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Abstract 

Multiple-context processors provide register resources 
that allow rapid context switching between several threads 
as a means of tolerating long communication and synchro- 
nization latencies. When scheduling threads on such a pro- 
cessor; we must first decide which threads should have their 
state loaded into the multiple contexts, and second, which 
loaded thread is to execute instructions at any given time. 
In this paper we show that both decisions are important, 
and that incorrect choices can lead to serious performance 
degradation. We propose thread priorithation as a means 
of guiding both levels of scheduling. Each thread has a pri- 
ority that can change dynamically, and that the scheduler 
uses to allocate as many computation resources as possible 
to critical threads. We briejy describe its implementation, 
and we show simulation performance results fora number of 
simple benchmarks in which synchronization performance 
is critical. 

1 Introduction 
Parallel processor performance is critically tied to the 

mechanisms provided for tolerating long latencies that oc- 
cur during remote memory accesses, and processor syn- 
chronization operations. Multiple-context processors [20, 
3, 13, 151 provide multiple register sets to multiplex sev- 
eral threads over a processor pipeline in order to tolerate 
these communication and synchronization latencies. Mul- 
tiple register sets, including multiple instruction pointers, 
allow the state of multiple threads to be loaded and ready 
to run at the same time. Each time the currently executing 
thread misses in the cache or fails a synchronization test, 
the processor can begin executing one of the other threads 
loaded in one of the other hardware contexts. 

For a multiple-context processor as shown in Figure 1, 
there are both loaded and unloaded threads. A thread is 
loaded if its register state is in one of the hardware con- 
texts, and unloaded otherwise. Unloaded threads wait to 
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Figure 1: Multiple-context processor with N contexts. 

be loaded in a software scheduling queue. To allow a tra- 
ditional RISC pipeline design, we assume a block multi- 
threading model [23,3], in which blocks of instructions are 
executed from each context in turn, rather than a cycle-by- 
cycle interleaving of instructions from the different con- 
texts [20, 15, 131. At any given time, the processor is 
executing one of the loaded threads. A context switch oc- 
curs when the processor switches from executing one loaded 
thread, to executing another loaded thread, an operation that 
can be done in 1 to 20 cycles, depending on the processor 
design. A thread swap involves swapping a loaded thread 
with an unloaded thread from the software queue. The cost 
of a thread swap is one to two orders of magnitude greater 
than a context switch, because it involves saving and restor- 
ing register state, and manipulating the thread scheduling 
queue. 

The scheduling problem on a multiple-context proces- 
sor involves two components. First, we must decide which 
threads should be loaded in the contexts. Second, in the 
case that there are multiple loaded threads, we must decide 
which one is executing at any given time. In this paper we 
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show that it is important to correctly make both types of 
scheduling decisions. If a critical thread is not loaded, then 
no progress can be made along the critical path, and runtime 
performance suffers. If the critical threads are loaded along 
with other non-critical threads and the scheduler treats all 
the loaded threads as equal, then runtime performance suf- 
fers. Time devoted to the non-critical loaded threads could 
potentially be devoted to the critical threads. 

Thread prioritization is a simple means of guiding the 
scheduling of threads on a node. Each thread has a priority 
that indicates the importance of the thread in the overall 
problem. The software scheduler on each node chooses the 
highest priority threads as the loaded threads. On a context 
switch, the hardware scheduler chooses the loaded thread 
with the highest priority as the next thread using simple 
hardware, in order to minimize context switch overhead. 
The goal is to devote as many of the processor resources as 
possible to the tasks that are known to be critical to overall 
performance. 

This paper examines a number of benchmarks that show 
the effects of prioritizingat both levels of scheduling. These 
benchmarks evaluate the performance of barrier synchro- 
nization, queue locks, and fine-grain synchronization. Our 
experiments vary the number of threads and contexts per 
processor. When threads are prioritized, the performance 
of the barrier benchmark improves by up to a factor of 2, 
and the performance of the queue lock benchmark improves 
by up to a factor of 7. For the fine-grain synchronization 
benchmark, performance was improved by up to 26%. 

This paper is organized as follows. Section 2 describes 
thread prioritization and outlines some of the implementa- 
tion details and costs. Section 3 briefly outlines the simula- 
tion environment and assumptions, and Section 4 presents 
the results from a number of simple scheduling experiments. 
Section 5 describes related work, while Section 6 concludes 
the paper and discusses future work. 

2 Thread Prioritization 
Thread prioritization involves assigning a priority to all 

the different threads in an application, and then using this 
priority to make thread scheduling decisions. The priority 
reflects the importance of a single thread to the completion 
of a singleapplication. The thread scheduler uses the thread 
priority in a very different way than process scheduling in 
UNIX for instance, where the goal is to achieve good in- 
teractive performance and time sharing between competing 
processes [16]. In our case, the goal is to identify as ex- 
actly as possible a relative order in which threads should 
be run, and devote as many resources as possible to the 
most important threads. Also, the granularity of scheduling 
is much different: in our case the priority is used to make 
scheduling decisions on every hardware context switch in a 
multiple-context processor. 

2.1 Priority Thread Scheduling 
Consider an application that consists of a set T of threads 

on each processor, where each processor has C contexts. 
Each thread t ;  E T has a priority P;, with a higher value 
of Pi indicating a higher thread priority. The hardware and 
software schedulers use the priority to do the scheduling. 

First, the software scheduler uses the priority to decide 
which threads are loaded. Specifically, it chooses a set 
TL of threads to load into the C contexts, and a set TU of 
unloaded threads to remain in a software scheduling queue. 
The scheduler chooses the loaded threads such that PI 2 P, 
for all ti E TL and tu E Tu. Threads of equal priority are 
scheduled in round-robin fashion. 

Second, at each context switch the hardware scheduler 
uses the priority to determine which loaded thread to ex- 
ecute. The scheduler chooses a thread t, E TL such that 
P, = m a + { A }  for all tr E TL. If a thread is waiting for 
a memory reference to be satisfied then it is stalled and is 
not considered for scheduling until the memory reference is 
satisfied. If several loaded threads have the same priority, 
then these threads are chosen in round-robin fashion. A 
context switch can occur on a cache miss, on a failed syn- 
chronization test, or on a change of priority of one of the 
threads on the processor. Each change in priority results 
in a re-evaluation of Tu, TL, and t,. In this sense, the 
scheduling is preemptive. 

Note as well that thread scheduling as defined here is 
purely a local operation. Each processor has its own set 
of threads, and schedules only these. We do not consider 
dynamic load balancing issues in this paper. 

2.2 Assigning Thread Priorities 
In our benchmarks the user explicitly assigns a priority 

to each thread, and changes this priority as the algorithm 
requires. Although initially the use of thread prioritiza- 
tion is likely to be limited to special runtime libraries (e.g. 
synchronization primitives) and user-available program di- 
rectives, we expect that it will eventually be possible have 
a compiler assign priorities to threads automatically. Au- 
tomatic thread prioritization is particularly straightforward 
when the program can be described as a well defined DAG 
(Directed Acyclic Graph) that can be analyzed and used to 
assign the priorities. 

Prioritizing threads incorrectly can lead to a number of 
deadlock situations. Specifically, if thread A is waiting for 
another thread B to complete some operation, and thread B 
has a low priority that does not allow it to be loaded, then 
deadlock results. Thus the priorities assigned to threads 
must respect the dependencies of the computation. 

One way of avoiding deadlock is to guarantee some sort 
of fairness in the scheduling. If all threads are guaranteed to 
run some amount of time despite their priorities, then we can 
guarantee that deadlock will not result. However, as will be 
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shown in the examples, doing fair scheduling without regard 
to priority, or not specifying the priority of threads as exactly 
as they could be, can lead to a serious performance penalty. 
Thus, both the hardware and the software schedulers assume 
that the prioritizing of the threads is correct and deadlock 
free. Between threads of the same priority scheduling is 
fair. 

2.3 Hardware Support for Context Switching 
The context switch time is the time spent in switching 

between two active contexts, and is an important parame- 
ter in determining the efficiency of context switching for 
tolerating latency. In order to effectively tolerate latency, 
the total context switch time in a multiple context processor 
must be small [ l ,  231. 

The context switch time consists of a number of compo- 
nents. For instance, in the APRIL processor [3] the time 
required is 11 cycles, which is used to drain the processor 
pipeline (5 cycles), and execute a trap handler which saves 
state, and chooses the next context to execute using a round 
robin scheme (6 cycles). Duplicating instruction pointers 
and the processor status word for each context would reduce 
this time to just the cost of draining the pipeline, and more 
complicated processor designs could reduce this time fur- 
ther,possiblytoaslittleasasinglecycle[13, 151. Inamore 
software oriented approach, Waldspurger's flexible register 
relocation scheme [22] minimizes software context switch- 
ing cost by allocating registers in each context to maintain 
an active thread data structure. Choosing the next context 
takes 4 to 6 instructions for round-robin scheduling. 

When priority scheduling the active threads,choosing the 
next context on a context switch becomes more complicated, 
and if done in software can potentially increase the context 
switch time well beyond the minimum cost of draining the 
pipeline. For our simulations, we assume hardware support 
for choosing the next context, as shown in Figure 2. Each 
context has a special register, the priority register, into which 
the thread priority is loaded. The priorities of all the contexts 
feed into the context selection circuit that selects the next 
context on a context switch. When several threads have the 
same priority, the hardware scheduler chooses them in round 
robin fashion. Stalling can be incorporated into the active 
thread scheduling scheme by having a stall bit for each 
context indicating if it is waiting for a memory reference. 

3 Simulation Parameters 
3.1 Simulation Environment 

Simulation experiments were run using Proteus [5 ] ,  a 
simulator for MIMD computer architectures. It allows ar- 
chitectural features and parameters associated with the net- 
work, the memory system, and the processor to be varied. 
Programs are written in C with language extensions for con- 
currency. Simulator function calls support non-local inter- 

Figure 2: Priority context selection logic. 

actions between processors such as shared-memory opera- 
tions (including a complete set of atomic read-modify-write 
operations), inter-processor interrupts, and message pass- 
ing. Proteus also provides a basic runtime system written in 
C. 

One important assumption made by Proteus in order to 
make simulation tractable is that only the references to ad- 
dresses that have been explicitly declaredas shared are simu- 
lated in detail. That is, it is assumed that all local instruction 
and data references (to a thread's stack for instance) hit in 
the cache. This assumption has been found to be a reason- 
able approximation of the case where every single memory 
reference is simulated through the cache [5,9] since the hit 
rates for instructions and local data are typically very high. 

3.2 System Parameters 
The basic system consists of a collection of multiple- 

context processing nodes connected by a high speed inter- 
connection network. Each processing node has a cache and 
some portion of the global memory. We use a 2-dimensional 
torus type network that uses wormhole routing. Each pro- 
cessor has both a shared memory interface, as well as an effi- 
cient message passing interface with high priority interrupts 
that is used in a number of the benchmarks. A variation of 
the shared-memory, directory-based cache coherence proto- 
col described by Chaiken [6] is used to maintain a consistent 
view of memory. 

The system parameters that are kept constant across the 
different simulations are shown in Table 1. They were 
chosen to represent a processor similar to the MIT Alewife 
machine [2,3], with modifications that reflect the increasing 
ratio of processor speed to memory speed, and that allow 
faster hardware context switching. 

The local memory latency is assumed to be 20 cycles. 
This corresponds to the time to fill a cache line from the 
local memory when there is a miss  in the cache, the value 
is in the local node memory, and no coherency protocol 
messages have to be sent before returning the data. If the 
data is not in local memory, then the time for the response is 
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Parameter 
Cache Latency 
Local Memory Latency 
Memory Bandwidth 
Hardware Context Switch Time 
Time to Unload Registers 
Time to Reload Registers 
Network Data Transfer Size 
Network Wire Delay 
Network Switch Delay 
Network Input Bandwidth 
Network Output Bandwidth 

Table 1: Important system parameters. 

Value 
I cycle 

20 cycles 
I wordcycle 

5 cycles 
32 cycles 
32 cycles 
0.5 word 

1 cycle 
1 cycle 

0.5 wordcycle 
0.5 wordlcycle 

variable and depends on factors such as the network traffic, 
and the number of messages that have to be sent to satisfy the 
protocol. The memory bandwidth available is 1 wordcycle. 

The 5 cycle hardware context switch time is the cost 
of draining the pipeline on a context switch. We assume 
that this is the only cost of context switching, and that no 
additional instructions have to be executed. 

The cost of a thread swap is the time to save the regis- 
ters of the first thread, perform various operations on the 
scheduling data structures, and restore the registers of the 
next thread [17]. We assume that there are 32 registers in 
each context, and that there is a single cycle cache read and 
write hit time. The cost of the scheduling and descheduling 
is modeled directly by the cost of the runtime scheduler. 
The total swapping cost is on the order of 1 I5 to 150 cycles, 
which assumes all references hit in the cache. This swap 
time is significant in comparison to the hardware context 
switch time. 

Finally, the network transfers data one half word at a time, 
with a switch delay of 1 cycle, and a point-to-point wire 
delay of 1 cycle. The network input and output bandwidths 
are each 0.5 wordcycle. 

4 Experimental Results 

In this section we present the results from three simple 
benchmarks. These experiments concentrate on improv- 
ing synchronization performance, which is crucial to the 
performance of many parallel applications. The first two 
benchmarks are synthetic benchmarks which look at the 
performance of a combining tree barrier, and of a mutual- 
exclusion queue lock. The third benchmark is an imple- 
mentation of Lower-Upper Decomposition (LUD) that uses 
fine-grain synchronization in the form of a FulIEmpty tag 
bit associated with each memory location. 

For each benchmark we consider three different scenar- 
ios: 

1. SINGLE: There are several threads, but there is only 
one context so that only a single thread is loaded at a 
time. 

2. ALL: There are sufficient contexts so that all threads 
created can be loaded. We use 16 contexts in our 
simulations. 

3. LIMITED: There are several contexts, but there are 
potentially more threads than contexts so that only a 
limited number of the available threads are loaded. We 
use 4 contexts in our simulations. 

The SINGLE and LIMITED cases represent situations 
in which not all threads can be loaded at the same time. 
These cases can arise in the context of data-dependent thread 
spawning, runtime dynamic partitioning, or in a multipro- 
gramming environment. The ALL case is balanced in the 
Sense that all threads can be loaded at once. The first case 
emphasizes the type of scheduling which is required for 
threads that are not currently loaded. The second case em- 
phasizes the scheduling required for loaded threads. The 
last case combines the two problems to study what must be 
done to schedule both loaded and unloaded threads. 

4.1 Barrier Synchronization 
The first benchmark is a barrier benchmark using a shared 

memory combiningtree [25,18]. In this benchmark, a num- 
ber of threads are spawned on each processor, and these 
threads repeatedly perform a barrier synchronization. The 
first level of the combining tree has a fan-in equal to the 
number of threads on each processor'. The threads on each 
processor first perform a local combine, and then the last 
thread to combine on each local processor participates in a 
global barrier using a radix4 combining tree. The simula- 
tion uses 64 processors, with a large fully associative cache, 
so that only cache invalidation traffic affects performance. 

Prioritization is simple, and is done as follows. When a 
thread arrives at the barrier and it is not the first thread in the 
leafgroup, it decreases itspriority in preparation for thenext 
phase ofthe computation, and begins to spin. The last thread 
to arrive at a leaf n d e  maintains its priority, and proceeds 
up the combining tree. Thus on each node, only the thread 
that is participating in the non-local barrier tree is using 
any cycles - it can either be spinning at an intermediate 
node of the combining tree, or it can be proceeding up 
or down the combining tree. Once a thread going back 
down the combining tree reaches the leaves of the tree, it 
decreases its priority to the priority of the other spinning leaf 
threads, and they can all proceed to the next phase of the 
computation. Note that the prioritization required for other 
tree-like barriers including tournament barriers and MCS 

'If there is only a single thread per processor. then this first level i s  
eliminated. 
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tree barriers [ 181, is qualitatively similar to the prioritization 
of the combining tree barrier. 
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4.1.1 Results 

Figure 3 shows the average barrier wait times for the three. 
different scenarios, where the barrier wait time is the time 
spent by each thread waiting at the barrier. Each case is 
discussed below. 

SINGLE: With unprioritized threads, performance of 
the barrier decreases as the number of threads increases due 
to two factors. First, each thread that participates in the 
barrier must be swapped into the context in order to reach 
the barrier. Second, when a thread that is spinning at an in- 
termediate node of the combining tree does an unsuccessful 
poll, the scheduler swaps out this thread, and successively 
load in all the other spinning threads on the local node. It 
does this because it does not differentiate between the lo- 
cally spinning threads and thus treats them all fairly. In the 
prioritized case, the time to perform the barrier increases due 
to the larger number of threads, but once the local barrier has 
been completed and one thread has been chosen to represent 
the node in the global barrier, this thread is never swapped 
out regardless of how often the polling is unsuccessful. As 
a result, the second component which contributed to poor 
performance in the unprioritized case is eliminated. For 4 
threads per processor performance improves by 11%, and 
for 16 threads per processor performance improves 41%. 

ALL: The unprioritized ALL scenario suffers from a 
similar problem to the unprioritized SINGLE scenario, ex- 
cept that no thread swapping is necessary since all threads 
are loaded, only context switching. Although a context 
switch is much cheaper than a full thread swap, the context 
switchs happen more often in the ALL case than thread 
swaps in the SINGLE case because they occur not only on 
failed synchronization tests, but also on cache misses. Each 
time the thread participating in the global barrier misses in 
the cache or does an unsuccessful polling operation, the pro- 
cessor runs through all the other contexts before returning 
to the critical context. It is important to note that the time to 
switch between the contexts is more than simply the number 
of cycles to switch between hardware contexts, in this case 5 
cycles. This is because once the actual context switch takes 
place, the new thread issues some number of instructions, 
until it either misses in the cache, or tests its flag unsuc- 
cessfully and context switches. The prioritized scheduling 
eliminates unnecessary context switching during the global 
barrier with performance improving by 23% for 4 threads, 
and by 47% for 16 threads. 

LIMITED: The case of having more threads than con- 
texts with multiple contexts can potentially suffer from 
the worst of both the SINGLE, and the ALL scenarios. 
With unprioritized threads, each time a non-critical spin- 
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Figure 3: Average barrier wait time for 64 Processors. SIN- 
GLE, ALL, and LIMITED scenarios. 
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