
Ml

he single-chip i860
executes parallel instructio
architectural concepts.

mm x 15 mm processor (see Fi
floating-point, and graphics pe
eration CAD tools and 1-micrometer semic

To accommodate our per
between blocks for integer operations, floating-point operations, and in-
struction and data cache memories. Inclusion of the RISC (reduced instruc-
tion set computing) core, floating-point units, and caches on one chip lets
us design wider internal buses, eliminate interchip communication over-
head, and offer higher performance. As a result, the i860 avoids off-chip
delays and allows users to scale the clock beyond the current 33- and 40-
MHz speeds.

We designed the i860 for performance-driven applications such as work-
stations, minicomputers, application accelerators for existing processors,
and parallel supercomputers. The i860 CPU design began with the specifi-
cation of a general-purpose RISC integer core. However, we felt it neces-
sary to go beyond the traditional 32-bit, one-instruction-per-clock RISC
processor. A 64-bit architecture provides the data and instruction band-
width needed to support multiple operations in each clock cycle. The
balanced performance between integer and floating-point computations
produces the raw computing power required to support demanding applica-
tions such as modeling and simulations.

Finally, we recognized a synergistic opportunity to incorporate a 3D
graphics unit that supports interactive visualization of results. The architec-
ture of the i860 CPU provides a complete platform for software vendors
developing i860 applications.

T

Architecture overview. The i860 CPU includes the following units on

the RISC integer core,
a memory management unit with paging,
a floating-point control unit,
a floating-point adder unit,
a floating-point multiplier unit,
a 3D graphics unit,

one chip (see Figure 2):

A million-
transistor budget
helps this RISC
deliver balanced
MIPS, Mflops,
and graphics
performance
with no data
bottlenecks.

Les Kohn
Neal Margulis

Intel Corp.

0272- 1732/89/0800-0015$01 .O 0 1989 IEEE August 1989 15

Authorized licensed use limited to: IEEE Staff. Downloaded on May 11,2023 at 12:54:01 UTC from IEEE Xplore. Restrictions apply.

TCL 1008f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Intel 860

Figure 1. Die photograph of the i860 CPU.

a 4-Kbyte instruction cache,
an 8-Kbyte data cache, and
a bus control unit.

Parallel execution. To support the performance
available from multiple functional units, the i860 CPU
issues up to three operations each clock cycle. In single-
instruction mode, the processor issues either a RISC
core instruction or a floating-point instruction each
cycle. This mode is useful when the instruction per-
forms scalar operations such as operating system
routines.

In dual-instruction mode, the RISC core fetches two
32-bit instructions each clock cycle using the 64-bit-
wide instruction cache. One 32-bit instruction moves to
the RISC core, and the other moves to the floating-point
section for parallel execution. This mode allows the
RISC core to keep the floating-point units fed by fetch-
ing and storing information and performing loop con-
trol, while the floating-point section operates on the
data.

The floating-point instructions include a set of op-
erations that initiate both an add and a multiply. The
add and multiply. combined with the integer operation.
result in three operations each clock cycle. With this
fine-grained parallelism, the architecture can support
traditional vector processing by software libraries that
implement a vector instruction set. The inner loops of
the software vector routines operate up to the peak
floating-point hardware rate of 80 million floating-
point operations per second. Consistent with RISC
philosophy, the i860 CPU achieves the performance of
hardware vector instructions without the complex
control logic of hardware vector instructions. The fine-
grained parallelism can also be used in other parallel
algorithms that cannot be vectorized.

Register and addressing model. The i860 micro-
processor contains separate register files for the integer
and floating-point units to support parallel execution.
In addition to these register files, as can be seen in
Figure 3 on page 18, are six control registers and four
special-purpose registers. The RISC core contains the
integer register file of thirty-two 32-bit registers, des-
ignated RO through R3 1 and used for storing addresses
or data. The floating-point control unit contains a sepa-
rate set of thirty-two 32-bit floating-point registers
designated FO through F31. These registers can be
addressed individually, as sixteen 64-bit registers, or as
eight 128-bit registers. The integer registers contain
three ports. Five ports in the floating-point registers
allow them to be used as a data staging area for perform-
ing loads and stores in parallel with floating-point
operations.

The i860 operates on standard integer and floating-
point data, as well as pixel data formats for graphics
operations. All operations on the integer registers exe-
cute on 32-bit data as signed or unsigned operations and
additional add and subtract instructions that operate on
64-bit-long words. All 64-bit operations occur in the
floating-point registers.

The i860 microprocessor supports a paged virtual
address space of four gigabytes. Therefore, data and
instructions can be stored anywhere in that space, and
multibyte data values are addressed by specifying their
lowest addressed byte. Data must be accessed on
boundaries that are multiples of their size. For example,
two-byte datamust be aligned to an address divisible by
two, four-byte data on an address divisible by four, and
so on, up to 16-byte data values. Data in memory can be
stored in either little-endian or big-endian format.
(Little-endian format sends the least significant byte,
D7-DO, first to the lowest memory address, while big-
endian sends the most significant byte first.) Code is
always stored in little-endian format. Support for big-
endian data allows the processor to operate on data
produced by a big-endian processor, without perform-
ing a lengthy data conversion.

16 IEEE MICRO

Authorized licensed use limited to: IEEE Staff. Downloaded on May 11,2023 at 12:54:01 UTC from IEEE Xplore. Restrictions apply.

TCL 1008f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

External + ,
address 32 bits

-t

64,'

Instruction cache
(4 Kbytes)

t
Floating-point instruction

" 128

I1

Core instruction 32

T

Data cache
management (8 Kbytes)

Cache data

I1
' 3 2 " 3 2

T T

j
i

Bus control
unit

Core registers Floating-point registers

RISC core

64,.

Floating-point
control unit

64 64,.

SRC2 I I
I I I

t II 1 . 1

KL
T KR

~

T

Merge

Adder unit Multiplier unit

Figure 2. Functional units and data paths of the i860 microprocessor.

RISC core
The RISC core fetches both integer and floating-

point instructions. It executes load, store, integer, bit,
and control transfer instructions. Table 1 on page 19
lists the full instruction set with the 42 core unit instruc-
tions and their mnemonics in the left column. All in-
structions are 32 bits long and follow the load/store,
three-operand style of traditional RISC designs. Only

load and store instructions operate on memory; all other
instructions operate on registers. Most instructions
allow users to specify two source registers and a third
register for storing the results.

A key feature of the core unit is its ability to execute
most instructions in one clock cycle. The RISC core
contains a pipeline consisting of four stages: fetch,
decode, execute, and write. We used several techniques
to hide clock cycles of instructions that may take more

August 1989 17

Authorized licensed use limited to: IEEE Staff. Downloaded on May 11,2023 at 12:54:01 UTC from IEEE Xplore. Restrictions apply.

TCL 1008f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Intel i860

F1

time to complete. Integer register loads from memory
take one execution cycle, and the next instruction can
begin on the following cycle.

The processor uses a scoreboarding technique to
guarantee proper operation of the code and allow the
highest possible performance. The scoreboard keeps a
history of which registers await data from memory. The
actual loading of data takes one clock cycle if it is held
in the cache memory buffer available for ready access,
but several cycles if it is in main memory. Using
scoreboarding, the i860 microprocessor continues
execution unless a subsequent instruction attempts to
use the data before it is loaded. This condition would
cause execution to freeze. An optimizing compiler can
organize the code so that freezing rarely occurs by not
referencing the load data in the following cycle. Be-
cause the hardware implements scoreboarding, it is
never necessary to insert NO-OP instructions.

FO

Integer registers
31 0

R1
R2 F3

t R3
R4

F2

R5
R6

F15

. .-

R7
R 8 F14 1

I R9 I
F15
F17
F19 R10

R I 1

F14
F16
F18

I R14 I

, , .

F19

R15

I

t18

I R19 I

F21

R20
R21

F20

R22
R23

F23

R27
R28

F22

63

F25
F27
F29

We included several control flow optimizations in
the core instruction set. The conditional branch instruc-
tions have variations with and without a delay slot. A
delay slot allows the processor to execute an instruction
following a branch while it is fetching from the branch
target. Having both delayed and nondelayed variations
of branch instructions allows the compiler to optimize
the code easily, whether a branch is likely to be taken or
not. Test and branch instructions execute in one clock
cycle, a savings of one cycle when testing special cases.
Finally, another one-cycle loop control instruction
usefully handles tight loops, such as those in vector
routines.

Instead of providing a limited set of locked opera-
tions, the RISC core provides lock and unlock instruc-
tions. With these two instructions a sequence of up to
32 instructions can be interlocked for multiprocessor
synchronization. Thus, traditional test and set opera-

F24
F26
F28

Floating-point registers
32 31 0

F10
F12 F13

Special-purpose floating-point registers

KR
KL
r

Merge

Control registers
Page directory base

Data breakpoint
Floating-point status

Figure 3. Register set.

18 IEEE MICRO

Authorized licensed use limited to: IEEE Staff. Downloaded on May 11,2023 at 12:54:01 UTC from IEEE Xplore. Restrictions apply.

TCL 1008f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Table 1.
Instruction-set summary.

Llnemonic Description Mnemonic Description

Zore unit
Load and store instructions
LD.X Load integer
3T.X Store integer
FLD.Y F-P load
?FLD.Z Pipelined F-P load
FST.Y F-P store
PST.D Pixel store
Register-to-register moves
lXFR
FXFR
integer arithmetic instructions
4DDU Add unsigned
4DDS Add signed
SUBU Subtract unsigned
SUBS Subtract signed
Shift instructions
SHL Shift left
SHR Shift right
SHRA Shift right arithmetic
SHRD Shift right double
Logical instructions
4ND Logical AND
4NDH Logical AND high
4NDNOT Logical AND NOT
4NDNOTH Logical AND NOT high
3 R Logical OR
3RH Logical OR high
)<OR Logical exclusive OR
YORH Logical exclusive OR high
Zontrol-transfer instructions
rRAP Software trap
INTOVR
BR Branch direct
SRI Branch indirect
BC Branch on CC
BC.T Branch on CC taken
3NC Branch on not CC
BNC.T
3 TE Branch if equal
BTNE Branch if not equal
BLA
CALL Subroutine call
CALLI Indirect subroutine call
System control instructions
FLUSH Cache flush
LD.C Load from control register
ST.C Store to control register
LOCK Begin interlocked sequence
UNLOCK End interlocked sequence

Transfer integer to F-P register
Transfer F-P to integer register

Software trap on integer overflow

Branch on not CC taken

Branch on LCC and add

Floating-point unit
Floating-point multiplier instructions
FMUL.P F-P multiply
PFMUL.P Pipelined F-P multiply
PFMUL3.DD Three-stage pipelined F-P multiply
FMLOW .P F-P multiply low
FRCP.P F-P reciprocal
FRSQR . P
Floating-point adder instructions
FADD.P F-P add
PFADD. P Pipelined F-P add
FSUB.P F-P subtract
PFSUB.P Pipelined F-P subtract
PFGT.P Pipelined F-P greater-than compare
PFEQ.P Pipelined F-P equal compare
F1X.P F-P to integer conversion
PF1X.P
FTRUNC.P F-P to integer truncation
PFTRUNC.P
PFLE.P
PAMOV F-P adder move
PFAMOV Pipelined F-P adder move
Dual-operation instructions
PFAM.P
PFSM.P
PFMAM
PFMSM
Long integer instructions
FLSUB.Z Long-integer subtract
PFLSUB.Z Pipelined long-integer subtract
FLADD.Z Long-integer add
PFLADD.Z Pipelined long-integer add
Graphics instructions
FZCHKS 16-bit z-buffer check
PFZCHKS Pipelined 16-bit ,--buffer check
FZCHLD 32-bit z-buffer check
PFZCHLD Pipelined 32-bit z-buffer check
FADDP Add with pixel merge
PFADDP Pipelined add with pixel merge
FADDZ Add with z merge
PFADDZ Pipelined add with 2 merge
FORM OR with merge register
PFORM Pipelined OR with merge register
Assembler pseudo-operations
MOV Integer register-register move
FM0V.Q F-P register-register move
PFM0V.Q Pipelined F-P register-register move
NOP Core no-operation
FNOP F-P no-operation

F-P reciprocal square root

Pipelined F-P to integer conversion

Pipelined F-P to integer truncation
Pipelined F-P less than or equal

Pipelined F-P add and multiply
Pipelined F-P subtract and multiply
Pipelined F-P multiply with add
Pipelined F-P multiply with subtract

cc Condition code
F-P Floating-point
LCC Load condition code

August 1989 19

Authorized licensed use limited to: IEEE Staff. Downloaded on May 11,2023 at 12:54:01 UTC from IEEE Xplore. Restrictions apply.

TCL 1008f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
	� Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

	� Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
	� With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

	� Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
	� Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

	� Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

