave and will result in a communication failure. There­
fore, a high-priority module must recognize that the lower-priority modules can be in one 
of three states, namely, 

1. idle, 
2. holding a pending request, or 
3. actively controlling the bus. 

The high-priority module can take control only if no lower-priority module is in the third 
state. The REQUEST/GRANT protocol, however, passes only one bit of information 
from the lower-priority modules. This bit by itself cannot distinguish among three dif­
ferent states. The critical distinction is between a pending request and active control of the 
bus. Therefore, to make the protocol safe each module uses the GRANT as well as the 
REQUEST signal to determine the state of the lower-priority part of the bus. Specifically, 

1. if GRANT is low and REQUEST is high, there is at least one pending request, but no 
lower-priority module has active control of the bus, and 

2. if GRANT is high and REQUEST is high, then a requesting module has been granted 
bus control and is currently conducting a transaction. 

If a high-priority module generates a bus request while GRANT is high, it cannot take 
control of the bus. Safe arbitration requires that the module must see GRANT change 
from low to high after REQUEST is raised, and thus the leading edge of GRANT triggers 
the bus-control decision as the GRANT signal passes down the arbitration lines. 

Edge-triggering on GRANT is necessary, but in itself does not provide complete pro­
tection from timing hazards. The protocol must ensure that the decision to take control of 
the bus is made sequentially, one module after another, and propagates in one direction on 
the bus. To see what happens when this rule is broken, consider what happens when the 
protocol in Fig. 3.10 is changed ever so slightly to violate the rule. Assume that when a 
module in control of the bus completes its transaction, that module passes GRANT on to 
the next lower-priority module, whether or not there is a REQUEST pending from that 
part of the bus. This protocol appears to be reasonable because a REQUEST from a 

Micron Technology Inc. et al. 
Ex. 1042, 102



3.3 Arbitration Protocols 103 

lower-priority module may be propagating up the bus at this very instant of time, and the 
requesting module may be able to take control when the GRANT arrives without having 
to wait until the next arbitration cycle. The timing hazard in this protocol appears in Fig. 
3.11. Assume that the controllers are numbered 1, 2, and 3 in descending order of prior­
ity, and that we observe the bus with Controller 2 performing a transaction. Let us also 
assume that while Controller 2 is active, Controllers 1 and 3 are both inactive, and that 
both generate REQUEST signals shortly after Controller 2 terminates. Signals propagate 
in both directions from Controller 2. GRANT continues down the bus to the lower-priority 
modules, while REQUEST drops low and propagates towards the bus arbiter. As GRANT 
propagates to Controller 3, if this controller generates a request before the leading edge 
arrives, it will take control of the bus when it sees GRANT go high. Meanwhile, Con­
troller 1 sees a high GRANT from the arbiter and a low REQUEST from the lower­
priority modules on the bus. In this condition Controller 1 can assume that it is safe to take 
control of the bus; or, to be sure that it sees the leading edge of GRANT, the controller 
can output a low on REQUEST (repeating the input condition), then raise REQUEST (re­
porting its local bus request). The latter situation results in GRANT dropping in response 
to the low REQUEST and rising again in response to the high REQUEST. In either situa­
tion, Controller 1 has taken control of the bus while Controller 3 has control. A bus 
failure occurs. 

GRANT 
Bus 

controller REQUEST 

At time T1, Controller 2 has the bus. 

At T 2 , Controller 2 completes and passes 
GRANT to Controller 3, which starts. 

At T3 , Controller 3 raises request, fin~s 
GRANT and takes bus. 

FIGURE 3.11 Possible timing hazards in an unsafe 2-wire protocol: If Controller 2 passes an 
inactive signal on REQUEST to Controller 1, Controller 1 can take the bus away from Controller 3. 

The reason for the failure is that in this protocol Controller 2 issues bus grant signals 
in both directions on the bus when it completes its transaction. With bus grants going in 
both directions, the protocol violates the basic rule that control decisions have to be made 
one module at a time, progressing from module to module down the bus. 

The protocol whose timing is illustrated in Fig. 3.10 is safe from this timing pazard 
because a controller does not pass GRANT to lower-priority modules unless that con-

Micron Technology Inc. et al. 
Ex. 1042, 103



104 Bus Interconnections 

troller sees an active REQUEST from these modules. Therefore one of two mutually ex­
clusive conditions holds when Controller 2 completes its bus transaction in Fig. 3 .11. Ei­
ther Controller 3 has a REQUEST raised or it does not. The two different responses to 
these conditions are 

1. When REQUEST is high from Controller 3, Controller 2 asserts GRANT to Con­
troller 3 while also asserting REQUEST high to Controller 1. 

2. When REQUEST is low from Controller 3, Controller 2 deasserts GRANT to Con-
troller 3, and also de asserts REQUEST to Controller 1. 

Since these two events are mutually exclusive, the protocol is safe. Nevertheless, poor 
logic design can cause short glitches on the REQUEST line output to Controller 1 if 
Controller 3 has its REQUEST high when Controllt~r 2 completes its transaction. TheRE­
QUEST from Controller 2 in this case was formerly generated by Controller 2' s local RE­
QUEST for the bus. When Controller 2 has completed its activity, the output value of RE­
QUEST changes over to the condition of being generated by the REQUEST from Con­
troller 3. As this state change occurs, a short glitch on the REQUEST line output to Con­
troller 1 proves disastrous. (Additional timing problems caused by Controller 3's chang­
ing its REQUEST OUT state almost concurrently with the completion of Controller 2's 
transaction exacerbate the hazard.) The glitch propagates toward Controller 1, whiCh will 
take control of the bus when the glitch arrives. Meanwhile, the GRANT propagates from 
Controller 2 to Controller 3, which takes the bus when it receives GRANT. Should both 
controllers elect to take the bus, a,conflict and bus failure is inevitable. While the condi­
tions mentioned here appear to be somewhat contrived, they are quite realistic and 
demonstrate the pitfalls of careless logic design and failure-prone arbitration protocol. 

One of the most popular methods for arbitration is a 3-wire method shown in Fig. 
3.12. This scheme is similar to the arbitration scheme of the DEC PDP-11 Unibus (Digital 
Equipment, 1979). Two of the three lines are continuous bus lines, with modules having 
the ability to inject signals onto the lines or to read signals from the lines. One line is the 
GRANT line, which threads the modules sequentially, and is not a continuous bus line. 
The REQlJEST line of the 2-wire daisy chain becomes a REQUEST and a BUSY line on 
the 3-wire daisy chain. With the two lines REQUEST and BUSY, we are able to distin­
guish among the three states mentioned earlier-, idle, request pending, and active con-
t~. . ; 

Arbiter 

FIGURE 3.12 Safe daisy-chain arbitration protocol (3 wires). 

Micron Technology Inc. et al. 
Ex. 1042, 104



3.3 Arbitration Protocols 105 

The operation of this protocol is as follows: 

1. When a controller has active control of a bus, It asserts BUS BUSY. 
2. When a controller requires a bus cycle, it asserts REQUEST. 
3. The arbiter transmits a GRANT signal when it detects a pending REQUEST and an 

inactive state on BUS BUSY. (If the arbiter is itself a bus master, such as a micropro­
cessor, the arbiter can take one or more bus cycles when BUS BUSY falls before 
responding with a GRANT signal.) 

4. A controller passes GRANT to the next controller if GRANT is received when the 
controller has no REQUEST pending. 

5. A controller takes over the bus when 
i) it has a local request pending, 
ii) BUS BUSY is inactive, and 
iii) it detects the rising edge of GRANT. 

For both BUS BUSY and REQUEST, we assume that the bus forms the logical OR of the 
outputs from the controllers. Most implementations use open-collector drivers for driving 
the bus, so that the low state must be the active state because this is the state that produces 
an OR function. 

Typical bus timing appears in Fig. 3.13. We see here the interplay of the requests 
from two controllers, with Controller 1 having priority over Controller 2. in the first trans­
action, the bus is not busy when Controller 1 makes a request. At a subsequent point in 
time Controller 1 receives a GRANT, and then takes control of the bus without passing 
GRANT to the next controller in line. When taking over the bus, Controller 1 raises BUS 
BUSY to signify that it has the bus. At that point the arbiter removes GRANT. Now the 
bus is in use, and neither REQUEST nor GRANT is high. 

REQUEST 

GRANT 

BUS BUSY 

Controller I 

~ Controller requesting bus. ~ Controller active on bus. 

FIGURE 3.13 Timing for the 3-wire daisy-chain arbitration protocol. 

Micron Technology Inc. et al. 
Ex. 1042, 105



106 Bus Interconnections 

Subsequently Controller 2 requires access to the bus and raises REQUEST, which 
propagates to the arbiter. The arbiter cannot grant access to the bus immediately because 
BUS BUSY is high. Mter BUS BUSY falls, the arbiter transmits GRANT to the control­
lers along the bus. Controller I passes this GRANT to Controller 2 because Controller 1 
has no REQUEST pending. When Controller 2 receives the GRANT signal, the GRANT 
goes no further. Controller 2 raises BUS BUSY, lowers REQUEST, and takes over the 
bus. Meanwhile the arbiter removes GRANT and the arbitration cycle repeats. 

Note what happens when Controller 1 requests the bus after passing GRANT to Con­
troller 2. Because Controller 1 raises REQUEST after passing GRANT to the next con­
troller in line, it does not remove GRANT when it raises REQUEST; moreover, Con­
troller 1 does not take over the bus even though it sees GRANT high. The protocol 
prevents Controller 1 from taking the bus because the controller has missed the leading 
edge of GRANT. If Controller 1 responds to a level signal on GRANT instead of the lead­
ing edge, then Controller 1 could wrest control of the bus away from Controller 2 after 
Controller 2 initiates a transaction. This is an unsafe condition. Hence, the edge­
sensitivity to the GRANT signal is essential for the protocol to be safe. Controller 1 even­
tually receives control of the bus, but this happens on the next arbitration cycle. When 
Controller 1 eventually takes control, the BUS BUSY signal first drops (Controller 2 com­
pletes its transaction), and then the arbiter issues a new GRANT that is accepted by Con­
troller 1. 

This protocol is safer than the 2-wire protocol for a number of reasons, although it 
can fail (as can any protocol) if events on the bus occur too closely in time. We take up 
this particular type of failure later in this chapter, but for the present we focus on the 
safety of the 3-wire arbitration protocol. To show the higher reliability of the 3-wire pro­
tocol, consider the failure of the 2-wire protocol. Recall that even though the 2-wire pro­
tocol is safe when glitch-free, with glitches present it becomes unsafe because Controller 
2 can pass contrary information in opposite directions on the bus, and this information can 
enable modules on either side of Controller 2 to take control of the bus. For the 3-wire 
protocol, in order for both Controller 1 and Controller 3 to take control of the bus, they 
both have to see a low on BUS BUSY and a rising edge on GRANT. But GRANT is pro­
duced only after the low on BUS BUSY propagates forward to the arbiter. GRANT is not 
passed directly to Controller 3 from Controller 2. In the 3-wire protocol, the GRANT 
passes through all of the modules sequentially until the arbitration winner stops the propa­
gation of GRANT. Hence, Controller 3 cannot elect to take control of the bus unless Con­
troller 1 has first had the opportunity to do so. 

The 3-wire protocol is insensitive to glitches in many instances. Suppose, for exam­
ple, that Controller 1 raises its REQUEST just soon enough before GRANT passes 
through the controller to see the leading edge of GRANT, but the timing is so critical that 
a momentary pulse on GRANT propagates down the bus to the lower-priority modules. 
Note that GRANT passes through logic gates as it propagates down the bus, while BUS 
BUSY propagates in the same direction along a bus wire. In all likelihood BUS BUSY 
reaches the lower-priority modules before GRANT does. Hence, a requesting module that 
sees the brief GRANT pulse is likely to do so when BUS BUSY is high, which is an ille-

Micron Technology Inc. et al. 
Ex. 1042, 106



3.4 Asynchronous Timing Difficulties 107 

gal condition. Good logic design dictates that this condition be checked, and that a 
module that observes this condition be prevented from taking the bus. 

The reliability of the 3-wire protocol is the reason behind its general acceptance in the 
industry. Almost all bus arbitration protocols for high-speed bus systems use the 3-wire 
system or a variation of it. 

3.4 ASYNCHRONOUS TIMING DIFFICULTIES 

In our discussion of arbitration we hinted at inherent difficulties in resolving asynchro­
nous signals. The arbitration protocol relies on being able to tell if GRANT occurs before 
or after REQUEST. Is it always possible to make this decision correctly? If not, what is 
the failure mode? 

The basic problem in resolving timing differences in two signals reduces to that of 
latching a single datum into a flip-flop. If the datum is present before the clock, the datum 
is latched successfully. If the datum is not present, the flip-flop latches a quiescent value 
(presumably a 0), and misses the datum. Every flip-flop and, in fact, every memory ele­
ment must observe a datum on its input for at least a minimum time in order to copy that 
datum into memory in response to a clock pulse. This is equivalent to saying that the input 
signal must contain a minimum amount of energy in order to raise some input buffer 
above a threshold. The minimum time is usually expressed as a setup and hold time. 

It is clear enough that a signal that satisfies setup and hold time constraints can be 
recognized successfully, but what happens if the constraints are violated? The results are 
unpredictable and disastrous. Chaney and Molnar (1973) show photos of oscilloscope 
traces of real devices whose input signals violate setup and hold times. Among the in­
teresting results shown are as follows: 

1. Flip-flops enter a "metastable" state in which the output lies about midway between 
a logic 0 and logic 1. The output stays in this condition for a variable and unpredict­
able amount of time, then relaxes unpredictably to either a logic 0 or logic 1. 

2. Flip-flop outputs oscillate in phase with each other (violating the rule that the outputs 
are complementary) until they relax at complementary logic values an unpredictable 
time later. 

3. Flip-flops stay in a stable state for a time longer than the worst-case transition time, 
then switch to their final state. 

4. Flip-flops output a spurious brief pulse of unpredictable duration before assuming a 
steady state. 

A typical failure mode is shown in Fig. 3.14. Mead and Conway (1980) address the same 
type of problem in the context of VLSI. Synchronization is a fundamental problem no 
matter how small or how fast the gate. · 

The implication of all of these problems is that we cannot depend on the flip-flop fall­
ing to a correct and consistent state, nor can we depend on the settling time to be within a 
maximum period of time. How then is it possible to design a safe, asynchronous system? 

Micron Technology Inc. et al. 
Ex. 1042, 107



1 08 Bus Interconnections 

v(t) l 

Time---+ 

FIGURE 3.14 Output voltage as a function of time for a 
flip-flop in the metastable state. 

The only way to be sure that a system is free from the clocking difficulties we have 
discussed is to use a single master clock from which all other timing is derived. At each 
flip-flop we can enforce the setup and hold-time constraints to be met by permitting sig­
nals to change only within certain safe periods of time. These safe periods are derived 
from the master clock so that each module that produces changes on its signals derives the 
safe period for those changes from the same time base as every other module. Because of 
propagation delays and skew, there are uncertainties in the edges of the master clock, but 
these can be taken into account when producing the windows that gate signals during safe 
periods. One way of gating signals safely is shown in Fig. 3.15. In this case, signal X 
changes within the setup and hold-time constraints for the Phase 2 clock but is known to 
be stable during the change of an earlier clock (Phase 1). So X drives a flip-flop gated 
from Phase 1. This guarantees that X is stable when the first flip-flop latches X, and the 
first flip-flop is stable when the second latches its value. As long as all signal changes can 
be gated from a single master clock, in principle every flip-flop change can be made safe 
from asynchronous timing hazards. But if signals can change in truly asynchronous 
fashion, as is the case at interfaces between two separate, individually clocked systems, 
then timing hazards are inherent. In this case, the designer can at best reduce the problem, 
but not eliminate it. 

X 

Phase I clock Phase 2 clock 

FIGURE 3.15 A safe procedure for gating a signal that is unstable 
during the Phase 2 clock setup period. 

Micron Technology Inc. et al. 
Ex. 1042, 108



3.5 Interrupt-Request Arbitration 109 

The method of Fig. 3.15 for guaranteeing that X is read only while X is stable is also 
used to synchronize X to the system when X can change at any time whatsoever. No prob­
lems occur if X is stable for the flip-flop setup and hold times of Phase 1. If X should 
change within the constraint times, the output of the flip-flop is unpredictable, and the 
flip-flop may enter the metastable state for an indefinite period of time. The idea is to 
have the edges of the Phase 1 and Phase 2 clocks far enough apart that the Phase 1 flip­
flop is almost certainly in a stable state when Phase 2 triggers the second flip-flop. 
Whereas there is no guarantee that the first flip-flop will be stable at this time, the longer 
the period of time between Phase 1 and Phase 2, the more likely it will be that the first 
flip-flop will stabilize before Phase 2 occurs. For example, if the flip-flop is a 74S74, the 
stabilizing time should be at least 250 ns. For the bus systems we describe, the raising of 
REQUEST can occur at any time relative to GRANT. To avoid timing difficulties, both 
GRANT and REQUEST should be clocked relative to a master clock to guarantee that 
they cannot change within a critical time of each other. 

3.5 INTERRUPT-REQUEST ARBITRATION 

The arbitration schemes used to control access to a bus may be used for other purposes as 
well. Earlier in this textbook we described the functional details of interrupt-device iden­
tification, and we mentioned that some microcomputer systems incorporate a priority 
mechanism to resolve conflicts among interrupting devices. That priority mechanism is 
often implemented as a 2-wire or 3-wire daisy chain, using the essentially similar bus pro­
tocols, which we described, for gaining access to a bus. 

The simplest form of device identification is shown in Fig. 3.16. This is a party-line 
system in which the interrupt request (IRQ) is the logical OR of the request signals gen­
erated by the devices. In responding to the IRQ request, the processor must first query 

Service request line 

FIGURE 3.16 A party-line interrupt facility. 

Micron Technology Inc. et al. 
Ex. 1042, 109



11 0 Bus Interconnections 

each device with a polling program to determine which is ready for service. Devices are 
normally polled in order of their priority, from the highest-priority device to the lowest. 
Because device polling is so time consuming, the vectored interrupt method has gained in 
popularity and acceptance. This scheme appears in Fig. 3.17. The scheme shown is essen­
tially the 2-wire system, but it could as easily be the 3-wire system. The REQUEST line 
is the inteiTupt request line, and the GRANT line is the status line that indicates when the 
interrupt is honored by the processor. When the GRANT signal goes high, the device win­
ning of the arbitration cycle places its device code (or some uniquely identifying integer) 
on the bus. The processor accepts the device code, and computes a starting address for the 
device-handler software from its device code. Thus, within a few machine cycles of 
honoring the interrupt, the processor can transfer control to software dealing specifically 
with that interrupting device. Polling takes a good deal of time, and severely degrades the 
performance of systems with many devices. 

CPU 

GRANT 

REQUEST 

Central bus 

FIGURE 3.17 A daisy-chain priority scheme for a vectored-interrupt system. 

3.6 EXAMPLES OF EXISTING BUS PROTOCOLS 

In this section we examine implementations of the handshaking and arbitration protocols. 
The example of a synchronous protocol is drawn from the 6800 family of microproces­
sors. The PDP-11 and LSI-11 families use asynchronous protocols, with differences 
between the two families to account for differences in the number of wires in their buses. 
The 8085/8086 family of microprocessors provides examples of semisynchronous bus 
protocols. 

The 6800 family of processors uses the synchronous protocol illustrated in Fig. 3.18. 
The example in the figure assumes a 1 MHz clock rate, but within the 6800 family are 
processors that operate up to 2 MHz, with coiTesponding reductions in the times shown. 
The 1 MHz clock has roughly a 50% duty cycle, with the clock's leading and trailing 
edges providing the timing points for latching or reading all bus signals. Note that the bus 
master places address and data on the bus at least 200 ns before the rising clock edge, and 
holds them for a least 40 ns after the falling clock edge. The setup time for READ and 
WRITE transactions requires that data be valid at least 100 ns before the falling edge of 
the clock. Among the signals that have the timing of address lines is the signal R/W L, 

Micron Technology Inc. et al. 
Ex. 1042, 110



3.6 

Clock 

Address 

Read 

Data 

Examples of Existing Bus Protocols 

200 50 500 500 
ns ns ns ns 0 Hr-- H f---­
~000 

100 

READ cycle WRITE cycle 

0 

FIGURE 3.18 The 6800 bus timing: A synchronous bus. 

0 

111 

which determines if the bus transaction is a READ or WRITE. Hence, at least 200 ns be­
fore the rising edge of the clock, the type of transaction is broadcast to all memories and 
ports on the bus. As we see later for the 8085 microprocessors and its descendents, the 
8085 family follows a different procedure and uses separate READ or WRITE signals 
both to determine the direction of a transaction and to trigger it. 

The PDP-11 Unibus provides an example of a purely asynchronous protocol. Figure 
3.19 shows the timing for this bus, and gives minimum times for deskewing and decod­
ing. Addresses must be placed on the bus at least 150 ns before raising MASTER, to allow 
for 75 ns decoding and 75 ns deskewing delays. The slave responds by raising SLAVE as 
soon as the data lines hold valid information (for READ) or have been latched (for 

Address and 
command 

MASTER ~ 
SLAVE 

Data 

READ cycle WRITE cycle 

FIGURE 3.19 PDP-11 unibus timing; An asynchronous bus. 

Micron Technology Inc. et al. 
Ex. 1042, 111



112 Bus Interconnections 

WRITE). Thereafter most transitions are spaced at least 75 ns apart tb allow for deskew­
ing. For a READ, the master waits 75 ns after seeing SLAVE high before latching data, 
and waits 75 ns after dropping MASTER before removing the addresseS from the bus. For 
a WRITE, the master drops MASTER without a deskewing delay wlien it sees SLAVE 
high, but holds addi·ess and data valid on the bus for 75 ns after dropping MASTER. 

The general principles of asynchronous handshakes are easily extended for more 
complex situations. Figure 3.20 illustrates how to multiplex addresses and data on one set 
of wires using an asynchronous handshake with one extra control wire. This is the tech­
nique used in the DEC LSI-11 Q-bus. Each bus transaction consists of two cycles, one in 
which an address is transmitted from master to slave, and the second in which data are 
transferred, either from master to slave or from slave to master for, respectively, WRITE 
and READ transactions. The beginning of a cycle occurs when addresses are placed on 
the bus, followed by one deskew am~ decode time later ( 150 ns) with the raising of the 
MASTER signal. This signal stays high through both cycles of the transaction, The bus 
master leaves the address on the bus for at least 100 ns to perrilit the selected slave to 
prepare for the subsequent data cycle. There is no handshake on this pmt of the cycle, so 
all slaves must respond to address broadcasts within a fixed minirimm time, much the way 
that slaves on synclu·onous buses have to respond within one clock cycle. The asynchro­
nous portion of the cycle depends on whether the cycle is a READ or WRITE. For a 
READ the master raises the READ HANDSHAKE signal, ahd thereafter the SLAVE 
HANDSHAKE and READ HANDSHAKE perform a fully interlockedhandshake. The 
falling edge of SLAVE HANDSHAKE drops the MASTER signal, and the cycle ends. 
(Names of signals used here do not follow the nanling conventions of the manufacturers, 
but the reader can easily identify similar names and functions.) 

Slave to Master 

88 
Active cycle 
(MASTER) 

READ 
(MASTER HANDSHAKE) 

SLAVE HANDSHAKE 

WRITE (MASTER HANDSHAKE) 

READ operation 

Master to Slave 

88 

WRITE operation 

FIGURE 3.20 Q-bus tinling: A multiplexed asynchronous bus. 

Micron Technology Inc. et al. 
Ex. 1042, 112



3.6 Examples of Existing Bus Protocols 113 

A WRITE cycle is similar to the READ cycle, with the exception that the master 
places the data on the bus first, and then raises WRITE HANDSI-iAKE. All subsequent 
transitions are fully interlocked, and the transaction closes by dropping MASTER in 
response to the fall of SLAVE HANDSHAKE. The figure does not show the delays in­
serted in the protocol for deskewing. These are all typically between 75 and 200 ns, 
depending on the transition. The exact details are unimportant for this discussion, but are 
given in detail in thePDP-11 Bus Handbook (1979). 

The 8085 timing shown in Fig. 3.21 is an example of a semisynchionous bus that ex­
hibits bus multiplexing siririlar to that of the LSI-II Q-bus. The timing of the bus is some­
what unusual in that the clocking information is contained on the control lines. All bus 
timing is relative to the rising and falling edges of the control signals, so that the clock it­
self does not necessarily have to be transmitted on the bus. It is available, however, and 
can be used or ignored as the designer chooses. 

Clock 

Add~ess High 

Address Low 
and Data 

Address 
Latch 
Enable 

READ 

WRITE 

J DO DODD 0 

II 

READ cycle WRITE cycle 

FIGURE 3.21 The 8085 bus timing: A semi-synchronous multiplexed bus. 

For this bus, a cycle begins on a falling clock edge with the master raising the signal 
ALE (Address Latch Enable) while outputting the addresses onto the bus. ALE falls with 
the rising edge of the bus clock, and triggers external circuitry to latch the address 
currently present on the bus. The address lines remain stable until the next falling edge of 
the clock, providing the necessary hold time. The low byte of the address is removed from 
the multiplexed bus lines when the clock falls to complete its first cycle. This brings us to 
one clock cycle after the beginning of the transaction. The activity for the next clock 
depends on whether the transaction is a READ or WRITE. 

Micron Technology Inc. et al. 
Ex. 1042, 113



114 Bus Interconnections 

For a READ, the master asserts the READ signal, holds this signal steady for 02 
clock cycles, then latches data from the slave with the falling edge of READ (approxi­
mately concurrent with the rising edge of the clock during the third clock cycle). Hence 
the slave has 1~ clock cycles to respond to the bus command, and the specific operation is 
triggered by the active edge of READ. Data should be stable on the bus for one hold time 
after the fall of READ, which falls in the last~ cycle of the third clock period. A new 
memory operation then begins with the falling edge of the clock at the close of the third 
cycle. Note that only the low address is multiplexed with data. The high address is stable 
during the entire memory operation. Note also how the clock transitions encoded on the 
control lines provide separate and distinct times for each bus activity. This guarantees that 
there is a brief period between the disabling of one set of bus drivers and the enabling of 
another set. 

The WRITE transaction differs from READ at the beginning of the second clock cy­
cle. Here the bus master removes the low address and replaces it with data while asserting 
the WRITE signal. The leading edge of WRITE, triggers a bus transaction that lasts 1 ~ 
clock cycles. WRITE drops approximately at the rising edge of the third clock, which no­
tifies the slave that the master has completed its portion of the cycle. The memory opera­
tion ends with the falling edge of the third clock. Data and addresses remain on the bus for 
at least one hold time after the fall of WRITE. 

As shown in the figure, both READ and WRITE take three clock cycles to complete. 
However, these are minimum times. Operations are extended an integral number of cy­
cles depending on the state of the slave signal READY. The bus master reads the READY 
signal (not shown in the figure)~ cycle after asserting READ or WRITE, which is~ cycle 
before the last full clock period of the transaction. If the READY signal is asserted, then 
the next cycle is the last. If READY is low, then the master extends the cycle by one 
WAIT cycle, and reads READY again one cycle later. Because of setup time delays, the 
slave has to raise or lower READY early enough to reach the master about 100 ns before 
the clock edge rises in the second clock period. To lengthen a transaction, the slave can 
hold READY low just long enough to give time for the slave to respond to the command. 
If READY is used, a separate clock line on the bus simplifies the interface between the 
slave and the bus because it provides a recurrent edge from which READY timing can be 
derived. 

The difference in philosophy between the 6800 and 8085 families is rather interesting 
and disconcerting when building "hybrid" systems containing chips from both families. 
Peripherals in the 6800 family need to have READ/WRITE information stable before the 
rising clock edge triggers a transaction. These peripherals will not operate correctly with 
8085-type processors unless WAIT cycles are inserted. When an 8085 issues READ or 
WRITE, the signal itself is intended to trigger a transaction. But the 6800 peripheral has 
to use this signal to set up the direction of the transaction, and uses a delayed version of 
the signal to trigger the transaction. The delay forces aWAIT cycle. 

But the situation depicted here is not symmetric. An 8085 peripheral can easily be 
connected to a 6800-type system. The READ or WRITE produced by the 6800 is ANDed 
with the clock to provide the trigger required by the peripheral. The unexpected difficulty 

Micron Technology Inc. et al. 
Ex. 1042, 114



3.7 Examples of Bus Arbitration 115 

in interfacing one type of peripheral to another type of microprocessor stems from using 
READ and WRITE to perform two functions in the 8085 family, but only one in the 6800 
family. The polarity of the signal provides the direction of the transaction in both fami­
lies, but the timing of the signal triggers a transaction only in the 8085 family. 

The problem described here has been pointed out by Wakerly (1979) and Borrill 
(1981). It is possible to design around the problem, as Wakerly points out, by using an ad­
dress bit to distinguish a READ from a WRITE, since the address becomes stable well in 
advance of the READ/WRITE control-line activation. Thus a peripheral-chip register can 
have two addresses, one even and one odd. The even address results in a READ of the 
register, and the odd address results in a WRITE to the register. Since the address bit re­
places the READ/WRITE control line at the peripheral chip, it is entirely possible to issue 
such nonsensical commands as LOAD from the WRITE address and STORE to the READ 
address. The latter case is particularly troublesome because the microprocessor and the 
peripheral will both attempt to put data on the bus concurrently, and the bus interface 
logic may be damaged by this action. 

Not only has the industry not settled on one timing method or the other as a standard, 
but Intel and Zilog use both. Intel uses both methods in the 8048 family. Zilog's Z80 fol­
lows the 8085 method, but the later Z8000 follows the 6800. It is unlikely that this switch 
is indicative of a move to standardize across the industry, and we expect to see differences 
in READ and WRITE methodology throughout the 1980s. 

3.7 EXAMPLES OF BUS ARBITRATION 

Bus arbitration for the synchronous 6800 bus is undoubtedly the simplest arbitration to 
implement. Timing considerations are shown in Fig. 3.22. A DMA request results in the 
processor entering the HALT state and issuing a GRANT. The GRANT remains high un­
til the halt request is removed. Since the halt request is sampled by the processor just be-

Clock ~ 0 0 0 0~ 0 

REQUEST 

GRANT 

DMA activity ODD 

~CPU critical time period. REQUEST cannot change. 

FIGURE 3.22 The 6800 arbitration timing: A 2-wire daisy-chain protocol. 

Micron Technology Inc. et al. 
Ex. 1042, 115



116 Bus Interconnections 

fore the clock edge rises, the REQUEST signal must be stable during this period. The fig­
ure shows that period as a forbidden transition region, with REQUEST changing immedi­
ately after the clock rises. The processor honors the REQUEST at the conclusion of a 
clock cycle, but not necessarily the one following the REQUEST. The processor com­
pletes whatever instruction is in progress when it discovers REQUEST high, and raises 
GRANT at the end of the last clock cycle of that in-progress instruction. The figure shows 
three cycles dedicated to DMA activity with REQUEST dropping in the fourth cycle. 
After the fourth cycle, GRANT drops and the processor resumes control. 

Several methods are available to implement an arbitration scheme for this processor. 
The processor requires only two wires, but a 3-wire protocol is compatible with these two 
control lines. Obviously, REQUEST should be the OR of the individual master requests. 
To facilitate this capability, REQUEST is actually active in the low state for the 6800, so 
that it can easily be produced with open-collector drivers. GRANT is intended to thread 
the masters in order of priority. For the 3-wire protocol, a third signal for BUS BUSY 
visits all masters, but is not used by the 6800 itself. BUS BUSY protects the processor 
from being in the HALT state indefinitely. A timer or one-shot connected to BUS BUSY 
can remove the REQUEST signal if BUS BUSY is inactive for a sufficiently long period. 
Otherwise BUS BUSY serves the functions described earlier in this chapter. 

The DEC PDP-11 Unibus improves upon the arbitration protocol described in this 
textbook by adding a fourth wire that enables arbitration for the next cycle to be over­
lapped with the bus transaction for the present cycle. The idea behind this form of arbitra­
tion is illustrated in Fig. 3.23. Arbitration times appear on the upper line; data transfer 
times appear on the lower line. Note that while the data transfer for the first transaction is 
active, the arbitration for the second transfer takes place. Similarly, the third arbitration is 
completed during the second transfer. But the 3-wire daisy-chain timing that we 
described earlier does not permit this overlap, because GRANT does not rise unless the 
bus is free. The Unibus protocol eliminates this difficulty by splitting the BUS BUSY 
function into two lines. One signal line in this protocol, also called BUS BUSY, indicates 
whether a transaction is active on the bus, and strives only this purpose. The second line, 
ACKNOWLEDGE, is used to respond to the GRANT signal. Both of these functions are 
served by the one line BUS BUSY in the 3-wire protocol because the response to a 
GRANT is an active BUS BUSY in that protocol. Dividing the two functions into two 
separate lines permits the overlapping arbitration and transfer activities. 

Device I De~ice I Device 
Arbitration I 3 

Device 
I I 

Device 
Data transfer I 2 

FIGURE 3.23 Overlapping of arbitration and data transfer. 

Micron Technology Inc. et al. 
Ex. 1042, 116



3.7 Examples of Bus Arbitration 117 

Details of the Unibus arbitration methodology are shown in Fig. 3.24. Note that RE­
QUEST starts an arbitration cycle, and that the REQUEST for the second cycle can begin 
during the first transaction. A GRANT appears at later time, and propagates down the 
bus. The winner of the arbitration responds with ACKNOWLEDGE, and removes its RE­
QUEST (although other REQUESTs may still be present). This winner cannot take con­
trol of the bus immediately, but must wait until BUS BUSY goes low. To prevent another 
arbitration from beginning at this point, ACKNOWLEDGE remains high until the master 
is able to take control of the bus. When BUS BUSY falls, the master for the second trans­
action drops ACKNOWLEDGE and raises BUS BUSY as the master initiates the second 
transaction. The fall of ACKNOWLEDGE triggers a new arbitration cycle. A GRANT is 
issued by the arbiter if any REQUEST is observed on the bus, and the cycle repeats. Note 
that in Fig. 3.24 three different masters assert signals on REQUEST, ACKNOWLEDGE, 
and BUS BUSY lines, with each signal identifying the master that asserted it. 

REQUEST 

GRANT 

ACKNOWLEDGE 

BUS BUSY 

FIGURE 3.24 PDP-11 Unibus arbitration tinting: A 4-wire daisy chain. 

The arbitration protocols for most microprocessors are designed to be used with tri­
state drivers on the address and data lines. To protect these drivers from "bus-fights," 
when two or more drivers in opposite polarity drive a single line, it is necessary to provide 
a "guard" time after one set of drivers turns off and another set turns on. The guard time 
is incorporated in the handshakes for the various microproces~ors by providing a brief 
period between READ and WRITE transactions, and between a master's use of a bus and 
a slave's access to a bus for a READ transaction. For example, the timing for the 6800 mi­
croprocessor raises addresses and data about * cycle after the beginning of a clock period. 
This provides about * cycle after the last clock period for the transition between sets of 
drivers on the bus. Similarly, the 8085 protocol provides about }2 clock period between a 
slave's access to the bus and the master's access on either side of the slave. 

Arbitration protocols must account for tri-state drivers as well as for controlling the 
access to a bus. The IEEE-796 bus (Intel Multibus) arbitration protocol is an interesting 

Micron Technology Inc. et al. 
Ex. 1042, 117



118 Bus Interconnections 

Clock 

A REQUEST 

B GRANT 

A GRANT 

BUSY B BUSY period A BUSY period 

FIGURE 3.25 An IEEE-796 bus arbitration cycle. The idle cycle protects 
the tri-state drivers. 

example of how this can be done. Figure 3.25 shows the protocol with two masters on the 
bus, Master B (which currently is active on the bus) and Master A (which currently re­
quests the bus). We assume that B has lower priority than A and holds the bus, because 
GRANT is high in the daisy-chain connection to B. When A raises its REQUEST (which 
appears on the bus at the same time as the clock signal falls), the GRANT signals on the 
bus change so that GRANT propagates only up to the highest priority requester. In this 
case A is that requester, so it receives the GRANT signal, and B's GRANT goes low. 
Then B has to relinquish control of the bus at the earliest opportunity. If B is a processor, 
it may complete the several clock cycles of a memory-cycle transaction. Other types of 
masters may need to complete several memory cycles before reaching a stopping point. 
At the trailing edge of the last clock in its activity cycle, B removes BUSY, and BUSY be­
comes inactive for one full cycle. Then A takes control of the bus, asserts BUSY, and ar­
bitration has been completed. The full clock cycle of inactivity provides the dead time re­
quired between sets of bus drivers. 

In this protocol, GRANT may be changed several times before a bus is relinquished. 
As each new REQUEST is posted, the chain of bus masters update their GRANT outputs 
on the daisy chain. The update has to take place within one cycle, and the master with 
GRANT asserted when BUSY drops to 0 is the master that takes control of the bus. 

In closing, we present one final interesting method for arbitration and device identifi­
cation. This arbitration method not only selects the highest priority requester when multi­
ple requests are present, but it returns the ID of that requester on the bus back to the arbiter 
(usually the processor). Hence this method of arbitration is quite suitable for device­
identification after a processor interrupt. An additional property of this arbitration method 
is that all arbitration signals are open-collector, and control lines are continuous conduc-

Micron Technology Inc. et al. 
Ex. 1042, 118



3.7 Examples of Bus Arbitration 119 

tors to which the bus slaves attach. This is in sharp contrast to the daisy-chain arbitration 
scheme that requires the bus grant to be discontinuous at each slave so that each slave 
makes an independent decision about whether to pass the grant to the next in line or to 
hold the grant for its own bus transaction. The IEEE Standard version of the S-100 bus 
(IEEE-696 .l!D2, 1979) uses this technique for the arbitration of DMA transfer requests. 

The bus interface for this application is shown in Fig. 3.26, and is adapted from the 
IEEE-696 Standard and Borrill (1981). (The notation OC indicates an open-collector 
gate.) The idea of the interface is to assert HOLD L to request access to the bus, and to 
await a response on pHLDA, which is the acknowledge signal returned by the processor 
or bus arbiter. The interface asserts a request by setting the HOLD flip-flop when three 
conditions occur simultaneously: 

I. The device needs access to the bus (BREQ is high). 
2. The bus grant has not propagated past this device (pHLDA is low). 
3. No other request is active on the bus (the control line HOLD Lis passive high). 

The three-input NAND that drives the S input of the HOLD flip-flop generates an active 
low signal when all three conditions hold. If a high-priority request comes after a low­
priority request, the high-priority request must wait for the low-priority request to be 
removed before it has access to the HOLD L control line. This guarantees that new 
requests cannot come at arbitrary times. (Arbitrary changes can produce brief glitches 
and metastable states.) At the beginning of a new arbitration cycle there are, in general, 
several outstanding requests, all of which may gain access to HOLD L. The priority­
arbitration logic we now describe selects the highest-priority request of those that actively 
assert HOLD L. 

When a device gains access to HOLD L by setting the HOLD flip-flop, it simultane­
ously sets the ASSERT ID flip-flop. This flip-flop energizes the four ID lines. These lines 
are compared to the open-collector priority lines to determine whether there is a higher­
priority requester. The logic is essentially that of a borrow look-ahead circuit of a binary 
subtracter. Each ID is a 4-bit binary ID, and high numbers have priority over low 
numbers. The four lines DMAO L through DMA3 L carry the complement of the winning 
ID. Each interface generates four active-low borrows, Bd L through B3 L, by subtracting 
its ID from the ID currently on the bus. The 4-input NAND that generates HIGH PRIOR­
ITY L requires that all borrow signals be inactive high, which is satisfied only by there­
questing interface with the highest ID. HIGH PRIORITY Lis gated together with HOLD 
L and pHLDA Lata 3-input NOR to be sute that the request and the bus grant are still ac­
tive before signaling TAKE BUS to the dt>vice. 

Losing requesters generate a 0 on the D-input of the HOLD flip-flop. This value is 
gated into HOLD when the rising edge of pHLDA reaches the interface. Hence, only the 
winner continues to assert HOLD L after the grant propagates the length of the bus. After 
the winner completes its bus activity, it removes BREQ, which resets the HOLD flip-flop. 
Since this is the only HOLD outstanding, HOLD L becomes inactive, and the processor 
regains control of the bus. Immediately after pHLDA is deasserted, the losing requests 
and any new requests bid for the bus through another arbitration cycle. 

Micron Technology Inc. et al. 
Ex. 1042, 119



DMAOL i\) 
0 

DMAlL 

DMA2L tD 
c: 

DMA3L 1/) 

S' 
HOLDL S' 

a 
0 
:::1 
:::1 
CD 
2. 
()" 
:::1 

+5 v 1/) 

F1GURE 3.26 Priority arbitration logic for the IEEE-696 (S-100) bus. 

Micron Technology Inc. et al. 
Ex. 1042, 120



Other Reading 121 

OTHER READING 

A truly comprehensive study of busing that greatly influenced this chapter is the work by 
Thurber et al., ( I972). This treatment covers a very large variety of bus implementations, 
including many handshake and arbitration protocols not covered in this chapter. Readers 
will find this to be an excellent source of background information. 

The importance of buses and bus standards has only gradually been felt by the com­
puter industry. In the infancy of computers the majority of manufacturers supplied all of 
the devices that attached directly to the processor/memory bus. Thus this interface was 
usually proprietary to the manufacturer, and it was not possible to connect "foreign" de­
vices to the bus. Foreign devices, if attached at all, were mostly connected to DMA chan­
nels. 

Digital Equipment Corporation played a dominant role in fostering the user's ability 
to interface user-owned devices to its computers. The DEC PDP-I , and later the PDP-8, 
were its early offerings that supported user interfacing. The introduction of the PDP-Il 
and the Unibus with memory-mapped VO had a very a large impact on the idea of using a 
well-defined bus as a standard digital interface. Eventually the microprocessor industry 
moved toward the bus as a common interface for microprocessors, memories, and pe­
ripheral chips. 

The S-1 00 bus was introdqced by Altair Corporation in one of the first personal mi­
crocomputers. This bus provided a means for interconnecting processor, memory, and 
VO boards in a very general and flexible manner. Almost immediately after Altair's com­
puter was introduced in the mid-70s, dozens of manufacturers marketed what were in­
tended to be "compatible" board-level products that connected directly to the S-100 bus. 
But the bus had not been standardized, and many products from different manufacturers 
simply did not work with each other. As part of the IEEE Computer Society standardiza­
tion effort, a group of volunteers took on the difficult problem of standardizing the S-100 
bus. The culmination of this work is the draft standard IEEE Task 696 .I/D2 ( I979) that 
incorporates extensions or' the bus to I6-bit processors and includes the interesting arbitra­
tion protocol described in this chapter. 

The need for bus standards is now well-recognized, and the bus literature abounds 
with information. The Unibus and LSI-II bus (Q-bus) are thoroughly described in the 
PDP-11 Bus Handbook (Digital Equipment, 1979). Levy's chapter on busing (1978) 
brings the discussion up to date with respect to buses on the VAX computer. The refer­
ences about the DEC bus standards are an excellent source of information on practical im­
plementations of buses that complement the general treatment of this chapter. Borrill 
(1981) analyzes several concurrent efforts concerning bus definitions and standards. 

In dealing with the problem of synchronization, we cited the article by Chaney and 
Molnar (1973). Until that article appeared, very little concrete evidence existed about the 
metastable state. It is very difficult to observe the metastable state in a repeatable way, so 
that when synchronization failures occur it is often difficult to analyze what happened. 
Fortunately, the problem is much better understood today. Mead and Conway (I980) re­
view the problem for VLSI designers, and show ways of designing sl:).fe VLSI chips. 

Micron Technology Inc. et al. 
Ex. 1042, 121



122 Bus Interconnections 

TABLEE-3.1 Test Programs for Bus Analysis 

68XXFamily 

LDX #$1000 SET THE X-REGISTER TO POINT TO MEMORY. 
CLRA CLEAR THE ACCUMULATOR. 

LOOP COMA COMPLEMENT THE ACCUMULATOR. 
STAA o,x STORE THE ACCUMULATOR. 
LDAA o,x RELOAD THE ACCUMULATOR. 
BRA LOOP 

8080 and 8085 

LXI H,1000H SET THE H-L REGISTER TO POINT TO MEMORY. 
XRA A CLEARTHEACCUMULATOR (A:= AEXCLUSIVEORA). 

LOOP: CMA COMPLEMENT THE ACCUMULATOR. 
MOV M,A STORE THE ACCUMULATOR. 
MOV A,M RELOAD THE ACCUMULATOR. 
JMP LOOP 

8086 and 8088 

MOV BX, 1000H SET THE B REGISTER TO POINT TO MEMORY. 
MOV AL, OOH CLEAR THE ACCUMULATOR (A : = A EXCLUSIVE OR A). 

LOOP: NOT AL COMPLEMENT THE ACCUMULATOR. 
MOV BX ,AL STORE THE ACCUMULATOR. 
MOV AL ,BX RELOAD THE ACCUMULATOR. 
JMP LOOP 

65XXFamily 

LDA $00 CLEAR THE ACCUMULATOR. 
LOOP EOR $FF COMPLEMENT THE ACCUMULATOR. 

STA $1000 STORE THE ACCUMULATOR. 
LDA $1000 RELOAD THE ACCUMULATOR. 
JMP LOOP 

Z80 

LD HL, 1000H SETH-L TO POINT TO MEMORY. 
XOR A CLEAR THE ACCUMULATOR. 

LOOP: CPL COMPLEMENT THE ACCUMULATOR. 
LD (HL), A STORE THE ACCUMULATOR. 
LD A, (HL) RELOAD THE ACCUMULATOR. 
JP LOOP 

Micron Technology Inc. et al. 
Ex. 1042, 122



Experiments 123 

EXPERIMENTS 

3.1 Table E -3.1 gives a very brief program for many different microprocessors. Mter 
initialization this program loops through a sequence of instructions that write to and 
read from a selected memory location. Data written alternate between Os and Is on 
successive passes through the loop. 
a) Select a microprocessor with a synchronous or semisynchronous bus. (A mi­

croprocessor from the 68XX, 808X, ZSO, or 65XX families is satisfactory.) 
b) Describe the bus activity on a clock-cycle-by-clock-cycle basis as shown for the 

MC6800 in Table E-3.2. The table gives the value of each memory bus signal 
as a function of time, and indicates in the comments what happens at each cycle. 
The analysis should be made on the four instructions within the loop only, and 
should not include loop-initialization instructions. Use the manufacturer's refer­
ence material to determine what happens during each cycle of the execution of 
each instruction; or, based on your understanding of the microprocessor, esti­
mate what the bus activity is. In Table E -3.1, the first instruction of the loop 
starts at address 2004 !6· 

TABLEE-3.2 Bus Transaction Timing 

CYCLE ADDRESS DATA RJW VMA COMMENTS 

1 2004 43 1 Read opcode for COM A. 
2 2005 A7 1 Read next instruction. 
3 2005 A7 1 First cycle of STA O,X, read opcode. 
4 2006 00 1 I Read offset. 
5 1000 XX 1 0 No memory cycle; no data on bus. 
6 1000 XX 1 0 No memory cycle; no data on bus. 
7 1000 XX 1 0 No memory cycle; no data on bus. 
8 1000 DO 0 1 Store data, changing every other cycle. 
9 2007 B6 1 I Start of LOA O,X; read opcode. 

10 2008 00 1 I Read the offset. 
11 1000 XX 1 0 No memory cycle; no data on bus. 
12 1000 XX 1 0 No memory cycle; no data on bus. 
13 1000 DO 1 I Read data. 
14 2009 20 1 1 First cycle of BRA LOOP; read opcode. 
15 200A F9 1 1 Read offset. 
16 200B XX 1 0 No memory cycle; no data on bus. 
17 2004 XX 1 0 No memory cycle; no data on bus. 

c) Connect a dual-channel oscilloscope to the microprocessor. The external sync 
signal should be connected to the microprocessor control line that asserts 
WRITE. This signal is asserted once per loop. One channel of the oscilloscope 

Micron Technology Inc. et al. 
Ex. 1042, 123



124 Bus Interconnections 

should be connected to the bus clock that is to be used as a timing reference. The 
second channel is left disconnected, and will be used to probe various bus sig­
nals. 

d) Load the program in the microprocessor and initiate execution. Set the time scale 
to display two to three full executions of the loop. If the oscilloscope has a con­
tinuously variable time scale, you can expand the display so that one full execu­
tion of the loop just fits the display area. Probe each bus control line and one 
address and one data line. As each line is probed, identify the beginning of the 
program loop, and verify that the bus signal follows your calculations. Explain 
any discrepancy. 

e) Expand the timing of the display so that one memory cycle just fills the screen. 
Select a READ cycle, and then select a WRITE cycle. For each of these cycles 
find the address setup time and the address and data hold times. Compare these 
times with the specifications for the microprocessor bus. 

3.2 Repeat Experiment 3.1 for a microprocessor or minicomputer with a fully inter­
locked asynchronous bus. Suitable candidates are the PDP-11, LSI-11, or MC68000. 

PROBLEMS 

3.1 Analyze the Unibus arbitration protocol under the following conditions: The bus has 
three devices on the line and Device 2 (the second on the line) is currently active on 
the bus. Assume that sometime between this point in time and the conclusion of the 
next arbitration cycle, both Devices l and 3 raise requests. An arbitration error will 
occur if Device 3 is granted the bus and initiates a transaction, and subsequently the 
request is aborted by Device 1 when it takes over the bus. If Device 3 requests suffi­
ciently earlier than Device 1, it should obtain the bus. If Device 3 requests suffi­
ciently late with respect to Device 1, Device 1 should obtain the bus. In between, the 
protocol must grant the bus either to Device 3 or Device 1, but it must be a safe pro­
tocol so that no matter which device gets the bus, that device is assured that it will 
hold the bus to the completion of its request. 
a) Give a timing analysis that shows the bus arbitration is safe if the devices must 

observe the change in bus grant signal from NO GRANT to GRANT in order to 
gain access to the bus. 

b) Give a timing analysis that shows the arbitration to be unsafe if the devices can 
gain access to the bus simply by observing GRANT without necessarily observ­
ing the change from NO GRANT to GRANT. 

3.2 There are slightly different timing requirements for a tri-state bus than for an open­
collector bus: A tri-state bus cannot have two or more tri-state drivers active simul­
taneously, whereas there is no corresponding problem for the open-collector bus. 
Consider a generic, fully interlocked asynchronous bus, and observe what happens 
for sequences of operations such as READ/READ, READ/WRITE, etc. For what se­
quences is it necessary to separate the operations with some idle time on a tri-state 
bus, when no such time is required for an open-collector bus? 

Micron Technology Inc. et al. 
Ex. 1042, 124



Problems 125 

3.3 The Unibus has separate arbitration lines for DMA requests and interrupt requests. 
There is a single daisy-chain pliority for DMA, but there are four distinct daisy­
chain pliority lines for interrupts. The four lines are prioritized so that if interrupt re­
quests occur on two or more chains, a request on the chain with the highest prioiity is 
the one that is recognized. On any daisy chain, the requests are prioritized by the 
electlical connection because the interrupt acknowledge signal is passed from device 
to device. All four interrupt daisy chains and the DMA daisy chain pass through each 
unibus interface. 
a) Give a concrete example in which the four daisy-chain system of interrupt prior­

ity is more versatile or powerful than a single daisy-chain interrupt system. Note 
that at any given time the pending requests on the four daisy chains are totally or­
dered, so that those requests can be acknowledged in precisely the same order if 
the four daisy chains are connected to form a single daisy chain by linking them 
end-to-end from highest to lowest. (Hint: all four intenupt chains visit each in­
terface. Would this be the case if there were only one interrupt chain? How 
might an interface make use of the multiple chains?) 

b) Consider a typical application for a small computer that has two DMA controll­
ers that operate at 300 K-bytes per second, and six low-speed devices that 
operate under interrupt control. A low-speed device operates at a maximum 
speed of 1 K-byte per second. The DMA channels transfer data in 4 K-byte 
bursts, and a bus arbitration is required for each byte transfened. The channels 
post interrupt requests at the end of each burst. When the computer is operating 
at maximum I/0 capacity, how many bus arbitrations and interrupt arbitrations 
occur per second? Are these rates consistent with the fact that the interrupt­
request daisy chains together have about the four times the bandwidth of the one 
DMA daisy chain? 

c) Sketch the layout of an alternative approach to the four daisy-chain system that 
interposes an intelligent interrupt-request arbiter between the computer and the 
I/0 interfaces. This arbiter interfaces the processor with four daisy-chain 
interrupt-request lines, as required by the Unibus. However, only a single daisy 
chain that visits all devices extends from this arbiter. The idea is that the devices 
post interrupt requests on the single daisy chain, and the arbiter somehow con­
verts the requests to four different levels of request. Describe how to construct an 
arbiter that mimics the functions and timing of the four daisy-chain system so 
well that the processor cannot easily tell that the devices are connected to a single 
daisy chain. 

Micron Technology Inc. et al. 
Ex. 1042, 125



4 I MEMORIES 

The block diagrams of microcomputer systems in Chapter 1 show that they consist of 
three major subsystems, namely- the processor, the memory system, and the I/0 system. 
In this chapter we examine the design of memory systems and techniques for interfacing 
processors to memory. Sections 4.1 and 4.2, respectively, describe the different types of 
memory and typical memory systems. In Section 4.3, we move to the problem of sharing 
memory between a processor and a DMA controller and take a detailed look at DMA con­
troller chips. 

4.1 TYPES OF MEMORY 

Semiconductor memories are the universal memory components in microprocessor sys­
tems, but their being so is a relatively recent phenomenon in the computer industry. 
Through the end of the 1960s and early into the 1970s magnetic memories were the dom­
inant technology. The semiconductor memory industry began in earnest at the start of the 
70s with the introduction of a 256-bit memory chip, which is a minuscule capacity by 
today's standards. The chip barely made a dent in the sales of magnetic memories, but the 
advantages of semiconductor memory over magnetic memory because of high-speed and 
the simplicity of interfacing were clearly evident even then. Only the relatively high cost 
of semiconductor memory at that time precluded its immediate acceptance. By the start of 
the 80s, one decade later, the 64 K-bit chip was in full production, and the 256 K-bit was 
on the drawing boards. What happened in the intervening years is that approximately 
every two to three years, the memory capacity per chip quadrupled. So the 256-bit chip 
gave way to the 1 K-bit, 4 K-bit, and 16 K-bit chips-and more recently, the 64 K-bit and 
256 K-bit chips. Each new generation took no more power per chip than the last, and the 
difference in cost per chip was inconsequential compared to fixed costs of other system 
components. The improvement in chip technology in little more than a decade has 
literally been a thousandfold. The highly developed magnetic-core memory technology 
quickly dropped from view in the onslaught of the semiconductors. Today semiconductor 
memory systems for microprocessors almost universally are of three principal types: 

1. Dynamic random-access memory (RAM), which stores data passively and requires 
periodic refresh to maintain data. 

2. Static RAM, which maintains data without periodic refresh. 
3. Read-only memory (ROM), which maintains data in the absence of power, but which 

cannot be rewritten in the normal memory-cycle time. 

In the following discussion we will describe how to design a generic memoty system, and 
will include those details that are common to all three types of memory. Then we will 

126 

Micron Technology Inc. et al. 
Ex. 1042, 126



4.1 Types of Memory 127 

look at the peculiarities and differences of the three in order to show how the memory in­
terface has to be adapted to these individual characteristics. 

General Characteristics of Semiconductor Memory 

Figure 4.1 shows the generic memory chip that is the running example of this discussion. 
The memory has 4 K-bits, organized as a 4 K X 1 array. That is, the memory responds to 
4 K different addresses, and each address contains 1 bit. Eight chips can be combined in 
one memory system to create a memory with 4 K-bytes, and multiples of eight can be 
used to make larger byte-wide memories. The chip has separate pins for data input and 
output. Thus the chip has two data pins and twelve address pins (4 K = 212, so twelve 
address pins give 4 K unique addresses). There are just two other control pins shown on 
this chip. A pin labeled CIDP SELECT enables or disables the chip. Hence, if the chip is 
to respond to a memory request, CHIP SELECT must be asserted; otherwise the chip 
remains inactive. The second pin is labeled READ/WRITE L, which dictates whether the 
chip will accept a read request and retrieve stored data, or whether it 1will accept a write 
request and transfer the data from the input pin to memory. When the signal is a logic 1, 
READ is asserted; when it is a logic 0, WRITE L is asserted. For our generic chip, these 
are all the Interface signals other than power connections. This particular chip is intended 
to be similar to a 2147 static RAM. 

I 
Address(12)_.. 

DATA IN' 
Memory DATA OUT 

CHIP SELECT 
chip 

READ/WRITE L 

_L 

FIGURE 4.1 A generic memory chip, organized 
as a 4 K X 1 memory. 

Now let's look at the timing relationships of the signals shown in Fig. 4.2. Compare 
this timing with typical bus timing, and you can see that the two are quite compatible, as 
they must be. The idea is that for both READ and WRITE operations, addresses stabilize 
before an access is completed. Although Fig. 4.2 shows the address-setup delay before 
CIDP SELECT, some devices have on-chip delays for CHIP SELECT and 

Micron Technology Inc. et al. 
Ex. 1042, 127



128 Memories 

Address valid 

+-- Address---1 
setup 
delay 

CHIP SELECT 

READ/WRITE L 
Output enable_. rT 

delay ____l_j 
I---Address 

DATA OUT access f§j {tri-state) time 

DATA IN 

READ cycle 

~ Shaded area denotes an active output 
~ with data undefined. 

-

r--Address---+1 
setup 
delay 

I 

I 
r-- Data hold time 

I 

ddress 
old ---11~. 11e 

I 
,---

Data hold time----. r-
I I 

WRITE cycle 

FIGURE 4.2 Timing relationships for signals for the generic memory chip. 

READ/WRITE L. For these chips, the addresses may change until or for a short period 
after CHIP SELECT is asserted at an input pin. In any case, there is a period of time in the 
memory cycle during wqich the addresses must be stable. If the address lines happen to 
change during this critical time, the data retrieved may come from the wrong location or 
may be a composite of data from several locations. Worse yet, data can be written in the 
wrong location or in several locations. 

The READ operation begins immediately after the chip is selected. Sometime later, 
the data become valid on the chip outputs. Most memory chips actually respond internally 
in a continuous fashion to addresses on their inputs. As addresses ch<mge, internal decod­
ing logic changes state in a corresponding fashion; but the output drivers re01ain disabled, 
and the data in memory is not disturbed in any way. Although neither the READ nor 
WRITE can take place until the chip is selected, at least part of the logic will already have 
reached a stable state when the chip select appears. Timing for the WRITE operation is 
only a slight variation of the READ timing. 

A simplified logic diagram for an interface with this memory chip appears in Fig. 4.3. 
We show 16 addresses coming from the microprocessor, but only 12 are connected to the 
chip. The remaining four pass through a decoder that produces several different chip 
selects, which in turn select different chips for diffe~ent regions of the address space. All 

Micron Technology Inc. et al. 
Ex. 1042, 128



READ/WRITE L 

Data bus 
8 

· .--~--1 --,~.<-1--+~} Address lines 

MEMORY READ L 

To other banks 
of memory chips 

Data lines 

FIGURE 4.3 A simplified schematic diagram for a memory interface. 

Micron Technology Inc. et al. 
Ex. 1042, 129



130 Memories 

control signals are passed parallel to a bank of eight chips whose inputs and outputs are 
connected to the eight data lines on the data bus. This creates a memory with an 8-bit 
word length. The memory can easily be extended to a 16~bit or 32-bit word length by rep­
licating the memory chips. 

Let's compare the timing of the signals for this design with chip requirements. Figure 
4.4 is the timing diagram for our design. We show CHIP SELECT delayed with respect to 
MREQ in order to satisfy the address setup time. A logic element for this purpose and la. 
beled TIMING CONTROL is shown in dotted lines. This element is triggered by the 
memory request th~t starts the access cycle. For static-memory designs the control signals 
produced by a microprocessor usually satisfy the timing constraints of the memory de­
vices, and therefore the TIMING CONTROL logic is unnecessary and can be omitted. 

Ad dresses valid 

Data valid D 
MREQL 

READ/WRITE L 

CHIP SELECT 

MEMORY READ L 

READ cycle WRITE cycle 

FIGURE 4.4 Timing diagram for the memory schematic diagram. 

To create large memory systems from sets of memory chips, we rely on more exten­
sive decoding and the CHIP SELECT signals on the memory chips. A block diagram of a 
64 K-byte memory composed of 4 K X 1 chips is shown in Fig. 4.5. In this case the 
memory has 16 rows of chips, with each row containing eight chips. The high-order ad­
dress bits are decoded by a 4-to-16 decoder, and each of the decoder outputs enables one 
row of the memory array. Each column of the array delivers one bit of an 8-bit byte. With 
16-K static RAM chips, the array reduces to 4 rows of eight chips. For this case, only the 

Micron Technology Inc. et al. 
Ex. 1042, 130



4.1 

Address bus 

Data in 

8 

16 12 

Decoder 

WRITE L 

Data out 8 

Types of Memory 131 

Array of memory chips 
16 rows by 8 columns 

FIGURE 4.5 A 64 K-byte memory constructed with 4 K X 1 chips. 

two highest addresses are decoded, and they select one of four rows. The remaining 14 ad­
dresses are transmitted to each chip. (Chapter 2 described techniques for designing the 
address-distribution network in memory systems.) 

The memory operation of the tri-state output drivers on the chip require a tad more 
explanation. When CillP SELECT is asserted, the memory chip responds, either by going 
into a WRITE mode or a READ mode, depending on the polarity of READ/WRITE L. If 
WRITE L reaches the memory chip after CillP SELECT, then the chip first goes into the 
READ mode before returning to the WRITE mode. In so doing, the output drivers are 
momentarily enabled and are no longer in their quiescent high-impedance mode. The out­
put drivers remain active for a short period after WRITE L appears on the control pin. The 

Micron Technology Inc. et al. 
Ex. 1042, 131



132 Memories 

I 
Address bu!j, 

CHIP SELECT Memory Data (bidirectional) 

READ/WRITE L 
chip 

j_ 

FIGURE 4.6 A memory chip with bidirectional data pins. 

designer must take this timing into account in order to prevent the external tri-state drivers 
and chip-output drivers from clashing with each other. 

In the design shown in Fig. 4.3, the output and input data are connected to distinct 
pins on the memory chip. Consequently, the design is safe from tri-state problems be­
cause the internal drivers on the memory chips and the external tri-state drivers do not 
drive the same lines unless they are connected externally. 

Figure 4.6 shows a slight variation of our generic memory chip of Figure 4.1. This 
variation introduces complications resulting from the tri-state drivers. In this case there is 
but a single data pin that carries both input and output data. Consequently, a memory 
design based on this chip requires slightly more care, as we show in Fig. 4.7. The problem 
is to be sure that the tri-state driver for WRITE, as shown in the figure, does not clash 
with on-chip tri-state drivers. To eliminate this problem, we show the external tri-state 
drivers controlled by noncomplementary signals. This allows for all tri-state drivers (in­
cluding those on the memory chips) to settle to a high-impedance mode after one set of 
drivers turns off and before a new set of drivers turns on. Designers are often tempted to 
use complementary control signals for the READ and WRITE tri-state drivers, but find 
there is no dead time between a READ and a WRITE. Because of varying turn-on and 
turn-off delays, such designs can suffer from momentary tri-state clashes that produce 
transients on the bus lines. Occasional bus failures can result when the noise is severe. 

In recent years, designers of high-speed systems have used staggered timing of tri­
state control signals in order to reduce bus noise. For microprocessors with 8-bit data 
buses and 16-bit addresses, up to 24lines can change at the same time. The current gen­
eration of microprocessors has increased the number of data lines on the bus to 16 or 32, 
and the number of address lines to 24 or 32. Hence 40 or more lines can change simultane­
ously. Our discussion in Chapter 2 suggests that such simultaneous changes can produce 
noise pulses on the bus. The problem is compounded when brief tri-state clashes momen­
tarily cause high-current flows. Some conservative memory designs stagger the enabling 
of tri-state drivers so that groups of lines change at intervals (of, say, of I 0 ns), avoiding 

Micron Technology Inc. et al. 
Ex. 1042, 132



4.1 

Address bus 

CHIP SELECT 

WRITEL 

MODULE SELECT L 

MREQL 

Timing control 

(if required) 

Memory 
chip 

READL 

Types of Memory 133 

Bidirectional module data bus 

READ drivers 

Bidirectional system data bus 

FIGURE 4.7 Tri-state driver control for interfacing memory chips to bidirectional data lines. 

the simultaneous change of all lines. A 32-bit data bus can be gated in four IO-ns inter­
vals, with a different 8-bit tri-state driver being gated on during each successive interval. 
Although the designer need not, in general, stagger the tri-state control signals to reduce 
bus noise, the designer must always provide some dead time when switching tri-state 
drivers. 

In summary, a typical memory chip needs only two control pins, one for chip selec­
tion and the other to select between READ and WRITE access. Chip timing requirements 
force the designer to consider where and how to place delays in a memory system in order 
to satisfy chip timing constraints and to guard against tri-state problems. 

Micron Technology Inc. et al. 
Ex. 1042, 133



134 Memories 

Static Random-Access Memory (RAM) 

The example in the preceding section is a static RAM chip. This is evident because data 
can be both read and written (so the chip is not a read-only memory) and because the 
designs that use this memory have no provision for memory refresh. A static RAM main­
tains information in memory through active circuits. This requires power to maintain, 
even when the chip is inactive and in a standby (low-power) mode. Therefore static 
memories require heftier power supplies and greater cooling than do the dynamic 
memories we will discuss later. Moreover, each static memory cell is about four times 
larger in area than an equivalent dynamic cell. This is because active data retention in 
static memories requires several transistors for each storage cell. Each dynamic cell re­
tains data on a tiny capacitor whose geometry is much smaller in area than the equivalent 
storage mechanism in a static cell. Because of this smaller cell size, a dynamic memory 
chip typically has about four times as many bits per chip as a static memory chip that uses 
comparable semiconductor process technology. If we assume that the cost per chip is 
equal, this difference in memory size translates into a cost per bit that is about four times 
less for dynamic memories than for static ones. 

The primary advantage of static memory is that it is very simple to interface to pro­
cessors, as we have seen in Figs. 4.3 and 4.7. There is very little hardware overhead re­
quired for a static memory, and in small memories it is possible to dispense with the tri­
state memory drivers included in the designs shown in this chapter. 

Memory interfacing is particularly easy with chips whose formats are somewhat dif­
ferent from the 4 K X 1 format in our example. If the 4 K-bits are aiTanged as a 512 X 8 
bit memory, then a single memory chip is sufficient to create a small memory for a simple 
microprocessor. The 4 K X 1 format of the example requires at least 8 chips for a byte­
organized system and 16 chips for a word-organized system. 

Read-Only Memory (ROM) 

Since ROM does only part of what RAM does, it is obviously less complex and therefore 
simpler to interface to processors. Programmable ROM (called PROM) is a popular form 
of ROM found in most low-volume systems. When only one or two copies of a system are 
to be constructed, PROMs are ideal system components. They are easily programmed by 
the user, and erasable implementations of PROMs can even be reprogrammed and 
coiTected. As the number of copies of a system grows, the effort involved in programming 
becomes a chore. In addition, mask-programmed ROMs have a lower unit cost than do 
PROMs once the initial cost of the ROM has been amortized. Hence, ROMs are more at­
tractive for high-production. Consequently, most PROMs are pin-for-pin compatible with 
coiTesponding ROMs, and offer the system manufacturer a choice of components that will 
satisfy the needs of both low-and high-volume production lines. 

The electrical connections to ROM chips are almost identical to those of RAM chips, 
with the exception, of course, that ROMs do not have a READ/WRITE L pin. They are 

Micron Technology Inc. et al. 
Ex. 1042, 134



4.1 Types of Memory 135 

always in a READ mode. Therefore, the only control that is necessary for a ROM is an 
OUTPUT ENABLE pin that turns on the internal tri-state drivers. However, many 
ROMS have a second control pin, CHIP SELECT, as shown in Fig. 4.8. The CHIP 
SELECT function for ROM places the chip in a low-power standby mode. Because a 
ROM retains memory in the absence of power, it need not draw power when it is not ac­
cessed. Standby mode-which may draw as little as 25% of normal power-disconnects 
most of the circuits from the power supply, leaving the relatively critical circuits on, so 
that the ROM can respond quickly to access requests. It is perfectly permissible techni­
cally to tie CHIP SELECT to logic I, and to use the OUTPUT ENABLE control pin pmch 
the way that CHIP SELECT is used for RAM; but excess power consumption means ex­
cess heat generation, higher operating cost, and perhaps the addition of a fan and air filter. 
So if a standby mode is available in a chip, the designer should make an effort to use it. 

! 
Address bwy 

OUTPUT ENABLE ROM Data bus/ 

CHIP SELECT 
chip 

, 

_j_ 

FIGURE 4.8 A typical read-only memory chip. 

For microprocessor systems the most popular ROMs in use today have byte-wide for­
mats. For example, a l6 K ROM is organized as a 2 K X 8 memory. When this format is 
used, a single ROM contains a contiguous region of byte-organized memory. Hence, a 
program that fits within that region can be stored in a single ROM chip. Other formats that 
have fewer bits per address require more than one chip in their minimum configuration 
and, therefore, are more costly. 

Among the most popular read-only memories for microprocessors are byte-wide 
PROMs of the 25XX and 27XX families. These include the 2704 (4 K-bits), 2708 (8 K­
bits), 2716 (16 K-bits), 2532 and 2732 (32 K-bits), and 2564 aTtd 2764 (64 K-bits). The 
2704 and 2708 are obsolete and should not be used in new designs. Even larger chips with 
128 K-bits and 256 K-bits are becoming available. As the industry continues to advance 
we can expect further technological advances. High-production systems incorporate pin­
for-pin compatible ROMs to reduce system cost. These ROMs are in the 23XX family and 
include the 2316 (16 K-bits), 2332 (32 K-bits) and 2364 (64 K-bits). 

Micron Technology Inc. et al. 
Ex. 1042, 135



136 Memories 

Dynamic RAM 

The advances in dynamic RAM have been felt throughout the microprocessor industry. 
The microcomputers with memories of 32 K- or 64 K-bytes so common today are 
manufacturable at low CRSt because of the 16-K dynamic-RAM chip. With the introduc­
tion of 64-K RAM and 256-K RAM, the memory-system sizes of typical microcomputers 
have increased proportionately. The desk-top computer with a megabyte of memory is no 
longer a dream of the future. 

Dynamic memory, unlike static memory, cannot retain data indefinitely without 
external support logic. The problem is that information is stored as electrical charge in 
small capacitors, and the charge tends to dissipate over a period of time. Hence it is neces­
sary to refresh memory periodically in order to preserve data. The nature of this "problem 
and the role of refresh is illustrated in Fig. 4.9. 

1'1GURE 4.9 A symbolic diagram of the structure of a dynamic 
memory cell: The switch states for WRITE are S1 and S2 closed; for 
READ, switches S2, S3, and S4 are closed; and otherwise the switches 
are open. 

Capacitor C in the figure is the memory element. Switches on either side of the 
capacitor are actually field-effect transistors that are controlled by the address decoding 
circuitry, but in this simplified illustration we show them as toggle switches. To write data 
in the memory, we close switches S1 and S2. This connects C to the input data through the 
amplifier. A logic 1 charges C, and a logic 0 discharges C. Then we open the switches, 
and C is isolated from the rest of the chip. The information is now captured as· the charge 
on C and, in an ideal situation, the information will remain in the cell indefinitely. 

The READ operation is much the same as th.e WRITE. The output switch connects C 
to a comparator, which decides if the stored voltage is less than or greater than a reference 
voltage. The output of the comparator is a logic 0 or logic 1 depending on the outcome of 
this decision. Reading the cell may disturb the charge in the cell so that the READ opera­
tion has to be followed by a recharging of the capacitor. In this case, the comparator out­
put (or a flip-flop that latches the comparator output) is switched to the amplifier input, 
and switch S2 closes. Then the datum in the cell is restored to its original value by recharg­
ing or discharging C. 

Micron Technology Inc. et al. 
Ex. 1042, 136



4.1 Types of Memory 137 

The problem with this type of memory is that the storage medium is not ideal. This 
type of memory "forgets" information over a period of time. The leakage resistance 
across the capacitor provides a discharge path, and the stored charge dissipates slowly. 
Eventually the voltage drops below the reference threshold and the stored datum is unre­
coverable. Note that a READ operation refreshes the cell so that information can be main­
tained by reading each cell in the memory periodically. 

Dynamic memories available today have minimum refresh rates on the order of one 
refresh every 1 to 2 ms. The refresh burden would be intoleni.ble if each cell on a chip had 
to be read individually within the refresh period. This works out to one access about every 
15 to 60 ns for chips in the 16-K and 64-K size. Chip manufacturers greatly simplify the 
problem by arranging the chips in two-dimensional arrays of bits, usually square in shape, 
so that all bits in a row are refreshed when any one bit in that row is read. Hence, refresh­
ing requires only that each row of bits be read once every 1 or 2 ms. For 16-K chips ar­
ranged in arrays of 128 X 128, refresh must be done at the rate of 128 READS per refresh 
period, or about 1 READ every 8 to 16 f.LS. Since memory cycle times are on the order of 
250 to 500 ns, refresh occupies only 2-3% of the available memory bandwidth. 

Dynamic memory, therefore, imposes an overhead burden that neither static RAM 
nor ROM has. It has to have refresh lbgic to preserve information. A controller for a 
"worst possible" case is shown in Fig. 4.10. This design contains all of the elements that 
might be required, whereas in special cases we can greatly simplify it. 

The idea in this design is to generate the sequence of addresses for refresh cycles in 
the counter. With each tick of the refresh clock, the counter advances, and the controller 
generates a memory request at the new address. The controller contains an arbiter, whose 
function is to handle situations in which the refresh request conflicts with a memory re­
quest from the processor. One or the other must be delayed because memory cannot do 
both simultaneously. To be sure that a minimum rate of refresh is maintained, we presume 
that the arbiter delays the processor request by generating aWAIT signal. 

Although the controller is not very complicated, it is unnecessarily complex for small 
memories, where a few static RAM chips suffice for the entire application. Therefore 
dynamic memory tends to be used where applications require larger am'>unts of memory, 
and small memory systems tend to use static RAM. 

Refresh controllers need not be as complicated as that shown in the figure. Many dif­
ferent approaches have led to simplifications of the basic idea. Here are some of the more 
useful. 

1. Special chips have been designed that implement most of the functions of the con­
troller in a single chip. Thes.e include the Intel 3242 and Motorola MC3480. These 
chips reduce the size and cost of the controller, but the functions are the same as those 
shown in the figure. 

2. The arbiter function can be eliminated if it is possible to refresh memory during cy­
cles left idle by the microprocessor. These idle periods must be at least as frequent as 
the refresh rate. For the 6500 and 6800 families, the system clock has a 50% duty cy­
cle, and all READs take place in the latter half of the duty cycle. Then refresh can be 

Micron Technology Inc. et al. 
Ex. 1042, 137



Normal-address bus 
/ 

/ Address bys 
/ 

,-------. Multiplexer 

MREQ 
Dynamic memory 

subsystem 
WAIT 

ADDRSELCTT 
Arbiter 

REF REQ NORMAL/REFRESH 

/ 
/ 

Refresh-address bus 

I 
I l Refresh-address ~ Refresh 

I 
r counter 

clock 

F1GURE 4.10 The structure of a refresh controller for dynamic memory. 

Micron Technology Inc. et al. 
Ex. 1042, 138



4.1 Types of Memory 139 

done in the first half of the cycle without slowing down the processor if the memory 
cycle time is half of the processor cycle time. (This technique can be used with many 
other processor families besides the 65XX and 68XX families.) 

3. The entire controller can be implemented in software. The idea is to have an interrupt 
subroutine that refreshes memory by reading a block of addresses. The interrupt 
routine is awakened every 1 to 2 ms by a clock interrupt. This solution is very inex­
pensive but places a higher burden on the processor and is not useful if the refresh 
subroutine increases latency to other interrupts beyond a critical threshold. If the mi­
croprocessor has a BLOCK MOVE instruction, the software burden is significantly 
decreased because one instruction can refresh memory during an interrupt. 

4. The microprocessor can control the refresh through special-purpose internal logic. 
The Z80 processor, for example, produces a refresh address and a REFRESH control 
signal during a cycle when the bus would otherwise be inactive. 

5. The dynamic RAM chip, itself, can implement the refresh controller. If all controller 
functions are on the RAM chip, then the RAM refreshes its own data, and functions 
as a static RAM chip except possibly when an external access conflicts with a refresh 
access. Some RAM chips contain an address counter for refresh and rely on an exter­
nal signal to indicate when to refresh. 

In short, new technology has reduced the burden of refresh to the point where its cost may 
be quite small. 

Interfacing to dynamic RAM chips themselves is more complicated than for static 
RAM chips because the dynamic chips use address multiplexing, for which timing is crit­
ical. The problem is that we need 14 address pins for 16 K-bit chips and 16 pins for 64 K­
bit chips, but the packages have to be as small as possible to keep the memory systems 
dense and the speeds high. Hence the 14 addresses of a 16 K X 1 chip are multiplexed on 
seven pins, and similarly the 16 addresses of 64 K X 1 chips use eight pins. Typical16-K 
and 64-K chips are shown in Fig. 4.11. The 16-K chip is the MK4116 (also known as the 
Intel 2117, and by other part numbers from other manufacturers). This chip has 16 pins in 
all, with four used for power, seven for addresses, two for data, and three for control. The 
64-K chip, Motorola's MCM6664, is almost a pin-for-pin replacement of the MK4116. 
By reducing the power-supply pins on the MCM6664 to two from four, we have two pins 
available for other functions. One is used for the addressing, and the other for refresh. 

The multiplexing of addresses requires one more pin for control than on static RAM 
chips. The figure shows three control pins labeled ROW SELECT L, COLUMN SELECT 
L, and WRITE L. The chip select of a static chip has been replaced by row and column 
selects. These selects indicate which address is on the address lines when the chip is 
selected. Timing for the control signals are shown in Fig. 4.12. The timing is quite criti­
cal since the row addresses have to be held long enough to satisfy setup and hold-time 
constraints; then they have to be removed quickly enough to let the column addresses set 
up. The designer needs to keep the row address timing short to meet the memory cycle 
time requirements, yet also needs to keep it long enough to meet the setup timing require­
ments. Refresh cycles do not require a column address, since all bits in the same row are 

Micron Technology Inc. et al. 
Ex. 1042, 139



vr I vr REFRESH L ~ I 

Address ] Address 
8 

/ 

COLUMN SELECT L COLUMN SELECT L 

ROW SELECT L 
MK4116 

ROW SELECT L 
MCM6664 

WRITE L WRITE L 

DATA IN DATA OUT DATA IN DATA OUT 

_L _L 

Pin MK41!6 MCM6664 Pin MK4116 MCM6664 

V88 (-5 V) REFRESH L 9 Vee(+5V) A7 
2 DATA IN DATA IN 10 AS AS 
3 WRITEL WRITEL II A4 A4 
4 ROW SELL ROWSELL 12 A3 A3 
5 AO AO 13 A6 A6 
6 A2 A2 14 DATA OUT DATA OUT 
7 AI AI 15 COL SELL COL SELL 
8 VDD (+ 12 V) Vee(+ 5 V) 16 GND GND 

FIGURE 4.11 A comparison of a 16-K and a 64-K dynamic RAM chip. 

Address 

ROW SELECT L 

!+------Cycle time------+1 

r----1 
COLUMN 
I I 

time 

r---1 
COLUMN 
I I 

Lco!umn address setup time 
1· (usually 0 or greater) 

COLUMN SELECT Ll 
,----_1 [ 

WRITE L I I 
+--Access time__, 

DATA OUT 
1,-----,1 

----. !--Data hold time 

DATA IN D 
READ cycle WRITE cycle 

FIGURE 4.12 Timing relationships for the signals of a dynamic memory chip. 

Micron Technology Inc. et al. 
Ex. 1042, 140



4.1 Types of Memory 141 

refreshed simultaneously. The MCM6664 refreshes automatically each time the RE­
FRESH L control is asserted. Both chips are compatible in refresh requirements as well as 
in pinouts. The refresh cycle is 2 ms, and each of 128 addresses must be read during this 
period. Hence, it is very simple to modify existing memory-system designs to change 
from 16 K-bit chips to 64 K-bit chips. 

Upgrading a memory system from 64 K-bytes to 256 K-bytes is nontrivial for micro­
computers with only 16 address lines because the upgrade must incorporate a means for 
accessing the expanded memory. The microprocessors that can best use the 64 K-bit and 
256 K-bit chips have extended addressing, with address sizes of 20 bits or more. These 
processors include the 8086, MC68000, and Z8000. 

A simplified schematic for a dynamic memory is shown in Fig. 4.13. This controller 
does not have an arbiter because it refreshes during the first phase of a two-phase clock. 
All processor accesses are made during the second phase, and therefore the refresh cycle 
cannot conflict with processor requests. In this design the system clock rate is 1 MHz, and 
refresh requests are generated every 8 clocks. The rate is a little less than twice the 
minimal rate for refresh. High-speed logic multiplexes the 7-address lines from one of 
three sources: The high-address bits, the low-address bits, or the refresh counter. Delays 
are generated from a tapped delay line and are designed to satisfy the setup times for row 
and column addresses, as well as to terminate the cycle. Both refresh and normal requests 
are changed from level signals into pulses by individual 225-ns delays. This makes the 
remainder of the memory timing insensitive to the pulse width of the request levels. Two 
delays are triggered by either request pulse. One delay is 300 ns, and generates the ROW 
SELECT L signal to the memory array. The second delay is 75 ns, which delays 
COLUMN SELECT L until the row addresses have been accepted by the memory. While 
the ROW SELECT is active and COLUMN SELECT is inactive, the row address (low­
order address) is multiplexed onto the address bus. Then the 75-ns delay terminates and 
COLUMN SELECT Lis asserted. At this time the column address (high-order address) is 
multiplexed onto the address bus. For READ cycles, the falling edge of the 300-ns delay 
triggers a latch to accept memory data at the end of the access period. This gives the 
memory about 200 ns before the next access. Chip specifications require this quiescent 
time for precharge of internal circuits. The tri-state latch output drives the external data 
bus and meets the timing requirements of the bus system, and thereby isolates the memory 
timing from the bus timing. 

The relative arrival of COLUMN SELECT L and the column address is very critical. 
Typical chip specifications permit the column addresses to change concurrently with 
COLUMN SELECT L, but the addresses should be stable from this time on. Address 
lines must be treated as transmission lines and properly terminated. Otherwise reflections 
on the address lines may lead to to unstable signals at the chips. The figure shows source 
termination on the address lines for this purpose. Another alternative is to delay 
COLUMN SELECT L relative to the multiplexing of the column address to be sure that 
the column address is stable when COLUMN SELECT reaches the memories. Multiplex­
ing, refresh circuitry, and tight tolerances on timing make this design more complicated 
and more difficult than a static memory. 

Micron Technology Inc. et al. 
Ex. 1042, 141



MREQ 

16 14 

Timing control 
(if required) 

Row address 
7 

Bank address 

READ MEMORY L 

FIGURE 4.13 Simplified schematic of a dynamic memory system. 

System data bus 

Micron Technology Inc. et al. 
Ex. 1042, 142



4.2 Memory Systems 143 

We have not described the power distribution, grounding, and power decoupling re­
quired for a good memory design. A perfectly good memory design can fail solely be­
cause of poor power distribution. Dynamic RAM is particularly sensitive to power distri­
bution because of the high-speed switching of the address-multiplexing control signals. 
Designers must follow manufacturers' recommendations on these points and should re­
view the principles discussed in Chapter 2. 

4.2 MEMORY SYSTEMS 

The microprocessor revolution has changed the way that computer systems are organized. 
Where early trends concentrated the activity into a single processor with supporting DMA 
channels, the modern trend is to incorporate a microprocessor for each important func­
tion. We often see two processors in systems, one for computation and one for disk con­
trol. If a system also has a graphics display, a third processor performs this task. The 
number of processors reaches five in some systems, artd there is no particular reason why 
it should stop there. , 

In multiprocessor systems, a critical aspect of memory design concerns the sharing of 
memory between two (or more) processors. The same type of designs apply to sharing of 
memory between a processor and a DMA channel. This section treats basic techniques for 
facilitating the sharing. We focus exclusively on memory systems that are so-called 
"one-ported," that is, can honor one request at a time. It is possible to create a fully 
"dual-ported" memory, which can actually respond to two requests simultaneously; but 
this requires very sophisticated design and is usually limited to tiny memories, say of 256 
bytes in size. Such a memory has two independent access paths to each of its cells, and a 
provision for detecting when a READ and a WRITE occur at the same cell simultane­
ously. The latter condition should result in the READ operation receiving the data from 
the WRITE operation, rather than its receiving the prior contents of memory. Conflicts 
caused by two simultaneous WRITEs to the same cell have to be resolved by forcing one 
to occur before the other. The standard memory chips described in the previous section 
are generally not suitable for this purpose. 

The one-ported memory systems that we describe here accept requests from two or 
more sources. If the memory system has a cycle time much shorter than the cycle time of 
any requestor, the one-port memory might be able to simulate a multiport memory. To do 
so it must satisfy each requestor within that requestor's cycle time, even when several 
requests occur simultaneously. 

Arbitration Policy 

The general scheme we have for sharing memory is shown in Fig. 4.14. This shows an ar­
biter responding to three different requests. The arbiter responds to a request either by 
granting immediate access to memory or, in case of conflict, by responding with aWAIT 
signal to all but one requester. No more than one request is granted at any time, and de­
layed requests are granted eventually. This presumes, of course, that the outstanding re­
quests can be held for several memory cycles, perhaps indefinitely, by aWAIT signal. 

Micron Technology Inc. et al. 
Ex. 1042, 143



144 Memories 

p' t b' nva e liS / 

! / 

MREQi 

Microprocessor WAIT 1 MREQ 

Shared 
Arbiter memory 

Private bus / 

! 
/ 

MREQ 2 

WAIT2 
Microprocessor I Shared bus 

~ n"" mcdtiplew I / 

Private bus / 

t / 

MREQ3 

Microprocessor WAIT3 

FIGURE 4.14 The structure of a shared memory system. 

The arbiter sho'Yn in the figure, in general, is implemented with a protocol that treats 
all processors equally over the long term. When a conflict occurs between ProcessorA 
and Processor B, the arbiter grants the memory to A one time, then on the next conflict it 
grants the memory to B. The implementation requires that the arbiter maintain a cunent 
priority ranking of the processors, and that when a request is granted, the winning 
processor's priority moves to the bottom rank. With three processors there are six dif­
ferent priority rankings possible. So the arbiter has six states, one for each different rank­
ing. Ties are broken on the basis of the present state of the arbiter. If Processor A has 
priority over Processor B when they make conflicting requests, the arbiter will grant 
memory to A, then change internal state so that Processor B has priority over processor A. 

Table 4.1 is a state table showing the transitions made each time a request is granted. 
The rows of the table conespond to the present priority ranking, and the columns 
conespond to input conditions. The way the table is constructed is rather simple-minded. 
In a state in which the priority ranking is A-B-C, if A makes a request then A's request is 
granted, regardless of the condition of the other two processors. The next state then gives 
priority to the other two processors. Hence the next state is B-C-A as shown in the table. If 

Micron Technology Inc. et al. 
Ex. 1042, 144



4.2 Memory Systems 145 

TABLE4.1 A State Diagram for an Unbiased Arbiter 

Input Requests 

State A B c A,B A,C B,C A,B,C 

A-B-C A B c A A B A 
B-C-A A-C-B A-B-C B-C-A B-C-A A-C-B B-C-A 

A-C-B A B c A A c A 
C-B-A A-C-B A-B-C C-B-A C-B-A A-B-C C-B-A 

B-A-C A B c B A B B 
B-C-A A-C-B B-A-C A-C-B B-C-A A-C-B A-C-B 

B-C-A A B c B c B B 
B-C-A C-A-B B-A-C C-A-B B-A-C C-A-B C-A-B 

C-A-B A B c A c c c 
C-B-A C-A-B A-B-C C-B-A A-B-C A-B-C A-B-C 

C-B-A A B c B c c c 
C-B-A C-A-B B-A-C C-A-B B-A-C B-A-C B-A-C 

Each table ertt~y indicates which processor receives a grant and which state is the 
next state of the arbiter. 

A makes no request when the arbiter is in state A-B-C, then B is given priority over C in 
case of conflict, in whichc<~se the next state isA-C-B under this policy. 

The policy stated is not the most general policy. It does not take into account the age 
of outstanding requests .. Thus in state A-B-C a conflict between Band Cleaves the arbiter 
in a state in which A stili has priority over C. So if A makes a request during the next cy­
cle, C has to wait yet another cycle before being granted access to memory. Since there 
are only two other processors, no processor must wait rribre than two cycles before being 
granted access to memory. 

Another perfectly reasonable policy is to grant priority to the request waiting the 
longest and to break ties in an unbiased manner. This arbitration policy is more difficult to 
implement because there are more possible states. Not only do the states represent all per­
mutations of relative priority, but they also encode the age of the request pending. The 
policy shown in Table 4.1 is quite adequate for most systems. If the policy fails in a par­
ticular situation because of critical timing problems, then perhaps it is best to design a 
specific arbitration algorithm for the application. 

For inore than three processors it becomes more difficult to implement the policy of 
Table 4.2 because the complexity of the arbiter grows much faster than the number of pro­
cessors. The number of states in the arbiter grows factorially with the number of pro­
cessors. For five processors there are 120 states, which is a rather substantial number for 

Micron Technology Inc. et al. 
Ex. 1042, 145



146 Memories 

TABLE4.2 A State Diagram for a Rotating Priority 

Input Requests 

State A B c A,B A,C B,C A,B,C 

A-B-C A B c A A B A 
B-C-A C-A-B A-B-C B-C-A B-C-A C-A-B B-C-A 

B-C-A A B c B c B B 
B-C-A C-A-B A-B-C C-A-B A-B-C C-A-B C-A-B 

C-A-B A B c A c c c 
B-C-A C-A-B A-B-C B-C-A A-B-C A-B-C A-B-C 

Each table entry indicates which processor receives a grant and which state is the 
next state of the arbiter. 

a small controller. Obviously, the complexity of this arrangement may be more than 
necessary to support the memory system. A much simpler arbitration scheme is based on a 
rotating priority. In this case the initial priority ranking is A-B-C-D-···, and after A is 
granted an access the priority ranking rotates cyclically to B-C-D-···-A. If A is idle andB 
is granted a request, then the priority ranking rotates cyclically so that B's priority be­
comes the lowest. This yields a ranking of the form C-D- ···-A-B. Since changes in prior­
ity are reflected in cyclic shifts of the ranking, there are only N distinct states in a system 
with N requesters. Moreover, no request can be outstanding more than N cycles, so the 
worst-case latency is no worse than in the scheme desciibed in Table 4.1. A rotating prior­
ity scheme for three processors is shown in Table 4.2. The rotating priority scheme is, 
then, a much more practical scheme to implement than the general scheme and the differ­
ences in system behavior may be negligible. 

Synchronization 

The difficulty with arbiters is not in the implementation of the basic functions, but rather 
in the problem of accepting signals from processors that are running asynchronously with 
respect to each other. We discussed this problem earlier and indicated that the best way to 
solve the synchronization problem is to use a common clock for all processors. In this way 
we can be sure that all request signals are stable at the time an arbitration decision is 
made. If the requests are truly asynchronous then all requests have to be synchronized to 
the same clock through the use of the techniques described earlier. Inevitably there is a 
time penalty in synchronizing signals because a synchronizing flip-flop might enter the 
metastable state, and the interfacing circuitry has to delay long enough for the flip-flop to 
become stable again. 

Figure 4.15(a) shows typical timing for arbitration in relation to timing for a memory 
cycle. Note that the requests for memory access have to be stable for the arbitration, and 

Micron Technology Inc. et al. 
Ex. 1042, 146



4.2 

Arbiter Active [!] 

Memory Active 

Time---• 

(a) Arbitration not overlapped with 
memory access. 

Memory Systems 

Arbiter Active [1] 

Memory Active 

Time------+ 

(b) Arbitration for one memory cycle 
overlapped with previous memory cycle. 

147 

FIGURE 4.15 Relative timing of arbitration and shared memory activity without and with the 
overlapping or arbitration and memory access. 

that this occurs in advance of the main memory cycle. If the requests to the arbiter have 
the timing of normal memory requests, then arbitration has the effect of lengthening 
memory cycle time. That is, a request to a private memory can be granted in the time 
shown as the memory cycle time, whereas requests to shared memory have to pay the 
penalty for arbitration. 

A better approach is to overlap arbitration for the next memory cycle during the 
present memory cycle. The timing for this is shown in Fig. 4.15(b). Requests to the arbiter 
for memory access are generated one or more clock cycles before the actual memory re­
quest is issued. The arbiter operates on these advanced requests and issues a grant in time 
for the winning processor to make a memory access using normal timing. The problem, 
then, is how to generate the requests one cycle sooner than they normally would appear. 
The problem cannot be solved by the system designer. It has to be solved on the chip 
itself. 

To give some idea of the solution to this problem consider the relevant signals for the 
MC6809E microprocessor, shown in Fig. 4.16. (The "E" designation stands for "exter­
nal clock.'') This version of the processor is intended for multiprocessor applications. 
Two features shown in the figure support this application. One feature is that the four­
phase clock for the processor is generated externally from a source that can drive multiple 
processors in synchronism. The four-phases of the clock are generated by a pair of 
square-wave clock signals that are 90° out of phase with each other. These are labeled 
CLOCK and QUADRATURE CLOCK in the figure. The second feature is a signal 
labeled ADVANCED REQUEST (called AVMA for "advanced valid memory access" 
by the manufacturer). This signal is produced one cycle earlier than a normal memory 
request. Its purpose is to facilitate arbitration that must occur prior to memory access. The 
normal signal for the 68XX family that denotes MEMORY REQUEST (called VMA for 
"valid memory access") is not produced directly by the 6809E. However, the designer 
can generate VMA as a delayed version of the ADVANCED REQUEST produced by the 
winner of a bus-arbitration cycle. 

Micron Technology Inc. et al. 
Ex. 1042, 147



148 Memories 

I 
Clock 

I generator 

CLOCK I 1 
QUADRATURE CLOCK 1 Address bus / 

/ 
Data bus 

MC6809E READ/WRITE L 

ADVANCED REQUEST 

FIGURE 4.16 Interface signals for the 6809E showing a shared clock and ADVANCED 
REQUEST to facilitate early arbitration of an access to shared memory. 

4.3 DMA CONTROLLERS 

To complete our description of memory interfacing, we discuss the design and use of 
DMA controllers. These controllers were once expensive and complex subsystems, whose 
complexity was comparable to that of a small central processor. LSI implementations of 
DMA controllers have been as successful in shrinking DMA functions onto a single chip 
as they have been in shrinking the processing unit of a computer onto a single micropro­
cessor chip. 

The basic structure of a DMA channel is shown in Fig. 4.17. Because the DMA con­
troller must issue commands to memory exactly the way the processor does, the controller 
has a full bus interface. Over this bus, the DMA receives control information from the mi­
croprocessor and transfers data to and from memory. This DMA controller has three in­
dependent channels. Each channel contains an address register, a control register, and a 
byte counter. The objective of a DMA operation is to transfer a block of data between an 
external device or VO port and memory. To do so, the processor stores initial values in the 
address, control, and byte-count registers. The DMA channel then transfers the block of 
information from or to memory according to the direction of the transfer encoded in the 
control register. The starting address of the block in memory is given by the address regis­
ter, and the length of the block is given by the byte count. To make this transfer, the DMA 
controller has to synchronize the activities of the processor to the external device. Basi­
cally, before it performs each transfer, the controller has to wait for both the external de­
vice to be ready and the processor to be idle. 

The interface with the VO port requires two signals per port (TRANSFER REQUEST 
and TRANSFER ACK), plus the ability to generate VO READ/WRITE L to indicate to 
the port the direction of the transfer. The DMA controller accepts a TRANSFER RE­
QUEST from the port when the port has data ready to write into memory or has an empty 
buffer that can accept data from memory. When a transfer is to take place, the DMA out­
puts the control signal TRANSFER ACK, which indicates that the port should receive 
data from or write data into memory. TRANSFER ACK functions like a CHIP SELECT 

Micron Technology Inc. et al. 
Ex. 1042, 148



-------. Data-chain 
Registers 

MEMORY READ/WRITE L 

I/0 READ/WRITE L Channel 0 
r---------, 

II Address ll I TRANSFER ACK 

~I Command I I ~ 
HALT TRANSFER REQUEST 

HALT ACKNOWLEDGE ~ H I I Microprocesso~ bus Bus II Count I .__.... 
/ interface 

L ________ _j 

]To I/0 port 

Channell 
IRQ 

+--- TRANSFER ACK 
Internal +--_____. TRANSFER REQUEST 

bus 
J To I/0 port 

Channel2 

+--- TRANSFER REQUEST 

--------.. TRANSFER ACK J 
FIGURE 4.17 The structure of a typical DMA controller. 

Micron Technology Inc. et al. 
Ex. 1042, 149



150 Memories 

signal because when TRANSFER ACK is asserted, the port responds on the memory bus 
interface. The response is almost the same response as though the port had been selected 
by a CHIP SELECT. The major difference between a DMA-controlled response and a 
normal response is that the port responds in the opposite direction of the transfer indicated 
on the READ/WRITE control lines on the memory bus. If the control lines indicate a 
READ, then the READ isfrom memory to the 110 port. That is, the operation is a WRITE 
to the port if it is a READ from memory; and, conversely, a READ from the port is a 
WRITE to memory. Consequently, the 110 subsystem and the memory require distinct 
READ/WRITE L controls. Therefore the figure shows the normal control line to the 
memory system designated as READ/WRITE Land a second independent line to the 1/0 
subsystem designated 110 READ/WRITE L. The DMA controller exercises both of these 
lines simultaneously in opposite polarity during a DMA transfer. The microprocessor, 
however, exercises only one of the two lines at a time, and therefore for microprocessor­
controlled activities the two lines can be tied together. 

This peculiarity of DMA systems raises an interesting question. How do we use 110 
ports in a memory-mapped 110 system? In such a system there is usually a single bus to 
carry the READ/WRITE L control signal. Clearly the READ/WRITE L signal either has 
to be inverted externally to the 110 port or on the 1/0 chip itself. If the logic is external, the 
logic required is rather simple and is shown in Fig. 4.18. The READ/WRITE L signal is 
gated through an EXCLUSIVE OR with TRANSFER ACK, and passed to the 1/0 port. 
This inverts the polarity when TRANSFER ACK is asserted during DMA transfers. The 
chip select for the 1/0 port is the logical OR of a memory-mapped chip select and 
TRANSFER ACK. 

Normal CHIP SELECT 

CHIP SELECT 

TRANSFER ACK 
I/0 Port 

Bus READ/WRITE L READ/WRITE L 

FIGURE 4.18 Control signal logic for an I/0 port that 
runs under the direct control of a microprocessor and a 
DMA controller. 

Because it is necessary to correct polarity of READ/WRITE L at the 1/0 ports for 
DMA transfers, a number of 1/0 ports have an internal mode in which the role of 
READ/WRITE L is reversed. For microprocessor-controlled transfers, the ports are 
operated in a normal mode. For DMA-controlled transfers, the microprocessor first places 
a port of this type in the DMA mode, then initiates the DMA controller. Then for the dura­
tion of the DMA transfer the complement of READ/WRITE L controls the direction of 
the data transfer. 

Micron Technology Inc. et al. 
Ex. 1042, 150



4.3 DMA Controllers 151 

The interface between the processor and the DMA controller is desciibed in Chapter 
1 . The controller has a HALT request output signal and a HALT ACKNOWLEDGE input 
pin. During the byte-by-byte transfer of a block of data, the controller waits for a 
TRANSFER REQUEST on a channel. Then the controller asserts HALT and awaits 
HALT ACKNOWLEDGE. This instructs the processor to relinquish the memory bus. 
Within a few clock cycles, the processor asserts HALT ACKNOWLEDGE, and places all 
of its output drivers to the bus in high-impedance state. Now the DMA controller has 
access to memory. The controller simultaneously 

I. places an address on the bus, 
2. sends TRANSFER ACK to the requesting I/0 port, and 
3. sends the proper polarity of READ/WRITE L to memory and the complement of this 

signal to the 1/0 system. 

The I/0 port and memory respond to these actions in opposite ways so that data moves 
from one to the other depending on the polarity of READ/WRITE L. At the end of the 
memory of the cycle, the DMA controller removes all of the signals it has placed on the 
bus, then places its bus drivers in high-impedance mode. When HALT is deasserted,' the 
processor can continue its operation from the point of suspension. Because the DMA 
shown Fig. 4.17 has tlu·ee channels, the operations described can be multiplexed among 
three separate I/0 ports. . 

Placing a HALT request on the bus causes some latency and overhead in the DMA 
operation. ,Usually one bus-clock cycle is lost each time the bus mastership changes 
hands, so that for each cycle of DMA transfer, two additional cycles may be lost through 
HALT and HALT ACKNOWLEDGE overhead. Moreover, some microprocessors con­
tinue to the end of the present instruction before relinquishing the bus, and this occupies 
as many as 10 to 15 cycles. To reduce the overhead and latency for high-performance 
transfers, the DMA controller usually has a burst mode in which the DMA controller 
retains control of the bus through the entire block transfer, and relinquishes the bus back 
to the processor only at the end of the block transfer. The selection between block mode 
and single-byte transfers is determined by the control word passed to the DMA from the 
processor. 

The microprocessor can be interrupted by the controller at the end of a block transfer. 
When the processor responds to the interrupt, it can reload the DMA registers for a new 
block transfer and thereby maintain the continuity of the 110 flow. Another way to achieve 
continuous operation is to provide a means for the ''chaining'' of block transfers within 
the DMA controller. The box labeled "data-chain registers" in Fig. 4.17 holds an 
address, byte count, control word, plus a channel ID. These registers hold data to be used 
to reload the designated channel's registers when that channel completes a transfer. In 
many systems, the contents of the data-chain register can be used repeatedly for a 
sequence of transfers. Then after each transfer completes a new one can be begun without 
intervention by the processor. If the data-chain register must be reloaded, the processor 
can query the DMA controller periodically by reading its status. If the status indicates that 

Micron Technology Inc. et al. 
Ex. 1042, 151



152 Memories 

a transfer has completed and used the data-chain registers to initiate a new transfer, the 
processor reloads the data-chain registers with the parameters for the next block transfer. 

4.4 EXAMPLES OF DMA CONTROLLERS 

This section discusses three different DMA controllers. The i8257 and Am9517 are 
designed for 808X-style buses. The MC6844 is used for the 6800 family of buses. 

The i8257 DMA Controller 

A block diagram of the i8257 appears in Fig. 4.19. This controller has four independent 
channels, each of which contains an address register and a counter. The counter decre­
ments as each transfer occurs, and forces termination of the DMA operation after the last 
transfer. The controller increments the address register after each operation, so that suc­
cessive data transfers are made at contiguous ascending addresses. 

Microproc:;sor bus 

/ 

I/0 READ L 

1/0 WRITE L 

To~ memory 
and 

processor 

MEM READ L 

MEM WRITE L 

HRQ 

HLDA 

Tol/0~ 
system~ 

MARK 

TC 

~ ~ Channel 0 

Bus .___ 
+--

~ interface 
Channel 1 

Arbiter ~ 
+--

~ Channel 2 

+--~ Channel3 

Control signal 
interpreter and ..---

generator 

I I 

FIGURE 4.19 Structure of the i8257 DMA controller. 

1 DACK 0 L 

l DRQO 
r 
L DACK 1 L 

l DRQ 1 
I 

DACK 2 L 

l DRQ 1 

I DACK3 L 

I DRQ3 

The arbiter in the figure resolves conflicts among the channels for access to memory. 
Two different arbitration schemes, selectable by the microprocessor, have been designed 
into the i8257 in order to make the chip useful in a variety of different applications. In one 

Micron Technology Inc. et al. 
Ex. 1042, 152



4.4 Examples of DMA Controllers 153 

mode, the channels have a fixed priority and conflicts are resolved according to this prior­
ity. In this case Channel 0 has the highest priority and Chan11el 3 the least priority, so that 
Channel 0 should attach to the most critical I/0 devices. The second arbitration mode is a 
rotating~priority scheme in which priority rankings are the four cyclic shifts of 0-1-2-3. 
When a channel is granted access to the bus, the priority ranking shifts cyclically to place 
the channel in the lowest priority position for the next arbitration cycle. 

The remainder of the block diagram shows the interff!ce with the microprocessor, 
memory, and I/0 systems. In keeping with the requiremen~s of the 808X family, this chip 
has four signals associated with the READ and WRITE operations. MEM READ Land 
MEM WRITE L are signals produced by the DMA controller to exercise memory. The 
two signals I/0 READ L and I/0 WRITE L are bidirectional, however. They are inputs 
from the microprocessor when the microprocessor sends commands to the 8257 and reads 
back the 8257 status. During I/0 operations these signals are outputs from the 8257, and 
they ap~ functionally opposite to the memory signals for reasons mentioned earlier. The 
8257 tllkes control of the bus by exercising HALT (HRQ in the manufacturer's notation), 
and receives back tne "go-ahead" signal on HALT ACKNOWLEDGE (denoted HLDA 
by the manufacturer). 

Two signals produced by the DMA controller can be used by I/0 ports to assist in 
controlling the transfer process. One signal, TC for terminal count, is asserted during the 
last cycle of a DMA block. This signal can be used to disable a DMA mode on an I/0 pot1 
or to reset the pott's internal state to indicate the end of a transfer. The second signal, 
MARK, is asserted each time the count on a channel becorpes a multiple of 128. Hence 
MARK provides a convenient timing signal for an external device. 

The microprocessor accesses specific registers on the chip through the use of four ad­
dress lines decoded on chip. This yields 16 addressable locations. Eight of those are the 
four pairs of channel registers. Two other addresses are assigned to a control register and 
status register while other addresses are unused. All registers are 16 bits in length, but the 
d~ta bus for the chip is 9nly 8 bits wide. How does a microprocessor read and write the 
16-bit registers over an 8-bit bus? Obviously, two bus operations are required per 16-bit 
register. The state of an internal flip-flop determines whether the low byte or the high byte 
is the byte being accessed. Each time an access occurs, the state of the flip-flop changes, 
so that on subsequent accesses the chip alternates between high byte and low byte. The 
state of the byte flip-flop is reset to the low-order byte during a system reset operation and 
by writing into the command mode register. Otherwise, register READs and WRITEs to 
the chip should always be made in pairs. 

The internal byte flip-flop has a hidden software overhead associated with it. The 
problem is that a pair of accesses to a register must be uninterruptible. If for some reason 
an interrupt qccurs between the accesses, then a side-effect of the interrupt program may 
be a change of the pyte flip-flop. For example, the interrupt program may initiate an I/0 
operation !-m the DMA controller chip, or may interrogate the status register, both of 
which involve operations that must reset the byte flip-flop. Therefore whenever the 8257 
registers are accessed by a microprocessor, the microprocessor must first turn off inter­
rupts, then access the 8257's registers, then reestablish interrupts. The programming and 

Micron Technology Inc. et al. 
Ex. 1042, 153



154 Memories 

performance burdens are small but annoying penalties. More disastrous are the conse­
quences of failing to tum off the interrupt system. The resulting system errors are ex­
tremely subtle and difficult to analyze. 

Another critical hazard created by the addressing facility is due to chip selects as­
serted during a DMA cycle. In theory, when the DMA controller has taken over the bus, 
the controller will not produce an address that selects the controller itself. However, 
should such a chip-select be generated, that chip select will change the state of the byte 
flip-flop. Then subsequent WRITEs of low and high bytes of addresses and counts will re­
verse these items in the registers. A failure of this type from a spurious chip select is ex­
tremely difficult to diagnose. 

Chaining of successive DMA operations is provided in a somewhat limited fashion. 
One of the control modes of the chip is an autoload mode, in which Channel 2' s registers 
are automatically reloaded from Channel 3's registers when Channel 2 completes its 
operation. In this mode, Channel 3 is essentially dedicated to the autoload function, so the 
effective number of channels is reduced from four to three. A status bit in the status regis­
ter indicates when Channel 2's registers have been reloaded. By examining this bit, the 
microprocessor can determine when transfers have been completed, and when to reload 
the registers in Channel3 for a subsequent automatic reload. 

This DMA controller is inherently a burst-mode device, because the chip will notre­
move its bus request once the request has been granted until all block transfers in progress 
have been completed. However, through the use of external logic, the block transfer can 
be forced out of the burst mode to permit the microprocessor or other DMA controllers to 
access memory. The peripheral device (or other external logic) normally responds to a 
DMA request with a DACK L as shown in the 110 port interface of the 8257 in Fig. 4.19. 
If the signal HALT ACK (or HLDA in the manufacturer's notation) is forced low, indicat­
ing that the microprocessor is no longer halted, then the 8257 will automatically relin­
quish the bus at the end of the current memory cycle. When the next request for service 
appears on a DRQ line, the 8257 continues the block transfer. 

The Am9517 DMA Controller 

A somewhat more advanced DMA controller for 808X and other microcomputer systems 
is AMD' s Am9517. Its block diagram is almost identical in structure to the 8257. In fact, 
the 9517 performs essentially all of the functions of the 8257 and more. Our discussion 
here highlights the differences in the chips, and omits discussion of points of similarity. 

One difference is that the 9517 has four registers per channel rather than two per 
channel as in the 8257. Two of the channel registers hold the block address and block 
count, and the other two hold the initial values of these registers. When an address or 
block count is written into a channel register by the microprocessor, the datum is copied 
into both the intended destination register and the corresponding initial-value register. At 
the completion of a channel operation, the address and block counts can be reloaded au­
tomatically from the initial-value registers, and a new block operation will begin without 
intervention by the processor. 

Micron Technology Inc. et al. 
Ex. 1042, 154



4.4 Examples of DMA Controllers 155 

Of the sixteer. port addresses selectable on the 9517, eight of them are used by the 
four channels in much the same way that the 8257 uses eight addresses for eight 16-bit 
registers. At the remaining eight addresses the 9517 has six registers, as compared to only 
two registers for the 8257. In addition to addresses used for registers, two other addresses 
are interpreted as chip commands ("reset" and "initialize the byte flip-flop"). 

We noted above that external logic dictates whether or not the 8257 operates in burst 
mode or in single-byte mode when it performs a block transfer. These modes are con­
trolled by mode bits on the 9517 chip for each individual channel. Actually there are three 
distinct transfer modes built into the 9517: 

1. A single-byte mode in which the.9517 releases the memory bus after each transfer. 
2. A block mode, in which the 9517 retains control over the memory bus throughout the 

block transfer. 
3. A demand-transfer mode, in which the 9517 retains control over the bus while a de­

vice continues to assert DREQ, and the 9517 releases the bus when DREQ becomes 
passive or when the block transfer completes. 

Another capability of the 9517 is the capability to increment or decrement the address dur­
ing a block transfer. The 8257 can only increment addresses; it never decrements them. 

The mode control, autoload control, and increment/decrement control for each chan­
nel is stored in a mode control word for each channel. But the chip has but a single address 
for all the mode registers. The mode word itself supplies the channel number in its first 
two bits. Hence, when a mode word is written to the mode-register address, the mode 
word steers itself to the correct channel. 

The MC6844 DMA Controller 

The block diagram of the 6844 controller in Fig. 4.20 shows that it follows our general 
description of DMA controllers, but also that it differs somewhat from the 8257 and 9517. 
The major difference at the interface level is that the 6844 controls only one 
READ/WRITE L signal that is common to both memory and 110 ports. Therefore, logic 
in the 110 port chip or external to it must complement this signal during DMA operations. 

The device has four ports, each containing a byte count, address, and control register. 
Data transfers can be one of three different modes described as follows, and are specified 
in the control register for each port. A separate register is used for chaining block 
transfers. It contains a 2-bit field that selects one of Channels 0, 1, or 2 for an automatic 
reload when that channel completes its present block transfer. The reload transfers the 
contents of the registers of Channel 3 to the designated register, so that the automatic­
reload mode effectively reduces the number of available channels from four to three. The 
priority control register contains the enable (start) bits for the channels. Setting an enable 
bit for a channel initiates a transfer on that channel. The register contents also determine if 
requests are to be resolved by a fixed priority scheme (Channel 0 highest, Channel 3 
lowest) or by a rotating priority scheme that was described earlier. 

Micron Technology Inc. et al. 
Ex. 1042, 155



156 Memories 

Microprocessor bus 

READ/WRITE L 

IRQL 

HALT 

HALT ACKNOWLEDGE 

TRI-STATE BUS 

Bus 
interface 

Transfer 
control signals 

{ 

CHIP SELECT/Tx AKB 

DMA Ack Tx AKA 
~~------~------~ 

Channel 0 

Channel 1 

Channel2 

Channel3 

FIGURE 4.20 The structure of the MC6844 DMA controller. 

Interface signals with I/0 ports and memory are somewhat different for this chip than 
for others described because the modes available for block transfer are slightly different. 
The 6844 transfers data in any of the following modes: 

1. A byte mode using HALT, in which the DMA controller halts the processor before 
each byte transfer, then allows the processor to restart after the transfer. 

2. A byte mode in which clocks are stretched, leaving enough time for a normal pro­
cessor access and a DMA access. 

3. A burst mode, in which the processor is halted during the entire block transfer before 
it is restarted. 

The clock-stretch mode is new to this discussion. It is a mode that appears to be peculiar 
to the 6800 family because the family lacks the READY/WAIT control signals. The con­
troller uses the familiar HALT and HALT ACKNOWLEDGE handshake-control signals 
for modes in which the processor is stopped, and uses the signal called TRI-STATE BUS 
for the clock-stretch modes. This signal forces a 6800-family processor to release all tri­
state signals on its memory interface, and simultaneously holds the system clock in a level 
state. There should be sufficient time while the clock is high for both a DMA access and a 
processor access to memory, but the clock cannot be held constant indefinitely because 
the 6800-family microprocessors require a clock cycle to refresh critical information. 

The CIDP SELECT signal does double duty on this device. It functions as an input 
when the device is a passive listener on the bus. Mter the device takes over the memory 
bus, the CIDP SELECT signal becomes an output. Hence the CIDP SELECT signal 
should be driven externally by a tri-state or open-collector device. The output on the CIDP 
SELECT pin is denoted Tx AKB, which together with Tx AKA form a pair of signals that 

Micron Technology Inc. et al. 
Ex. 1042, 156



Experiments 157 

acknowledge transfer requests. These two signals encode four states, such that each state 
is a handshake acknowledge for a request on one channel. Both the 9517 and 8257 pro­
duce unencoded acknowledge signals for this purpose, which eliminates the need for off­
chip logic to decode the state of these pins. 

All other aspects of this chip are sufficiently similar to the ones previously described 
in this section to make additional discussion unnecessary. 

OTHER READING 

Practical implementatioM of memory systems and DMA controllers are described in de­
tail in reference material published by semiconductor manufacturers. Intel's Memory 
Design Handbook ( 1977) is a particularly good source of information in that it covers the 
problems of power distribution and noise control, as well as the basic principles of inter­
facing to memory chips. It contains detailed logic schematics and printed circuit board 
layouts of memory designs for various types of memory chips. Techniques for program­
ming PROM and for designing PROM programmers are also covered in this handbook. 
Metzler and Oliphant (1978) provide details on interfacing to the 16 K 2118 dynamic 
RAM and include oscilloscope traces of waveforms that compare the 2118 to the 2117 
(MK4116). Altnether (1980) covers the design of memory systems that use the high-speed 
2147H static RAM. Osborne and Kane, vol. 3 (1978), covers the full spectrum of RAM, 
ROM, and PROM. In this same volume they also treat the 8257 and 9517 DMA control­
lers, and the 6844 is covered in vol. 2 ( 1978). 

EXPERIMENTS 

4.1 For this experiment you will need a dual-trace oscilloscope and a microcomputer. 
You should have the full logic schematics for the computer, but it is sufficient to 
have the chip specifications for the microprocessor and the memory chips to carry 
out the experiment. 
a) Write a brief program loop, as described in Table E--3 .1 of Chapter 3, that places 

your computer in a tight loop. Be sure that your program is written to access a 
RAM location, not ROM or a nonexistent address. With this program running, 
connect the oscilloscope external sync input to the WRITE line. -This will lock 
the oscilloscope to the repetitive signals. 

b) Locate the RAM chip that your program accesses. Connect one probe to a CHIP 
SELECT line and the other to an address line. For dynamic RAM use ROW 
SELECT (RAS) for the CHIP SELECT. If the chip has more than one CHIP 
SELECT, use one that is produced from a decoded address. In this configuration 
measure the address setup time prior to the leading edge of CHIP SELECT, and 
the address hold time after the trailing edge of CHIP SELECT. Compare these 
times to the chip specifications. (If the address bit you probe does not change at 
the beginning or end of a cycle, probe various address lines until you can observe 
both the leading and falling edges of addresses relative to the leading and falling 
edges of the CHIP SELECT.) 

Micron Technology Inc. et al. 
Ex. 1042, 157



158 Memories 

c) Measure the relative time difference between WRITE and CHIP SELECT. 
Which signal reaches its active state first during a WRITE cycle? Compare your 
measurements with the chip specifications. 

d) If the chip is a dynamic RAM, measure the setup and hold time for the column 
addresses relative to COLUMN SELECT (CAS). Compare these measurements 
with the chip specifications. 

e) Measure the access time for data read from the chip; then measure the data hold 
time. You may not be able to measure the access time directly because doing so 
depends on the timing of the output enable as well as the true access time. 
Nevertheless, measure the apparent access time, including the effects of the de­
lay in enabling the output drivers. Compare your measurements to the chip 
specifications. 

f) For a WRITE cycle, measure the input data setup time and hold time, and com­
pare them to the chip specifications. 

4.2 This experiment repeats the previous experiment, but uses ROM instead of RAM. 
a) Enter your tight program loop as you did for the previous problem, except that 

the instruction that loads data should load data from a ROM, not RAM, location. 
The program should continue to write to a RAM location. 

b) Connect one probe to a CHIP SELECT on the ROM that you access. If there is 
more than one CHIP SELECT, then connect the probe to a CHIP SELECT that is 
produced by an address decoder. Select the INTERNAL SYNC mode on the os­
cilloscope and sync the display to the CHIP SELECT signal. 

c) Measure the address setup time relative to the CHIP-SELECT. This is usually 
not a critical time, and many manufacturers do not specify it in their reference 
documentation. 

d) Measure the access time of the chip relative to the point at which the addresses 
stabilize. Compare this time to the manufacturer's specifications. 

e) Measure the delay in the enabling of the output drivers of the chip relative to the 
OUTPUT ENABLE. If the chip does not have an OUTPUT ENABLE then find a 
CHIP SELECT that turns on the output drivers, and measure the driver delay 
with respect to this CHIP SELECT. Compare your observations with the 
manufacturer's specifications. 

4.3 For this experiment you will design and construct a 1 K-byte memory expansion to 
an existing computer. 
a) You will need a microcomputer that has a memory-expansion bus. Find a region 

of memory in which there is no installed RAM, and verify that addresses in this 
region do not activate any memory cell, VO port, or tri-state buffer that drives 
the microprocessor bus. You must be absolutely certain that you can install the 
memory without a tri-state conflict on the bus. 

b) Design a 1 K-byte RAM using two 2114s, address decoders, and other random 
logic as required. Interface the address lines of your memory to the memory­
expansion bus through tri-state buffers in the 74LS24X family (or their 
equivalents) that have hysteresis for noise immunity. Interface the data bus 

Micron Technology Inc. et al. 
Ex. 1042, 158



Experiments 159 

through an 8-bit bus transceiver such as 74LS245s, or through tri-state buffers 
such as 74LS241s connected back-to-back. Carefully design the ENABLE inputs 
on your memory so that there is a dead time in the transition between a bus 
READ and a bus WRITE. 

c) Construct your memory on a project board. It is essential that the memory chips 
be mounted on sockets or on a breadboard so that they are both insertab1e and re­
movable. 

d) Construct a short cable to extend the bus to your project board. If you use flat ca­
ble, there should be a ground wire between every signal wire. If you use discrete 
wires, use one ground wire for every signal wire, and twist each signal with its 
corresponding ground. Connect together all ground wires at both ends of the ca­
ble to signal ground points. Bring +5 V to the project board through hefty power 
conductors in order to minimize power drops on the lines. Use decoupling capac­
itors on your project board, at least one 0.1- f.LF capacitor for every two chips and 
two 10-f.LF capacitors on opposite sides of the board. 

e) The next several steps are checks for common problems that can cause serious 
damage to the project board and the microcomputer. Never apply power to a 
computer connected to a project board without first pe~forming these tests or 
their equivalents. Recheck your design, your project board, and your cabling. 
• Remove the cable between the project board and the computer temporarily. 
• With no chips plugged into the board, measure the impedance across the proj­

ect board power supply and verify that the supply is not shorted. 
• Apply power to the project board, and verify that the power reaches 5 V and 

remains constant. 
f) With power off, connect the cable between the project board and the microcom­

puter. Apply power to both the computer and the project board and verify that the 
5 V supplies to both remain at 5 V in this configuration. 

g) With power off, insert all chips into the project board, except for the memory 
chips and the data bus drivers. Tum on the power, and enter a program that reads 
from a location on your board within a tight, endless program loop. Connect an 
oscilloscope to the ENABLE lines of the data bus drivers. Verify that the data 
bus "turns around" only during the READ, and at all other times the data bus 
drivers are either in a WRITE state or in a high-impedance state. 

h) Change your program to write to your memory instead of reading from it. Probe 
the ENABLE lines of the data bus driver and verify that bus drivers are in a 
WRITE state during the WRITE cycle. At all other times the drivers should be in 
a high-impedance state or in a WRITE state. 

i) With power off, insert the data bus drivers and the memory chips. Tum on power 
and test the memory. 

If you have thoroughly checked your design and followed these procedures, you 
should be able to run diagnostic programs with your project board connected to the 
computer. If for any reason the microcomputer fails to execute normal programs, 
tum off the power immediately and recheck your work with power off. If you can ex-

Micron Technology Inc. et al. 
Ex. 1042, 159



160 Memories 

ecute programs, but the memory diagnostics indicate that the memory is not working 
properly, probe your project board for correct logic and correct timing at the 
memory chips. 

4.4 This experiment requires a small memory on a project board for which wiring can be 
easily changed. The project board of Experiment 4.3 is quite suitable for this pur­
pose. The objective of this experiment is to examine failure modes of static RAM 
when setup times fail to meet chip specifications. 
a) Disconnect o~e address line, A9, from the address driver output. All chips 

should have this pin floating. Exercise your project board and determine the ef­
fects of this change. 

b) Create a delay by passing A9 through a series of six inverters of a 7404 chip. 
The lead invetter should be driven by the address-bus driver, and the last inverter 
in the chain should drive the address lines of the memory chips. Observe the ef­
fect of this change on an oscilloscope and determine whether the address setup 
time has been violated. Add another six gates in the chain if necessary so that the 
address A9 definitely changes state during a period when it should be stable. Ex­
ercise the memory and observe the effects of this change. 

c) Remove the delay from A9 and insert the delay into the WRITE line so that 
WRITE changes at the 2114 after CHIP SELECT. Observe the effects of this 
change. . 

Micron Technology Inc. et al. 
Ex. 1042, 160



5 I SERIAL INTERFACING 

This chapter is the first of the chapters that cover detailed information on interfacing mi­
crocomputers to specific devices. A natural stmting point is the serial interface because it 
is probably the least complex electrical interface to implement. It requires only one signal 
wire to carry all data flow in one direction. (Two wires are required for two-directional 
flow-that is, one wire for input data and one for output data.) Serial intetfaces do, how­
ever, have some logic to convert between parallel and seria! data streams, and this logic is 
not necessary for other types of interfaces. But because serial links have a small number 
of wires and a correspondingly low cost, they are standardized into a few widely used pro­
tocols for which there exist L-SI interface chips. The large volume of production for these 
interfaces has reduced the cost per serial port to a few dollars for parts in spite of the addi­
tionallogic required for transforming data between parallel and serial data streams. 

The structure of a typical serial I/0 pmt is shown in Fi'g. 5 .I . Note that the structure is 
similar to the general port structure outlined earlier in this textbook. That is, the port con­
tains a bus inte1face through which the microprocessor can send commands to the pmt, 
read port status, and access input/output data registers in the port. An intenupt line noti­
fies the microprocessor of the completion of an operation. What distinguishes this port 
from the general structure of an I/0 port is the conversion that occurs between serial and 
parallel data streams. The bus inte1face with the microprocessor is a parallel interface 
through which eight (or sixteen) databits are transmitted in a single transaction. The inter­
face with the outside world is a serial interface, in which those same data bits are transmit­
ted on a single output wire or received on a single input wire, with the bits appearing on 
these lines sequentially in time. 

The figure shows an output register XMIT loaded in parallel from the microprocessor 
data bus. This register, in turn, is connected in parallel to a shift register. Data loaded into 
XMIT are subsequently passed to the shift register, thyn shifted serially onto a single out­
put lipe. Input data are received sequentially and passed to a shift register, which collects 
the bits until the register is full. Subsequently, the input data are passed in parallel from 
the shift register to the register identified as RCV, and from there to the microprocessor 
bus. 

The reason that both the transmit and receive sections have two registers relates to the 
need to buffer data in transit through the port. It is possible, for example, to combine RCV 
and Its conesponding shift-register into one register, but this creates a serious timing con­
straint in the port. There may be an indefinite delay between the receipt of a full 8-bit da­
tum from the outside world, and the availability of a bus cycle during which that datum 
can be transferred to the microprocessor. Unless the pmt can safely buffer a received da­
tum for a sho1t period of time, there is a very high risk that a received datum will be 
overwritten by the leading bits of the next arriving character. Hence, RCV gives t)1e 

161 

Micron Technology Inc. et al. 
Ex. 1042, 161



162 Seriallnterfacing 

System 
bus 

interface 

Data bus 

READ/WRITE 

SELECT 

System clock 

-----

~ 

i 

X 
M 
I 
T 

R 
c 
v 

c 
T 
R 
L 

I 
v 

Output 

r---+ shift 
register 

I 
v 

Input 
4---- shift 

register 

f 

Status 
r-

Register 

INTERRUPT....__ 
REQUEST 

FIGURE 5.1 The structure of a typical serial I/0 port. 

Transmitter clock 
Serial data out 

Receiver clock 

Serial data in 

necessary additional buffering for input data. As each successive bit of the input stream 
appears, the shift register shifts to make room for the it. When the last bit of a character is 
received, the completed character moves to RCV, from where it is eventually moved to 
the processor. Thus, by buffering a received datum in RCV, the shift register is free to ac­
cept the next byte of information from the serial data stream. 

Once a character is transferred to the buffer register RCV, the microprocessor has an 
opportunity to remove the character from the UO port and copy it to memory where 
further operations can be done. The microprocessor can determine the availability of the 
character either by testing the status bit of the pmt, which distinguishes between a full 
buffer and an empty buffer, or by fielding an interrupt generated at the completion of 
character reception. In the latter case, the microprocessor must distinguish the interrupt­
ing port from all other ports by testing port status or by accepting a transfer vector from 
the port in response to an interrupt -acknowledge signal. 

Micron Technology Inc. et al. 
Ex. 1042, 162



5.1 Serial I/O Protocols 163 

Although we have focused on the input stream to indicate why a buffer register is 
commonly used, the output stream also benefits from a buffer register configured as in the 
figure. In this case, the microprocessor can fill the output buffer while the last character is 
still being shifted out of the shift register. If the output buffer XMIT is full when the shift 
register empties, the XMIT datum is automatically transferred to the shift register, 
thereby freeing XMIT for another datum. The buffering of the output register improves 
performance, but is not essential for the correct operation of the interface. If XMIT and its 
corresponding shift register are combined into a single register, then when that register 
empties, it remains empty until reloaded from the microprocessor bus. This leaves the 
transmit line in an idle state until the microprocessor services the transmitter again. To 
eliminate the idle period in the absence of buffering, the microprocessor must respond to a 
service request in the very brief interval between the end of one character and the begin­
ning of the next. With buffering as shown in the figure, when an output datum is 
transfened from XMIT to the shift register for output. XMIT can accept the next datum 
from the microprocessor at any time during the transmission of the datum from the shift 
register. When the shift register outputs the last bit of its datum, it reloads from XMIT, 
and transmits the first bit of that datum with no idle time between data. Thus, this scheme 
eliminates idle time on the output line, provided that the microprocessor reloads XMIT 
before the shift register empties again, but this reload interval is at least one 8-bit charac­
ter interval, and not just the brief period between characters that is available in an unbuf­
fered transmitter. 

Because buffering is so important to conect operation and good perfmmance, virtu­
ally all forms of serial VO ports use buffering as shown in Fig. 5.1. The cost of buffering 
is negligible when implemented in LSI form; and, in fact, some interface devices contain 
several buffer registers per pmt in order to attain additional reliability and higher perfor­
mance. 

5.1 SERIAL 1/0 PROTOCOLS 

A communications protocol is a convention for data transmission that includes such func­
tions as timing, control, formatting, and data representation. Protocols generally fall into 
two categories depending on the clocking of the data on the serial link: 

1. Asynchronous protocols: Successive data appear in the data stream at arbitrary times, 
with no specific clock control governing the relative delays between data. 

2. Synchronous protocols: Each successive datum in a stream of data is governed by a 
master data clock and appears at a specific interval in time. 

Commonly used synchronous and asynchronous protocols deliver serial data in 8-bit char­
acters. Asynchronous protocols treat each character as an individual message, and the 
characters appear in the data stream at arbitrary relative times. Within each character, 
however, the bits are transmitted at a fixed predetermined clock rate. Hence these proto­
cols are actually synchronous within a character and asynchronous between characters, 
but they are called asynchronous because the asynchronous timing between characters is 
their distinguishing characteristic. 

Micron Technology Inc. et al. 
Ex. 1042, 163



164 Seriallnterfacing 

Synchronous protocols produce a stream of data at a fixed clock rate with the clock 
governing not only the bits within a character but the character-to-character timing as 
well. Asynchronous protocols tend to be simpler, slower, and more widely used than syn­
chronous protocols. In asynchronous protocols, since each character in the data stream is 
independent of the preceding and following characters, neither the transmitter nor there­
ceiver needs to retain state information while processing a sequence of characters in a 
message. Although simplicity has its attractions, the asynchronous protocols have at least 
a 20% overhead per character of control information transmitted with each character. This 
overhead is substantially lower in synchronous protocols where control information is not 
required on a per-character basis. These protocols group characters into blocks of charac­
ters and place the control information at the beginning and end of blocks. Hence the con­
trol information per data byte can be made much smaller, provided that blocks are long; 
however, the consequence is that the receiver and transmitter must retain more state infor­
mation. The synchronous protocol also has hardware to extract a synchronous clock from 
incoming data, which is a more demanding operation than the edge detection performed 
by an asynchronous receiver. So synchronous protocols tend to require more complexity 
in the transmitter and receiver than do asynchronous protocols, but they lead to greater ef­
fective use of communications bandwidth. 

Another important difference between the protocols is the error correction and detec­
tion capability of the basic protocol. In the asynchronous protocols each message is a sin­
gle 8-bit datum. Some protection from errors is available through the use of one of those 
8-bits as a parity check. With one parity check, any single-bit error or odd number of bit 
errors is detectable, but not conectable. But when an even number of bits is incorrectly re­
ceived, the parity check is "satisfied," and the errors are thus undetectable. Although it is 
possible to impose error-correction and detection capability on sequences of characters 
through the use of parity checks over blocks of data, such a capability is outside the 
specifications of the asynchronous protocol, and is therefore incorporated into system 
firmware or software and not into the VO port itself. 

However, synchronous transmission protocols, for messages that are typically tens or 
hundreds of bytes in length, usually include sufficient redundancy to detect the most prob­
able errors in any given block of data; moreover these protocols provide additional infor­
mation for other control purposes. The use of redundancy at the block level instead of at 
the character level gives higher en-or-protection for a given percentage of check bits in the 
data stream, and thus makes more efficient use of the communications bandwidth. More­
over, with additional control information in each block of synchronous data, higher-level 
functions can be defined as part of the synchronous protocol and built into the 1/0 port. 
One such function, for example, is automatic retransmission of a block of data when are­
ceiver discovers an error in the block. In contrast, retransmission of individual characters 
sent on an asynchronous channel is very difficult because there is no easy way for a re­
ceiver to tell the transmitter which character to retransmit, nor for the transmitter to distin­
guish between a new character or a retransmitted character. For synchronous protocols, 
control information in each block can contain the sequence number of the block, so that 
the receiver can request retransmission of specific blocks. The retransmitted blocks are 
readily identified by their sequence numbers. 

Micron Technology Inc. et al. 
Ex. 1042, 164



5.2 Asynchronous Protocols 165 

5.2 ASYNCHRONOUS PROTOCOLS 

To study asynchronous protocols, we separate the timing conventions from the electrical 
connection requirements. There is only one timing convention in widespread use, but 
electrical connections usually follow any one of three systems: 

1. RS-232-C. 
2. 20 rnA current loop. 
3. RS-422, RS-423, andRS-449. 

RS denotes ''recommended standard'' and refers to official published standards of the 
Electronic Industries Association, or EIA. Each of the three interconnection systems is 
described in detail after we examine timing conventions that apply to all three systems. 

Figure 5.2 illustrates the bit timing for a single data byte transmitted serially on an 
asynchronous linlc The idle line is assumed to be in a high or 1 state. Each character be­
gins with a 0 bit, followed by 8 data bits, then followed by 1, 1~, or 2 closing 1 bits. A bit 
interval is a fixed period of time governed by a local clock in the transmitter and receiver. 
Signaling frequencies common today are 300Hz, 600Hz, 1200Hz, etc., up to 19.2 kHz. 
Slower, obsolescent equipment runs at 110Hz, 134.5 Hz, and 150Hz. Interfaces often 
support these rates for the purposes of compatibility, even though new equipment rarely 
signals at these rates. Within the 8-bit data portion of a character, the data are transmitted 
least-significant bit first. Hence, the figure shows the pattern in time 1000 0010 for the 
ASCII (American Standard Code for Information Interchange, pronounced "ask-ee") en­
coding of the letter A, which when written with the least-significant bit on the right is 
0100 0001 = 41 16, which readers should recognize as the correct encoding of the letter 
A. (See Appendix A.) 

IDLE or 
prior 
stop 

,.----,---r--.-....,.-,--.,...-----,,---,7"7";'7o-- ;- I 

8 data bits 

D 
START 1 0 0 0 0 

D 
0 0 

I I 
I I I 

I I 

FIGURE 5.2 Asynchronous serial transmission format. 

The start and stop bits serve a very important purpose. Obviously they identify the be­
ginning and end of each character; but more important, they permit a receiver to resyn­
chronize a local clock to each new character. Since a character can begin at an arbitrary 

Micron Technology Inc. et al. 
Ex. 1042, 165



166 Seriallnterfacing 

time, the receiver has to discover when that edge occurs with such accuracy that it is able 
to sample the next 10 to 11 bits correctly. The receiver's clock is not identical to the 
transmitter's clock, so sample points at the receiver will, in general, be spaced less than or 
greater than a bit period as defined by the transmitter clock. A fast receiver samples suc­
cessive bits earlier and earlier in a bit period. A slow receiver does the opposite. There­
ceiver must not let its relative clock speed cause it to sample the wrong bit. The best stra­
tegy is that the receiver samples each bit as closely as possible to the center of the bit 
period. If the receiver makes a good estimate of the statt of the first bit, then it can sample 
this bit after waiting for one-half of a bit period after the leading transition on the start bit. 
Thereafter the receiver waits one bit period and samples again until it reaches the last bit. 

This strategy works correctly when the opening transition is known accurately, pro­
vided that the receiver clock is close enough to the transmitter clock in frequency that the 
last bit is sampled within one half-period of its true center position. This means that there­
ceiver clock, in relation to the transmitter clock, cannot gain or lose more than half a bit in 
position over 10 to 11 clock periods. Hence, we require both clocks to be accurate within 
a 5% error margin, which is easily realized with today's technology. But this sampling 
strategy depends on discovering the leading edge of a character, then timing all subse­
quent samples from this point. To make the leading edge discoverable, the start bit is 
made different from both the idle-line state and the closing bit of a character. Hence, the 
leading edge can be observed when the new character occurs on an idle line, or when one 
character immediately follows another. Because of the skew of the bit transitions caused 
by variances in thresholds and rise/fall times, the 5% margin of error is a greater margin 
of error than actually required, but the error margin is still a few percentage points at slow 
clock rates. 

Assuming that the leading transition of a character is readily observable, the next 
problem is to use this as a time base for sampling the following bits. Most receivers use a 
fast clock for this purpose. Figure 5.3 shows a receiver clock that runs at 16 times the bit 
frequency. With this clock, the receiver can determine the beginning of a character to 
within M6 of a bit period. All sampling is done on the basis of the 16X clock in the follow­
ing steps: 

1. When the leading transition of a character occurs, a counter register is cleared. 

2. The counter increments for each tick of the 16 X clock. 
3. When the counter first reaches the value 8, it has reached the middle of the start bit. 

At this point, the start bit is sampled, and the counter is cleared. 
4. Subsequently, each time the counter reaches the value 16, the wavefotm is sampled, 

and the counter is cleared. The sampling is repeated until the last stop bit is sampled. 
5. If the stop bit (or bits) is correct, the character is accepted, loaded into a buffer, and 

the process begins again at Step 1. 

Although this example uses a 16X clock at the receiver, the receiver clock can be other 
multiples of the bit rate. Higher receiver clock rates yield greater resolution, but the reso­
lution is not particularly advantageous beyond the resolution available with a 16X clock. 

Micron Technology Inc. et al. 
Ex. 1042, 166



5.2 

Start bit 

Data 

First clock after 
start bit transition 

16X I 
dook ~~~~~~~~~~~~~~·'' 

Asynchronous Protocols 

FIGURE 5.3 Character resynchronization with a 16X clock. 

167 

Note that the timing constraints are not very critical. The limit on the timing variation 
between receiver and transmitter is easily met with crystal-controlled clocks, since these 
circuits have a stability of at least one part in I 0 5. Less accurate but acceptable clocks can 
be implemented with simple RC timing circuits. Of course there is a cost for making the 
protocol relatively insensitive to clock speed. This is the cost of using a start and stop bit 
of opposite polarity, which uses at least 20% of the available communications bandwidt\1. 
Even this 20% overhead is not quite sufficient to achieve the clock insensitivity required. 
When transmitting a long sequence of characters without idle time between them, a 
transmitter that is slightly faster than a receiver may eventually overrun,the receiver by 
one bit, thereby losing a whole character or worse. It is necessary to insert idlep~riods 
every so often in the transmitted bit stream to prevent this occurrence, which reduces' use­
ful bandwidth even more. We address this topic in greater depth later in this chapter. 

The RS-232-C Interface 

The RS-232-C Interface Standard is a widely used popular standard of the Electronic In­
dustries Association. The EIA RS standards cover a very broad range of areas, going well 
beyond communications and computers. The RS-232-C standard was originally 
developed to foster data communications on public telephone networks. The interface to a 
telephone network is normally made through a device known as a modem, from 
modulator-demodulator. This device translates Os and Is from a sequence of high and low 
voltages into a sequence of high and low frequencies, which are compatible with tele­
phone networks. At the other end of a connection, another modem retranslates the fre­
quencies back into a sequence of high and low voltages. The RS-232-C standard, then, 
originally provided a specification for connecting remote devices together by using the 
telephone network as an intennediate medium, with interfacing accomplished by 
modems. In the mid-60s during the early phases of the development of time-shared con1-
puters, remote access over serial links was done almost exclusively through telephone 

Micron Technology Inc. et al. 
Ex. 1042, 167



168 Seriallntet1a~ing 

connections. The RS-232-C standard then became widely adopted in both tenninal and 
computer eql!ipment. In the 1980s, with the proliferation of microcomputers, terminals 
are usually connected directly to computers through RS-232-Cports, and do not use the 
telephone network or modems exceptfor truly remote connections. 

The original use of the st;mdard is strongly reflected in the implementation shown in 
Fig. 5.4. On the left in the figure is an interface for a computer or tem1inal that connects to 
a modem interface on the right of the figure. Conspicuous in the figure are the two 
grounds defined in the RS-232-C standard. One grourld is a chassis ground that is tied 
directly to the shields in the systems. This ground connection should be made between 
two devices only if it is Si!fe to connect the chassis grounds together. The other ground is a 
signal ground that provides a common reference point for all other signals. This connec­
tion is mandatory. But because th~ signal grounds are not necessarily isolated from the 
chassis ground, RS-232-C has an inherent potential ground-loop problem. While the stan­
dard is quite useful for short distances, for longer distances it becomes unreliable and haz­
ardous. The published standard recommends that each device should have a c~ble not in 
excess of 50 feet, which permits th~ total cable length between a pair of devices to reach 
100 feet. For longer cables, the standard strongly recommends that other means of intd­
connection be used. The RS-232~C standard describes 21 signals and a 25-pin physical 
connector for asynchronous comrpunication. Details of the signals are in Appendix B. The 
following giscussion highlights the more important signals. 

Retu.ming to Fig. 5.4, we see that the tenninal/computer interface on the left and the 
modem OJ) the right have a pajr of wires dedicate8 to TRANSMIT and RECEIVE func­
tions. These are compatible signals because TRANSMIT is a modem input and a 

Terminal 
or 

Computer 

22 
RING INDICATOR 

DATA TERM READY 

CARRIER DETECT 

DATA SET READY 

CLR TO SEND 

REQTO SEND 
RECEIVE 

TRANSMIT 

Signal ground 

Modem 
or 

Other Telecom 
Equipment 

RING INDICATOR 
DATA TERM READY 

CARRIER DETECT 

DATA SET READY 

CLR TO SEND 

REQTO SEND 
RECEIVE 
TRANSMIT 

FIGURE 5.4 RS-232-C interface with communications equipment. 

Micron Technology Inc. et al. 
Ex. 1042, 168



5.2 Asynchronous Protocols 169 

computer/terrninal output; the converse applies to RECEIVE. Other signals reflect the 
telephone protocol of the modem. Specifically, REQ TO SEND and CLR TO SEND re­
late to the characteristics of half-duplex telephone lines. Such lines are capable of bi­
directional traffic, but they can send in only one direction at a time. The te1mimil signals a 
modem with REQ TO SpND when it.has a character to transmit, but the character has to 
be queued until the modem changes frbm a receive to a transmit mode. When transmis­
sion is possible, the CLR to SEND signal is returned to the terminal. and transmission 
can begin. The modem can also turn off CLR TO SEND if the modem n1oves into there­
ceive mode from transmit mode. 

The CLR TO SEND and REQ TO SEND lines are held to a constant voltage when the 
telephone connection is full-duplex-that is, when transmit and receive functions can 
oocur simultaneously on independent wires. Full-duplex links are corrirhonplace today so 
that the half-dupl,ex protocol is seldom used with modems; the protocol. however, is built 
into the serial-interface devices widely available for RS-232-C use, aild th~ control sig­
nals are occasionally used for purposes other than the one originally int~nded. 

Two READY signals are included in the RS-232-C standard. DATA SET READY 
signifies that the modem is operational, and DATA TERM READY is the corresponding 
signal for computers and terminals. These signals are sometimes connected to the power 
supply and become asse*d when the device is powered on. The DATA SET READY 
signal for a modem indicates more than just a power-on condition; the modem is actually 
connected to a communications line, and is not in a test mode or a disconnected state. The 
READY signals are then passed across the cable link so that the equipment on the oppo­
site end of the cable can sense the condition. 

CARRIER DETECT and RING INDICATOR are related to telephone functions. The 
RING INDICATOR is asse1ted during the period that a ringing tone is preserit on the com­
munications lihe. When ringing is sensed at a computer UO port, the poit should post an 
intenupt, at whichpqint the comp~tet can initiate a connection to the caller. CARRIER 
DETECT is a signal that indicates that a remote connection is cu!Tently active. If the con­
nection should break for any reason, the CARRIER DETECT signal is lost, and this too 
should cause an interrupt at a computer I/0 port. 

The standard incorporates other signals not shown in the figure. These· relate to test­
ing and to secondary channels. For interconnections between computers and terminals 
that do not use a telephone network, the signals in the figure are sufficient for nearly all 
functions. 

Now we come to an interesting problem. Figure 5.4 shows that a computer or termi­
nal can be wired to connect directly to a modein. But when wired in this fashion they can­
not be connected directly to each other. The connections show b.oth the computer and ter­
minal transmitting on the same pin and receiving on the same pin. It is obvious that these 
pins cannot be connected directly together. There are several ways to solve the problem. 
One way is to build terminals that have the same interface as the. modems. Then they can 
connect directly to computers. But unfortunately these tenrtinals are incompatible with 
the modems and the telephone network. Another common solution is to correct the prob­
lem in the interconnecting cable as shown in Fig. 5.5. Note that the TRANSMITTED 
DATA and RECEIVED DATA lines are crossed so that the devices can, at least, transmit 

Micron Technology Inc. et al. 
Ex. 1042, 169



170 Seriallnterfacing 

Terminal 
or 

Computer 

Terminal 
or 

Computer 

RING INDICATOR RING INDICATOR 
DATATERMINALREADY~;....... ___ "" DATATERMINALREADY 

CARRIER DETECT CARRIER DETECT 

SIGNAL GROUND t---:---~~-+~---'"'"'"1 SIGNAL GROUND 
DATA SET READY DATA SET READY 

CLR TO SEND 
REQUEST TO SEND REQUEST TO SEND 

RECEIVED DATA~----, ,----...;;..1111 RECEIVED DATA 

TRANSMITTED DATA TRANSMITTED DATA 
Shield ground 

FIGURE 5.5 RS-232-C interface, tenninal!computer to tenninal/computer. 

and receive properly. Given the full-duplex nature of the hard-wired connection, RE­
QUEST TO SEND and CLR TO SEND no longer serve a useful modem-like function. 
Hence, REQUEST TO SEND is folded back as CLR TO SEND, and a transmission re­
quest is thereby always granted. The dotted line shows this signal used as CARRIER 
DETECT at the other end, since the presence of REQUEST TO SEND is functionally 
similar to the detection of a carrier in a communications channel. The last set of signals, 
DATA SET READY and DATA TERMINAL READY are crossed in the cable so that 
each end of the link can detect the presence of a ready condition on the other end. Note the 
dotted line that carries the READY signal to the RING INDICATOR input. Dotted lines 
in this drawing signify connections that are sometimes made in practice, but are less com­
mon than the connections, as represented by solid lines, that cross couple or feed back 
pairs of signals. 

Electrical conventions for RS-232-C circuits are shown in Fig. 5.6. The voltage lev­
els are quite different from the TTL and MOS voltage levels. Voltages in RS-232-C sys­
tems are symmetric with respect to ground, and are at least 3 V for a logic 0, and -3 V or 
less for a logic I. (The standard occasionally uses the terms "Mark" and "Space" to 
denote logic 1 and logic 0, respectively.) In actual practice, the voltage levels are 
powered by ± 12-V and ± 15-V supplies, so that the voltage swing between logic 1 and 
logic 0 may be 20 or more volts. Inexpensive translator circuits are available for changing 
the voltage levels. The MC1488 transmitter accepts TTL input levels and produces RS-
232-C output levels. The actual output voltage is a function of the supply voltage on the 
MC 1488, and these are usual! y set at ± 15 V or at ± 12 V. The MC 1489 receiver uses a 
standard 5 V supply for signal receiving; and this is all that is necessary, although an addi­
tional small voltage supply can be connected to the receiver to alter the switching thresh-

Micron Technology Inc. et al. 
Ex. 1042, 170



5.2 

MCI488 
I< -3 V 
0 > 3 v 

TRANSMIT RECEIVE 

RECEIVE TRANSMIT 

Signal ground 

Shield ground 

Asynchronous Protocols 

MCI489 

1 > 2.0 v 
0 < 0.8 v 

FIGURE 5.6 An RS-232-C interface showing gates for changing voltage levels. 

171 

old. Although the switching threshold with a 5 Y supply is above 0 Y, and not symmetric 
with respect to the signaling voltages, it is well within the specifications for RS-232-C 
voltages. The receiver also has about l Y of noise protection through hysteresis. 

The large voltage swing on RS-232-C signals is required for noise immunity on the 
communications link. With a common signal-ground between transmitter and receiver, 
there is no opportunity for double-ended signaling, and therefore common-mode noise is 
inherently coupled into the signaling system. TIL voltage levels are simply too sensitive 
to noise to work over long distances unless the common-mode noise can be eliminated. 
ITL has at best 1.2 Y between the logic 0 (0.8 Y or less) and logic I (2.0 Y or greater), so 
noise voltages of the order of 0.5 Y can be severely disruptive. But common-mode noise 
voltages easily climb to a few volts in the presence of electric motors, photocopiers, type­
writers, and the like. Thus the common signal-ground is largely responsible for forcing 
the higher transmission voltages found in the RS-232-C standard. Even for these voltages 
the standard covers signaling rates only up to 20kHz and at distances on the order of 30 
m, the maximum distance at which signal grounds can be safely connected. 

The 20-Milliampere Current Interface 

Another popular serial-interconnection methodology is CUITent controlled, rather than 
voltage controlled, as in the RS-232-C standard. The CUITent control relies on currents of 
20 mA to encode a logic l, and zero current to encode a logic 0. The basic idea of the 
electrical connection appears in Fig. 5.7. The transmitter on the left side of the figure is 
shown with a 20 rnA current source and a switch. The receiver on the right-hand side of 
the figure has a current detector. The transmitter simply opens and closes the switch, 
which pulses current through the loop and which is sensed by the receiver. The reverse 

Micron Technology Inc. et al. 
Ex. 1042, 171



172 Seriallnterfacing 

------------, 

20mA 

I 
I 
I 
I 
I 

___________ _j 

,-----------
1 
I 
I 
I 
I 

L ___________ _ 

FIGURE 5.7 Full-duplex 20-mA current loop. 

link is symmetric as shown in the figure; but in reality, many implementations are not 
symmetric. Note that in the figure the current source need not be located at the 
transmitter. For example, it is perfectly acceptable for the device on the left to have 
current sources for both its receiver and transmitter loops, and for the device on the right 
to have neither. The requirement is that a loop have one and only one current source; 
whether that source is at the transmitter or receiver end is not important. 

The current-loop interface originated, as did the RS-232-C standard, in a context of 
telephone equipment. In this context, the equipment interfacing the serial link was a stan­
dard mechanical teletype. The current detector in a teletype is simply a coil that is ener­
gized by current (or a current amplifier that detects current flow and drives a coil). A suc­
cession of Is and Os set up internal electro-mechanical linkages in the teletype; and when 
a full character is received, those linkages force the teletype to print that character. For 
standard teletypes, the encoding of bits on the serial-data stream follows the same conven­
tions as RS-232-C encoding, with a start bit, 8 data bits, and 2 stop bits. The transmitter in 
a teletype is passive, and consists only of a switch that opens and closes according to the 
bit encoding of a character depressed on the keyboard. The receiver has to supply the 
current source for a teletype keyboard. 

The teletype that fostered the current loop interface has long been obsolete, so one 
might expect that the original reasons for using a current loop are no longer valid. How­
ever, the current loop is superior to the RS-232-C interface in many applications because 
it is inherently double-ended with common-mode noise rejection, and can be easily con­
nected over much longer distances than the RS-232-C because isolation can eliminate 
problems caused by ground loops. 

Micron Technology Inc. et al. 
Ex. 1042, 172



5.2 Asynchronous Protocols 173 

Figure 5.8 shows a typical receiver for a current loop, and also shows where the isola­
tion capability arises. The receiver in this instance is an optical isolator. This is a device 
that contains in a single package both a light-emitting diode and a light-sensitive transis­
tor. When the diode fires, it erpits light that causes the transistor to conduct, so that the 
signal travels from the input lines to the output lines over an optical path, and not over a 
direct electrical connection. The isolator appears in the figure within the dotted lines. The 
components outside the dotted lines are required to make the isolator into a full receiver. 
Note that there is a series resistor in the loop because the LED offers essentially no resis­
tance when it fires. The current loop must have a load impedance to drop the source volt­
age, for otherwise all of the source voltage would be dropped across the LED in the isola­
tor. Typical source voltages run as low as 10 V and as high as 15 V; and there is no official 
standard that sets these voltages. Some implementations of a current source are nothing 
more than a voltage source and a series resistor that limits the current to about 25 rnA 
when the terminals of the current source are shorted. The presumption is that additional 
impedance in the receiver circuit can limit the current even further. 

2.4 v 
protective 

diode 

R 

Optical Isolator 

receiver: 
Transistor or 
comparator or 
logic gate 

FIGURE 5.8 Current detector and isolator for 20-mA current loop. 

In the absence of specific information about what voltages are likely to appear across 
the terminals of a 20 rnA receiver, the receiver in the figure uses a Zener diode to limit 
this voltage to a maximum of 2.4 V (any voltage in the range from 2 to 3 V, and possibly 
even higher, will work acceptably). Then the resistor R in series with the LED, together 
drop 2.4 V when the isolator fires. If the LED voltage is known (say, 0.8 V), the voltage 
drop across R is then 2.4 V minus the LED voltage, or 1.6 V in this example. 

It is not necessary to funnel the full20 rnA current through the LED. In the example, 
if the LED is designed to run at, say, 10 rnA, then two resistors in the detector loop are re­
quired. The resistor R shown in the figure passes the full 20 rnA, while a second resistor in 
parallel with the LED accepts that portion of the 20 rnA that is not passed through the 
LED. In this example, the series resistor R drops 1.6 Vat 20 rnA and is, therefore, an 80 
!1 resistor. The shunt resistor across the LED drops 0.8 V, if one is required; and the resis­
tance value is selected to shunt the portion of the 20 rnA current that is not accepted by the 
LED. Any current that reaches the receiver in excess of 20 rnA passes through the Zener 

Micron Technology Inc. et al. 
Ex. 1042, 173



174 Seriallnterfacing 

diode shunt. Note that we assume that the interface threshold is 20 rnA; that is, the re­
ceiver should fire at 20 rnA and not at lower currents. Actually, because we have to con­
sider noise problems in a serial link, the firing threshold should be set lower than 20 rnA, 
say at about 10 rnA. Then the threshold lies halfway between a logic 0 and logic 1, and the 
noise margin is symmetric with respect to the signaling current. 

The light-sensitive transistor is very easily coupled into a TTL gate through an exter­
nal amplifier transistor or comparator gate. Hence, one component is all that is necessary 
to convert voltage and current levels to TTL-compatible signals. Across the gap between 
the LED and the light-sensitive transistor, the isolator is built to withstand voltages that 
are in excess of 1 kV, and as high as 2 or 3 kV. With this level of protection, it is quite 
possible to run a serial link from one location to another a few kilometers away. The RS-
232-C interfaces do not directly offer this capability because of the direct connection of 
signal ground across the link. The direct connection defeats isolation and becomes a very 
serious electrical hazard when the connection is made over long distances. 

Another advantage of using the current loop rather than the RS-232-C is the inherent 
common-mode rejection offered by the light-emitting diode receiver. The diode reacts to 
a differential voltage across its terminals. Common-mode noise raises or lowers both LED 
terminals equally so that this noise is canceled out by the diode. However, if the current 
source for the loop is at the receiver, a bad design may couple the common-mode noise 
back into the receiver circuit. In order to achieve the desired insensitivity to common­
mode noise, the receiver current source must be electrically isolated from local ground. 
This is also a requirement for proper isolation of the receiver from the transmitter. If the 
current source at a receiver has any direct connection whatsoever with local ground, then 
there is a direct path from the remote transmitter ground to the local ground, and the isola­
tor function is defeated. 

Because the current loop has at least two major advantages over the RS-232-C in its 
common-mode rejection and isolation, we might expect it to be preferred over RS-232-C. 
Indeed, it is preferred in long-distance applications where the RS-232-C cannot be used. 
However, for short distances the RS-232-C signal levels provide more than adequate pro­
tection from noise, and isolation is unimportant. Moreover, EIA maintains a standard for 
RS-232-C interfaces, and the documentation for the 20 rnA current loop is only infor­
mally standardized at this time. Therefore, most manufacturers supply at least the RS-
232-C serial interface; and as a result, these connections are the most widely used. Be­
cause the differences between RS-232-C and current loop interfaces are strictly in the 
electrical connections, both interfaces can share a common VO port interface. Designers 
often take advantage of this commonality by providing two different connectors for serial 
ports, one to a current loop and the other to an RS-232-C link. This lets the equip­
ment owner decide which of the two types of serial interfaces to use in any particular 
installation. 

The RS-422, RS-423, and RS-4491nterfaces 
Three new standards incorporate new interface technology designed to overcome the 
shortcomings of RS-232-C. ·The major need is to achieve a higher signaling rate 
bandwidth over longer distances than the RS-232-C provides. To this end, the RS-422 

Micron Technology Inc. et al. 
Ex. 1042, 174



5.2 Asynchronous Protocols 175 

standard defines a double"ended electrical interface module that can signal at rates well in 
excess of the 20-kHz limitation of RS-232-C. The mechanical connections for this inter­
face are provided by the RS-449 and covered in its standard. This latter standard provides 
for a 37-pin connector as opposed to a 25-pin cohnector for RS~232-C and has caused 
quite some concern in the industry. One of the primary advantages of a serial link should 
be the lower cost of cables and connectors as compared to a parallel link. A connector 
with 37 pins that carries only one bidirectional channel on a serial link can be an excessive 
burden. The RS-449 standard addresses this problem by providing for a 9-pin connector 
for secondary channels. Each additional channel of a multichannel link requires only the 
9-pin connector, provided that the primary channel of the link is connected through the 
full37-pin connector. 

Compatibility with existing standards is extremely important. The single-ended 
electrical standard RS-423 is intended to achieve this compatibility, while simultaneously 
confom1ing to both the RS-422-type electrical conventions and the RS-449 mechanical 
standards. Specifically, an RS-423 link is designed to conned to both the RS-232-C and 
the RS-422links, thereby providing a meats for making a transition from the old technol­
ogy to the new. The electrical specification of the RS-423 standard is almost identical to 
that of the RS-232-C standard, with differences too small to dweli on here, but still of im­
portance to designers who wish to build interfaces that satisfy ,both standards. The major 
thrust of the new standards is to move to RS-422 balanced transmission and to more reli-· 
able, higher-speed communications. 

The electrical aspects of RS-422 and RS-423 appear in Fig. 5.9. Compatibility 
between the unbalanced and balanced interface is achieved through the use of the same 
type of differential receiver, as specified in both standards. When used in double-ended 
mode, the receiver accepts signals of opposite polarity from a double-ended driver. When 
used in single-ended mode, the receiver accepts a signal on one input and SEND COM­
MON, the transmitter reference voltage on the other input. SEND COMMON is isolated 

I> 2.0V 
0 < 0.8 v 

SEND COMMON 

RS-423 (unbalanced) 
Speeds< 20.000 b/s 

RS-422 (balanced) 
Speed> 20,000 b/s 

FIGURE 5.9 RS-422 and RS-423 electrical characteristics. 

Micron Technology Inc. et al. 
Ex. 1042, 175



176 Seriallnterfacing 

from the receiver ground, so that it provides an estimate of the actual reference voltage at 
the transmitter. When an RS-423 device is connected to an RS-232-C device, it is obvious 
that the SEND COMMON connection of RS-423 is tied to SIGNAL GROUND of RS-
232-C, with proper precautions taken regarding the isolation of equipment. The single­
ended mode shown in Fig. 5.9 is rated foi· signaling speeds up to 20kHz. To go beyond 
this frequency, it is mandatory to used double-ended signaling as defined by the RS-422 
standard. 

Mechanical connections for the RS-423 are made according to the RS-449 standard 
as shown in Fig. 5. 10. Note that the ground reference point for SEND DATA is carried to 
the receiver as SEND COMMON and coupled to the differential receiver. Siri1ilarly, RE­
CEIVE COMMON is cimied from the right-hand device to the left-hand device, and cou­
pled into the differential receiver. 

The intett'ace standard requires that SIGNAL GROUND between the two units be 
connected in order to provide a ground reference point, but it also provides for the isola­
tion of SIGNAL GROUND from SHIELD GROUND. The RS-449 standard lirnits cable 
lengths to 60 m, primarily because of the lack of isolation. It does, however, provide for 
"tailored" operation in which cable lengths can greatly exceed this limit. Presumably in 

SEND RECEIVE 
DATA DATA 

~ 
SIGNAL GROUND 

SEND COMMON 

RECEIVE COMMON 

May be[·~: SHIELD GROUND -==- .;:]May be - lOOS?. 
No connection / 

lOOQ -'--

omitted :t· 4-W tW <, omitted -
between shields 

.; 

Termi~ Computer ~odem 

FIGURE 5.10 Unbalanced RS-423 signals. 

Micron Technology Inc. et al. 
Ex. 1042, 176



5.2 Asynchronous Protocols 177 

tailored circumstances, precautions can be taken to limit the hazards by isolating SIGNAL 
GROUND frorri SHIELD GROUND, and perhaps by isolating the signal paths themselves 
with optical isol~tors. RS-422 interfaces are connected together by connections similar to 
those. given in Fig. 5.10. Since RS-422 transmitters are double-ended, the negative­
polarity active signal is used in place of a SEND COMMON or RECEIVE COMMON 
sigrial. Otherwise the connections are as shown in the figure. 

The signal definitions for the most important signals in the RS-449 standard appear in 
Fig. 5.11. We have already discussed the functions of RECEIVE DATA, SEND DATA. 
CLEAR TO SEND, and REQUEST TO SEND. OAT A MODE and RECEIVER READY 
correspond, respectively, to DATA SET READY and DATA TERMINAL READY of 
the RS-232-C standard. TEST MODE is a new mandatory signal for RS-449, which in 
conjunction ~ith other optional signals provides a means for testing the communications 
equipment. The idea is to be able to jumper the SEND output to the RCV input tem­
porarily, and to create a loop back connection. This permits links to be partitioned selec­
tively, and to exercise individual transrliitters and receivers in the links in ot·der to. dis­
cover failing equipment with a minimum of difficulty. Note that two pins per signal are 
allocated to those shown in the figure, which accounts for the majority of the extra pins in 
RS-449 interfaces. Not shown are the optional circuits for. transmitter and receiver clocks, 
switched telephone-network control signals, and control signals to be used for testing. 
The secondary channel that uses a 9-pin connector carries only the SEND, RECEIVE, 
CLEAR TO SEND, REQUEST TO SEND, and RECEIVER READY, plus four extra 

RECEIVE READY 

TEST MODE 

DATA MODE 

Terminal 
REQUEST TO SEND Modem 

or CLEAR TO SEND 
or 

Computer Other Telecom 

RECEIVE DATA 
Equipment 

SEND DATA 

SEND COMMON 

RECEIVE COMMON 

SIGNAL GROUND 

FIGURE 5.11 RS-449 mandatmy signals. 

Micron Technology Inc. et al. 
Ex. 1042, 177



178 Seriallnterfacing 

lines that carry the grounds for the shield, the SEND and RECEIVE signals, and the 
signal-reference ground. All signals for the 9-pin connector are single-ended, and there­
fore this type of channel loses the advantages of the RS-422 standard. 

The future of RS-449 connections, and specifically balanced RS-422 signaling, is 
clouded by other competitive methods for high-speed serial interconnection. Changing 
over to a new standard from an old one is a costly and lengthy process. The RS-232-C 
standard is so widely used that most new designs will continue to supply this type of inter­
face until there is a clear advantage for supplying an RS-422 interface. The very simple 
expedient of using a completely passive adapter cable that mates with RS-232-C on one 
end and with RS-423 on the other end is an effective means for connecting the devices and 
conforming to the two standards in both new and old equipment if, and only if, both im­
plementations use electrical conventions that conform to both standards. The move to the 
RS-422 standard, which is not directly compatible with the RS-232-C standard, is a more 
difficult and costly step to take. Other schemes for high-speed serial interconnections are 
being pursued, most notably ones that use coaxial interconnections at bandwidths that 
range from three to several hundred megahertz. If standardization efforts produce an ac­
ceptable coaxial-type of interconnection scheme, designers may choose to use this inter­
face standard in lieu of the RS-422. Hence, a possible scenario for the long-terrl1 future 
may be the widespread use of the RS-232-C standard for low-speed interconnections and a 
new standard coaxial scheme for high-speed interconnections, with the RS-422 standard 
used rather rarely. 

5.3 SYNCHRONOUS INTERFACES 

Synchronous links use a clock to control character-to-character timing within a block of 
characters. The principal advantages of this convention over the asynchronous protocols 
studied earlier are as follows: 

I. The synchronous clock eliminates the need for start and stop bits, and thus increases 
the bandwidth available for data. 

2. Protocols are inherently block-oriented, rather than character-oriented, which pro­
vides an efficient means for incorporating control and redundancy information into 
the communication link. 

3. It is possible to run a communications link at a higher bit rate over longer distances. 

The motivation for moving to synchronous protocols from asynchronous protocols is 
higher communication speed. Links for asynchronous systems run at speeds as high as 
19.2 kHz, but rarely above 9600Hz. With proper electrical connections, .a synchronous 
link can easily run at 500kHz, which is a substantial increase over the asynchronous link. 
Because of the high data rates, recommended practice for electrical connections is to use a 
double-ended transmitter/receiver, such as an RS-422 link, or to use a coaxial cable link 
with special drivers and receivers. 

The main difference between synchronous and asynchronous interface designs lies in 
the treatment of the clocking hardware and in the logic required to maintain character-to-

Micron Technology Inc. et al. 
Ex. 1042, 178



5.3 Synchronous Interfaces 179 

character synchronization. Figure 5.12 shows the structure of a simplified synchronous 
system to illustrate these differences. Note specifically that the received clock is extracted 
from the received data stream. That is, the receiver locks onto the frequency of the data it 
receives, rather than relying on an independent local clock whose timing cannot be made 
precisely coherent with the received clock. The interface contains the familiar shift regis­
ters and buffer registers to facilitate conversion between parallel and serial data streams. 
Because characters do not have start and stop bits, additional logic is required to syn­
chronize the receiver to the beginning of a character. The means for achieving character 
synchronization differs from protocol to protocol; but the idea, in any case, is the same. 
Special sequences in the stream of data bits indicate the beginning of a character. These 
sequences are inserted at the transmitter and detected by the receiver. When detected, the 
receiver then has achieved character synchronization, and then can partition the succeed­
ing data bits into 8-bit characters at the correct boundary points. Since synchronization se­
quences occur at the beginning of a block of data (although in some protocols they can oc­
cur within the block as well), it is possible to establish block-to-block synchronization 
while simultaneously establishing character-to-character synchronization. 

One other difference between asynchronous and synchronous interfaces is often re­
quired. That is, synchronous interfaces typically use more than one register to buffer in­
coming and outgoing data, with typical interfaces using three ,.egisters in a queue, known 
as a FIFO (first-in, first-out) arrangement. Data flows through the buffer automatically, 
so that the microprocessor interfaces only with the register at the input end of the transmit 
FIFO and at the output end of the receiver FIFO. Similarly, the transmit and receiver shift 
registers connect only to the registers at the opposite ends of their respective FIFOs. The 
transmitter shift register reloads from its FIFO whenever a new character is to be sent. 
With a FIFO available, the microprocessor can preload it with several characters at one 
time to reduce the burden of maintaining a constant stream of output characters. Simi­
larly, an input FIFO permits a microprocessor to unload several characters at one time, 
and again reduces the overhead required to service the receiver. Most interfaces provide 
control options that raise READY indications or assert interrupts when a FIFO has a 
specific number of registers available for service, with this number settable to 1, 2, or 
more depending on the depth of the FIFO. 

Synchronous protocols have evolved naturally from protocols that specify only char­
acter synchronization to protocols that specify both block and character synchronization. 
The three most widely-used protocols today are 

1. BISYNC (Binary Synchronous Communications), an older, obsolescent protocol 
used in IBM equipment, 

2. DDCMP (Digital Data Communication Message Protocol), a protocol used primarily 
in DEC equipment, and 

3. HDLC (High-level Data-Link Control), a protocol used in most new synchronous 
equipment across the industry. 

Because LSI chips are widely available for BISYNC and HDLC protocols, we limit our 
attention in this discussion to these two techniques. HDLC has evolved from two earlier 

Micron Technology Inc. et al. 
Ex. 1042, 179



- l I 
v 

,... Transmit - Output 
FIFO shift register 

RECEIVE CLOCK 

v 

1- Receive ...____ Input 
FIFO shift register 

f 

Bus{ interface 

I 
Sync 

I Data bus Sync Pattern 
Control ,.-- Status Detector 

(comparator) 

~ signals 

I 
IRQ.---1 

IN SYNC-

FIGURE 5.12 The structure of a typical synchronous 1/0 port_ 

Transmitter clock 
Serial data out 

I Clock 
1 
~ Extractor 

I (phase-locked 
loop) 

Serial data in 

... 
(J) 
0 

Micron Technology Inc. et al. 
Ex. 1042, 180



5.3 Synchronous Interfaces 181 

standards, the SDLC (Synchronous Data Link Control) and the ADCCP (Advanced Data 
Communications Control Procedure). Because of the close similarity of the three, we dis­
cuss only HDLC in this text. 

The BISYNC Protocol 

BISYNC protocol relies on one or two successive sync characters to identify both charac­
ter and block synchronization. The idea is that the receiver establishes synchronization by 
searching for the special synchronization pattern by inspecting each successive bit that ap­
pears at the interface. Presumably, before synchronization has been established, the 
transmitter sends the sync pattern continuously, while monitoring its own receiver for a 
sync pattern sent on a reverse channel. Handshake messages between two transmitters 
then confirm to each other that both are synchronized. Synchronization is thereafter main­
tained by the protocol. 

A typical message structure for BISYNC appears in Fig. 5.13. Although this structure 
is widely used by convention, the common interface chips that implement BISYNC do 
not require this message format. LSI interface chips typically implement the character 
synchronization function and the conversion between parallel and serial data streams with 
FIFO buffering, but leave the higher-level functions on blocks of data to software control. 
The figure shows that immediately following the sync characters is a header that starts 
with SOH (Start of Header). SOH and all other characters we name for BISYNC are 
ASCII control characters. This header is used for control purposes, and can contain a 
source and destination address, and a message sequence number. In case of an error in the 
reception of a block, the receiver transmits a message back to the source (as identified by 
the source address in the message) with the sequence number of the message in error. The 
source then retransmits the message. Because each message has a sequence number, the 
receiver recognizes when a message has been retransmitted, and can then reassemble a se­
quence of messages into their correct order. The data block begins with STX (Start of 
Text) and ends with ETX (End of Text) or ETB (End of Transmission Block), and is fol­
lowed immediately by a redundancy check over the block. Individual characters in the 
block can also be checked by a single-parity bit if the characters are 7-bit ASCII codes. 

FIGURE 5.13 The structure of a BISYNC block. 

With this basic idea, the BISYNC protocol appears to be rather simple. There are ad­
ditional problems, however, that complicate the protocol. The structure of the protocol 
places a special status on ETX and EOB. In general, if the data block (or control informa­
tion) contains either of these characters among its data, the characters can be misinter­
preted. For example, if the datum happens to be an 8-bit pattern identical to the ASCII 

Micron Technology Inc. et al. 
Ex. 1042, 181



182 Seriallnterfacing 

pattern for ETX, this datum character could deceive the receiver into taking an end-of­
block action when actually the block has more characters to follow. Thus there is a need 
for the protocol to distinguish specific patterns as data characters, when they need to be 
treated as data. This ability to treat control patterns either as control information or as data 
is often called data transparency and is implemented in various ways across the range of 
protocols. 

BISYNC uses another character, DLE (Data Link Escape), to obtain the necessary 
transparency. When a control symbol is to be treated as data, it is preceded by DLE. The 
receiver then is armed by the receipt of a DLE to accept the next character as a data char­
acter, without taking any control action. (LSI chips usually do not have this ability built 
onto the chip. Therefore, the control software normally performs this function.) The use 
of DLE is somewhat more complicated than described here because of other special con­
siderations. For example, to maintain synchronization in the absence of data in the 
transmitter queue, the protocol provides for an automatic insertion of sync characters, 
which are then removed by the receiver. But it is quite possible that a sync character 
might be inserted between a DLE and a control character that follows it. This situation 
forces the receiver to interpret the sync character as if it were data, rather than accepting 
the next character as data. In this case, the transmitter cannot simply send a sync character 
after a DLE. The transmitter should queue the DLE, and should then send sync characters 
until both the DLE and its corresponding data character are ready. If buffering is not avail­
able, the transmitter might have to send DLE, and then stay idle on the line. In this case, it 
should transmit in the idle state the pairs of characters (DLE, sync), which the receiver 
can ignore as pairs of characters. Note that because DLE is a control character with spe­
cial significance, the DLE pattern in the data stream must be treated the same way that 
ETX and ETB are treated, and must be preceded by a DLE when transmitted over the 
linlc 

There are, therefore, two independent and important characteristics of BISYNC: 

1. BISYNC depends on a sync pattern to establish character synchronization. 
2. BISYNC uses a transmission protocol for block structure and transparency. 

An implementation of a BISYNC-like protocol need not implement both the synchroniza­
tion technique and the block format, because these two protocol characteristics are indeed 
independent. For this reason, BISYNC interface chips are mostly oriented to synchroniza­
tion, and they leave the block formatting up to the user. 

The HDLC Protocol 

HDLC, like BISYNC, uses a special pattern to maintain character synchronization. How­
ever, this pattern is unique, and can never occur anywhere in a bit stream other than at the 
beginning of a block (which is also the beginning of a character). Hence the HDLC re­
ceiver maintains a constant scan of the input stream, and automatically resynchronizes to 
the sync pattern whenever that pattern appears. The pattern is the bit sequence 01111110 
and is called aflag. The flag sequence contains six successive ls, and no data sequence 

Micron Technology Inc. et al. 
Ex. 1042, 182



5.3 Synchronous Interfaces 183 

can contain this many Is in a row. To ensure that the sync sequence is not transmitted as 
part of a data sequence, whenever the transmitter has transmitted five successive ls, it au­
tomatically inserts a false 0, then sends the succeeding data bits. The receiver reverses 
this process by removing a 0 that appears after a sequence of five ls. The inserted and 
deleted Os have no effect on the transmission of arbitrary information other than to 
guarantee that the sync pattern occurs on the communications link only at sync points. 
The data stream that enters the transmitter can contain the sync pattern, and the receiver 
produces this pattern at its output if the pattern is in the data stream input to the 
transmitter. The fact that the transmitter adds some additional bits and the receiver re­
moves these. bits has no net effect on the data stream itself, although it may reduce the 
average data rate slightly. 

An HDLC block has the structure shown in Fig. 5.14. The format is quite similar to 
the BISYNC format in terms of the information passed within a block, but the specific 
fields are encoded differently. HDLC avoids the use of special characters to bracket 
fields, and thereby greatly simplifies the problem of transmitting data that might contain 
these characters in the data stream. An HDLC block begins and ends with a sync pattern 
that is labeled "flag'' in the figure. Address and control information appears immediately 
after the flag. As in BISYNC, the address and control information typically contains a 
source and destination address and a sequence number. Since a block terminates at a flag, 
there is no need to have a different special symbol close a block. Block length need not be 
an integral number of bits either, because the flag pattern is accepted as a block end re­
gardless of where it occurs in relation to the beginning of a character. When a flag is 
discovered, the immediately preceding 16 bits are treated as cyclic redundancy checks to 
determine if any errors are likely to have occurred in the previous transmission. The next 
block can use the ending flag as its initial flag, and thereby move directly into address and 
control information. 

Variable length 

Information Check 

FIGURE 5.14 Frame structure ofHDLC. 

The synchronous nature of the link forces the transmitter to have data ready in a 
buffer at the beginning of a block transmission. If i: is not ready, and the software fails to 
produce the data in time for transmission, the transmitter will run out of data to transmit. 
The HDLC protocol does not provide for an ''idle'' character within a block, so that typi­
cal implementations abort an entire block transmission when the transmitter runs out of 
data before the end of the block. The abort code is a sequence of eight 1 s. 

HDLC protocols are suitable for point-to-point links commonly used for RS-232-C 
links. However, serial bandwidth is potentially much higher for HDLC than for the RS-

Micron Technology Inc. et al. 
Ex. 1042, 183



184 Seriallnterfacing 

232-C standard, and more likely to be used in short bursts of transmissions, followed by 
relatively lengthy idle periods. A more eff!cient means for using the available bandwidth 
is to connect several synchronous devices together on one line, and to share the 
bandwidth. Such a scheme is presented pictorially in Fig. 5.15, which shows a loop con­
nection with N devices connected together around the loop. At each device is a 
receiver/transmitter interface that can receive a message and retransmit the message to the 
next node on the loop. Here the idea is that a receiver retransmits messages intended for 
other nodes, but does not retransmit a message if the receiver node is the message's desti­
nation point. In this way a message can be injected into the loop by the transmitter andre­
moved from the loop by the receiver at the destination, so that messages do not, in gen­
eral, travel repeatedly around the loop. A variation of this idea is to remove a message 
only after it travels around the loop one full cycle and returns to the originating 
transmitter. The source, not the destination, then removes the message. The destination 
usually alters the message just slightly by returning it with a code that indicates themes­
sage successfully reached its intended destination. This gives the transmitter a positive ac­
knowledgment of message receipt (or a negative acknowledgment if transmission is un­
successful). 

I 
\ 

' \ \ 
' ' 

Computer systems 

....... ---
FIGURE 5.15 A synchronous loop network. 

Micron Technology Inc. et al. 
Ex. 1042, 184



5.4 Implementations of Serial Interfaces 185 

Two ways to operate the loop depicted in Fig. 5.15 have been presented in the litera­
ture. One way is for one transmitter to gain control of the loop, then transmit all messages 
it has enqueued, then pass control to the next node on the loop. Loops of this type are 
called Neivhall loops after the work of Farmer and Newhall [ 1969]. This type of loop is 
very simple to implement, but has the problem that some messages may be enqueued for 
lengthy times while waiting for their respective transmitter to gain control of the network, 
as only one transmission can take place at any given time. 

The Pierce loop (Pierce et a!., 1971) reduces this latency somewhat by breaking mes­
sages into small packets. The pac)<ets are transmitted individually and reassembled at the 
receiver. The idea is for a transmitter to transmit briefly, and then pass control to another 
transmitting node. Iri fact, the loop is frequently operateq in multiplexed mode with 
specifiC "slots" assigned to specific transmitters, each transmitter placing data onto the 
loop only at its designated slot. It Is possible to operate the loop in this way and have 
several transmitters actively inserting data packets onto the loop at various points. If the 
loop protocol cannot prevent a local message transmission from colliding with a received 
message, the transmitter has to have a local buffer space latge enough to hold the incom­
ing packet, which· i~ then retransmitted when the local~packet transmission has been 
completed. 

It is quite clear that synchronous interfacing schemes are of great importance in sys­
tems in which a great deal of information has to be transmitted. 

5.4 IMPLEMENTATIONS OF SERIAL INTERFACES 

In this section we examine three general problems related to serial interfacing that arise 
with sufficient frequency to warrant a separate discussion of each. Two are electrical 
problems, namely, cross talk and isolation. The third problem is primarily a software 
problem and is related to the flow control of communications signals. 

Rise-Time Control for Cross-Talk Reduction 

A typical serial link carries data as voltage or current changes, and thus a typical 
waveform for data is the one shown in Fig. 5.16(a). The sharp edges of the pulses indicate 
that there are high frequencies present in the signal, where these high frequencies are high 
harmoqics of the basic signaling rates, and lie well outside the range of frequencies useful 
for carrying serial information. The problem with these high frequencies is that they cou­
ple readily into nearby sigpal wires and cause a noise disturbance commonly known as 
"cross talk." Cross talk between adjacent signal runs is caused by coupling energy from 
one wire to another, where the coupling mechanism is either inductiv~, due to mutual in­
ductance of nearby loops, or capacitive, due to wire-to-wire stray capacitance. Insofar as 
the use of twisted pairs and balanced signaling can reduce cross talk, a serial link can be 
made less sensitive to the problem. But as cable lengths become long, other steps are 

Micron Technology Inc. et al. 
Ex. 1042, 185



186 Seriallnterfacing 

RISE-TIME CONTROL 

7 
A]JD 

Fast rise time 
(a) 

Controlled rise time (exaggerated) 

(b) 

FIGURE 5.16 Examples of wavefonns without and with 
rise-time control. 

helpful in reducing the cross-talk problem. For capacitive coupling effects, high frequen­
cies are worse offenders than low frequencies. Cross talk can be reduced, in fact reduced 
substantially, by eliminating unnecessary high frequencies on the signal line. 

Figure 5.16(b) shows an effective means for dealing with cross talk. The waveform in 
the figure uses rise-time control to prevent fast changes of the signal voltage, and the 
resulting sloped waveform has a diminished high-frequency content. With less energy at 
higher frequencies, the waveform produces less cross talk across adjacent cable runs. 
Hence, rise-time control is a practical and important method for improving the reliability 
of a communications link. 

The RS-232-C standard specifies rise-time control, but the standard is relatively weak 
in this regard. The standard permits slew rates up to 30 V/f.LS, which therefore permits rise 
times to be roughly as small as a microsecond for signals that change from + 15 V to 
-15 V. There is no particular reason that the change must take place in so small a time 
segment. A 10-f.LS rise time, or even a much longer rise time, is quite adequate for slow 
signaling speeds. At high signaling speeds, however, a slow rise time may result in a sig­
nal skew large enough to throw off the receiver's sampling points. At these clock rates, 
there is justification for having a relatively fast rise time. 

To control rise time, a very simple technique used in many interfaces is to limit the 
current flow as shown in Fig. 5.17(a). The current limiter in this figure delivers a fixed 
maximum current when the current turns on. With a constant current charging the line 
capacitance, the voltage increases linearly in time until the line is charged high enough to 
reduce current flow. Without current limiting, the line is charged exponentially to its final 
value. 

Another recommended scheme for RS-232-C-type interfaces is to load the output of 
an MC1488 transmitter with a capacitor. This device has a current-limited output and, 
therefore, has a bounded slew rate, but the rate is well over 30 V/f.LS. When the capacitor 
is added to the output as shown ih Fig. 5.17(b), the slew rate diminishes and can be set to 

Micron Technology Inc. et al. 
Ex. 1042, 186



5.4 

NO RISE-TIME CONTROL 

Transmitter 

WITH RISE-TIME CONTROL 

(a) 

Implementations of Serial Interfaces 

TTL --e-y-RS-232-C Link 
voltage 1488 with controlled 

levels rise time 

lc 
(b) 

FIGURE 5.17 (a) A 20-mA loop without and 
with rise-time control; (b) rise-time control foran 
RS-232-C driver. 

187 

any desired value. The internal-current limiting of the MC1488, together with the load 
capacitor, results in a waveform similar to that in Fig. 5.16(b). With C in the region of .01 
to .001 j.tF, the slew rate of the transmitter drops to between I and 10 V/j.LS. 

Isolation 
Isolation is treated here in the context of current loop interfaces. In Fig. 5.18, we see a bi­
directional link with isolation at the receiver end for one direction and at the transmitter 
end for the other direction. The link is somewhat simpler when isolation is at the receiver, 
because the LED of the optical isolator is very close to being compatible with the link 

Micron Technology Inc. et al. 
Ex. 1042, 187



188 Seriallnterfacing 

L___ . ---- r rv Isolator .--r--------1 

Transmitter 

Receiver 

(a) Isolation at receiver 

Isolator 

Transmitter 

(b) Isolation at transmitter 

FIGURE 5.18 Isolation techniques for current-loop interfaces: (a) Isolation at receiver; 
(b) Isolation at transmitter. 

characteristics. We still need some extra logic at the receiver (not shown in the figure) for 
overload protection and for interfacing the LED in the isolator to the 20 rnA current as we 
discussed earlier in the chapter. 

When the isolator is at the transmitter end, it is necessary to drive the transmitter with 
an independent power supply in order to achieve the isolation desired. We show that sup­
ply as being located in the receiver, and use this supply to power the photo-transistor and a 
transistor line driver. This general scheme can be used to isolate RS-232-C interfaces 
where the driver transistor is replaced by an MC1488 driver operating at RS-232-C volt­
age levels. Since the MC 1488 draws more power than the transistor shown in the figure, it 
is desirable to develop that power locally rather than to draw it from the receiver. If local 
supplies are used, they must be isolated from ground and from all other supplies. Hence if 
a computer has several RS-232-C channels, each going to a different remote location, 
then each of these channels must have an independent, isolated power supply if the RS-
232-C lines are themselves to be isolated. Obviously, the problem of isolating these 

Micron Technology Inc. et al. 
Ex. 1042, 188



5.4 Implementations of Serial Interfaces 189 

~ 

25' 

6-wire RS-232-C cable 
(supplied by manufacturer) 

UJ 0 500' 

4-wire current loop cable 
(supplied by manufacturer) 

~ ~ m m 
Splice 400' Splice 

Cable manufactured by user from 
25' RS-232-C cable with another cable 

FIGURE 5.19 Cable configurations for the case study. 

power supplies adds to the expense of the interface and makes this arrangement unattrac­
tive. Nevertheless, given both proper isolation of RS-232-C links and rise-time control, it 
is possible to signal safely and correctly over links up to a few kilometers. Unfortunately, 
the temptation is to make such connections without proper isolation, with disastrous 
results. 

A case study of an actual problem of this sort is shown in Fig. 5.19 and Fig. 5 .20. A 
computer manufacturer supplies two different types of cables for interconnecting termi­
nals to the main frames of a particular family of computers. The 6-wire cable carries the 
essential RS-232-C signals, and the 4-wire cable carries a pair of 20 rnA current loops. 
The manufacturer happens to use identical connectors for the RS-232-C and current-loop 
systems. Terminal equipment has two mating connectors, one for each type of communi­
cations link. For RS-232-C interfaces, only the 6-wire cable is available, and it is limited 
in length to 25 feet, per the constraints on RS-232-C interconnections. Longer lengths of 
500 feet are available in a 4-wire configuration that is intended for 20 rnA use where the 
links are properly isolated. The figure shows how a customer purchased 6-wire cable for a 
long interconnection run, and then spliced this cable into the 6-wire connectors used for 
both RS-232-C and current loop interfaces. The splice was a very simple way of obtaining 

Micron Technology Inc. et al. 
Ex. 1042, 189



190 Seriallnterfacing 

Transmitter 

Receiver 

400' 

Detail of cable connections 

Optical 
isolators 

FIGURE 5.20 Detail of cable installation for case study. 

compatible connectors for 400-foot cable. Since the customer knew that the long intercon­
nections had to be made through current loops, these long cables were then connected to 
the current loop by 6-pin connectors at the terminal and computer ends of the line. Figure 
5.20 shows these lines running underground from the computer center to a computer 
room, with four of the current-loop wires properly isolated. However, in adding the fifth 
and sixth wires, the customer did not realize that a hazardous ground loop had been 
created on the sixth connector pin, which was connected to the chassis at the respective 
ends of the cable. During an electrical disturbance in which lightning strikes were ob­
served within a short distance of the buildings, the computer and terminal equipment sus­
tained severe damage. All drivers and receivers at the computer end of line burned out, 
and the electrical overload extended beyond these points into other regions of the I/0 sys­
tem. At the far end of the line, damage was limited mainly to the circuits surrounding the 
isolators and to the power supplies. With a direct connection from ground to ground 
across the buildings, the isolators became ineffective. Differences in potential between 
the two buildings were coupled directly into both systems, and the resulting stress des­
troyed large portions of the interfaces. One integrated circuit in the receiver section of a 
terminal interface exploded from the stress. The lesson to be learned here is to respect the 
need for isolation and to be extremely careful when cabling remote systems together. 

Flow Control on Serial Links 
No matter how one builds a serial interface, the amount of buffeting available is a fixed, 
finite amount. However, transmitters can run faster than receivers, especially in an asyn­
chronous system where the local and remote clocks inherently run at different speeds. 
What prevents a buffer overflow? 

Micron Technology Inc. et al. 
Ex. 1042, 190



5.4 Implementations of Serial Interfaces 191 

Figure 5.21 shows two situations, one involving two clocks and one involving three 
clocks. In the system with two clocks, when the transmitter runs slightly faster than there­
ceiver, it might eventually overrun the receiver, except that the receiver in most asynchro­
nous systems can start hunting for a new character before the completion of the last stop 
bit of the present character. Hence the receiver can resynchronize its activity to the begin­
ning of.the next character, even when the received character time is slightly less than the 
expected character time. For this reason two-clock systems are usually safe from over­
flow, provided that the receiver at the slow-clock side of the system empties the buffer 
register in the interface at a fast enough rate. 

CPU 

CPU 

Terminal 
1+-----l 

(a) A safe situation. 

Buffer 1------+1 Terminal 

(b) Unsafe situation: Buffer retransmits at slower rate than 
it receives data; buffer will overflow. 

FIGURE 5.21 Buffer-overflow considerations in asynchronous systems. 

The three-clock system is a system in which an intermediate processor receives and 
retransmits data. Here there is a very real problem because the retransmission is limited 
by the rate of the local clock. Hence characters cannot pass through the interface faster 
than the local clock, while they enter at the rate of the remote transmitter clock. Eventu­
ally, the input from the fast clock will overrun the slow receiver, and a character will be 
lost. 

On a more general basis, even in two-clock systems, received data must pass through 
all buffers and queues at an average rate at least as high as the input rate, for otherwise the 
system will experience buffer overflow at the receiver. There are several ways to solve 
this problem, of which the simplest is to slow down the transmitter every so often and to 
prevent buffers from filling. Specifically, the transmitter can be adjusted to run at, say, 
95% full data rate by sending data in bursts of 19 characters, and then waiting one charac­
ter time before sending the next character. If the system does not buffer and is insensitive 
to particular characters such as the ASCII null character (all Os), then the transmitter can 
send a null every 20 characters. Another way to attain this same functional behavior is to 

Micron Technology Inc. et al. 
Ex. 1042, 191



192 Seriallnterfacing 

transmit with two stop bits, but to set the receiver for one stop bit. Then the receiver can 
start looking for the next character roughly one bit time sooner than if it were looking for 
two stop bits. · 

More complex ways of controlling data flow require passing information on queue 
lengths over a transmission link to the sender. When the information indicates that buffer 
space is filled (or nearly filled), the transmitter stops transmitting. Some implementations 
use CLR TO SEND and REQ TO SEND signals for this purpose. 

When the receiver is a line printer, there is usually a slightly longer delay for carriage 
return and line feed than there is between characters. To prevent buffer overflow in this 
case, conventional interfaces transmit three to six nulls after a line feed (or carriage re­
turn) to allow time for the printer to adjust to the next line. This function can be imple­
mented in the transmitter software very simply. To use CLR TO SEND and REQUEST 
TO SEND requires compatible hardware as well as the capability to set a signal at one in­
terface and to sense it at the other. This may require special software drivers at both ends 
of the link. This is more difficult to implement if the designer has access to software at 
only one end of the link and is not able to modify the software at the other end. 

5.5 INTERFACE DEVICES 

In this section we examine LSI peripheral devices that implement the various protocols 
considered in this chapter. 

Asynchronous Interfacing with the MC6850 

The MC6850 interface device follows the general plan of a serial interface as discussed 
earlier in this chapter. External connections for the device are shown in Fig. 5.22. The 
6850 uses a standard microprocessor-bus interface for the 6800 family, and produces or 
receives the basic RS-232-C control signals. The signaling rate is controlled by separate 
transmitter- and receiver-clock inputs, which can be set internally t9 be 16X or 64X the 
data rate. (The rate can be also be set to be equal to the clock rate; b~t, in this case, there­
ceived clock must be synchronized externally to each chan1cter received.) To obtain 
software-controlled signaling rates, we simply multiplex several different frequencies to 
the 6850 and select the multiplexer output through a software-settaqle control vector. This 
device contains four registers accessible by the microprocessor- a control register for 
~ommands, a status register, an input register, and an output register. The command reg­
ister is used to configure the transmitter mode as to parity and the number of stop bits, and 
to arm or disarm the interrupt output. The REQUEST TO SEND ~mtput is a single bit in 
the control register whose value is set by software. The status register reflects the current 
status of the interrupt request, the input and output registers (full or empty, respectively), 
and of the CLR TO SEND and CARRIER DETECT inputs to the chip from other inter­
faces. The receiver overrun condition, parity errors, and framing-error (missing stop bit) 
condition are also reported in the status words. The figure shows the 6850 driving both the 

Micron Technology Inc. et al. 
Ex. 1042, 192



Control 

Transmitter 
shift 

register 

Transmitter clock 

Serial data out 

RS-232-C 

,.----------!------+--Receiver clock 

CLR TO SEND 

CARRIER 
DETECT 

REQUEST TO SEND 

FIGURE 5.22 BlockdiagramofMC6850. 

RS-232-C 

CLR TO SEND 

CARRIER DETECT 

REQUEST TO SEND 

Micron Technology Inc. et al. 
Ex. 1042, 193



194 Seriallnterfacing 

current-loop and RS-232-C interfaces, which is possible because these two types of links 
are compatible at the data-signal level even though they are not electrically 
compatible. 

The BISYNC Interface 

The MC6852 is a close relative of the 6850 that is used for BISYNC protocols. Its inter­
face signals are shown in Fig. 5.23, where we see the similarity with those of the 6850. 
The main difference in the function of the two devices is that the 6852 has a built -in capa­
bility that establishes character synchronization by searching for a 1- or 2-character sync 
pattern in the serial-bit stream. The pattern can be loaded into the port from the micropro­
cessor, and the micro can also instruct the port to initiate a search for synchronization. A 
SYNC MATCH output indicates that the 6852 has found the sync pattern and established 
the character synchronization. Almost all aspects of BISYNC relating to the structure of a 
BISYNC block are not implemented, and are left to microprocessor software. These in­
clude the functions relating to transparent transmission and reception of data, which is a 
nontrivial task for the support software. 1fie maximum data rate of the 6852 is much 
higher than that of an RS-232-C link, and is roughly 600kHz. 

The extra complexity of the BISYNC protocol requires three control registers in the 
6852 as opposed to a single register in the 6850. Among the functions controllable by 
these registers are those of the 6850 (word length, parity selection, and interrupt control), 
as well as such functions as sync mode (1 or 2 characters), start search, and individual 
start/stop controls for the receiver and transmitter. Although the 6852 does not implement 
all ()f the functions required for transparent data, it can strip out all instances of the sync 
pattern that it finds in received data. · 

Synchronization with a two-character pattern is a little tricky with this device. There 
is but a single 8-bit register for holding the pattern, so after the first character is matched, 
this register has to be reloaded on the fly. An interrupt generated at the first match can be 
used to notify the micro to reload the register with the second sync character. A FIFO with 
three stages is built into the receiver to give extra time to make this match and to buffer re­
ceiyed data that is en route to the main memory. 

Receiver clock generation must be done off-chip, using techniques such as the 
phase-locked loop technique that is described later in this textbook. The receiver clock 
must be derived from the incoming data stream, and should not be generated by an in­
dependent local oscillator. 

The i8251 for Asynchronous and Synchronous Links 

There is a good deal in common between asynchronous and synchronous links because 
both have similar logic d~voted to the bus interface and to conversion between serial and 
parallel data streams. Intel's 8251 , shown in Fig. 5 .24, is suitable for both synchronous 
and asynchronous links. Specifically it implements the synchronization requirements of 

Micron Technology Inc. et al. 
Ex. 1042, 194



1 
Transmit clock 

I 
Serial data out 

I 
v 

Transmitter Transmitter ,.. FIFO - shift 
(3) register 

I--

Receiver clock 

I r v 

Receiver Receiver 

I 

Clock 

I 
~ FIFO ~ I-- shift Extract 

(3) register - (off-chip) 

~ r- I .,. Serial data in 

- IRQ r- Full generator ...__ 
Bus Empty 

interface 
Errors 

~ Status 
CARRIER DETECT CARRIER DETECT 

CLR TO SEND CLR TO SEI'iD 

IRQ ON/OFF 

;» CONTROL 
SYNC 

~ 
(3) - DETECT 

Sync 
pattern 

T 
I IN SYNC DATA SET READY 

IR Q 

FIGURE 5.23 The structure of the 6852. 

Micron Technology Inc. et al. 
Ex. 1042, 195



1 
Transmitter clock 

I Serial data out .,. 
v 

Transmitter Transmitter 
~ (I Reg.) - Shift 

Register 

-
Receiver clock 

I 
I v 

Receiver Receiver 1
1

Clock extrac:t 1- (I Reg.) 1--r- Shift r- off-chip 
Register (SYNC mode) 

r- I f Serial data in 
TXRDY 

RCVRDY 

Bus interface ~ -14-- Status ~YNC 
CLR TO SEND 

HUNT 

• 
CONTROL 
(Register is ~~ Sync 

4 shared detect 
with SYNC 

transmitter) Pattern (2) 

1 

I J IN SYNC 

FlGURE 5.24 Structure of the i825 I synchronous/asynchronous receiver/transmitter. 

Micron Technology Inc. et al. 
Ex. 1042, 196



5.5 Interface Devices 197 

BISYNC, together with all asynchronous protocol requirements. For the RS-232-C proto­
col, the device connects to transmitted and received-data signals-REQ TO SEND, CLR 
TO SEND, DATA SET REApY, and DATA TERMINAL READY. Like the 6850 and 
6852, the 8251 has clock inputs for transmitter and receiver clocks that determine the data 
rate for both synchronous and asynchronous links. The asynchronous clocks can be set to 
be 16X or 64X the data rate. An external clock detector must be used to derive the clock 
from incoming synchronous data. just as for the 6852. 

The 8251 has four register addresses whose functions are similar to those of the 6850. 
However, the 8251 does not contain an addressable control register as the 6800-family de­
vices do. Rather the 8251 has a control address to which a program outputs a sequence of 
commands. These commands then affect many different aspects of machine state. A typi­
cal sequence of control directives passes two to four control words to the interface. At sys­
tem reset or after the microprocessor writes a sync character to the 8251, the 8251 reini­
tializes its state to expect the next command byte to be the first byte of a sequence. 

The first control byte sets the chip into an asynchronous or synchronous mode, and 
determines the character length, parity check format, and stop-bit format (for asynchro­
nous mode) or sync-pattern format (for synchronous mode). The remaining functions are 
set by the second control byte. These functions include the ability to start and stop the 
transmitter and receiver, to initiate a synchronization search (in the synchronous mode), 
and to output REQ TO SEND to the modem interface. Intenupt-control signals are com­
mon to both asynchronous and synchronous operation, and both operations are also armed 
or disarmed through the control words. A status register gives error indications for parity, 
overrun, and framing errors, and also gives the state of the system. State information in­
cludes a detailed description of the transmitter FIFO and the receiver state, and provides 
information as to whether or not the device has been synchronized with an incoming syn­
chronous bit stream. In the synchronous mode, one or two additional bytes are inserted 
between the opening mode-setting byte and the closing command byte. These inserts con­
stitute the sync pattern. 

The only BISYNC function actually performed on chip is the BISYNC synchroniza­
tion function. All other requirements, particularly the transparent data requirement, must 
be implemented in software elsewhere in the system. Recall that the 6852 implements a 
small portion of the transparent data requirements by deleting received sync patterns from 
the data stream. But in both the 6852 and 8251 interfaces, a substantial amount of over­
head is left, and external software must implement the block-oriented functions of a 
BISYNC protocol. 

HDLC Interfacing 

The Intel 8273 is a very sophisticated link controller designed for the 808X family of pro­
cessors. It performs most of the essential HDLC functions, while providing interfaces to a 
microprocessor, an RS-232-C modem, and to a DMA controller. The Motorola MC6854 
is an HDLC peripheral for the 6800 family that has a similar capability. Both devices im­
plement portions of the HDLC protocol that were once implemented in software or 

Micron Technology Inc. et al. 
Ex. 1042, 197



198 Seriallnterfacing 

firmware in a central processor. Hence, both devices provide an economical means for in­
terfacing to high-speed links, with little risk of overloading the computational capacity of 
a microprocessor. 

The complexity of the protocol leads to high chip complexity, which prevents this 
discussion from doing more than touching on the highlights of the device capabilities. 

Starting with the 8273, we note the structure of the interface as shown in Fig. 5.25. A 
major feature of this chip is an on-chip digital phase-locked loop for clock recovery and 
the synchronization of received data. But this chip requires an externally generated clock 
at 32X the nominal clock rate of the receiver data stream, and also severely restricts the 
operating range of the system to 64kHz data rates. By contrast, the 6854, with off-chip 
synchronization, permits data rates up to 600kHz. 

The command structure of the 8273 is quite rich; and, in fact, the 8273 can be viewed 
as an independent processor dedicated to the HDLC function. Communication with the 
8273 is through control and parameter registers. Commands issued to the control register 
are usually followed by a sequence of transmissions to the parameter register, depending 
on the control function. The chip is sufficiently powerful to accept a single command to 
write a frame, with all pertinent parameters of that frame provided to the chip. Thereafter, 
the chip ran generate the full frame, including the flag, address and control bytes, the data 
field, and the closing bytes. Because the chip interfaces to an external DMA controller, it 
can access data from local memory as needed to fill the data field of the frame. The chip 
can also operate in non-DMA mode, in which interrupts or status signals report back to 
the microprocessor whenever a FIFO needs to be filled (for transmit) or emptied (for re­
ceive). Loop operation is provided automatically by tying the receiver input directly to the 
transmitter output with a one-bit delay. 

The computational power of the 8273 is quite astounding, which is surely indicative 
of the directions of multiprocessor development in the next decade. We can expect the 
I/0 functions of a system to migrate gradually over time to a collection of intelligent 
peripherals that like the 8273 have the preprogrammed capability of performing standard 
operations. While the 8273 has the necessary functional capability, its performance dic­
tates that its use be limited to low-speed synchronous links. As the technology improves, 
we can expect to see similar chips appear with perfonnance rates as much as 10 to 50 
times as high as that of the 8273. 

The 6854 is a high-performance HDLC interface that implements the most important 
HDLC functions, but does not quite have the functional capability of the 8273. Note that 
the received-clock generator in Fig. 5.26 is off-chip, not on-chip. The 6854 contains both 
a DMA interface and modem control functions, although there are fewer pins dedicated to 
these functions than in the 8273, which yields slightly less flexibility. With regard to the 
low-level functions of the HDLC protocol, the 6854, like tbe 8273, automatically inserts 
and deletes bits in the data stream to establish the uniqueness of the flag sequence 
01111110 for synchronization. It also, like the 8273, produces the redundancy check bits 
automatically in the transmitted data stream and checks them in the received data stream. 
FIFOs in the receiver and transmitter sections can hold up to three bytes of data, and 
thereby provide some degree of buffering of high-speed data. It is possible to operate the 

Micron Technology Inc. et al. 
Ex. 1042, 198



5.5 

RQ+ READ 
READ 
WRITE 

ACK~ 

RQ+ 
WRITE ACK~ 

DMA I--

CONTROL 1---

,-

+--

+--

Microprocessor bus 

-

-

Transmitter 

f--t FIFO 
(II) .._ 

Receiver 
I- FIFO 

(II) 
f--

I- Status 

~ 
Control 

(II) 

f-. Parameters 
(II) 

Interface Devices 199 

Transmitter clock 

I Serial data out 

v 

Transmitter 
Sync inserter. 

1-.. shift ~ 
zero inserter, 

and register 
parity generator 

Receiver clock 

v T 
Receiver Sync detector. Clock 

+I- shift Itt zero remover. recovery 
register and (on-chip) 

parity check 

t T 
Serial data in 

Loop back - ~ (on cl1ip) 

f+- CLR TO SEND 
Modem I-+ RQ TO SEND 

control f+- DATA SET READY 
f--. DATA TERM READY 

FIGURE 5.25 Block diagram of the i8273 HDLC peripheral controller. 

6854 under the control of an external DMA controller to attain high-speed memory access 
without microprocessor intervention. Or, with less logic required, the DMA controller 
can be omitted, leaving the processor with the burden of loading and unloading data from 

Micron Technology Inc. et al. 
Ex. 1042, 199



,------. 

1-

Bus interface ~ 

-

4 

Transmitter clock 

,L. I I 
Insert Os :Serial data out 

v 

Transmitter Transmitter 1 j FIFO r--f-. shift 
Parity I Loop back I 

(3) register 
generator €off-chip) 

f--

I 
I v 

Receiver Receiver 1 Parity check I I 
Clock 

I FIFO 1--r-r- shift extract 
(3) register (off-chip) 

r- I t Serial data in 
Remove Os 

CLR TO SEND 
FULL 

Status EMPTY 
(2) 

CARRIER DETECT 

... I 

I IRQ and DMAI l Modem 

I 
request interface Control :generator 

(4) 

moj L REQUCST TO SEND 
RDRQ- '----- CLR TO SEND 
WRRQ CARRIER DETECT 

F1GURE 5.26 Block diagram of the MC6854. 

N 
0 
·0 

Micron Technology Inc. et al. 
Ex. 1042, 200



Other Reading and Source Material 201 

the chip. Loop operation is provided externally by tying received data to.transmitted data, 
using gates not provided on-chip. Because the device can transfer data at about 1 byte per 
15 f.LS, the VO rates possible are at the upper li~t of the ability of a processor to service 
the VO chip. This limits link performance by software delays rather than by the electrical 
interface. Gross data rates wlth the 6854 are about 10 times higher than for the 8273, but 
when the effects of software delays are factored in, the ratio may be somewhat lower. 
With either the 8273 or 6854, the cost of an HbLC link is substantially smaller than the 
cost of constructing the link out of discrete hardware; moreover the performance is far 
higher than is attainable with conventional software-intensive techniques. 

OTHER READING AND SOURCE MATERIAL 

An excellent treatment of the full range of data communications protocols appears in 
McNamara (1979), which covers such diverse topics as the hardware tiesign of 20 rnA in­
terfaces through standard protocols such as HDLC. Material on DEC's DDCMP protocol, 
which has bee~ omitted in this textbook, also appears there. 

Another textbook cif equal quality is Tanenbaum (1981). Tanenbaum covers system 
aspects of high-speed communications between computers. Among the topics of interest 
in his textbook are flow control methods, network topology, methods for controlling 
SDLC protocols, and a very comprehensive treatment of packet-switching networks. 

For implementation of the RS-232-C interfaces, there is no better source of informa­
tion than the standard itself (Electronic Industries Association, 1969). Copies of the stan­
dard can be obtained by writing to the Electronic Industries Association in Washington, 
DC. Newer standards such as those for the RS-422, RS-423, and RS-449 are available 
from the same source. 

In spite of the advantages that the double-ended signaling of RS-422 has over the 
single-ended signaling of RS-232-C, the RS-422 standard has appeared at a time when 
competitive methods of communication are being developed. Specifically, Ethernet, a 
multiaccess, high-bandwidth communications system, and other similar communications 
techniques are undergoing standardization. Metcalfe and Boggs (1976) describe the prin­
ciples of Ethernet but they kave the implementation unspecified. LSI implementations of 
Ethernet interfaces are becoming widely available, and may become a more attractive al­
ternative for high-speed communications thari the RS-422 interfaces. 

The case study in this chapter that related the problems arid consequences of improper 
grounding is a true and certainly not rare example of grounding iinplementations. Many 
installations violate electrical codes for grouhding. As the case study illustrated, manufac­
turers' equipment and installation procedures do conform to grounding codes, but on-site 
modifications by the equipment owner can upset the codes. It would be an interesting and 
valuable exercise for the reader to examine the grounding and signaling connections of a 
local computer installation, paying particular attention to hard-wired communications 
lines that are over 30 to 60 rri long. 

Micron Technology Inc. et al. 
Ex. 1042, 201



202 Seriallnterfacing 

EXPERIMENTS 

5.1 For this experiment you will need a microcomputer or terminal with an RS-232-C 
communications linlc 
a) Configure the communications link for 8-bit data, two stop bits, and no parity. 

Connect oscilloscope probes to pins 2 and 3 of the RS-232-C connector. If the 
link is conrtected to a computer, program the computer to transmit the character 
A continuously; otherwise at a terminal depress the letter A in a repeat mode so 
that the character is continuously transmitted. One or both of the channels will 
display the signal. If you observe the signal on both channels, explain why it ap­
pears on both. Draw the waveform, and identify the start bit, stop bits, and data 
bits. 

b) The letter X has the ASCII code 58 16. Draw the RS-232-C waveform for this 
character, then transmit the character X over the link, observing its waveform on 
the oscilloscope to confirm the accuracy of your drawing. 

c) Reconfigure the link for 7-bit characters, even parity, and one stop bit. Re­
transmit the character A and explain what you observe on the oscilloscope 
screen. Then transmit the character B. Is the parity bit different from that of an 
A? Next transmit the character C. Is its parity bit different from that of an A? Ex­
plain your observations. 

5.2 This experiment requires a logic analyzer and a computer with a serial port. The pur­
pose is to explore the effects of double buffering. Connect the logic analyzer to the 
serial UO chip to display the READ and WRITE controls of the chip. Trigger the 
analyzer from the CHIP SELECT pins of the chip so that it samples READ and 
WRITE each time the chip is selected. Configure the port to run at the highest possi­
ble baud rate. 
Write a serial-port output program for the chip that uses a wait loop to test the status 
of the chip before each output. The wait loop should read the status register until the 
status indicates the chip is ready for a new output. Test this program to be sure that it 
works correctly. 
The main program that you will use to exercise the chip is the following: 

JSR OUTPUT OUTPUT A CHARACTER 

JSR OUTPUT OUTPUT A SECOND CHARACTER 

JSR DELAY DELAY ABOUT 80% OF A CHARACTER TIME 

JSR OUTPUT 

JSR DELAY 

JSR OUTPUT 

JSR DELAY 

JSR OUTPUT 

JSR DELAY 

JSR OUTPUT 

HALT 

Micron Technology Inc. et al. 
Ex. 1042, 202



Experiments 203 

The objective of the program is to count the number of times that the program exe­
cutes the status check in the wait loop. The DELAY subroutine eliminates about 
80% of the checks that would otherwise be made so that the buffer of the analyzer 
does not overflow. Note that no delay occurs between the first two outputs. If the 
chip is double-buffered, the wait loop will execute only once during the second call 
to OUTPUT. 
Now start the trace mode of the analyzer and start to execute the program. Display 
the contents of the analyzer buffer. You may have to adjust your delay subroutine to 
be longer or shorter in order to obtain usable data. Verify that the first two characters 
are accepted immediately by the port. Are all other characters accepted by the port 
after equal delays? It is very likely that the third character is accepted after a shorter 
delay than subsequent characters. Verify whether this is true or false for your port. 
Explain why the third character might be accepted sooner than one full character de­
lay after the second character is accepted. 

5.3 For this experiment you will need a computer with a serial port that has CLEAR TO 
SEND and REQUEST TO SEND modem controls. A logic analyzer will be helpful, 
but not necessary. 
a) Write an interrupt-driven program that receives characters from the serial port. 

Write a second program that uses a program-controlled wait loop to transmit 
characters over the serial link. Then connect the transmitter to the receiver on the 
link, and test your programs to be sure they work correctly. For this test, the port 
should have its CLEAR TO SEND input tied to a voltage level that asserts the 
signal. 

b) Write subroutines that assert and deassert the REQUEST TO SEND output, and 
verify that they operate correctly. 

c) Modify the receiver program so that it calls the subroutine to deassert REQUEST 
TO SEND immediately after an interrupt invokes the receiver program. Also, 
modify this program to increment a counter each time it is invoked. Then tie the 
transmitter output of the serial port to the receiver input by bridging pins 2 and 3 
of the RS-232-C port connector. Similarly, tie REQUEST TO SEND to CLEAR 
TO SEND by bridging the corresponding pins on the RS-232-C connector. (Ex­
amine the specifications for your computer just in case these pins do not conform 
to the standard.) Write a driver program that does the following: 
i) Initializes the interrupt system and interrupt vectors for the RS-232-C re-

ceiver. 
ii) Turns on REQUEST TO SEND. 
iii) Clears the counter for the receiver program. 
iv) Outputs a continuous stream of As. 
When you execute this program the computer will hang up in the transmit wait 
loop waiting for CLEAR TO SEND to be reasserted. Execute the program and 
verify that this occurs. Reset the computer and examine how many characters 
were received before the program permanently entered the wait loop. Note that 
the REQUEST TO SEND was turned off immediately after receipt of the first 

Micron Technology Inc. et al. 
Ex. 1042, 203



204 Seriallnterfacing 

character. You might expect that no additional characters are received from that 
point on. How many were actually received? 

d) Repeat the experiment using two computers instead of one. The first computer 
executes the transmitter program, and the second executes the receiver program. 
How many characters are received in this case? If the number is different, ex­
plain why it is different. 

e) Connect a logic analyzer to the REQUEST TO SEND line and to the 
transmitted-data line, and repeat the experiment with either one or two comput­
ers. Examine carefully the relative timing of the transition of the REQUEST TO 
SEND line as compared to the timing of the individual bits on the data line. Mter 
which bit is the REQUEST TO SEND line deasserted? What is the state of the 
transmitter buffer and shift register at this time? How does this timing explain 
your observations of the previous steps? 

5.4 The purpose of this experiment is to examine differences in ground potential 
between two pieces of equipment. Obtain a computer, a CRT terminaL and a long 
RS-232-C cable. Disconnect the interconnecting cable to be sure that there is no 
direct connection between the two pieces of equipment. Connect the computer and 
terminal into different AC power outlets. Use power outlets in the laboratory that are 
physically as far apart as possible and that, preferably, are controlled by different 
circuit breakers. Connect the RS-232-C cable to one piece of equipment and bring it 
to the other piece of equipment without making an electrical connection. Connect a 
voltmeter from pin 7 of the RS-232-C connector on the cable to pin 7 of the connec­
tor on the equipment. Measure AC and DC voltage. Connect an ammeter across the 
same pins if the voltage is less than I V, and measure the AC and DC current flow. 
(Caution: Use a high-current scale at first, and be prepared to break the connection 
quickly if the flow is unexpectedly high.) Report and explain your observations. Re­
turn the equipment to their original configuration, and do not attempt to operate 
them in their experimental configuration. 

PROBLEMS 

5 .I Draw a circuit for optically isolating a 20 mA current loop at the receiver end of a 
serial interface. The optical isolator LED has a 1.2 V nominal drop and can accept 
up to 30 mA safely. The phototransistor in the isolator has an emitter-to-collector 
voltage of 0.3 V when the LED is drawing 20 mA. At this voltage, the collector 
current is 7 mA when the LED is drawing 20 mA. 

5.2 Repeat Problem 5.1, showing isolation at the transmitter end of the loop. Why is it 
better in this circuit to power the 20 mA line from the receiver rather than from the 
transmitter? 

5.3 Draw a circuit for optically isolating an RS-232-C serial line at the transmitter end of 
the line. The circuit should accept TTL levels in and produce RS-232-C levels out. 
Assume the same isolator as in Problems 5 .I and 5 .2. 

Micron Technology Inc. et al. 
Ex. 1042, 204



Experiments 205 

Since your interface must produce RS-232-C levels out, it has to have power sup­
plies for + 12 V and -12 V. Show how to connect the reference grounds for these 
supplies with respect to the reference ground for +5 V, as well as with respect to the 
shield ground. 
If your computer interface drives more than one RS-232-C port, and each port is 
connected to a remote terminal on a potentially different chassis ground, then you 
must not only isolate the computer from each port, but isolate each port from each 
other. Does your design isolate the ports from each other? If not, then what must you 
do to achieve the necessary isolation? 

5.4 Show a passive (no transistors, no power source) circuit for isolating an RS-232-C 
line at the receiver end of the line. (Use the optical isolator from Problem 5.1.) Cal­
culate the power dissipated in your circuit for a 50% duty cycle signal. Your circuit 
should accept RS-232-C levels in and should produce TIL levels out. 

Micron Technology Inc. et al. 
Ex. 1042, 205



6 I PARALLEL INTERFACING 

In this chapter we discuss the interlacing of external equipment to a microprocessor 
through a parallel VO port. With this type of port, a microprocessor can control or sense 
virtually any digital signal, provided that the sample/control rate does not exceed the rate 
at which the microprocessor can access the port. With microprocessor clock times on the 
order of 1 to 41\1Hz, and about 10 to 20 clock times required between port accesses, sig­
naling through a parallel port can attain a maximum of about 100,000 to 200,000 transfers 
per second. But each transaction transfers one byte of data, so that the actual information 
rate is on the order of 1 megabit per second. Note that this rate is about 50 times faster 
than the maximum bandwidth of 20 kHz for an RS-232-C link, and about 1000 times fast­
er than typical serial links. The parallel interlace, then, is well suited to high-speed re­
quirements and to requirements where the response time is critical. 

But parallel ports are widely used in low-speed applications, too. For these applica­
tions it is the versatility of the parallel port that promotes its use because the port greatly 
simplifies interlacing to various types of digital devices. The parallel port is commonly 
used for sensing switch closures, driving output indicators, interlacing to elaborate digital 
devices, and even implementing serial links. Many manufacturers of modular micropro­
cessor systems have discovered that system users invariably want to interlace their sys­
tems to many kinds of exotic devices, and the manufacturers usually offer for this purpose 
an VO board that is packed with as many parallel ports that can fit. 

In this chapter we first look at the general structure of a parallel VO port, and examine 
its use for interfacing to various kinds of digital devices. The asynchronous handshakes 
studied earlier play an important role in parallel VO because external devices are unsyn­
chronized to the microprocessor clock. When such devices are interfaced through a paral­
lel port, data transfers are normally controlled with asynchronous handshakes, as 
described earlier in this textbook. For this reason, parallel ports usually have on-chip logic 
for implementing these handshakes. 

As with serial interfacing, standards play an important part in parallel interfacing. It 
is wasteful and costly to design a unique interface for each possible type of device that can 
be connected to a microprocessor. To a certain extent, the parallel VO port reduces this 
cost by being almost universal, but the designer still has to devote some effort to adapting 
a universal interface to an individual application. With a standard parallel interface, much 
of this work is unnecessary. Two different devices, both of which interlace to a particular 
VO standard, can be connected directly together without having to customize the inter­
connection. One of the most popular parallel VO standards today is the IEEE-488 stan­
dard, which provides for the immediate interconnection capability of a wide variety of 
digital test instruments. 

206 

Micron Technology Inc. et al. 
Ex. 1042, 206



6.1 Parallel Port Characteristics 207 

Early in this chapter we examine the electrical connections available on typical ports, 
and show schemes for putting the ports to work in useful applications. The IEEE-488 stan­
dard is the focus in the middle of this chapter, and the chapter closes with a discussion of 
ports available for the 6800, 6500, and 808X microprocessorfarnilies. 

6.1 PARALLEL PORT CHARACTERISTICS 

The external signals for a parallel VO port are shown in Fig. 6.1. On the left in the figure 
is a standard microprocessor bus interface, usually directly compatible with a particular 
family of microprocessors. On the right are three types of signal lines that tie to the out­
side world. All three types can act as either input or output lines, and in some implementa­
tions the lines can be set by program control to be input, output, or bidirectional lines. The 
three types of lines are 

1. data VO with tri-state output, 
2. data VO with open-collector output, and 
3. a control line for handshaking signals. 

Each type of signal line is useful in specific instances, so that normally all three types of 
lines are included in an LSI parallel VO port to provide the greatest possible versatility. 

Bidirectional 
data bus 

Chip select 

READ/WRITE 

Clock 

/ 
/ 

Tri-State I/0 line 

Open-collector I/0 

Parallel 
I/0 Edge-triggered control line 

Port 

FIGURE 6.1 Structure of a typical I/0 port. The three common types of I/0 pins are shown 
on the right. 

Open-Collector Outputs 

An electrical model of one open-collector circuit in Fig. 6.2 shows an open-drain circuit 
of a field-effect transistor as an ''open collector.' ' When the gate of the transistor (the in­
put driven by the NAND) has a voltage above threshold, which represents a logic 1, the 
transistor conducts and there is a low impedance path from the VO pin to ground through 

Micron Technology Inc. et al. 
Ex. 1042, 207



208 Parallellnterfacing 

+5 v 

I/0 pin 

Data bus ____ _.--,----~----------< 
Output control 

FIGURE 6.2 An open-collector I/0 pin. 

the transistor. When the transistor gate-voltage drops below threshold to logic 0, the 
transistor opens. Now the path from the I/0 pin to ground through the transistor is open, 
and the I/0 pin is pulled high to 5 V by the 10 kO resistor. The I/0 pin, when programmed 
as an output pin by setting the direction flip-flop, carries the value of the bit in the data 
flip-flop, provided that no other open-collector output attached to the same pin is also ac­
tive. 

Many designers use open-collectors for signals asserted In the low state, in which 
case the open-collector performs an OR function of the active low signals. That is, the 
node voltage at the junction of several active, low open-collector gates is asserted (in the 
low state) ifany open-collector gate is asserted. For example, an interrupt request signal 
is often implemented as an active low signal. Then the devices that produce interrupt re­
quests generate the requests on open-collector gates whose outputs are simply tied to­
gether with a pull-up resistor and connected to an IRQ L signal line. IRQ Lis low if any 
device asserts its active low output. 

in the output mode, the present value of the data bit is gated to the output pin through 
an open-collector driver. Because the output is an open-collector, the voltage on the out­
put pin is pulled low if any open-collector output tied to that same pin is low. Hence the 
output pin may have a low voltage (0) when the data bit value is a 1. 

The input-control signal shown in the figure gates the present value of the I/0 pin 
onto an internal data bus, and the output-control signal latches the value of the internal 
data bus into an output flip-flop. The control signals shown are raised and lowered by the 
microprocessor through instructions that output commands to the parallel I/0 port. Note 
that while the port is set in the output mode, with the output register loaded with data, the 
port can still be asked to input the value of the I/0 bit by asserting the input-controlline 

Micron Technology Inc. et al. 
Ex. 1042, 208



6.1 Parallel Port Characteristics 209 

(with an IN instruction or a LOAD instruction directed to the data register of the port). 
The value of the data.read is the actual value on the output pin, and this may not agree 
with the value in the dataregister. Note also that the port can report misleading informa­
tion on the input ilne if the port is in the output rather than input mode. In order to avoid 
spurious interference with the value of the external data that result from interactions with 
the output-data register, it is essential to disconnect the data register from the output pin 
by setting the direction flip-flop. The pull-up resistor guarantees that the output value is 
high rather than undefined when no output devices actively drive the output node. The 
pull-up is set at a rather high value, in this case 10 kO, because many different open­
collector lines can be tied together, and the net parallel impedance of this connection must 
not load the output drivers. 

Having the output voltage pulled up to logic 1 when the output is passive benefits out­
put ports that control critical devices. Without this feature, an undefined value on an out­
put control line of an open-collector gate could possibly appear to be low when the port is 
first powered up. For this reason, typical VO ports react to RESET and power-on condi­
tions by making all I/0 pins inputs, and by relying on internal resistors to pull up open­
coliector I/0 pins to a logic 1. Then the devices controlled by a parallel VO port should 
treat a logic 1 as an inactive signal during the power-on period. After power is turned on 
successfully, system software can reconfigure VO pins as output pins while holding the 
output register at logic 1. This guarantees that control is inactive during and immediately 
after port configuration. Because tri-state and other types of output gates might not have 
internal pull-up resistors, their outputs may be undefined after a power-on sequence, 
which means that the outputs may be in a state that could accidentally activate external 
equipment. Therefore, as a general rule, safe practice requires external pull-up resistors 
on tri-state gates or open-collector gates with internal or external pull-up resistors on all 
critical control signals. 

Figure 6.3 shows a simple way to interface four input switches to a computer without 
additional circuitry other than an VO port. Each signal line is connected to a switch that 
grounds that line when the switch is closed. The conesponding open-collector pins are 
programmed to be in the ,input mode. Until the switch is thrown, the pins are at logic 1 
because of the internal pull-up resistor. A closed switch pulls the voltage at the pin to 
logic 0, which can be sensed by the microprocessor. 

Open-collector 
1/0 lines 

FIGURE 6.3 Intetfacing sif!1ple switches to 
an open-collector port. 

Micron Technology Inc. et al. 
Ex. 1042, 209



210 Parallellntertacing 

This is rathbr simple, almost deceptively so, because the circuit lacks the usual flip­
flop or Schmitt trigger to protect against spurious signals caused by contact bounce. In 
fact, when the switch is closed, the switch does not close cleanly; it bounces open and 
shut a number of times. The desired waveform is a step in time, but the actual waveform 
produced is a sqries of pulses that eventually decay to a constant voltage. The trick is to 
use software to do the debouncing as the program fragment of Prog. 6.1 does. (This frag­
ment uses a pseudo-high-level language whose meaning is clear without further explana­
tion.) 

PROGRAM 6.1 Software Debouncing of an Input Switch 

begin initialize port; (* Set I/Obits to input mode. *) 
REG-0:= SWITCH-DATA; 

(*Read the instantaneous value of the switch lines. 
This reads eight bits. The least significant four bits are input lines. *) 

REG_O := OFJ6 ANDNOTREG-0; (* Mask out leadingbi ts. *) 
(* Swi tcJ:i closures show up as Os when they are copied to REG_O. The NOT opera­

tion c<J.Uses active lines to showup as ls in the statements that follow. *) 
ifNOT (REG....:O=O) then (*Processdataifthereisalbit. *) 

end; 

beginDATA_IN:= REG_O; (* Reportdatajustread. *) 
DELAY;, (*Wait for contact bounce to subside.*) 

(*Now the switch is depressed. Accept the input when the switch is 
released. *) 

while NOT ( (DATA_INANDNOTSWITCH_DATA) = 0) do; 
(*Read the port repeatedly until bits in positions that are active in the 

DATA_INbyte become passive. *) 
(*At ,this point the swi tchhas just been released. *) 

DELAY; '(*Wait for contact bounce to subside. *) 
ACCEPI' (DATA_IN); (*Report back the data read. *) 
end; 

The program uses a mask with a value OF16 to mask out high-order bits, leaving only 
the four least-significant bits of the data retrieved from an I/0 port. These four bits are 
connected to the four I/0 switches shown in the figure. The mask operation is a logical 
AND operation, and is available in some fashion in all microprocessor instruction sets. 
The result of the masking operation is tested to see if any switch is depressed; and if so, 
the microprocessor delays further action until contact bounce has finished. A simple way 
to do this is to place the program in a loop that decrements a counter until the counter 
reaches 0. However, this does not permit any other useful work to proceed while the delay 
is in progress. A better way is to set a timer interrupt to return the processor to this point in 
the program at a predetermined time in the future and, meanwhile, to exit the program in 
order to do other useful work. The size of the delay is somewhat dependent on the switch, 
but a delay of 10 to 50 ms is usually sufficient for mechanical switches, and quite toler­
able with respect to human reaction time. 

Micron Technology Inc. et al. 
Ex. 1042, 210



6.1 Parallel Port Characteristics 211 

After the first delay, this program waits for the switch to be released before accepting 
the data. Since a switch can bounce when it is released, just as it bounces when closed, 
there is a second delay when the program detects the switch release. The data can also be 
accepted immediately after the first delay, which corresponds to accepting the data when 
a switch is depressed, if the human factors in the system dictate this to be the more desir­
able mode. In any event, before any new data can be accepted there must still be a delay 
after the release of the switch is sensed. 

The program is written for applications in which only one switch at a time is closed 
(as in a hand calculator). If multiple switches can be thrown, and they do not all close at 
once, the program has to be modified to detect changes in the input data and to debounce 
each new bit that changes. 

Because multiple switch-closures are difficult for humans and awkward to process 
correctly with software, many switch interfaces rely on a single switch closure, and use a 
matrix of many switches to facilitate data entry. Figure 6.4 shows a 4 X 4 matrix (such 
as a hex keypad) interfaced to a parallel port. Four pins of the 8-bit port are output pins, 
and the remaining four are input pins. Switches are placed across the intersections of the 
output and input lines so that each switch ties one output line to one input line. The mi­
croprocessor senses which output line is connected to which input line, and thereby deter­
mines which key is depressed. To do so, the microprocessor energizes one output line at a 
time, and observes the input lines. With the input lines tied to an internal pull-up resistor, 
the data read is a logic 1 unless the input line is held down to a logic 0 by a switch closure. 

Typical 
switch point 

Q] 
~ ~.> \Hexadecimal 

> > ~ Open-collector lines keypad 

0- with internal pull-ups r -

- l- J 

I_ 
2_ 

1/0 port 3 -data register 4_ 
Tri-state or open-collector 

~=~ 
output lines 

Parallel 1/0 port 

FIGURE 6.4 Interfacing a hexadecimal keypad to an open-collector I/0 port. 

Micron Technology Inc. et al. 
Ex. 1042, 211



212 Parallellnterfacing 

The microprocessor program energizes each output line in succession by driving that line 
with a logic 0, and is able to discover which, if any, switch is closed. Program 6.2 imple­
ments this function in a high-level language. 

PROGRAM 6.2 Software Interface to a Hexadecimal Keypad 
begin initialize port; (*Set the 4 high-order bits to output mode, and the 4 low­

order bits to input mode. *) 

end; 

OUTPUT_MASK := 7Ft6; 
(*The leading bit of OUTPUT_MASK is zero. This is used to deassert the lead­

ing bit. Subsequently OUTPUT_MASK is shifted right to deassert the other 
output bits, one at a time. *) 

for I := 0 step 1 until3 do 
begin SWITCH-PORT:= OUTPUT_MASK; 

(*output the mask and make one output line active. *) 
OUTPUT_MASK := rightshift (OUTPUT-MASK); 

(*Rotate OUTPUT_MASK to make ready for the next active bit. The opera­
tion is aright shift with a 1 bit shifted into the sign bit position. *) 

INPUT_MASK := 1; 
for J := 0 step 1 until3 do 

begin if ( INPUT_MASK AND SWITCH-PORT) = 0 then 

else 

end; 
end; 

begin (*FoundaObit; thisswitchisclosed. *) 
delay; (* Debounce. *) 
while (INPUT_ MASK AND SWITCH_PORT) = 0 do; 

(* Swi tchhas been released. *) 
delay; (*Debounceafter switchrelease. *) 

DATA-IN:= 16*(I) +J; (*Encodetheswitchdata. *) 

exit; (*Exittheloops. *) 

end 

begin (*Prepare to examine the next input bit. *) 
INPUT-MASK:= leflshift (INPUT_MASK); 
end; 

The program reads the port data and looks for a switch closure, which is evidenced by 
a 0 among the flour input bits. When a closure is discovered, the program delays for a de­
bounce period and reads the input bits one at a time. When it finds the nonzero bit, the da­
tum accepted is a composite of the value of I and J calculated as shown in the program. 
This example should be sufficient to clarify the general use of both inputs and outputs for 
parallel ports, and to show specifically how to take advantage of the internal pull-up resis­
tor to minimize external parts. 

Tri-State Outputs 

The second type of pin used in parallel interfacing is the tri-state, which has a 
driver/receiver circuit similar to that shown in Fig. 6.5. It is similar to the open-collector 
circuit in that the circuit contains two flip-flops, one for directional control and the other 

Micron Technology Inc. et al. 
Ex. 1042, 212



6.1 Parallel Port Characteristics 213 

+5 v 

Direction flip-f1op 

Data flip-f1op 

Data bus input 

FIGURE 6.5 A tri-state I/0 pin. 

for the data bit. In input mode, the direction flip-flop disables the output circuit com­
pletely, and the pin is free to be pulled high or low by an external source. (In the absence 
of an external source, the figure shows the pin pulled low by the voltage-divider circuit to 
ground. This circuit is not necessarily present in every chip, and the input pin may actu­
ally float freely if an implementation omits the divider circuit.) Since the output is discon­
nected from the input when the port is placed in the input mode, there is no interaction 
with the output bit when the input bit is read, and the port returns the value of an external 
bit. In the output mode, the line is driven by a data register. Note that when the port is read 
in the output mode, the value of the data register, and not the data on the external I/0 pin, 
is read. The I/0 pin may actually have a different value if an external source is driving the 
bus simultaneously, although multiple sources should never be active simultaneously on a 
tri-state signal line. 

A typical use of a tri-state line is demonstrated in Fig. 6.6. In this case the port is in­
terfaced to a relay or light-emitting diode through the colle9tor circuit of a Darlington 
transistor. In order to drive the Darlington transistor, the output pin must deliver enough 
current to tum on the base of the input transistor of the Darlington driver. Since open­
collector outputs have a high impedance to the 5 V supply, the open-collector output is 
unsuitable for this purpose. The tri-state output normally delivers a very small current in 
its high output state, usually approximately 0.05 rnA at about 3.5 V. As the current 
delivered increases, the voltage output diminishes. The question is whether an output line 
can deliver sufficient current to a Darlington driver to drive a device like a relay or LED, 
and still maintain a voltage high enough to maintain the necessary base-to-emitter voltage 
of the Darlington input circuit. In Fig. 6.6, the voltage requirement to keep the Darlington 
driver on is at least two diode-voltage drops because a Darlington, when active, has one 

Micron Technology Inc. et al. 
Ex. 1042, 213



214 Parallellnterfacing 

Tri-state I/0 
pin 

Relay or LED 
driven by output 
transistor 

+V 

FIGURE 6.6 Driving high-power devices with a tri-state l/0 pin. 

diode-voltage drop from the base to emitter of each of its internal transistors. Hence the 
voltage should be about 1.5 V when the Darlington circuit conducts. Tri-state outputs of 
I/0 ports are designed specifically to drive Darlington transistors, and are usually rated to 
deliver several milliamperes of current at 1.5 V, which is sufficient for the applications 
depicted in Fig. 6.6. Because these ports can drive a Darlington transistor directly, there is 
no need for other external gates to buffer or amplify output signals. 

Another important advantage of tri-state outputs over open-collector outputs is in the 
speed of the transition from logic 0 to logic 1. Tri-state outputs charge the output line to a 
high output voltage by connecting the line to the power supply through a conducting 
transistor and small load resistor. Open-collector outputs charge the output line through a 
load resistor that has a relatively high value. Since tri-state outputs offer an inherently 
lower impedance to the power supply through the conducting transistor, they charge the 
output line much faster than the open-collector outputs. 

Another type of output pin has qualities similar to both the open-collector and tri­
state outputs. This type of output, known as pseudo-bidirectional, is shown in Fig. 6.7. 
The lower gate in the output totem pole is driven from the current value of the stored out­
put datum. This gate fires when the stored datum has a 0 value, and after firing, the gate 
pulls the port output to 0. When neither gate in the output totem pole is on, the port output 
is pulled up to a high value by the internal resistor. Input signals sample the output line, 
and read a true value only if the value of the output datum is 1; for otherwise the output 
datum brings the line to logical 0. Hence, before reading from the port, the system inter­
facer has to be sure that the output data register is loaded with a value of 1. The advantage 

Micron Technology Inc. et al. 
Ex. 1042, 214



6.2 

Data line_..._ ___ < 

Input 
control 

The IEEE-4881nstrument Bus 

50 k.Q 

FIGURE 6. 7 Equivalent circuit of the pseudo-bidirectional I/0 port. 

215 

of this type of port is that there is no direction register that dictates whether the port is in 
the input or output mode. In fact, the port can either write data to or read data from exter­
nal devices without changing from one mode to another. 

Control Lines 

The last type of output interfacing signal line is a control line used for handshake signals 
that control data transfer into and out of parallel ports. The purpose of these lines is to im­
plement control signals in the data-transfer process by using the principles of handshake 
control, as we outlined in Chapter 3. Since fully interlocked asynchronous control is quite 
generally and widely used, the control lines for I/0 ports tend to have built-in features that 
support this function. The way the protocol is usually implemented is to provide at least 
two control lines per 8-bit data port, one for MASTER and one for SLAVE handshake­
control signals. The I/0 port can be either a master or slave for an external transaction; 
thus the control logic in the port usually can be programmed for either function. As a mas­
ter, the port outputs a MASTER signal and responds to changes on the SLAVE line. Con­
versely, as a slave, the port samples the MASTER line and drives the SLAVE line. In ei­
ther case, the port can be programmed to change its control-signal output automatically in 
response to a change on its control-signal input per the conventions of MASTER/SLAVE 
handshakes. More details on the facilities available for specific I/0 chips for parallel I/0 
interfaces appear later in this chapter. 

6.2 THE IEEE-4881NSTRUMENT BUS 

Parallel I/0 interfaces throughout the 1960s and early 1970s were usually defined on an 
ad hoc basis, specific to a peripheral device and to a computer system. Rarely, if ever, 
could one find a computer-interface module manufactured by Company A that could drive 

Micron Technology Inc. et al. 
Ex. 1042, 215



216 Parallellnterfacing 

a peripheral manufactured by Company B-except where the interfaces were specifically 
designed for plug-to-plug compatiblity. Most of the larger companies adopted in-house 
standard interfaces for parallel I/0, no two of which were compatible with each other; and 
even within these companies there were deviations between in-house standards for one 
reason or another. The situation across the ihdustry was chaotic in comparison to the rigid 
RS-232-C standard that was already in use for serial interfaces. Whereas interfadng to a 
common telephone network was the driving force that led to industry-wide compatibility 
for serial links, no equivalent motivation promoted similar standardization for parallel 
links. (Actually, the large market for iBM peripherals stimulated many companies to 
manufacture equipment that interfaced directly to the IBM System/360 channel interface. 
This channel interface has recently beenthe subject of a National Bureau of Standards 
(NBS) standardization process, but the resulting standard is not particularly useful, since 
the channel interface is obsolete and is no longer used on new designs, not even by IBM.) 

In the early 1970s, Hewlett-Packard (HP) recognized the problems created by the 
lack of standardization in its own product line because of the difficulty in interfacing pe­
ripherals for one family of computers to newer families, as well as the problems, in gen­
eral, of interfacing its test equipment to its own and other manufacturers' computers. HP 
developed an in-house parallel interfacing standard for an 8-bit data path, and found the 
resulting standard to be quite versatile and powerful. The interface required more control 
logic per device than most of the earlier parallel interfaces in use, but the cost of the extra 
control logic diminished rapidly with the development of LSI and VLSI technology. The 
HP standard became the basis of a standard adopted by IEEE (IEEE Std. 488-1975, 
"Standard Digital Interface for Programmable Instrumentation"). This has also been ap­
proved by the American National Standards Institute as ANSI Standard MCI.l-1975. 
The original standard was released in 1915, and a revised standard was released in 1978. 

With this standard in place, several integrated-circuit manufacturers initiated the 
development of LSI interface chips, while.the instrument and peripherals manufacturers 
began the development of IEEE-488-compatible products. At this writing several hun­
dred different products are available that interface together tlirough the IEEE-488 bus, 
with nothing more than cabling required to make tl)e co~ection. For new designs, the 
logic designer can choose from no fewer than four comp~nies offering IEEE-488-type 
interface chips. And more offerings are likely to appear in thefuture. Manufacturers of 
micro- and minicomputers as a rule supply IEEE-488-compatibie interface cards, and an 
IEEE-488 port is a standard feature of all Commodore PET microcomputers. 

The original standard was stirhulated by a company that makes both test instruments 
and computers, so that the first peripherals for the bus were largely test instruments. 
Although the majority of peripherals offered today still are test instruments, the bus aiso 
supports the more conventional computer peripherals such as terminals, disk drives, 
printers, and plotters. For high-speed devices such as disks, the IEEE-488 bus is of some­
what marginal utility because its maximum bandwidth is just barely sufficient for floppy 
disks and too low for faster devices. Nevertheless, there are major cost advantages in 
adopting the IEEE-488 bus rather than other types of interconnections, even for low­
speed devices for which RS-232-C interfaces are acceptable. Figure 6.8 illustrates one of 

Micron Technology Inc. et al. 
Ex. 1042, 216



6.2 The IEEE-4881nstrument Bus 217 

Microprocessor 

(a) 

Microprocessor riE_E_E_--4S,..S'-1BF-u ... s;.....,. _________ -t 

(b) 

FIGURE 6.8 (a) Interfacing structure with one device per port. (b) Interfacing structure with 
IEEE-488 bus; each peripheral and the microprocessor must have IEEE-488 interfaces. 

Micron Technology Inc. et al. 
Ex. 1042, 217



218 Parallellntertacing 

the benefits of the IEEE-488 bus over RS-232-C channels other than its obvious benefit of 
a higher transfer rate. For the RS-232-C interconnections shown in Fig. 6.8(a), each link 
requires a separate channel, since the links are point-to-point links. Therefore, if a com­
puter drives N peripherals over N RS-232-C links, it requires N different RS-232-C JJO 
ports. The cost of a single port may be less than that of an IEEE-488 port because the 
complexity is less; but as the number of ports increase, the cost of board space, cabinet 
space, connectors, interface chips, and cabling mounts higher and higher, to the point that 
it becomes less expensive to interface all devices to a single IEEE-488 bus as shown in 
Fig. 6.8(b). Note that all bus cables appear to be tied together in some fashion. In fact they 
are tied, because the cables share connectors in a very clever interconnection arrange­
ment. The IEEE-488 cable connector is a piggy-back type of connector. The cable con­
nector contains both a socket and jack, so that when the cable-jack is mated to a socket on 
a peripheral device, the piggy-back socket on the cable can accept the jack of another ca­
ble. Hence, each device needs to supply only one IEEE-488 socket connector, and all de­
vices can be cabled together by using the piggy-back connectors on the cables to tie two or 
more cables together. 

The signaling speed of the IEEE-488 bus is 500kHz for standard applications, and 
can go to 1 MHz if special conventions are followed. Since each transaction carries 8 bits, 
the maximum data bandwidth is on the order of 4 to 8 megabits per second. This is suffi­
ciently fast to run several different low-speed devices concurrently over the shared­
interconnection path, although during a disk transaction, a high-speed block transfer may 
temporarily cut off a low-speed one from the computer. If this is a serious problem, it 
might be wise to use two separate buses, one for high-speed block transfers and the other 
for multiplexing among various low-speed devices. 

Functional Description of the IEEE-488 Bus 

To understand the detailed operation, electrical conventions, and transaction conventions 
of the IEEE-488 bus, let us first start with a description of the electrical signals on the bus, 
and then move to a functional description showing how these electrical signals exercise 
the bus functions. The electrical interface is shown in Fig. 6.9, where it is shown point to 
point. In reality the IEEE-488 is a bus to which many similar modules can directly con­
nect. A total of 16 wires are shown in the figure-eight data lines and eight control lines. 
Bus cables actually have 24 wires, providing eight additional wires for shielding and 
grounds. To understand the control lines, it is best to observe their use for specific func­
tions, which we do later in this section. For the purpose of th~ present discussion, the four 
lines that are the most pertinent are ATTENTION, which is used by a controller to issue a 
command, and the three handshake lines READY FOR DATA, DATA ACCEPT, and 
DATA A V AlLABLE. These handshake lines are similar to the MASTER and SLAVE 
lines that we have examined earlier in regard to the asynchronous transmission of data. In 
fact, DATA AVAILABLE corresponds to MASTER, and the pair READY FOR DATA 
and DATA ACCEPT correspond to the single SLAVE line. The IEEE-488 bus uses two 
lines for the SLAVE function in order to permit broad<,:ast operations to the slaves on a 

Micron Technology Inc. et al. 
Ex. 1042, 218



6.2 The IEEE-488 Instrument Bus 219 

,. 8-wire data bus .... 

' 
, 

ATTENTION 

READY FOR DATA 

DATA ACCEPT 
DATA AVAILABLE 
SERVICE REQUEST 
INTERFACE CLEAR 

REMOTE ENABLE 

END OR IDENTIFY 

FIGURE 6.9 IEEE-488 bus configuration. 

bus. In fact, these two control signals are asserted as active low signals in order to use the 
open-collector bus to perform an OR function when two or more signals are asserted 
simultaneously. In our notation system the controls would be labeled READY FOR 
DATAL and DATA ACCEPT L, but the standard chooses to call them NOT READY 
FOR DATA and NOT DATA ACCEPT, which is the notation used in the remainder of 
this chapter. 

The operation of the three control lines for a bus handshake is shown in Fig. 6.10. 
Although the figure shows the behavior for the broadcast mode, let us assume for the mo­
ment that there is only a single slave respondent, that the width of the shaded area has 

DATA 

DAY 

NRFD 

NDAC 

l 
Line goes high 

with last respondent 

FIGURE 6.10 The IEEE-488 3-wire data transfer handshake. 

Micron Technology Inc. et al. 
Ex. 1042, 219



220 Parallellnterfacing 

shrunk to zero, and that the handshake is a generalization of the familiar fully interlocked 
handshake. The main difference between the two-wire and three-wire handshake is that in 
the latter, the MASTER responds only to a rising edge of a SLAVE signal. Hence, NOT 
READY FOR DATA (NRFDin the figure) andNOTDATAACCEPT (NDAC) are essen­
tially complementary signals with NDAC supplying the active transition at the beginning 
of the handshake and NRFD supplying the active transition at the end of the handshake. 
Note that NDAC has the general appearance of the 2-wire handshake-control signal 
SLAVE, and that NRFD looks something like the complement of SLAVE. Transitions on 
OAT A A V AlLABLE (DA V), the MASTER signal, cause transitions on both NRFD and 
NDAC, so they both react to DA V in the way that SLAVE reacts to MASTER except for 
the timing delays at which the transitions take place. Note carefully how the transitions 
are interlocked, and observe how DA V responds to the rising edges of NRFD and NDAC. 
Visualize the drawing with the shaded region collapsed to zero. 

Now consider how a broadcast mode is implemented. When MASTER is asserted, 
MASTER can be released only after SLAVE responds with a message DATA AC­
CEPTED. NDAC is an open-collector line that stays low as long as any slave has not ac­
cepted the data. Only after the last slave accepts data does the open-collector line go high. 
The leading edge of the shaded area of NDAC indicates when the first responding slave 
releases the handshake line. The trailing edge of the shaded area indicates when the last 
slave releases the line, and the line relaxes to a high voltage. At this point MASTER can 
be deasserted, which is indicated by the falling edge of DA V. Dotted vertical lines in the 
shaded region indicate when other slaves respond. 

MASTER can be reasserted when all slaves are in a ''ready for data'' state. NRFD is 
an open-collector control line so that NRFD rises only when all slaves are ready. This is 
shown as the rising edge ofNRFD at the right-hand edge of the shaded area. The left-hand 
edge of the shaded area indicates when the first slave responds. 

The series of diagrams in Fig. 6.11 shows the basic principles behind the operation of 
the IEEE-488 bus. Figure 6.1l(a) shows the bus with an active controller (Device 1). All 
other modules are presently inactive. These other modules, and possibly the controller as 
well, can either transmit or receive data over the bus. A data transmitter is called a talker, 
and a receiver is called a listener. Talkers and listeners do not initiate their transactions on 
the bus; this is the function of the controller. So the basic idea is for the controller to start a 
data transfer by commanding a talker to talk and listener to listen. The controller then 
leaves the command mode while the data transfer takes place. 

In Fig. 6.ll(a), the controller initiates the transaction by asserting ATTENTION, 
which stops all bus activity and places all devices in a state to accept commands. While 
ATTENTION is asserted, the controller transmits messages that select Device 3 as a 
talker and Device 6 as a listener. When the controller releases ATTENTION, the transac­
tion begins as indicated in Fig. 6.ll(b). Here we see a sequence of bytes transmitted over 
the bus through the use of the three-handshake signals. The talker asserts DATA A VAlL­
ABLE and awaits the response of DATA ACCEPT, then removes DATA A V AlLABLE 
and waits for READY FOR DATA. This is the IEEE-488 version of the asynchronous 
fully-interlocked handshake. 

Micron Technology Inc. et al. 
Ex. 1042, 220



6.2 The IEEE-488lnstrument Bus 

Controller: 
ATTENTION 
MY TALK LISTEN 3 
MY LISTEN ADDRESS 6 
ATTENTION OFF 

(a) First step in IEEE-488 1/0 transfer. 

Talker: Listener: 

..------ READYFORDATA 

DATA AVAILABLE ----.DATA ACCEPT 

DATA AVAILABLE ..----- READY FOR DATA 

..... DATA ACCEPT 

(b) Data transfer on an IEEE-488 bus. 

Controller: Interrupting 
Device: 

~ SERVICE REQUEST 

ATTENTION ON ..---
UNLISTEN 
SERIAL POLL ENABLE 
MY TALK ADDRESS 11 
ATTENTION OFF 

Idle Device: 

--------........ STATUS: IDLE 
ATTENTION ON 
MY TALK ADDRESS 8 

ATTENTION OFF ---­

-----._. STATUS: NEED 

ATTENTION ON 6---------- SERVICE 

SERIAL POLL DISABLE 

(c) A typical IEEE-488 bus transaction for a service request 
(serial-poll mode). 

FIGURE 6.11 Basic principles of the IEEE-488 (continued on next page). 

221 

Micron Technology Inc. et al. 
Ex. 1042, 221



222 Parallellnterfacing 

Controller: 

ATTENTION ON 
MY TALK ADDRESS 8 
MY LISTEN ADDRESS 11 

ATTENTION OFF ------

Talker: Listener: 

------. (Devices 8 and 11 transfer data.) 

END 

ATTENTION ON 

(d) A typical conversation on an IEEE-488 bus ending with 
an END, which interrupts the host computer of the controller. 

Controller: 

ATTENTION 
UN LISTEN 
SERIAL POLL ENABLE 
MY TALK ADDRESS 8 

Talker: 

ATTENTION OFF----

Idle: 

~ STATUS: TRANSFER 
~COMPLETE 

ATTENTION ON .-----
SERIAL POLL DISABLE 
MY TALK ADDRESS 3 
MY LISTEN ADDRESS 6 
ATTENTION OFF -........____ 

Listener: 

~ (Devices 3 and 6 continue 
the interrupted transfer.) 

(e) IEEE-488 bus completion of one bus transfer and reinitiation 
of interrupted transfer. 

F1GURE 6.11 (Continued.) 

In this very simple example, we did not describe how the talker was commanded pre­
cisely what data to transmit, nor did we indicate how the listener was commanded what to 
do with the data to come over the link. These commands can be sent to talker and listener 
in at least two different ways; namely, the devices 

1. can accept commands as bus listeners, or 
2. can be placed in a particular state through a secondary talk or listen address. 

Micron Technology Inc. et al. 
Ex. 1042, 222



6.2 The IEEE-488 Instrument Bus 223 

The first of these methods requires the controller to select a device to be a listener, and the 
controller itself becomes the talker. There follows a short transaction such as the one 
shown in Fig. 6.ll(b), during which the sequence of data gives the device sufficient infor­
mation to operate as a talker or listener for a lengthy data transaction. Many test instru­
ments operate in just this manner, and the codes transmitted over the bus are merely codes 
for the corresponding buttons and switches on the front panel. Thus, it is relatively simple 
to convert a series of front-panel actions into a program that "pushes" the same set of but­
tons, but does so through a message transmitted over a parallel link. 

The second scheme takes advantage of the addressing properties of the IEEE-488 
bus. When ATTENTION is asserted, the 8-bit data path becomes an 8-bit command path. 
Five of these bits are dedicated to an address function, and the other three bits indicate a 
type of address function. One pattern of three bits, for example, is used to specify ''talker 
address" and another to specify "listener address." With five address bits, up to 32 dif­
ferent addresses are available, but one of these is reserved to indicate ''no address.'' The 
31 different addresses should be adequate for most operations; but to provide for address 
expansion in case it is needed, the bus standard includes the ability to use those other three 
bits to indicate a secondary address. When the 3-bit group does indicate a secondary ad­
dress, the remaining five data bits transmit a second address to all devices that recognized 
the previous primary address. In this way up to 31 2 distinct addresses can be recognized 
on the bus. 

With secondary addresses available, a secondary address can be used to give one of 
31 different commands to a device selected by the primary address. In a sense, this idea is 
the IEEE-488 equivalent of memory-mapped I/0, in that a particular function is invoked 
by transmitting to a particular address. 

The first two diagrams in Fig. 6.11 reflect the usual means of selecting a talker and 
listener, and of transmitting a sequence of bytes from the talker to the listener. We also 
see how the controller sends information to the talker and listener prior to a bus transac­
tion in order to set up that transaction. What happens if other devices, no~ currently active 
on the bus, are doing local processing and reach a point where they require service on the 
bus? This process is shown in Fig. 6.1l(c). The device that requires service asserts the 
control line SERVICE REQUEST, which is clearly the IEEE-488 counterpart of an 
interrupt-request line. Asserting SERVICE REQUEST causes an intertupt in the con­
troller, which then takes control of the bus by asserting ATTENTION. When ATTEN­
TION is active, all bus activity stops, and the controller can then poll the devices to deter­
mine what caused the interrupt. There are two ways to poll the devices on,the bus. 

1. A slow device-by-device serial poll can cover all 31 devices. 
2. A fast parallel poll can accept up to eight distinct responses simultanepusly. 

The serial poll is shown in Fig. 6.11(c). In this case Device 8 places a SERVICE RE­
QUEST on the bus, and the controller asserts ATTENTION to determine what actions are 
necessary. With ATTENTION asserted, the controller can then request status from each 
device on the bus. This process is shown symbolically in the figure. In reality, the process 
involves sending a special command on the 8-bit data bus to place the devices in the 

Micron Technology Inc. et al. 
Ex. 1042, 223



224 Parallellnterfacing 

serial-poll mode. This command is SERIAL-POLL ENABLE. Also used in the transac­
tion are the commands UNLISTEN, which disconnects any listener previously connected 
to the bus, and SERIAL-POLL DISABLE, which takes the devices out of the serial-poll 
mode. The sequence of commands is 

ATTENTION ON 
UNLISTEN 
SERIAL-POLL ENABLE 
MY TALK ADDRESS 1 
ATTENTION OFF 
Status byte 
ATTENTION ON 
MY TALK ADDRESS 2 
ATTENTION OFF 
Status byte 
ATTENTION ON 

Status byte 
ATTENTION ON 
SERIAL-POLL DISABLE 

Stop all activity on the bus. 
Disconnect all listeners. 
Initiate the poll. 
Address the first device as a talker. 
Remove attention and let the talker talk. 
The talker sends status to controller. 
Controller ta¥es the bus again. 
Poll resumes with next talker. 
Prepare for ~ext· status byte. 
Talker 2 seqds status. 
The poll continues. 

The last status byte arrives. 
The controller takes control again. 
Leave the serial-poll mode. 

Now we assume that the service request by Device 8 has high priority relative to the 
current transaction. In this case the controller simply suspends the current transaction and 
initiates a new one for Device 8 as shown in Fig. 6.11(d). Here we see the same control 
sequence as we saw earlier, but this time Device 8 is set up to talk to Devi~e 11. This 
transaction runs to completion, and Device 8 indicates completion by asserting END, 
which is one of the eight control lines on the bus. This signal is asserted concurrently with 
the last data byte transmitted on the 8-bit data path and tells the listener that no additional 
bytes follow the present one. The controller takes control when the END message ap­
pears, and resumes the interrupted transaction with the message sequence shown in Fig. 
6.1l(e). · · 

In the example transaction in Fig. 6.11, the polling method used is inherently slow 
when there are many devices on the bus and when the controller does not know in advance 
which device may have asserted the SERVICE REQUEST line. To speed up device iden­
tification, the bus protocol has a parallel-poll mode. In this mode, the controller asserts 
both ATTENTION and END, and the response is an 8-bit data byte. Each device on the 
bus asserts one data line if ready, so that up to eight different devices can each be identi­
fied uniquely by the status byte. If more than 'eight devices are on the bus, two or more de­
vices can share a data line for reporting status, and the controlier can resolve the ambi­
guity by following the parallel poll with a short serial poll. Since END is used for both 
ending a transactio~ 'or for parallel polling, it is called END OR IDENTIFY in the IEEE-
488 standard. · 

Micron Technology Inc. et al. 
Ex. 1042, 224



6.2 The IEEE-488 Instrument Bus 225 

Note that we have examined the use of six of the eight control lines shown in Fig. 6. 9. 
The two remaining lines are REMOTE ENABLE and INTERFACE CLEAR. REMOTE 
ENABLE is used to place a device connected to the bus under the control of commands 
transmitted over the bus, and usually disconnects the device from front-panel control. IN­
TERFACE CLEAR obviously is used to force devices into a fixed, known initial state. 

Note that the IEEE-488 bus can include many devices that can talk and many that can 
listen, but it usually has only a single controller. It is possible to have more than one con­
troller in a system, but at any given time only one controller has possession of control ca­
pability, whether that controller is actively giving commands or is idle in the background. 
When a second controller is to issue commands, the first controller passes the control of 
the bus to the second one through aT AKE CONTROL command. · 

With this overview of the IEEE-488 b~s functions, we can examine the several addi­
tional functions that are provided by the bus. These are listed in Table 6.1. Recall that de­
vices are categorized as listeners, talkers, and controllers, and any device can have the 
ability to perform any or all or these functions. 

Consider which functions listed in Ta1Jle 6.1 have to be implemented in typical de­
vices. For ex&rnple, consider the simple~t possible talker. This device must have the 
source handshake function to transmit data on the bus and must have the talker function in 
order to accept commands from the Controller and function as a talker. A more complex 
talker might include the service-request function and the remote/local function. A still 
more complex talker might include the parallel-poll, device-clear, and device-trigger 

TABLE 6.1 IEEE-488 Interface Functions 

Function 

SOURCE HANDSHAKE 

ACCEPTOR HANDSHAKE 

TALKER 

LISTENER 

SERVICE REQUEST 
REMOTE/LOCAL 

PARALLEL POLL 

DEVICE CLEAR 

DEVICE TRIGGER 

CONTROLLER 

Description 

Exercise DA V and sense RFD and DAC to transmit data 
on the.bus. 

Sense DA V and respond with RFD and DAC to receive 
data on the bus. · 

Respond to talker address, transmit streams of data, 
and return status in response to serial poll 
requests. 

Respond to listener address, receive strea111s of data, 
and return status in response to serial poll 
requests. 

Exercise SRQ to notify controller of a request pending. 
Accept commands from the bus when REN (Remote Enable) 

is sensed. 
Respond with status word when END OR IDENTIFY is 

exercised by bus controller. 
Respond to bus command by changing to an initial 
state. 

Respond to bus command by petforming a prespecified 
action. 

Iss~e commands on the bus. 

Micron Technology Inc. et al. 
Ex. 1042, 225



226 Parallellntertacing 

functions. For greater capability, a device might be both talker and listener, and would 
therefore include the acceptor handshake and listener functions in addition to the talker 
functions. A controller, when embedded in a computer, normally includes both listener 
and talker functions so that external devices can transmit data to and from computer 
memory as bus transactions. 

Each of the functions listed for the IEEE-488 standard is described in the standard by 
a detailed state description similar to that of Fig. 6.12, which, for our expository pur­
poses, is somewhat simpler than its corresponding diagram in the standard for the talker 
function. In the figure, we observe that in the idle state, the talker is inactive. When the 
controller asserts AITENTION and addresses the talker, the talker moves to a new state 
awaiting the opportunity to take control of the handshake lines. When AITENTION is 
released, the talker then moves either to a serial-poll state or to an ordinary talk state. In 
either case, the talker then initiates a bus transaction through the source-handshake func­
tion (not shown in the figure), and relinquishes control of the handshake lines when the 
controller reasserts AITENTION. If the controller selects a different talker (or no talker), 
the presently active talker returns to the idle state. 

Talker function 

ATTENTION OFF AND 

ATTENTION OFF AND 
NOT SERIAL POLL 

FIGURE 6.12 A greatly simplified state diagram for an IEEE-488 talker function. 

At this point, we have completed a discussion of the general functions defined by the 
IEEE-488 standard. This standard is clearly a competitive alternative to the RS-422 stan­
dard for high-speed implementations. This follows because the IEEE-488 bus is able to 
provide much higher bandwidths through a 24-pin cable and connector than an RS-422 
link can provide with its 37 pins. The IEEE-488 bus functions are defined in the standard 

Micron Technology Inc. et al. 
Ex. 1042, 226



6.3 Integrated Circuits for Parallel Interfaces 227 

at a somewhat higher level than the RS-442's functions, so that it is possible to build 
''smart'' interfaces and reduce software loads by adopting the IEEE-488 bus. 

6.3 INTEGRATED CIRCUITS FOR PARALLEL INTERFACES 

In this section we discuss several different chip implementations of parallel ports; then 
move to chips for the IEEE-488 bus. The discussion begins with the 6800-family of mi­
croprocessor chips, and the 6821 parallel port shown in Fig. 6.13. This chip has the usual 
microprocessor-bus interface, plus two 8-bit ports. One port is an open-collector port, and 
the other is a tri-state port. For both ports, individual signal lines can be programmed to be 
inputs or outputs. Two control lines are available for each port, one of which is an input, 
and the other of which can be programmed to be either input or output. This provides a to­
tal of 20 I/0 pins on this chip, which is a substantial number for most purposes. 

6800 family[ 
internal bus 

I 
I 
I 

PortA 21 
~I 
8 !Open-collector 

.Sol 
"51 CA2 

]I CAl 
<l)t------
~I CBl 
;;I 

CB2 ~I ·;;;, 
"'I Port B 

""-ll 
Tri-state I 

I 
I 
I 

J 8 input or output lines 
(open-collector). 

2 control lines (open-collector, 
edge triggered). 

2 control lines (tri-state, 
edge triggered). 

J 8 input or output lines 
(tri-state). 

FIGURE 6.13 Structure of the 6820/6821 1/0 lines. 

Each port contains three registers- a data register, a direction register, and a 
controVstatus register. Each bit in the direction register indicates whether the correspond­
ing bit in the data register is to be an input or output. Since the direction register is rarely 
accessed by a program once the port is initialized, the direction register does not have a 
separate address in the port. Instead it shares a port address with the data register. One bit 
of the control register determines whether an access to the direction/data address goes to 
the direction register or to the data register. 

The two control lines in each port, when connected to external control signals, can be 
programmed to raise interrupts when the external signals change in a specified way. Since 

Micron Technology Inc. et al. 
Ex. 1042, 227



228 Parallellnterfacing 

the control lines are edge-triggered, they are particularly useful for arbitration and 
handshaking functions where edge triggering is essential to distinguish the order in which 
events have occurred. Table 6.2 is a partial illustration of how to program the edge­
sensing capability of a control input. This table describes how control line 1 of Port A 
(called CAl in chip specifications) is programmed to set a flag and to raise an interrupt 
from the chip. There are four possibilities given in the table: The first two set the flag on 
the falling edge of a signal on this line; the second two set the flag on the rising edge. The 
second and fourth raise the interrupt, and the first and third do not. The four possible com­
binations are encoded by two bits stored in the control register for the port, and are set 
under program control. Identical control bits exist in the corresponding control register for 
PortE. 

TABLE 6.2 Control of 6821 Handshake-Input Signal 

CAl Control Bits 

00 
01 
10 
I I 

Interface Mode 

Sense falling edge of CAl, IRQ off. 
Sense falling edge of CAl, IRQ on. 
Sense rising edge of CAl, IRQ off. 
Sense rising edge of CAl, IRQ on. 

The other control pin, CA2, can be either an output or an input pin. It is programmed 
by three bits, one of which indicates whether that pin is an input or an output, and the 
other two of which indicate one of four possible functions for input or output. The four 
functions possible for the pin as an input are identical to those shown in Table 6.2. That is, 
an internal flag can be made sensitive to either a falling edge or rising edge, and the chip 
can either raise an interrupt or not when an active transition is sensed. The only difference 
is that the second control line, CA2, has its own flag bit, and does not affect the flag bit 
associated with the first control line. The two flag bits can be read by the microprocessor 
as the sign bit (for CAl) and the next most significant bit (for CA2) of the control word. 
Port B's second control pin, CB2, is functionally identical to CA2 in the input mode, and 
varies just slightly from it as an output control pin. 

The handshaking capabilities of the port are provided through CA2 and CB2 used as 
outputs, with CAl and CBl used as inputs. Table 6.3 shows the four possible choices of 

TABLE 6.3 Control of 6821 Handshake-Output Signal 

CA2 Control Bits 

100 

10 I 

11 0 
1 1 1 

Interface Mode 

Reset CA2 to 0 after READ; set CA2 to 1 on 
active edge of CAl. 

Reset CA2 to 0 after READ; set CA2 to I after 
the next clock cycle. 

Reset CA2 to 0. 
SetCA2 to I. 

Micron Technology Inc. et al. 
Ex. 1042, 228



6.3 Integrated Circuits for Parallel Interfaces 229 

function for CA2. Note that two of the states force the output pin high or low. These states 
can thus be used to raise or lower a MASTER output after specific transitions on the 
SLAVE input are sensed. ~CA2 can also be a SLAVE output with CAl a MASTER in­
put.) The program fragment in Program 6.3 shows how one might implement the asyn­
chronous handshake in a port operating as a master. The program is somewhat more awk­
ward than necessary because it does not take advantage of the automatic handshaking con­
trols described later. 

PROGRAM 6.3 Handshaking for a Parallel Port 
begin 

(* This program outputs a datum, and exercises a MASTER signal as part of an 
asynchronous handshake. It assumes that the program is entered with SLAVE 
inalogicOstate. *) 

Set CAl flag to be sensitive to arising edge on CAl; 
OUtput the datum; 
Set CA2 :to 1; (*MASTER is high indicating data available. *) 
Await interrupt (if armed) , or test CAl flag and continue after arising edge on 

CAl; (*Wait for SLAVE response. *) 

Read the data port to reset the control flag for CAl; 
Set CAl flag to be sensitive to a falling edge on CAl; 
SetCA2 to 0; (*MASTER is low.*) 
Await interrupt, or test CAl flag and continue after a falling edge on CAl; 
Read the data port to reset the control flag for CAl; 
Exit ready to output the next datum; 
end; 

The required waiting by a program can be done elsewhere if the program is interrupt 
driven. If the program is not interrupt driven, waiting can be done by tight loops that con­
tinually check the control flags. Note that the act of reading the data buffer in the port 
clears the flags associated with the control lines and arms the flags to respond to the next 
active transition of the control signal. 

Two other control modes for CA2 as an output provide additional useful capabilities. 
One is a pulse mode in which the user can force the output low by programming the mi­
croprocessor to read from a data register; the output is returned high about one clock cycle 
later. (For Port B, the output is forced low by an instruction that writes to the data register 
instead of reading from it.) Some external devices require pulses on the control lines to in­
dicate the presence of data or completion of a transfer, and this mode provides the neces­
sary capability to generate those control pulses. 

The most interesting mode is that in which the port operates a MASTER or SLAVE 
handshake signal in response to the transitions on a control input line. For PortA the mode 
lowers CA2 after the microprocessor reads data from Port A and raises CA2 after an active 
transition on CAl is sensed. For Port B, CB2 drops on a write to the data register rather 
than a read from the register, but otherwise the function is similar to Port A. To use this 
mode to facilitate an interlocked transfer, consider the Program 6.4, which works with 
Port B. 

Micron Technology Inc. et al. 
Ex. 1042, 229



230 Parallellnterfacing 

PROGRAM 6.4 Automatic Handshaking for a Parallel Port 
begin 

(* Assume the port is initialized to handshake mode, and that CB2 is 
currently high. The port writes data to an asynchronous link and acts as a 
master on the link. Assume that the CBl flag is sensitized to interrupt 
when a SLAVE transition indicates that the slave is ready for a new 
datum. *) 

Interrupt entry-point: 

end; 

Read data register of Port B; 
(*This clears' the interrupt and associated flag. *) 

Obtain next output datum; 
Write datum toPortB; (*This lowers MASTER. *) 

Return from interrupt; 
(*Exit. When the next reentry occurs, the interrupt from the SLAVE will 

automatically raise MASTER from this port in preparation for the next 
cycle. *) 

The timiug of the MASTER signal with respect to the SLAVE signal is shown in Fig. 
6.14. MASTER and SLAVE are shown to be active in the low state because this is the 
way they are controlled in the automatic handshake mode. Observe how MASTER is 
brought low by pro;7am control and then changed to high when an active transition on 
SLAVE occurs. Astute readers will observe that the handshake is not fully interlocked be­
cause the interface responds to only one transition of SLAVE. To be fully interlocked the 
chip must respond to both transitions, and this requires reprogramming the sensitivity of 
CBl between each transition as the chip specifications now stand. A more useful chip 
specification, which is a slight deviation from Table 6.3, is to post an interrupt when CBl 
moves in one direction, and to respond with a change in CB2 when CB 1 moves in the op-

MASTER 
(output) 

SLAVE 

After WRITE to port 

(input) ---------'-----'--~,....-----+---'---------

Automatic transition (with interrupt posted) 

FIGURE 6.14 Automatic handshaking mode for the 6821 I/0 port. 

Micron Technology Inc. et al. 
Ex. 1042, 230



6.3 Integrated Circuits for Parallel Interfaces 231 

posite direction. This gives the required sensitivity to both edges of CBI. The interrupt 
should occur when CBl indicates the slave is ready for data, and this should not change 
MASTER. MASTER changes when a new datum is placed in the output register. Unfor­
tunately, the chip is not manufactured with this behavior. 

The 6500 family uses the 6821 chip for parallel I/0 functions, since the bus interface 
is identical; or it uses a compatible version numbered 6520. Several parallel I/0 chips in 
both the 6500 and 6800 families offer other capabilities. For example, the 6530 and 6846 
both contain one I/0 port plus read-only memory and a timer. The 6522 has an I/0 port, 
two interval timers, and serial-to-parallel and parallel-to-serial converters. Handshaking 
functions for these chips follow the general scheme for the 6821. 

Intel's i8255 is a parallel-interface device that has capabilities somewhat similar to 
those of the 6821, with differences worth describing here. The chip has 24 interface pins 
that can be programmed to be in one of three functional modes, namely, 

1. Basic I/0 without handshaking. 
2. Unidirectional I/0 with handshaking. 
3. Bidirectional I/0 with handshaking. 

For the basic-I/O mode, the I/0 port is essentially a buffer/repeater for data that move 
between the microprocessor and the external world. Output data are latched in the port to 
be held constant for external sensing, and input data are sampled under microprocessor 
control without latching. Since no control signals are required, the 24 I/0 bits are organ­
ized into three ports of eight bits each as shown in Fig. 6.15(a). The direction of the signal 
wires is controlled in groups of four or eight pins, and not individually controlled as for 
the 6821. Ports A and B are treated as 8-bit ports, and each port has all of its pins set 
simultaneously to be inputs or outputs. The third port Cis made up of eight pins that are 
control signals in the other modes. In the basic I/0 mode this port has two 4-bit groups, 
and each group is set as a group to be an input or output group, but the two groups need 
not have the same direction. 

The next mode, which has strobed handshake-control, utilizes external control sig­
nals to latch input data and to generate interrupts. The act of latching data also returns an 
acknowledgment, which thereby provides for automatic handshaking for MASTER/ 
SLAVE signals to control asynchronous transfers. An equivalent logic diagram for this 
type of control signal appears in Fig. 6.15(b). In the figure, the control lines STB, IN­
TERRUPT REQUEST, and IBF are three handshake signals configured from three pins of 
Port C. A total of five lines of Port Care used this way-three lines to control Port A and 
two more to control Port B. The INTERRUPT REQUEST line is common to both ports. 
The remaining three lines of Port Care usable as general I/0 lines in this mode. Ports A 
andB act as independent 8-bit data ports. The INTERRUPT ENABLE in the figure is pro­
duced by an internal control bit of the 8255, which is set and reset by the processor 
through commands sent to the 8255. The last control line, READ L, is the familiar bus­
control line that determines the direction of a data transfer. 

The 8255 functions are sufficient to implement the fully interlocked, asynchronous 
protocol because the control logic is sensitive to both edges of MASTER, and each transi-

Micron Technology Inc. et al. 
Ex. 1042, 231



232 Parallellnferfacing 

PortA 

Port C 

PortE 

INTERRUPT.------------1 
REQUEST 

STB L ....,_....._-ot 
(MASTERL) 

IBF (Input buffer full) 

(SLAVE) 

(a) 

J 8 data lines (input, 
output, bidirectional). 

J 8 control lines (input data, 
output data, control/strobe). 

J 8 data lines (input, 
output, bidirectional). 

~---------+--4---~READL 

(b) 

FIGURE 6.15 (a) The structure of the i8255 1/0 pins; (b) equivalent logic diagram for 
the i8255 handshake control lines. 

tion of MASTER triggers a corresponding transition of SLAVE, either directly or in­
directly. Note from the schematic in Fig. 6.15(b) that the falling edge of STB L (the 
MASTER signal) causes IBF (the SLAVE signal) to set to 1. The rising edge of STB L 
does not directly trigger a change in IBF, but it does raise an interrupt if the interrupt is 
enabled. In response to the interrupt, a READ issued by the microprocessor accepts data 
from the port, and clears IBF, thereby completing the fully interlocked transaction. A 
similar behavior for the output configuration of the potis guarantees that both MASTER 
and SLAVE functions are compatible with the specifications of an 8255 IJO port. 

Micron Technology Inc. et al. 
Ex. 1042, 232



6.3 Integrated Circuits for Parallel Interfaces 233 

The last mode, bidirectional mode, provides for bidirectional ti·ansfer on Port A. To 
control transfers on this port, the 8255 uses five bits of Port C for handshaking and inter­
rupt generation. Two lines control input handshaking, two lines controi o~tput handshak­
ing and the fifth line is the interrupt request line. When Port A is used in a bidirectional 
mode, Port B is still available for use in either basic-I/O mode or unidirectional mode with 
the remaining three pins of Port C used for handshake control and interrupt generation. 

Programmable control of the configuration of the 8255 is.accomplished through an 
8-bit control command that the microprocessor issues to the peripheral chip. There are 
two types of commands, and these are distinguished by the most significant bit of the con­
trol word. A 1 in this position identifies the command as a mode-configuration command, 
and a 0 in this position indicates the command sets or resets control bits in the 8255. 

For mode configuration, there are seven bits remaining in a command word other 
than the 1 bit in the most significant position, and these select one of 128 possible config­
urations. The mode control specifies which direction the various ports will take and which 
functional modes of data transfer are to be used. When the command word from the mi­
croprocessor has a 0 in the most significant position, four of the remaining bits of the 
command set or reset a 1 bit in Pori C. Of the four command bits, three bits select a bit in 
Port C and the fourth becomes tht;< new value of that bit. This capability is required so that 
specific bits of Port C can be changed without affecting other lines when Port Cis control­
ling asynchronous transactions. With conventional access to Port C, all bits are altered 
simultaneously, and it is impossible to change a single bit withm;t affecting all others. 
Restoring the previous values of bits to be left unchanged is unsatisfactory, because those 
bits may have changed since they were last read. 

The data registers of Ports A, B, and Care each individually addressable, as is the 
control word address, so that the 8255 occupies four bytes of port-address space. 

Interface Chips for the IEEE-488 Bus 

The appearance of the IEEE-448 bus standard in 1975 stimulated several integrated­
circuit manufacturers to investigate the feasibility of implementing LSI chips for the 
IEEE-488 bus. Hewlett-Packard, with a head start in the use of the major portion of the 
standard, was able to fabricate a custom-LSI chip that implements the entire functional 
protocol (except for the bus drivers) and to release it in various products starting in the late 
1970s. This chip is not sold separately outside HP, so that other interface designers were 
on their own until the integrated-circuit manufacturers could produce the necessary LSI 
components. Motorola and AMI in the late 1970s announced the manufacture of the 
68488 chip that implements the functions required for talker/listeners. Intel announced 
two chips in roughly the same time period: the i8291, which implements the 
talker/listener functions; and the i8292, which implements the controller functions. Most 
peripherals that attach to the IEEE-488 bus are talker/listeners and, therefore, require only 
the 8291. However, the microcomputer interface to the bus normally is a controller and 
functions as talker/listener as well, so this interface requires both the 8291 and the 8292. 
The Intel devices are themselves single-chip microcomputers in the 8041 family, each 

Micron Technology Inc. et al. 
Ex. 1042, 233



234 Parallellnterfacing 

containing a small memory, an 8-bit processor, and a limited 110 interface all integrated 
on a single circuit. The on-chip read-only memory is preprogrammed to perform the re­
quired b"\}S functions. A third member of this family, the i8293, is a bus-transceiver chip 
that cqntains half the drivers necessary to connect an 8291 or 8292 to aniEEE-488 bus. 

As the popularity of the bus standard increased, other integrated-circuit manufactur­
ers beg~ to offer competitive devices. The 96LS488 from Fairchild is one such device 
that is distinguished for its on-chip bus drivers, which makes it a truly single-chip inter­
face for talker/listener functions. With the low-cost of the IEEE-488 interface today, and 
still lower costs as integration density becomes higher, the advantages of the parallel 
high-speed 110 bus may displace such well-entrenched serial links such as the RS-232-C. 

A schematic diagram of the 8291 appears in Fig. 6.16. The diagram shows 16 inter­
face registers connected to an internal bus of a microcomputer. These registers are actu­
ally part of an on-chip RAM of that microcomputer. The IEEE-488 data bus connects to 
the interface registers through the internal bus, and the command signals for the IEEE-488 
bus are controlled and sensed through other 110 lines on the internal microcomputer. The 
interface to an 808X family bus provides a way to connect the IEEE-bus chip to a host mi­
croprocessor, and thus the 8291 functions very much like any other petipheral chip. The 

808X family bus 

,-------------------------l 
I 
I 
I 

14--------+-1-r--. Data 

8 status and data-in registers 

I 
Internal bus 1 

I/0 Micro­
computer 
and ROM 

(8041) 

I 
I 

FIGURE 6.16 Structure of the Intel 8291 talker/listener. 

ATN 

DAY 

DAC 
RFD 
SRQ 

EO! 
REN 

IFC 

IEEE-488 
bus 

Micron Technology Inc. et al. 
Ex. 1042, 234



6.3 Integrated Circuits for Parallel Interfaces 235 

system designer may be totally unaware that the internal architecture of the 8291 is that of 
a microcomputer. 

The 8291 interface registers are shown in two groups-namely a group of eight status 
and data-input registers, and a group of eight control and data-output registers. The 808X 
host microprocessor reads and writes these registers to transfer data to and from the 
IEEE-488 bus. The functions controlled by these registers are as follows: 

1. There are two registers that buffer data onto and off the IEEE-488 data bus. 
2. Two registers arm and disarm individual interrupts. Among the conditions recog­

nized are a full input buffer, empty output buffer, end of information, serial-poll 
mode, and device-address recognition. Each of these conditions on the IEEE-488 bus 
can invoke software routines in the host (808X) microprocessor when they occur. 

3. Two registers hold the state of the interrupt signals. The host microprocessor can 
sense these bits to determine which condition triggered an interrupt and which did 
not. 

4. Two registers hold control and status information for the serial-poll function. One 
register, an output register, holds a service-request bit and a 7-bit status word that is 
sent to a controller on the IEEE-488 bus in response to a serial poll. Setting the 
service-request bit in this register sends a SERVICE REQUEST to the system con­
troller. The other register, an input register, contains the present value of the serial­
poll status word. 

5. Five registers control the address-selection function of the interfaces. Of these, one 
register controls the selection mode. The interface can respond to a single primary ad­
dress or to primary/secondary pairs of addresses issued sequentially. Control bits in 
the mode register determine which of several possible response modes is active. A 
status register indicates the present state of the selection logic so that the host mi­
croprocessor can determine whether the device has been selected and, if so, whether 
that selection has been as a talker or listener. One register, an output register, carries 
both the primary and secondary addresses. The data passed to this register is routed to 
one of two input-registers that hold, respectively, the primary and secondary ad­
dresses. 

6. One register holds a special character that acts as an END OF STRING (sometimes 
called END OF SEQUENCE). When a listener discovers this character in an incom­
ing data stream, the listener responds as if the END control line has been asserted, 
and performs the normal actions for an end of message. 

7. One register is a command pass-through register and holds any command transmitted 
on the bus that is not recognized by on-chip logic. This permits software in the host to 
interpret such commands in nonstandard ways, and thereby permits extension of the 
bus capability in system-dependent ways. 

8. One register controls miscellaneous auxiliary functions. 

To understand how the 8291 is used to interface to an IEEE-488-bus, consider a sys­
tem with a host microprocessor and an 8291 in which the host microprocessor is to ''talk'' 

Micron Technology Inc. et al. 
Ex. 1042, 235



236 Parallellnterfacing 

to the bus. Elsewhere on the bus is a bus controller. Consider what happens when the con­
troller requests the host microprocessor to send a string of bytes on the bus. The following 
actions occur: 

1. The talker address in the primary-address register of the 8291 matches the talker ad­
dress received from the IEEE-488 bus. This match raises an interrupt, which eventu­
ally initiates the talker program in the host microprocessor. 

2. After the controller has set up the listeners, the talker program in the host initializes 
the 8291 for the transmission of data. To do so, it sets the state of the interrupt masks 
and of other control bits in the 8291 to control the activity during the data transfer. A 
typical set of actions is the posting of an interrupt at the end of each byte transferred, 
and the transmitting of the END signal when the END OF STRING character appears 
in the output data stream. 

3. The talker sends a sequence of characters that terminates with END OF STRING. 
4. The bus controller should be conditioned to recognize when the EOI or end-of-string 

character is transmitted. The controller detects this condition, becomes active, and 
asserts ATTENTION. 

5. The talker goes to the idle state. 

The listener function operates in a very similar manner, with the data-flow direction 
being the major difference between the two types of interface. The talker/listener func­
tions require substantial program control as we have described them here. If the interrupts 
are left unarmed, then the talker and listener have to monitor bus events to be sure that 
they can react to changes of state. 

The most usual type of implementation of bus interfaces with the 829X family is to 
use the 8291 and two 8293s in peripheral devices, with the idea that the talker/listener 
functions are sufficient for most peripherals. A system controller does all these functions 
and more, and therefore the controller for the IEEE-488 bus contains the 8292 controller 
chip plus the other chips. Programming this particular interface is an interesting challenge 
because it involves enabling and disabling the 8291 and 8292 chips repeatedly, as the in­
structions shift between those functions that are to be performed by the controller and 
those that are to be performed by the talker/listener. A DMA-controller chip in the system 
further complicates the programming complexity because, in this instance, the software 
has to multiplex its capabilities among the DMA controller, the 8291, and the 8292. In 
spite of the complexity of the program required to control the multiplicity of functions of 
the 829X family, the bus-interfacing problem is very much simpler than it might other­
wise be. 

The 6800-family interface is the 68488 chip manufactured by Motorola and AMI. It 
is functionally similar to the 8291 talker/listener, but differs considerably in the details of 
its operation. The 68488 implements the principal functions to be performed by talkers 
and listeners, and it does so with the same general technique of the 8291. The 68488 has 
16 registers in its address space, of which 8 can be read and 8 can be written. (Not every 
one of these addresses corresponds to a physical register.) Given the requirements of a 

Micron Technology Inc. et al. 
Ex. 1042, 236



6.3 Integrated Circuits for Parallel Interfaces 237 

talker/listener, it is clear that the 68488 must be similar to the 8291 in at least the follow­
ing ways: 

1. There are two registers for data transmission. One holds input data from the bus, and 
the other holds data to be· output to the bus. 

2. An interrupt-maskregister controls the conditions that can post interrupts. 
3. Two registers hold interrupt status. One of these has bits that correspond to the 

mask-register bits. The other has additional status bits that are used to distinguish 
among several possible conditions that are OR' ed together in the first register. 

4. Four registers are used for address selection. One register determines the mode and 
primary address. This controls whether the chip will respond to talker or listener ad­
dresses, and whether a primary address or a primary/secondary pair of addresses is re­
quired. A second register holds a primary address that is read from external switches 
or an external register. A status register indicates what modes are in force, and what 
address selection has occurred most recently. The last register, a mode register, con­
trols other address-selection functions. 

5. Two registers are used for the serial-poll function. These are essentially the same as 
the registers in the 8291. One register (an output register) holds a service-request bit 
and a 7-bit word for response to a serial poll, and the other register (an input register) 
holds the present values of these bits. 

6. One register holds the 8-bit word delivered to the bus in response to a parallel-poll 
command. 

7. One register is dedicated to holding the status response to a serial-poll request. 
8. One register is a command pass-through register, and holds any unrecognized com­

mand received on the bus. Its function is essentially identical to the corresponding 
register in the 8291. 

9. One register, the auxiliary-command register, controls other miscellaneous func­
tions. 

The major differences between the 68488 and the 8291 are in the treatment of inter­
rupts. Because there are a very large number of possible interrupts, it is convenient to or­
ganize them hierarchically. For example, three different but related conditions can be 
OR'ed together on one interrupt bit. Then setting or resetting the corresponding mask bit 
respectively arms or disarms the three interrupt conditions. If the interrupt is armed, then 
the chip posts an interrupt if any one of the three conditions occurs. When the micropro­
cessor responds to the posted interrupt, whether the interrupt is vectored or not, the mi­
croprocessor cannot determine from the external interrupt precisely which bus condition 
caused the interrupt. The microprocessor must "poll" the chip in some sense. For the 
case where three interrupts are OR'ed on one bit, the microprocessor first must sense the 
interrupt bit that is the logical OR of the three conditions. When it discovers that the OR 
has caused an interrupt, the microprocessor must then determine which of the three condi­
tions has occurred. Therefore, there must be yet another status word that contains the in­
dividual conditions, and indeed the 68488 is organized in just this way. Hence, the inter-

Micron Technology Inc. et al. 
Ex. 1042, 237



238 Parallellnterfacing 

rupt software first determines which of the interrupt bits at the first level has triggered an 
interrupt; then if a bit that represents a composite signal has done so, the software next in­
terrogates the status bits for the individual control signals. The 8291 interrupt scheme is 
not organized in this hierarchical fashion, so that the decoding of the interrupt is more 
direct for the 8291 than for the 68488, but the interrupts are slightly more time-consuming 
to interpret. 

At this writing, the 6800-family has only the 68488 chip for the talker/listener func­
tion, and no chip for specifically implementing the controller function. However, since 
the controller function does nothing more than assert (or sense) the 8 control lines and is­
sue commands on the 8 data lines, the controller can be implemented with a parallel I/0 
chip that has two 8-bit ports. A suitable candidate for this implementation is the 6821. But 
the 6821 has very little on-chip logic to assert and deassert specific control signals in 
response to status sensed on the bus. Hence, when the 6821 is used as a controller, a good 
deal of the bus control must be implemented in the software. Consider, for example, how 
a 6821 and support software can implement the SERVICE REQUEST function. The 
SERVICE REQUEST should ordinarily post an interrupt. Hence this control line is con­
nected to a handshake line on the parallel port, and the port is armed to interrupt an active 
transition. 

When a SERVICE REQUEST interrupt occurs, software initiates a serial poll. To do 
so it first asserts ATTENTION by setting the corresponding bit in the parallel port. Then it 
sends a sequence of commands on the data port, doing so by transmitting the commands 
to the data port of the 6821. Mter each command is sent, the controller has to manipulate 
the DATA AVAILABLE handshake line and sense DATA ACCEPT and READY FOR 
DATA signals. It is possible to perfonn these functions through software control of the 
68488; but if the 68488 is a talker or listener active on the bus at the point of the SER­
VICE REQUEST, there is some danger that its state will be lost if the chip is used to 
respond to the SERVICE REQUEST. For this reason, it may be better to do all of the con­
trol functions through the parallel port, and thereby preserve the present state of the 68488 
chip. Then after each command is output to the parallel port, software has to exercise the 
control port to handshake on DATA A V AlLABLE and to sense the incoming handshake 
lines. The 6821 chip is general enough to be able to perform the controller task, but there­
lated software becomes more difficult to write and debug, and its perfonnance is lower 
than it might be if the controller were an LSI chip specifically designed for the IEEE-488 
bus. 

A totally different approach to the problem has been taken in the Fairchild 96LS488. 
This device has essentially no addressable registers and is, in effect, preprogrammed to do 
a specific set of talker/listener functions. Its interface signals are shown in Fig. 6.17. 
These signals include the 16 signals for the IEEE-488 bus, plus four mode-control lines, 
five device-address lines, and six lines for controlling the transfer of data between the 
IEEE-488 bus and a device attached to the 96LS488. The address lines are presumably 
connected to switches whose settings establish the talker/listener address. The mode 
switches set the interface chip into one of 16 preprogrammed modes that dictate whether 
the chip is a talker, listener, or both, and whether the device responds to one or to two ad-

Micron Technology Inc. et al. 
Ex. 1042, 238



6.3 

Primary 

Master handshake +---7~2-+l 
Slave handshake +-~~2-+l 

Status handshake +----r-'-2~ 

Mode control---7~4-+1 

address ----;'-;...:;....~ 

Secondary ----r....;;...~ 
address 

Other II 
control functions 

Integrated Circuits for Parallel Interfaces 

96LS488 

IEEE-488 interface chip 

8-bit data bus 
8 

IEEE-488 control lines 
8 

FIGURE 6.17 Interface signals for the 96LS488. 

239 

dresses. (If it requires two addresses, external logic has to multiplex two addresses onto 
the 5-bit address port. Multiplex control is developed on-chip by an address-select signal.) 

To interface this chip to an instrument or to a microprocessor, it is necessary only to 
write data into the chip or read data from the chip, and to perform a minimum of status 
sensing. Two of the handshake lines control the transfer of data when the 96LS488 acts as 
a bus master. The transfer protocol is a fully interlocked asynchronous handshake. Two 
additional handshake lines control data transfers when the chip is a bus slave. The remain­
ing two lines are used to pass a status byte to the 96LS488 during a serial-poll sequence, 
and they too follow the same interlocked handshake protocol. 

Figure 6.17 is somewhat simplified because other functions are not shown individu­
ally. Among the miscellaneous control lines is a signal to the 96LS488 that forces it to is­
sue a SERVICE REQUEST on the IEEE-488 bus. Other control lines are used for specific 
functions in a similar fashion. The reason for bringing the control lines to boundaries of 
the chip and for eliminating the need to access internal registers is that the 96LS488 need 
not be associated with a microcomputer. It is readily interfaced to instruments that have 
digital logic, but not necessarily a digital microcomputer contained within them. When 
this chip is to be interfaced to a microcomputer, the easiest way to do so is to connect it to 
a parallel port such as the 8255 or 6821 because the handshake lines on the 96LS488 fol­
low the same or similar protocols to those followed by the 8255 and 6821. Since all bus 
drivers are contained on-chip, the 96LS488 is very close to an ideal one-chip bus inter­
face. Software required to drive this chip is negligible as well, because the functions are 
preprogrammed. In using this chip the designer gains a great deal in speed and integration 
level, but may give up something in flexibility. 

This completes our discussion of the interfacing to the IEEE-488 bus. The designer 
who implements such an interface is best advised to study the IEEE-488 bus standard well 
and to be thoroughly familiar with it before initiating the design. This discussion is in­
tended to give such a designer basic information as to what functions are performed in in­
terface chips and how the chips are controlled. In working out the details for any specific 

Micron Technology Inc. et al. 
Ex. 1042, 239



240 Parallellnterfacing 

interface, the designer must work from the chip specifications and the documentation for 
the standard. 

OTHER READING AND SOURCE MATERIAL 

For information on parallel interfaces, the most detailed sources are the manufacturers' 
specification sheets. Osborne and Kane, vol. 2 (1978), cover the major parallel interface 
chips and give many practical tips for putting the chips to use. Ebright's application note 
(1976) shows several uses for the 8255, including the schematics and assembly-language 
driver programs. 

With the introduction of the LSi interface chips for the IEEE-488 bus, an extraordi­
nary amount of information has become available. The primary source of documentation 
is the published standard (IEEE, 1975, revised 1978.) An overview of the interface stan­
dard by Knoblock, et al. (1975), is somewhat broader and less detailed than the material 
in this chapter. The 1975 Wescon Proceedings carries four papers by implementers of the 
standard (Knoblock, 1975; Lee, 1975; Coates, 1975; and Fluke, 1975) that give interest­
ing insights into considerations and recomrilended approaches for commerical implemen­
tations. The papers are, in general, written with instrumentation applications in mind, and 
they were written before LSI chips appeared. 

To assist designers in the use of LSI chips, several manufacturers have released de­
tailed application notes that are excellent sources cif information. Forbes (1980) shows 
logic diagrams and programs for the intel family of chips (on the cover, this application 
note credits T. Voll with authorship but internally the authorship is credited to Forbes). In­
tel Corporation makes available source listings of the programs in the 8291 and 8292 con­
trollers for implementers who have very specific questions on their operation. 

Motorola offers two application notes of interest.. "Getting aboard the 488-1975 
bus'' (undated)is a very readable discussion of the standard and relates the standard to the 
MC68488 interface chip for the standard. Kryka ( 1979) shows how to implement the stan­
dard with the use of an MC68488 for talker/listener functions and a parallel I/0 chip for 
the controller functions. Summers (1980) describes applications of Fairchild's 96LS488. 
In the microcomputer system area, Fisher and Jensen (1980) cover techniques for control­
ling IEEE-488 devices on the Commodore PET and CBM computers. The primary I/0 
bUs for these systems is the IEEE-488 bus, as is the case for several families offered by 
Hewlett-Packard. Compatible peripherals including printers, floppy-disk drives, and 
modems are marketed by Commodore and Hewlett-Packard, as well as by numerous in­
dependent suppliers. 

EXPERIMENTS 

6.1 This experiment constructs a square output from a parallel port. Obtain a microcom­
puter with a user-programmable parallel port. If your microcomputer does not have 
an available parallel port, then obtain a parallel I/0 chip and interface it to your mi-

Micron Technology Inc. et al. 
Ex. 1042, 240



Experiments 241 

crocomputer. For 808X microprocessors use the 8255, and for 68XX and 65XX mi­
croprocessors use the 6821 . 
a) Write a program that does the following: 

i) Initializes. the I/0 port so that a specific bit is an output bit. 
ii) Alternates the output value of that bit between 0 and 1 at the maximum rate 

permissible by the microcomputer. To alternate between 0 and 1, execute 
the following loop. 

For 808X microprocessors: 

LOOP XRI OFFH COMPLEMENT THE ACCUMULATOR 

OUT 

JMP 
PORT OUTPUT THE ACCUMULATOR 

LOOP 

For 68XX microprocessors: 

LOOP COMA 

STAA 

BRA 
PORT 

LOOP 

For 65XX microprocessors: 

LOOP EOR $FF 

STA PORT 

JMP LOOP 

COMPLEMENT THE ACCUMULATOR 

OUTPUT TO PORT ADDRESS 

COMPLEMENT THE ACCUMULATOR 

OUTPUT TO PORT ADDRESS 

b) On a dual-trace oscilloscope observe the waveform of the output pin you have 
programmed, and verify that it is a square wave. 

c) Probe the system clock on the second trace, and find the number of clock cycles 
per square-wave cycle. Calculate the number of clock cycles required to execute 
the three-instruction loop, and verify that this number agrees with your observa­
tion. 

d) Expand the scale of the output pin, and observe where the transitions on this 
waveform fall relative to the system clock. Find the delay between the comple­
tion of the OUT or STA instruction and the transition on the output of the parallel 
port. Compare this delay to the minimum delay in the manufacturer's specifica­
tion for the I/0 chip. 

6.2 Connect two computers together through a parallel port. You should use MASTER 
and SLAVE handshake lines to control data transfers. The data bus for the transfer 
should have eight data lines. For the interconnecting cable, keep the cable as short as 
reasonable, and include in the cable one ground wire for each signal wire. Twist the 
ground wires around the signal wires to form twisted pairs, and connect all ground 

Micron Technology Inc. et al. 
Ex. 1042, 241



242 Parallellnterfacing 

wires to logic grounds at their respective microcomputers. Before powering up the 
dual-processor system, be sure that the two systems have a common earth ground at 
the AC power source. 
a) Write a program that transfers data across the link with a fully interlocked 

handshake protocol. Generate the bytes at the transmitter as a sequence of alter­
nating OOs and FFs, and discard the data at the receiver without attempting to 
buffer it. Find the rate of data transfer that you have achieved. How many times 
faster is this than the RS-232-C connection on the same computer? 

b) Measure the skew time of the data by probing the data bus at the receiving mi­
croprocessor. To do so you will have to sync the scope to the chip select of the 
parallel port receiver or to an equivalent periodic signal. (Or you can use a logic 
analyzer.) Find the delay of each data and handshake line relative to a transition 
of the system clock, and find the maximum observed skew among the signals on 
the bus. 

6.3 Create an interrupt-driven transmitter programmer for the parallel link described in 
Experiment 6.2, and use the automatic handshake lines to the greatest possible ex­
tent so that the program does the minimum amount in a data transfer after having ini­
tialized the interrupt system and the port. Observe the MASTER, SLAVE, and data 
lines on an oscilloscope. For the 6821, the transfer may not be fully interlocked be­
cause the 6821 does not easily support this type of transfer in the automatic­
handshake mode. 

6.4 From the manufacturer's specifications for a 2732 or 2716 PROM, find what is re­
quired to build a PROM programmer from a microcomputer and parallel port. 
Design and build such a PROM programmer. Test the programmer by running it 
without a PROM plugged in, and verify that all WRITE control signals, data signals, 
and address signals follow the manufacturer's specifications. 

6.5 Obtain a music synthesizer chip such as the General Instrument AY3-8910. Inter­
face this chip to a microcomputer through a parallel port. 

6.6 Interface a hexadecimal keypad to a microcomputer through a parallel port, and 
write a program that uses software to debounce the key switches and to encode the 
keys depressed. 

6.7 Interface a 4-digit, 7-segment display to a microcomputer by using a parallel port 
and externallatches.Your interface should use only 7 output lines for data to the 
latches, and should use other control lines to multiplex the seven signals to the 
storage logic for the corresponding digit. If you use external BCD-to-7 -segment 
decoders, then you may reduce the number of digit output lines from seven to four. 

6.8 Find a system that contains an IEEE-488 bus, and program the system to "talk" 
continuously. Then initiate a perpetual data transfer and monitor the bus handshake 
signals DAY, NRFD, and NDAC. Observe these signals on an oscilloscope, and 
determine the maximum data rate for such a transfer. Verify that the signals conform 
to the shape and timing that you anticipated. 

Micron Technology Inc. et al. 
Ex. 1042, 242



Problems 243 

PROBLEMS 

6.1 Table P- 6.1 is an abbreviated table that shows how particular bits in a control regis­
ter govern the behavior of signals CBl and CB2, the handshake control pins for Port 
B of a 6821. This table is quite similar to, but not identical to, Tables 6.2 and 6.3, 
which give the behavior of the handshake lines for Port A of the same type of chip. 
The control bits are identified as CRB-0 through CRB-7, where CRB designates 
Control Register B, and the bits of the register are numbered from 0 to 7 from least 
significant bit to the most significant bit. CRB-7, the sign bit, is a status bit that can 
be read by a microprocessor to determine what events have taken place as reported 
by pins CB 1 and CB2. 

TABLE P-6.1 CB1 Control Function for a 6821 Parallel Port 

CRB-1 

0 
0 
1 
1 

CRB-5 

CRB-2 

0 
1 
0 
1 

CRB-7 Setting 

Set on CB 1 falling, no interrupt. 
Set on CB 1 falling, with interrupt. 
Set on CB1 rising, no interrupt. 
Set on CB 1 rising, with interrupt. 

CB2 Output Behavior for a 6821 Parallel Port 

CRB-4 CRB-3 CB2 Behavior 

0 

0 

0 

0 
1 

CB2 goes high when CRB-7 signals an event, 
and drops low when data are written into data 
register of port. 

CB2 goes low during a clock transition after data 
are written into the port, and goes high after 
the write is completed and the chip is disabled. 

CB2 is forced low. 
CB2 is forced high. 

Write a brief program that works with this type of port and implements a fully inter­
locked asynchronous handshake as automatically as possible. Assume that the com­
puter controls the port to write to a parallel device such as a printer. Assume that the 
printer READY signal is connected to CB 1 as an input, and that the CHARACTER 
READY signal is CB2. READY and CHARACTER READY are to be fully inter­
locked, and the program is supposed to set up the control register to simplify the 
software that controls the handshake. 
In your program, when you read or write a control register, assume that it has a 
memory address (or port address) CRB. The corresponding data register has a 
memory (or port) address OAT AB. 

Micron Technology Inc. et al. 
Ex. 1042, 243



244 Parallellnterfacing 

6.2 Consider the same problem as the previous one; but for this one, the port is used to 
read data instead of to write data. For reading, use Port A on the device in place of 
Port B. The two ports are, in general, identical in function except that control output 
CA2 behaves as indicated in Table 6.3, which is different from the behavior of the 
corresponding control output CB2. 

6.3 The Intel 8255 I/0 port has three modes of operation, one of which (Mode 1) is a 
handshake mode of operation. In this mode, Port A can be configured either for input 
or output. When configured for input, PortA carries data in, whereas bits 3, 4, and 5 
of Port C control a handshake for Port A. When Port A is configured for output, bits 
3, 6, and 7 of Port C control a handshake for Port A. The function of the handshake 
bits is given in Table P-6.2. The interrupt outputs of the 8255 can be used to inter­
rupt a microprocessor to service the interrupt. 

TABLE P-6.2 Intel8255 Port C Functions (Mode 2) 

Port C Bit Type 

4 STROBE 

5 INPUT BUFFER FULL 

7 OUTPUT BUFFER FULL 

6 ACK 

3 INTERRUPT 

Pin Function 

This signal is generated extemally to the 8255 
and fed to the 8255, where it triggers a latch 
on-chip to capture extemal data in PortA. 
A 0 on this signal latches the data. 

The 8255 produces a 1 on this pin to acknowledge 
a response to an extemal STROBE signal that 
latches extemal data into the data register. 
A 0 is produced when the processor reads the 
data register. 

The 8255 outputs a 0 on this line to indicate 
the processor has filled the buffer, and a 1 
when an extemal ACK is received to indicate 
the contents have been read. 

A 0 on this input indicates that the output of 
PortA has been accepted extemally. 

If the Port A interrupt is enabled for input 
operations, the 8255 produces a 1 on this pin 
when a STROBE fills an input buffer. This 
output returns to 0 when the input buffer is read. 
For output operations, this signal 
becomes 1 when an ACK is sensed by the 8255, 
and becomes 0 when the data buffer is 
rewritten. 

Show a strategy for interconnecting computers with a pair of parallel I/0 ports. As­
sume that data flows in one direction from Computer 1 to Computer 2, and that the 
transmission is interrupt driven. Assume specific port addresses for setting the mode 
and direction of the 8255, and for accessing the I/0 buffer in Port A. Show the inter­
connections and signaling behavior required to attain a fully interlocked asynchro­
nous handshake. 

Micron Technology Inc. et al. 
Ex. 1042, 244



7 I MAGNETIC-RECORDING TECHNIQUES 

This chapter covers the basic principles for interfacing microcomputers to magnetic­
recording devices such as cassette tapes, cartridge tapes, floppy disks, and hard disks. 
Although this material is oriented toward microprocessors, the information is of more 
general interest as well, since the principles hold for larger and faster computer systems, 
except for additional complexities in very high-performance systems. Because cost is a 
major factor in microprocessor systems, the usual design practice is to sacrifice high per­
formance in return for low cost. 

This chapter describes two types of recording devices-the tape medium as found in 
cassettes and the disk medium as found in flexible (floppy) disks and rigid (sometimes 
called "hard") disks. For tape media with low bit density, particularly for cassettes, the 
critical part of the interfacing problem is to eliminate sensitivity to the mechanical speed 
of the recorder. Home recorders are quite adequate for microprocessor applications, but 
the speed variations from recorder to recorder or in a given recorder over a period of time 
are rather substantial. The device interface must be insensitive to minor speed variations 
in order to assure reliable recovery of data, especially when tapes are to be used by dif­
ferent recorders. The discussion in this chapter shows two different techniques for data 
recovery, one of which is a software self-timing technique and the other is the use of a 
feedback circuit known as a phase-locked loop. Besides its use in magnetic recording and 
playback, the phase-locked loop has many other computer applications such as receiving 
circuits that must adapt to the signaling frequency of a particular peripheral device or 
communications channel. So, although the material is focused toward magnetic record­
ing, the content is generally useful for such other applications as clock recovery for high­
speed HDLC data channels, which were discussed earlier in this textbook. 

The latter part of this chapter treats disk interfacing techniques. For disks the data 
density is usually high enough to interfere with the ability to lock on to the frequency of 
the recovered data stream. While phase-locked loops are useful for recovering data from 
disks, they are normally used for long-term stability, and other techniques are used for 
short-term timing. A digital form of a phase-locked loop is used to give gross estimates of 
the average clock rate, and fine tuning is done through timing compensation, amplitude 
compensation, or other analog techniques. 

Other recording media commonly used for microprocessor systems are data car­
tridges, reel-to-reel tapes, and video cassettes. While recording densities and data transfer 
rates may be quite different for these media than for other devices discussed in this 
chapter, the principles are the same. A designer will find this chapter useful background 
for interfacing to virtually any magnetic recording device. 

245 

Micron Technology Inc. et al. 
Ex. 1042, 245



246 Magnetic-Recording Techniques 

7.1 TAPE INTERFACES 

A tape interface must be insensitive to speed variations in the mechanical tape drive, and 
therefore the interface must, as part of the data recovery operation, be able to detect the 
frequency of the recovered data. Under ideal circumstances, a local clock in the data 
recovery portion of a tape interface supplies the basic timing for the incoming data 
stream. However, if the local clock is slightly different from the frequency of the 
recovered data, then eventually the local clock will lose synchronization with the incom­
ing stream, and the result will be loss of data. 

A costly way to solve the problem is to use very tight frequency control for recording 
and playback and to resynchronize the data stream at regular intervals, so preventing the 
inevitable loss of sync that otherwise occurs when two clocks are slightly different in fre­
quency. Since the frequency of the recovered data stream is directly related to the 
mechanical speed of the tape drive, the implication is that the mechanical portions of the 
drive must be built to very high precision to satisfy the frequency control problem. This 
obviously is an unsatisfactory solution where cost constraints preclude precision mechani­
cal devices. There are, in fact, very simple electronic techniques for eliminating problems 
caused by mechanical speed variations. 

What is necessary is a signaling scheme that not only presents data as a sequence of 
ls and Os, but encodes them in such a way that it is possible to recover the underlying 
clock frequency of the transmitter from the data stream. Such signaling schemes are said 
to be ''self-clocking,'' and they are used in virtually every digital magnetic-recording de­
vice. As a first, simple example of a self-clocking signaling scheme, consider the signals 
shown in Fig. 7.1. A 0 is encoded as a signal that oscillates at a high frequency jfor the 

0 

Logic 0 

__ _.._[4 
3 

Logic 1 

FIGURE 7.1 A signal encoding 
scheme for a simple self-clocking 
magnetic tape system. 

Micron Technology Inc. et al. 
Ex. 1042, 246



7.1 Tape Interfaces 247 

first third of its duration and thereafter is constant. A 1 bit is recorded as a signal that os­
cillates at f for the first two-thirds of its duration, and is constant after that. A stream of 
bits encoded this way is easily decomposed back into Os and Is. Assume that a new bit 
starts at each transition from no oscillation to oscillation. Within each bit time the receiver 
has to determine if the datum is a 1 or a 0, and to do so the receiver simply has to deter­
mine if the oscillation occupies one-third or two-thirds of the bit duration. A suitable way 
of doing this is to measure the time for the oscillation and the time of no oscillation. If the 
oscillation time is longer than the constant-voltage time, the bit is decoded as a 1; other­
wise it is decoded as a 0. This scheme is rather tolerant of variations between playback 
and recording speeds. 

Figure 7.2 shows a block diagram for a tape interface built on this principle. The in­
terface contains a local oscillator that produces the recorded frequency fc , and a lower 
frequency fb that determines the recording rate for information. For simplicity, the data­
rate clock is typically obtained by dividing frequency fc by some convenient integer. For 
home recorders, frequency fc should be under 10kHz; but as fc decreases, then so does 
the basic data rate. A reasonable choice is to make fc approximately 4.5 kHz, and set the 
data rate !b at 300Hz, which is fellS. Then a 0 is encoded as 5 cycles of fc, followed by 
no signal for a duration equal to 10 cycles of fc; a 1 bit is encoded as 10 cycles of fc fol­
lowed by a duration equal to 5 cycles of fc. The divisor 15 can be reduced to 9 or to 6, or 
fc can be increased above 4.5 kHz, with a resulting increase in the recorded data rate and 
a reduction in noise rejection capability. The recorder in Fig. 7.2 can be any home-quality 
recorder; high precision is not required. While the signal oscillates, the recorder stores 
magnetic transitions on the tape. These transitions are recovered on playback. The ab­
sence of transitions results in the recorder producing only background noise (such as tape 
hiss) from the tape or noise from its own amplifier. Typically, the voltage excursion on 
playback from noise is much less than that of the signal, so that the recorded signal can be 

Clock, frequency= fb 

BINARY DATA 
... 1001 ... 

From CPU-------~ 
CPU Bit rate = fb 

Clock, frequency fc = l5fb 

To CPU._-------~ 

0 Denotes fc is present. 

I Denotes fc is not present. 

Signal 
encoder 

Frequency fc 
detector 

Analog signal 
to recorder 

.-------, Analog signal 
I Wave I from recorder 

Digital I shaper I 
signal 

FIGURE 7.2 A simple recorder interface for the self-clocked signal. 

Micron Technology Inc. et al. 
Ex. 1042, 247



248 Magnetic-Recording Techniques 

used to trigger a flip-flop or a one-shot and produce a logic 0 as shown in the detector 
module whenfc is present and a logic 1 whenfc is not present (or conversely). There are 
various ways that the original data can be recovered from this encoded .form of signal. A 
purely hardware approach uses an integrator at the detector output. It is cleared at the 
start of each bit and sampled at the end. If the average value of the detector voltage is 
greater than half of the value produced by a signal that oscillates during the entire bit dura­
tion, then the signal is decoded as a 0; otherwise the bit is decoded as a 1. Another purely 
software approach is worth illustrating here. An integrator is simulated by incrementing a 
counter when the detector indicates that fc is present and by decrementing the counter 
when fc is not present. If the counter has a positive value at the end of a bit time, the sig­
nal is decoded as a 1. An example of a short program in a high-levellanguage for this pur­
pose is Program 7 .1. 

PROGRAM 7.1 Cassette-Reader Program 

begin counter := 0; 

end 

while detector output = 1 do counter : = counter + 1; 
while detector .output= 0 do counter :=counter- 1; 
if counter > 0 then accept a 1 else accept a 0; 

This program looks deceptively simple. But if the program is compiled into machine 
language and executed, the user may discover a built-in bias toward accepting a 0 or a 1, 
depending on the specific instructions that are used to implement the statements given. In 
order to set the decision threshold halfway between a 0 and 1, the two loops must each 
take the same amount of time per count, and the overhead of entering and leaving a loop 
must be carefully programmed to eliminate bias that may creep in from this source. A sat­
isfactory implementation in machine language for a typical microprocessor is . Program 
7.2. For the microprocessor iri question, we presume that the DEC and INC take equal 
time to execute, as do BNZ and BRZ. 

A number of minor details have been omitted from the program for the sake of clar­
ity. The output bits have to be concatenated into a buffer by instructions that use indexing 
or shifting in some combination. In addition, the initial value of the counter should be set 
to a value that accounts for the presence of frequency fc when the program first enters the 
loop. Note that the two loops in the program are equal in length, and both contain instruc­
tions whose execution times are also equal. The overhead of accepting a bit requires the 
execution of possibly many instructions whose time may bias the timing for the receipt of 
the next bit. To remove this bias, a nonzero value is used for the initial value of the 
counter to reflect the time spent in accepting and storing a new datum. 

At this point we tum our attention to a much higher performance tape interface based 
on principles developed for very high-speed devices. The recorder interface is compatible 
with the popular Kansas City Standard (KCS) for cassette recording. While this system is 
used by many manufacturers, the standard is not recognized by any official standards or­
ganization and is far from being universally accepted in the industry. 

Micron Technology Inc. et al. 
Ex. 1042, 248



7.1 Tape Interfaces 

PROGRAM 7.2 Assembly-Language Version of Cassette-Reader Program 
NEWBIT CLEAR 

BRA 
Ll INC 
L2 INPUT 

BNZ 
L3 DEC 

INPUT 
BRZ 
CLEAR 
TST 
BMI 
INC 

L4 

COUNTER 
L2 
COUNTER 
TAPE IN 
Ll 
COUNTER 
TAPE IN 
L3 
R 
COUNTER 
i:A 
R 

Get ready for next bit. 
Enter loop looking for fc. 
Increase count. 
Test to see if frequency fc is present. 
If not 0, go back, and lookforfagain. 
Count down becausefc was not there. 
Test to see if frequency fc is present. 
If 0, branch to loop beginning. 
Initialize the output bit to 0. 
Decide whether data was a 0 or 1. 
If negative it was a 0. 
Make the bit a 1. 
OUtput the bit inR, typically 

using indexing or shifting. 
At this point, test to see if more 

bits should be received. If so, 
initialize COUNTER and return 
to L2 to obtain them. 

If not, then exit. 

249 

The encoding technique used by the Kansas City Standard is shown in Fig. 7.3. Fig­
ure 7 .3(a) shows a 0 recorded as four full cycles of a 1200Hz square wave. A binary I is 
recorded as eight full cycles of a 2400Hz square wave as shown in Fig. 7.3(b). Note that 
the time duration of a 0 and a 1 are equal, and that certain transitions appear in both the 
1200Hz and the 2400Hz square wave. With this encoding scheme, the transmission rate 
for a single bit is 1/4 of 1200Hz, or 300 Hz.The transitions common to both the binary 0 

f= 1200Hz 

D I I 
(a) Encoding for a logic 0. 

f= 2400Hz 

DDDDDDDD 
(b) Encoding for a logic I. 

(c) Derived clock from encoded signals. 

FIGURE 7.3 Signal encoding and derived clock for Kansas City Standard 
recording systems. 

Micron Technology Inc. et al. 
Ex. 1042, 249



250 Magnetic-Recording Techniques 

and binary 1 are used to lock a local oscillator to the incoming data rate when the data are 
recovered from the recording. Figure 7.3(c) shows the derived clock from th~ waveforms 
for 0 and 1. Note that the clock ''ticks'' occur during the transitions common to both the 0 
and 1 signals, whether the transitions are in phase or not. So the clock detector must look 
for the presence of a transition, a:nd ignores the polarity of the transition. If a transition oc­
curs between clock ticks, the detector assumes that a 1 is encoded; otherwise the detector 
assumes the code is a 0. 

To increase the information transmission rate of the Kansas City Standard, we simply 
use fewer transitions to encode each datum. The normal rate for the interchange of infor­
mation is 300 Hz, but minor changes to the basic interface produces higher nonstandard 
transmission rates. At an information rate of 1200Hz, the sequence 1100 is encoded as 
shown in Fig. 7 .4(a). Here the binary 0 requires one full cycle of 1200Hz, and the binary 
1 requires two cycles of 2400Hz. This might appear to be the highest limit of a modified 
standard if the recording technique is to use 1200 and 2400Hz as its basic frequencies. 
But the standard can be pushed to 2400 Hz as shown by the encoding scheme in Fig. 
7.4(b). In this scheme, a binary 0 is half a cycle of 1200Hz, and a 1 is one full cycle of 
2400 Hz. Each digit, whether a 0 or 1, begins with a transition. A binary 1 is a full cycle 
of a 2400-Hz signal whose phase depends on the final voltage of the immediately preced­
ing bit. Likewise the phase of the ~-cycle pulse of 1200Hz that represents a 0 depends on 
the final voltage of the preceding bit. Two successive Os are therefore encoded as pulses 
of opposite polarity. This coding scheme is what is obtained when an encoder for 300 Hz 
is used with a data rate of 2400Hz. 

D D D D D 
I I I o 0 

(a) II 00 recorded at 1200 b/s. 

D 0 Cl Cl 0 0 
I I I o I o I o I I I o 

(b) 11000110 recorded at 2400 b/s. 

FIGURE 7.4 Maximum data rate recording in the Kansas City Standard. 

A block diagram of a cassette interface is shown in Fig. 7.5. The output of a serial­
interface chip is a serial bit stream running at the clock rate of the output data (300 bits per 
second for the standard transmission rate). This bit stream modulates a 4800-Hz clock and 
divides it by two or four, depending if the output data is a 1 or 0, respectively. A wave 
shaper takes off the sharp edges of the output data, removes the DC component, and 

Micron Technology Inc. et al. 
Ex. 1042, 250



7.1 

16 X output 
data rate 

Clock--------, 

CPU «--------,1 UART 

Serial 
data in 

Clock recovery 
phase-locked loop 

Tape Interfaces 

FIGURE 7.5 Block diagram of tape interface for Kansas City Standard. 

251 

drives the cable to the recorder. On playback, the analog signal is amplified and limited to 
create a reproduction of the modulated signal that was originally recorded. This signal 
passes through a transition detector that finds the edges of the signal. The output of this 
stage is a pulse train similar to the one in Fig. 7 .3(c). The pulse train drives a one-shot that 
is designed to retrigger for pulses created by transitions in a 2400-Hz signal, but will 
time-out for pulses derived from a 1200-Hz signal. The fall of the one-shot denotes a 0 re­
ceived, and the retriggering of the one-shot denotes a 1 received. 

The one-shot would be sufficient for recreating the recorded data, were it not for the 
possible variations in data rate on playback due to fluctuations in the speed of the play­
back mechanism and other sources of data distortion in the data recovery electronics. A 
good interface can take advantage of the self-clocking nature of the recorded signal to 
derive a clock useful for sampling the recovered data at the playback rate, which is not 
necessarily at the exact data rate of its original recording. In Fig. 7.5 the data detector pro­
duces a clock output as well as a data output. The clock output is a pulse at the beginning 
of each bit period. This pulse drives the clock recovery circuit. The clock-recovery circuit 
is a phase-locked loop that oscillates at a multiple of the data rate of the clock, which is 
the usual requirement for a clock input to a serial port. Figure 7.5 shows the recovered 
data and the recovered clock combined together at the serial port, which transforms the 
serial input into a byte-parallel stream for transmission to computer memory. 

Software control of data rate is readily available quite simply for the type of interface 
shown in Fig. 7.5. The idea is to select the transmit and receive clocks to the serial port 
under software control. For example, two control bits developed at the output of an I/0 
port can drive a pair of four-to-one multiplexers-one stage for transmit and one for re­
ceive. The transmit clock simply selects from 300, 600, 1200, and 2400Hz, which may 
be produced at successive stages of a counter. (Actually these clocks are a fixed multiple 

Micron Technology Inc. et al. 
Ex. 1042, 251



252 Magnetic-Recording Techniques 

of the serial-port data rate, typically 16 or 64 times the data rate.) The receive clock is 
connected to successive taps of a counter that counts the pulses produced by the phase­
locked loop. The phase-locked loop in this diagram oscillates at 38.4 kHz, or 16 times the 
2400Hz maximum data rate of the system. This, then, is the correct clock for recovery of 
a 2400-Hz data rate. Clocks for data rates 1200, 600, and 300Hz are available at the out­
puts of stages of a frequency divider internal to the phase-locked loop. 

The self-clocking of the recorded data substantially improves the ability to inter­
change cassette tapes from one recorder to another in spite of variations in mechanical­
transport speeds. However, there is a hidden cost in going to this level of sophistication. 
Since the interface requires the phase-locked loop to lock onto the clock of the incoming 
signal, the signal must be recorded synchronously, that is, locked to a particular clock 
rate. Data must be produced in bursts that can be recorded as contiguous blocks. Should 
there be idle time between bursts of data, then the data should be recorded with one or 
more synchronizing characters prefixed to each burst to permit the phase-locked loop to 
acquire the clock for the burst. The interface may also introduce a continuous stream of 
null characters to maintain phase lock between blocks. Data cannot simply be recorded 
one byte at a time whenever a program produces an output byte. Rather, data must be buf­
fered into blocks when they are generated and then recorded as blocks with no gaps 
between bytes. 

Speed variation may not be a problem if data are recorded and played back on the 
same cassette recorder, provided that the recorder has good speed stability. In this case, 
the receive clock of the serial port can be connected to the transmit clock, and the phase­
locked loop can be eliminated. This reduces the cost of the interface, and eliminates the 
need to record data according to strict timing rules. But the recovery of data will be more 
sensitive to speed variations, and reliability can be a problem if an aging recorder changes 
in speed over a long period of time. 

Principles of Phase-Locked Loops 

The use of the phase-locked loop in a cassette interface is just one of its many important 
applications. Because the phase-locked loop appears so frequently in computer interfaces, 
we devote this subsection to the detailed principles of its design, and show some simple 
ways of implementing the circuit for a cassette interface. 

The basic structure of a phase-locked loop is shown in Fig. 7 .6. The circuit consists of 
a phase detector that compares an incoming signal with a reference signal. A voltage pro­
portional to the phase difference is produced, filtered, and then fed to a voltage-controlled 
oscillator. For the cassette interface, this oscillator operates at 32 times the nominal1200 
Hz clock rate of the input signal to provide the receive clock for the serial port. Since the 
oscillator operates at a much higher frequency than the incoming signal, the oscillator 
output is not directly compared to the incoming signal, but is first divided down to the 
correct frequency, and then compared. 

The role of the filter in the design of the loop is critical in terms of determining the 
ability of the loop to lock onto a signal, reject noise, respond to transient changes, and 

Micron Technology Inc. et al. 
Ex. 1042, 252



7.1 

Phase 
detector 

F(s) 

Frequency 
divider 

Voltage­
controlled 
oscillator 

Tape Interfaces 253 

Recovered clock, 
f=N ·(input frequency) 

FIGURE 7.6 Block diagram of a phase-locked loop. 

stay in lock as an input signal deviates above and below the ideal center frequency. To 
understand the operation of the filter, we first examine the output of the phase detector so 
that we can determine the requirements for the filter output. 

There are a number of very simple phase detectors that are suitable for measuring the 
phase of a square-wave clock. One of the most simple is the EXCLUSNE OR-gate detec­
tor whose behavior is illustrated in Fig. 7.7. Consider what happens when two clocks of 
equal frequency but different phase are fed to the respective inputs of an EXCLUSIVE­
OR gate. The gate output is the difference signal shown in Fig. 7. 7 for various phase shifts 

I I I I I 
I I I I I I 

ViNI I I I c==l 
I I I I I I 

VREF I [T] I I I I Q 
I I I 

VouTD D 0 h t=J t=J 
I I I I I I 
I I I I I I 

VREF:r==n ld i q 
~mD h h h 0 0 

I I I I I I 
I I I I I I 

VREFI I II Cf=ll rt= 
VOUT c=J t=J 0 c=J t=J c= 

I I I I I 

FIGURE 7.7 Phase-comparator behavior for various phase differences. 

Micron Technology Inc. et al. 
Ex. 1042, 253



254 Magnetic-Recording Techniques 

between input and reference clocks. Note that the difference signal is a signal of twice the 
frequency of the clocks, and it spends proportionately greater time at 1 or at 0, depending 
on whether the clocks have equal polarity or opposite polarity for the majority of a clock 
period. The output is identically 0 when the two clocks are in exact phase, identically a 
logic 1 when the two clocks are in exact opposite phase; and it is an oscillating signal with 
a 50% duty cycle when the two clocks are 90° out of phase. 

The average value of the difference voltage is the key parameter because it indicates 
the true phase difference of the signals. Figure 7.8 is a plot of the average value of the 
difference voltage as a function of phase difference. This plot presumes that the input sig­
nal and the reference signal are both clocks with a 50% duty cycle. If either or both have a 
duty cycle other than 50%, the plot retains the same general shape, but the slope of the 
lines is reduced. For the 50% duty-cycle case in the figure, the average voltage moves 
from 0.3 V for 0° phase difference to 3.6 V for 180° phase difference, so that the slope is 
approximately 3.3hr V/rad. Since we wish to maximize the slope to maximize the sensi­
tivity of the phase-locked loop, it is a good idea to ensure that the clock has a 50% duty 
cycle. Indeed, this is the case in the block diagram of the system shown in Fig. 7.5. The 
clock ticks fed to the phase-locked loop are derived from the transitions of a 2400-Hz sig­
nal, two per cycle, so that the basic rate is 4800Hz. However, clock ticks at a 4800-Hz 
rate cannot be recovered directly from the transitions of a logic 0 that is encoded at a 
1200-Hz frequency. The missing clock ticks for a logic 0 are regenerated by the fall of the 
one-shot that detects the presence of a 1200-Hz pulse. Unfortunately, the tick inserted 
does not come midway in a 2400-Hz cycle. The tick depends on when the one-shot falls, 
which should be roughly three-quatters of the way through a 2400-Hz cycle. By dividing 
down the nonuniform 4800-Hz signal through a two-stage divider, we guarantee that the 
resulting square wave has a 50% duty cycle. The idea is to use every fourth clock tick out 

3V 

1 v 

0 1f 2rr 3rr 47r 
Phase difference ---+ 

FIGURE 7.8 Average output voltage of phase comparator. 

Micron Technology Inc. et al. 
Ex. 1042, 254



7.1 Tape Interfaces 255 

of the detector, and to be sure to discard the ticks generated by the one-shot when count­
ing down the frequency. 

At this point, we see that the average voltage from the EXCLUSIVE-OR gate has the 
proper information to drive the voltage-controlled oscillator. In the loop's quiescent state, 
the input signal clock leads the reference clock by 90°, so that the average difference volt­
age is halfway between logic 1 and logic 0. If the input signal clock drifts to a slightly 
higher frequency, the change will show up initially as an input signal phase leading the 
reference signal by more than 90° and, as a result, an average difference voltage that will 
increase toward logic 1. This voltage increase speeds up the oscillator and causes it to 
reach a steady-state frequency equal to that of the input frequency. The phase error will be 
just enough greater than 90° so that the filtered error voltage will maintain the higher fre­
quency. (Alternatively, one can build a voltage-controlled oscillator whose frequency 
decreases with increasing voltage. In this case, the loop automatically assumes a quies­
cent state in which the reference leads rather than lags the input by 90°.) 

Now the problem is to pass the average voltage of the phase-detector to the voltage­
controlled oscillator; to do so, it is necessary to filter the phase-detector output. For our 
purposes a simple RC filter is sufficient to do the job. The circuit is shown in Fig. 7.9. 
Just how this filter affects the behavior of the phase-locked loop is detailed below. 

R 

VIN~VOUT 

lc 
FIGURE 7.9 An RC 
low-pass filter suitable for a 
phase-locked loop. 

To analyze the transient behavior of the loop to a step change in the input frequency, 
we use the appropriate mathematical tool, the Laplace transform. The phase-locked loop 
is a feedback-control system that cannot follow sudden changes in the input frequency, 
but rather settles over a period of time to its steady-state behavior. Either this settling 
behavior may oscillate above and below the asymptotic output frequency with the oscilla­
tions eventually dying out, or the circuit may settle e-xponentially to the steady-state value 
with no oscillations at all. We use Laplace transforms to find the transfer function of the 
loop. From this we can discover the natural frequency of oscillation about the steady-state 
output and the damping factor that dictates how long the loop takes to settle to its steady­
state output. Table 7.1 contains a brief list of Laplace transforms of common functions to 
assist the reader in recalling the details of the technique. 

To begin, let K 1 be the gain of the phase-detector in volts per radian, K 2 the gain of 
the voltage-controlled oscillator in rad/s·V, N the divisor of the frequency divider, and 

Micron Technology Inc. et al. 
Ex. 1042, 255



256 Magnetic-Recording Techniques 

TABLE 7.1 TableofLaplaceTransformPairs 

Function Transform 

u (t ), the unit step 1 
s 

t, the unit ramp 1 
?" 

&(t ), the unit impulse 

e-at 
s +a 

sin wt 
(J) 

s2 + w2 

cos wt 
s 

s2 + w2 

t" 
n! 

s"+l 

e -atf(t) F(s + a) 

e-at sin wt (J) 

(s + a)2 + w2 

e-at cos wt s +a 
(s + a)2 + w2 

note that the filter transfer function is 11(1 + RCs ). This latter follows because the 
transfer functiof\ is F (s) = Zci(ZR + Zc), where ZR = R and Zc = l/Cs. To compute 
the behavior of the loop, observe that the reference frequency is given by the equation 

VREF(s) = K1K2F(s) ~' 
where Ll<j> is the phase difference between the input and reference voltages. Since phase is 
the integral of frequency, we use the relation 

VIN - VREF 
Li<!>= ----

s 

We can solve for the ratio of output to input to obtain the transfer function 

VREp(s) K1K2/NRC 

This is the equation of a second-order system. If we write the equation in the form of a 
general second-order system, the right-hand side becomes 

K 
s 2 + 2 d w11 s + w,; ' 

Micron Technology Inc. et al. 
Ex. 1042, 256



7.1 Tape Interfaces 257 

where Wn is the natural frequency of the system and d is the damping factor. For the 
phase-locked loop we have 

and 

To complete the design of the filter, we simply have to pick R and C so that we obtain a 
desirable natural frequency and damping factor. 

To understand the effects of the selection of R and C, consider the behavior of the 
second-order system for this example as shown in Fig. 7 .10. This shows the transient 
response to a sudden shift of frequency. The response calculation is made by treating the 
shift in input frequency as a step change, which has a Laplace Transform of 1/s. Then the 
response is given by the inverse Laplace transform of lis times the transfer function 

FIGURE 7.10 Transient response of a phase-locked loop 
to a step change in input frequency. 

Micron Technology Inc. et al. 
Ex. 1042, 257



258 Magnetic-Recording Techniques 

V REF/ V IN· The response has two components-one the inverse transform of lis, which 
is the unit st~p, and the other the inverse transform of the transfer function, which is 
a damped ·sinu~oid. The shapes of the curves in Fig. 7.10 clearly show the combination of 
a damped exponential and unit step, with the amount of damping and the frequency of the 
damped sinusoid varying with the parameters of the RC filter.· Note that the lightly 
damped systems have severe overshoot, indicating that if the input shifts suddenly, as it 
does during initial synchronization, lightly damped systems will not track for a short 
period of time. Consequently, they require longer synchronization periods. Heavily 
damped systems are sluggi&h in response, and have narrower bandwidths of operation. 
For most purposes, it is best to select damping factors so that the system responds to a step 
input with a small overshoot followed by fast settling. For our purposes, a damping factor 
of d = 0.7 is adequate, but it can be a little higher or lower without a serious 
consequence. 

The natural frequency and the damping factor are determined solely by the gain fac­
tors, K 1 and K 2, and the time constant bf the filter, RC. The constants K 1 and K 2 are 
determined by our choice of the EXCLUSIVE-OR gate as phase detector, and by the 
selection of a suitable voltage-controlled oscillator. These constants are usually not alter­
able by the designer once a specific device or devices for the phase-locked loop are 
selected, except for small variations due to differences in devices, aging, and tempera­
ture. Consequently, once we have set the damping factor, we have uniquely determined 
the time constant RC, and this constant, in tum, uniquely determines the natural fre­
quency of the loop. 

Since the choice of damping factor for our simple RC filter determines the natural fre­
quency, we must investigate the way that the natural frequency is related to loop 
behavior. In general, the lower the natural frequency, the slower the loop in response to 
transients and the smaller the range of frequencies over which the loop will acquire lock. 
In Fig. 7.1 0, at a given settling point, the product of natural frequency and time is a fixed 
value. Hence if natural frequency decreases, then time increases; and we have to wait 
longer to reach this settling point as a result of a transient. The interaction of damping fac­
tor with natural frequency complicates the situation somewhat. For the RC filter, the 
damping factor increases with natural frequency, which lengthens the settling time as the 
damping factor grows larger than unity. Consequently, it is best to select the RC time con­
stant for a suitable damping factor, and verify that the transient behavior is acceptable. 
The natural frequency must, of course, be lower than the input frequency of the loop, say 
to 1110 the input frequency, to prevent the input signal from setting up a stable oscillation 
in the loop. If it is impossible to choose R and C to meet these conditions, then the 
designer should use a more complex filter, like one of those shown in Fig. 7 .11 that per­
mits the designer to set both the damping factor and loop frequency independently. 

A~ an example of a check on the transient response of a loop, suppose we wish for the 
loop in Fig. 7.5 to settle into phase lock after receiving two synchronizing characters at 
the beginning of a transmission. Also suppose that the choice of R and C for a damping 
factor of 0. 7' leads to a natural frequency of 120 Hz. The sync characters are each encoded 
with 10 bits, and therefore the synchronization should be achieved within 20 cycles of 

Micron Technology Inc. et al. 
Ex. 1042, 258



7.1 

w
11 

=y!K1K2 /N(R 1 +R 2 )C 

d = w
11

(R 2C+ N/K 1K2)/2 

(a) A passive filter. 

w11 =y!K1K2 /NR 1C 

d = w
11

R 2C/2 

(b) An active filter. 

Tape Interfaces 259 

0.2E----+--+----+--+----+-~ 

w 11 t 

(c) Transient response of both filters. 

FIGURE 7.11 Useful filters for phase-locked loop systems. 

2400 Hz, which is the information rate for the system and twice the phase-locked loop 
input frequency. At 120Hz, the system must stabilize within one cycle. Figure 7.10 
shows that for a damping factor of 0. 7 the loop frequency settles to within a few percent of 
the signal center frequency after one cycle, which meets the design constraint. If the tran­
sient response is too slow, it can be improved by choosing a filter with a higher natural 
frequency and the same damping factor (0.7), but there is some risk in moving too close to 
the input frequency of the loop. The alternative is to use a longer synchronizing sequence 
and to accept a poorer transient response. 

Loop performance is often characterized in terms of hold-in and capture capability. 
The hold-in range is the range of frequencies for which the loop will stay in lock once it is 
locked. This is solely a function of the maximum tolerable error signal at the output of the 
low-pass filter. Note that as the input frequency deviates farther and farther from the 
loop's center frequency, the phase shift between reference and input increases until the 
shift reaches the point at which the maximum error voltage is generated. Any additional 
frequency difference will cause phase lock to be lost. Since the maximum phase differ-

Micron Technology Inc. et al. 
Ex. 1042, 259



260 Magnetic-Recording Techniques 

ence is 180°, the average error voltage at this point is K 1 TI/2, and the frequency of the 
voltage-controlled oscillator is K 1K 27r/2 away from the center frequency. The reference 
frequency is thenK 1K2TII2N from center and this is~ the hold-in range. Hence the hold-in 
range wH is given by 

The capture range is the frequency range over which the loop will achieve phase 
lock. When the loop is out of phase lock, the reference-signal frequency is determined by 
the average voltage output of the phase detector. Since the reference frequency of an 
unlocked loop is not phase coherent with the input signal, the phase detector output has 
frequency components at the difference of the input and reference frequencies, and the 
difference frequency is passed by the filter while the other components are filtered out. 
The difference frequency voltage when applied to the voltage-controlled oscillator sup­
plies a voltage that can bring the loop into lock. Consequently, the bandwidth of the loop 
determines the highest difference frequency that can be passed through to the reference 
signal. Because the filter is not ideal and attenuates signals near the upper end of its 
bandwidth, the actual capture frequency is less than the bandwidth of the filter. For the 
simple RC filter the capture range is given approximately by the equation 

where wH is the hold-in range. 
There are a number of phase-locked loop devices available as integrated circuits. 

Some devices have all of the necessary parts of a loop, except the loop filter. Other de­
vices have specific sections of the loop, and must be used in conjunction with implemen­
tations of the missing sections. The CD4046 phase-locked loop integrated circuit contains 
everything except the filter and frequency divider. Its block diagram is shown in Fig. 
7 .12. It is quite adequate for the cassette interface, and needs only the RC filter, an exter­
nal 5-stage binary counter, and a pair of resistors that define the voltage-controlled oscil­
lator center frequency. 

Although this analysis assumes a particular form of the filter, the general principles 
are valid regardless what kind of filter is used. Only the specific equations for the loop 
behavior, damping factor, and natural frequency differ in their dependence on the loop 
parameters. Two other types of popular filters for phased-locked loops appear in Fig. 
7.11, together with the loop transfer function for that type of filter. The transfer function 
in both cases has the same form, and it yields a transient behavior that is similar in struc­
ture but different in detail to the curves shown in Fig. 7.10. The active filter, in general, 
tracks the input more closely than the passive filter because of the gain in the filter, but the 
gain may also lead to instability of the loop if it moves the poles of the second-order equa­
tion for the loop to the right half-plane. A good reference for the derivation of the phase­
locked loop behavior is Moschytz ( 1965), and several semiconductor manufacturers sum­
marize the pertinent equations, typical loop behavior, and filter design criteria in their 

Micron Technology Inc. et al. 
Ex. 1042, 260



7.1 

,~--------

1 

I 
Input 

Reference frequency 

External 
low-pass filter 

RF 

Tape Interfaces 261 

+5 v 

Voltage-controlled 
oscillator 

Source 
follower 

Frequency 
divider 

Demodulated 
output 

f---+-----1-<>---, 

FIGURE 7.12 Block diagram of the CD4046 phase-locked loop; R 1, R 2, and C 1 determine 
the center frequency and the limit frequencies of the voltage-controlled oscillator. 

literature for phase-locked loop devices. Gardner (1979) is a general reference text on 
phase-locked loops that includes material on other important questions such as noise re­
jection and stability. Many texts examine the second-order linear systems from the La­
place transform viewpoint; and in particular, Dorf (1980, pp. 110-119) describes the 
transient behavior analysis pertinent to our discussion here. 

Example of an Interface with a Phase-Locked Loop 

A complete schematic for a cassette interface with a phase-locked loop, clock-recovery 
circuit appears in Fig. 7.13. The interface is an adaptation of a circuit manufactured by 
Percom Data Company (Garland, Texas) and illustrates all of the principles described 
above. The output of the serial port controls aJ-K flip-flop so that the J-K flip-flop divides 
the input frequency of 4800 Hz by 2 if the port output is a 0, and does nothing if the port 
output is a 1. This flip-flop in tum drives a second divider so that the net output frequency 
is either 1200 or 2400Hz, depending on whether the first flip-flop divides the input fre­
quency by 2 or by 1. The result is the phase-encoded signal of the Kansas City Standard. 

Micron Technology Inc. et al. 
Ex. 1042, 261



+5 v 

9600Hz PLL 

FIGURE 7.13 A cassette interface (derived from a design from Percom Data Corp. and printed here with permission). 

Micron Technology Inc. et al. 
Ex. 1042, 262



7.1 Tape Interfaces 263 

The RC network filters out the sharp edges in the signal and reduces the voltage so that the 
signal is compatible with the signals accepted by cassette recorders. 

For signal recovery this interface uses a comparator to shape the input signal to a 
"squared-up" signal that is a replica of the phase-encoded signal before filtering. Two 
EXCLUSIVE-OR gates act on this signal to produce a sequence of pulses that indicate 
where the transitions occur in the input signal. Note that the first gate in the pair is simply 
a buffer that drives an RC filter. The filtered signal has slightly rounded edges that, when 
compared with the original signal, is different only during the rising and falling edges of 
the original signal. Hence, the output of the second EXCLUSIVE-OR is a positive spike 
for both the rising and falling edges of the original signal. 

The one-shot is tuned to retrigger when pulses come close together, as they do for en­
coded versions of logic 1, and to time-out when pulses are separated by longer periods, as 
they are for logic 0. Specifically, at 2400Hz, a logic 1 produces pulses spaced at intervals 
of 1/4800 = 0.208 ms, and a logic 0 produces pulses spaced at intervals of 1/2400 = 
0.417 ms. The one-shot should time-out about halfway between these values, or at about 
0.313 ms. The output of the one-shot, when sampled at the end of a bit-period, contains 
the correct value of the recovered data, but the 0 levels occupy only about J'l of a bit period 
instead of a full bit period. The one-shot output advances through two flip-flop stages that 
detect the correct value of the input data and stretch the Os so that they occupy the full bit­
time. The output from the second of these two stages is a faithful replica of the original 
data stream that was produced at the output of the serial port. 

The recovered data can be sampled with an estimate of the correct clock; but to take 
advantage of the self-clocking nature of the signal encoding, the received clock should be 
generated from a phase-locked loop. The stream of pulses derived from the transitions in 
the encoded input data is fed to two D flip-flops that drive the phase-locked loop. The first 
of the flip-flops triggers a clock input twice for a logic 1, and once for a logic 0. To obtain 
a second count for a logic 0 (and thus produce a constant frequency output that is indepen­
dent of the input data stream), a logic 0 sets the flip-flop, and thus supplies a second tran­
sition for Os. The output of this flip-flop does not have a 50% duty cycle, however, be­
cause the logic 0 that sets the flip-flop is low for only about .Y'I cycle instead of for ~cycle. 
But the next stage counts down again by 2, triggering only on the rising edge of the signal 
because this edge occurs consistently at the 0° and 180° phase points of a 1200-Hz signal. 
The falling edge is ignored, since its phase depends on whether the bit detected is a 0 or 1. 
The output of this stage is a 1200-Hz square wave with a 50% duty cycle. 

The remainder of the circuit is a phase-locked loop. The input gate is an 
EXCLUSIVE-OR, which produces a 2400-Hz difference frequency. After filtering 
through an RC network, the resulting voltage is nearly constant, and about half of the 
peak-to-peak voltage at the EXCLUSIVE-OR output. Note that the resistor pulls up the 
EXCLUSIVE-OR gate output to nearly 5 V from a normal output of about 3.5 V. The ef­
fect of this change is to increase the gain factor K 1 or, equivalently, to increase the slope 
of the curve in Fig. 7.8. The change also increases the possible excursion of the filtered 
error signal to a range of0-5 V from 0-3.5 V. 

Micron Technology Inc. et al. 
Ex. 1042, 263



264 Magnetic-Recording Techniques 

The RC filter produces the DC level required to drive the voltage-controlled oscilla­
tor, and this level is nominally at 2.5 V when the loop is operating in the middle of its 
range. The transistor circuit is an emitter-follower that isolates the filter output from the 
oscillator. At the emitter of this transistor, the signal is essentially identical to the input 
signal at the base, except that the voltage is reduced by one diode drop of about 0.7 V. 
Hence, the emitter voltage is approximately 1.8 V. Since the RC circuit cannot remove all 
AC components of the 2400-Hz difference frequency, there is a small triangular-shaped 
ripple voltage impressed on the DC component at the input and output of the emitter­
follower. The ripple voltage does not affect the average frequency of the oscillator, but it 
does lead to nonuniform spacing of the transitions of the oscillator with observable jitter 
on the output waveform: 

The oscillator in the diagram is of the relaxation type. The idea is that the positive in­
put of the comparator is held to some fixed voltage while the negative input follows an ex­
ponential decay curve upward or downward, depending on the phase of the oscillation cy­
cle. As the negative input reaches a voltage equal to the positive input, the output of the 
comparator sudden1y switches, producing two different effects on the circuits. The change 
in output voltage causes the voltage at the negative input to decay in the opposite direc­
tion. Hence if the voltage is rising, it then begins to fall, and conversely. Meanwhile, the 
voltage at the positive input switches suddenly because the diode connected to the com­
parator output conducts when the comparator output drops. If the output is high, the 
positive-input voltage is high and equal to the emitter-follower output voltage. If the com­
parator output is low, the positive-input voltage is low and equal to one diode voltage 
drop above the comparator output. 

The frequency of the relaxation oscillator thus depends on tpe time constant of the RC 
filter in the comparator's negative-input circuit. Assume initially that this circuit is 
discharged, so that the comparator output is high. The positive input is then at the 
emitter-follower voltage of about 1.8 V, and the negative input begins to charge to an 
asymptotic value of about 5 V. Later, the negative input reaches 1.8 V, and the compara­
tor output drops to 0.3 V. Now the positive-input voltage is about 1.0 V, and the negative 
input begins to cjischarge toward 0.3 V. When the negative-input voltage reaches 1.0 V, 
the comparator qutput goes high and the cycle repeats. Note that the constant K 2 is nega­
tive for this oscillator because, as the emitter-follower voltage rises, the relaxations take 
longer and the frequency decreases. 

The loop is adjusted to oscillate at 16 times 2400Hz, which is 32 times the loop-input 
frequency of 1200Hz. AD flip-flop followed by a 4-stage binary counter divides the loop 
output by 32 to produce the reference frequency to compare to the loop input. The oscilla­
tor output can be fed to a serial port as the recovered clock for 2400-Hz signals, and taps 
from other stages in the frequency divider provide recovered clocks for other data rates 
down to 300Hz. 

By using a CD4046 in place of the comparator and EXCLUSIVE-OR gate, a designer 
can make the phase-locked loop slightly more compact. The voltage-controlled oscillator 
shown with discrete components in Figure 7.13 is substantially the same as the oscillator 
on the CD4046 as well as other integrated-circuit oscillators. 

Micron Technology Inc. et al. 
Ex. 1042, 264



7.2 Magnetic-Disk Recording Techniques 265 

7.2 MAGNETIC-DISK RECORDING TECHNIQUES 

The previous section treats low-performance magnetic recording, with an emphasis on 
techniques suitable for cassette recording. In treating disk systems we find that the prob­
lems are much more complex because of the higher bit densities on the recording 
medium. In this case the recovered bit stream has a substantial amount of phase noise, 
often called bit shifting, which can cause severe problems in data recovery unless the disk 
interface compensates for or eliminates the phase noise. The magnetic tape medium, too, 
is subject to this problem in high-performance, high-density systems. So in this section 
we investigate what these problems are, and how today's designs treat and solve the prob­
lems. A phase-locked loop by itself is insufficient for clock recovery in high-performance 
magnetic-memory systems because the phase-locked ldop tends to compensate in­
correctly in the presence of bit shifting. However, phase-locked loops, in conjunction 
with other techniques, are widely used. The phase-locked loop extracts the clock and 
operates in a manner analogous to a flywheel, maintaining a constant frequency in spite of 
observed local deviations from the long-term average frequency. The other techniques 
compensate for the local devil;ltions and enable the receiver to recover data information in 
spite of the phase noise in the input stream. 

The structure of a floppy-disk controller is shown in Fig. 7 .14. It bears a striking 
resemblance to that of the cassette-recorder controller: the recorded signal contains both 
signal and clock, and the interface produces the clock and data infotmation from recorded 
data. The floppy-disk interface is somewhat more complex than a cassette interface 
because of the additional logic required for the sensing and control of the head;s position. 
The data separator portion of the controller analyzes recovered data and produces two dif­
ferent outputs. One output is the recovered data itself, and the other is the clocking for the 
data. The recovered data stream is rarely an exact replica of the recorded data stream; it is 
made into an exact replica by using the associated clock to control the points at which the 
recovered data are sampled. The data separator is essentially identical in function to the 
cassette interface we discussed previously, but the two implementations of that function 
are considerably different. 

Drive 
control 

logic 

FIGURE 7.14 Floppy-disk interface structure. 

Disk drive 

Micron Technology Inc. et al. 
Ex. 1042, 265



266 Magnetic-Recording Techniques 

Data recorded on floppy disks is magnetically recorded in essentially the same 
fashion as required by the Kansas City Standard for the cassette tapes described previ­
ously. Specifically, transitions of a magnetic field are recorded on the disk and observed 
during playback. The way that flux transitions encode data is shown in Fig. 7.15. Each 
pulse in the diagram corresponds to a flux change on the magnetic medium. The diagram 
shows a series of pulses transmitted to a floppy disk that control the points where a flux 
change is recorded. This figure shows one bit recorded every 4 f.l.S. At the beginning of 
each 4-f.l,S interval, a flux transition (or clock transition) is recorded. Halfway through the 
interval, the datum for that period is recorded either through the recording of a transition 
if the datum is a logic 1, or through the absence of a transition if the datum is a logic 0. 
The clock transitions guarantee that at least one transition occurs in each bit interval so 
that the receiver will be able to recover the apparent clock for the recorded data. 
Although we found that it is useful to extract the clock from a cassette's low-performance 
tape recorded data, the cassette interfaces will often work correctly even when the re­
ceived clock is developed from a local oscillator and not locked onto the phase of the 
recovered data. In disk recording, however, it is absolutely essential to recover the clock 
from the recorded data because the data-recovery circuits must sample at intervals that 
have a tightly controlled tolerance with respect to the clock of the incoming data. 

200 ns 

--1r--

n n D 
rl 

~ 
r• 

~ I I I I 
I I I I 
I I I I 
I I I I 

-4 2 J.!S r--
Clock Data Clock Data Clock Data Clock 

=I =0 =0 

FIGURE 7.15 Data encoding for FM (single-density) recording. 

We mentioned that the disk-recording scheme is essentially the same as the Kansas 
City Standard for cassette tapes. But Fig. 7.15 seems to contradict this statement. Instead 
of recording a logic 1 at double frequency, a logic 1 appears to be encoded as the presence 
of a bit. Similarly, a logic 0 is encoded as the absence of a transition, rather than as one 
cycle of, a nominal frequency. But, by comparing this technique with the Kansas City 
Standard, we discover that the two are essentially the same. The information in Kansas 
City Standard recordings is in the transitions of the recorded data. A double frequency cy­
cle has a transition in the middle of its cycle. This is a logic 1. Similarly, logic 0 is 
represented by recording half as many cycles at the nominal carrier frequency, which is 
the equivalent of recording no flux transition in the middle of a cycle. The disk-recording 
system is more widely known as Manchester encoding, and is sometimes called FM (fre­
quency modulation) or single density to distinguish it from other schemes that achieve 
higher bit density. 

Micron Technology Inc. et al. 
Ex. 1042, 266



7.2 Magnetic-Disk Recording Techniques 267 

The Manchester-encoding scheme is about 50% efficient in the encoding of raw bits. 
Assume that the clock rate is chosen so that bits are packed as closely as possible on the 
disk; and note that at this packing density only half of the bits contain information, while 
the remaining bits are used for clocking. If there were a way to recover clocking without 
wasting half of the bits, then it would be possible to double the number of information bits 
on a disk. Indeed, such an encoding scheme exists and is widely used today. This scheme 
is shown in Fig. 7.16 and is often called double-density or MFM (modified-FM) encoding. 
The idea is to assign a bit window for each bit, where the bit window is half the size of the 
window for single-density encoding. A logic 1 is encoded as a flux transition in the mid­
dle of that window, and a logic 0 is encoded as no flux transition in that window. But the 
clocking has to be encoded in some fashion as well, because otherwise the controller 
could not be sure where each 0 lies in a long string of Os. To solve the clocking problem, a 
clock transition is recorded between two adjacent Os as shown in the figure. No two transi­
tions arc closer than 2 J.LS apart, which is the same minimum spacing as in single-density 
recording. Moreover, each double-density bit occupies half the space of a single-density 
bit, and no bit cells are set aside for clock bits. But the controller is more complicated be­
cause it has to recognize clock bits that occasionally appear midway between data bits, 
whereas the single-density controller can presume there is always a clock bit and can 
trigger its recovery circuitry from that clocking point. 

ENCODING STRUCTURE: 

A 1 bit ·is encoded as a pulse in the middle of a bit window. 

A 0 bit is encoded as the absence of a pulse in the middle of a bit window. 

Insert a clock pulse at the transition of two windows if no pulse occurs in the middle 
of either window. 

FIGURE 7.16 Modified FM (MFM) data-encoding double density. 

While single-density encoding techniques have been informally standardized as Man­
chester encoding, double-density encoding is less unifomliy accepted. Manufacturers 
have invented other techniques to achieve higher density, and there tends to be much less 
interchangeability for media recorded at densities higher than single-density. One scheme 
that is used by several manufacturers is the group-code recording (GCR) scheme shown 
in Fig. 7.17. In this scheme a group of four data bits is encoded as a block of five code 
bits. In each block of five bits a 1 is recorded as a flux transition, and a 0 is encoded as the 
absence of a flux transition. It is not necessary to record clock transitions in this scheme, 
since the 5-bit code groups are carefully selected so that the transitions in a continuously 

Micron Technology Inc. et al. 
Ex. 1042, 267



268 Magnetic-Recording Techniques 

From 
CPU 

To floppy disk 

Encoder 
5 code bits out on serial line 

4 data bits in 

FIGURE 7.17 GCRencoding. 

encoded bit stream will be spaced neither too closely nor too far apart. This scheme, then, 
uses 5-bit windows to encode four information bits, and is thus about 80% efficient. The 
encoding scheme must also lend itself to group synchronization so that the controller can 
break up a stream of recovered bits into groups of five bits at the correct 5-bit boundaries. 

Disk recording, unlike tape recording, permits access to a specific block of informa­
tion without requiring the reading of all other blocks that come before it. We say that ac­
cess to data on magnetic tape is serial access because the controller must read n - 1 
records before accessing the nth record, whereas disk access is sometimes called 
random-access or direct-access. In this context ''random access'' has a different connota­
tion than the same term used in conjunction with semiconductor memory, where it means 
that the access time to any individual item is independent of the sequence of accesses. 
Disk systems do not have this property, so that the term ''direct access'' is more appropri­
ate to them than ''random access.'' 

Figure 7.18 shows how direct access to information is aided by addressing informa­
tion on disks. Two different methods for storing this information are commonly used for 
floppy disks, and variations of these methods are used in most other disk systems. In Fig. 
7 .18(a) we see a method, called' 'hard-sectoring,'' for dividing a disk into regions known 
as sectors. The disk has sector holes spaced around it at uniform intervals. One additional 
hole is placed at a nonuniform spacing with respect to the others to identify an index 

Hard sectors 

Index hole 

Sector 
holes 

Index hole One sector 

(a) Only data are recorded. {b) Data and sector identification are recorded. 

FIGURE 7.18 (a) Hard sector and (b) soft sector recording. 

Micron Technology Inc. et al. 
Ex. 1042, 268



7.2 Magnetic-Disk Recording Techniques 269 

point. As the disk spins on a drive, an optical device can detect the holes passing through 
its aperture, and thereby detect which sector is currently passing the read/write head.' The 
figure shows four sectors located by sector holes, plus one index hole that identifies the 
adjacent sector hole as sector 1. 

Access to data on a disk is essentially two dimensional for a single-sided floppy disk, 
and is three dimensional for disk systems that have several readable surfaces on a com­
mon spindle. One of the two dimensions of a floppy-disk is the sector position; the other is 
the track position. By placing the movable read/write head at a particular distance from 
the disk center, the head traces out a track of data as the disk spins beneath it. Mechanical 
positioning moves the head from track to track. Electronic circuitry senses the sector 
holes and identifies when a particular sector of the disk passes under the head. Thus by a 
combination of mechanical and electronic means, any given track/sector pair can be read 
or written. 

Another means for achieving this same end is shown in Fig. 7.18(b). In this scheme 
there are no sector holes, but a single index hole provides a physical reference point. Sec­
tor information is encoded magnetically on the disk within each sector. That is, each sec­
tor contains an identifier field that appears on the data stream just before the data field. To 
read data, the head is first positioned at the correct track, where it reads the data stream 
continuously. When the head detects an identifier with the correct sector number, the data 
block that follows the identifier is accepted. To write a new data block, the disk controller 
first reads data continuously until it finds a matching sector number in an identifier, and 
then rewrites the new data over the existing data block as that block passes under the head. 
During normal operation the identifiers are never rewritten, although the controller has 
the capability to write those identifiers onto a blank disk when initializing a disk for its 
first use. This technique is called soft sectoring because the sector format of a disk can be 
freely changed by rewriting the sector identifiers on a new disk. 

The soft-sectored format provides slightly less density than the hard-sectored, be­
cause the identifier field occupies space that is otherwise usable for data. But the soft­
sectored format offers much greater versatility, since the user is free to format the disk in 
ways that are sensible for particular applications. The user can choose to have many short 
sectors per track or fewer sectors of longer length. The user can also number the sectors 
arbitrarily or interlace them around the track to minimize the rotational delay between 
sector accesses. 

Figure 7.19 shows the structure of a typical sector in soft-sectored format. The 
leader, gap, and trailer region are regions of data padded with 0016 or FF16 whose function 
is explained later. The sector begins with a 6-byte leader, and then has a special byte 
called an address mark. This must be distinguishable from all other data patterns, includ­
ing any arbitrary pattern that can appear in user data. To make the address mark distin­
guishable, some clock bits are dropped from the mark. Except for this mark and a few 
other control marks, all other patterns must have all clock bits present. Hence, a user can­
not write a pattern that can be mistaken for a control byte. 

The address mark is the pattern FE16, and the corresponding clock pattern is C716· 

Since clock bits are dropped, the mark contains ls in the data pattern between the missing 

Micron Technology Inc. et al. 
Ex. 1042, 269



270 Magnetic-Recording Techniques 

128 bytes of data 

6 bytes 4 17 128 27 

Address mark: Data= FE 
Clock= C7 

Data mark: Data= FB 
Clock= C7 

FIGURE 7.19 IBM 3740-compatible sector format (FM encoded): 188 bytes per sector, 68% 
data bytes. 

clock bits in order to maintain clocking synchronization. Following the mark are four 
bytes of identifier. These give, respectively, the track, sector, side (top or bottom), and 
block-length code for the following data block. The CRC bytes shown in the figure are a 
cyclic redundancy check on the identifier block so that a controller can be sure that the 
identifier is read correctly. Mter the identifier block there is a gap of 17 bytes, a data 
mark, and the block of data, followed by two CRC bytes and a trailer. 

The leader, trailer, and gap are embedded in the sector for several reasons. Because 
data blocks are written and rewritten from time to time, the identifier and data blocks are 
not synchronized to the same clock. The leader and gap provide additional bytes that can 
be used by a phase-locked loop to acquire the recorded clock. Quite apart from synchroni­
zation, the physical length of a data block depends on the speed of the drive and the exact 
clock rate of the controller that writes the data on the drive. Hence speed and clock varia­
tions from drive to drive are reflected in a variation in the physical length of a sector. But 
a sector must fit within a specific space; it cannot be so long as to overlap the identifier of 
the next sector. Hence the padding after the data block allows for some variation in the 
physical length of a data block. 

In addition to these factors, the head geometry is a principal factor in determining the 
length-of the padded areas. The geometry is shown in Fig. 7. 20, where we see three physi­
cal gaps in the head. (These gaps are not the same as gaps between data blocks written on 
magnetic disks.) The center gap is the read/write gap, and it is sandwiched between two 

Erase gaps 

~•d/w.i.o ;·' 

'--T-u-n-ne-l-er-as_e__,__, Diskette motion 

FIGURE 7.20 The tunnel-erase head. 

Micron Technology Inc. et al. 
Ex. 1042, 270



7.2 Magnetic-Disk Recording Techniques 271 

erase gaps that form a ''tunnel'' for it. The magnetic field of the read/write head is gen­
erally wider than the read/write gap, and thus results in track widths that are larger than 
the mechanical geometry permits. The purpose of the tunnel-erase gaps is to trim the 
recorded track to the nominal track size. Trimming is an effective means of reducing track 
widths, and thereby decreasing the track-to-track spacing. 

Padding between data blocks is required because there is a significant variation in 
time between the point at which the read/writ~ head records a transition and the time that 
same transition reaches the erase gaps for trimming. The gaps are a fixed distance apart, 
but the linear speed of the medium depends on the track radiUs and instantaneous motor 
speed. Hence, the minimum time between read/write gap and erase gap is as small as 213 
f.LS (on an outer track with a "fast" motor), and can be as large as 528 f.LS (on an inner 
track with a "slow" motor). It is not possible for a controller to turn the erase gap on at 
precisely the correct time to trim the first bit written on the disk. Hence the controller 
turns on the erase gap and the read/write gap at the same time (within a few mi­
croseconds), and relies on the leader, gap, and trailer bytes to provide the necessary pro­
tection against accidental erasure of identifier-block data. The identifier blocks cannot be 
tunnel-erased after their initial writing and tunnel erasure. A second tunnel erasure de­
grades the recorded signal because it is extremely unlikely that the second-round tunnel­
erase gaps will be aligned to the data exactly as they were when the data were first erased. 

We mentioned earlier that some disk systems have multiple recorded surfaces so that 
surface selection is a third dimension of a memory system. Typical systems of this type 
select one surface at a time by electronic means' although the mechanical positioner may 
drive several heads simultaneously to corresponding points on their respective surfaces. 
The advantage of this type of design is to reduce mechanical costs by sharing the posi­
tioner mechanism with marty recording surfaces. Some high-performance memory sys­
tems of this type can read or write simultaneously through several recording heads. 

Thus far we have discussed the major features of magnetic disk recording, but we 
have not yet addressed the question of the design of a disk interface. Most of the following 
information applies not only to floppy-disks, but to all types Qf disks in use today (except 
in specific details). 

Disk-Controller Design 

One of the major differences between a floppy-disk controller and a cassette controller is 
the clock-recovery circuit. As bit densities become greater and greater, there are various 
factors that cause the recovered data to appear shifted from theirJlominal position. Figure 
7.21 shows the phenomenon as it appears to a disk controller. In the upper trace we see 
five transitions recorded on the disk at the positions shown. When these transitions are 
read back from the disk, the pulses are shifted in time from their apparent recorded posi­
tion: Some pulses appear earlier and others appear later. What is happening is a combina­
tion of many factors, including magnetic interactions and nonlinearities in the pickup 
electronics. An oversimplified model gives an intuitive view of why the bits are shifted. 
The flux transitions recorded on the disk are very much like small magnets. In the upper 

Micron Technology Inc. et al. 
Ex. 1042, 271



272 Magnetic-Recording Techniques 

Recovered data 

I 

--1~ --1 ~ --1~ 
Shift Shift Shift 

FIGURE 7.21 Problems of data recovery: Bit shifting. 

diagram of Fig. 7.21, the transitions shown in time are associated with a small magnetic 
domain on the disk. Consider the group of three recorded bits on the left of the diagram. 
The leftmost one has a bit on its right but not its left. Hence, its corresponding magnetic 
domain is influenced by a like magnetic pole on its right, but not on its left. Thus the mag­
netic flux lines are distorted and bend away from the nearby right pole, and the magnetic 
domain itself may shift to the left slightly in the magnetic medium. The drive electronics 
senses the first transition as it passes under the read head; but because of the field distor­
tion, the possible shift of the actual recorded domain, and the electrical response proper­
ties of the read/write head, the apparent position of the first bit transition has been shifted 
to the left, as if repelled by the flux transition on its right. 

Carrying this reasoning further, we can see that the middle of three flux transitions is 
affected equally by flux transitions on the left and right, and is therefore not shifted from 
its nominal position. The rightmost flux transition of the three is shifted to the right be­
cause it is repelled by a flux transition on its left. Hence, transitions appear early or late in 
a completely predictable fashion depending on other transitions in their immediate vicin­
ity. The amount of the shift depends on the bit density and on the flux per transition. 
Single-density recording is sufficiently dense that bit shifting is a major factor that has to 
be addressed in the data-recording and recovery process. 

There are at least three different techniques that are used to treat the problem of bit 
shifting: One can 

1. control the flux density of the read/write head during recording to compensate for the 
increased bit density on inner tracks, 

2. adjust the window during which bits are detected to compensate for bit shifting, and 
3. compensate during writing by writing bits earlier or later than their nominal writing 

time so that bit shifting will tend to put the bits into their normal position. 

Of these methods the first two are commonly used for single-density recording; but for 
double-density recording, the problems are just sufficently more complex to require the 
third technique as well. Single-density recording on 8'' disks is normally made at two dif­
ferent flux levels. Normal current is used on tracks 0 through 43, which are the outermost 
44 tracks on a disk. For track numbers 44 through 76, the recording cunent is reduced be-

Micron Technology Inc. et al. 
Ex. 1042, 272



7.2 Magnetic-Disk Recording Techniques 273 

cause of the greater density of the bits on the inner tracks and the correspondingly higher 
flux densities. Timing precompensation for double-density recording is accomplished by 
detecting the specific patterns that lead to bit shifting while the bits are passed through a 
serial buffer. When offending patterns are discovered, the corresponding bits are delayed 
cir written early. 

A very simple, but workable scheme for the data recovery of a single-density record­
ing is shown in Fig. 7.22. This is a data separator that works with a phase-locked loop to 
break a composite clock/data signal into a clock-only and data-only signal. The idea is to 
use the phase-locked loop to generate a 2 f.LS window during which a data bit is expected, 
and to gate the data line from this window. Then the window changes to a clock window 
and gates the clock line. the controller cannot determine at first if a pulse is a clock or a 
datum, so the controller has to guess one or the other. If it guesses a clock pulse and if 
after a period of time there are missing clock pulses, the controller changes its guess. Note 
that up to three clock pulses can be missing for mark bytes, so the controller has to await 
four or more missing clocks before changing its guess. For this reason, sequences of Os 
are recorded as part of the leader, gap, and trailer bytes, in order to be sure that the con­
troller locks onto the correct clock/data phase of the incoming data stream. In the figure, 
the phase-locked loop oscillates at 16 times the clock rate of the incoming data, so that 8 
counts of this loop apply to the clock window and 8 counts apply to the data window. 
Hence the window generator is nothing more than a 4-bit counter whose most significant 
bit is the window-control bit. This bit is fed in true form to the data-window gate, and in 
complemented form to the clock-window gate. 

Raw data 

and clock 
Window 

generator 

16 X Recovered clock 

I----~ Data 

}---------..Clock 

FIGURE 7.22 Structure of typical FM data separator. 

The phase-locked loop discussed in Section 7.1 is more complex than what we need 
for single-density recording. In fact, the phase-locked loop tends to compensate in­
correctly for bit shifting; and therefore we have to use it for long term stability only, seek­
ing other teclmiques for treating bit shifting. Figure 7.23 shows a very simple digital 
version of a phase-locked loop. This scheme works perfectly well in the absence of bit 

Micron Technology Inc. et al. 
Ex. 1042, 273



274 Magnetic-Recording Techniques 

---=B-'-'it--'-r'-'ec-'-ei'-ve'-"d-~ Load 

4-bit counter 
16 X data rate 

FIGURE 7.23 A digital phase-locked loop. 

Clock 
window 

shifting, and can be used for single-density data recovery without resorting to preshifting 
data during writing. The idea is very similar to the behavior of a serial data port that uses a 
transition to resynchronize to each new character. In this case the digital phase-locked 
loop resynchronizes to an input stream by reloading a 4-stage counter whenever a re­
ceived bit is observed. If the counter is reloaded with a fixed nominal value, then the 
counter produces a change on the high-order bit of the count at a time that is fixed in rela­
tion to the reload point. This gives the timing behavior shown in Fig. 7 .24. The first clock 
has appeared later than the nominal point, which results in the data window being delayed 
to a fixed time after the clock transition. The second clock transition comes early, which 
results in the next data window coming early. Note that the window shifting is in the 
proper direction for compensating for fast and slow clocks, but is in the wrong direction to 
compensate for bit shifting. If the first clock is late because of bit shifting, the window has 
to be moved to an earlier time, not to a later time, to catch the next data bit. 

A better way to run the phase-locked loop is to reload the counter with a value that 
depends on how far the observed clock time differs from its nominal value. The idea is to 

Clock 
window 

Clock Data Clock 

Received ~ ~ pulses 

FIGURE 7.24 Window adjustment by a digital phase-locked loop. 

Micron Technology Inc. et al. 
Ex. 1042, 274



7.2 Magnetic-Disk Recording Techniques 275 

make no adjustment if the difference is small, say 1 or 2 counts, and to adjust partially if 
the difference is large, say 6 or 7 counts. For example, the reload vector might adjust by 2 
counts if the difference is as high as 6, and by 1 count for differences between 3 and 5; it 
would make no adjustment for smaller differences. In this way the digital version of the 
phase-locked loop will track the average value of the clock frequency over long periods of 
time. 

With the growing popularity of floppy disks for microprocessors, a number of semi­
conductor manufacturers have introduced LSI floppy-disk controller chips to perform the 
bulk of the disk-interfacing function, Most of these chips require off-chip data separators, 
phase-locked loops, and timing precompensation circuits; but otherwise the majority of 
the logic required for a controller is on a single chip. A typical controller of this type is 
shown in Fig. 7.25, which represents the Western Digital family of interface chips num­
bered WD177X and WD179X, where the final digit X designates a member of the family. 
(Differences among chips in this family are related to the bus interface or to other specific 
chip functions.) The figure shows that this chip can control head motion by issuing step 
pulses and head-load commands to the drive. Step pulses move the head from track to 
track. The head-load command forces the head to contact the disk surface. When the head 
is not loaded, it is physically lifted from the disk surface. The controller also combines 
clock and data to form a composite serial data stream, and is able to assemble separated 
data and clock signals into 8-bit bytes to transmit back to a microprocessor. The index­
hole signal is used by the drive to count revolutions and thereby permits the drive to time­
out if a command fails. The controller also issues a command to lift the head from the disk 
if no activity occurs during a few revolutions. 

From { } Drive-select 
I/0 port -----------• lines 

CPU bus 
' Floppy-disk 

controller 

Head loaded 

Head-load command 

Step 

Step direction 

Index hole 

Data out 

Write gate 

Data in 

Recovered clock 

FIGURE 7.25 A typical LSI floppy-disk controller chip in the 
WD 177X or WD 179X families. 

Micron Technology Inc. et al. 
Ex. 1042, 275



276 Magnetic-Recording Techniques 

Data bytes are transmitted at the rate of one byte per 32 f.LS for single-density data on 
standard 8" floppy-disk drives. At this rate, a typical microprocessor operating with a 1 to 
2 MHz clock is quite taxed if the data are transferred under the control of the microproces­
sor. In nearly all instance~, transfers must be made in a program-controlled mode rather 
than in an interrupt mode, because the overhead of the interrupt is unacceptable. A much 
safer but more complex method is to transfer data under DMA control, in which case it is 
quite feasible to interface a floppy disk to a microprocessor with a 1 MHz clock. Double­
density recording doubles the data-transfer rate, and therefore almost surely requires a 
DMA controller. 

Examples of Practical Disk Interfaces 

Figure 7.26 is the schematic of a full, single-density disk interface. This particular inter­
face is designed to connect to an MC6800 memory bus, which is a challenging problem 
because this bus does not have a WAIT signal to stop the microprocessor for slow 
memory devices. Hence, there is some difficulty in synchronizing the MC6800 to the 
floppy-disk controller chip. (The technique for solving this difficulty is explained later in 
this section.) 

On the left in the figure we see the bus interface. Note that an external parallel port 
develops signals that are used as select signals for individual drives. Hence, the controller 
chip is not concerned with which drive is active. It simply issues commands to the con­
nector on the right-hand side of the figure, and system software has the responsibility of 
selecting the particular drives to respond to the commands. 

The floppy-disk controller chip in this diagram is the WD1771, a single-density con­
troller that has now been replaced by the WD179X series of chips. The latter chips have 
the capability to read and write in single or double density, but they are otherwise essen­
tially identical to the chip shown in the figure. Note that only a few external chips are re­
quired to interface to a floppy disk, since almost all aspects of disk control are embedded 
in the controller chip. It operates on its own 2 MHz clock, and has an on-chip processor 
that is designed for floppy-disk control. Figure 7.27 shows the register arrangement on the 
disk controller chip. Note that the chip occupies four port (or memory) addresses. The 
track, sector, and data registers each have unique addresses, and the registers can be both 
read and written. The track register holds the track number of the arm position of the disk 
that is presently selected. If a new disk drive is selected, the track register will be in­
correct momentarily, until software commands from the host microprocessor instruct the 
controller to read the disk and load the track register from the track identifier as it passes 
under the read /write head. 

The purpose of the sector register is to indicate to the controller which sector is to be 
read or written. When the controller executes a READ or WRITE instruction, it first 
places the head in contact with the floppy disk (which is called a head load), and then 
reads the sector IDs at the present arm position. As each ID passes under the head, the 
controller checks the ID for a match against the contents of the track and sector registers. 
If the track register fails to match, the operation is aborted because the arm is in the wrong 
position on the disk. Eventually, as the disk rotates the correct sector comes under the 

Micron Technology Inc. et al. 
Ex. 1042, 276



+5 v 

FIGURE 7.26 A floppy-disk controller interface. 

Micron Technology Inc. et al. 
Ex. 1042, 277



FIGURE 7.27 Register layout for the WD 177X and WD 179X families. 

Micron Technology Inc. et al. 
Ex. 1042, 278



7.2 Magnetic-Disk Recording Techniques 279 

head. This is indicated by a match of the ID to the track and sector registers. At this point 
the controller is ready to read or write the data that immediately follows the sector ID. The 
data read from the disk are accumulated bit by bit in the controller until a full byte is avail­
able. This byte appears in the data register of the chip and is passed to the microprocessor 
over the memorybus. Data to be written on disk flow in the opposite direction, from the 
microprocessor to the controller over the memory bus. These data are stored into the data 
register by parallel 8-bit writes, and are then output as a serial bit stream to the disk 
drives. Note that the output stream has clock bits inserted between data bits, and that the 
input stream from the drive contains the same clock bits. Clock and data bits in the input 
stream pass through the data separator, and are passed to the controller chip as two dis­
tinct streams of bits. 

The last two registers shown in Fig. 7.27 are the COMMAND and STATUS regis­
ters, which occupy a single address in the port-address space. Data written to this address 
are commands to be interpreted by the controller, whereas data read from this address are 
status reports to be returned to the microprocessor by the controller. Commands available 
on the WD family of controllers are listed in Table 7 .2. The Type I commands are the 
commands that move the arm to the correct track. The STEP IN and STEP OUT com­
mands move the arm one track in or out, respectively; and the STEP command moves one 
track in the same direction as the last arm movement. When the arm has to be moved 
several tracks in a single step, it is somewhat faster to use the SEEK command. This com­
mand accepts a target track number in the data register, then issues the correct number of 
step pulses to move the arm from the present track to the target track. At the conclusion of 
this command, the arm is directly above the target track and the track register has been up­
dated to show the correct present position of the arm. Commands labeled Type II are the 
commands used to read and write data. These commands function correctly when a drive 
as been selected, the arm has been moved to the correct track, and the track and sector 
registers have been loaded with track and sector numbers of the data to be accessed. 

TABLE 7.2 Commands for the WD177X 
and WD179C Families 

Type Command 

I RESTORE 
I SEEK 
I STEP 
I STEPIN 
I STEPOUT 

II READ SECTOR 
II ~SECTOR 

III READ ADDRESS 
III READ TRACK 
III ~TRACK 

IV FORCE INTERRUPT 

Micron Technology Inc. et al. 
Ex. 1042, 279



280 Magnetic-Recording Techniques 

Two other types of instructions appear in the table. The Type III commands are used 
more rarely than the others, but serve an important purpose. The READ ADDRESS re­
ports back the sector ID of the first sector that passes under the read/write head. From this 
information the microprocessor can determine both the present track and sector passing 
under the head, and can then use this information to allocate disk memory in a manner 
that tends to minimize rotational delay and mm movement. The WRITE TRACK com­
mand writes an entire track, including the sector IDs. This command is typically used on 
an initially empty disk to write sector IDs, and thereby prepare the disk for future reads 
and writes. The READ TRACK command is the inverse operation, and used primarily for 
diagnostic purposes because it is the only command that reads and reports disk data in the 
exact image of the data on the disk. 

The last type of command, Type IV, is the FORCE INTERRUPT command. This 
command can be used to halt operations in progress, or to halt operations when certain 
selected events occur, such as the removal or reinsertion of a disk into the drive. 

The command structure of the WD 177X and WD 179X families of controllers is quite 
similar to that of other controller chips, although there are differences in details. Other 
disk controller chips available from Intel, Motorola, and NEC are described and com­
pared in Table 7.3. 

TABLE 7.3 Comparison of Floppy-Disk Controller Chips 

Characteristics WD177X WD179X MC6843 i8271 NEC372 NEC765 

Single density Yes Yes Yes Yes Yes Yes 
Double density No Yes No No No Yes 
Pins 40 40 40 40 42 40 
Voltages 3 2 1 1 3 1 
IBM 3740 format Yes Yes Yes Ye& Yes Yes 
Other format Yes Yes No Yes Yes Yes 
Drive select No No No Yes Yes Yes 
Side select No No No Yes Yes Yes 
Key-compare mode No No No Yes No Yes 
DMA controls No No Yes Yes No Yes 
Interrupt lines 2 2 1 1 1 1 

This brings us to a discussion of the operation of the interface in Fig. 7 .26. First we 
note the signal buffers: The drivers are open-collectors, which normally drive 150-0, 50-
conductor flat cables; the receivets-Schmitt triggers because the hysteresis of the 
Schmitt trigger is an excellent mechanism for removing noise introduced through the 
cabling- are terminated with 150-0 resistors in order to eliminate reflections on theca­
ble. The far end of the cable has similar resistors terminating lines driven by the open­
collector gates on the controller interface. Most signaling on the cable is in short pulses, 
200 ns in length, with a pulse-repetition rate of no greater than one pulse in 2 J.LS. Because 

Micron Technology Inc. et al. 
Ex. 1042, 280



7.2 Magnetic-Disk Recording Techniques 281 

of this low duty cycle, the pulses are asserted in low polarity-that is, as logic Os, so that 
while the signals are unasserted no power is consumed in the load resistor. Some disk sys­
tems take advantage of the open-collector drivers to do ''wired-OR'' logic of status sig­
nals from multiple drives. 

The basic signals produced by the controller are the signals for moving the arm 
(STEP and IN), for writing data (WRITE DATA, WRITE GATE, and TG43), and for 
sensing external status (WRITE PROTECT, WRITE FAULT, INDEX PULSE, TRACK 
0, and READY). The WRITE DATA signal co11tains both clock and data interspersed, 
and the WRITE GATE signal is asserted when WRITE DATA contains a serial bit stream 
to be written. The signal TG43, which means ''track greater than 43,'' is asserted as the 
arm moves inward on the disk. The function of this signal is to force the drive to reduce 
the recording current on tracks 44 and higher in order to reduce the effects of bit shifting. 
The status signals report the condition of the drive or of the disk in the drive. If the disk is 
protected, that is, if it is physically notched in a manner that triggers a protect circuit, then 
WRITE PROTECT indicates this condition to the controller, which then aborts any at­
tempt to write on the disk. TRACK 0 status is asserted when the arm is moved to the 
outermost track on the disk. The INDEX PULSE signal triggers each time an index hole 
passes under a photosensitive diode. This enables the controller to count disk revolutions 
and to abort incomplete operations if they do not complete within a fixed number of revo­
lutions. The READY signal is usually connected to the drive power or to the door of a disk 
drive and indicates READY when power is applied and a disk is properly mounted in the 
selected drive. 

Only two nontrivial circuits connect the controller chip to the disk drives. Ope circuit 
is responsible for head-load timing and the other for data separation. Head loading refers 
to the process of forcing the head to contact a disk in preparation for a read or wqte opera­
tion. In current practice, heads are lifted from ~ disk when the disk is inactive. This 
reduces wear on both the head and the magnetic media. In order to perform an access, it is 
necessary to load the head, and then to follow the normal procedures for read or write. 
Unfortunately, the time required for the head t() reach its functional position is rather 
lengthy, so that the controller must delay operations until the head responds to a HEAD 
LOAD command. In the interface shown, the disk drives report back that the head-load 
solenoid is active. A one-shot delay triggers when a HEAD LOAD signal is issued. The 
HEAD LOAD signal travels to the disk drive where it initiates the head loading, while the 
one-shot prevents any further action from taking place. Mter'the one-shot times-out (in 
about 50 ms in the design shown), the operation can continue. The WD chip family re­
moves the HEAQ LOAD signal after about three revolutions of inactivity, although the 
drives niay hold the heads loaded for some time after the HEAD LOAD signal is removed. 
In the figure, we see the HEAD LOADED status signal returned from the drive, where it 
is used to keep the one-shot from retriggering while the head is still loaded. Hence, if the 
drive happens to have the head loaded when a new HEAQ LOAD command is issued, a 
READ or WRITE operation can begin immediately instead of waiting for 50 ms before 
beginning. Not all drives have the capability shown, but it is generally a good idea to 
leave a head loaded from 3 to 10 s after the HEAD LOAD cqmmand is removed if this is 

Micron Technology Inc. et al. 
Ex. 1042, 281



282 Magnetic-Recording Techniques 

possible. The additional wear caused by this extra loading is negligible, but the advantage 
of avoiding unnecessary HEAD LOAD commands is extremely worthwhile. Each HEAD 
LOAD command produces a pulse that drives the head "crashing" into the disk. Users of 
disk-based microprocessors hear this operation as a rather loud "clack, clack, clack," 
where each clack is a HEAD LOAD. The wear and damage produced by the unnecessary 
loads is far more serious than the wear produced by holding a loaded head on the disk for a 
few seconds longer than necessary. (The discussion here is relevant to 8" disks; the 
smaller 5.kl'' diskettes are usually loaded during the entire time that motor power is on. But 
motor power is turned off after accesses are complete in order to conserve power and limit 
head wear.) 

This brings us to the data separator. Figure 7.28 shows the separator in somewhat 
greater detail. Note the pair of 74LS74 flip-flops that are used to synchronize an incoming 
pulse to the local clock. The first of these flip-flops receives the incoming pulse and holds 
it for the second flip-flop. This is necessary because clock pulses occur every 250 ns, but 
the pulse width of an incoming pulse may be less than 200 ns so that data storage is re­
quired in the data separator. The second flip-flop can enter the metastable state, but 
presumably it will do so only if the input pulse and the clock change at approximately the 
same time. When this happens, the output of the flip-flop is unpredictable. If the output 
should report no pulse received, then in 250 ns the clock pulse that occurs should bring the 
flip-flop out of the metastable state where it recognizes a pulse received. Note that only 
one of the two outputs of this flip-flop is used elsewhere in the circuit because the comple­
mentary outputs need not be complementary in the metastable state. Therefore a design 
that relies on the complementary nature of the outputs will fail. 

In addition, the circuit illustrated relies on the assumption that if any gate interprets 
the output of the second flip-flop as a logic 0 then all the gates it drives will also do so. A 
safer approach is to use yet another clocked flip-flop stage following the series of two 
stages. This third stage presumably will not let the third flip-flop enter the metastable state 
if the second-stage flip-flop has had 250 ns in which to settle out of its metastable state. 
All signals for the other portions of the data separator are derived from the third stage of 
the modified design rather than from the second stage. 

The output of the last flip-flop is gated either to the CLOCK input or to the DATA in­
put, depending on the state of the digital phase-locked loop. When a pulse is received, the 
phase-locked loop counter is reset to 2, and thereby has its window adjusted for the next 
pulse. Because the high-order bit of the counter determines whether the pulse is to be 
routed to the clock or the data pins, we discover that the clock and data windows are each 
eight clocks, or 2 f-LS in width. This is the correct width for single-density recording, 
which encodes one byte every 32 f-LS, each byte consisting of eight clock and eight data 
windows. The middle of the window occurs just when the fourth clock appears, and a per­
fectly centered pulse straddles this clock. Hence, when a bit falls in the exact center of the 
window it arrives when the counter has a count of 3, and this is the value to which the 
counter is reset when a pulse is sensed. In the figure, the reload value is 2 rather than 3, 
which delays the window slightly from the nominal center value. This delay is inserted 
because of other timing factors such as bit shifting and propagation delay, and it adjusts 

Micron Technology Inc. et al. 
Ex. 1042, 282



DATAL 

4MHz 

FIGURE 7.28 Data separator for the WD 1771. (From SD Systems Versafloppy interface.) 

Micron Technology Inc. et al. 
Ex. 1042, 283



284 Magnetic-Recording Techniques 

the window so that the window is more nearly centered about the expected positions of 
pulses. Note that the reloading of the counter affects the three least significant bits only, 
so that the high order bit, which controls whether the bit is a clock or a data bit, is not 
altered. 

One of the puzzling aspects of this separator is that it contains no circuitry to distin­
guish between clock and data bits. The decision made by the separator appears to be arbi­
trary. Intuition suggests that this is wrong, and that the data separator should detect miss­
ing clocks. If four or more clock bits in succession are missing, it should change its deci­
sion as to which bits are clocks and which are data. (Recall that sector IDs are special data 
marks with three missing clocks to distinguish them from ordinary data. Hence up to three 
clocks can be missing under normal circumstances.) It turns out that this particular con­
troller chip detects missing clocks, and switches clock and data lines internally in the 
event of an incorrect guess. Hence, it is not important that the separator guesses wrong as 
to which bits are clock and which are data. If the guess is wrong, it is corrected by the 
controller. The important function of the separator is that it must break up the incoming 
bit stream into two independent streams. If the clever designer wishes to design a separa­
tor that changes its guess when the original guess turns out to be incorrect, that designer 
may discover that the separator no longer works with this particular controller chip. For 
just when the separator switches the external data streams between the clock and data 
pins, the controller is making the identical switch internally, and the net result is that the 
controller and separator are "fighting" each other. When both the controller and the 
separator make a correct decision to change, they nullify each other. 

This brings us to the microprocessor portion of the interface shown in the left half of 
Fig. 7 .26. Apart from the usual bus-interface signals the controller chip produces two dif­
ferent REQUEST signals. One is DATA REQUEST, which is asserted during transfer of 
each byte of a sector. The other is INTERRUPT REQUEST, which is asserted at the end 
of an operation. The problem is to move one byte every 32 f.JvS between the microprocessor 
and the controller chip. In general, interrupts are much too slow for this type of transfer, 
so we need to use either program-controlled I/0 or a DMA-controlled transfer. Interrupts 
take several machine cycles to store processor state and several additional cycles to 
restore that state at the end of the interrupt. Processors with clock rates of 1-2 MHz may 
require on the order of 15-20 f.JvS just for the process of entering and leaving the interrupt 
program. Too little time is left for moving data. 

For program-controlled I/0, consider what is involved in a transfer of data through 
the controller chip. Program 7.3 is an example of a wait loop used for this purpose. The 
high-level language form of the algorithm shows the general structure of the program. 
Following that is an example written in the machine language of a typical microprocessor 
in the 6800 and 6502 families. With small changes, the code is readily adapted to the 
808X and Z80 families. The cycle counts shown in the program are each 1 f.JvS long, so we 
see that the program just fails to meet the requirement of processing 1 byte every 32 J.JvS. If 
the microprocessor timings are shorter than those shown, the processor might actually 
meet the requirements. (Permissible timing variations actually reduce the available time 
between bytes to as little as 30 f.JvS. This places an even stricter timing constraint on the 
program.) 

Micron Technology Inc. et al. 
Ex. 1042, 284



7.2 

CYCLES LABEL 

START 

4 LOOP 
4 
4 
4 
4 
4 

5 
_.1_ 

Magnetic-Disk Recording Techniques 

PROGRAM7.3 Wait-Loop Program 
COUNT:= BLOCKLENG'IH; 
INDEX:= STARTING ADDRESS; 
do begin 

whilenotREADYdo; (* WaitforREADY. *) 

MEMORY [INDEX] : = DISK BYTE; 
INDEX:= INDEX+ 1; 
COUNT : = COUNT - 1; 

end until COUNT<= 0; 

CODE OPERAND COMMENTS 

LDAA BLOCK;LENG'IH COUNT : = BLOCK LENG'IH; 
STAA COUNT 
LDX STARTADDR INDEX:= START ADDRESS; 
LDAA STATUS READSTATUSOFDISKCONTROLLER 
ANDA #READY IS THE READY BIT SET? 

BRZERO LOOP IF NOT SET, READ AND TEST AGAIN 

285 

LDAA DATA CONTROLLER IS READY AT 'IHIS POINT 
STAA o,x MEMORY[INDEX] :=DISK DATA; 
DEC X INDEX : = INDEX+ 1; 
DEC COUNT COUNT : = COUNT - 1; 
BGT LOOP 

33 TOTALCYCLES 

The timing estimates given in the program make the possibly incorrect assumption 
that the wait loop is executed only once. Actually the program may pass through the wait 
loop two or more times. The extra passes through the wait loop might add just enough 
cycles to the critical loop to cause a failure in the data transfer if the program otherwise 
meets the critical timing constraint. To be on the safe side we need to have a much larger 
margin of safety. If we cannot find a means to obtain that margin of safety, we must resort 
to DMA for the data transfer. 

The most obvious way to reduce the critical timing path is to eliminate the wait loop 
in the program. Two different ways of doing so both make use of facilities on typical mi­
croprocessors. The most direct way is to use the READY signal produced by the con­
troller to hold the processor in a wait condition until the transfer can take place. In this 
case the wait loop disappears completely from the program, and the instruction that 
accesses the floppy-disk controller simply suspends itself until the controller reports 
READY. When this method is used with a processor such as the Z80 that has a block­
repeat instruction, the entire data-transfer loop of Program 7.3 reduces to a single instruc­
tion executed in the block-repeat mode. 

The second method uses a HALT instruction to stop the processor, and the READY 
status triggers a restart. This method is widely used on 808X and Z80 processors, which 
can be interrupted after executing a HALT instruction and then will restart execution. In 
this case, the wait loop is replaced by a HALT instruction. Both methods replace the pro­
grammed testing of the controller status with continuous hardware testing of the status. 
But the hardware costs essentially nothing because it is embedded in the microprocessor. 

Micron Technology Inc. et al. 
Ex. 1042, 285



286 Magnetic-Recording Techniques 

The controller interface shown in Fig. 7.26 uses a variant of the HALT-instruction 
method. The external hardware creates a HALT instruction for a microprocessor that has 
none. The processor is an MC6800, and the code for the data transfer is shown in the Pro­
gram 7 .4. In this case, an external I/O port is preset to drop the voltage on a handshake 
line when the port is read. This handshake line is brought to the controller interface, 
where it is synchronized to the 6800 clock and output as a HALT signal, as though a DMA 
process were being requested. The microprocessor halts at the end of the following in­
struction, then continues when the DRQ signal removes the HALT request. This program 
executes comfortably within the 32-cycle constraint. The external hardware required in 
this design for the HALT function is not extensive, and even this much hardware can be 
eliminated if the microprocessor has a HALT instruction or a slow-memory interface. 
Note that the hardware makes use of the handshake lines on a parallel port and requires 
clock synchronization as discussed earlier in Chapters 6 and 3, respectively. 

PROGRAM 7.4 Stop-and-Start Program 
COUNT := BLOCK LENGTH; 
INDEX:= STARTING ADDRESS; 
do begin 

HALTuntilREADY; (* StopprocessingnntilREADY. *) 
MEMORY [INDEX] :=DISK BYTE; 
INDEX : = INDEX + 1; 
COUNT : = COUNT - 1; 

end until COUNT < = 0; 

CYCLES LABEL CODE OPERAND COMMENTS 

START LDAA BLOCKLENGTH COUNT:= BLOCK LENGTH; 
STAA COUNT 
LDX STARTADDR INDEX:= START ADDRESS; 
LDAA #HALTCODE THISBITPATTERNHALTSTHEMICRO 
STAA PORTCMD OU1PUT TO HALT THE PROCESSOR 

4 LOOP LDAA PORT DATA THIS HALTS THE PROCESSOR 
4 INC X INDEX:= INDEX+ 1; 

(*The HALT occurs at this point. *) 

4 
4 
5 

__j_ 

LDAA DATA 
STAA O,X 
DEC COUNT 
BGT LOOP 

25 TOTALCYCLES 

CONTROLLER IS READY AT THIS POINT 
MEMORY [INDEX] :=DISK DATA; 
COUNT : = COUNT - 1; 

Double-density interfaces are more complex than the single-density interfaces dis­
cussed here for several reasons. Because the data transmission rate is double that of 
single-density recording, it is extremely difficult to implement a double-density interface 
without a DMA controller. Timing constraints require one byte to be transferred every 16 
fLS, which is insufficient time for most microprocessors with clock rates up to about 4 
MHz to execute the program loop in Program 7 .4. (A microprocessor with the Z80-type 

Micron Technology Inc. et al. 
Ex. 1042, 286



7.2 Magnetic-Disk Recording Techniques 287 

block-repeat instruction may be an exception to this statement.) For newer microproces­
sors that have clock rates between 8 and 10 MHz, program-controlled I/0 is again a possi­
bility, but the higher clock rate does require more careful design than does a slower sys­
tem with DMA. 

The problem of bit shifting is much more severe in double-density interfaces than in 
single density. Consequently, the data separator is more critical, and it is necessary to pre­
shift data written to compensate for the shifting anticipated when the data are read. The 
circuits for precompensation and data separation are sufficiently widely used to be suit­
able functions to implement in LSI. This has the additional advantage that the system 
designer who draws upon packaged versions of these functions need not be concerned 
about the tricky details of compensation and data separation. Some examples of chips 
that implement these functions are shown in Figs. 7.29 and 7.30. Figure 7.29 shows a cir­
cuit precompensating data written on a floppy disk. In this case the controller is in the 
WD179X family, and produces signals that determine what precompensation is to be 
used. Since the controller buffers the serial bit stream, it can determine from that stream 
which bits will suffer from bit shifting. For example, in single-density recording a data bit 
has a clock bit on each side; and therefore if the data bit is a 0, the neighboring clocks will 

START 

EARLY 

NOMINAL 

LATE 

RESET L 

WD2143 

Data to floppy disk 

FIGURE 7.29 Timing precompensation with the WD2143 clock generator. 

Micron Technology Inc. et al. 
Ex. 1042, 287



288 Magnetic-Recording Techniques 

be shifted toward the missing data pulse. Hence, the first clock should be written early 
and the second clock should be written late to compensate for the shifting. The amount of 
the precompensation is determined by the WD2143 clock generator. Each time a pulse ap­
pears from the controller chip, that pulse latches the EARLY and LATE signals, then ini­
tiates the clock cycles of the WD2143. This chip then emits a sequence of four pulses­
one each for early, nominal, and late pulses, and the last to reset the control latches. The 
pulses are combined with the decoded EARLY and LATE signals to create a single pulse 
to the drive that is the data actually recorded. 

For the tricky problem of data separation of double-density data, the WD 1691 
support -logic chip produces a recovered clock from the composite data/clock signal that is 
read from a disk. This chip contains an internal frequency divider and phase-co~parator 
for a phase-locked loop as shown in Fig. 7.30. The internal divider is set to maintain an 
oscillation at 4 MHz. This reference frequency is comp,ared to the incoming data stream to 
produce three outputs from the phase-comparator. The PUMP UP and PUMP DOWN L 
outputs, when filtered, are used to drive a voltage-controlled oscillator. PUMP UP is a 
signal that tends to increase the average frequency, and PUMP DOWN L indicates that 
the frequency is to be decreased. This is a slightly different scheme than used .in the exam­
ple of a voltage-controlled oscillator earlier in this chapter. The reason for the difference 
is that the input signal to this phase-locked loop is not a square wave with a 50% duty cy­
cle, but rather a stream of narrow pulses, with many puises missing from their nominal lo­
cations. Hence, it is not clear how to measure phase differences between the input signal 
and the reference frequency when pulses are missing. For this reason the comparator pro­
duces both a PUMP UP and PUMP DOWN L, a pair of interlaced pulse trains. The differ­
ence in the average voltages of these signals determines the output frequency of the oscil­
lator. Also shown as part of the WD1691 is the interface with the WD2143 clock genera­
tor. The WD 1691, then, contains both the bulk of the data separator except for an external 

READ DATA (to floppy·disk controller chip) 

From external CLOCK 
oscillator 

PUMP UP To external 
PUMP DOWN LJvoltage·controlled 

oscillator From drive READ DATA 

Phase comparator 

From { 
clock 

generator 

From [ 
disk-controller 

chip 

WRITE DATA 

EARLY 

LATE 
WRITE DATA (to drive) 

EARLY CLOCK Latch 
NOMINAL CLOCK array 

LATE CLOCK (4) 

RESET 

FIGURE 7.30 Functional components on a WD1691 floppy-disk controller support chip. The 
phase comparator can be coupled to an external oscillator to form a phase-locked loop. The latch 
array implements write-precompensation logic. 

Micron Technology Inc. et al. 
Ex. 1042, 288



Experiments 289 

voltage-controlled oscillator, and the latch circuitry and logic required to drive the clock 
generator to obtain write precompensation. 

OTHER READING AND SOURCE MATERIAL 

Within this chapter we have cited material relating to phase-locked loops and linear sys­
tems. The technique for cassette recording with a tone burst is described by Wharton 
( 1977). Several single-board computer systems use a similar technique. The SYM-1, for 
example, switches between two tones, one at 3600HZ and one at 2400HZ, to construct 
each bit. The distinction between a 1 and a 0 depends on the relative lengths of the 3600 
HZ and 2400 HZ tones. 

Floppy-disk recording techniques have been the subject of many articles, particularly 
because new methods are increasing the recording density 10 to 20 times that of the first­
generation floppy disks. Hoeppner and Wqll (1980) describe various common recording 
techniques, and touch upon the requirements for the controller to record and recover data. 
Harman (1979) shows how the structure of the gap for soft-sectored disks is related to the 
geometry of the recording heads. Many different application notes from Western Digital 
cover the behavior and the applications for their family of disk-controller chips. Interested 
readers should contact Western Digital for their most recent publications. 

EXPERIMENTS 

7.1 For this experiment you will need a microcomputer with a cassette interface. Write a 
program that outputs a series of FF16s (allls) to a cassette recorder. Connect an os­
cilloscope to a pin that carries the output in digital form prior to waveshaping for 
recording. If you can discover the break between bytes, you may be able to deter­
mine the encoding of a 1 bit. It may be helpful to write your program to pulse a 
parallel-port output bit to provide a sync signal for the oscilloscope at the start of 
each byte output. Modify the program to output sequences of FE, F7, EF, and 7F 
bytes. These bytes have a single 0 bit. By comparing these sequences with each other 
and with the FF byte, you may be able to discover the encoding of both the 1 bit and 
0 bit. Connect a second oscilloscope probe to the analog output to the recorder and 
compare the analog and digital forms of the output signals . .t;)escribe your observa­
tiOJJS. 

7.2 Using the cassette interface and recording technique of the previous problem, design 
and construct a simple interface that recreates the digital version of the recorded sig­
nal from the recorded analog version of that signal. Conp.ect the digital output to one 
pin of a parallel port. Then write a program that samples the parallel port pin and 
successfully recovers recorded data. Test your program on recorded data. 

7.3 Your recovery program undoubtedly contains constants that are related to the ex­
pected transmission rate of the· incoming data or to the recorded frequencies on the 
cassette tape. Vary your constants until you discover the range over which you can 
correctly recover data from the cassette tape. What causes the failures to read 
correctly at the extremes of yotir range? 

Micron Technology Inc. et al. 
Ex. 1042, 289



290 Magnetic-Recording Techniques 

7.4 Construct a breadboard of the interface for the Kansas City Standard that appears in 
this chapter. Jumper the output to the input, attenuating-if necessary-the output 
voltage. Adjust the one-shot time out to fall ~of the way through one cycle of 2400 
HZ. Adjust the oscillator in the phase-locked loop to oscillate at 38.4 kHz. Output a 
continuous sequence of data bytes and verify that you can recover them. With the 
continuous stream running, probe the signals in the interface and explain what you 
see. 

7.5 For this experiment you will need a microcomputer with a floppy-disk controller and 
the schematics for the controller. Write a program that reads a particular disk sector 
continuously. CoJ;lllect one oscilloscope probe to the incoming data stream and 
another oscilloscope probe to a signal that defines whether a bit is a data bit or a 
clock bit. This is th~ clock "window." With the oscilloscope synchronized to the 
clock window, execute your program and observe the incoming data bits. Measure 
and describe the bit shifting that your observe. Execute your program with the head 
located on different tracks and plot the maximum shift observed as a function of 
track. Is there a discontinuity anywhere? Can you explain the discontinuity? 

PROBLEMS 

7.1 Consider the oscillator circuit for a phase-locked loop shown in Fig. P-7.1. The 
voltages shown at the test points are the steady-state DC voltage components of 
time-varying signals. The LM339 comparator is an open-collector device that has a 
typical low saturation voltage of 0.3 volts. The NPN transistor is in an emitter­
follower circuit whose gain is essentially unity, and may be treated as unity gain in 
your analysis. 
a) Draw a timing diagram that shows the general shape of the voltages at points A, 

B, C, D, and E. Describe for each voltage the underlying principles that give the 
voltage signal the characteristic shape you have shown. 

b) The voltage at pointE increases to what asymptotic voltage? What is the initial 
voltage atE when it begins to rise? At what point does the comparator fire while 
E is rising? What is the time constant that governs this increase? What is the 
mathematical expression that describes E while it is increasing? How long does 
it take forE to reach the firing voltage from the time it starts to rise? 

c) Repeat the answers to Part b for the portion of time that E is decreasing instead of 
increasing. 

d) What is the constant K 2 for the voltage-controlled oscillator? (This is the deriva­
tive offrequency out with respect to voltage in expressed in rad!s·V. To calculate 
K 2' you can differentiate a messy expression, or use a hand calculator and see 
how much the frequency output shifts for a small change in voltage input.) 

e) Assume that the frequency output is divided by 32 and fed back as the reference 
voltage of the loop. Calculate the natural frequency and damping factor for the 
loop from the values of K i for the phase comparator and the K 2 that you have 
already calculated. Then use the plots in the notes to estimate the settling time of 

Micron Technology Inc. et al. 
Ex. 1042, 290



A= 2.55 V 
B = 1.95 V 
c = 0.95 v 
D= 1.21 V 
E = 0.95 V 

+5 v +5 v 

100 kr2 

Problems 291 

+5 v 

4.7kn 
100 kn 

D 

FIGURE P-7.1 The phase comparator, low-pass filter, and voltage-controlled oscillator of a 
phase-locked loop. (Adapted from Percom Data Corporation's interface CIS-30+, courtesy of 
Percom Data Corporation.) 

the loop. Assume this is the time for the frequency response to a step change in 
voltage to reach and stay within 5% of its final value. 

7.2 The damping factor for the phase-locked loop in Problem 7.1 is not 0.7 for the com­
ponents given. Redesign the filter to achieve a damping factor of 0.7 and a reason­
able natural frequency for the feed-back loop. 

7.3 In Chapter 7 are equations for the natural frequency and damping factor of a phase­
locked loop with a passive filter composed of two resistors and one capacitor (see 
Fig. 7-11). Derive this equation. 

7.4 Some microprocessors can be externally controlled to wait an extended length of 
time for a slow memory or slow I/0 device. Such microprocessors include the Intel 
8080 family and the DEC LSI-11 family. Work out a scheme for interfacing a 
Western Digital type of disk controller to such a microporcessor so that the micro 
automatically waits for the controller whenever the micro stores or fetches a data 
byte during a block data transfer. Estimate how much execution time per byte is 
saved by using the automatic wait mode of operation instead of a program loop that 
tests the controller DRQ signal. 

7.5 Design a simple sequential-logic circuit that passes a bit stream to a floppy disk, and 
detects bit patterns that will be shifted early or late when read from the disk. The 
controller delays each bit it passes by a nominal amount if the bit will not be shifted 
on playback, or by a shorter than nominal amount if the bit will be delayed on play­
back, or by a longer than nominal amount if the bit will be read early. Thus the con­
troller precompensates for bit shifting on playback. In this design problem assume 
that bit shifting is a 1-unit delay, regardless of the head position. (Many commerical 
disk controllers actually use precompensation of this type only on inner tracks where 
bit shifting is most severe.) 

Micron Technology Inc. et al. 
Ex. 1042, 291



8 I CRT-CONTROLLER DESIGN 

This chapter covers the microprocessor-based design of cathode-ray tube (CRT) termi­
nals. Such terminals became popular when breakthroughs in the cost of memory made it 
possible to hold a screenful of characters in a stand-alone terminal at reasonable cost. 
With this capability it became possible to use existing low-cost video technology to 
display text while refreshing the display from local memory. Prior technology depended 
on the more expensive storage display to serve the dual purpose of display and memory. 
Memory technology breakthroughs also provided low-cost read-only memory (ROM) to 
hold the displayable bit patterns for each character. In early terminals, the cost of the 
character generator was a major portion of the terminal, whereas today the character 
ROMs cost only a few dollars. As terminal technology developed in the 1970s, early 
terminals did not make use of microprocessors because the micros themselves were rela­
tively new to the design scene. By the end of the 70s, virtually all terminal designs incor­
porated microprocessors, sometimes two or more per terminal, to take advantage of the 
great flexibility and low cost of these devices. There also emerged special video­
controller chips that were designed to perform the processing-intensive task of video re­
fresh, and thereby free the microprocessor for higher-level control functions. Because of 
microprocessors, the "dumb" terminal-that is, the terminal that can only display text 
and receive and transmit data-has given way to terminals with varying degrees of intelli­
gence. These new terminals contain expanded memory storage and powerful functional 
capability such as insertion and deletion editing functions. The most sophisticated termi­
nals in this class are full-fledged, multiprocessor computer systems. Yet the cost of these 
devices is no more than the cost of the most primitive display terminal of the early 1970s. 
In this chapter we examine the techniques for implementing a CRT terminal, paying 
special attention to the types of video-controller chips available to support the control 
function. 

8.1 SYSTEM DESCRIPTION OF A TYPICAL CRT CONTROLLER 

To appreciate how a CRT controller operates, we first examine characteristics of video 
displays to obtain an understanding of the special requirements for this, type of system. A 
typical video screen is depicted in Fig. 8.1. We see that characters are printed on the 
screen in a familiar format, usually with 24lines each with up to 80 characters. (Newer 
high-resolution CRTs have increased these dimensions to roughly 200 lines with 132 
characters each.) Each character is made up of dots that are illuminated by the video beam 
as it scans each row on the face of the tube. 

A brief calculation gives some idea of the high data rate required to run this type of 
system. Let's assume that each character is made up of dots arranged in a matrix 9 dots 

292 

Micron Technology Inc. et al. 
Ex. 1042, 292



8.1 

r~:-.-:-.l 
I • I 
I • • • I 
I • I 
L_:_~·_:_.J 

System Description of a Typical CRT Controller 

NOW IS THE TIME FOR ALL GOOD MEN 
THE QUICK BROWN FOX JUMPED OVER THE LAZY DOG. 

!E!NTER YOUR PASSWORD 

GOOD MORNING. THERE IS MAIL WAITING FOR YOU. 
MAIL. 
YOU HAVE A MESSAGE FROM D. L. SMITH. 
YOU HAVE A MESSAGE FROM R. B. JONES. 
St1I TH. 
TO: OFFICE MANAGERS 
FROM: D. L. SMITH 
SUBJECT: PHRANISTAT PRODUCTION 
DATE: FEB. 29, 1984 
OUR CURRENT PRODUCTION CAPACITY FOR PHRANISTATS 
MUST BE EXPANDED TO MEET THE GROWING DEMAND. 
PLANS FOR THE NEXT FISCAL YEAR CALL FOR 
AN INCREASE OF 200 UNITS PER MONTH. 

FIGURE 8.1 A character display on a typical CRT. 

293 

high by 7 dots wide. To leave space between characters, we assume that each character 
field is actually 10 X 8, with the extra row and column left blank. Then the video beam 
has to touch each of the 80 dots per character for each of the 24 X 80 = 1920 characters 
during one scan of the display. This means that the controller must transmit at least 1920 
X 80 = 153,600 bits per frame. To obtain a flicker-free image, each frame must be 
repainted roughly 60 times per second. (A lower quality image produced by refreshing 
every other line in each scan permits the refreshing rate to be dropped to 30Hz.) This 
forces the information rate from the memory to the display to be at least 9.22 MHz. Be­
cause of other overhead in the transmission process, data rates frequently climb to 15 
MHz, although this can be reduced somewhat by using lower quality characters and 
smaller display formats. The very high-resolution displays now becoming popular have 
data rates approaching 60 MHz. With data rates running from about 10 MHz to 60 MHz, 
the microprocessor in a CRT terminal would quickly be saturated were it not for special 
support chips to handle the high data-rate functions. These chips are essentially special­
purpose processors that can meet the speed requirements of the refresh circuitry. 

With these ideas in mind, consider the block diagram of a typical controller shown in 
Fig. 8.2. The familiar parts of this diagram are the microprocessor, the memory, and the 
serial and parallel I/0 ports that connect the system to keyboard, printer, and modem (or 
host computer). The aspects of the controller that reflect the CRT function consist of the 
dual-ported memory, the CRT-controller chip, the character-generator chip, the DMA 
controller, and the video shift-register. 

Micron Technology Inc. et al. 
Ex. 1042, 293



294 CRT-Controller Design 

Microprocessor 

To/from 
keyboard 

To 
printer 

To/from 
modem 

FIGURE 8.2 The structure of a typical microprocessor-controlled CRT terminal. 

In this block diagram we see that both the CRT controller and the microprocessor 
have access to the data memory. The microprocessor stores new characters to display in 
the memory, but otherwise performs very little processing on the characters. The CRT 
controller reads the memory on a continuous basis, and uses this data to generate the data 
stream for the video display. Because of the very high data rate, the video memory 
bandwidth is almost fully utilized. In the block diagram we show an extra memory buffer 
that helps reduce accesses to data memory in order to maintain a high data rate. 

The general flow of information from data memory to the video display is interesting 
in itself. Each scan line on the video display traces one of the rows that make up each 
character. If characters are 9 X 7, then 9 distinct horizontal traces are required to draw a 
character. Of course, every character in one row of 80 characters is drawn during the time 
it takes to scan one character, so the writing time per character is small. But unless the 
row of characters is held in a separate buffer, each character displayed on the screen has to 
be read once for each of the 9 scan lines that make up the character. Rereading from main 
memory takes excessive bandwidth and results in poor performance or costly memory. 
Hence, a typical CRT controller reads a line of text into a buffer. From this buffer the con­
troller generates the scan lines transmitted to the video monitor, and reading from the· 
buffer does not conflict with processor accesses to shared memory. 

The bit patterns for scan lines are stored in a video shift-register that performs the 
parallel-to-serial conversion of the data stream. The shift register need not hold an entire 
scan line, since the controller can insert additional data into the scan line "on the fly" as 
the shift register empties. In the block diagram we show the buffer memory data path 

Micron Technology Inc. et al. 
Ex. 1042, 294



8.1 System Description of a Typical CRT Controller 295 

passing through a ROM character-generator en route to the shift register. In this system 
the ROM holds the bit patterns for each character and reports these bits in response to each 
access request. Since our presumed character size is 9 scan lines by 7 columns, a ROM ac­
cess yields 7 bits per access, and 9 different accesses (one for each scan line in a charac­
ter) are required to build up a character. The address field for an access consists 'of the 
character code (usually 7-bit ASCII) concatenated with the scan line number. The bits re­
ported change as the scan line increases, and thus the character form is gradually scanned 
from top to bottom 

To meet the speed requirements, the bulk of the activity in the system operates in a 
concurrent (parallel) mode. Each character written on the screen requires 

1. access to data memory to find the character code, 
2. a subsequent access to the character generator ROM for each of the horizoptal scan 

lines in the character, 
3. a parallel access to store the bit image of each line in the video shift-register, fllld 
4. serial access to the video shift-register output to stream the data to the video qisplay. 

These operations are usually performed as concurrently as possible to increase the 
performance of the system. For example, all activity involving the character transiation in 
the character-generator ROM is performed in parallel with the activity of the micropro­
cessor. The buffer and translation activity can also be done in parallel. Let us presume 
that the access time to the buffer is approximately equal to the access time to the 
character-generator ROM. Then both memories can be operated in parallel from a com­
mon clock. The idea is that an access to the buffer for character i + 1 occurs at the time of 
the access to the ROM for the bit pattern of character i. 

The Controller Software 

The microprocessor functions as a high-level controller in Fig. 8.2. It manages the data 
entering and leaving the system via the low-speed serial ports, and maintains the data in 
the screen memory. All of these operations constitute a relatively light load that is well 
within the capability of 8-bit microprocessors. The heavy load is associated with refresh­
ing the video display, and all of this load is assumed by the video-controller chip and the 
buffer memory. A typical set of actions performed by the microprocessor is described in 
Program 8.1. This description is representative of actions of a basic terminal, and does not 
address the higher-level functions of advanced terminals. The program is structured as a 
continuous loop during which the microprocessor polls each IJO port and performs the 
processing for functions specific to each port. Except in unusual terminals, the data rates 
for the IJO ports are slow enough to permit the processor to deal with each transaction re­
quest when the request is discovered instead of queueing requests for future idle periods. 
Moreover, the program is greatly simplified by using a polling structure instead of an 
interrupt -driven structure. 

The controller program loop begins with a query of the keyboard, followed by similar 
queries of modem output, modem input, and printer. This particular form of controller 

Micron Technology Inc. et al. 
Ex. 1042, 295



296 CRT-Controller Design 

PROGRAM 8.1 Terminal-Controller Program 

while TRDE do (* Repeat the outer loop indefinitely. *) 

begin (* Poll the I/O ports. *) 
if keyboard status =READY then 

begin 
read keyboard; (* This reads ASCII-encoded data from the keyboard. *) 
ifvisible char (character) then (* Is the character displayable?*) 

begin (* For half -duplex operation, display the character. *) 
memory [display line' display column] := character; 
display column:= display column+ 1; 
if display column > 80 then (* Make a new line. *) 

begin 
restore cursor; (* Simulate a carriage return. *) 
newline; (* Simulatealinefeed. *) 
end; 

end (* End of processing visible characters. *) 
else if character = carriage return then restore cursor 
else if character = 1 ine feed then new 1 ine 
else if. . . (* Each special character is treated by these statements. *) 
enter queue (character) ; (* Queue character for modem output. *) 
end; (* Endofprocessingthekeyboard. *) 

if modem output status =READY then 
begin 
character:= remove queue; (* Take character from queue. *) 

if not ~haracter =NIL then modem output data:= character; 
end; (* Endofmodemoutputprocessing. *) 

if modem input s·tatus =READY then 
begin (* Treat characters from the modem link here. *) 

( * This code is similar to the keyboard code above *) 

end; 
ifprinter status= READY then 

begin (* Process the printer port. *) 

character:= memory [printer line, printer column]; 
if character= carriage return then 

begin 
printer column:= 0; 
printer line:= printer line+ 1: 
if printer line> last line then stop printer; 
end 

else (* Advance to next character. *) 

printer column:= printer column+ 1; 
printer port:= character; (*Output to printer.*) 
end; (* Endofprinterprocessing. *) 

end; (*End of outermost loop. *) 

Micron Technology Inc. et al. 
Ex. 1042, 296



8.1 System Description of a Typical CRT Controller 297 

shows a half-duplex operation in which characters typed on the keyboard appear immedi­
ately on the screen, and are sent to the modem output as well. Half-duplex operation 
forces this mode of operation on the terminal because the modem link cannot be used 
simultaneously in both directions. Therefore, characters typed must be displayed im­
mediately, whereas in full-duplex operation the character typed is transmitted to the 
modem without displaying it first. Moreover, in full duplex operation, the output charac­
ter eventually reaches a remote computer that echoes the character on the return link, and 
the character is displayed when it appears at the modem input. 

The keyboard handler accepts a new character, which it then stores in the display 
memory if the character is a visible character. For control characters such as carriage re­
turn and line feed, the program moves the cursor and scrolls the screen as necessary. The 
response to a carriage return is a reset of the cursor to column 1, and the response to a line 
feed is a scroll of the display or an increment of the cursor line position. 

The last action of the keyboard handier is the enqueueing of the character for the 
modem output. Since the keyboard is not synchronized to the niodem in any way, we 
must in general buffer the output characters before transmitting them. When the modem 
output port is free to transmit a new character, it removes a character from the output 
buffer, always removing in first-in, first-out (FIFO) order. Hence, the buffer is a queue, 
and the subroutines ENTER QUEUE and REMOVE QUEUE, respectively, enter and remove data 
from the queue. 

After processing the keyboard, the program examines the modem-output port. Here 
the program removes one character from the queue and outputs it, provided that there is a 
character present and the modem-output port is free. Following the query of the modem­
output port, the program queries the modem-input port, and subsequently queries the 
printer port. Modem input is treated almost identically to the keyboard input, so the code 
for this function is not shown explicitly in the example program. The printer port is used 
to print a copy of the contents of display memory. Hence this program scans display 
memory and outputs the contents to the printer port. 

To maintain good response tiine for all functions, it is essential that no task take too 
long. Hence, the polling program must reach each port sufficiently frequently to prevent 
lost data. The most demanding port in this example is the modem-input port, where data 
rates of 19.2 kHz may require service about 2000 times a second. If the polling loop re­
quires more than 500 f-1-S upon occasion, the modem-input port might suffer an overrun. 
To take the modem-input port into account, it is normal practice to operate the modem­
input port (and any other heavily-used port) in interrupt mode rather than in polling mode. 
This guarantees that the modem-input program queries the port immediately after a datum 
is received. Many terminal designs drive the keyboard scanner with a timer interrupt, typ­
ically at a 60-Hz rate instead of polling the keyboard as described here. 

Keyboard Scanning 

Now let's look at some of the details of the keyboard handler. The keyboard is typically 
arranged as a matrix of switches driven from a parallel I/0 port. (A typical keyboard inter­
face is briefly described in the discussion of parallel I/0.) The scan of the keyboard 

Micron Technology Inc. et al. 
Ex. 1042, 297



298 CRT-Controller Design 

switches can be made either by software or by a separate counter. With special LSI chips, 
keyboard scanning can be done automatically at relatively low cost. Otherwise, the mi­
croprocessor has to scan the keyboard under software control. Whereas the software 
method requires almost no additional hardware, it does place a greater burden on the mi­
croprocessor and reduces the processor cycles available for other purposes. 

The short program for reading keyboards that was presented earlier in our description 
of parallel ports can be adapted in a rather interesting way as a CRT-controller program. 
One way to implement the program is Program 8.2. For this example we presume that a 
keyboard is arranged as a matrix of switches with 8 rows of 12 columns, with a total of 96 
switch points. This is shown in Fig. 8.3. This arrangement supplies more than enough 
switch points for all standard characters, plus additional switch points for a numerical 
keypad and cursor control switches. 

4-
bit'"'" [ co 

micropr 

8-bit parallel 
data to 

microprocessor. 

de from 
ocessor. 

+-- 0 

+-- I 

+-- 2 

+-- 3 

+-- 4 

+-- 5 

+-- 6 

.+-- 7 

8-bit receiver 
and buffer. 

4: 12 Decoder and driver array 

0 I 2 3 4 5 6 7 8 9 10 

v 
1/ 

:;r-~ 
I I 
I I L ____ ...J 

FIGURE 8.3 A keyboard switch matrix with 96 switch points. 

II 

r- -, 
t __ j 

Micron Technology Inc. et al. 
Ex. 1042, 298



8.1 System Description of a Typical CRT Controller 

PROGRAM8.2 Keyboard-Scanner Program 
NORMALENTRY: (* Entrypointforkeyboardscan. *) 
keyboard column:= keyboard column+ 1; 
ifkeyboardcolumn > 11 then keyboard column= 0; 
keyboardout :=keyboard column; (* Activatethenextcolumn. *) 

keyboard row:= keyboard in; (*Read the row lines of the keyboard. *) 
keyboard out:= 15; (*Deactivate keyboard columns. *) 
if active row then 

begin debounce counter := debounce delay; (* Alter polling address 
to return to this loop. *l 

set entry point to "DELAY LOOP"; 
while de bounce counter > 0 do 
begin 
keyboard status:= notREADY; 
return; (*Exit to main program. *l 

DELAYLOOP: (* Reenterherefrommainprogram. *l 
debounce counter:= debounce counter -1; 
end; 

( * Restore the entry address of the polling routine. *) 
set entry point to "NORMAL ENTRY"; 
(* Convert row vector data to binary number. *) 

for row : = 0 step 1 until 7 do 
begin if (keyboard row) mod 2 = 0 

(* A 0 indicates key closure. *) 
then exit loop 

end; 

else keyboard row:= keyboardrowdiv 2; (* Shift the row 
vector right one bit. *) 

character:= encode [8 *keyboard column+ row]; (*Convert to ASCII. *) 
keyboard status =READY; 
return; ( * Exit with character. *) 
end; 

299 

Recall from our earlier discussion on this topic that the software detects which key is 
depressed by activating one column at a time and reading the row lines concurrently. 
When a key is depressed it shorts a column line to a row line, which then becomes active. 
The software reads the row lines in parallel, and detects key closures by checking to see if 
any row line is active. The program then converts tht' 8-bit row vector into a 3-bit binary 
row number that corresponds to the first zero bit in the row vector. The combination of ac­
tive column number and active row number uniquely identifies which has been depressed. 
In the figure we show the 12 column lines driven from a 4-to-16 decoder, which in turn is 
driven by a 4-bit scan code. The eight row lines, then, are passed to the microprocessor 
data bus through a parallel port or other suitable buffer. 

The program as written detects only one key closure at a time. Typists often depress a 
new one before releasing an old one, which is easily detectable by software. Software can 
recognize the sequence in which keys are struck when several are in a closed state simul­
taneously, and thus the software can interpret the keystroke sequence correctly. The capa­
bility to accept such keystroke sequences is called n-key rollover. To implement n-key 

Micron Technology Inc. et al. 
Ex. 1042, 299



300 CRT-Controller Design 

rollover, Program 8.2 should scan for every possible contact closure instead of terminat­
ing the scan when it first discovers a closure. The software keeps track of the changes that 
occur from one scan to the next, and thereby keeps track of the sequence in which new 
keys are depressed and old" ones are released. This information is sufficient to interpret the 
keystroke sequence correctly. 

The main problem for the keyboard software is to scan the 12 columns on a continu­
ing basis while attending to other tasks. The keystrokes also have to be "debounced" in 
some manner to eliminate spurious pulses created just at the point of switch closure and 
switch opening. (The trend in terminal design favors hardware debouncing instead of 
software debouncing, largely because of the availability of inexpensive LSI chips for key­
board scanning that contain the necessary logic for debouncing.) Program 8.2 shows one 
way of treating these problems. This program advances the scan by one column each time 
it is called. Debouncing is treated through a delay in the program. When an active signal 
is discovered, the program does not accept the character immediately. Instead, it initial­
izes a counter to a small positive number, and then exits to the main program. Each suc­
cessive entry to the keyboard scanner decrements this counter until the count reaches 0, at 
which point the character is accepted. Typical delays that are used in practice are on the 
order of 10-15 ms. The idea of the debounce process is to return to the delay loop on the 
next entry rather than to the start of the program. In this way the debounce program re­
turns to where it left off, and immediately decreases the debounce counter. This is a crude 
form of a coroutine call, which we describe at greater length later in Chapter 9. The gen­
eral idea is that there is a state associated with the keyboard-scanner process. When this 
process is invoked, it starts up in its prior state. Hence polling the keyboard while the de­
bouncing delay is running can be done with very low overhead and is quite efficient when 
compared to other ways of doing the same thing. In the example given, the state of the 
process is the state of the program counter at the point of exit. The state of the program 
counter is restored to its prior value when the program is reentered. 

CRT Timing Considerations 

Now that we have an overview of the system and have examined the role of the micro­
processor, we move to the CRT-controller functions. To understand these functions, we 
need a brief introduction to video waveforms so that we can understand the requirements 
by the controller on the serial data-stream output. A video monitor requires control sig­
nals and one data signal to generate a raster display. These appear in Fig. 8.4. The first 
waveform, Fig. 8.4(a), is the video signal that modulates the scanning beam to produce 
light and dark spots on the screen. The second waveform, Fig. 8.4(b), is the horizontal 
sync signal that controls the beam's horizontal repetition rate. The sync pulses in this sig­
nal lock an oscillator to the sync frequency, and the oscillator in tum generates a ramp sig­
nal at the sync frequency that sweeps the beam across the screen. Similarly, the vertical 
sync shown in Fig. 8.4(c) determines the vertical repetition rate, which is the rate at which 
frames are repainted on the screen. The last waveform, Fig. 8.4(d) is a blanking 
waveform that turns off the monitor beam during horizontal and vertical retrace. This sig-

Micron Technology Inc. et al. 
Ex. 1042, 300



8.1 

I' 
Scan line 11 ·.L..o.! 

1+-----------1/, -1 

System Description of a Typical CRT Controller 301 

I· Scan line 11 + 1 rf---+j I Scan line 11 + 2 
' J 

Bla~k- 0 0 0 Whrte DO 0,0 D o D o o o :ff-'---'O__,__D...J.....L...LD---L..jC 
" Black and white dots. Black and white dots. 

(a) 

_.__Cb-'-----__ __,,.__._, ~~------jfJ----' _.__A~-
1 lf11 ;~ ~~~~ 'off during scan line. ~ ~--~~ff during scan line ---.J ~ 

Front porch Back porch 
(b) 

On for three scan lines. On for three scan lines. 

I· ,~ __, 
D N 

One video frame le;~ three 
scan lines. 

(c) 

One scan line __,r-
111111111 ,,ll 

h 
IIIIIIIUIIIII 

II 

~~ 
Blanking during Blanking during 
horizontal vertical retrace. 
retrace. (d) 

D ,, D 
One video fr;~e less three 
scan lines. 

11111111/UIII/1 
II 

FIGURE 8.4 Video waveforms: (a) Video data for scan lines; (b) horizontal sync pulses; 
(c) vertical sync pulses; (d) blanking waveform. Graphs (a) and (b) have the same time scale, 
but (c) and (d) have much coarser times. 

nal is not produced as a separate signal but is combined with the video signal of Fig. 
8 .4( a) to produce a composite waveform for controlling the intensity of the beam. 

In commercial video, frames are usually written with an interlaced scan-line tech­
nique in which the even lines are written in one frame and the odd lines in the next. The 
bandwidths of these systems are relatively low, and interlacing becomes necessary in 
order to repaint pictures fast enough to reduce flicker. CRT terminals, however, have 
much higher bandwidths than broadcast receivers, so that it is possible to repaint an entire 
frame, rather than just the even or odd lines in the frame at the vertical repetition rate. 
Hence, in the remainder of this discussion we will assume that the CRT -controller uses a 
noninterlaced scan in place of an interlaced scan to attain a higher quality image. 

In Fig. 8.4(a) we see the waveform produced for a single scan line. The line consists 
of a data segment followed by a blank segment. The data segment contains the informa-

Micron Technology Inc. et al. 
Ex. 1042, 301



302 CRT-Controller Design 

tion painted on the video screen in the corresponding scan line, so that the time coordinate 
of the waveform corresponds to the horizontal position on the scan line, and the voltage 
indicates the brightness at that position. The ''pulses'' in this waveform, then, are dark re­
gions; and the valleys between pulses are illuminated dots on the scan line. Following the 
data segment is a blank segment that has no information. This region of the waveform 
corresponds to the time during which the beam retraces to the left -hand edge of the screen 
to begin a new trace. Some of this blank time is neither used for information nor for re­
trace, but creates a blank area on each edge of the picture to center the picture horizontally 
away from the edges of the screen where distortion is greatest. (The left -hand edge of the 
scan line actually begins within the blank segment.) 

The horizontal sync waveform in Fig. 8.4(b) is a pulse pattern in which the pulse ap-
pears during the blank period of the trace in Fig. 8.4(a). The pulse has three elements: 

1. The "front porch," where the signal is a low voltage. 
2. The sync pulse, where the signal is a high voltage. 
3. The ''back porch,'' where the signal is a low voltage. 

Note that the front porch begins at the end of the information in the trace. The timing for 
the sync pulse elements is not standardized, and in fact, most video monitors can syn­
chronize to signals over a broad range of timing characteristics. To simplify the design of 
the CRT controller, the usual choice is to make the total horizontal period a multiple of 
the period for the display of one character. Thus if the data portion of the scan line is 80 
characters long, the sync portion can be another 20 characters long. Within the sync pat­
tern, each component is also made an integral number of character times. In the example 
shown, the sync pattern is low for 4 character times, high for 8, then low for the remain­
ing 8. (The recommended ratio for these times is approximately 1:2:2 as selected in this 
example.) 

The waveform in Fig. 8.4(c) shows a vertical sync waveform in a greatly condensed 
time scale. This waveform is a periodic pulse that causes the video monitor to initiate a 
new frame. Each pulse is three horizontal scan lines in length. This means that the vertical 
size of the display is at least three horizontal lines longer than the lines required to display 
the text itself. Actually, there should be even more than three extra lines per frame for the 
vertical centering of the picture in a distortion-free display area. In our example, our 
characters are 9 scan lines by 7 columns. The minimum field in which these can be 
displayed is 10 scan lines by 8 columns. Hence, with 24 rows of characters we find that 
the number of scan lines in the visible display field is 24 X 10 = 240 lines, so that the 
number of lines per frame should be set to a slightly higher number, say 256. 

The last waveform is Fig. 8.4(d), the blanking waveform. This waveform turns off 
the beam during the blank periods of each horizontal trace, during the writing of the extra 
horizontal lines, and during vertical retrace at the end of each frame. Typical of most CRT 
monitors in use today is an interface in which the horizontal sync, vertical sync, and video 
information are treated as three distinct signals. The blanking is added to the video infor­
mation at the CRT controller to form one signal, and the horizontal and vertical sync sig­
nals are carried on two other separate signals. In broadcast receivers all four signals 

Micron Technology Inc. et al. 
Ex. 1042, 302



8.1 System Description of a Typical CRT Controller 303 

shown in Fig. 8.4 are combined into one composite video signal by summing their volt­
ages. If a CRT controller must connect to a monitor that accepts this type of information, 
then the controller must combine the signals according to the broadcast standard. 

Now let's calculate the precise timing for each waveform in Fig. 8.4. This calculation 
will determine the basic clock rate of the controller. Since the vertical repetition rate 
should be equal to the AC power frequency, we find that the repetition rate of the vertical 
sync pulses is 60Hz in the U.S. and 50 Hz in Europe and other countries. Since there are 
256 scan lines per frame, scan lines repeat at the rate of 15.36 kHz in the U.S. (or at 12. 8 
kHz in Europe). With 100 characters per character row, the basic character frequency is 
1.536 MHz (or 1.280 MHz), and the frequency ofthe dots that make up each character is 
8 times as great, which is 12.28 MHz (or 10.24 MHz). This highest frequency is the fre­
quency of the master clock of the controller. All other tiining is derived from this clock. 

Figure 8.5 illustrates how frequency dividers operating on the master clock produce 
all of the timing signals for the various functions. The master clock in the example is a 
12.28-MHz crystal oscillator. This clock advances the shift register of the video signal at 
the bit rate. When this signal is divided by 8, a signal is produced that runs synchronously 
with each character displayed. Then at each edge of this clock, the video shift register 
must be reloaded. Note that within one character time, the controller must access display 
memory for the next character and then use the character code to find a displayabfe bit 
pattern in the ROM. These two accesses must be completed at a 1.536-MHz rate, or in 
about 650 ns. This calls for rather fast memory if the accesses are made sequentially. But 
the requirements are reduced substantially when the accesses are overlapped. That is, 
character i· + 1 is accessed from the display buffet while character i is converted to 
display form by a ROM memory access as we mentioned earlier. 

In Fig. 8.5 we show two more clock dividers that, respectively, produce pulses at the 
end of each scan line (divide by 100), and at the eno of each frame (divide by 256). The 
scan line clock is also divided by 10, the number of lines per character, to yield a, clock 
pulse at the end of each row of characters. Note that the line buffer has to be reloaded at 
the end of a row. This can be done during the last (and blank) trace line in a row of charac­
ters. Since one scan line takes approximately 65 f.LS and 80 accesses must be made in this 
period of time, we have about 800 ns per access to reload the line buffer. This time is well 
within the capabilities of the memory system, but it cannot be done under program control 
of typical microprocessors. Most microprocessors must execute three to six instructions 
per byte or word transferred, which takes substantially longer than 800 ns. 

Therefore, the CRT controller typically reloads the line buffer under DMA control. 
Hence a signal synchronized to the row clock of Fig. 8.5 must trigger a DMA activity 
which halts the processor and fetches a block of 80 characters to transfer to the line buffer. 
This transfer can also be made in an overlapped fashion wherein character i + 1 is read 
from shared memory while character i is written into the line buffer. It is quite effective to 
use two buffers instead of one for the row display. In this case one buffer can be reloaded 
while the second is used for the current display line. Double buffering gives the controller 
about 10 scan-line times (instead of a single scan-line time) in which to reload the row 
buffer. 

Micron Technology Inc. et al. 
Ex. 1042, 303



304 CRT-Controller Design 

12.28-MHz 
crystal 

__c--
0 
L_ 

Oscillator 

7256 

~ 
78 

1 
r 

7100 

I 

12.28 MHz 
Dot clock 

1.536 MHz 
Character clock 

15.36 kHz 

l 
7]0 

I 1.536 kHz 
Character-row clock 

60Hz 
Frame clock 

FIGURE 8.5 Frequency-divider network that generates the necessary clocks for a 
CRT controller. 

The clocking requirements, as shown in Fig. 8.4 and Fig. 8.5, can strongly influence 
the design of the entire system. For the parameters that we have selected, the high-speed 
activity forces the use of a DMA mode for data transfer, and requires the overlapping of 
memory operations between the line buffer and the video shift register. 

We have not described all of the activities that are triggered by the various clocks 
produced in Fig. 8.5. Nor have we have indicated the specific phase of a clock at which an 
action must occur. For example, the DMA reload of the line buffer must occur at the end 
of the 9th line of a 10-line character scan. These other design facets are easily determined 
given the basic timing constraints, the system organization, and the video output require­
ments. 

8.2 THE CRT-CONTROLLER CHIP 

In this section we explore in more detail how the bulk of the display functions of a 
microprocessor-based terminal are implemented by a special-purpose CRT-controller 
chip, and Section 8.3 explores the actual structure of such chips. 

Micron Technology Inc. et al. 
Ex. 1042, 304



8.2 The CRT-Controller Chip 305 

The Clocking and Timing Functions 
We see that all of the display functions are driven by various clocks derived from a single 
master oscillator. In any implementation of the display-controller logic, the basic timing 
must be derived by clock dividers that produce signals with the correct period and in the 
correct phase. Therefore, we need dividers for each of the periods shown in Fig. 8.5. 
Moreover, the sync and blanking signals shown in Fig. 8.4 are each produced in the same 
way from the master oscillator. Hence, these signals as well should be produced by a 
special-purpose LSI display-controller chip. Consequently, the typical controller chip is 
made up of banks of registers and counters that can be programmed to generate system 
timing signals and video interface signals as required by each individual terminal. Since 
such chips are usmilly not reprogrammed once they are embedded in a terminal~ several 
chip manufacturers offer ''mask'' programming so that the chips are permanently special­
ized to particular terminals at the time of their manufacture . 

. What is the internal structure of a typical CRT-controller chip? A typical block di­
agram of the register and logic required for the timing signals is shown in Fig. 8.6. Each 
register holds a maximum value or a reference value for a particular counter. The counters 
hold the current count of various clock divider circuits. At each pulse of the master clock, 
the dot counter is updated and compared to the maximum number of columns per charac­
ter. If the two are equal, the counter is reset and a carry is produced into the next 
divider/counter. In this case the counter is the character counter, which holds the number 
of characters per scan line (including the blank portion). This counter is compared with 
four different registers to produce a signal when the last displayable character has been 
reached, when the horizontal sync pulse should start and stop, and when the scan line 
ends. This counter resets at the end of the scan line and produces a pulse at that point that 
increments the character-height counter and the frame counter. 

The character-height counter keeps track of the number of scan lines per display 
character, and resets when it reaches the last scan line of a character field. Each time this 
counter overflows it increments the row counter, which keeps track of the row of charac­
ters that is being displayed. This counter is compared to a register that both holds the 
number of character rows per screen and resets the row counter wlien the last displayable 
row has been completed. 

The frame counter generates the vertical sync pulse. It is compared to the starting 
value (which determines the scan line at which the first displayable character begins) and 
compared to the ending value (which determines when the frame is complete and the vert­
ical sync pulse is to begin). Vertical-sync-pulse width is typically not programmable be­
cause standards dictate that this width is three scan lines long. However, a controller chip 
could easily permit this width to be programmable as well if there were a need to do so. 

Because of the high data rate (10- 60 MHz) associated with the dot counter and limi­
tations on the maximum clock rate of some LSI processes, LSI chips for medium and 
high-resolution applications normally do not have a dot counter on-chip. Hence the clock 
input to the chip is the character-counter clock. This is the overflow pulse from the dot 
counter. On the other hand, the CRT-controllers that are specially designed for 

Micron Technology Inc. et al. 
Ex. 1042, 305



Master clock ~-----~ 
(dot frequency) Character clock 

Character-row clock 

FIGURE 8.6 The structure of a typical LSI CRT-controller chip. 

Micron Technology Inc. et al. 
Ex. 1042, 306



8.2 The CRT-Controller Chip 307 

broadcast-type receivers with bandwidths in the 4 MHz range normally incorporate the 
dot counter on the chip, since the slower data rate is within the reach of LSI technology. 

Given the comparators, counters, and limit registers that are on a CRT-controller 
chip, we can easily determine the functional behavior of the chip and the necessary inter­
face with the remainder of a microprocessor-based controller. If the limit registers are not 
mask-programmed, they should be settable through the standard memory or 110 com­
mands by the microprocessor. The outputs from the chip should consist of, at least, the 
following data: 

1. the horizontal sync pulse, 
2. the vertical sync pulse, 
3. the blanking signal, 
4. the character counter (which is the address of the character in the line buffer), 
5. the row counter (which together with the character counter forms the address of the 

character to access from the shared memory during DMA operations), and 
6. the height counter, (which with the ASCII character code is the address of the 

displayable dot code in ROM). 

The counter outputs are used as addresses to access shared memory, line buffer, and 
character-generator ROM. If the counters, limit registers, and comparators are imple­
mented without the benefit of LSI, the number of devices required for a controller is quite 
considerable. Clearly, an LSI device structured as the one shown in Fig. 8.6 has a substan­
tial positive impact on the cost and size of a terminal. 

Cursor Functions 

As it becomes possible to design greater functionality into LSI chips, we must consider 
other functions that are reasonable for CRT-controller chips. One such function is the 
cursor-control function. The idea here is that the CRT-controller chip can maintain the 
cursor coordinates so that each time the cursor position is reached, the video signal can be 
treated as a special case and displayed with an inverted video signal, a blinking signal, an 
underline, or arbitrary cursor graphic. To implement cursor control, we require a pair of 
registers that give the current row and column of the cursor. These registers are compared 
on a continuous basis to the current row number and character counter. When both 
counters match their respective comparands, the chip produces a special signal used off­
chip to modify the display. 

A variant of this approach makes it very simple to interface a light pen to a CRT 
display. A light pen is a photosensitive device that emits a signal when it is illuminated. 
The idea is that a user points the pen at a character on the screen. As the screen is 
repainted, the pen outputs pulses that are synchronous with the timing of the scan line 
passing the viewing region of the pen. It is easy to connect the pulses of the light pen to a 
controller chip, so that when a pulse is detected, the controller copies the contents of the 
current row and character counters into special registers. Because of delays in the CRT­
controller chip and the video display, the position of the beam at any given time is not 

Micron Technology Inc. et al. 
Ex. 1042, 307



308 CRT-Controller Design 

identical with the current position in the controller registers; the coordinates of the light­
pen registers are displaced by a few characters from the true position of the light pen. 
However, because they are wrong in a predictable way, delays are easily calibrated, and 
light-pen positions can be corrected automatically by software in the microprocessor. 

Scrolling 

The scrolling function is implemented in virtually every CRT terminal. Scrolling refers 
to the process of moving old text lines to the top of the screen as new lines are entered at 
the bottom. The screen at any given time displays the most recent lines entered, and the 
scrolling function adjusts the lines upward to fill the available display area. This gives 
the user a brief past history of the text that has been displayed. Some of the more ad­
vanced terminals can scroll downward as well as upward. This permits the user to exam­
ine text older than the text currently displayed. A terminal moves old data back onto the 
top of the screen by saving the text in a local memory or by accepting the data from a 
host computer under software-controlled backward-scrolling commands. 

Because of the tight timing constraints that already exist in CRT displays, many ter­
minals do not scroll displayable text by physically moving the text in memory. Instead, 
the rows of displayable characters are addressed with a circular numbering system that 
changes as scrolling occurs. Let us assume for example that the CRT has 24 displayable 
rows, numbered 0 through 23. Initially, Row 0 is the top row on the screen and Row 23 
is the bottom row. When a new line is entered at the bottom of the screen, the screen 
scrolls upward one row. At this time Row 1 becomes the top row, with succeeding rows 
having higher numbers until Row 23. The next row below Row 23 is Row 0. 

Then instead of moving data in memory, we simply have to keep track of which row 
is the top row on the display. This number is maintained in a separate register in the CRT 
controller, and it is used as the reset value of the row counter each time the bottom of a 
frame is reached. A separate register maintains the actual row count that is compared to 
the maximum row count in order to detect the bottom· of a frame. 

A slight variation of this idea is used to implement the pleasing version of scrolling 
known as "smooth scrolling." Smooth scrolling moves characters up the screen in what 
appears to be a smooth, continuous movement. In conventional scrolling, characters ap­
pear to leap from one row to the next in a jerky motion. The trick in implementing 
smooth scrolling is to treat the scan lines that make up each character in much the way 
that scrolling treats the rows of characters on the screen. Assume that characters are 10 
scan lines high, including the blank scan line between characters. Then the character­
height counter at the top of a character is 0, and at the bottom is 9 in the absence of 
scrolling. Conventional scrolling never uses this counter, and thus characters appear to 
move in discrete steps from row to row, never stopping at the intermediate positions. 

To implement smooth scrolling we have the characters appear at each intermediate 
position between the initial and final position. To do so, we change the position of char­
acters by one scan line for each of 10 frames. By the end of the last of the 10 frames, 
each character has moved up one full row. Smooth scrolling, then, requires a first scan-

Micron Technology Inc. et al. 
Ex. 1042, 308



8.2 The CRT-Controller Chip 309 

line register to supplement the character height counter. The first scan-line register iden­
tifies which scan line is currently the first line in a character. Initially this number is 0; 
then it increments with each frame until it reaches 0 again. The current scan-line register 
is reset from the first scan-line register at the beginning of a new frame. Thereafter it 
functions just as the character height counter does in determining which dots are to be 
displayed. The effect of the offset produced by the current scan-line register is to adjust 
the characters displayed upward by the initial value of the scan-line register. This pro­
duces the smooth-scrolling function. The total size of the frame is determined by a dif­
ferent counter, and therefore displacement of the text during a smooth scrolling opera­
tion does not shrink a frame's vertical size. 

Other Controller Functions 

The block diagram of the CRT system in Fig. 8.2 shows several different functions im­
plemented in external devices that can also be implemented on a CRT-controller chip. 
We have in that diagram the following off-chip functions: 

1. the row buffer(s), 
2. the video shift-register, 
3. the character-generator ROM, and 
4. the DMA controller. 

As we see in Section 8.3, there are individual chips that perform many of these func­
tions. 

Not only is it possible to move existing logic onto an LSI chip, but it is also possible 
to implement new, higher-level functions on such chips. We have mentioned already 
most of the functions that appeared in the basic CRT terminal of the early 1970s. Trends 
in terminals in recent years have incorporated higher-level functions that yield greater 
flexibility in controlling the graphics for characters. For example, some terminals have 
attributes associated with each character on the screen in order to indicate such things as 
font (underlined or not underlined), highlight (normal or reversed video image), intensity 
(full or half), protection (erasable or nonerasable), and emphasis (blink or no blink). 
These functions require that extra bits be stored with each character to indicate the values 
of the attributes. When a character is displayed the attributes modify the graphic image 
of the character. Specifically, the attributes are handled as follows: 

1. The font attribute adds an underline in a particular scan-line that appears below the 
graphics for the character. The dots in this scan line then are turned on for underlin­
ing and are off otherwise. (The character field must be large enough to accept under­
lining. Character height is usually 11 scan lines, rather than 9 scan lines in terminals 
that have this capability.) The font attribute may also select an alternative character 
ROM. 

2. To reverse an image from white to black or conversely, we simply complement the 
bits obtained from the character-generator ROM. This is done with logic controlled 
by the highlight-attribute. 

Micron Technology Inc. et al. 
Ex. 1042, 309



310 CRT-Controller Design 

3. Intensity is set to half intensity by reducing the voltage level of the video signal. 
This can be done in the analog circuitry with a digital control signal derived from 
the intensity attribute of the character. 

4. Protected characters are characters whose images cannot be changed on the screen 
through keyboard interaction, but are alterable by commands from application 
software. The idea is that the protected characters are headings on forms to be filled 
in by the user. As the user types in data, the cursor visits only the blank areas on the 
screen and does not overwrite the protected areas. Applications programs can 
transmit codes to the terminal to clear the screen and construct new forms with to­
tally different protected characters. The protected-character function does not im­
pact the display of the character except possibly through the highlight and intensity 
techniques discussed above. The function is normally implemented in the software 
of the microprocessor in the terminal, which examines the attribute of a character 
before positioning the cursor. Cursor-movement software is designed to skip these 
protected fields. 

5. To emphasize characters by blinking, the characters are displayed successively in 
normal and reverse video at a rate of about 5 blinks per second. This attribute is 
implemented with a blink counter that determines whether or not an image will be 
normal or reversed during the present frame. Then the blinking attribute of each 
character and the blink counter together determine whether each dot is displayed in 
normal or reverse video. 

Each of the functions described here, except for protected characters, process the display 
image in some fashion. Hence a number of new chips have appeared that perform these 
functions as well as the more standard ones described earlier. As technology advances, 
yet other functions will become commonplace and will find their way onto CRT­
controller chips. 

8.3 A SAMPLING OF CRT-CONTROLLER CHIPS 

In this section we describe various implementations of CRT-controller chips, which pro­
vide a wide range of functions. Because the chips are inherently rather complex, it is 
beyond the scope of this textbook to describe each chip in complete detail. Designers 
should consult the manufacturers for complete specifications and applications bulletins. 

A Basic Controller: The SMC 5027 

The SMC 5027 video timer-controller manufactured by Standard Microprocessor Sys­
tems performs the timing functions illustrated in Fig. 8.6, except for the high-frequency 
dot counter, which must be provided off-chip. Fig. 8.7 shows most of the signals pro­
duced and accepted by the chip. The. interface to a microprocessor is through an 8-bit 
data bus. Commands are transmitted to the controller through four address bits instead of 
through a command register. This yields a total of 16 distinct commands, one for each 
address. The chip is controlled by the address of their access, which makes it somewhat 
different from other chips described in this text. 

Micron Technology Inc. et al. 
Ex. 1042, 310



8.3 A Sampling of CRT-Controller Chips 311 

Character counter (7) 
/ 

/ 

Scan-line counter (3) 

/ 

Address ( 4)/ Character-row counter (5 

Micro processor 
bus interface 

/ 

Data bus (8) 

CHIP SELECT 

STROBEL 

Character clock 

SMC 5027 

/ 

/ 

Horizontal sync 

Vertical sync 

Composite sync 

Blanking 

At cursor 

FIGURE 8.7 Major interface signals for the SMC 5027 CRT-controller chip. 

Eight of the addresses refer to registers whose contents detennine the video charac­
teristics of the display. When these are accessed, the datum on the accompanying data 
bus is stored into a corresponding register. The microprocessor, in general, need not read 
the contents of video registers so these registers can be written but not read. The X- and 
Y-cursor address registers, however, are both readable and writable. Hence, two of the 
remaining commands pennit the microprocessor to read the cursor row and column reg­
isters, respectively, and two other commands write into these registers. Of the remaining 
four commands, one is a reset, one is a scroll command, and two commands initialize 
the video control registers frotri external memory. The latter two commands are useful 
for systems in which there is no microprocessor to load the registers individually. The 
counter outputs produced by the chip are the ones discussed earlier. These are the 

1. character counter (column position of present character), 
2. scan-line counter (scan line of present character), and 
3. row counter (row of current text). 

The video signals are horizontal sync, vertical sync, blank, and a composite sync that 
combines the vertical and horizontal sync. The chip also produces a signal indicating that 
the cursor is currently being displayed, which pennits external hardware to modify the 
cursor display. 

Although the SMC 5027 implements just the timing functions, cursor highlighting, 
and scrolling, the high speed of the chip has led to its use in a number of popular tenni­
nals. Since the maximum clock rate for the character-counter clock input is 4 MHz, the 
SMC 5027 can drive high-resolution displays with formats containing up to 132 charac­
ters per row. 

Micron Technology Inc. et al. 
Ex. 1042, 311



312 CRT-Controller Design 

The Intel 8275 CRT Controller 

The Intel 8275 contains all of the functions of the SMC 5027 and more. The signals it 
produces and requires are shown in Fig. 8.8. The bus interface shown in the figure is 
compatible with the 808X family of microprocessors. Note that there is one address line 
connected to the chip, which selects between a command and a parameter register. The 
microprocessor controls the functions of the chip by writing a command into the com­
mand register, followed by writing a sequence of bytes into the parameter register. 
(Some commands read bytes from the parameter register rather than write bytes into it.) 

Data bus C8J Horizontal sync 

Address cl) V ~rtical sync 

RDL Blanking 

WRL Character c~unt (7) 

IRQ Scan line .foynt ( 4) 
/ 

Microprocessor [ 
bus 

Intel 8275 
DRQ At cursor 

DMAf 
interface l DACKL Reverse video 

Highlight 

Character clock Other attribytes (4) 
, 

Light pen input 

FIGURE 8.8 Interface signals for the Intel8275 CRT controller. 

The counters, limit registers, and comparators follow the general requirements of 
CRT controllers and are not discussed again here. Figure 8.8 shows the outputs from the 
character counter and scan line counter, and the video sync signals that are necessary to 
connect to the external world. As mentioned earlier, the dot counter frequency exceeds 
the limits of the chip, so that the dot counter must be implemented externally. 

The major difference between the 8275 and the 5027 is the placement of the line 
buffer. This buffer is external for 5027 systems, but is embedded on the 8275. The 8275 
therefore interfaces directly to a DMA controller, which must be used to reload the line 
buffer. Note that the DMA interface signals DRQ and DACK L, which respectively ini­
tiate a DMA memory fetch and sense its completion. Because of the high-performance 
requirements for high-resolution display systems, the 8275 reduces the DMA bottleneck 
by using two distinct SO-character line buffers. While a row of characters is displayed 

Micron Technology Inc. et al. 
Ex. 1042, 312



8.3 A Sampling of CRT-Controller Chips 313 

from one line buffer, the second can be filled by a DMA operation. Then the roles of the 
buffers are reversed. Double buffering on the chip substantially reduces the cost of the 
hardware and increases performance without creating significant demands on the exter­
nal memory system. 

In our discussion of the SMC 5027, we indicated that the chip produced the ad­
dresses necessary to obtain data from the shared memory; therefore, the 5027 takes on 
the role of a DMA controller with a small amount of support hardware. In a system based 
on the 8275, it is necessary to have an external DMA controller, as well as to enlist the 
services of the microprocessor. The microprocessor activity is required because there is 
no provision for automatic reloading of the DMA-controller parameter registers at the 
end of a buffer transfer. The intended way Qf reinitiating a buffer-filling process is 
through interrupt service routines. At the end of each buffer transfer, the DMA controller 
interrupts the microprocessor, whiCh then sets the parameters of the DMA for the 
transfer of the next row of characters. The CRT controller also interrupts at the end of a 
frame, thereby providing a point at which the frame scan can be restarted. 

The Signetics 267X CRT Chip Set 

The 267X family block diagram appears in Fig. 8.9. There are four chips shown: 

1. The 2672 Video -Timing Controller, which performs the timing functions for the 
video display. 

2. The 2673 Video and Attributes Controller, which processes attributes and display­
able data to produce the serial video signal. 

3. The 2670 Character and Graphics Generator, which contains ROM and RAM tables 
for translating character codes into displayable symbols. 

4. The 2671 Keyboard and Communications Controller, which contains the logic re­
quired to scan, debounce, and convert keyboard strokes, and to interface to a bi­
directional serial communications link. 

It is clear from our earlier discussions what functions have to be performed in a CRT ter­
minal. The Signetics's approach in developing this chip set is to partition these functions 
into four LSI chips, supported with a minimum of other logie and with a microprocessor. 
So much of the system is implemented in the CRT-chip set that the remaining load on 
the microprocessor is very light. In fact the microprocessor can be used to implement 
functions that are not normally available in CRT terminals. 

Let us start our discussion of the chip set with the 2672 Video-Timing .Controller. 
Like the SMC 5027 and i8275, the controller contains limit registers, counters, and com­
parators that generate the video timing signals. The operation of the 2672 is similar to 
the 5027 in all of the essential details. The 2672 does, however, simplify the DMA in­
terface because in one mode of operation it can refresh from a di~play buffer memory 
that is shared with a microprocessor. The idea is that the buffer memory contains the en­
tire display, not just one character row. The microprocessor can read or write individual 
characters into the shared memory, but it must do so using the facilities of the 2672 for 

Micron Technology Inc. et al. 
Ex. 1042, 313



314 CRT-Controller Design 

2672 
Video-Timing 

Controller 

Timing information 

Shared 
ROM 

Character clock 

2670 
Character and Graphics 

Generator 

Microprocessor bus 

2671 
Keyboard and 

Communications 
Controller 

To/from keyboard To/from modem 

2673 
Video and Attributes 

Controller 

(to microprocessor) 

FIGURE 8.9 The Signetics 4-chip video controller system. 

Video 
output 

timing the access. When the microprocessor performs an access to shared memory, it 
does not supply the address of the character directly. Instead it issues the READ or 
WRITE command to occur at the character address currently contained in the cursor or 
pointer registers. The 2672 then times the access to occur during a blank period so that 
the visual display will not flicker during access. Status signals from the video controller 
are accessible from the microprocessor so that the microprocessor can determine when 
an access is complete. 

Other modes of operation are available that enable the microprocessor to access 
shared memory directly rather than through addresses supplied by the video controller. 
One such mode is designed for a display buffer that contains a single character row in 
keeping with the methodology of the 5027 and other controller chips. This row must be 
refreshed through a DMA operation for each new row to be displayed. 

The dot clock is too fast for this chip, as it is for other high-resolution controllers 
that we have studied, so that the input clock to this chip is the character clock. The 

Micron Technology Inc. et al. 
Ex. 1042, 314



8.3 A Sampling of CRT-Controller Chips 315 

counter outputs from the 2672 Video -Timing Controller are transmitted to the 2670 
Character Generator chip where they are used to transform ASCII-encoded data into 
displayable symbols. The unusual aspect of the 2670 is that it contains both ROM and 
RAM, thereby permitting the user to load special fonts and symbols for specific applica­
tions. The symbol resolution is very high, with each character occupying up to 9 scan 
lines by 10 columns. The displayable field area is much higher, 16 scan lines by 10 
columns. The characters are positioned vertically in this field as a function of the control 
signals applied to the chip. This provides for the display of subscripts and the parts of 
letters that descend below the base line. The output of the character generator is a paral­
lel block of 10 bits for each character position. Not all of these bits need to be displayed. 
Some bits can function as attribute bits or display modifiers. 

The most unusual chip in this set is the 2673 Video and Attributes Controller. This 
chip operates at the dot frequency and, in fact, generates the character clock for the 2672 
Video -Timing Controller. The function of the 2673 is to convert parallel data to the 
serial video signal. It combines the video with the blanking signal to produce a compos­
ite signal for modulating the CRT beam. 

The 2673 contains special logic for manipulating the displayable information. Such 
things as blinking, cursor highlighting, underlining, reverse video, intensity modulation, 
and other such operations are performed on this chip. The chip can modify the symbol 
displayed on a row-by-row basis as well as on an individual character basis. 

The last chip in the set, the 2671, services both the bidirectional communications 
port and the keyboard. The chip generates internal clocks for transmit and receive data 
rates, and for scanning the keyboard. As keys are struck, the chip debounces the keys 
and encodes the raw data into an ASCII code through the use of an on-chip encoding 
ROM. The serial communications port is treated in a conventional fashion. The interest­
ing aspect of this chip, of course, is the fact that it contains both the communications 
port and the keyboard controller, whereas earlier generations of chips performed one 
function or the other, but not both. 

A Video Display Controller: The 6847/68047 

This section treats two closely related chips, the Motorola 6847 and the American Mi­
crosystems 68047. Both chips are designed to interface to standard broadcast color-video 
receivers so that the timing aspects of the chips are preprograrnmed and not alterable by 
the user. Both chips have on-chip ROMs to display standard characters encoded in 
ASCII. Through external control signals the internal ROM can be disabled and replaced 
functionally with an external ROM. The differences in the chips lie largely in the video 
interface and color modulator requirements. 

The principal interface signals for the MC6847 are shown in Fig. 8.10. Signals for 
the AMI68047 are similar, but not identical. For specific details on either chip, consult 
the manufacturers' reference materials. The MC6847 can access memory directly 
through the signals shown. It produces a 13-bit address (12 bits for the 68047), and 
accesses successive bytes in display memory in a continuous fashion. The display 

Micron Technology Inc. et al. 
Ex. 1042, 315



316 CRT-Controller Design 

Data Bus (8) 

Address bus (13) 

~ v 1/ 
/ / Color video output 

Shared display '-- 3/ 
memory ~ 

/ 

MC6847 
RF Modulated color 

modulator 
MS L (from microprocessor) signal to receiver 

Video clock 

ALPHANUMERIC/GRAPHIC MODE i 
FSL 

HORIZONTAL SYNC 

ROW COUNTER CLOCK 

EXTERNAL ROM MODE 

Other mode bits (6) / 
/ 

FIGURE 8.10 Interface signals to the MC6847 color-video controller. 

memory is intended to be shared between an external microprocessor and the 6847. To 
facilitate this sharing, there is a single control pin identified as MS L (memory select), 
which when asserted low, forces the video controller to place its address lines into a 
high-impedance mode. Although the microprocessor can assert MS L at any time, it nor­
mally does so only during vertical retrace when the 6847 is not accessing display 
memory. No handshake is necessary to obtain access to shared memory. Immediately 
after asserting MS L the microprocessor can access shared memory to update displayable 
data. 

During normal refresh operation, the video controller scans display memory, read­
ing each byte into an internal buffer. Some internal processing of the data takes place on 
the chip, eventually resulting in the generation of displayable dots. These dots are passed 
to a shift register, where they are used to produce the color and composite-video signals 
that drive an external RF modulator. When new data are to be displayed, the micropro­
cessor asserts MS L, then writes into the shared memory, releases MS L, and proceeds 
with other processing. The video controller does all other processing of the data. 

The other. inputs to controller chip are mostly mode-control signals that can be 
latched in an external parallel port. One control signal selects between alphanumeric and 
graphic display. In an alphanumeric mode, each byte input from display memory is con­
verted in the external character-generator ROM into the graphic symbol for the charac­
ter. In graphic mode, the data determine the color of a region of the display area. Addi-

Micron Technology Inc. et al. 
Ex. 1042, 316



Other Reading and Source Material 317 

tional mode bits select one of several variations of graphic and alphanumeric modes. If 
the chip is used only in graphic modes or with the internal ROM in alphanumeric mode, 
there is no need to output the contents of the internal counters. However, if an external 
ROM is used, the chip must indicate which scan line in a character is active at any given 
time. For this purpose the chip produces a horizontal sync pulse and a row-counter pulse. 
The row-counter pulse indicates that a new row of characters is being scanned, and this 
should reset an external scan-line counter. At the end of each scan line, the horizontal 
sync pulse increments the scan-line register, and thus the external ROM can be syn­
chronized to the display scan. A control signal forces the chip to accept data from an 
external ROM, and in this case the data accepted are displayable dots rather than ASCII 
character codes. 

The output signal FS L, field sync, is asserted during the vertical sync pulse at the 
end of each frame. The purpose of this signal is to provide a window during which ami­
croprocessor can load the shared memory without disrupting the display process. If the 
microprocessor takes control of the shared memory during normal scanning, the video 
controller will fail to refresh the screen correctly while the microprocessor has control of 
memory. This problem is quite visible on the video screen where it shows up as flicker or 
other degradation of the display. 

The most interesting aspects of the MC6847 is the graphic mode of operation. In 
graphic mode, the display screen is divided into individually displayable regions, called 
pixels for ''picture elements.'' The pixel resolution is directly related to the number of 
individually selectable colors that can be displayed in individual pixels. In the highest 
resolution mode, the screen is partitioned into a grid 256 columns by 192 rows, and each 
pixel can display one of two colors. In a lower resolution mode the grid is reduced to 128 
by 64 pixels, but the number of displayable colors is increased to four. Since the lower 
resolution mode covers the same screen area, each pixel in this mode is somewhat larger 
than pixels in the high resolution mode. The highest resolution alphanumeric format pro­
vides for 16 rows of 32 characters. Even if the chip were to have faster timing to support 
higher resolution images, the limited bandwidth of broadcast receivers would preclude 
the display of such images. Moreover, an interesting effect of color perception is that 
the eye cannot resolve high-resolution color images. In regions where color changes rap­
idly the eye tends to integrate the varying colors into a single composite color. 

In spite of the limited resolution available with the MC6847 and AMI 68047, they 
offer a very inexpensive, yet powerful way to implement color graphics in a micropro­
cessor system. A number of low-cost "color" computers have appeared on the market 
that make use of these chips. The CRT interface requires essentially only five or six 
chips, including the controller, video modulator, and display buffer. 

OTHER READING AND SOURCE MATERIAL 

Descriptions of many of the chips covered in this chapter appear in Osborne and Kane, 
vol. 3, (1978). Kane (1980) covers the 8275, 6847, and 5027 that we briefly described 
here, plus two other controller chips. His descriptions are very detailed and include 

Micron Technology Inc. et al. 
Ex. 1042, 317



318 CRT-Controller Design 

reproductions from the manufacturers' specifications. From time to time, periodicals 
such as Byte, Microcomputing, and lnteiface Age contain detailed schematics of a video 
interface designed by a hobbyist. While the designs are not always suitable for commer­
cial manufacture, they usually contain many good suggestions for using particular 
features of the controller chips. The best source of information for specific controller 
chips are the application notes published by the chip manufacturers. Murray and Alexy 
(1977) describe the Intel 8275 in one such note. Signetics, Motorola, and AMI each pub­
lish application notes on their video chips as well. 

EXPERIMENTS 

8.1 For this experiment you will need a dual-trace oscilloscope, a video display termi­
nal, the schematic diagram of the terminal, and chip specifications for the 
terminal's controller chip. Select a terminal of recent vintage that has an LSI con­
troller chip. Earlier terminals may be designed with a hard-wired controller that 
will be much more difficult to analyze. 
a) Find the master clock (the dot clock) and display this clock on the oscilloscope. 

Measure the frequency of the oscillator with a counter or by estimating its fre­
quency from the oscilloscope display. 

b) Find the character clock. This clock is roughly ten times slower than the dot 
clock. Display the character clock and dot clock simultaneously on the dual­
trace oscilloscope and find the ratio between the clocks. Examine the video ter­
minal display under a magnifying glass, and determine the width of a character 
in dots. Verify that the character width is equal to the ratio of the dot clock to 
the character clock. 

c) Find the scan-line clock. This should be about 50 to 100 times slower than the 
character clock. Synchronize the oscilloscope to the scan-line clock and display 
the video output on the oscilloscope. Most controllers combine the blanking 
pulses with the video output signal, so that the blanking pulses will be clearly 
visible on the scope. Information displayed within each line will show up as 
overlaid traces that are not stationary on the oscilloscope display. Program the 
terminal to display a blank black screen. This should eliminate the nonstation­
ary traces on the screen except for the traces that occur during the vertical sync 
and retrace portion of the display. Now program the terminal to display an all 
white screen. How does the oscilloscope display change? Measure the ratio of 
the scan-line clock to the character clock. How does this ratio compare to the 
number of characters per row? 

d) Find the character-row clock that triggers a display-buffer reload. This clock oc­
curs once per row of characters displayed. Display this clock and the scan-line 
clock together on a dual-trace oscilloscope and measure their ratio. Then use a 
magnifying glass to examine the terminal display to measure the character 
height in dots. Is the character height equal to the clock ratio? 

Micron Technology Inc. et al. 
Ex. 1042, 318



Experiments 319 

e) Try to determine during which scan line the row buffer is reloaded. To do so, 
fill the terminal screen with the character N. Then synchronize the display to the 
character-row clock and probe the video output. Does the video output show 
that the row buffer is reloaded while displaying the character dots or while 
displaying a blank scan line between text rows? 

f) Determine the number of character rows per vertical display by finding the ratio 
of the character-row clock to the vertical-sync clock. This ratio may not be an 
integer. If not, attempt to find the ratio of the scan-line clock to the vertical­
sync clock. The ratio should be in the range from 250 to 350, depending on the 
resolution of the terminal. 

g) Synchronize the scope to the vertical-sync clock. Probe the video output and ob­
serve the blanking that occurs during the vertical-sync and retrace period. 

8.2 With advanced chips such as the 6847 and 68047, it is very simple to interface a 
microprocessor to a color-video receiver. You can design and build such an inter­
face with a video-controller chip, a parallel port such as an 8255 or 6821, a 1 K X 

12 memory consisting of three 2114s, and a modulator chip such as the LM1889 or 
MC1372. Design and build such an interface and demonstrate the interface in 
operation. For the design of the RF-modulator, consult the manufacturer's chip 
specifications or application notes. 

Micron Technology Inc. et al. 
Ex. 1042, 319



9 I SOFTWARE DEVELOPMENT 

In this chapter we investigate in some detail a methodology recommended for software 
development. We presume that the reader has been exposed to programming languages 
and software development in general, so that this material concentrates on techniques that 
are most relevant to the interfacing problem. High-level languages are usually not suit­
able for real-time programs that operate device interfaces. The reasons for this vary from 
language to language, but most languages fail in at least one of the following ways: 

1. The code produced by a compiler is too inefficient to meet the real-time demands. 
2. The code produced by a compiler is too large to fit in the available space. 
3. The code produced by a compiler cannot take advantage of microprocessor facilities, 

such as interrupts and I/0 ports that are inaccessible to the high-level language. 

When no suitable high-level language exists for program development, the system en­
gineer is forced to use assembly language. But assembly languages over the years have 
been shown to have several major drawbacks. They are difficult to write, debug, docu­
ment, and maintain, and they are not readily transportable from one computer to another: 

At this writing, there are a number of widely available high-level languages for mi­
crocomputers so that at least some, if not all, of the prograrnrlling can be done in the 
high-level language. The languages include Pascal (for most mi'croprocessors), C (a Bell 
Laboratories language available for the LSI-11 ar.d others), and the PL languages includ­
ing PLM for the 808X Family and PLZ for the Z80/Z8000 family. FORTH is a somewhat 
unusual language available for most micros, and has been used in various applications. 
And, of course, we cannot omit BASIC, which is available universally. BASIC inter­
preters are very powerful tools for development of small programs, and can often be used 
to build test software for interfaces with a minimum of effort. However, BASIC inter­
preters are notably slow, and are rarely suitable for ruQning moderate or high­
performance peripherals. Recent developments in the progra~ng language Ada suggest 
that Ada cross-compilers will be practical tools for microcomputers. Initial releases of 
Ada run on large machines, with the capability of compiling for microcomputer target 
machines. Self-hosted compilers are becoming available for 16-bit and 32-bit micros such 
as the Z8000, 8086, MC68000, and the iAPX432. 

The facilities that are most frequently missing in high-level languages for our pur-
poses are 

1. interrupt handling, 
2. status testing of specific bits of specific machine registers, 
3. concurrent control of multiple microprocessors, and 
4. the ability to use specific hardware resources such as special hardware for multiplica­

tion and memory management. 

320 

Micron Technology Inc. et al. 
Ex. 1042, 320



9.1 Software Development Methodology 321 

What we propose is to use a high-level language where possible, and otherwise use as­
sembly language for the remainder of tqe implementation. But even where the assembly 
language is required, a high-level language can support the development effort as we 
demonstrate throughout this chapter. · 

9.1 SOFTWARE DEVELOPMENT METHODOLOGY 

In this section we review the methodology known as "top-down design" and apply it to 
the construction of programs in assembly language. The program example we use is a pro­
gram that merges intermediate files produced by a sorting algorithm, and that exhibits all 
of the important facets of the design process. 

Top-Down Design and Iterative Refinement 

The process of top-down design involves developing a program through a succession of 
stages. The first stage is a top-level description of the algorithm that omits most details in 
order to focus on the flow andlogic at the highest level. The next stage of the develop­
ment process refines this description by filling in the details of suppmting operations. The 
normal way of refining the description is to invoke the supporting operations as subrou­
tines in the top-level description, and then to expand the descriptions of the subroutines in 
the refinement process. The subroutines may themselves invoke subroutines whose 
descriptions are expanded in subsequent refinements. 

While top-down design has been an important contribution to program development, 
it has not been widely incorporated into the development of assembly-language code. The 
plan of this section is to illustrate the application of top-down design to assembly lan­
guage programming, with particular emphasis on how assembly language programs can 
provide the benefits of a high-level language. The following is a brief statement of this 
method: 

1. The top-level flow and logic of the algorithm is described; a high-level structured 
programming language is used for this description, and the language is extended 
where necessary to permit it to describe machine resources on the target machine. 
Since the program will be hand-translated to assembly language, it is not necessary 
that the programming language be a standard language, nor is it necessary to write 
syntactically correct programs. However, the programmer should strive to produce 
documentation that is readable and unambiguous. For this reason the results will be 
more usable and more valuable if the language is a widely used standard one and if 
the program adheres to the rules of syntax. 

2. Subroutines invoked in the top-level description are each expanded in detail in the 
same manner. If these subroutines invoke other subroutines, then those subroutines 
are expanded as well. 

3. At the end of the refinement process, the program consists of a top-level driver pro­
gram and a collection of subroutines, all written in the high-level language. This 

Micron Technology Inc. et al. 
Ex. 1042, 321



322 Software Developm~nt 

fom1s the primary documentation for the assembly-language program. The next step 
is to review the high-level description and to validate that it is a correct algorithm for 
the intended application. 

4. Given the top-level description, the next step is a hand translation of that description 
into assembly language. As a part of the translation process, the original high-level 
description is inserted into the assembly-language code as comment lines. 

5. The assembly-language program is checked against the high-level description to vali­
date that the hand-translation process is correct. 

6. The program is carefully exercised to validate that each subroutine operates correctly 
over the range of its possible inputs. If an error is discovered during checkout, it will 
either be an error in the hand-translation process, or it will be an error in the original 
high-level description. Translation errors are conected at the assembly-language 
level. Errors in the original high-level description are corrected at that level, and the 
high-level description is rechecked for accuracy. When the high-level description has 
been corrected and validated, the changes in each subroutine are hand translated into 
changes into the existing assembly language for that subroutine. 

If all steps of the process are made carefully, and if the errors discovered during subrou­
tine checkout are successfully corrected, then the resulting program should run correctly 
with a minimum of debugging. 

This author has written a number of assembly-language programs using this process 
and has rarely found an error in the program on the first debugging run. The errors that 
have appeared have largely been errors in the original high-level description, and not in 
the hand-translation to assembly language. Because the errors are more easily corrected 
in the high-level description than in the assembly-language description, having the high­
level description available reduces the debugging time to a negligible fraction of the 
development time. The observed productivity has been between 400 to 800 lines of de­
bugged and documented assembly language per day. This holds for programs with critical 
timing, interrupt-driven I/0, and tight space requirerrients, all of which tend to lower pro­
ductivity. Since there is about a tenfold increase in the number of lines of code in the pro­
cess of translating from the high-level description to the assembly-language description of 
an algorithm, the productivity observed corresponds to an equivalent of 40 to 80 lines of 
debugged and documented high-level language code per day. This level of productivity is 
representative of what has been achieved in industry when programmers use top-down 
design and a high-fevellanguage. Note that the figures quoted are for assembly-language 
programs that occupy from 1000 to 3000 bytes of storage. Productivity decreases as the 
size and complexity of pr9grams increase, so that the figures quoted here are higher than 
the productivity expected for the development oflarge programs. 

An Example: File Merging 

This section illustrates the concept of top-down design in a program fragment of a 
sort/merge algorithm which is a standard system utility often written in assembly 
language. The algorithm illustrated is the merge subroutine. Merge operates on two input 
files and produces two output files, as illustrated in Fig. 9 .I. The items in File 1 and File 2 

Micron Technology Inc. et al. 
Ex. 1042, 322



9.1 Software Development Methodology 323 

File 1 File 2 File 3 File 4 

3 5 3 12 
7 8 5 13 

14 90 7 17 
19 13 8 26 
63 26 14 47 
12 47 19 76 
17 76 63 81 

81 90 9 
22 31 2 11 

71 22 
11 31 

71 

(a) (b) 

FIGURE 9.1 Files (a) before and (b) after merging. 

are shown as numbers, but the program actually operates on any data. The files shown 
consist of sequences of numbers and terminate with a special mark called EOF for End of 
File. The merge program reads the two files, merging the successive entries from both 
files into one string sorted in ascending order until the string cannot be extended. This 
condition occurs when the last entry in the string is greater than the next entry in either in­
put file. At this point the algorithm starts producing a new sorted string and the process re­
peats. New sorted strings are placed alternately in File 3 and File 4, with the file changing 
each time a new string is begun. At the end of the merge of Files 1 and 2, the data will 
have been partially merged on Files 3 and 4, with the sorted strings approximately equally 
distributed between the output files. 

Sorting can be performed by successive calls on the merge algorithm. To sort, the 
output files are examined at the end of a merge phase. If neither file is empty at the end of 
the processing of Files 1 and 2, then the output files are swapped with the input files and 
the process repeats. The number of sorted strings decreases roughly by a factor of 2 during 
each pass of the files, and the average length of a sorted string roughly doubles during 
each pass. Eventually, the output becomes one sorted string on one file, and an empty file 
on the other. At this time the merge process has completed the sort of the input files. An 
efficient sort/merge package should use a fast, in-memory sort to produce long sorted 
strings on Files 1 and 2. The in-memory sorting algorithm operates exclusively on chunks 
of the input file that fit in memory, and sorts them into strings without using any external 
storage. Then these strings are sorted through a succession of merge phases. 

The process is illustrated in Fig. 9.1 where we see the input files, Files 1 and 2, and 
the resulting output files, Files 3 and 4. Note that the first few numbers in Files 1 and 2 
have been merged together and appear as the first sorted string in File 3. The next few 
numbers in Files 1 and 2 appear as the first sorted string in File 4. 

The top-level description of the merge algorithm appears in Program 9.1 in a 
language intended to be similar to Pascal. In lines 4 through 18, the file name is declared 
as a record structure that contains pointers to the file, the present item now being scanned 
from that file, and the prior item scanned from the file. Also in the file is a status word that 

Micron Technology Inc. et al. 
Ex. 1042, 323



324 Software Development 

is used to indicate what has happened to that file. An EOF code for status indicates that we 
have reached the end of the file. A BREAK code indicates that we have reached a break 
between strings on the file. As this is sensed when the present item has a lower value than 
the last item, the items are in descending order at this point rather than in ascending order. 

The top-level routine calls lower-level ones to implement various operations that 
make up the merge process. These include the system routines RESET and REWRITE that 
open input and output files, respectively, and the application procedures SWAP....FILE....NAME, 
PROCESS_ITEM, and FLUSH. (Pascal denotes subroutines as "functions" or "procedures," 
depending on whether they do or do not return a value.) 

By reviewing the program in a top-down fashion, the reader can quickly grasp the 
mechanics of the algorithm. Consider first the body of the main program loop in lines 31 
through 37. It begins with a comparison of the current items in File 1 and File 2. If the 
value of File 1 's item is greater than the value of File 2's item, the main program calls 
SWAP....FILE....NAME to interchange the two input files. Therefore, when control reaches the 
succeeding statement in line 36, the value of File 1 's item is no greater than the value of 
File 2's. 

The notation FILEl@. ITEM@ in the comparison is the Pascal notation for three dis­
tinct operations in an effective-address calculation. The @ denotes indirection. In this case 
the variable FILEl is a pointer to a record. Then ''FILEl'' denotes the variable FILE I and 
"FILEl@" denotes the record to which it points. This corresponds to an indirect access 
through the pointer variable FILE I. The period in the notation FILE I@. ITEM denotes an 
element of a record structure which in this case is the element ITEM of a file block record. 
Finding an element in a record structure is similar to finding an array element within an 
array structure. The address calculation is an indexing operation in which the base address 
of the record structure is increased by the offset to the ITEM portion of the structure. Since 
the ITEM element of a file block is itself a pointer, there is yet another indirect operation 
through ITEM to access the physical data. 

Therefore "FILEl@. ITEM@" is a shorthand notation for an indirect access through 
FILEl, followed by an indexing operation to point to the ITEM portion of the data struc­
ture. This in tum is used as the indirect address of the data buffer. The effective-address 
calculations are shown later in this chapter in assembly language and should clarify the 
use of the Pascal notation. 

PROCESS_ITEM, as seen from its call on line 37 of Program 9.1, does whatever needs 
to be done in the inner loop of the merge. We specify this activity in the next refinement 
of the program. On lines 38 and 39, the function of the procedure FLUSH is to read a file re­
peatedly and copy data to an output file until the READ encounters an EOF or BREAK status. 
FLUSH is used at the end of the main loop when one file has reached its end, and has 
thereby exhausted its data. Then the other file must be emptied. FLUSH acts on whichever 
file is nonempty. The file that triggered the loop exit will not be FLUSHed because of the 
tests of the file status that protect the calls to FLUSH. 

With the aid of the top-level flow of the algorithm in Program 9.1, we can now refine 
some details by filling in the bodies of the procedures invoked by the main program. The 
SWAP ....FILE....NAME procedure appears in Program 9 .2, and is rather trivial. In this case swap-

Micron Technology Inc. et al. 
Ex. 1042, 324



9.1 Software Development Methodology 

PROGRAM 9.1 Merge Program: Top-Level 
1 programMERGE; 
2 (*Variables and system procedures are all printed in upper case. Reserved 
S words are boldface. *) 
4 type FilENAME: pointer to FilE_BLOCK; 
5 FilE_BLOCK =record 
6 FID: file; 
7 STATUS: 
8 
9 

10 end 

LASLITEM: 
ITEM: 

integer; 
pointer to BUFFER; 
pointer to BUFFER; 

11 (*A file block is a data structure that contains: 
12 a file identifier 
1S a status code 
14 OK =normal status 
15 EOF =end of file encountered on read 
16 BREAK =present i tern is less than previous 
17 a pointer to the last i tern 
18 apointertothepresentitern. *) 
19 varFILENAME: FIIE1, FILE2, FILES, FIIE4; 
20 begin 
21 (*outermost loop. *) ; 
22 (*Open File 1 and File 2 for input. *) 
2S RESET (FIIE1@. FID); 
24 RESET(FIIE2@. FID); 
25 (*If either file is empty, the merge is done. *) ; 
26 if (FIIE1@. STATUS= EOF or FIIE2@. STATUS= EOF) then exit; 
27 (*OpenFileSandFile4foroutput. *) 
28 REWRITE (FilES@. FID); 
29 REWRITE (FIIE4@. FID); 
30 repeat 
31 (* Main loop*) 
32 begin 
3S ifFilE1@. ITEM@> FIIE2@ .ITEM@ then 
34 SWAP _FILE_NAME (FIIE1, FllE2) ; 
35 (*The i tern for FILE1 is now the lesser i tern. *) 
36 PROCESS_ITEM; 
3 7 end until (FIIE1@. STATUS = EOF or FIIE2@. STATUS = EOF) ; 
38 while not (FIIE1@. STATUS= EOF) do FLUSH (FIIE1); 
39 while not (FIIE2@. STATUS = EOF) do FLUSH (FILE2) ; 
40 (* Close all files. *) 
41 (* Now that both files have been exhausted, make the output 
42 files into input files, and conversely. *) 
4S SWAP _FilE_NAME (FILE1, FILES) ; 
44 SWAP-FILE-NAME (FILE2, FILE4) 
45 end of program. 

325 

Micron Technology Inc. et al. 
Ex. 1042, 325



326 Software Development 

ping pointers to files is more efficient than swapping all of the information about the files. 
Therefore, on line 4 of Program 9.1 a FILENAME is declared to be a pointer to a 
FILE-BLOCK. Program 9.2 swaps two pointers of this type leaving the file blocks un­
changed. 

PROGRAM 9.2 Merge Program: SWAP _FILE_NAME 

1 procedureSWAP_FILENAME(var: FILEA, FILEB: FILENAME); 
2 varFILENAME: TEMP; 
3 begin 
4 (*Interchange the pointers to the file blocks. *) 
5 TEMP := FILEA; 
6 FILEA := FILEB; 
7 FILEB := TEMP; 
8 end; 

Now let's expand the PROCEss_ITEM procedure and determine what functions it per­
forms. It appears in Program 9.3 that PROCESS-ITEM does little more than read one item 
from File 1. If PROCESS_ITEM encounters an EOF or BREAK, then on line 5 PROCESS-ITEM 
flushes the contents of File 2 to the output file. This advances File 2 to the next break 
between sequences or to its end of file if File 2 has no more breaks. Now an equal number 
of sorted substrings have been processed for Files 1 and 2. 

PROGRAM 9.3 Merge Programs: PROCESS_ITEM, and FETCH 
1 procedure PROCES8_ITEM; 
2 begin 
3 (*Read from File 1 and synchronize its BREAKs with those of File 2. *) 

4 FETCH (FILE1); 
5 ifnotFILE1@. STA'IUS = OKthenFLUSH(FILE2); 
6 (*FLUSH File 2 when File 1 has reached an end condition 
7 or BREAK condition. *) 
8 end; 
9 pro.~edureFETCH(WORKFILE: FILENAME); 

10 begin 
11 (*Outputanitem, readanewrecord, andrecordEOFandBREAKstatus. *) 

12 OUTPUT (WORKFILE) ; (*output and switch output files at a break. *) 
13 WORKFILE@. LASLITEM := WORKFILE@. ITEM; 
14 READ(WORKFILE,WORKFILE@.ITEM); 
15 WORKFILE@.STA'IUS :=read status; 
16 ifWORKFILE@. STATUS= OK and WORKFILE@. LAST_ITEM@ > WORKFILE@. ITEM@ then 
17 WORKFILE@.STATUS:= BREAK 
18 end. 

PROCES8_ITEM calls on the procedure FETCH whose Pascal program appears with 
PROCES8_ITEM in Program 9.3. FETCH keeps track of breaks in the input file, and it does so 
by buffering one input item for each input file. The opening statement of FETCH outputs 
the current item in WORKFILE. This item is the lesser of the two items that were previously 
examined in the main program. Then FETCH moves the current item for the file into the 
position held for the last item. (This move may be implemented as a movement of 

Micron Technology Inc. et al. 
Ex. 1042, 326



9.1 Software Development Methodology 327 

pointers rather than as a movement of the items themselves.) The next three statements, 
respectively, read a new item from the file, record the file status in the file block, and look 
for a BREAK in the file. 

It is not necessary to continue the Pascal description of the example. The only miss­
ing procedures are OUTPUT, SWAP, and READ. The latter two procedures follow standard 
conventions, while OUTPUT outputs individual records and discovers breaks in the output 
stream. At each break, OUTPUT swaps the output file names, and begins transmitting 
strings of numbers to the output file that had fmmerly been idle. 

Readers familiar with Pascal should have no difficulty in understanding the exam­
ples. If the notation is unfamiliar to the reader, then we invite the reader to rewrite the 
Pascal versions of the algorithms in a more familiar programming language. The point is 
to express the algorithm at the highest-possible level from which the entire assembly 
language can be generated mechanically. During the refinement process, as details ofthe 
algorithm are filled in, changes to the structure of top-level programs may be required. 
The term "iterative refinement" for this programming process is intended to convey the 
need to iterate through the design and programming of the top-levels of the algorithm as 
the details of the lower levels are specified. 

In the next section we revisit the Pascal procedures and observe how they can be 
translated to assembly language. 

Translation to Assembly Language 

The first example of a translation process is shown in Program 9 .4. 
This is a translation of portions of the main program into assembly language for a 

register-oriented microprocessor. Among the microprocessors for which this type of 
translation is pertinent are the 808X family, the Z80, Z8000, and MC68000. Since indus­
try has followed no particular standard in the use of assembly language, our example 
tends to follow Intel's conventions for the 808X family. 

In the assembly language in Program 9.4, we have chosen to follow the conyentio:p.s 
outlined as follows: 

1. Assembly directives begin with a period. We use the directives . ORG (origin), . EQU 

(equate), . BYI'E (reserve block storage, bytes), and . WORD (reserve block storage, 
words). A word of storage is 16 bits (two bytes). 

2. The machine instructions are MOVDEST, SRC (move data from SRC to DEST), JSfl. Uump 
to subroutine), RTS (return from subroutine) CMP (compare and set conditio[\ codes), 
and the conditional branches BEQ (branch if equal), BNE (branch if not equal), BLE 

(branch if less than or equal, signed comparison), and BLO (branch if low, unsigned 
comparison). 

3. The addressing modes are direct, register indirect, and immediate. The instruction 
MOV DEST,SRC has both addresses in direct mode. Indexed mode is indicated by 
parentheses as in the instruction MOV DEST, (SRC) . In this case the operand address is 
taken from the contents of machine register SRC. Immediate mode is represented by 
the use of the # in front of an operand as in the instruction MOV DEST, #FILEl. This 
instruction moves the immediate operand (the address of File 1) into DEST. ' 

Micron Technology Inc. et al. 
Ex. 1042, 327



328 Software Development 

This very limited instruction set and addressing capability is sufficient to illustrate all of 
the ideas involved in translating algorithms into assembly language. The reader can easily 
create the assembly-language program for virtually any other microprocessor by follow­
ing principles exhibited in Program 9.4. 

The first section of the example, lines 9 through 26, shows how to create data struc­
tures in assembly language. In this section, the program creates the data structure for a 
FILENAME record. The purpose of the assembly language code is to create the symbols 
FID, STATUS, LAST_ITEM, and ITEM with values equal to their offsets in a record. To do so, 
the program defines the vlo}lues of the symbols through the . EQU directive. 

In lines 27 through 37 the program reserves space for the pushdown stack and for the 
FILENAME pointers. As other details of the main program are filled in, declarations of other 
variables, particularly temporary variables, will be made in this region. Note that there is 
space left for four records of seven bytes each. An initialization procedure not shown in 
the example sets the initial values of the pointers to addresses of the file region. 

Line 41 fixes the main program origin at 200016. The main program starts with code 
for initializing variables and pointers and for opening the four files. The Pascal code for 
this process is· shown on lines 42 through 53. Initialization code in assembly language has 
been omitted from the example because the initial values of variables do not appear in the 
Pascal descriptions of the algorithms. These values should be determined by analyzing the 
algorithms, and the code to create the initial values should-be incorporated into the assem­
bly language. File-handling procedures have been omitted becaus~ they are quite depen­
dent on the system software and executive program. It is not particularly illuminating to 
include such 9etails in this discussion. 

The next portion of the example in lines 55 through 97 is the body of the REPEAT 
loop of the main program. A rather interesting address calculation takes place in the first 
few statements of this iteration as shown in lines 60 through 67. The objective of the in­
struction sequence is to calculate the addresses of operands specified in the form 
FILE@. ITEM@. The calculation begins by defining registers ITEMl and ITEM2. Symbols 
are used h~re instead of register identifiers to increase the readability of the program, and 
to facilitate reassignment of registers if program optimization requires such an action to 
be taken. The statement · 

MOV ITEMl,FILEl 

performs the first access by copying the file-block pointer into the machine register ITEMl. 

Now the address of the file block is in a register where it can be manipulated by the pro­
gram, and the code has implemented FILEl@. When the next instruction, an ADD, is exe­
cuted, ITEMl is increased by the amount of the offset to ITEM in a file block. Now ITEMl 

points to the item pointer, and the code has implemented FILEl@. ITEM. The last indirec­
tion requires one more MOV instruction on line 64, which leaves in ITEMl the pointer 
FILEl@. ITEM@. A similar calculation deals with the pointer to the other record, and the 
two pointers are passed to a procedure COMPARE that determines which of the two items has 
the smaller value. 

Micron Technology Inc. et al. 
Ex. 1042, 328



9.1 Software Development Methodology 329 

PROGRAM 9.4 An Assembly Language Version of the Main Program 

1 ************************************************************************************* 
2 * THIS IS AN EXAMPLE OF AN ASSEMBLY LANGUAGE 
3 * IMPLEMENTATION OF PORTIONS OF THE MAIN PROGRAM 

* 
* 

4 ************************************************************************************* 
5 
6 
7 
8 

9 ************************************************************************************* 
10 * 
11 * 
12 * 
13 * 
14 * 

PROGRAM MERGE; 
TYPE PTR: POINTER TO CHARACTER ARRAY 

FILENAME = RECORD 
FID: FILE 
STATUS: INTEGER 

* 
* 
* 
* 
* 

15 * LAST_ITEM: POINTER * 
16 * ITEM: POINTER * 
17 ************************************************************************************* 
18 * DECLARE THE RECORD STRUCTURE FOR A FILENAME 
19 * THE OFFSETS ARE RELATIVE OFFSETS 
20 FID . EQU 0 ONE-WORD FILE POINTER 
21 STATUS . EQU 2 STATUS BYTE 
22 LASTITEM . EQU 3 POINTER TO LAST ITEM 
23 ITEM . EQU 5 POINTER TO PRESENT ITEM 

24 ************************************************************************************* 
25 * END OF FILENAME DEFINITION * 

26 ************************************************************************************* 
27 .ORG 1000H PROGRAMORIGINFORVARIABLESANDSTACK 
28 STACK . WORD 256 RESERVE256WORDSFORTHESTACK 

29 ************************************************************************************* 
30 * VARFILENAME: FILE1, FILE2, FILE3, FILE4; * 
31 ************************************************************************************* 
32 FILE1 .WORD 1 FILE 1 POINTER 
33 FILE2 .WORD 1 FILE 2 POINTER 
34 FILE3 . WORD 1 FILE 3 POINTER 
35 FILE4 . WORD 1 FILE 4 POINTER 
36 FILES .BYTE 4*7 RESERVE SPACE FOR THE FILE RECORDS 

37 * 4 RECORDS WITH 7 BYTES EACH 

38 ************************************************************************************* 
39 * CODEFORMAINPROGRAMBEGINSHERE * 

40 ************************************************************************************* 
41 .ORG 2000H ORIGIN FOR PROGRAM CODE 

42 ************************************************************************************* 
43 * INITIALIZE VARIABLES AND RECORDS; * 
44 * RESET (FILE1@. FID); * 
45 * RESET (FILE2@. FID) ; * 
46 * REWRITE (FILE3@. FID); * 
47 * REWRITE (FILE4@. Fib); * 

48 ************************************************************************************* 
49 

(Continued on next page.) 

Micron Technology Inc. et al. 
Ex. 1042, 329



330 Software Development 

50 ************************************************************************************* 
51 * (* INSERTTHEMACHINE-DEPENDENTCODEHEREFOR'lliE 
52 * STATEMENTS ABOVE *) 

* 
* 

53 ************************************************************************************* 
54 
55 ************************************************************************************* 
56 * REPEAT 
57 * BEGIN * 

58 * IF FUEl@. REC@ >FIIE2@. REC@THEN 

59 ************************************************************************************* 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 

ITEMl 
ITEM2 
MAINl 

.EQU 

.EQU 
MOV 
ADD 
MOV 
MOV 
ADD 
MOV 
JSR 
BLE 

REG4 REGISTER4 WILLHOLDTHISPOINTER 
REG6 REGISTER 6 WILL HOLD SECOND POINTER 
ITEMl,FIIEl ITEMl := FIIEl (*COPY THE POINTER*) 
ITEMl,#ITEM ITEMl := ITEMl + ITEM; (*ADD THE OFFSET*) 
ITEMl, (ITEMl) LOAD THE BUFFER POINTER 
ITEM2,FIIE2 ITEM2 := FIIE2 (*COPY THE POINTER*) 
ITEM2,#ITEM ITEM2 : = ITEM2 + ITEM; (*ADD THE OFFSET *) 
ITEM2 , ( ITEM2) LOAD THE BUFFER POINTER 
COMPARE SUBROUTINE CALL TO COMPARE RECORDS 
MAIN2 BRANCHIFITEM1ISNOTGREATERTHANITEM2 

70 ************************************************************************************* 
71 * SWAP _FIIE_NAME (FIIEl, FIIE2) ; 
72 *(*PARAMETERS ARE PASSED INREGISTERS ITEMlAND ITEM2 *) * 
73 
74 
75 
76 

************************************************************************************* 
MOV 
MOV 
JSR 

ITEMl, #FIIEl 
ITEM2, #FIIE2 
SWAPFIIE 

COPY ADDRESS OF FilE POINTER TO ITEMl 
AND SIMILARLYFORFIIE2. 

SWAP THE FILE NAMES 

7 7 ************************************************************************************* 
78 * PROCESS_ITEM; * 
79 * (*FIIE1ANDFIIE2HAVEBEENUPDATED INMEMORY 
80 * BYTHEPROCEDURE "SWAPFIIE" *) * 

81 ************************************************************************************* 
82 MAIN2 JSR PROCESS 

83 ************************************************************************************* 
84 * END UNTIL (FIIEl@. STATUS= EOF * 
85 * ORFIIE2@. STATUS =EOF) 

8 6 ************************************************************************************* 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 MAINEXIT 

MOV 
ADD 
MOV 
CMP 
BEQ 
MOV 
ADD 
MOV 
CMP 
BNE 
.EQU 

ITEMl,FILEl 
ITEMl, #STATUS 
ITEMl, (ITEMl) 
ITEMl,#EOF 
MAINEXIT 
ITEM2, FIIE2 
ITEM2, #STATUS 
ITEM2, (ITEM2) 
ITEM2,#EOF 
MAINl 

ITEMl := POINTER TO FilE BLOCK 
(*POINT TO STATUS WORD*) 
(*LOAD THE STATUS WORD*) 
IS IT AN END OF FILE? 

ITEM2 :=POINTER TOFIIEBLOCK 
(*POINT TO STATUS WORD*) 
(*LOAD THE STATUS WORD*) 
IS IT AN END OF FILE? 
IF NOT AN END FilE, LOOP AGAIN 

98 ************************************************************************************* 
99 * THE REMAINDER OF MAIN PROGRAM GOES HERE 

100 ************************************************************************************* 

Micron Technology Inc. et al. 
Ex. 1042, 330



9.1 Software Development Methodology 331 

101 
102 ************************************************************************************* 
103 * PROCEDURE SWAPFILE (FILEA, FILEB) 
104 * (*PARAI'\1ETERSAREPASSED IN ITEM1 AND ITEM2 *) * 
105 * BEGIN * 
106 * TEMP:= FILEA * 
107 * FILEA:= FILEB; * 
108 * FILEA:= TEMP; * 
109 * END; * 
110 ************************************************************************************* 
111 FILEA 
112 FILEB 
113 PTRA 
114 PTRB 
115 SWAPFILE 
116 
117 
118 
119 

.EQU 

.EQU 

.EQU 

.EQU 
MOV 
MOV 
MOV 
MOV 
RTS 

ITEM1 FIRST PARAMETER 
ITEM2 SECOND PARAMETER 
REGO TEMPORARY STORAGE FOR FIRST POINTER 
REG1 TEMPORARY STORAGE FOR SECOND POINTER 
PTRA, (FILEA) PTRA NOW CONTAINS THE CONTENTS OF FILEA 
PTRB, (FILES) PTRB NOW CONTAINS THE CONTENTS OF FILES 
(FILEA) , PTRB UPDATEFILEAWITHPRIORFILEB 
(FILES) , PTRA UPDATE FILES WITHPRIORFILEA 

RETURNFROMSUBROUTI~~ 

120 ************************************************************************************* 
121 * 
122 * 
123 * 

PROCEDURE PROCESS_ITEM; 
BEGIN 

FETCH (FILE1) ; 

* 
* 
* 

124 ************************************************************************************* 
125 PROCESS MOV ITEM1,FILE1 PASSPOINTERTOFILEBLOCK 
126 JSR FETCH TO THE PROCEDURE "FETCH" 

12 7 ************************************************************************************ * 
128 * IF NOT FILE1@. STATUS = OK * 
129 ************************************************************************************* 
130 
131 
132 
133 

MOV 
ADD 
MOV 
CMP 

ITEM1, FILE1 
ITEM1,#STATUS 
ITEM1, (ITEM1) 
ITEM1,#0K 

ITEM1 := POINTERTOFILEBLOCK; 
(*POINT TO STATUS *) 
(*FETCH STATUS*) 
IS ITOK? 

134 ************************************************************************************* 
135 * THENFLUSH(FILE2) * 
136 ************************************************************************************* 
137 
138 
139 

SEQ 
MOV 
JSR 

PROCEXIT 
ITEM2,FILE2 
FLUSH 

ALL OK, SO EXIT 
PARAMETER FOR "FLUSH" 

140 ************************************************************************************* 
141 * RETURN * 
142 * END * 
143 ************************************************************************************* 
144 PROCEXIT RTS RETURN FROM "PROCESS_ITEM" 

Micron Technology Inc. et al. 
Ex. 1042, 331



332 Software Development 

In reviewing this tricky address calculation, note that the value of ITEM is treated as a 
literal constant in the instruction 

ADD ITEMl, #ITEM 

The ADD with a literal can be combined with the prior or succeeding MOV instructions if the 
machine language permits the index register to be modified by an offset either just before 
or just after its value is used as an address. 

The next phase of the main program is a call to SWAPFILE. This appears in lines 70 
through 77. For this call, we pass the addresses of the file pointers and not the pointers 
themselves. SWAPFILE can then change the contents of the memory locations containing 
these pointers. If the microprocessor has a rich array of registers, it may be possible to al­
locate the storage for these pointers in the registers rather than in memory to achieve a 
slightly faster implementation. SWAPFILE would have to be altered to be consistent with 
this storage strategy. 

After the call to PROCESS_ITEM on line 82, the main program checks the status of the 
input files in lines 83 through 96, and exits the loop if an end-of-file condition is detected 
on either file. Note that the access to the status byte of a file block follows the same code 
template as an access to a record pointer. 

Hand-compilation of programs from Pascal or similar high-level language is evi­
dently quite mechanical and can be done virtually error free. Hence, if the original high­
level code is correct, the assembly language will be correct. A side benefit of intermixing 
assembly language and high-level language in the program listing is that it yields excel­
lent documentation for the program. 

Hand-translation must still be done carefully, for it can be error-free only if the pro­
gram author meticulously translates each step into an exactly equivalent code. Our pro­
gram example shows a subroutine in which the actual implementation differs slightly 
from the Pascal version of the program. This is the code for procedure SWAPFILE on lines 
102 through 120. The original Pascal program is written as if there were no high-speed 
registers available. Therefore, the program declares a temporary variable, and performs a 
swap with the aid of this variable. The implementation of the swap in assembly language 
takes advantage of two machine registers and performs the swap using both of these regis­
ters for temporary storage. Hence, the program copies both operands into machine regis­
ters in the first step (lines 115 and 116), and then stores back the operands to opposite ad­
dresses (lines 117 and 118). The programmer therefore can exert "poetic license" in the 
translation process, editing the assembly language in order to improve efficiency of the 
resulting code. 

The PROCESS_ITEM subroutine appears on lines 120 through 144. It opens with a sub­
routine call to FETCH, lines 125 and 126, and uses a machine register, ITEMl, to hold the 
parameter of the subroutine. On lines 127 through 133, the subroutine checks file status 
using the now familiar template for access to this variable. Lines 134 through 140 show a 
conditional call to FLUSH based on the outcome of the status test. 

The remainder of the Pascal translation is quite straightforward and is not shown in 
the example. Now that we have presented a lengthy example of the translation process, 

Micron Technology Inc. et al. 
Ex. 1042, 332



9.1 Software Development Methodology 333 

we must look more carefully at the purposes of assembly language for program imple­
mentation. Because high-level languages are far easier to use and understand than assem­
bly languages, they are always preferred to assembly language for documentation, 
maintenance, and ease of development. When real-time performance, memory space, or 
access to specific machine facilities force the designer to seek tools to supplement a high­
levellanguage, the next best choice is the use of assembly language in conjunction with 
the high-level language. The assembly language is used for time-critical portions of the 
code, and for machine-dependent operations such as VO. In some applications, particu­
larly where memory space is a critical resource, it may be necessary to abandon high-level 
languages completely and implement the entire program in assembly language. 

The translation example shown in Program 9.4 does not clearly reveal the advantages 
of assembly language over the compiled code because the hand translation is not terribly 
different from the code produced by a good compiler. However the example is misleading 
in this regard. Many compilers generate a code that is much less efficient than even this 
inefficient assembly-language example. At the low end of efficiency, a purely interpretive 
language such as BASIC or APL might run several hundred times slower than the code 
shown. A Pascal compiler can do much better than an interpreter, but the popular UCSD 
Pascal compilers developed originally at the University of California at San Diego are hy­
brids of compilers and interpreters. Typical UCSD compiler-generated programs execute 
10 to 50 times slower than equivalent assembly language programs. The hybrid scheme 
compiles Pascal programs into the machine language of a ficticious machine known as the 
p-machine, and then the p-machine code is interpreted during program execution. True 
compilers produce machine-language translations similar to the translation shown in Pro­
gram 9.4. Many Pascal compilers are of this type, as are most implementations of FOR­
TRAN and COBOL. These compilers can usually produce programs whose efficiency 
varies from about 5 times slower to about equal to the efficiency of hand translations. The 
best optimizing compilers produce codes as good or better than code produced by 
assembly-language programmers that have average ability. Only very skilled program­
merscan do better. 

High-quality optimizing compilers are not yet widely available for most microproces­
sors. These typically become available anywhere from one to five years after the introduc­
tion of a new microprocessor, and for some machines they may never appear. Because 
new microprocessors with enhanced featl!res are introduced with great regularity, the 
designer who uses the most innovative new devices will most often have to do so without 
advanced programming tools. 

Therefore the designer frequently is faced with two horns of a dilemma: The designer 
may prefer high-level languages, but other requirements may force the use of an assembly 
language. The next section discusses how to achieve the advantages of both languages, 
and serves as a guide to the designer in deciding where and how to use assembly language. 

Pragmatics of Assembly Language 

There are three primary factors that force programs to be implemented in assembly 
language. These are 

Micron Technology Inc. et al. 
Ex. 1042, 333



334 Software Development 

1. real-time performance constraints, 
2. memory-size constraints, and 
3. access to machine-dependent facilities. 

Of these three points, the last two are gradually becoming unimportant. With dramatic in­
creases in memory size that have occurred in recent years, the memory-size constraint 
may disappear except possibly at the very low end of the cost spectrum. Machine­
dependent facilities can be made accessible to high-level languages by incorporating calls 
to assembly-language subroutines. For example, many implementations of BASIC pro­
vide a USR verb that invokes a user-supplied assembly-language program. (Other facilities 
for machine-dependent programming in many BASIC interpreters include the PEEK and 
POKE verbs that, respectively, read from and write to arbitrary locations in memory.) The 
major unresolved issue appears to be performance related, and this is what we address 
here. 

Real-time deadlines place the greatest constraints on programs. To deal adequately 
with the problems, the designer must first analyze what portions of the program code are 
executed while the real-time deadlines are active. Potentially, in the worst case, all of this 
code may have to be written in assembly language. Typical real-time situations of short 
duration arise in handling fast JJO devices such as disk interlaces and high-speed serial 
communications lines. Assembly language may be required for the JJO drivers that per­
form the block transfers, but may be unnecessary for other codes. Fortunately, the real­
time portions of JJO drivers are rather small. (They cannot execute many instructions and 
still meet the real-time constraint.) A program that calls JJO drivers does not ordinarily 
run during critical time periods, so that it need not be in assembly language. 

When real-time constraints span a relatively long period of time, say tens of mil­
liseconds up to a few seconds, the problems of meeting those constraints are sometimes 
more difficult than when the constraints are tens of microseconds. In the longer time span, 
a program executes thousands or millions of instructions, so that is not obvious what code 
to optimize and how to optimize it. The very short deadlines are associated with a few 
lines of code, so that the designer can focus attention to a specific region of a program. 
For longer codes, the most likely places to optimize are the inner loops of iterations. Code 
in inner loops may be executed tens or hundreds of times more frequently than other code, 
so that the loops tend to dominate performance even though they represent only a small 
fraction of the code. 

As a guide for the process of program optimization, we list several useful techniques 
for organizing software and hardware to improve performance to meet real-time con­
straints. 

1. A straightforward hand translation of a high-level language into assembly language 
may be sufficiently faster than compiler code to meet performance constraints. 

2. To achieve higher performance, trace the data flow and sources of overhead during 
execution. One byte of data, for example, may be accessed by several different sub­
routines, and could require hundreds or thousands of instructions to process it during 

Micron Technology Inc. et al. 
Ex. 1042, 334



9.1 Software Development Methodology 335 

one real-time cycle. If this is the case, then reorganize the computations to avoid the 
overhead per byte. When data movement is required, try to move pointers to the data 
instead of moving the data. When processing data, process blocks of data rather than 
individual bytes to save the overhead of entering and leaving subroutines for each 
byte processed. 

3. Seek ways of overlapping I/0 and computation, or of moving some critical opera­
tions into specialized hardware. Mathematical processors can perform arithmetic in­
cluding multiplication and division concurrently with program execution in ~ main 
computer. DMA controllers can eliminate the computational burden. of block 
transfers. Extra hardware may increase system cost slightly, but when the hardware is 
successful, performance improvement may be as high as a factor of two or three. 

4. In critical areas of the program code, particularly in the inner loops, make use of 
machine registers to reduce traffic to and from memory. Use the registers to hold ad­
dresses and variables that are accessed in each loop iteration. Redu~tion in memory 
traffic can sometimes double or triple the speed of an inner loop. The impact on total 
system performance depends on the frequency of the loop's execution. 

5. Avoid the recalculation of addresses. Compilers often generate extensive code to ac­
cess an array element such as x (I) or Y (I, J) . When array access is made within a 
loop and the indices are the control variables of the loop, then it is possible to sim­
plify the address calculations. For instance we may calculate the address of the base 
element [x (1) or Y (1, 1)] outside the loop, then calculate the addresses for each suc­
cessive loop iteration inside the loop by incrementing the address used in the prior 
iteration. (The address ofX(I+1) differs from the address ofX(I) by a small con­
stant.) 

6. Reduce the overhead of entering and exiting subroutines and of initiating and ter­
minating loops. Loop overhead can be reduced by "unwinding" a loop so that a sin­
gle loop performs two or three iterations of a calculation. This tends to eliminate 
some internal branching and testing, and may reduce some register and memory 
traffic. Subroutine entry and exit overhead can be reduced by saving and restoring 
only a minimal number of registers. Compilers normally assume the worst case, 
Which-forces subroutine calls to save an excessive number of registers. For specific 
applications the designer knows precisely what must be saved and what does not need 
to be saved. 

7. Turn subroutines into macros, and eliminate the execution time costs for entry and 
exit. This may greatly increase the size of the code, so this solution is recommended 
only when memory is sufficently large to accept the increase in program size. 

These comments are a general guide for performance optimization. It is best to optimize 
the gross behavior of the system, particularly the I/0 and computer interactions, before at­
tempting to optimize assembly language. The latter optimization may not be necessary if 
the former is successful. A simple translation to assembly language, such as the one in 
Program 9.4, when coupled with a reasonable implemehtation of the I/0 system may 
yield sufficient performance improvement to meet real-time constraints. 

Micron Technology Inc. et al. 
Ex. 1042, 335



336 Software Development 

The need to incorporate fast and efficient assembly language in some areas of a sys­
tem is almost universal. However, assembly language has been overused in the past, and 
is becoming less necessary in the future as other viable languages and hardware alterna­
tives become available. In the next section we treat the implementation of I/0 software. 
For this type of programming, assembly language is still the primary implementation tool 
and will not easily be displaced. 

9.2 SOFTWARE FOR 1/0 CONTROL 

Perhaps the most challenging programming exercise is to write the collection of programs 
in an I/0 system. These programs must work in real time, control several independent de­
vices concurrently, and be insensitive to timing variations that drastically alter the se­
quence of execution of blocks of code. Moreover, these programs cannot easily be writ­
ten in high-level languages because of issues related to performance and to machine 
dependencies. In the following subsections we show how to construct I/0 programs by 
structuring them as coroutines. A coroutine is a generalization of a subroutine that is espe­
cially useful for controlling the independent activities, that are characteristic of an I/0 
system. Unfortunately, few high-level languages suppott this type of program structure, 
which is yet one more reas0n for adopting an assembly language as the implementation 
language for I/0 programs. 

In the succeeding subsections we review the concept of coroutines, describe their 
general applicability to I/0 programs, then show this applicability in an extended example 
of an interrupt-driven program that controls a daisy-wheel printer. 

Coroutines: Structure and Implementation 

Conway (1963) coined the word "coroutine'' to denote a generalization of subroutine. 
The basic difference between the coroutines and subroutines in program modules is tied to 
the notion of the "state" of the module: A subroutine does not retain an internal state 
between calls, whereas a coroutine does. Each entry to a subroutine creates a fresh copy 
of its internal state variables. But a coroutine entry retrieves the state of the coroutine that 
existed at its last exit. The state of a subroutine and coroutine both include the variables 
local to its own routine, but the state also includes the address of the entry point to the rou­
tine and the collection of return addresses to the other subroutines whose nested calls first 
invoked it. Therefore, since a subroutine does not retain state from call to call, each new 
call to a subroutine enters that routine at a fixed entry point. But coroutines do retain state 
information, and therefore, each call to a coroutine resumes at the point of the last exit 
from that coroutine. 

Figure 9.2 illustrates the primary differences between subroutines and coroutines. In 
Fig. 9.2(a) we see a program structured as a collection of subroutines that contain calls 
from one subroutine to another. The figure shows the run-time stack associated with the 
nested sequence of calls in which Subroutine A calls Subroutine B, which in turn calls 
Subroutine C. Each subroutine call creates parameters that are passed to the target subrou-

Micron Technology Inc. et al. 
Ex. 1042, 336



Subroutine A Subroutine B Subroutine C 

ENTRY ENTRY ENTRY 
CALLC 

CALLE RETURN 

RETURN 

RETURN 

Return address to B 

Parameter area: 
B's call to C 

Return address to A Return address to A 

Parameter area: Parameter area: 

A's call to B A's call to B 

Stack contents while B Stack contents while C 
is executing. is executing. 

Coroutine F Coroutine G 

ENTRY ENTRY 

For level-2 { Return address Return address to G 
subroutine. Parameter area G's registers 

For Ievel-l [ Return address Return address J For Ievel-l 
subroutine. Parameter area Parameter area subroutine. 

Stack for F. (b) Stack for G. 

FIGURE 9.2 (a) Nested subroutines and the run-time stack during program execution; 
(b) coroutines that call each other and their run-time stacks are shown in the state that exists 
while F is executing. Alevel-2 subroutine ofF resumes G, which has been suspended within 
a level-1 routine. 

Micron Technology Inc. et al. 
Ex. 1042, 337



338 Software Development 

tine. Even if the target is declared without parameters, it receives at least one parameter, 
namely, the return address. 

Note that the stack in the figure shows the return addresses to Subroutines A and B, 
plus other parameter areas created at the calling points of each subroutine. While Subrou­
tine B has control of execution, the stack contains one parameter area. This increases to 
two areas when Subroutine C is initiated. The stack is an appropriate structure for subrou­
tine calls because parameter areas are allocated and deallocated in a last-in, first-out 
(LIFO) order, which is precisely how storage is treated in a push-down stack. When a 
RETURN is executed at the end of a subroutine, the effect is to deallocate an active parame­
ter area, and the area to deallocate is the last one allocated. Thus when Subroutine C 
reaches the RETURN statement, it deallocates the parameter area created when B called C. 
The RETURN leaves intact the parameter area created when A called B. Note the relative 
ordering of the parameter areas on the stack, with the most recent one stored above the 
older one. Since storage is allocated and deallocated at the top of the stack, the most re­
cently allocated area is in a position to be deallocated next. 

The internal state of Subroutine C at any time during its execution consists of the 
stack contents at that time. When C executes a RETURN, the top parameter area in the stack 
is popped off the stack, which partially destroys the state of C. Hence, a new call to C 
cannot recover the parameters of the former call, nor can it recover the address of the exit 
from the last call to C. Therefore the new call must enter Cat a fixed, predetermined entry 
point. 

Contrast this structure with the coroutine structure in Fig. 9.2(b). Here we see two co­
routines, Coroutines F and G, that call each other. The calling statement in this case is 
RESUME. Note that control passes back and forth between F and G with each coroutine con­
tinuing where it left off. This is rather different from the control flow noted for subrou­
tines in Fig. 9.2(a). 

Figure 9.2(b) shows that each coroutine has an independent stack to hold the internal 
state of the coroutine. While F has control, F's push-down stack is the active stack. When 
F calls G with a RESUME, the first part of this process is to store the return address and 
machine registers on F's stack, and then F's stack is replaced by G's stack as the active 
stack. At the top of G's stack are G's registers plus the return address to G. In making G's 
stack active, the registers are restored from the stack, and then the return address is moved 
to the program counter. Coroutine G restarts with its stack and registers in the state in 
which they existed at last exit, except possibly for parameters that F passes to G. Parame­
ter passing is done by placing the parameters on G's stack in cells reserved especially for 
them. 

Subroutines lead naturally to a hierarchical control structure in which control passes 
from a calling program to a subroutine in a master/slave fashion. The subroutine is subor­
dinate to the program that calls it. The control structure for coroutines is not a 
master/slave structure but rather a peer-to-peer structure. Each type of control structure 
has specific kinds of algorithms for which it is best suited, and quite often a program must 
use a combination of both control structures to achieve an efficient implementation. 

Consider, for example, a situation in which Coroutine F is sufficiently complex tore­
quire a top-down, iterative refinement for its implementation. Then F will almost surely 

Micron Technology Inc. et al. 
Ex. 1042, 338



9.2 Software for 1/0 Control 339 

consist of a collection of subroutines. Any of these subroutines can call G, but they do so 
with a coroutine RESUME statement instead of with a subroutine call. When a deeply nested 
subroutine ofF resumes G, it leaves F's stack intact, including all of the parameter areas 
and return addresses that are part of that subroutine's state. When G later resumes F, F's 
state is recovered, and control passes to the deeply nested subroutine at the point immedi­
ately after the RESUME that it last issued. Figure 9 .2(b) illustrates this point by showing F' s 
stack with two parameter areas and two return addresses active. Hence, the active subrou­
tine ofF is nested two levels deep. In G, the active subroutine is nested one level, and the 
top area of the stack holds the additional state of G that has to be saved while G is 
suspended. 

Several authors such as Knuth (1973), Stone and Siewiorek (1975), and Wakerly 
(1981) do not explicitly show the separate stack for coroutines that we show here. These 
authors all treat a special case in which one stack suffices for all coroutines. In this case, 
all of the state information for Coroutine F and Coroutine G is contained in their return ad­
dresses. These are stored at specific addresses in memory to permit control to pass back 
and forth between the coroutines. Because there is only one stack for both coroutines, it is 
very difficult for either coroutine to store information safely on that stack because the 
other coroutine may inadvertently destroy the information by popping the stack. At least 
one coroutine, and possibly both coroutines, must exit at a RliJSUME with the stack in ex­
actly the same state as at the last entry. Hence, there are severe restrictions on subroutine 
calls within the coroutines, because those calls add and delete items at the top of the stack. 
The more general and useful implementation of coroutines is that shown Fig. 9.2(b) in 
which each coroutine has an independent stack to hold its current state. 

The next section treats the use of coroutines in an application that is not directly con­
cerned with I/0 control. Later in the chapter when we treat the problem of controlling 
several different devices concurrently, we will see that the coroutine structure leads to ef­
ficient, modular program implementations. 

File Filters: An Application of Coroutines 

Perhaps the most visible implementation of coroutines is the filter. Afilter is a program 
that processes an input file and produces a modified version of that file as an output file. 
The output file is said to be the filtered version of the input file. As an example of a file­
filtering operation, consider the preparation of a lengthy text file such as the one used in 
the production of this textbook. The file is typically subjected to a succession of filtering 
operations. Some of these might be the following: 

1. Look up each word in the dictionary and correct spelling, if necessary. 
2. Break strings of words into justified lines. The last word in a line might have to be 

broken by hyphenation. 
3. Break sequences of lines into pages, leaving space for footnotes, figures, and tables 

on the page of their first references. 

While it is possible to perform all the operations in a single program, since each process is 
relatively complex, the resulting composite program is very difficult to write and main-

Micron Technology Inc. et al. 
Ex. 1042, 339



340 Software Development 

Correctly 
spelled text 

Justified 
lines 

~-----~ PAGE_COMPOSE 

FIGURE 9.3 Three file filters that change raw text into composed pages. 

Coroutine SPELL Coroutine H_AND_J Coroutine PAGE_COMPOSE 

ENTRY ENTRY ENTRY 

READ (INPUT) RESUME SPELL RESUME H - AND_J 
(* Read input. *) (* Read input. *) 

RESUME H_AND J RESUME PAGE_COMPOSE WRITE( OUTPUT) 
(* Write output. *) (* Write output. *) 

FIGURE 9.4 Filters structured as coroutines. 

tain. Moreover, the individual programs can be useful in themselves quite apart from their 
use in the system of programs. If they are combined together in one program, there is a 
problem in creating the flexibility to run the programs individually or in any combination. 
Therefore, a suitable approach is to write these three programs as three individual filters, 
and to structure them as shown in Fig. 9.3. The SPELL process corrects the spelling of the 
input file, H..AND_,J hyphenates and justifies the file into lines, and PAGE._COMPOSE organ­
izes the lines into pages. Unfortunately, there is considerable overhead in passing the text 
file through two intermediate files. A more efficient approach is to structure the filters as 
coroutines and to pass data from one process directly to the next without writing an inter­
mediate file. This type of structure is shown in Fig. 9.4. The idea here is that READ and 
WRITE operations become coroutine RESUMEs. Program 9.5 makes this point more explic­
itly. Here we see on lines 14 and 15 a WRITE operation in SPELL programmed in assembly 
language as if it were a call on a system output routine. The output character is transferred 
to a register REGl, and a subroutine-jump instruction JSR transfers control to WRITE. Simi­
larly, in the fLAND_,J subroutine on lines 43 and 44, a call to the system programREAD re­
turns a character in REGl. Immediately after the call, this character is transferred to the 
variable CHAR. The program fragments on lines 15 and 43 appear to be rather ordinary sub­
routine calls embedded into the two modules of the text -processing system. 

Lines 23 through 28 and 52 through 56 reveal that subroutine calls to READ and WRITE 

have actually been converted into coroutine calls so that SPELL invokes H..AND_,J instead of 
WRITE, and conversely, JLAND_,J invokes SPELL instead of READ. All other aspects of the 

Micron Technology Inc. et al. 
Ex. 1042, 340



PROGRAM 9.5 A Coroutine Example: Text Processing 

1 ************************************************************************************** 
2 * (*SPELL*) * 
3 * BEGIN * 
4 * REPEAT * 
5 * BEGIN * 
6 * (*READ AND PROCESS THE INPUT*) * 
7 * WRITE (CHAR, OUTPUTFILE) ; * 
8 * END UNTIL INPUTFILE. STATUS= EOF * 
9 * END OF SPELL * 

10 ************************************************************************************** 
11 SPELL STARTING INSTRUCTION OF "SPELL" 
12 LOOP FIRST INSTRUGriON OF MAIN LOOP 
13 
14 
15 
16 
17 
18 

MOV 
JSR 

BRA 

REG1,CHAR 
WRITE 

LOOP 

REGl := CHAR; 
OU'IPUT THE CHARACTER, LINE 23 

LAST INSTRUCTION OF MAIN LOOP 

19 ************************************************************************************** 
20 * (* WRITE *) * 
21 * THIS IS THE COROUTINE LINKAGE TO H_AND_J * 

22 ************************************************************************************** 
23 
24 
25 
26 
27 
28 

WRITE PUSH 
MOV 
MOV 
MOV 
PULL 
RTS 

ALL SAVE THE REGISTERS OF SPELL 
SPELLSP,SP SAVE THE STACK POINTER IN SPELLSP 
SP,HJSP RECOVER THE STACKPOINTERFORH_AND_J 
R1 (SP) , REG1 PASS A PARAMETER TO H_AND_J 
ALL RESTORE THE REGISTERS FORH_AND_J 

RETURN TO H_AND_J 

29 ************************************************************************************** 
30 * (* H_AND_J *) * 
31 * BEGIN * 
32 * REPEAT 
33 * BEGIN * 
34 * READ (CHAR, INPUT) ; * 
35 * (* PROCESSDATA *) 
36 * (* WRITETOOUTPUTFILE *) * 
37 * END UNTIL INPUTFILE. STATUS = EOF 
38 * END OF H_AND_J * 
39 ************************************************************************************** 
40 H_AND_J 
41 LOOP 
42 
43 
44 
45 
46 
47 

JSR 
MOV 

BRA 

READ 
CHAR,REGl 

LOOP 

STARTING INSTRUCTION OF "H_AND_J" 
FIRST INSTRUCTION OF MAIN LOOP 

INPUT A CHARACTER TO REG1, LINE 52 
CHAR:= REGl 

LAST INSTRUCTION OF MAIN LOOP 

48 ************************************************************************************** 
49 * (* READ*) * 
50 * (* COROUTINE LINKAGE TO "SPELL" *) 

51 **********************'~<*************************************************************** 
52 READ PUSH ALL SAVE THE REGISTERS OF "H_AND_J" 
53 MOV HJSP,SP SAVE THE STACK POINTER INHJSP 
54 MOV SP,SPELLSP RECOVER THE STACK POINTER FOR "SPELL" 
55 PULL ALL RESTORE THE REGISTERS FOR II SPELL II 

56 RTS RETURN TO II SPELL II 

Micron Technology Inc. et al. 
Ex. 1042, 341



342 Software Development 

two coroutines can be implemented in standard fashion as though the coroutines were exe­
cuting in total independence. Each coroutine can be structured as a collection of subrou­
tines, and there are no constraints on the implementation and the utilization of the stack 
other than the normal constraints for subroutines. 

The machine implementation of WRITE appears on lines 23 through 28 of Program 
9. 5. The first operation is to store the state of the processor in the stack through the use of 
the PUSH ALL instruction. The intent of this instruction is to push copies of all machine reg­
isters onto the stack. (Microprocessors that do not have such an instruction may require 
several instructions to do the equivalent operation.) Then the stack pointer itself is saved 
in a storage location reserved for it. At this point, the state of SPELL has been preserved, 
and the state ofi-LANILJ can be retrieved. 

The first step in restoring state is to reload the stack pointer from the cell reserved for 
the ILANILJ stack pointer. This occurs on line 25. At the top of the stack are the machine 
registers, and immediately underneath them is the return address, as shown in Fig. 9.5 
where we see the state of both stacks immediately after the PUSH ALL instruction on line 23 
has been executed. However, JLAND_J should receive an input character when it is 
resumed, and this character should be the character produced by the WRITE in SPELL. To 
obtain this variable, the assembly language program saves the contents ofREGl, the regis­
ter holding the output datum, inserting the contents into the stack at the address that holds 
the saved value of REGl for JLAND_J. The instruction that does this operation is 
MOV Rl(SP),REGl, where Rl is the offset in the stack of REGl, and the effective address is 
the sum of the offset Rl and the current contents of the stack pointer SP. 

I 
REGO REGO 
REG! REG! 
REG2 REG2 

Return address to Return address to 
SPELL H_AND_J 

SPELL stack contents. H_AND _J stack contents. 

FIGURE 9.5 The state of the stacks during the execution 
of a coroutine call from SPELL to H AND J. 

The next instruction, PULL ALL, reverses the action of PUSH ALL and restores the 
machine registers. The last instruction, RTS, is a subroutine return that pops the program 
counter from the stack and initiates execution at the return address. The return address 
will be exposed after the PULL ALL because it is pushed onto the stack by a JSR before the 
registers are pushed on top of it by a PUSH ALL instruction. 

Coroutine linkage for the READ operation in JLAND_J is in lines 52 through 56 of Pro­
gram 9.5. This is very similar to the WRITE linkage except that it is not necessary to pass a 

Micron Technology Inc. et al. 
Ex. 1042, 342



9.2 Software for 1/0 Control 343 

PROGRAM 9.6 Text Processing with Open and Close Functions 

1 ************************************************************************************** 
2 (*SPELL*) 
3 begin 
4 OPEN(INPUTFILE); 
5 OPEN (OUTPUTFILE) ; 
6 
7 
8 
9 

10 
11 
12 
13 
14 end 

repeat 
begin 

(* Readfromaninputfile. *) 

(* Process data. *) 

WRITE (CHAR, OUTPUTFI!,E); 
end until INPUTFILE. STATUS= EOF 
CLOSE (INPUTFILE); 
CLOSE(OUTPUTFILE); 

15 ************************************************************************************** 
16 ************************************************************************************** 
17 (* H_AND_J *) 

18 begin 
19 OPEN (INPUTFILE); 
20 OPEN (OUTPUTFILE) ; 
21 repeat 
22 begin 
23 READ (CHAR, INPUT) ; 
24 (* Process data. *) 

25 (* Writedatatooutputfile. *) 

26 end until INPUTFILE. STATUS= EOF 
27 CLOSE (INPUTFILE); 
28 CLOSE(OUTPUTFILE); 
29 end 

30 ************************************************************************************** 

parameter to READ. Therefore, SPELL resumes with its machine state identical to its state 
just prior to the call to WRITE, with the exception that the program counter has been ad­
vanced past the JSR WRITE. 

This very simple example illustrates the basic idea of using a coroutine structure to 
create a filter. The extension to more complex problems is rather straightforward. Con­
sider Program 9.6 where we see the problem somewhat embellished. In this example, the 
SPELL program is a filter that opens the output file, passes data to the file, then terminates 
by closing the output fik Correspondingly, the tLAND_.:r program opens an input file, 
reads data from that file until it encounters an end-of-file condition, then closes that file. 
The difficulties in implementing this example in a coroutine pertains to the handling of 
OPEN and CLOSE, detecting the end-of-file condition, and initializing the programs so that 
they will work correctly as coroutines. Program 9.7. is an assembly-language implemen­
tation of this program. 

Before describing Program 9.7 in detail, we list the general guidelines to our solution 
that are illustrated in the program. 

Micron Technology Inc. et al. 
Ex. 1042, 343



344 Software Development 

1. OPEN and CLOSE are treated as coroutine calls by inserting a linkage similar to the link­
age used to pass control between READ and WRITE. 

2. Each coroutine has an initial entry point that creates its stack. 
3. Program execution begins at the entry point of the program that reads the intermedi­

ate file. 
4. When an OPEN is executed on an input file, the effect of that OPEN is to pass control to 

the initial entry point of the program that writes the intermediate file. 
5. When OPEN is executed on an intermediate output file, the effect is that of an ordinary 

coroutine RESUME, returning to the coroutine that reads the intermediate file. 
6. The effect of a CLOSE on an output file is to report an end-of-file status in a RESUME to 

the corresponding coroutine that reads the file. 
7. The effect of a CLOSE on an input file is to invoke the code that terminates the 

corresponding output coroutine. 

If we assume that the program has only the two coroutines shown, then the guidelines 
we listed indicate that the program should be started at the initialization entry point of 
IL<\NILJ, since H..AND....J reads the intermediate file. If PAGE_COMPOSE were included in the 
example as well, then the program should start at the initialization entry ofPAGE_COMPOSE. 
PAGE_COMPOSE then will invoke the initialization of fLAND_J. The initialization code for 
H..AND_J appears in lines 45 through 47, where the code sets an initial value into the stack 
pointer and opens the input file. 

The OPEN_IN statement on line 46 is a system call to open an input file; but in the con­
text of the coroutine structure, this statement causes the corresponding output coroutine to 
initiate. Therefore the call to OPEN_IN invokes a special coroutine interface that passes 
control to the initialization entry point of SPELL immediately after saving the state of 
H..AND_.1. The SPELL ehtry, lines 10 through 12, has an initialization code similar to the ini­
tialization code in fLAND_J. After executing this code, the flow of control then continues 
in SPELL until the OPEN_OUT call on line 12. This call passes control back to fLAND_J 

through the standard coroutine interface on lines 26 through 33. 
Now let's examine how READ and WRITE are implemented. We presume that the sys­

tem routines READ and WRITE return a condition code, say by setting or resetting the condi­
tion code for the carry (or C) bit in the processor. We adopt the convention that when the 
bit is set, the READ or WRITE operation has reached an end of file or has terminated abnor­
mally. When the bit is reset, the operation is completed successfully. The first time this 
convention is invoked is on line 50, where the JSRREAD actually passes control to a corou­
tine interface shown on lines 68 through 73. Note the instruction CLC for clear carry. This 
instruction is executed just after the condition codes have been retrieved from the stack. 
Hence the net effect of the coroutine interface is to return a cleared carry bit to SPELL. 

The first execution of READ in H..AND_J returns control to the instruction on line 13 that 
immediately follows the call to OPEN_OUT. Subsequent READs from H..AND....J return control 
to code that immediately follows a WRITE in SPELL, such as the example on lines 16 
through 18. Note that this code tests the carry bit with the instruction BCS, which branches 
if the carry bit is set to the termination code for the coroutine. The corresponding actions 

Micron Technology Inc. et al. 
Ex. 1042, 344



PROGRAM 9. 7 File Operations for Text Processing in Assembly Language 

1 ************************************************************************************** 
2 * (* STARTHERE *) * 
3 * JUMP TO H_AND_J, LINE 45 * 

4 ************************************************************************************** 
5 START JMP INITIALIZE H_AND_J 

6 ************************************************************************************** 
7 * (* SPELL *) * 
8 * INITIALIZATIONCODEBEGINSHERE * 

9 ************************************************************************************** 
10 .SPELL MOV SP,SPELL-BOT INITIALIZE STACK FOR "SPELL" 
11 OTHER INITIALIZATION CODE GOES HERE 
12 JSR OPEN_OUT OPEN THE OUTPUT FILE, LINE 26 
13 
14 LOOP FIRST INSTRUCTION OF MAIN LOOP 
15 READ OR GENERATE THE NEXT CHAR 
16 MOV REG1,CHAR REG1 := CHAR; 
17 JSR WRITE OUTPUT THE CHARACTER, LINE 27 
18 BCS EXIT TAKE EXIT IF CARRY IS SET 
19 
20 BRA LOOP LAST INSTRUCTION OF MAIN LOOP 
21 EXIT JSR CLOSE CLOSE THE OUTPUT FILE, LINE 38 

22 ************************************************************************************** 
23 * (* WRITEANDOPEN_OUT *) * 
24 * THIS IS THE COROUTINE LINKAGE TO H_AND_J * 

25 ************************************************************************************** 
26 
27 
28 
29 
30 
31 
32 
33 

OPEN_OUT 
WRITE 

EQU 
PUSH 
MOV 
MOV 
MOV 
PULL 
CLEAR 
RTS 

ENTRY FOR "OPEN_OUT" AND "WRITE" 
ALL SAVE THE REGISTERS OF II SPELL II 
SPELLSP,SP SAVE THE STACK POINTER IN SPELLSP 
SP,HJSP RECOVER THE STACK POINTER FOR "H_AND_J" 
Rl (SP) , REGl PASSAPARAMETERTO "H_AND_J" 
ALL RESTORE THE REGISTERS FOR "H_AND_J" 
CARRY REPORT STATUS FOR A NORMAL READ 

RETURN TO "H_AND_J" 

34 ************************************************************************************** 
(*CLOSE*) 35 * 

36 * CLOSE THE OUTPUT FILE, AND CALL H_AND_J 
* 
* 

3 7 ************************************************************************************** 
38 
39 
40 
41 
42 
43 

CLOSE PUSH 
MOV 
MOV 
PULL 
SET 
RTS 

ALL SAVE CURRENT STATE 
SPELLSP,SP SAVE THE STACK POINTER IN SPELLSP 
SP,HJSP RECOVER THE STACK POINTER FOR "H_AND_J" 
ALL RESTORE THE REGISTERS FOR "H_AND_J" 
CARRY REPORT STATUS FOR END OF FILE 

RETURN TO ''H_AND_J'' 

44 ************************************************************************************** 
45 
46 
47 
48 
49 
50 
51 
52 
53 

H_AND_J 

LOOP 

MOV 
JSR 

JSR 
MOV 
BCS 
MOV 

SP,HJSP__BOT 
OPEN_IN 

READ 
CHAR,REG1 
HJ_EXIT 
CHAR,REG1 

INITIALIZE STACK FOR "H_AND_J" 
OPEN THE INPUT FILE, LINE 62 
OTHER INITIALIZATION CODE GOES HERE 
FIRST INSTRUCTION OF MAIN LOOP 

INPUT ACHARACTERTOREGl, LINE 69 
CHAR:= REGl 
EXITONENDOFFILE (CARRYSET) 
CHAR:= REGl 

(Continued on next page.) 

Micron Technology Inc. et al. 
Ex. 1042, 345



346 Software Development 

54 SAVE OR PRINT THE CURRENT CHAR 
55 
56 HLEXIT 
57 

BRA 
JSR 

LOOP 
CLOSE_IN 

LAST INSTRUCTION OF MAIN LOOP 
CLOSE THE INPUT FILE, LINE 80 

58 ************************************************************************************** 
59 * 
60 * 

(* OPEN_IN *) 

COROUTINE LINKAGE TO INITIALIZE "SPSLL" 
* 
* 

61 ************************************************************************************** 
62 OPEN_IN 
63 
64 

PUSH 
MOV 
JMP 

ALL 
HJSP,SP 
SPELL 

SAVE THE REGISTERS OF "H_AND_J" 
SAVE THE STACK POINTER IN SPELLSP 
INITIALIZE THE "SPELL" PROGRAM, LINE 10 

65 ************************************************************************************** 
66 * 
67 * 

(*READ*) 
THIS IS THE COROUTINE LINKAGE TO "SPELL" 

* 
* 

68 ************************************************************************************** 
69 READ PUSH ALL SAVE THE REGISTERS OF "H_AND_J" 

70 MOV HJSP,SP SAVE THE STACK POINTER INHJSP 

71 MOV SP,SPELLSP RECOVER THE STACK POINTER FOR "SPELL" 

72 PULL ALL RESTORETHEREGISTERSFOR "SPELL" 
73 CLEAR CARRY REPORT STATUS FOR A NORMAL WRITE 

74 RTS RETURN TO "SPELL" 

75 ************************************************************************************** 
76 * (* CLOSE_IN *) 

77 * CLOSE AN INPUT FILE 
78 * CLOSE_IN IS A NULL ROUTINE IN THIS CODE. 

* 
* 
* 

79 ************************************************************************************** 
80 CLOSE_IN RTS RETURNWITHOUTDOINGANYWORK 

for a WRITE in SPELL to resume after a READ in fLAND_J are shown in the coroutine interface 
on lines 50 through 52. In this case, the interface both passes a parameter and sets the con­
dition code in the process of restoring the state ofiLAND_J. 

Eventually, SPELL exhausts its input file and reaches the CLOSE instruction on line 21. 
CLOSE invokes a special coroutine interface on lines 38 through 43 that sets the carry bit to 
indicate an end-of-file condition. The RESUME to fLAND_J results in a branch to the CLOSE in 
JLAND_J that can terminate SPELL and return its stack and other memory to a pool of avail­
able memory. In the program example, this instance of a CLOSE is implemented as a null 
routine. 

This example illustrates how a few interfaces between two independent program 
modules can couple the modules together, making them coroutines. During program exe­
cution, control passes back and forth between the modules in what appears to be a confus­
ing and contorted fashion. Yet the structure of the program is inherently simple because 
the modules are totally isolated from each other so that each can be written, debugged, 
and maintained independently. All operations pertinent to a module are encapsulated 
within it, and there is no interaction among the modules except through the coroutine 
interfaces. Programs that control I/0 devices, pat1icularly interrupt-driven programs, are 
ideally structured as coroutines, since each coroutine focuses on the control of one device. 

Micron Technology Inc. et al. 
Ex. 1042, 346



9.2 Software for 1/0 Control 347 

Coroutines for 1/0 Control 

Among the most difficult types of programming to implement is 110 control. The primary 
difficulty lies in the real-time nature of the control problem. The computer must adapt to 
the timing of the device. Instructions cannot be executed at arbitrary times. They have to 
be synchronized to external events. The control of just one device can be a difficult prob­
lem. But just imagine the problems of juggling control among five to ten devices, all 
operating in real time. Techniques based on coroutine structures can greatly simplify the 
development of this kind of the program. 

Synchronization to external signals is the key requirement for 110 programs. A typi­
caliiO driver has to perform operations equivalent to those shown in Program 9.8. Note 
that the program issues a command to a device, then has to wait for a ready signal. Pro­
gram 9.8 shows that there is, in general, some internal state in the 110 driver in that the 
commands may be issued in a particular sequence. For example, a floppy-disk controller 
can successively load the head, seek a new track, then read from a particular sector on the 
track. If there were no other processing to be done, then the controller program might well 
be implemented as shown in Program 9.8 with busy loops, testing and waiting for a 
READY status. However, in many cases the processor cannot afford to spend the time in 
the busy loop. Therefore, we have to consider other mechanisms that can improve pro­
gram efficiency. 

PROGRAM 9.8 The Structure of a Typical 1/0 Driver 

procedure DRIVER; 
begin 

(* Prepare to initiate I/0. *) 

WAIT (DEVICE_STATUS); 
(*Issue the first command. *) 

COMMAND:= FIRST_OPERATION; 
START_IQ (DEVICE,COMMAND); 
(* Wait for completion. *) 

WAIT (DEVICE_ STATUS) ; 
(*Issue the next command. *) 

COMMAND:= SECOND_OPERATION; 
START_IO (DEVICE,COMMAND); 
(* Accept a block of data from the device. *) 

for I : = 1 to BLOCKLENGTH do 
begin 

end; 
end; 

(* Wait for completion. *) 
WAIT(DEVICE_STATUS); 
BLOCK(I) := READ_IO(DEVICE.DATA); 

There are at least two widely used methods for controlling multiple devices. We 
show the polling method in Program 9. 9 and the interrupt -driven method in Program 9.10. 
For polling, the individual device drivers issue a RESUME instead of a WAIT. The resume re­
turns to a polling program that continuously loops through a cycle of coroutine calls to the 

Micron Technology Inc. et al. 
Ex. 1042, 347



348 Software Development 

PROGRAM 9.9 The Structure of a Polled 1/0 Driver 

procedure DRIVERl; 
begin 

(*Prepare to initiate I/0. *) 
while not (DEVICE_STAWS =READY) do RESUME MAIN; 
(*Issue the first command. *) 

COMMAND:= FIRST_OPERATION; 
START_IO (DEVICE,COMMAND) ; 
(* Wait for completion. *) 

while not (DEVICE_STAWS =READY) do RESUME MAIN; 
(*Issue the next command. *) 

COMMAND:= SECOND_OPERATION; 
START-IO (DEVICE,COMMAND); 
(*Accept a block of data from the device. *) 

for I:= 1 toBLOCKLENGTHdo 
begin 

(* Wait for completion. *) 
while not (DEVICE_STAWS =READY) do RESUME MAIN; 
BLOCK (I) := READ_IO (DEVICE-DATA) ; 

end; 
end; 
(*This is the structure of the main program. *) 
program MAIN; 
repeat forever 
begin 

end; 

RESUME DRIVERl; 
RESUME DRIVER2; 
RESUME DRIVER3; 

device drivers. This method is both the simplest and preferred method for implementing 
UO drivers. It has drawbacks, however, and cannot be used for all cases. One problem is 
that there is an unpredictable delay between the time a device reaches the READY condi­
tion and the time that the I/0 program services it. Some devices must be serviced within a 
fixed time after becoming READY, and therefore are not easily controlled through poll­
ing. The second problem also relates to performance. Polling expends a considerable 
number of machine cycles that might otherwise be available for other purposes. Perfor­
mance degradation due to polling is usually unimpm1ant in dedicated controllers because 
cycles wasted in polling cannot otherwise be captured for useful work. For general­
purpose applications, however, I/0 is pe1formed concurrently with many other tasks. Cy­
cles lost to UO in these applications may severely handicap the ability of the system to do 
the other non-I/O tasks at a reasonable pace. 

Program 9.10 illustrates how interrupts are used in place of polling. In this case, the 
interrupt-driven program alters the interrupt vector entry address prior to resuming an in­
terrupted program. The new address in the interrupt vector is the entry point of the next 
phase of the interrupt handler. When an interrupt occurs, the effect of the interrupt is 
identical to a coroutine RESUME to the interrupt handler. The state of the interrupted pro-

Micron Technology Inc. et al. 
Ex. 1042, 348



9.2 Software for 1/0 Control 

PROGRAM 9.10 The Structure of an Interrupt-Controlled 1/0 Driver 
procedure DRIVER; 
(* This program is started through a conventional procedure call. 

The device it controls is assumed to be ready when the program 
is first entered. *) 

begin 
(* Prepare for the reentry after an interrupt. *) 

DEVICE-VECTOR:= ADDRESS_OF (CMD2); 
(*Issue the first command. *) 

COMMAND:= FIRST_OPERATION; 
START_IO (DEVICE,COMMAND); 
(* Return to calling program. *) 

return; 
CMD2: (*Reenter here after an interrupt. *) 

(*Prepare for the reentry after an interrupt. *) 
DEVICE-VECTOR:= ADDRESS_OF(ACCEPT_DATA); 
(*Issuethenextcommand. *) 

COMMAND:= SECOND_OPERATION; 
START-IO (DEVICE, COMMAND); 
(*Accept a block of data from the device. *) 

for I : = 1 to BLOCKLENGTH do 
begin 

RETURN FROM INTERRUPT; 
ACCEPT_DATA: (* Reenter here after interrupt. *) 

BLOCK(I) := REAO_IO(DEVICE.DATA); 
end; 

RETURN FROM INTERRUPT; 
end; 

349 

gram is preserved and then recovered later when the handler resumes an interrupted pro­
gram. The interrupt method reduces latency because the interrupt program can be invoked 
almost immediately after the intenupt request. Additional latency may occur if an inter­
rupt request is locked out by the processing of a higher priority or noninterruptible task. 
The designer can easily calculate the worst-case delay for any interrupt, and thereby 
bound the latency of a response to an interrupt request. The interrupt program suffers no 
loss of efficiency because of repeated status tests as does the polling program, but there is 
some inefficiency in the process of leaving and entering the interrupt handler. Interrupt 
overhead becomes excessive at very high transfer rates if interrupts are used to process 
each datum. In this case, DMA control is preferred; and in lieu ofDMA, it may be neces­
sary to transfer data with programmed busy loops without interrupts in order to meet the 
real-time constraints on data transfer. 

Therefore, we have at our disposal three generic ways of doing VO: 

1. For a dedicated device, we can use programmed busy loops. 
2. To control several devices, we can poll and test the device status registers in either a 

cyclic fashion or according to some priority scheme. 
3. To reduce overhead and worst-case latency, we can use inte1rupt-driven device 

handlers. 

Micron Technology Inc. et al. 
Ex. 1042, 349



350 Software Development 

We now examine the design issues in putting these techniques together to create an effi­
cient VO-control system. 

Since interrupt programming is substantially more difficult to create correctly and to 
debug, the preferred solution is polling. However, devices that operate under real-time 
deadlines may have to be controlled by the interrupt method. Therefore the first step of a 
design process is to organize the VO handlers into two groups according to whether they 
do or do not use the interrupt system. (A controller dedicated to one device can use simple 
busy loops.) Programs controlled through polling use standard mechanisms for calling 
subroutines, resuming coroutines, and passing and receiving parameters. Programs con­
trolled through the interrupt system cannot interface directly to the remainder of the pro­
gramming system because an interrupt program is initiated at unpredictable times and, 
therefore, is not synchronized to the activity in the remainder ofthe programming system. 
Therefore, in general, each interrupt handler requires a small data region for buffering 
data. External data received by an VO handler are held in this region until they can be 
passed to an independent part of the program. Similarly, as data are produced for output 
by the programming system at large, they are stored in the buffer until the VO handler can 
transfer them to an VO device. Since buffer storage is first-in, last-out, the appropriate 
data structure for the buffer is a queue. Consequently, the usual communication of an in­
terrupt program with a programming system is through a queue. The actual implementa­
tion of queueing is more complex than our description here because of the special han­
dling of empty queues, full queues, and interrupts that occur while one program or 
another is manipulating the queues. A detailed example later in Section 9.2 illustrates 
precisely how to implement the queueing structure in assembly language for a real sys­
tem. 

At this stage of the design process, each VO handler has been classified as interrupt 
driven or driven through polling. For each interrupt-driven program, we construct a queue 
to receive data from or to transmit data to that program. All programs that interface to in­
terrupt handlers do so through queues. All other VO is treated through conventional sub­
routine or coroutine calls. Now when we have treated each independent handler as a co­
routine, we treat the main program, if there is one, as another independent coroutine. 
Then each coroutine is implemented as an independent, isolated program. As coroutines 
are completed, they can be tested in isolation, then tested together as a working system. 
When this procedure is followed, creating a complex VO system with interrupt-driven de­
vices becomes a much simpler task, because the programmer can focus on small self­
contained modules. Moreover, by using techniques outlined later, the programmer can 
eliminate most of the difficulties caused by the random timing of interrupts. 

A Detailed Example of an 1/0 Controller 

The best way to describe how to create a complex VO control program is to show a de­
tailed example. Our choice of example is the printer controller illustrated in Fig. 9.6. This 
controller has an RS-232-C input port through which it receives printable data as well as 
commands that control the format of the printing. The physical printer is a so-called 

Micron Technology Inc. et al. 
Ex. 1042, 350



9.2 Software for 1/0 Control 351 

RS-232-C link 

Printer controller 

Front panel 

FIGURE 9.6 Diagram of intetfaces to the printer controller. 

"daisy-wheel" printer, the Diablo Hytype I printer, which has an interface similar to 
most other daisy-wheel printers. The figure shows that the printer has three degrees of 
mechanical freedom. The computer can spin the wheel to align any character with the 
print hammer, can move the carriage to position the character horizontally, and can rotate 
the platen to position the character vertically. 

The printer interface is quite straightforward. A data bus carries 11 bits of informa­
tion. These 11 bits encode either a distance increment or the ASCII code for a printable 
character. 'fhree different command lines -one each for printwheel, carriage, and 
platen-can be exercised by the computer to control each possible movement of the three 
devices. Each command line has an accompanying status line to indicate when the printer 
has completed the corresponding command. The printer can actually move in all three 
directions simultaneously. Logic within the printer guarantees that all movement has 
ceased when the hammer strikes the print wheel, and the printer controller need not be 
concerned with this problem. The printer guarantees, as well, that overlapped commands 
will be executed as if they had occurred sequentially. Hence, if the computer issues a 
command to move the print wheel to the character "a" position, and then commands a 
carriage move, the printer will spin the print wheel and strike the letter "a" before the 
carriage moves. On the other hand, if the computer reverses the sequence and issues the 
carriage move first, the printer will move the carriage and spin the print wheel simulta­
neously, and will strike the letter "a'' after both movements have ceased. 

A control line to the printer can lift or drop the ribbon. The ribbon has to be in a lifted 
position during printing. When the printer is placed in a NOT READY (off-line) con­
dition, the computer should drop the ribbon to facilitate paper positioning and ribbon 
changing. 

For local control of the printer, there are various buttons and lights on the printer con­
sole. (One of these buttons is an OFF-LINE button that signals the controller to stop the 
printer and drop the ribbon as mentioned above.) Other controls and indicators permit an 
operator at the printer to skip a line or to skip to a heading or to observe the status of the 
printer. 

Micron Technology Inc. et al. 
Ex. 1042, 351



352 Software Development 

The function of the controller program is to operate the RS-232-C interface, the 
printer mechanism, and the buttons and lights. A hardware diagram of the VO interface is 
shown in Fig. 9.7. The RS-232-C connection is implemented by a serial VO port; and in 
this case the signal line RTS (Request to Send) is manipulated by the program to control 
the rate of characters coming across the linlc When the program makes RTS inactive, the 
transmitter end of the link should stop transmitting. Transmission restarts when the pro­
gram reasserts RTS. This connection (or a functionally equivalent one) is required to stop 
and start the flow of data, for otherwise the transmitter will send data much faster than the 
data can be printed. Without flow control, the data will pile up at the printer controller and 
overflow the buffers there. 

The interface between the controller and the printer mechanism is made through 
parallel ports. The control panel's push buttons and lights are also interfaced through the 
same type of port. Open-collector drivers and Schmitt trigger receivers form the electrical 
interface. Signals to the printer mechanism are active low pulses of very short duty cycle. 
Therefore, the open-collector drivers terminated with matched load impedances dissipate 
very little power. Because the transmission distance is short, and because the interface 
lines are properly terminated with adequate ground lines for return cunents, the electrical 
interface is quite satisfactory at normal TTL voltage levels. 

The design decisions that were made in developing the interface program are the fol­
lowing: 

1. The printer mechanism, buttons, and lights have no critical real-time constraints. 
Therefore these devices will be controlled through polling. 

2. The RS-232-C link has a real-time constraint. Even after deasserting RTS, the link 
will deliver up to two characters because of the effect of double buffering in the 
transmitter. The processor must respond to a received character and remove it from 
the buffer register of the serial port within one character time after the character is 
transferred to the buffer register. If the computer fails to respond within the time con­
straint, the transmitted character will be lost. Therefore, the serial link will be run 
under interrupt control, and the characters received on the serial link will be buffered 
in an input queue. 

3. To improve the efficiency of the printer, movements in the X andY (carriage and 
platen) directions will be accumulated and issued only when necessary to place char­
acters at a specific point on the page. Hence, a series of spaces will give rise to a sin­
gle printer command to move the carriage the accumulated movement of those 
spaces. 

4. If the input queue is empty, then all commands are issued immediately to the printer, 
and no accumulation occurs. This permits the printer to follow the exact movements 
of a slow typist. If accumulation were not turned off, the printer would tend to lag 
behind the typist during sequences of spaces and line feeds, and that would be rather 
disconcerting. 

5. The interface should accept certain specified sequences of characters beginning with 
the ASCII code ESC to set margins and for other control purposes. 

Micron Technology Inc. et al. 
Ex. 1042, 352



Micro- I 
processor 

Memory 
RS-232-C Parallel 

RESET lKRAM port port NMI lKROM 
IRQ IRQ 

l I 
RS-232-C in 

RTS out 

I 
Printer I .I Interface to l ;o 

I "l printer J / 

I 
I Front J Interface to I 9 

/ 

panel 
I 

I front panel I 
, 

~ 74LS 14 lypi~l ""'""(Schmitt triggec). 

Electrical 
interface 

~ 7407 typical driver (open collector): 

FIGURE 9. 7 Block diagram of the printer controller. 

Parallel 
port 

co 
N 

Micron Technology Inc. et al. 
Ex. 1042, 353



354 Software Development 

6. Each visible character printed causes two distinct control actions. The first is a print­
wheel movement, and the second is a carriage advance by an amount DELTA...X, where 
DELTA...X is a variable that determines the width of the characters. The horizontal reso­
lution of the printer is 60 steps per inch ( 120 per inch for later models). Standard pica 
fonts have 10 characters per inch, and thus require a DELTA...X value of 6. Elite fonts 
have 12 characters per inch, and require aDELTA...X value of 5. TheDELTA...X value can 
be modified by an ESC sequence or by depressing a font-change push button on the 
console. 

Although this description is not complete in all of the details required for a printer inter­
face, it contains a sufficient number of interesting constraints to make the programming 
example nontrivial and informative. 

We choose to implement coroutines for each of the following programs: 

1. The RS-232-C link. 
2. The front panel monitor. 
3. The program that extracts a character from the input queue and prints it. 

It is not necessary to implement these particular programs with separate stacks as indi­
cated in the prior section, so that in this example we use a simpler coroutine linkage. The 
state of each coroutine in this example is contained solely in the return address. 

Because our intent is to show the program in assembly language and because the 
problem is rather complex, we choose to show the implementation routine by routine, and 
we leave out details unrelated to the constraints listed. Again we use a top-down approach 
to reveal the program implementation from the highest level first. Program 9.11 is the 
main program-initialization section and polling loop. A Pascal-like description of the 
main program appears in the opening comment. The initialization consists of calls on pro­
cedures that do the following operations: 

1. IRUPT_VECTOR. This creates the interrupt vectors for the RS-232-C port and for a 
RESET push button. The RS-232-C link must be a maskable interrupt, but RESET 
can be maskable or nonmaskable. The software is made somewhat simpler if the two 
interrupts vector to different locations without needing software intervention. The 
RS-232-C interrupt vector is initialized to the first entry point of the serial-link corou­
tine. 

2. HEAD__FOS. This routine clears variables that indicate the current position of the print 
head and the X andY movements remaining to be issued. 

3. SERIAL__INIT. This routine configures the serial port. But the RTS signal remains 
off, and no characters should be transmitted across the link as a result of this call. 

4. BUTTONS_N_LIGHTS. This routine configures the parallel port for the control console. 
It also turns on indicator lamps that are to be on initially. 

5. PRINT_INIT. This routine configures the parallel port to the printer mechanism, and 
issues a command to position the carriage at the left margin. 

6. RTS_ON. This routine asserts RTS to start the transmitter at the other end of the link. 
Characters received in the future will post interrupts that vector the computer to the 
interrupt handler for the link. 

Micron Technology Inc. et al. 
Ex. 1042, 354



9.2 Software for 1/0 Control 355 

7. RIB_j)()WN. This routine places the ribbon in the down (nonprinting) position. 
(When the power is turned on, the printer should initialize itself in the off-line state 
with the ribbon down.) 

The main polling loop is very simple. The first step in each pass through the loop is to 
read the front panel. If any button is depressed, the PANEL program reacts by commanding 
a corresponding action. For example, depressing the OFF-LINE push button causes an 
internal variable ROY to be toggled. Immediately after polling the front-panel, the main 

PROGRAM 9.11 The Main Program of the I/0 Controller 

1 ************************************************************************************** 
2 * MAIN PROGRAM * 
3 * BEGIN 
4 * INITIALIZE; 
5 * RIBBONDOWN; 
6 * REPEAT FOREVER 

7 * BEGIN 

8 * 
9 * 

10 * 
11* 
12 * 
13 * 
14 * 

READ PANEL; 
IF NOT READY THEN RIBBON DOWN 
ELSE 
BEGIN 

RESUME OUTPUT; 
IFEMPTY(QUEUE) THENFORCE_IO; 

END· 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

15 * END; * 
16 ************************************************************************************** 
17 MAIN 
18 

19 * 
20 
21 
22 

23 * 
24 
25 
26 MAINLOOP 
27 
28 
29 
30 
31 
32 MAIN1 

33 

34 * 
35 
36 
37 
38 
39 

40 * 
41 

JSR 
JSR 

JSR 
JSR 
JSR 

JSR 

JSR 
JSR 
MOV 
CMP 
BEQ 
JSR 
BRA 
JSR 
MOV 

JSR 
MOV 
CMP 
BNE 
JSR 

BRA 

IRUPT_VECTOR 
HEAD__FOS 

SERIAL_INIT 
BUTTONS_N_LIGHTS 
PRINT_INIT 

RTS_ON 
RIB_DQWN 

PANEL 
REG1,RDY 
REG1, #0 
MAIN1 
RIB_DOWN 
MAINLOOP 
RIB_UP 

REG1, OUTCHAR 

(REG1) 
REG1,TOTAL 
REG1, #0 
MAINLOOP 
FORCIO 

MAINLOOP 

SET THE INTERRUPT VECTOR 
INITIALIZE PRINTER VARIABLES 'mAT 

GIVE THE CURRENT HEAD POSITION 
INITIALIZE THE SERIAL PORT 
INITIALIZE FRONT PANEL CONTROL 
INITIALIZE PRINTER PORT AND RESTORE 

PRINTER HEAD TO HOME POSITION 
TURNONREQ-TO-SEND, STARTXMITTER 
DROP THE RIBBON (NONPRINTING POSITION) 
READ THE FRONT PANEL 
TEST "ROY" 

PRINTER IS READY IF ROY= 0 
NOT READY SO DROP THE RIBBON 
REPEAT UNTIL PRINTER IS READY 
READY TO PRINT, SO LIFT RIBBON 
FIND LAST RETURN ADDRESS TO THE 

OUTPUT COROUTINE 
JUMP THERE WITH A SUBROUTINE CALL 
IS THE QUEUE EMPTY? 

NOT EMPTY, SO REPEAT THE LOOP 
EMPTY, SO FORCE OUTPUT OF 

ACCUMULATED MOVEMENT 
REPEAT THE LOOP 

Micron Technology Inc. et al. 
Ex. 1042, 355



356 Software Development 

program examines the variable ROY. If ROY is not zero, the printer is in an off-line state, 
and the main program continues to loop through the routines that drop the ribbon and read 
the front panel until the OFF-LINE button is pushed. 

If the main program finds ROY equal to 0 on line 29, then the computer is ON-LINE. 
In response to ROY, the program lifts the ribbon on line 32. (No harm is done if the ribbon 
is already lifted.) The next step is to output a character from the input queue to the printer 
mechanism. Since this is a coroutine call, the method used in lines 33 through 35 of the 
example is to copy the latest return address of the output routine into a machine register, 
and then to perform a subroutine jump to that address with an indexed effective address. 
(Other address modes can be used here if the microprocessor does not have indexing mode 
available for subroutine calls.) 

After calling the output routine, the main program could in theory return to the top of 
the loop. However, since the output coroutine is supposed to accumulate carriage and 
platen movement, it is necessary to determine if the printer can keep up with a slow input 
stream by outputting the accumulated movement immediately. Therefore the main pro, 
gram tests the variable TOTAL, which keeps track of the number of characters in the input 
queue that are awaiting printing. If this number is nonzero, then the main program can 
poll again from the beginning of the loop. Otherwise the main program calls FORero to 
dump the accumulated movement immediately. 

Having dispensed with the main program, we move to the interrupt handler for the 
serial link shown in Program 9.12. This program does nothing except to queue the input 
character. Consequently, as it has a very simple structure and does not need to retain state 
between calls, it is written as a subroutine rather than as a coroutine. It makes no use at all 
of the stack other than as a temporary storage area for registers of the interrupted program. 
The program opens with an instruction that turns off the interrupt system. Next it exe­
cutes a PUSH ALL instruction on line 2, followed by an access to the serial port for the 
character just received. Now the program is ready to queue a character. If the program 
were to permit link interrupts to occur before the PUSH ALL or during the queueing 
operation while the queue status variables are changing, the later interrupt could interfere 
with the earlier one and leave the queue or the stored machine registers in an inconsistent 
state. Therefore interrupts are not permitted during the execution of this program. Inter­
rupt requests are held pending by the serial port until the end of the operation. 

The queueing operation performs the following processes: 

1. Lines 4 through 9. Updates the input pointer to the queue to point to the next avail­
able space. Lines 6 and 8 make the queue a circular structure by forcing the successor 
of the last element in the storage block to be the first element of the block. 

2. Line 10. Stores the character at the next position in the queue. 
3. Lines 11 through 13. Increments TOTAL, the number of items in the queue. 
4. Lines 14 through 18. Checks to see that there are at least ten vacant places in the 

queue; if not, calls RTS_OFF to deassert RTS and thereby to shutdown the transmitter. 
5. Lines 19 through 20. Restores prior state, turns on interrupts and exits. 

Micron Technology Inc. et al. 
Ex. 1042, 356



9.2 Software for 1/0 Control 357 

PROGRAM 9.12 Interrupt-Handler for the Serial Link 

1 OUTPUT CLR LMASK DISABLE INTERRUPTS 

2 PUSH ALL SAVE THE STATE OF THE INTERRUPTED PROGRAM 
3 MOV REG1,LINKDATA RETRIEVE THE BYTE RECEIVED 

4 MOV REG2,Q_IN OBTAIN QUEUE INPUT-POINTER 

5 INC REG2 POINT TO NEXT SPACE 
6 CMP REG2, #Q_END AT END OF STORAGE? 
7 BLE IRUPT1 BRANCH IF POINTER IS STILL VALID 

8 MOV REG2,#Q_START OTHERWISE, RESETPOINTER 

9 IRUPT1 MOV Q_IN,REG2 UPDATE THE QUEUE POINTER 
10 MOV (REG2), REG1 STORE INPUT BYTE INTO QUEUE 

11 MOV REG2,TOTAL TOTAL = NUMBER OF ITEMS IN QUEUE 

12 INC REG2 
13 MOV TOTAL,REG2 INCREASE THE COUNT 
14 CMP REG2, #Q_LNG-10 IS TOTAL WITHIN 10 OF FILLING QUEUE? 

15 BGE IRUPT2 BRANCH IF AT LEAST 10 EMPTY SLOTS 

16 * ARE LEFT IN THE QUEUE 

17 JSR RTS_OFF SHUT DOWN THE TRANSMITTER 

18 * QUEUE NEARLY FULL 
19 IRUPT2 PULL ALL RESTORE PRIOR 
20 SET LMASK INTERRUPTS ON 
21 RTI RETURN FROM INTERRUPT 

Note how simple this program is as a result of choosing a queue as the interface between 
the interrupt-driven part of the program and the polling part of the program. The reason 
for choosing to have ten cells vacant in the queue instead of a smaller number like 0, 1, or 
2, is to provide a little protection from buffering at the transmitter. The transmitter, in 
general, sends up to two characters after RTS is deasserted. But each time a character is 
removed from the queue, RTS is reasserted, which could bring more than one character 
across the link. By choosing ten as the limit, we have established a comfortable margin at 
the very small cost of wasting up to ten bytes of a queue. 

The program may be somewhat simpler for microprocessors that store all registers on 
the stack whenever an interrupt occurs. The 68XX family generally passes control to the 
interrupt handler, with the interrupts turned off and all registers pushed into the stack. For 
this processor family, the instructions on lines 1 , 2, 19, and 20 are unnecessary. 

This brings us to the OUTPUT coroutine, Program 9.13, which is indeed a corou­
tine. The coroutine can exit back to the main program at any one of several points. The 
most frequently used exits are at points where the coroutine is awaiting the completion of 
a carriage movement, platen movement, or print-wheel action. In these cases, the corou­
tine exits to the main program and returns during each polling loop to test the status of the 
printer mechanism. The coroutine may also be waiting because the input queue is empty. 
In this case, each pass through the main program returns to the output coroutine to make 
another attempt to extract a character from the queue. Another entry point is associated 
with sequences of nonprinting control characters. After receiving the ESC character that 

Micron Technology Inc. et al. 
Ex. 1042, 357



358 Software Development 

opens such a sequence, the coroutine reenters at a series of instructions that interpret the 
next few characters. 

Here is a brief analysis of the actions of the OUTPUT coroutine. 

1. Lines 1 through 4. OUTPUT is the very first entry point. At this point the coroutine calls 
GET_CHAR to remove a character from the queue. If none exists, GET_CHAR returns with 
the carry bit of the condition code set, and control passes to CALL...MAIN to RESUME the 
main program. 

2. Lines 48 through 56. We skip forward to show the code for CALL...MAIN to illustrate 
how the coroutine linkage is implemented in this program. Since CALL...MAIN performs 
a subroutine jump, the return address for reentry to OUTPUT is at the top of the stack 
when CALL-MAIN takes control. CALL...MAIN moves the return address to its reserved lo­
cation in OUT_CHAR, and then pops the stack. The stack should now be in a state iden­
tical to its state at the point of entry to the output coroutine. At the top of the stack is 
the return address to the main program. Therefore, the RTS instruction executed next 
on line 56 of CALL...MAIN returns control back to the main program. Note that no status 
of the output program can be held in the stack from call to call. This is the case in any 
coroutine implementation that uses a single stack. 

3. Lines 5 and 6. These lines test to see if the character obtained (now in the register 
REGl) is printable. The least printable character has the ASCll code 21 16. Other 
ASCII characters to which the printer responds are space, line feed, carriage return, 
and escape, none of which result in a hammer strike on the print wheel. 

4. Lines 7 through 47. Printable characters are processed as a series of distinct opera­
tions. First, on lines 7 though 21, the carriage is moved by the amount accumulated to 
this point. If the carriage is busy then the coroutine exits to the main program and re­
turns to retest the carriage. The test of carriage status is made on lines 15 through 17 
by comparing the status word with 0. In this example we presume that a ready status 
is indicated by a 0, but more generally that the status will be the value of a single bit 
rather than of the entire word. In this case the status test requires that the program iso­
late the bit through a shift or mask operation. 

5. Lines 22 through 35. Mter moving the carriage, the program moves the platen using 
the same methodology as before. 

6. Lines 36 through 47. When platen movement has been completed, the program prints 
the character. This, too, follows the same methodology as for carriage and platen 
movement. 

7. Line 46. Ordinary typewriters advance the carriage after striking a character. The 
daisy-wheel printer need not advance immediately. The output program simulates an 
ordinary typewriter by scheduling the advance with the call to STEP ....x. STEP ....x merely 
accumulates an additional DELTA..X of X-movement, and does not move the carriage 
at this time. This accumulated X-movement, plus any other subsequent movement 
from multiple spaces and carriage returns, will be done in a single carriage­
movement operation just before printing the next visible character. It is also possible 
for STEP ....X to keep track of a right-hand margin, and to advance to a new line if the 
next printing character moves too far to the right. This code is not shown in the listing 

Micron Technology Inc. et al. 
Ex. 1042, 358



9.2 Software tor 1/0 Control 359 

of S'IEP...X on lines 90 through 93. Mter the call to S'IEP...X the coroutine exits in a 
state in which it is ready to retrieve another character from the input queue. 

8. Lines 57 through 79. These lines show the handling of space, carriage return, and line 
feed. For space and carriage return, the accumulated amount of carriage movement is 
altered. For line feed, the accumulated platen movement is altered. Since none of 
these three special characters depends on the mechanical state of the printer mechan­
ism, they can be removed from the queue at a rate much faster than the transmitter 
can transmit; and therefore, processing them in this fashion tends to speed up the 
printer relative to the speed of the seriallinlc 

9. Lines 80 through 86. These lines process sequences that begin with the ESC code. 
Mter receiving an ESC, the coroutine resumes the main program, and reenters at an 
instruction that extracts another character from the queue. Strictly speaking, it is un­
necessary to resume the main program immediately after the ESC, but this call gives 
the main program a polling opportunity between characters. The handling of specific 
escape sequences is not shown in the program example. 

1 
2 
3 
4 
5 
6 

OUIPUT 

OUTEXIT 

OUT_CHK 

PROGRAM 9.13 The Output Coroutine for the Printer Controller 
JSR GEL CHAR OBTAIN CHARACTER FROM QUEUE 
BCC OU'LCHK BRANCH IF QUEUE NOT EMPTY (CARRY CLEAR) 
JSR CALL_MAIN OTHERWISE, RESUMEMAINPROGRAM, LINE 54 
JMP OUI'PUT RECHECK THE QUEUE 
CMP REG1,#21H VISIBLE CHARACTER? 
BLO SPECIAL BRANCH IF LOW (NOT VISIBLE) , LINE 60 

7 ************************************************************************************** 
8 * THE CHARACTER INREG1 ISAVISIBLECHARAC'IER * 
9 ************************************************************************************** 

10 

11 
12 

13 

14 

15 OUT1 

16 

17 
18 

19 
20 OUTX 

21 

MOV 
JSR 

MOV 

CMP 
BEQ 

MOV 

CMP 
BEQ 

JSR 
JMP 

MOV 
JSR 

T1,REG1 
CALC_X 

T2,REG2 

REG2,#0 

OUT2 
REG3 ,CR_STA'IE 

REG3,#0 
OUTX 
CALL_MAIN 

OUT1 

REG2,T2 
X_MOVE 

SAVE THE CHARAC'IER 'IEMPORARILY IN T1 

FIND ACCUMULATED X MOVEMENT, LINE 94 

SAVE X MOVEMENT 'IEMPORARILY 
ISTHEXMOVEMENT (INREG2) = 0? 

BRANCH IF MOVE IS NOT PENDING 
IS THE CARRIAGE BUSY? 

0 SIGNIFIES READY 

BRANCH TO MOVE CARRIAGE 
COROUTINE CALL BACK TO MAIN PROGRAM 

TEST AGAIN WHEN PROGRAM RESUMES HERE 
RESTORE X MOVEMENT IN REG2 

OUIPUT THE X MOVEMENT 

22 ************************************************************************************** 
23 * THE FOLLOWING CODE MOVES THE PLA'IEN. * 
24 ************************************************************************************** 
25 OUT2 JSR CALC_Y MOVE ACCUMULATED Y MOVEMENT TO REG2 

26 MOV T2,REG2 SAVE YMOVEMENT TEMPORARILY 

27 CMP REG2,#0 ISTHEYMOVEMENT (INREG2) = 0? 

28 BEQ OUT4 BRANCH IF MOVE IS NOT PENDING 
29 OUT3 MOV REG3, PL_STA'IE IS THE PLA'IEN BUSY? 

(Continued on next page.) 

Micron Technology Inc. et al. 
Ex. 1042, 359



360 Software Development 

30 CMP REG3,#0 
31 BEQ OUTY 
32 JSR CALL~MAIN 

33 JMP OUT3 
34 OUTY MOV REG2,T2 
35 JSR Y_MOVE 

0 SIGNIFIES READY 
BRANCH TO MOVE PLATEN 
COROUTINE CALLBACK TO MAIN PROGRAM 
TEST AGAIN WHEN PROGRAM RESUMES HERE 
RESTORE YMOVEMENT IN REG2 
OUTPUT THEY MOVEMENT 

36 ************************************************************************************** 
3 7 * THE FOLLOWING CODE PRINTS THE CHARACTER. 

3 8 ************************************************************************************** 
39 OUT4 
40 
41 
42 
43 
44 OUTPW 
45 
46 
47 

MOV 
CMP 
BEQ 
JSR 
JMP 
MOV 
JSR 
JSR 
JMP 

REG3, PW_STATE IS THE PRINT WHEEL BUSY? 
REG3,#0 0 SIGNIFIES READY 
OUTPW BRANCH TO SPIN THE PRINT WHEEL 
CALL-MAIN COROUTINE CALL BACK TO MAIN PROGRAM 
OUT4 TEST AGAIN WHEN PROGRAM RESUMES HERE 
REGl,Tl RECOVER PRINTABLE CHARACTER 
PRINT OUTPUT THE CHARACTER IN REG! 
STEP_X A(::CUMULATE DELTA_X, LINE 90 
OUTEXIT RETURN TO START OF COROUTINE, LINE 3 

48 ************************************************************************************** 
49 * 
50 * 
51 * 
52 * 

THIS CODE RESUMES THE MAIN PROGRAM. 
THE TOP TWO BYTES IN THE STACK CONTAIN THE REENTRY 
ADDRESS TO OUTPUT. BENEATH THOSE BYTES LIES THE 
RETURN ADDRESS TO THE MAIN PROGRAM. 

* 
* 
* 

53 *********************************************************************'!'**************** 
54 CALL_MAIN MOV OUTCHR, (SP) POPTHERETURNADDRESSTOOUTCHR 
55 INC SP, 2 SP := SP + 2 (*ADDRESSHASTWOBYTES *) 
56 RTS RETURN TO MAIN PROGRAM 

57 ************************************************************************************** 
58 * THIS CODE HANDLES NONPRINTING CHARACTERS 

59 ************************************************************************************** 
60 SPECIAL CMP REGl,#SPACE IS IT A SPACE? 
61 BEQ DOS!;' ACE BRANCH TO DO SPACE 
62 CMP REGl,#CR IS IT A CARRIAGE RETURN? 
63 BEQ DOCR BRANCH TO DO CARRIAGE RETURN 
64 CMP REGl,#LF IS IT A LINE FEED? 
65 BEQ DOLF BRANCH TO DOLI~ FEED 
66 CMP REGl,#ESC IS IT Aj'J"ESCAPE SEQUENCE? 
67 BEQ DO ESC BRANCH TO ESCAPE CODE 
68 OUTEX JSR CALL-MAIN OTHERWISE, IGNORE IT 
69 JMP OuTPUT RETURN TO START 
70 DOSPACE JSR STEP_X ACCUMULATE DELTA_X, LINE 90 

71 JMP oll'l'Ex RESUME MAIN, LINE 68 
72 DOCR MOV REGl, LEFT_MARG FIND X POSITION OF LEFT MARGIN 
73 SUB REG!, CURR_X DECREASE BY CURRENT X POSITION 
74 MOV ACCUM_X, REG! ACCUMULATE THfS AMOUNT OF X MOVEMENT 
75 JMP OUTEX RESUME MAIN, LINE 68 
76 DOLF MOV REG!, ACCUNLY FIND PRESENT Y POSITION 
77 ADD REGl, DELTA_y INCREASE ACCUMULATION 
78 MOV ACCUM_Y,REGl UPDATE ACCUM_Y 
79 JMP OUTEX RESUME MAIN, LINE 68 
80 ************************************************************************************** 
81 * THISCODEHANDLESESCAPESEQUENCES 

82 ************************************************************************************** 

Micron Technology Inc. et al. 
Ex. 1042, 360



9.2 

83 DOESC 
84 
85 
86 ESC1 

JSR 
JSR 
BCS 

CALL_MAIN 
GET_CHAR 
DO ESC 

Software for 1/0 Control 

RESUME MAIN PROGRAM 
OBTAINCHARACTERFROMQUEUE 
BRANCH IF QUEUE EMPTY (CARRY SET) 
PROCESS NEXT CHARACTER IN SEQUENCE 

361 

8 7 ************************************************************************************** 
88 * AUXILIARYROUTINES * 
89 ************************************************************************************** 
90 STEP _X MOV REG1, ACCUM_X ACCUM_X : = ACCUM_X + DELTA...X 
91 ADD REG1,DELTA_X 
92 MOV ACCUM_X,REG1 
93 
94 CALC_X 
95 
96 
97 
98 
99 

RTS 
MOV 
ADD 
1\lOV 
MOV 
CLR 
RTS 

REG1, ACCUM_X 
REG1, ClJRR_X 
CURR_X, REG1 
REG1, ACCUM_X 
ACCUM_X 

CURR_X := CURR_X + ACCUM...X 

REPORT THE ACCUMULATED X MOVEMENT 
CLEAR THE ACCUMULATED AMOUNT 

At this point, we examine the subroutine GET_CHAR in Program 9.14 to illustrate how 
it works in conjunction with the interrupt handler. Since GET_CHAR manipulates the queue 
variables, it too must run with interrupts off. Otherwise, if an interrupt were to occur 
while these variables were being updated, the result would be an inconsistent set of vari­
ables, and the queueing programs would fail. Immediately after shutting off the interrupts 
on line 1, GET-CHAR turns on RTS to restart the transmitter. This is permissible because 
GET_CHAR extracts one character from the queue, leaving a space for a new character. 
However, there is a possible problem if the transmitter sends a minimum of two charac­
ters in response to this action. The code shown works correctly with a specific collection 

PROGRAM 9.14 The Get Character (Queue Output) Subroutine 
1 GET_CHAR CLR LMASK DISABLE INTERRUPTS 
2 JSR RTS_ON TURN ON THE TRANSMITTER 
3 MOV REG1,TOTAL HQW MANY BYTES IN THE QUEUE? 
4 CMP REG1,#0 
5 BEQ GETNONE EXIT WITH NO CHARACTER 
6 MOV REG1,Q_OUT POINTER TO HEAD OF QUEUE 
7 INC REG1 ADVANCE THE POINTER 
8 CMP REG1,4fQ_END AT END OF STORAGE? 
9 BLE GET1 BRANCH IF POINTER STILL VALID 

10 MOV REG1,#Q_START OTHERWISE, RESETTHEPOINTER 
11 GET1 MOV Q_OUT,REG1 UPDATE THE POINTER 
12 MOV REGl, (REGl) RETRIEVE THE NEXT CHARACTER 
13 MOV REG2,TOTAL DECREASE THE QUEUE COUNT 
14 DEC REG2 
15 MOV TOTAL,REG2 
16 CLEAR CARRY NOTIFY THAT A CHARACTER WAS FOUND 
17 JMP GETEXIT 
18 GETNONE SET CARRY NOTIFY THAT NO CHARACTER WAS FOUND 
19 GETEXIT SET LMASK E]\jABLE I~RRUPTS 
20 RTS 

Micron Technology Inc. et al. 
Ex. 1042, 361



362 Software Development 

of software and hardware at both ends of the linlc To be absolutely sure that the code is 
correct, the call of RT&_ON should occur only if there is sufficient space to receive the 
minimum number of characters that can be transmitted. 

After turning on the transmitter, GET_CHAR proceeds to extract a character from the 
queue if there is one. The carry bit is set or cleared depending on whether the queue is 
empty or nonempty, and then GET_CHAR exits with interrupts turned on. 

There are many other supporting routines that are not described in this example. 
These other routines implement the remaining functions in a standard way, and do not il­
lustrate the specific problems related to I/0, interrupts, and coroutines. 

In this detailed discussion of the example, we touched on the important ideas con­
tained in the design process. The coroutine structure greatly simplifies the program by 
breaking the program into small, self-contained modules. Synchronization with the exter­
nal link is handled through a very small interrupt routine; and the queue, in essence, 
decouples the behavior of the interrupt handler from the rest of the program. As testimony 
to the power of the implementation technique, a 500-byte version of the program 
described on these pages was written and tested over a two-day period. Testing was done 
by simulating the actions of the printer, and the simulation turned up about three or four 
transcription errors. When the simulated system worked properly, the program was 
transferred to EPROM and installed in the printer. It worked the first time and has never 
failed in 18 months of operation. 

OTHER SOURCE MATERIAL 

Among the many texts available for instruction in assembly-language programming, 
Knuth, vol. 1 (1973) is perhaps the most comprehensive in tecliniques and the implemen­
tation of data structures. Wakerly (1981) is especially recommended for the breadth of 
coverage and for the melding together of assembly language with a high-level language. 

The term "coroutines" was coined by Conway (1963) in a paper that showed several 
interesting techniques for the implementation of a compiler. Knuth (1973) reports that the 
idea had been used in programs much earlier than Conway's article, but Conway's paper 
brought the idea before the public and spread its use. Dahl, Dijkstra, and Hoare (1972) is a 
very interesting treatment of structured programming, with a good qf deal of information 
on coroutine structures. 

The merge algorithm described in the text is one of the more popular algorithms for 
merging data files. Knuth, vol. 3, (1973) is the definitive source for algorithms and back-
ground information for sorting and merging. · 

Micron Technology Inc. et al. 
Ex. 1042, 362



Bibliography 

Altnether, J. "High Speed Memory System Design Using 2147H," AP-74, Intel Cor­
poration, Santa Clara, CA, March 1980. 

Artwick, B. A. Microcomputer Intnfacing. Englewood Cliffs, NJ: Prentice-Hall, 1980. 

Barna, A., and D. I. Porat. Introduction to Microcomputers and Microprocessors. New 
York: Wiley-Interscience, 1976. 

Blakeslee, T. R. Digital Design with Standard MSI and LSI. 2d ed. New York: Wiley­
Interscience, 1979. 

Borrill, P. L. "Microprocessor Bus Structures and Standards." IEEE Micro, vol. 1, no. 1 
(February 1981): 84-95. 

Chaney, T. J., and C. E. Molnar. "Anomalous Behavior of Synchronizer and Arbiter Cir­
cuits." IEEE Trans. on Computers, vol. C-22, No.4 (Aprill973): 421-422. 

Close, C. M., and D. K. Frederick. Modeling and Analysis of Dynamic Systems. Boston: 
Houghton-Mifflin, 1978. 

Coates, T. "Interfacing to the Interface: Practical Considerations beyond the Scope of the 
IEEE Standard 488.'' 1975 Wescon Professional Program, San Francisco, Session 3, 
3/3-1 through 3/3-6. 

Cohen, D. "On Holy Wars and a Plea for Peace." Computer, vol. 14, no. lO (October 
1981): 48-54. 

Conway, M. E. "Design of a Separable Transition-Diagram Compiler." CACM, vol. 6, 
no. 7 (July 1963): 396-408. 

Dahl, 0.-J.; E. W. Dijkstra; and C. A. R. Hoare. Structured Programming. New York: 
Academic Press, 1972. 

Digital Equipment Corporation. PDP-ll Bus Handbook. Maynard, MA: Digital Press, 
1979. 

Dorf, R. C. Modern Control Systems. 3d ed. Reading, MA: Addison-Wesley, 1980. 

Doty, K. Fundamentals of Microcomputer Architecture. Portland, OR: Matrix, 1979. 

Eckhouse. R. H., Jr. Minicomputer Systems: Organization and Programming (PDP-11). 
Englewood Cliffs, NJ: Prentice-Hall, 1975. 

Electronic Industries Association. ''Interface between Data Terminal Equipment and 
Data Communication Equipment Employing Serial Binary Data Interchange," EIA 
Standard RS-232-C. Washington, DC: EIA, August 1969. 

363 

Micron Technology Inc. et al. 
Ex. 1042, 363



364 Bibliography 

Farmer, W. W., and E. E. Newhall. "An Experimental Distributed Switching System To 
Handle Bursty Computer Traffic.'' Proceedings ACM Problems in the Optimization 
of Data Communications Systems, Pine Mountain, GA. New York: ACM, October 
1969, 1-33. 

Fletcher, W. I. An Engineering Approach to Digital Design. Englewood Cliffs, 
NJ: Prentice-Hall, 1980. 

Forbes, B. "Using the 8292 GPIB Controller," AP-66, Intel Corp., Santa Clara, CA, 
1980. 

Gardner, F. M. PhaselockTechniques. New York: Wiley, 1977. 

Fisher, E., and C. Jensen. PET and the IEEE-488 Bus (GPIB). Berkeley, CA: Osborne, 
1980. 

Fluke, J. M. "System Considerations in Using the IEEE Digital Instrument Bus." 1975 
Wescon Professional Program, San Francisco, Session 3, 3/4-1 through 3/4-6. 

Gill, A. Machine and Assembly Language Programming of the PDP-11. Englewood 
Cliffs, NJ: Prentice-Hall, 1978. 

Givone, D. D., and R. P. Roesser. Microprocessors/Microcomputers: An Introduction. 
New York: McGraw-Hill, 1980. 

Harman, J. "IBM-Compatible Disk Drives." Byte, vol. 4, no. 10 (October 1979): 
100-113. 

Hilburn, J. L., and P. N. Julich. Microcomputers/Microprocessors: Hardware, Software, 
and Applications. Englewood Cliffs, NJ: Prentice-Hall, 1976. 

Hoeppner, J. F., and L. H. Wall. "Encoding/Decoding Techniques for Double Floppy 
Disk Capacity." Computer Design, vol. 19, no. 2 (February 1980): 127-135. 

IEEE. ''IEEE Standard Digital Interface for Programmable Instrumentation,'' IEEE Std. 
488-1975 (April1975). 

---· ''IEEE Standard Digital Interface for Programmable Instrumentation,'' IEEE 
Std. 488-1978 (1978). 

IEEE 796 Bus Working Group. "Proposed Microcomputer System 796 Bus Standard." 
Computer, vol. 13, no. 10 (October 1980): 89-105. 

IEEE Task 696 .l!D2. "Standard Specification for the S-1 00 Bus Interface Devices." 
Computer, vol. 12, no. 6 (July 1979): 28-52. 

Intel Corporation. ''Memory Design Handbook.'' Santa Clara, CA: Intel Corp., 1977. 

--· "Component Data Catalog 1982." Santa Clara, CA: Intel Corp., 1982. 

Johnson, D.; J. L. Hilburn; and P.M. Julich. Digital Circuits and Microcomputers. En­
glewood Cliffs, NJ: Prentice-Hall, 1979. 

Micron Technology Inc. et al. 
Ex. 1042, 364



Bibliography 365 

Kane, G. CRTControllerHandbook. Berkeley, CA: Osborne, 1980. 

Klingman, E. E. Microprocessor Systems Design. Englewood Cliffs, NJ: Prentice-Hall, 
1977. 

Knoblock, D. E. "Identifying, Understanding, and Selecting among the Capabilities Pro­
vided by the IEEE Standard 488." 1975 Wescon Professional Program, San Fran­
cisco, Session 3, 3/1-1 through 3/1-5. 

Knoblock, D. E.; D. C. Loughry; and C. A. Vissers. "Insight into Interfacing." IEEE 
Spectrum, vol. 12, no. 5 (May 1975): 50-57. 

Knuth, D. E. Fundamental Algorithms. 2d. ed. The Art of Computer Programming, 
vol. 1. Reading, MA: Addison-Wesley, 1973. 

---·Sorting and Searching. The Art of Computer Programming, vol. 3. Reading, 
MA: Addison-Wesley, 1973. 

Kraft, G. D., and W. N. Toy. Mini/Microcomputer Hardware Design. Englewood Cliffs, 
NJ: Prentice-Hall, 1979. 

Krutz, R. L. Microprocessors and wgic Design. New York: Wiley, 1980. 

Kryka, T. "An MC68488 GPIA and MC6821 PIA Team Up as a GPIB Controller," AN-
800, Motorola, Phoenix, AZ, 1979. 

Lee, R. C. ''Microprocessor Implementation of a Measurement Instrument and Its Inter­
face." 1975 Wescon Professional Program, San Francisco, Session 3, 3/2-1 through 
3/2-8. 

Leventhal, Lance A. Introduction to Microprocessors: Software, Hardware, and Pro­
gramming. Englewood Cliffs, NJ: Prentice-Hall, 1978. 

Levy, J. "Buses, the Skeleton of Computer Structures." In Computer Engineering: A 
DEC View of Hardware Systems Design by C. G. Bell; J. C. Mudge; and J. E. 
McNamara. Bedford, MA: Digital Press, 1978. 

Lipovski, G. J. Microcomputer Interfacing. Lexington, MA: D. C. Heath, 1980. 

McNamara, J. E. Technical Aspects of Data Communication. Bedford, MA: Digital 
Press, 1975. 

Mead, C., and L. Conway. Introduction to VLSI Systems. Reading, MA: Addison­
Wesley, 1980. 

Metzler, E., and J. Oliphant. "Single-Supply, 16-K Dynamic RAM Is Ready for Denser 
Systems.'' Electronic Design, vol. 19 (13 September 1978): 64-69. 

Metcalfe, R. M., and D. R. Boggs. "Ethernet: Distributed Packet Switching for Local 
Computer Networks." CACM, vol. 19, no. 7 (July 1976): 395-404. 

Morrison, R. Grounding and Shielding Techniques in Instrumentation. 2d ed. New York: 
Wiley-Interscience, 1977. 

Micron Technology Inc. et al. 
Ex. 1042, 365



366 Bibliography 

Moschytz, G. S. "Miniaturized RC Filters Using Phased-Locked Loop. Bell Systems 
Technical Journal, vol. 44, no. 5 (May-June 1965), 823-870. 

Motorola Corporation. "M6800 Microcomputer System Design Data." Phoenix, AZ: 
Motorola, 1976. 

--· "Getting Aboard the 488-1975 Bus." Phoenix, AZ: Motorola (undated). 

Murray, J., and G. Alexy. "CRT Terminal Design Using the Intel8275 and 8279," AP-
32, Intel Corporation, Santa Clara, CA, November 1977. 

NEC Microcomputers. "Floppy Disk Controller Users' Manual." Lexington, MA: NEC, 
1977. 

Noyce, R. N., and M. E. Hoff, Jr. "A History of Microprocessor Development at Intel." 
IEEE Micro, vol. 1, no. 1 (February 1981): 8-21. 

Ogdin, C. A. Microcomputer Management and Programming. Englewood Cliffs, NJ: 
Prentice-Hall, 1980. 

Osborne, A., and J. Kane. Some Real Microprocessors. Introduction to Microcomputers, 
vol. 2. Berkeley, CA: Osborne, 1978. 

---·Some Real Support Devices. Introduction to Microcomputers, vol. 3. Berkeley, 
CA: Osborne, 1978. 

Ott, H. W. Noise Reduction Techniques in Electronic Systems. New York: Wiley, 1976. 

Peatman, J. B. Microcomputer-Based Design. New York: McGraw-Hill, 1977. 

Pierce, J. R.; C. H. Coker; and W. J. Krophl. "An Experiment in Addressed Block Data 
Transmission around a Loop." IEEE Int. Conv. Rec., March 1971: IEEE, 222-223. 

Pierce, J. "How Far Can Data Loops Go?" IEEE Trans. Commun., vol. COM-20 (June 
1972): 527-530. 

Rolander, T. "MUL TIBUS Interfacing," AP-28, Intel Corp., Santa Clara, CA, 1977. 

Stone, H. S. and D.P. Siewiorek. Computer Organization and Data Structures: PDP-11 
Edition. New York: McGraw-Hill, 1975. 

Soucek, B. Microprocessors and Microcomputers. New York: Wiley-Interscience, 1976. 

Summers, J. "Microprocessor-GPIB Interfacing with the 96LS488," APP-351, Fair­
child, Mt. View, CA, May 1980. 

Tanenbaum, A. S. Computer Networks. Englewood Cliffs, NJ: Prentice-Hall, 1981. 

Thurber, K. J.; E. D. Jensen; et al. "A Systematic Approach to the Design of Digital Bus­
ing Structures." AFIPS, Proceedings ofthe 1972 FJCC, vol. 41, part II. Montvale, 
NJ: AFIPS Press, 719-740. 

Micron Technology Inc. et al. 
Ex. 1042, 366



Bibliography 367 

Wakerly, J. "Intel MCS-48 Microprocessor Family, A Critique." Computer, vol. 12, no. 
2 (February 1979): 22-31. 

---·Microcomputer Architecture and Programming. New York: Wiley, 1981. 

Western Digital. "FD 179X-01 Floppy Disk Formatter/Controller Family." Newport 
Beach, CA: Western Digital (undated). 

Wharton, J. "Using the Intel. 8085 Serial UO Lines," AP-29, Intel Corp., Santa Clara, 
CA, 1977. 

White, D. J. Electromagnetic lnteiference and Compatibility, vols. 1-5. Germantown, 
MD: White Consultants, 1971. 

Wiatrowksi, C. A., and C. H. House. Logic Circuits and Microcomputer Systems. New 
York: McGraw-Hill, 1980. 

Micron Technology Inc. et al. 
Ex. 1042, 367



APPENDIX A I THE ASCII CODE 

First Hex Digit 

Second 
Hex Digit 0 2 3 4 5 6 7 

0 NUL DLE SP 0 @ p 'or' p 
1 SOH DCl 1 A Q a q 
2 STX DC2 2 B R b 
3 ETX DC3 * 3 c s c 
4 EOT DC4 $ 4 D T d 
5 ENQ NAK o/o 5 E u e u 
6 ACK SYN & 6 F v f v 
7 BEL ETB ' or' 7 G w g w 
8 BS CAN 8 H X h X 

9 HT EM 9 I y y 
A LF SUB * J z j z 
B VT ESC + K [ k 
c FF FS <::: L \ 1 
D CR OS M ] m 
E so RS > N n 
F SI us 0 0 DEL 

Definitions of Control Symbols 

NUL Null DLE Data link escapt: 
SOH Start of heading DCl Device controll 
STX Start of text DC2 Device control 2 
ETX End of text DC3 Device control 3 
EOT End of tape PC4 Device control4 
ENQ Enquiry· NAK Negative acknowledge 
ACK Acknowledge SYN Synchronize 
BEL Bell ETB End of transmitted block 
BS Backspace CAN Cancel 
HT Horizontal tab EM End of medium 
LF Line feed SUB Substitute 
VT Vertical tab ESC Escape 
FF Form feed FS File separator 
CR Carriage return OS Group separator 
so Shift out RS Record separator 
SI Shift in us Unit separator 
SP Space DEL Delete 

368 

Micron Technology Inc. et al. 
Ex. 1042, 368



APPENDIX 8 I THE RS-232-C 
CONNECTOR STANDARD 

Pin 
Number Circuit CCITID Direction 

1 AA 101 
2 BA 103 Tenninal to modem 
3 BB 104 Modem to terminal 
4 CA 105 Tenninal to modem 
5 CB 106 Modem to tenninal 
6 cc 107 Modem to tenninal 
7 AB 102 
8 CF 109 Modem to tenninal 

9 
10 
11 
12 SCF 122 Modem to tenninal 

13 SCB 121 Modem to tenninal 
14 SBA 118 Tenninal to modem 
15 DB 114 Modem to terminal 

16 SBB 119 Modem to terminal 
17 DD 115 Modem to terminal 

18 
19 SCA 120 Tenninal to modem 
20 CD 108.2 Tenninal to modem 
21 CG 110 Moqetn tq terminal 
23 CH 111 Terminal to modem 

CI 112 rylodem to terminal 
24 DA 113 Tenninal to modem 

25 

Description 

Protective ground (shield). 
Transmitted data. 
Received data. 
Request to send. 
Clear to send. 
Data set reacly. -
Signal ground (common return). 
Received line signal detector 

(carrier detected). 
Reserved for testing. 
Reserved for testing. 
Unassig~ed. 
Secondary received line signal 
detector. 

Secondary clear to send. 
Seconqary transmitted data. 
Transmitter signal element timing 

(terminal transmitter clock). 
Secondary received data. 
Receiver signal element timing 

(modem receiver clock). 
Unassigned, 
Secondary request to send. 
Data tenninal ready. 
Signal quality detector. 
Data signal rate selector, or 
Data signal rate selector. 
Transrriitter signal element timing 

(tefrninal transmitter clock). 
Unassigned. 

369 

Micron Technology Inc. et al. 
Ex. 1042, 369



APPENDIX C I THE RS-449 

CONNECTOR STANDARD 

Pin Assignments for the 37 ·Pin Connector 

Pin 
Number Circuit Direction Type Description 

1 Shield Ground Protective shield. 
2 SI From modem A-A' Signaling-rate indicator. 
3 Spare 
4 SD To modem A-A' SEND data. 
5 ST From modem A-A' SEND timing. 
6 RD From modem A-A' RECEIVE data. 
7 RS To modem A-A' Request to send. 
8 RT From modem A-A' RECEIVE timing. 
9 cs From modem A-A' Clear to send. 

10 LL To modem A-A' Localloopback. 
11 DM From modem A-A' Data mode. 
12 TR To modem A-A' Terminal ready. 
13 RR From modem A-A' Receiver ready. 
14 RL To modem A-A' Remote loopback. 
15 IC From modem A-A' Incoming call. 
16 SF To modem A-A' Select frequency, or 

SR To modem A-A' Signaling rate selector. 
17 TT To modem A-A' Terminal timing. 
18 TM From modem A-A' Test mode. 
19 SG C-C' Signal ground. 
20 RC From modem C-B' RECEIVE common. 
21 Spare 
22 SD To modem B/C-B' SEND data. 
23 ST From modem B/C-B' SEND timing. 
24 RD From modem BIC-B' RECEIVE data. 
25 RS To modem B/C-B' Request to send. 
26 RT From modem B/C-B' RECEIVE timing. 
27 cs From modem B/C-B' Clear to send. 
28 IS To modem A-A' Terminal in service. 
29 DM From modem BIC-B' Data mode. 
30 TR To modem B/C-B' Terminal ready. 
31 RR From modem B/C-B' Receiver ready. 
32 ss To modem A-A' Select standby. 
33 SQ From modem A-A' Signal quality. 
34 NS To modem A-A' New signal. 
35 TT To modem B!C-B' Terminal timing. 
36 SB From modem A-A' Stand-by indicator. 
37 sc To modem C-B' SEND common. 

370 

Micron Technology Inc. et al. 
Ex. 1042, 370



AppendixC 

Pin 
Number 

1 
2 
3 
4 
5 
6 
7 
8 
9 

The R8-449 Connector Standard 

Pin Assignments for the 9-Pin Connector 

Circuit Direction Type Description 

Shield Ground Protective shield. 
SRR From modem A-A' Secondary receiver ready. 
SSD To modem A-A' Secondary SEND data. 
SRD To modem A-A' Secondary RECEIVE data. 
SG C-C' Signal ground. 
RC From modem C-B' RECEIVE common. 
SRS To modem A-A' Secondary request to send. 
scs From modem A-A' Secondary clear to send. 
sc To modem C-B' SEND common. 

(a) (b) (c) 

FIGURE C.l Type codes for connections for RS-449 
links: (a) Balanced transmitter; (b) differential receiver; 
(c) single-ended transmitter. 

371 

Micron Technology Inc. et al. 
Ex. 1042, 371



APPENDIX D I IEEE-488 BUS MULTILINE 
INTERFACE MESSAGES 

High Hex Digit 

Low Hex 0 1 2 3 4 5 6 
Digit (ACG) (UCG) (LAG) (LAG) (TAG) (TAG) (SCG) 

0 LOO Ll6 TOO TI6 soo 
I GTL LLO LOl Ll7 TO! TI7 SOl 
2 L02 LIS T02 TIS S02 
3 L03 Ll9 T03 TI9 S03 
4 SDC DCL L04 L20 T04 T20 S04 
5 PPC PPU L05 L2I T05 T21 S05 
6 L06 L22 T06 T22 S06 
7 L07 L23 T07 T23 S07 
s GET SPE LOS L24 TOS T24 SOS 
9 TCT SPD L09 L25 T09 T25 S09 
A LlO L26 TIO T26 SlO 
B LII L27 Til T27 Sll 
c Ll2 L2S T12 T2S Sl2 
D L13 L29 T13 T29 S13 
E L14 L30 T14 T30 SI4 
F Ll5 UNT T15 UNL Sl5 

COMMAND LEGEND COLUMN HEADING LEGEND 

GTL Go To Local ACG Addressed Command Group 
SDC Selected Device Clear UCG Universal Command Group 
PPC Parallel Poll Configure LAG Listen Address Group 
GET Group Execute Trigger TAG Talk Address Group 
TCf Take Control SCG Secondary Command Group 
LLO Local Lock Out 
DCL Device Clear 
PPU Parallel Poll Unconfigure 
SPE Serial Poll Enable 
SPD Serial Poll Disable 
Li Listen Address i 
UNL Unlisten 
Ti Talk Address i 
UNT Untalk 
Si Secondary Address i 

Notes: 

7 
(SCG) 

SI6 
SI7 
SIS 
Sl9 
S20 
S2I 
S22 
S23 
S24 
S25 
S26 
S27 
S2S 
S29 
S30 

1. The high hex byte is encoded on DI07, DI06, and DI05. The low hex byte is encoded on DI04 through DIOl. 
2. All multiline messages are sent and received with A TN asserted. 

372 

Micron Technology Inc. et al. 
Ex. 1042, 372



INDEX/GLOSSARY 

Active termination A bus termination technique 
that uses a separate power supply and resis­
tive loads to prevent noise oscillations on 
buses; 67-8,72 

Ada A high-level computer language; 320 
ADCCP (Advanced Data Communications Con­

trol Procedure protocol}, 181 
Address In a word-organized memory, the inte­

ger that uniquely identifies a word of mem­
ory; 6, 88-9, 91-100, 110-14, 127-35, 
138-43 

Address mark A control field on a floppy disk 
that identifies a sector address; 269 

Alexy, G., 318 
APL A programming language; 333 
Arbitration The process of selecting one respon-

dent from a collection of several candidates 
that request service currently; 100-7, 
115-20, 143-6 

See also Device identification 
Artwick, B. A., 41 
ASCII (American Standard Code for Information 

Interchange}, 165, 181, 191,202,295, 307, 
351-2, 358, 368 

Assembly language A symbolic language that can 
be translated into directly executable ma­
chine language by simple text substitutions 
and expression evaluations; 321, 327-336 

Asynchronous (1) aperiodic, not controlled by a 
clock; (2) for buses, a timing protocol that 
uses no clock and has no period; 90, 95-9, 
163-7, 191 

Asynchronous handshake; see Fully interlocked 
asynchronous handshake 

Back porch The trailing portion of a horizontal 
sync pulse for a video signal; 301-2 

Backplane A circuit-card carrier that provides 
for connections among the cards that it 
carries; 72-3, 78 

Balanced interconnections An interconnection 
technique that makes use of complementary 
signals and a differential receiver; 51-5, 82, 
84-6 

See also RS-422 
Balanced receiver A receiver that responds to the 

voltage difference of its two inputs, and 

that rejects changes in the average of the 
two input voltages; 52, 172, 175-7 

Bandwidth (of a bus or memory) The product of 
the maximum number of transactions per 
second and the number of data bits per 
transaction; 94-5, 8 

Barna, A., 41 
BASIC A computer language designed for 

beginning programmers; 320, 333 
BISYNC (Binary Synchronous Communications), 

179, 181-2, 192 
Bit A binary digit; 7-8 
Bit shifting The apparent shift in position of a 

recorded bit with respect to the actual 
recorded position of that bit; 265,271-5, 
282,288-90 

Bit synchronization The process of identifying 
the boundaries between bits in a serial data 
stream of contiguous data; 166, 198, 
246-64, 270, 272-5, 282-4, 288-90 

Blakeslee, T. R., 83 
Blanking A signal that darkens a video display 

during retrace periods; 300-3, 307, 311-12, 
319 

Boggs, D. R., 201 
Borrill, P. L., 119, 121 
Buffered 1/0 An I/0 transaction in which one 

or more buffer registers are used for 
intermediate data storage while data are in 
transit between a computer system and the 
outside world (buffered I/0 usually takes 
place concurrently with processor activity); 
12. 

See also I/0 port 
Bus A collection of unbroken signal lines that 

interconnect computer modules (the con­
nections are made by taps on the lines); 1-2, 
88-125 

arbitration, example of, 115-20 
arbitration protocols, 100-7 
asynchronous protocol, 90, 95-9, 107-9; see 

also Asynchronous 
bandwidth of a, 94-5, 98 
examples of a, 110-15 
fully interlocked protocol, 95-7 
functions of a, 88-90 
handshake protocols, 90-100 

tNumerical index of devices cited is at end of this section. 

373 

Micron Technology Inc. et al. 
Ex. 1042, 373



374 Index/Glossary 

interrupt-request arbitration, 109-10 
propagation delay, 94-5, 98 
semisynchronous protocol, 98-1 00; see also 

Semisynchronous 
skew on a, 93-8; see also Skew 
split-cycle of, 99; see also Split cycle 
synchronous protocol, 90-5, 98; see also 

Synchronous 
See also IEEE-488 bus, IEEE-696 bus, 

IEEE-796 bus 
Bus conflict An instant during which two distinct 

modules transmit different data on the 
same bus; 89 

Bus master A device that initiates a bus transac­
tion; 91-9,215,218-20,228-32 

Bus slave A device that responds to bus 
commands issued by a bus master; 91-9, 
215,218-20, 228-32 

Byte A datum composed of 8-bits; 8-11 
Byte-organized memory A memory system in 

which each byte of memory has a unique 
address; 8-9 

See also Word-organized memory 

C A programming language; 320 
Capture range The range of frequencies over 

which a phase-locked loop will acquire 
lock; 260 

Carriage (of a printer), 351-61 
Cassette-tape recording, 245, 250, 265,289 
Chaney, T. J., 107, 121 
Character counter A counter in a video display 

controller that keeps track of which char­
acter in a row is currently being displayed; 
305-7,311-12,315,318 

Character generator A memory, usually ROM, 
that contains bit patterns that form the 
graphic images of character data; 293-5, 
303, 307, 309, 313-15 

Character-height counter A counter in a video 
display that keeps track of which of several 
scan lines per character is currently being 
displayed; 305-7, 318 

Character synchronization The process of 
identifying the boundary between adjacent 
characters within a serial stream of contigu­
ous bits; 179, 192, 197 

Chip an integrated circuit; 4 
Clock recovery The process of regenerating a 

clock from a waveform that contains both 
clock and data information; 198, 251, 
252-64, 270-5, 282-4,288-9 

Clocking (for CRT controller), 302-7, 312, 
314-16, 318-19 

Close (a file) The process of disassociating a file 
from a program (CLOSE must be 
performed after the last access to a file); 
343-6 

CML (current-mode logic), 55 
COBOL A business-oriented computer 

language; 333 
Cohen, D., 10 
Color graphics (in video display), 315-17 
Common-mode voltage The average of two 

voltages; 53-4, 172, 174 
Communications protocol; see Protocol 
Compiler A computer program that translates 

programs written in a high-levellanguage 
into equivalent programs in the machine 
language of a target computer, 320, 332-3 

Conflict; see Bus conflict 
Controller (for IEEE-488 bus), 220-6, 233-8 

See also DMA controller 
Conway, L., 107 
Conway, M. E., 336, 362 
Coroutine A program control structure (a 

coroutine resumes at the instruction 
immediately following the instruction it last 
executed and resumes with its prior state; a 
coroutine exits by returning to its caller at 
the instruction immediately following the 
coroutine call); 336-50, 354-60 

Cross talk Noise voltage coupled into a 
conductor from nearby conductors; 80-2, 
185-7 

CRT (cathode-ray tube) terminal, 292 
controller chips for a, 293-4,304-6, 310-17 
controller design of a, 292-319 
cursor functions, 307-8 
functions of a, 307-10 
keyboard scanning, 297-300 
scrolling of display on, 308-9 
software for a, 295-7 
system description of a, 292-5 
timing of a, 300-4 

Current loop A type of serial interface protocol 
in which bits are encoded as the absence or 
presence of current; 165, 171-4, 188-90, 
204-5 

Current-mode logic; see CML 
Cursor A symbol displayed on a CRT screen to 

indicate the display position of the next 
character to be entered; 297, 307, 311 

functions of a, 307-8, 312 
Cyclic redundancy check A set of check bits 

derived from a cyclic error-correcting code 
or from a cyclic error-detecting code; 183 

Dahl, 0.-J., 362 
Daisy chain In bus protocols, an implementation 

of arbitration in which request and grant 
signals pass from module to module; 100-1, 
104-5, 109, 115, 118-19 

Daisy wheel A printing element with plastic 
petals that hold character images; 336, 
350-62 

Micron Technology Inc. et al. 
Ex. 1042, 374



Damping factor A coefficient that indicates the 
decay rate of an oscillation; 255-60 

Darlington transistor A transistor that has a very 
high current gain; 213 

Data chaining The ability to initiate a new DMA 
operation immediately after completing a 
current operation without requiring proces­
sor intervention; 151-2 

Data handshake line One of a set of control lines 
on a bus that establishes the timing of bus 
transactions; 89-100,215, 218-20, 227-33, 
239,243-4 

See also Master, Slave 
Data mark A control field on a floppy disk that 

identifies a sector data block; 270 
Data separator An electronic circuit that sepa­

rates a composite data stream containing 
clock and data information into separate 
streams for data and clock; 265,273-5, 
279, 282-4, 287-9 

Data transparency The ability to incorporate 
recoverable control information into a data 
stream that contains arbitrary data pat­
terns; 182 

DDCMP (Digital Data Communications Message 
Protocol), 179, 201 

Debounce The elimination of spurious voltage 
transitions that appear immediately after 
switch opening or closure; 210-12,300, 
313, 315 

DEC (Digital Equipment Corporation) 
LSI-11, 8-9, 110, 112-13, 121, 124 
PDP-8, 121 
PDP-11, 95, 110, 116-17, 121, 124 
Q-bus, 112-13, 121, 124-5 
Unibus, 95, 116-17, 121 
VAX-11/780, 100,121 

Decoupling The use of a capacitor placed across 
the power terminals of an integrated circuit 
to remove voltage transients caused by sud­
den surges of current; 71 

Deskew The process of delaying bus transactions 
to remove relative timing delays due to 
timing differences attributable to skew; 98, 
111 

Device identification The process of determining 
the highest priority device ready for service 
from among a set of several devices that 
have requested service; 21-3, 109 

See also Polling, Vectored interrupt 
Differential-mode voltage The difference in 

potential oftwo voltages; 53-4 
Digital Data Communication Protocol; see 

DDCMP 
Dijkstra, E. W., 362 
Diode clamp A diode on an input pin of a logic 

circuit that limits negative voltage excur­
sions on the input pin; 72-3 

Index/Glossary 375 

DIP (dual in-line package), 74 
Direct-access memory A memory system in 

which access time depends on both sequen­
tial and nonsequential delays (a direct­
access disk system has nonsequential access 
to specific tracks and sequential access to 
data within a track); 7, 268 

Direct memory-access; see DMA 
Disk memory, 7, 268 

See also Floppy disk 
Display, 292-4 

See also CRT terminal 
DLE (data link escape), 182 
DMA (direct memory-access) The ability of an 

I/0 subsystem to transfer data to and from 
a memory subsystem without processor 
intervention; 5-6, 100, 125, 143, 216, 
284-5, 303, 313-14, 349 

interface with processor, 25-8 
DMA channel; see DMA controller 
DMA controller A device that can control data 

transfers between an I/0 subsystem and a 
memory subsystem in the same manner that 
a processor can control such transfers; 5, 
25-8, 125, 148-57, 197-9,286,293-4, 309, 
313 

Dorf, R. C., 261 
Dot clock; see Dot oscillator 
Dot oscillator An oscillator that generates the 

frequency of the smallest resolvable dot 
on a video display; 45, 303, 305, 312, 314, 
318 

Doty,K.,40 
Double buffer The use of two buffers alternately 

in an overlapped fashion so that one buffer 
is filled while another is used for data re­
trieval; 303, 312-13 

Double density A recording technique in which 
the maximum density of flux transitions is 
approximately equal to the density of the 
daia bits recorded; 267, 272, 286 

Double-ended signaling; see Balanced 
interconnection 

Driver (for a bus), 74-7 
Dual in-line package; see DIP 
Dual-ported memory A memory that can arbi­

trate requests from two distinct sources (a 
true dual-ported memory can honor con­
current requests simultaneously; most 
implementations honor concurrent requests 
by delaying one while honoring the other); 
143-5. 

Duty cycle The fraction of time during which a 
device or a signal is active; 61, 91, 137, 254, 
263,288 

Dynamic memory A read/write memory that 
stores data passively and requires periodic 
refresh; 126, 134, 136-43 

Micron Technology Inc. et al. 
Ex. 1042, 375



376 Index/Glossary 

Eckhouse, R. H., Jr., 30 
ECL (emitter-coupled logic), 55 
Edge-triggered Sensitive to a change in voltage 

rather than to a voltage level; 227-8 
Effective-address calculation The process of 

computing the address of an operand by 
means of calculations that may involve 
index registers and indirect addresses; 324 

Electrical isolation The state of having no direct 
low-impedance electrical connection; 52, 
172-4, 176-7, 188-90,205 

Emitter-coupled logic; see ECL 
ETB (end of.transmitted block), 81 
Ethernet Acoaxial-cable interconnection scheme 

used for' data communication among 
computers; 201 

ETX (end of te~t), 181-2 

Farmer, W. W., 185 
Feedback-control shtem A system in which an 

output signal is combined with an input sig­
nal to produce a new output signal; 255-60 

Fiber optics An interconnection system that uses 
very fine strands of transparent material to 
carry information encoded in the form of 
modulatedlight; 51 

FIFO (first in, first out); see Queue 
File A data structure composed of a collection of 

records that is usually stored in auxiliary 
memory; 322-33, 339-46 

File block A strllcture that contains all informa­
tion pertinent to the control of a file; 328-9 

Filter (in the context of programs) A program 
that processes a sequential input file and 
produces a modified version of the file as a 
sequential output file; 339-46 

Flag (in SDLC protocol) A sync pattern that 
establishes the start of a block; 182-3, 198 

Flat cable; see Ribbon cable 
Fletcher, W. 1., 40 
Flip-flop A one-bit memory; 107 
Floppy disk A flexible, jacketed magnetjc disk 

used for the storage of digital data; 216, 
265-89 

controller design, 271-90 
Flow control (in data communications) Control 

applied to data transmitters to prevent buf­
fer ov~;rflow at receivers, 190-2 

Flux transition A reversal of a magnetic field in a 
locl!l region of a recording surface; 266-7, 
272 

FM (frequency modulation); see single-density 
recording 

FORTH A computer language; 320 
FORTRAN A computer language oriented for 

scientific calculations; 33 
Frame counter A counter in a video display that 

counts the number of scan lines in a frame, 

then generates control information when a 
frame has been completed; 305-7 

Front porch The lel!ding portion of a horizontal 
sync pulse for a video signal; 301-2 

Full duplex A bidrectional communications link 
that can be used in both directions concur-
rently; 297 · 

See also Half duplex 
Fully interlocked asynchronous protocol A bus 

protocol in which all transitions of MAS­
TER and SLAVE signals are interlocked to 
occur in a fixecj order; 95-8,206, 215, 
219-20, 228-33,239, 241-2 

Function (in programming languages) A subrou­
tine that returns a value, 324 

Gap (1) the region between a sector identifier and 
a data bloc~ on a floppy disk; (2) a physical 
break in read/write or erase head; 270-1 

Gardner, F. M., 261 
GCR (group code recording) A recording tech­

nique in which a group of four-bits is 
encoded by a group of five bits, and no 
other bits are used to record clocking infor­
mation; 267-8 

Gill,A.,30 
Givone, D. D., 40 
Graphic mode, 316-17 
Ground loop A low-impedance closed loop com­

posed primarily of ground conductors or an 
earth connection; 44-5, 172 

Grounding techniques, 43-5 
for board-to-board connections, 78-82 
for RS-232-C, 168 
for shields, 48-50 

Half-duplex A bidirectional communications 
link capable of being using in only one 
direction at a time; 297 

See also Full duplex 
Halfword A datum whose length in bits is half 

that of a word (used in the context of 
machines with 32-bit words, a halfword 
denot~s a 16-bit datum); 8 

Handshake; see Fully interlocked asynchronous 
handshake 

Hard sectoring The method of identifying sector 
boundaries on a magnetic disk by means IJf 
physical marks such as holes in the disk; 268 

Harman, J., 289 
HDLC (High-level Data Link Control), 179, 

181-5, 197-201,245 ' 
Head-loading (of a floppy disk) The action of 

bringing the read/write head in contact 
with the magnetic disk; 275, 281-2 

High-level Data Link Control; See HDLC 
Hilburn, J. L., 41 
Hoare, C. A. R., 362 

Micron Technology Inc. et al. 
Ex. 1042, 376



Hoeppner, J. F., 289 
Hoff, M. E. Jr., 39 
Hold time The minimum time that a control sig­

nal must be stable at the input of a memory 
device after a transaction has been initiated; 
92, 94-5, 128 

Hold-in range The frequency range over which a 
phase-locked loop remains in lock after it 
has acquired lock; 259-60 

Horizontal retrace The period of time during 
which a video beam returns across a scan 
line in preparation for the trace of the next 
scan line; 300-3,318-19 

Horizontal sync A signal that controls the hori­
zontal sweep of a video display; 300-3, 
306-7, 311-12,316,318-19 

House, C. H., 40 
Hyphenation, 339-46 

IEEE-488 bus, 66-7, 83,215-27,372 
devices for, 233-40 
functional description of, 218-27 

IEEE-696 bus, 83, 119-21 
IEEE-796bus, 83, 117-19 
Index hole A hole in a floppy disk that can be 

sensed, thereby establishing an index point 
on the disk; 268-9, 281 

Indirect access The access of a datum by first 
accessing a pointer word that contains the 
address of the datum, 324 

See also Effective address calculation 
Input/Output; see I/0 
Interface The physical, electrical, and logical 

means of exchanging information with a 
functional module (two modules that per­
form the same function and have identical 
interfaces need not be i~entical internally 
because all functional behavior visible 
externally is controllable through the inter­
face); 6 

bus, 161-2 
with interrupt system, 19-21 
I/0, 11-25, 31-9 
memory, 6-11, 31-9 
parallel, 206-40; see also Parallel interface 
serial, 161-201; see also Serial interface 

Interrupt The process of altering the normal flow 
of program execution to respond to signals 
generated by the I/0 system or by devices 
external to a computer system; 4, 15-21, 
153, 320 

priority, 20; see also Priority resolver 
vectored, 21-3; see also Vectored interrupt 

Interrupt acknowledge A signal produced by a 
processor to indicate that it is currently re­
sponding to an interrupt request; 17-18, 20 

Interrupt-driven 1/0 An input/ output transac-
tion synchronized to a processor by the 

Index/Glossary 377 

posting of an interrupt request when the 
I/0 subsystem requires service, 

device identification, 21-3; see also Device 
identification 

interface with a processor, 19-21 
program for a serial link, 205, 357 
programmingof,:322, 336,347,349-50,354-61 
transactions, 15-19,28-31 

Interrupt mask A register whose contents deter­
mine if an interrupt request is enabled (can 
be honored immediately) or disabled (will 
be held in abeyance); 19 

lnterrupt request A signal generated by an I/0 
subsystem that requests a processor to 
interrupt the normal flow of program 
execution; 4, 16-18,208,233, 276,280,284 

1/0 (input/output) (1) that portion of a com­
puter system that exchanges data between 
the computer system and the external 
world; (2) the data actually transferred 
between a computer and the external 
world, 

buffered; see Buffered I/0 
interface with processor, 11-25, 31-9 
interrupt driven; see Interrupt-driven I/0 
isolated; see isolated I/0 
memory-mapped; see Memory-mapped I/0 
port addressing, 23-5 
program-controlled; see Program~controlled 

I/0 
READ transaction, 12-17 
subsystem of microprocessor, 4-6 
synchronization with program, 4 
transaction description, 11-15 
WRITE transaction, 12-17 

1/0 port A module that contains control logic 
and data storage used to connect a comput­
er to external peripherals; 1-6, 293-5, 320 

parallel, 206-15 
serial, 161-'-3 
structure of, 11-15 

ISolated 1/0 An addressing scheme in which I/0 
ports are identified by port IDs that are 
distinct from memory addresses; 23-5. 

See also Memory-mapped I/0 
Isolation; See Electrical isolation 
lnterative refinement A programming 

methodology in which a program is written 
through a succession of iterations, with 
more details filled in during each new itera­
tion; 321-7 

Johnson, D., 40 
Julich, P. N., 41 
Justification In typesetting, the process of 

adding embedded blanks into typeset lines 
so that right-hand and left-hand margins 
appear at fixed positions; 339-46 

Micron Technology Inc. et al. 
Ex. 1042, 377



378 Index/Glossary 

Kane, f,,4b, !57, 317 
Kansas City Standard, 248-52, 261, 266, 290 
Keyboard, 295-300, 313 
Keypad, interface with, 211-12 
Klingmal;l, J,l. E., 41 
Knuth, D. E., 339,362 
Kraft, G. D., 41 
Krutz, R. L., 41 

Laplac~ transform, 256-9, 261 
Latency (1) in 1/0 systems, the time delay 

between a device request for service and the 
initiation of a service program for that 
device; (2) in disk or drum memories, the 
time delay for a selected sector to rotate 
into position where it can be read; 28-9, 
185, 349 

LED (light-emitting diode), 173, 188-9 
Leventhal, L.A., 41 
Levy, J., 121 
LIFO (last in, first out); see Push-down stack 
Light-emitting diode; see LED 
Light pen A light-sensitive device that is used to 

point at images on a CRT to select particu­
lar points or regions on the screen for fur­
ther processing; 307, 312 

Lipovski, G. J., 41 
Listener (in IEEE-488 standard), 220-6, 233-9 
Load impedance The terminating impedance at 

the end of a transmission line opposite to 
the source voltage end; 55-61, 78, 83-97, 
280, 352 

Loop (in communications systems), 184-5 
Low pass filter, 253-6, 263-4 
Low-power Schottky logic (LS), 74-6 
LS (low-power Schottky), 74-6 
LSI (large-scale integration), 148,161,181-2, 192, 

201,216,233,238,275,287,305,307 
LSI-11; see DEC LSI-11 
See also VLSI 

McNamara, J. E., 201 
Macro A code-generated technique commonly 

used in assembly language and based on 
text substitution; 335 

Magnetic recording, 245-91 
floppy disk, 265-89 
magnetic tape, 246-64 

Manchester encoding, 266 
Mark (in RS-232-C) A logic 1; 170 
Master; see Bus master. 
Matched termination A load or source 

impedance that is equal to the wave imped­
ance of a transmission line; 57, 61,64-5, 
71,78-9, 83-7, 280, 352 

Memory A subsystem of a computer in which 
information (data or instructions) can be 
stored; 1-6 

design techniques for, 71-2, 127-47 
interface with processor, 6-11, 31-9 
refresh (of dynamic RAM), 137-41 
shared, 143-6, 293-4, 314-17, see also Dual-

ported memory 
types of, 126-7 
word-organized, 8-11,128-32 
See also Dynamic memory, ROM, RAM, Static 

memory 
Memory cycle The time required for one 

complete memory transaction; 3, 6 
Memory interface; see Interface, memory 
Memory-mapped I/0 An addressing scheme in 

which I/0 ports are identified by memory 
addresses (transactions between a processor 
and I/0 system are identical to those 
between a processor and memory in such 
systems); 23-5 

Memory management, 320 
Merge, 322-32 
Metastable, 107-9, 282. 

See also Synchronization 
Metcalfe, R. M., 201 
Metzler, E., !57 
MFM (modified frequency-modulation); see 

Double density 
Microcomputer A computer whose central 

processor is a microprocessor; 1-6 
Microprocessor A single integrated circuit that 

contains the control and arithmetic logic 
unit of a computer, 

interaction with memory, 2-3 
interface with 1/0 system, 11-25 
interface with memory, 6-11 

Microprocessors (in numerical order) 
LSI-11, 8-9, 110, 112-13, 291 
Z80, 36-7,39, 115,122-3,284-5,320, 

327 
iAPX86, 7-8; see Microprocessors, 8086 
iAPX432, 7-8, 100, 320 
i4004, 7, 39-40 
6502,32-3, 122-3,231,284 
MC6800, 7-9,31-2,36,110-11,114-17, 

122-3, 156, 192, 197,227,231,238,280, 
284-5, 357 

MC6809E, 147-8 
i8008, 7 
i8041, 233-4 
i8048, 115 
i8080, 7, 33-7, 39-40, 122-3,284-5, 320,327 
i8085, 35-6,39, 110-1,113-15,117,122-3, 

284, 327 
i8086, 7-9, 38-9, 110, 112-8, 141, 284-5, 320, 

327 
Z8000, 7, 115, 141, 320, 327 
MC68000, 7, 124, 141, 320, 327 

Modem A device that contains a modulator and 
demodulator for interfacing between fre-

Micron Technology Inc. et al. 
Ex. 1042, 378



quency encoded data and level-encoded 
data; 167-8, 295-7 

Modulator(radio-frequency), 315-16,319 
Molnar, C. E., 107, 121 
Morrison, R., 48, 50, 83 
MOS (metal-oxide silicon), 71, 92, 170 
Moschytz, G. S., 260 
Multiplication, 320 
Murray, J., 318 

Natural frequency The frequency at which a 
closed-loop control system oscillates in 
response to transient changes on its inputs; 
255-60 

Newhall, E. E., 185 
n-key rollover The ability to distinguish the 

sequence in which keys are depressed 
without requiring that an old key be 
released before a new key is depressed; 299 

Noise, reduction of, 43-54, 67-8 
Noyce, R.N., 39 

Ogdin, C. A., 41 
Ohm's law, 56 
Oliphant, J., 157 
Open (a file) The process of associating a file 

with a program (OPEN must be performed 
before the first access to the file); 324, 
343-6 

Open-collector logic, 7, 61, 84,207-12,227, 
280-1' 352-3 

Optical isolator A device that couples an input 
signal to its output terminals through 
nonelectrical (optical) means, and usually 
contains a light-emitting diode and a photo­
transistor; 51, 173, 188-90,204-5 

Optimizing compiler A translator for a high-level 
language that attempts to transform a pro­
gram during the translation process in order 
to improve program performance; 333-35 

Osborne, A., 40, 157,317 
Ott, H. W., 48,83 

Page composition (in typsetting), 339-46 
Parallel interface, 206-40,276, 289, 351-3 

characteristics of, 207-15 
control signals for, 207, 215 
devices for, 227-40 
general, 227-33 
IEEE-488, 215-27, 233-40 
open-collector outputs, 207-12 
pseudo-bidirectional output, 214-'15, 231-2 
tri-state output, 212-15 

Parameter area A region of memory allocated to 
a subroutine for communicatiQn of the 
values of the parameters, 337-8 

Partially interlocked protocol, 97 
Pascal A high-level computer language, 320-33 

Index/Glossary 379 

PDP-11; see DEC PDP-II 
Peatman, J. B., 41 
PEEK A command in BASIC for inspecting 

memory, 334 
Phase detector A circuit whose output is propor­

tional to the difference in phase of its two 
input signals; 252-55, 288 

Phase-locked loop A circuit that locks a local 
oscillator to a multiple of the input fre­
quency; 194, 198, 251-64, 270, 288-9 

digital, 274-5, 282-4,290-1 
Pierce, J. R., 185 
Pixel A picture element; 317 
Platen (of a printer), 351-61 
PLM A computer language used for 

microprocessors; 320 
PLZ A computer language used for micropro­

cessors; 320 
Poisson's equation, 47 
POKE A command in BASIC for setting the 

contents of memory; 334 
Polling A means of synchronizing a processor to 

external devices during which the processor 
interrogates one or more devices while the 
processor is under program control; 4, 
21-2, 110,296-7, 347-50,354-60 

Porat, D. I., 41 
Port; see I/0 Port 
Port ID (port identifier) An integer that identi­

fies an I/0 port or a register within the I/0 
port during transactions with a processor; 
19-20,23-4 

Priority, 102, 144-6 
Priority resolver A device that determines which 

one of several pending interrupt requests 
has the highest priority; 20, 22 

Procedure (in programming languages) A 
subroutine that returns no value except pos­
sibly through the modification of the values 
of its parameters; 324 

Program controlled 1/0 An I/0 interaction in 
which all data are transferred under the 
direct control of a processor executing an 
I/0 program, 12-5,28-31,284-7 

Program counter A processor register that 
contains the address of the next instruction 
to be executed; 2 

Programmable read-only memory; See PROM 
PROM (programmable read-only memory), 134-5 
Propagation delay, 94-5, 98 
Protocol A convention for data transmission 

that encompasses timing, control, format­
ting, and data representation, 163 

asynchronous 
bus, 90, 95-9 
general, 163, 165-73 
handshake, See Fully interlocked 

asynchronous handshake 

Micron Technology Inc. et al. 
Ex. 1042, 379



380 Index/Glossary 

serial, 163-78 
synchronous 

bus, 90-5, 98, 110-11 
general, 163, 179-85 
serial, 178-85 

Push-down stack A last-in, first-out (LIFO) 
memory; 29, 336-42 

Pseudo-bidirectional output, 214-15,231-2 

Q-bus; see DEC Q-bus 
Queue a first-in, first-out (FIFO) memory; 179, 

192, 198, 297' 350, 354-61 

RAM (random-access memory) Literally, a 
memory in which the access time to any 
datum is independent of the sequence of ac­
cesses; usually, a memory that can be both 
read and written; 6-11, 126-34, 313 

dynamic, 136-43 
ROM, 134-5 
static, 126-34 

Random-access memory; see RAM 
Read The act of transferring information from a 

memory or I/0 subsystem to a central pro­
cessor; 3 

bus transaction, 92-4, 96 
I/0, 12-15 
memory, 10-1, 127-32 

Read-only memory; see ROM 
Real time, 320, 324 
Receiver (for buses), 74-7 
Record A data structure consisting of a group of 

related data; 323-5 
Reflection coefficient, 57 
Refresh (of dynamic RAM). 137-41 
Register A high-speed memory, usually internal 

to a processor or I/0 Port; 3 
Resolution (in image display) The size of the 

smallest independently displayable dot; 
307 

RESUME A coroutine call that reenters a corou­
tine where the coroutine last left off; 337-9, 
348 

Return address The address to which control is 
returned at the exit of a coroutine or sub­
routine; 337-9, 354 

RF (radio frequency) modulator, 315-16,319 
Ribbon cable, 61, 80-2, 280 
Ringing Voltage oscillations on a transmission 

line in response to step changes of voltage; 
57,72 

Rise-time control The deliberate lengthening of 
the rise time of communications signals to 
reduce high frequencies present in voltage 
transitions, 185-8. 

Roesser, R. P., 40 
ROM (read-only memory) A memory that is not 

erasable in a single memory cycle as is 

read/write memory; 126,292-5,303, 307, 
309, 313, 315-16 

RS- (Recommend Standard) Standards pub­
lished by the Electronic Industries Associa­
tion; 167 

RS-232-C, 165, 167-79, 182-3, 186-90,201-5, 
216, 218, 242, 351-61' 369 

RS-422, 165, 174-8,201,226 
RS-423, 165, 174-8, 201 
RS-449, 165, 174-8, 201, 370-1 

S (Schottky) logic, 74-6 
S-100 bus; see IEEE-696 bus 
Scan line A horizontal line traced by one sweep 

of a beam on a video display; 295, 301-303, 
305, 309, 312, 315, 318 

Schottky logic, 74-6 
Schmitt trigger, 77,210, 280, 352 
Scrolling The process of moving images of data 

down or up on a video display to give the 
appearance of unrolling a scroll of text; 
308-9, 311 

SDLC (Synchronous Data Link Control), 181, 201 
Second-order system (in control systems), 257 
Sector A region of information on a disk that 

can be read or written in a single operation, 
268-70, 276, 279-80 

Self-clocking A data-encoding scheme that per­
mits both the data and its associated clock 
to be derived from the encoding; 246, 
251-64 

Semisynchronous A bus protocol that has a basic 
synchronous control cycle and the ability to 
extend cycles by multiples of a clock period 
to accommodate slow respondents; 98-100 

Sequential-access memory A memory system in 
which ~ata must be read or written sequen­
tially, as in magnetic-tape systems; 7, 268 

Serial access; see Sequential-access memory 
Serial interface, 161-201,250-1 

asynchronous protocols for, 163-7 
in CRT controller, 313-14 
current loop implementation of a, 165, 171-4, 

188-90 
devices for, 192-201 
flow control for, 190-2 
implementations of, 185-92 
RS-232-C standard, 165, 167-79, 182-3, 186-90, 

201-5,216,218, 242, 351-61, 369 
RS-422 standard, 165, 174-8,201,226 
RS-423 standard, 165, 174-8,201 
RS-449 standard, 165, 174-8,201, 370-1 
structure, 161-3 
synchronous, 178-85 

Setup time The minimum time that a control sig­
nal must be stable on a memory device in­
put before an access can be initiated; 92, 
94-5, 128 

Micron Technology Inc. et al. 
Ex. 1042, 380



Shared memory, 143-146 
See also Dual-ported memory 

Shield A metal enclosure for a chassis or a metal 
sheath for a cable that protects the internal 
conductors from external noise radiation; 
46-7 

for balanced interconnections, 51-5 
for RS-232-C, 168 
forRS-423, 176-7 
rules for grounding, 48-51 

Shielding techniques, 45-55 
Siewiorek, D.P., 339 
Signal skew; see Skew 
Single density A recording technique in which a 

flux transition is used to encode a data bit 
or a clock bit (approximately half of there­
corded transitions are clock bits); 266-7, 
270, 272, 282, 286 

Single ended; see Unbalanced interconnection 
Skew A change in the relative timing of signals 

on a bus due to differences in propagation 
delays, signal paths, gate delays, and logic 
thresholds; 93-8, 166 

Slave; see Bus slave 
Slew rate The rate of change of voltage with re­

spect to time; 186-7 
Soft sectoring A method of identifying sector 

boundaries on a disk by means of recorded 
information on the disk itself; 269-70 

SOH (Start of Header), 181 
Sort, 323 
Soucek, B., 41 
Source impedance The impedance at the source 

end of a transmission line; 57-8, 61, 79, 
83-7 

Space (in RS-232-C), A logic 0; 170 
Spelling correction, 339-46 
Split cycle A busing protocol in which a READ 

transaction is split into two distinct transac­
tions; 99 

Stable, 91 
Stack; see Push-down stack 
Standards, 

ASCII, 165, 181, 191,202,295, 307,351-2, 358, 
368 

IEEE-488 bus, 66-7, 83,215-27, 233-40, 372 
IEEE-696bus, 83,119-21 
IEEE-796bus,83, 117-19 
RS-232-C, 165, 167-79, 182-3, 186-90,201-5, 

216, 218, 242, 351-61, 369 
RS-422, 1"65, 174-8,201,226 
RS-423, 165, 174-8,201 
RS-449, 165, 174-8,201, 370-1 

Start bit A control bit that precedes data bits on 
an asynchronous serial link; 165-7, 178 

State (of a subroutine or coroutine) The collec­
tion of values of registers, local variables, 
parameters, and nested return addresses 

Index/Glossary 381 

that exist during the execution of a program 
module; 336-9 

Static memory A read/write memory that main­
tains data through active electrical means, 
and therefore does not require periodic re­
freshing; 126-31 

Stone, H. S., 339 
Stop bit A control bit that comes after a se­

quence of data bits on a serial link; 165-6, 
178 

STX (Start of Text), 181 
Subroutine A program control structure that has 

a single entry point and returns to a calling 
program at the instruction immediately fol­
lowing the subroutine call; 321, 335-50 

Switch, interface with, 209-10 
Synchronization (of asynchronous 

clocks); 107-9, 146-7, 282 
See also Bit synchronization, Character syn­

chronization, Metastable 
Synchronous (1) occurring at intervals directly 

related to a clock period; (2) a busing proto­
col in which transactions are controlled by a 
master clock and are completed within a 
fixed clock period; 

protocols, 90-5, 98, 110-ll, 163-4 

Talker (in IEEE-488 standard), 220-6, 233-9 
Tanenbaum, A. S., 201 
Tap (on a transmission line), 62-6, 71, 86-7 
Tape memory, 7, 245-52 
Teletype, 172 
Terminal; see CRT terminal 
Threshold (for receivers and gates) The voltage 

levels at which a device alters its response to 
an input signal; 54 

Thurber,K. J., 121 
Top-down design A programming methodology 

in which the highest-level control structure 
is written first, then successively lower 
levels of control are written; 321-7 

Toy, W. N., 41 
Track A region of a disk that contains all data 

accessible by a head stationed at a fixed dis­
tance from the disk center; 269, 279-80 

Transfer function, 256-9 
Transient response, 257, 259 
Translation (program compilation) The process 

of producing an executable program from a 
program written in a high-level language; 
321, 327-36 

Transmision-Iine, 
applications of, 61-8 
experimen(s with, 83-5 
graphical analysis of, 68-70 
point-to-point, 55-60 
reflections on, 57-60, 62-6 
taps on, 62-6, 71 

Micron Technology Inc. et al. 
Ex. 1042, 381



382 Index/Glossary 

techniques for using, 54-70 
termination of, 56-60 

Transistor-transistor logic; see TTL 
Tri-state logic, 68, 74, 78, 131-3, 207, 212-15, 227 
TTL (transistor-transistor logic), 61,74-7, 86, 

170, 174, 352 
Tunnel erase (in magnetic recording), 270-271 
Twisted pair An interconnection consisting of a 

pair of conductors twisted together; 52-3, 
78-80 

UART (universal asynchronous receiver/transmit­
ter); see Serial interface 

UCSD Pascal (University of California at San 
Diego Pascal system); 333 

Unbalanced interconnection An electrical inter­
connection in which a signal is encoded as a 
voltage with respect to a fixed ground refer­
ence that is common to all signals on the 
same interface; 54, 80, 175 

Unibus; see DEC, Unibus 
USR A command in BASIC that invokes a user­

supplied subroutine; 334 

Vectored interrupt A device-identification tech­
nique in which the highest priority device 
with a pending interrupt request forces pro­
gram execution to branch to an interrupt 
program for that device; 21-3, 354 

Vertical retrace The period during which the 
beam of a video display returns to the top 
of the display in preparation for the sweep 
of the next frame; 300-3,316,319 

Vertical sync A signal that generates the vertical 
displacement of a video beam; 300-3, 
305-7, 312,316,319 

NUMERICAL INDEX OF DEVICES CITED t 

Video shift-register, 293-5,309, 315 
VLSI (very large-scale integration), 107, 121, 216 
Voltage-controlled oscillator, 252-3, 255 

Wakerly, J., 41,339, 362 
Wall, L. H., 289 
Wave impedance The impedance of a transmis­

sion line with respect to waves that propa­
gate along the line; 55, 65, 71 

Wharton, J., 289 
White, D. J., 82-3 
Wiatrowski, C. A., 40 
Word (in memory systems) A collection of bits 

that can be transferred simultaneously to or 
from memory by executing one instruction; 
6 

Word boundary The boundary between two ad­
jacent words, usually in the context of byte­
addressable machines in which words must 
begin at addresses that are a multiple of the 
number of bytes per word; 8-11 

Word length The number of bits per word; 7 
Word-organized memory A memory partitioned 

into individual words, each identified by a 
unique address; 7-11 

Write The act of transferring information to a 
memory or 1/0 subsystem from a central 
processor; 3 

bus transaction, 92-4, 96 
memory, 10-11, 127-32 
I/0, 12-15 

Zero-reference point A point on a chassis whose 
potential is a zero-voltage reference for sig­
nals in the chassis; 49-50 

LSI-11, 8-9, 110, 112-13, 291 
zso, 36-7,39, 115, 122-3, 

284-5, 320, 327 
iAPX86, 7-8 
LM339, 290 
NEC372,280 
iAPX432, 7-8, 100, 320 
LM741, 84-5 

MC1489, 170-1 
WD1691, 288 
WD1771, 275-80 
WD!791, 275-6,280 
LM1889, 319 

Am26LS32, 79 
2670, 313-14 
2671,313-15 
2672, 313-15 
2673, 313-15 
2704, 135 
2708, 135 
2716, 135, 242 
2732, 135, 242 
2764, 135 
i3242, 137 
MC3438, 76 
MC3480, 137 
MC3486, 79 
MC3487, 79 
i4004, 7' 39-40 

NEC765, 280 
8T38, 76 
8T95, 75-6 
8T96, 75-6 
8T97, 75-6 
8T98, 75-6 
MC1372, 319 
MC1488, 170-1, 186-8 

2114, 158, 160, 319 
i2117, 129-40, 157 
i2118, 157 
WD2143, 287 
2147, 127, 157 
2316, 135 
2332, 135 
2364, 135 
2532, 135 
2564, 135 
Am26LS31, 79 

tin numerical order, disregarding letters and closing up numbers. 

Micron Technology Inc. et al. 
Ex. 1042, 382



CD4046, 260-1 
SMC5027, 310-14 
6502, 32-3, 122-3,231' 284 
MC6664, 139-40 
MC6800, 7-9, 31-2, 36, 110-11, 

114-17, 122-3, 156, 192, 
197,227,231,238,280, 
284-5, 357 

MC6809E, 147-8 
MC6820, 227-31 
MC6821, 227-31,238-9,241, 

243, 319 
MC6843, 280 
MC6844, 155-7 
MC6847, 315-17,319 
MC6850, 192-4, 197 
MC6852, 192, 197 
MC6854, 197-201 
7404, 160 
7406, 61' 75-7 

7407,61,75-7, 83 
7414,75-6 
7438,75-6 
Z8000, 7, 115, 141,320,327 
i8008, 7 
i8041, 233-4 
i8048, 115 
i8080, 7' 33-7' 39-40, 122-3' 

284-5, 320, 327 
i8085, 35-6,39, 110-11, 113-15, 

117' 122-3' 284, 327 
i8086, 7-9, 38-9, 110, 112-18, 

141,284-5,320,327 
i8251, 194-7 
i8255, 232-3,239, 241, 244, 319 
i8257' 152-5, 157 
i8271' 280 
i8273, 197-201 
i8275, 312-13 
i8291' 233-7 

Index 383 

i8292, 233-6 
i8293' 234-6 
Am9517, 154-5, 157 
AY3-8910, 242 
MC68000, 7, 124, 141, 320, 327 
AMI68047, 315-17,319 
MC68488, 233,236-7 
74240,74, 76-7 
74241, 74,76-7, 159 
74242,74, 76-7 
74243,74, 76-7 
74244,74,76-7 
74245,74,76-7, 159 
74365, 75-6 
74366,75-6 
74367, 75-6 
74368, 75-6 
96LS488, 234, 237-8 

Micron Technology Inc. et al. 
Ex. 1042, 383



Micron Technology Inc. et al. 
Ex. 1042, 384


	Part 1.pdf
	_1129181622_001
	_1129181807_001
	_1129181855_001
	_1129182212_001




