
Thread Prioritization: A Thread Scheduling Mechanism
for Multiple-Context Parallel Processors*

Stuart Fiske and William J. Dally
stuart@ai.mit.edu, billd@ai.mit.edu

Artificial Intelligence Laboratory and Laboratory for Computer Science
Massachusetts Institute of Technology

Cambridge, Massachusetts 02139
Abstract

Multiple-context processors provide register resources
that allow rapid context switching between several threads
as a means of tolerating long communication and synchro-
nization latencies. When scheduling threads on such a pro-
cessor; we must first decide which threads should have their
state loaded into the multiple contexts, and second, which
loaded thread is to execute instructions at any given time.
In this paper we show that both decisions are important,
and that incorrect choices can lead to serious performance
degradation. We propose thread priorithation as a means
of guiding both levels of scheduling. Each thread has a pri-
ority that can change dynamically, and that the scheduler
uses to allocate as many computation resources as possible
to critical threads. We briejy describe its implementation,
and we show simulation performance results fora number of
simple benchmarks in which synchronization performance
is critical.

1 Introduction
Parallel processor performance is critically tied to the

mechanisms provided for tolerating long latencies that oc-
cur during remote memory accesses, and processor syn-
chronization operations. Multiple-context processors [20,
3, 13, 151 provide multiple register sets to multiplex sev-
eral threads over a processor pipeline in order to tolerate
these communication and synchronization latencies. Mul-
tiple register sets, including multiple instruction pointers,
allow the state of multiple threads to be loaded and ready
to run at the same time. Each time the currently executing
thread misses in the cache or fails a synchronization test,
the processor can begin executing one of the other threads
loaded in one of the other hardware contexts.

For a multiple-context processor as shown in Figure 1,
there are both loaded and unloaded threads. A thread is
loaded if its register state is in one of the hardware con-
texts, and unloaded otherwise. Unloaded threads wait to

'The research described in this paper was supported by the Advanced
Research Rojects Agency under ARPA order number 8272. and moni-
tored by the Air Force Electronic Systems Division under contract number
F19628-92-C-0045.

0.8186-6445-2195 $04 no c 1995 IEEE

Pipeline
- ~ 1

Multiple-context processor Thread queue in main memory

Figure 1: Multiple-context processor with N contexts.

be loaded in a software scheduling queue. To allow a tra-
ditional RISC pipeline design, we assume a block multi-
threading model [23,3], in which blocks of instructions are
executed from each context in turn, rather than a cycle-by-
cycle interleaving of instructions from the different con-
texts [20, 15, 131. At any given time, the processor is
executing one of the loaded threads. A context switch oc-
curs when the processor switches from executing one loaded
thread, to executing another loaded thread, an operation that
can be done in 1 to 20 cycles, depending on the processor
design. A thread swap involves swapping a loaded thread
with an unloaded thread from the software queue. The cost
of a thread swap is one to two orders of magnitude greater
than a context switch, because it involves saving and restor-
ing register state, and manipulating the thread scheduling
queue.

The scheduling problem on a multiple-context proces-
sor involves two components. First, we must decide which
threads should be loaded in the contexts. Second, in the
case that there are multiple loaded threads, we must decide
which one is executing at any given time. In this paper we

210

TCL 1010f

Find authenticated court documents without watermarks at docketalarm.com.

mailto:stuart@ai.mit.edu
mailto:billd@ai.mit.edu
https://www.docketalarm.com/

show that it is important to correctly make both types of
scheduling decisions. If a critical thread is not loaded, then
no progress can be made along the critical path, and runtime
performance suffers. If the critical threads are loaded along
with other non-critical threads and the scheduler treats all
the loaded threads as equal, then runtime performance suf-
fers. Time devoted to the non-critical loaded threads could
potentially be devoted to the critical threads.

Thread prioritization is a simple means of guiding the
scheduling of threads on a node. Each thread has a priority
that indicates the importance of the thread in the overall
problem. The software scheduler on each node chooses the
highest priority threads as the loaded threads. On a context
switch, the hardware scheduler chooses the loaded thread
with the highest priority as the next thread using simple
hardware, in order to minimize context switch overhead.
The goal is to devote as many of the processor resources as
possible to the tasks that are known to be critical to overall
performance.

This paper examines a number of benchmarks that show
the effects of prioritizingat both levels of scheduling. These
benchmarks evaluate the performance of barrier synchro-
nization, queue locks, and fine-grain synchronization. Our
experiments vary the number of threads and contexts per
processor. When threads are prioritized, the performance
of the barrier benchmark improves by up to a factor of 2,
and the performance of the queue lock benchmark improves
by up to a factor of 7. For the fine-grain synchronization
benchmark, performance was improved by up to 26%.

This paper is organized as follows. Section 2 describes
thread prioritization and outlines some of the implementa-
tion details and costs. Section 3 briefly outlines the simula-
tion environment and assumptions, and Section 4 presents
the results from a number of simple scheduling experiments.
Section 5 describes related work, while Section 6 concludes
the paper and discusses future work.

2 Thread Prioritization
Thread prioritization involves assigning a priority to all

the different threads in an application, and then using this
priority to make thread scheduling decisions. The priority
reflects the importance of a single thread to the completion
of a singleapplication. The thread scheduler uses the thread
priority in a very different way than process scheduling in
UNIX for instance, where the goal is to achieve good in-
teractive performance and time sharing between competing
processes [16]. In our case, the goal is to identify as ex-
actly as possible a relative order in which threads should
be run, and devote as many resources as possible to the
most important threads. Also, the granularity of scheduling
is much different: in our case the priority is used to make
scheduling decisions on every hardware context switch in a
multiple-context processor.

2.1 Priority Thread Scheduling
Consider an application that consists of a set T of threads

on each processor, where each processor has C contexts.
Each thread t ; E T has a priority P;, with a higher value
of Pi indicating a higher thread priority. The hardware and
software schedulers use the priority to do the scheduling.

First, the software scheduler uses the priority to decide
which threads are loaded. Specifically, it chooses a set
TL of threads to load into the C contexts, and a set TU of
unloaded threads to remain in a software scheduling queue.
The scheduler chooses the loaded threads such that PI 2 P,
for all ti E TL and tu E Tu. Threads of equal priority are
scheduled in round-robin fashion.

Second, at each context switch the hardware scheduler
uses the priority to determine which loaded thread to ex-
ecute. The scheduler chooses a thread t, E TL such that
P, = m a + { A } for all tr E TL. If a thread is waiting for
a memory reference to be satisfied then it is stalled and is
not considered for scheduling until the memory reference is
satisfied. If several loaded threads have the same priority,
then these threads are chosen in round-robin fashion. A
context switch can occur on a cache miss, on a failed syn-
chronization test, or on a change of priority of one of the
threads on the processor. Each change in priority results
in a re-evaluation of Tu, TL, and t,. In this sense, the
scheduling is preemptive.

Note as well that thread scheduling as defined here is
purely a local operation. Each processor has its own set
of threads, and schedules only these. We do not consider
dynamic load balancing issues in this paper.

2.2 Assigning Thread Priorities
In our benchmarks the user explicitly assigns a priority

to each thread, and changes this priority as the algorithm
requires. Although initially the use of thread prioritiza-
tion is likely to be limited to special runtime libraries (e.g.
synchronization primitives) and user-available program di-
rectives, we expect that it will eventually be possible have
a compiler assign priorities to threads automatically. Au-
tomatic thread prioritization is particularly straightforward
when the program can be described as a well defined DAG
(Directed Acyclic Graph) that can be analyzed and used to
assign the priorities.

Prioritizing threads incorrectly can lead to a number of
deadlock situations. Specifically, if thread A is waiting for
another thread B to complete some operation, and thread B
has a low priority that does not allow it to be loaded, then
deadlock results. Thus the priorities assigned to threads
must respect the dependencies of the computation.

One way of avoiding deadlock is to guarantee some sort
of fairness in the scheduling. If all threads are guaranteed to
run some amount of time despite their priorities, then we can
guarantee that deadlock will not result. However, as will be

211

TCL 1010f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

shown in the examples, doing fair scheduling without regard
to priority, or not specifying the priority of threads as exactly
as they could be, can lead to a serious performance penalty.
Thus, both the hardware and the software schedulers assume
that the prioritizing of the threads is correct and deadlock
free. Between threads of the same priority scheduling is
fair.

2.3 Hardware Support for Context Switching
The context switch time is the time spent in switching

between two active contexts, and is an important parame-
ter in determining the efficiency of context switching for
tolerating latency. In order to effectively tolerate latency,
the total context switch time in a multiple context processor
must be small [l , 231.

The context switch time consists of a number of compo-
nents. For instance, in the APRIL processor [3] the time
required is 11 cycles, which is used to drain the processor
pipeline (5 cycles), and execute a trap handler which saves
state, and chooses the next context to execute using a round
robin scheme (6 cycles). Duplicating instruction pointers
and the processor status word for each context would reduce
this time to just the cost of draining the pipeline, and more
complicated processor designs could reduce this time fur-
ther,possiblytoaslittleasasinglecycle[13, 151. Inamore
software oriented approach, Waldspurger's flexible register
relocation scheme [22] minimizes software context switch-
ing cost by allocating registers in each context to maintain
an active thread data structure. Choosing the next context
takes 4 to 6 instructions for round-robin scheduling.

When priority scheduling the active threads,choosing the
next context on a context switch becomes more complicated,
and if done in software can potentially increase the context
switch time well beyond the minimum cost of draining the
pipeline. For our simulations, we assume hardware support
for choosing the next context, as shown in Figure 2. Each
context has a special register, the priority register, into which
the thread priority is loaded. The priorities of all the contexts
feed into the context selection circuit that selects the next
context on a context switch. When several threads have the
same priority, the hardware scheduler chooses them in round
robin fashion. Stalling can be incorporated into the active
thread scheduling scheme by having a stall bit for each
context indicating if it is waiting for a memory reference.

3 Simulation Parameters
3.1 Simulation Environment

Simulation experiments were run using Proteus [5] , a
simulator for MIMD computer architectures. It allows ar-
chitectural features and parameters associated with the net-
work, the memory system, and the processor to be varied.
Programs are written in C with language extensions for con-
currency. Simulator function calls support non-local inter-

Figure 2: Priority context selection logic.

actions between processors such as shared-memory opera-
tions (including a complete set of atomic read-modify-write
operations), inter-processor interrupts, and message pass-
ing. Proteus also provides a basic runtime system written in
C.

One important assumption made by Proteus in order to
make simulation tractable is that only the references to ad-
dresses that have been explicitly declaredas shared are simu-
lated in detail. That is, it is assumed that all local instruction
and data references (to a thread's stack for instance) hit in
the cache. This assumption has been found to be a reason-
able approximation of the case where every single memory
reference is simulated through the cache [5,9] since the hit
rates for instructions and local data are typically very high.

3.2 System Parameters
The basic system consists of a collection of multiple-

context processing nodes connected by a high speed inter-
connection network. Each processing node has a cache and
some portion of the global memory. We use a 2-dimensional
torus type network that uses wormhole routing. Each pro-
cessor has both a shared memory interface, as well as an effi-
cient message passing interface with high priority interrupts
that is used in a number of the benchmarks. A variation of
the shared-memory, directory-based cache coherence proto-
col described by Chaiken [6] is used to maintain a consistent
view of memory.

The system parameters that are kept constant across the
different simulations are shown in Table 1. They were
chosen to represent a processor similar to the MIT Alewife
machine [2,3], with modifications that reflect the increasing
ratio of processor speed to memory speed, and that allow
faster hardware context switching.

The local memory latency is assumed to be 20 cycles.
This corresponds to the time to fill a cache line from the
local memory when there is a miss in the cache, the value
is in the local node memory, and no coherency protocol
messages have to be sent before returning the data. If the
data is not in local memory, then the time for the response is

212

TCL 1010f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Parameter
Cache Latency
Local Memory Latency
Memory Bandwidth
Hardware Context Switch Time
Time to Unload Registers
Time to Reload Registers
Network Data Transfer Size
Network Wire Delay
Network Switch Delay
Network Input Bandwidth
Network Output Bandwidth

Table 1: Important system parameters.

Value
I cycle

20 cycles
I wordcycle

5 cycles
32 cycles
32 cycles
0.5 word

1 cycle
1 cycle

0.5 wordcycle
0.5 wordlcycle

variable and depends on factors such as the network traffic,
and the number of messages that have to be sent to satisfy the
protocol. The memory bandwidth available is 1 wordcycle.

The 5 cycle hardware context switch time is the cost
of draining the pipeline on a context switch. We assume
that this is the only cost of context switching, and that no
additional instructions have to be executed.

The cost of a thread swap is the time to save the regis-
ters of the first thread, perform various operations on the
scheduling data structures, and restore the registers of the
next thread [17]. We assume that there are 32 registers in
each context, and that there is a single cycle cache read and
write hit time. The cost of the scheduling and descheduling
is modeled directly by the cost of the runtime scheduler.
The total swapping cost is on the order of 1 I5 to 150 cycles,
which assumes all references hit in the cache. This swap
time is significant in comparison to the hardware context
switch time.

Finally, the network transfers data one half word at a time,
with a switch delay of 1 cycle, and a point-to-point wire
delay of 1 cycle. The network input and output bandwidths
are each 0.5 wordcycle.

4 Experimental Results

In this section we present the results from three simple
benchmarks. These experiments concentrate on improv-
ing synchronization performance, which is crucial to the
performance of many parallel applications. The first two
benchmarks are synthetic benchmarks which look at the
performance of a combining tree barrier, and of a mutual-
exclusion queue lock. The third benchmark is an imple-
mentation of Lower-Upper Decomposition (LUD) that uses
fine-grain synchronization in the form of a FulIEmpty tag
bit associated with each memory location.

For each benchmark we consider three different scenar-
ios:

1. SINGLE: There are several threads, but there is only
one context so that only a single thread is loaded at a
time.

2. ALL: There are sufficient contexts so that all threads
created can be loaded. We use 16 contexts in our
simulations.

3. LIMITED: There are several contexts, but there are
potentially more threads than contexts so that only a
limited number of the available threads are loaded. We
use 4 contexts in our simulations.

The SINGLE and LIMITED cases represent situations
in which not all threads can be loaded at the same time.
These cases can arise in the context of data-dependent thread
spawning, runtime dynamic partitioning, or in a multipro-
gramming environment. The ALL case is balanced in the
Sense that all threads can be loaded at once. The first case
emphasizes the type of scheduling which is required for
threads that are not currently loaded. The second case em-
phasizes the scheduling required for loaded threads. The
last case combines the two problems to study what must be
done to schedule both loaded and unloaded threads.

4.1 Barrier Synchronization
The first benchmark is a barrier benchmark using a shared

memory combiningtree [25,18]. In this benchmark, a num-
ber of threads are spawned on each processor, and these
threads repeatedly perform a barrier synchronization. The
first level of the combining tree has a fan-in equal to the
number of threads on each processor'. The threads on each
processor first perform a local combine, and then the last
thread to combine on each local processor participates in a
global barrier using a radix4 combining tree. The simula-
tion uses 64 processors, with a large fully associative cache,
so that only cache invalidation traffic affects performance.

Prioritization is simple, and is done as follows. When a
thread arrives at the barrier and it is not the first thread in the
leafgroup, it decreases itspriority in preparation for thenext
phase ofthe computation, and begins to spin. The last thread
to arrive at a leaf n d e maintains its priority, and proceeds
up the combining tree. Thus on each node, only the thread
that is participating in the non-local barrier tree is using
any cycles - it can either be spinning at an intermediate
node of the combining tree, or it can be proceeding up
or down the combining tree. Once a thread going back
down the combining tree reaches the leaves of the tree, it
decreases its priority to the priority of the other spinning leaf
threads, and they can all proceed to the next phase of the
computation. Note that the prioritization required for other
tree-like barriers including tournament barriers and MCS

'If there is only a single thread per processor. then this first level i s
eliminated.

213

TCL 1010f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

tree barriers [181, is qualitatively similar to the prioritization
of the combining tree barrier.

14wO

i 12000-

1ww-

8000-

6000

4000

2000

4.1.1 Results

Figure 3 shows the average barrier wait times for the three.
different scenarios, where the barrier wait time is the time
spent by each thread waiting at the barrier. Each case is
discussed below.

SINGLE: With unprioritized threads, performance of
the barrier decreases as the number of threads increases due
to two factors. First, each thread that participates in the
barrier must be swapped into the context in order to reach
the barrier. Second, when a thread that is spinning at an in-
termediate node of the combining tree does an unsuccessful
poll, the scheduler swaps out this thread, and successively
load in all the other spinning threads on the local node. It
does this because it does not differentiate between the lo-
cally spinning threads and thus treats them all fairly. In the
prioritized case, the time to perform the barrier increases due
to the larger number of threads, but once the local barrier has
been completed and one thread has been chosen to represent
the node in the global barrier, this thread is never swapped
out regardless of how often the polling is unsuccessful. As
a result, the second component which contributed to poor
performance in the unprioritized case is eliminated. For 4
threads per processor performance improves by 11%, and
for 16 threads per processor performance improves 41%.

ALL: The unprioritized ALL scenario suffers from a
similar problem to the unprioritized SINGLE scenario, ex-
cept that no thread swapping is necessary since all threads
are loaded, only context switching. Although a context
switch is much cheaper than a full thread swap, the context
switchs happen more often in the ALL case than thread
swaps in the SINGLE case because they occur not only on
failed synchronization tests, but also on cache misses. Each
time the thread participating in the global barrier misses in
the cache or does an unsuccessful polling operation, the pro-
cessor runs through all the other contexts before returning
to the critical context. It is important to note that the time to
switch between the contexts is more than simply the number
of cycles to switch between hardware contexts, in this case 5
cycles. This is because once the actual context switch takes
place, the new thread issues some number of instructions,
until it either misses in the cache, or tests its flag unsuc-
cessfully and context switches. The prioritized scheduling
eliminates unnecessary context switching during the global
barrier with performance improving by 23% for 4 threads,
and by 47% for 16 threads.

LIMITED: The case of having more threads than con-
texts with multiple contexts can potentially suffer from
the worst of both the SINGLE, and the ALL scenarios.
With unprioritized threads, each time a non-critical spin-

-

-
-
-

O l " " " ~ " " " " ~
0 1 2 3 4 5 6 7 8 9 10111213141516

0 1 ' " " " " " " " '
0 1 2 3 4 5 6 7 8 9 10111213141516

b. ALL
mmspwp-w

O I " " ' ~ " " " " "
0 1 2 3 4 5 6 7 8 9 10111213141516

Figure 3: Average barrier wait time for 64 Processors. SIN-
GLE, ALL, and LIMITED scenarios.

214

TCL 1010f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
 Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

 Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
 With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

 Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
 Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

 Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

