
Page 1 of 509 TCL 1002

PTO/SB/122 (11-08)
Approved for use through 11/30/2011. OMB 0651-0035

U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE
Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unlessit displays a valid OMB control number.

Application Number

CHANGE OF !
CORRESPONDENCE ADDRESS herewit

Application Steven Morein

 Art Unit

Addressto:
Commissioner for Patents
P.O. Box 1450 Examiner Name

Alexandria, VA 22313-1450

 Attorney Docket Number 00100.36.0001

Please change the Correspondence Addressforthe above-identified patent application to:

The address associated with
Customer Number: 29153

OR

[] Firm or
Individual Name

Country

This form cannot be used to change the data associated with a Customer Number. To changethe
data associated with an existing Customer Numberuse “Request for Customer Number Data Change” (PTO/SB/124).

| am the:

J Applicant/Inventor

C] Assignee ofrecord of the entire interest.
Statement under 37 CFR 3.73(b) is enclosed. (Form PTO/SB/96).

Attorney or agent of record. Registration Number 34,414

C Registered practitioner named in the application transmittal letter in an application without an
executed oath or declaration. See 37 CFR 1.33(a)(1). Registration Number. .

Signature /Christopher J. Reckamp/
Typed or Print
Name

Date May 17, 2011 312-609-7599

NOTE: Signaturesofall the inventors or assignees of record of the entire interest or their representative(s) are required. Submit multiple
forms if more than one signature is required, see below’.

Total of 4 forms are submitted.

This collection of information is required by 37 CFR 1.33. The information is required to obtain or retain a benefit by the public which isto file (and by the USPTO
to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.11 and 1.14. This collection is estimated to take 3 minutes to complete,
including gathering, preparing, and submitting the completed application form to the USPTO. Timewill vary depending upon the individual case. Any comments on
the amountof time you require to complete this form and/or suggestions for reducing this burden, should be sentto the Chief Information Officer, U.S. Patent and
Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS
ADDRESS. SEND TO: Commissionerfor Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

Ghristopher J. Reckamp
Telephone

ifyou need assistance in completing the form, call 1-800-PTO-9199 and selectoption 2.

Page 1 of 509 TCL 1002

Page 2 of 509 TCL 1002

PTO/SB/14 (11-08)
Approved for use through 09/30/2010. OMB 0651-0032

U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection ofinformation unless it contains a valid OMB control number.

Attorney Docket Number|00100.36.0001
Application Data Sheet 37 CFR 1.76 —

Application Number

Title of Invention|GRAPHICS PROCESSING ARCHITECTURE EMPLOYING A UNIFIED SHADER

The application data sheetis part of the provisional or nonprovisional application for whichit is being submitted. The following form contains the
bibliographic data arranged in a format specified by the United States Patent and Trademark Office as outlined in 37 CFR 1.76.
This document may be completed electronically and submitted to the Office in electronic format using the Electronic Filing System (EFS) or the
document may be printed and included in a paperfiled application.

Secrecy Order 37 CFR 5.2

[_] Portions orall of the application associated with this Application Data Sheet mayfall under a Secrecy Order pursuantto
37 CFR 5.2 (Paperfilers only. Applications that fall under Secrecy Order may not befiled electronically.)

Applicant Information:

Applicant 1

Applicant Authority @ Inventor | ©)Legal Representative under 35 U.S.C. 117 |Party ofInterest under 35 U.S.C. 118

Prefix) Given Name Middle Name Family Name Suffix

Stephen

Residence Information (Select One) (@) US Residency ©) NonUS Residency () Active US Military Service

City|Cambridge State/Province|MA Country of Residencei|US

Citizenship under 37 CFR 1.41(b)i US

Mailing Address of Applicant:

Address 1 10 Magazine

Address 2 Apt. 801

Applicant 2

Applicant Authority (#)Inventor|()Legal Representative under 35 U.S.C. 117 ©Party of Interest under 35 U.S.C. 118

aweie
Residence Information (Select One) () US Residency (@) NonUS Residency () Active US Military Service

Citizenship under 37 CFR 1.41(b)i

Mailing Address of Applicant:

Address 1 124 Parenchere

Address 2

Postal Code JOW 6A5 CA

Applicant 3

Applicant Authority @!nventor | (Legal Representative under 35 U.S.C. 117 |Party of Interest under 35 U.S.C. 118
Prefix)GivenName=Middle Name Family Name Suffix

 Er
Residence Information (Select One) (@) US Residency ©) NonUSResidency () Active US Military Service

City State/PrRage okSOSountry of Residencei|US TCL 1002

EFS Web 2.2.2

Page 3 of 509 TCL 1002

PTO/SB/14 (11-08)
Approved for use through 09/30/2010. OMB 0651-0032

U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE
Underthe Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number.

Attorney Docket Number|00100.36.0001

Application Number

GRAPHICS PROCESSING ARCHITECTURE EMPLOYING A UNIFIED SHADER

Application Data Sheet 37 CFR 1.76

 Title of Invention

Citizenship under 37 CFR 1.41(b)i US

Mailing Address of Applicant:

Address 1 215 Pleasant Street

Address 2

City Arlington State/Province MA

Postal Code 02476 us

Applicant 4

Applicant Authority @!nventor|(Legal Representative under 35 U.S.C. 117 C)Party of Interest under 35 U.S.C. 118
Middle Name Family Name Suffix

Skende

Residence Information (Select One) (} US Residency ©) NonUS Residency (©) Active US Military Service

State/Province Country of Residencei

Citizenship under 37 CFR 1.41(b)i

 Prefix

Mailing Address of Applicant:

Address 1 49 Sheridan Drive, #11

Address 2

Postal Code 01545 US

All Inventors Must Be Listed - Additional Inventor Information blocks may be
generated within this form by selecting the Add button. Ade

CorrespondenceInformation:

Enter either Customer Number or complete the CorrespondenceInformation section below.
For further information see 37 CFR 1.33({a}.

[] An Addressis being provided for the correspondenceInformation of this application.

 Customer Number

Email Address

creckamp@vedderprice.com

Application Information:

Add Email

Title of the Invention GRAPHICS PROCESSING ARCHITECTURE EMPLOYING A UNIFIED SHADER

Attorney Docket Number]00100.36.0001 Small Entity Status Claimed [|
Application Type Nonprovisional

Subject Matter Utility

Suggested Class(if any) Sub Class(if any)

Suggested Technology Center(if any)

Total Numberof Drawing Sheets (if any) Suggested Figure for Publication (if any)

Page 3 of 509 TCL 1002

EFS Web 2.2.2

Page 4 of 509 TCL 1002

PTO/SB/14 (11-08)
Approved for use through 09/30/2010. OMB 0651-0032

U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE
Underthe Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number.

Attorney Docket Number|00100.36.0001

Application Number

GRAPHICS PROCESSING ARCHITECTURE EMPLOYING A UNIFIED SHADER

Application Data Sheet 37 CFR 1.76

 Title of Invention

Publication Information:

[_] Request Early Publication (Fee required at time of Request 37 CFR 1.219)

Req uest Not to Publish. | hereby request that the attached application not be published under 35 U.S.
[-] ©. 122(b) and certify that the invention disclosedin the attached application has not and will not be the subject of

an application filed in ancther country, or under a multilateral international agreement, that requires publication at
eighteen monthsafterfiling.

Representative Information:

Representative information should be provided for all practitioners having a power of attorney in the application. Providing
this information in the Application Data Sheet does not constitute a power of attorney in the application (see 37 CFR 1.32).
Enter either Customer Number or complete the Representative Name_section below. If both sections
are completed the Customer Numberwill be used for the Representative Information during processing.

Please Select One: (#) Customer Number (©) US PatentPractitioner C) Limited Recognition (37 CFR 11.9}

Customer Number 29153

Domestic Benefit/National Stage Information:
This section allows for the applicant to either claim benefit under 35 U.S.C. 119(e), 120, 121, or 365(c) or indicate National Stage
entry from a PCT application. Providing this information in the application data sheet constitutes the specific reference required by
35 U.S.C. 119(e) or 120, and 37 CFR 1.78{a)(2) or CFR 1.78(a}(4), and need not otherwise be made part of the specification.

Prior Application Status|Pending

Application Number Continuity Type Prior Application Number Filing Date (YYYY-MM-DD}

Additional Domestic Benefit/National Stage Data may be generated within this form
by selecting the Add button.

Add

Foreign Priority Information:
This section allows for the applicant to claim benefit of foreign priority and to identify any prior foreign application for which priority is
not claimed. Providing this information in the application data sheet constitutes the claim for priority as required by 35 U.S.C. 119(b)
and 37 CFR 1.55(a).

Application Number ParentFiling Date (YYYY-MM-DD} Priority Claimed
Additional Foreign Priority Data may be generated within this form by selecting the
Addbutton.

Assignee Information:
Providing this information in the application data sheet does not substitute for compliance with any requirementof part 3 of Title 37
of the CFR to have an assignmentrecorded in the Office.

Assignee1 Paqe-4of 569 ewe] FEE 4602

EFS Web 2.2.2

Page 5 of 509 TCL 1002

PTO/SB/14 (11-08)
Approved for use through 09/30/2010. OMB 0651-0032

U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE
Underthe Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number.

Attorney Docket Number|00100.36.0001

Application Number

GRAPHICS PROCESSING ARCHITECTURE EMPLOYING A UNIFIED SHADER

 Application Data Sheet 37 CFR 1.76

 Title of Invention

If the Assignee is an Organization check here.

Organization Name ATI Technologies ULC

Mailing Address Information:

Address 1 1 Commerce Valley Drive East

Address 2

Email Address

Additional Assignee Data may be generated within this form by selecting the Add
button. Aad

Signature:

A signature of the applicant or representative is required in accordance with 37 CFR 1.33 and 10.18. Please see 37
CFR 1.4(d) for the form of the signature.

Signature=|/Christopher J. Reckamp/ Date (YYYY-MM-DD}| 2011-05-17

First Name|Christopher Registration Number|34414

This collection of information is required by 37 CFR 1.76. The information is required to obtain or retain a benefit by the public which
is to file (and by the USPTOto process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This
collection is estimated to take 23 minutes to complete, including gathering, preparing, and submitting the completed application data
sheet form to the USPTO. Time will vary depending upon the individual case. Any comments on the amountof time you require to
complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and
Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR
COMPLETED FORMSTO THIS ADDRESS. SEND TO: Commissionerfor Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

Page 5 of 509 TCL 1002

EFS Web 2.2.2

Page 6 of 509 TCL 1002

The Privacy Act of 1974 (P.L. 93-579) requires that you be given certain information in connection with your submission of the attached form related to
a patent application or patent. Accordingly, pursuant to the requirements of the Act, please be advised that: (1) the general authority for the collection
of this information is 35 U.S.C. 2(b)(2); (2) furnishing of the information sclicited is voluntary; and (3) the principal purpose for which the information is
used by the U.S. Patent and Trademark Office is to process and/or examine your submission related to a patent application or patent. If you do not
furnish the requested information, the U.S. Patent and Trademark Office may not be able to process and/or examine your submission, which may
result in termination of proceedings or abandonmentof the application or expiration of the patent.

The information provided by you in this form will be subject to the following routine uses:

1.

Privacy Act Statement

The information on this form will be treated confidentially to the extent allowed under the Freedom of Information Act (5 U.S.C. 552)
and the Privacy Act (5 U.S.C. 552a). Records from this system of records may be disclosed to the Department of Justice to determine
whether the Freedom cofInformation Act requires disclosure of these records.

A record from this system of records may be disclosed, as a routine use, in the course of presenting evidence to a court, magistrate, or
administrative tribunal, including disclosures to opposing counsel in the course of settlement negotiations.

A record in this system of records may be disclosed, as a routine use, to a Member of Congress submitting a request involving an
individual, to whom the record pertains, when the individual has requested assistance from the Member with respect to the subject matter of
the record.

A record in this system of records may be disclosed, as a routine use, to a contractor of the Agency having need for the information in
order to perform a contract. Recipients of information shall be required to comply with the requirements of the Privacy Act of 1974, as
amended, pursuant to 5 U.S.C. 552a(m).

A record related to an International Application filed under the Patent Cooperation Treaty in this system of records may be disclosed,
as a routine use, to the International Bureau of the World Intellectual Property Organization, pursuant to the Patent Cooperation Treaty.

A record in this system of records may be disclosed, as a routine use, to another federal agency for purposes of National Security
review (35 U.S.C. 181} and for review pursuant to the Atomic Energy Act (42 U.S.C. 218(c)).

A record from this system of records may be disclosed, as a routine use, to the Administrator, General Services, or his/her designee,
during an inspection of records conducted by GSA aspart of that agency's responsibility to recommend improvements in records
management practices and programs, under authority of 44 U.S.C. 29804 and 2906. Such disclosure shall be made in accordance with the
GSA regulations governing inspection of records for this purpose, and any other relevant(i.e., GSA or Commerce) directive. Such
disclosure shall not be used to make determinations aboutindividuals.

A record from this system of records may be disclosed, as a routine use, to the public after either publication of the application pursuant
to 35 U.S.C. 122(b) or issuance of a patent pursuant to 35 U.S.C. 151. Further, a record may be disclosed, subject to the limitations of 37
CFR 1.14, as a routine use, to the public if the record wasfiled in an application which became abandonedorin which the proceedings were
terminated and which application is referenced by either a published application, an application open to public inspections or an issued
patent.

A record from this system of records may be disclosed, as a routine use, to a Federal, State, or local law enforcement agency,if the
USPTO becomes awareof a violation or potential violation of law or regulation.

Page6 of 509 TCL 1002

EFS Web 2.2.2

Page 7 of 509 TCL 1002

Electronic Patent Application Fee Transmittal

omen

Title of Invention: GRAPHICS PROCESSING ARCHITECTURE EMPLOYING A UNIFIED SHADER

First Named Inventor/Applicant Name: Stephen L. Morein

Attorney Docket Number: 00100.36.0001

Utility under 35 USC 111(a) Filing Fees

Sub-Total in

USD(S$)

Miscellaneous-Filing:

Description Fee Code Quantity

Page 8 of 509 TCL 1002

wigs . Sub-Total in

Patent-Appeals-and-Interference:

Post-Allowance-and-Post-Issuance:

Extension-of-Time:

Total in USD (S$) 1970

Page8 of 509 TCL 1002

Page 9 of 509 TCL 1002

Electronic AcknowledgementReceipt

a

eine

Title of Invention: GRAPHICS PROCESSING ARCHITECTURE EMPLOYING A UNIFIED SHADER

ee

a

Paymentinformation:

Submitted with Payment yes

Deposit Account 220259

TheDirector of the USPTO is hereby authorized to charge indicated fees and credit any overpaymentas follows:

Charge any Additional Fees required under 37 C.F.R. Section 1.16 (National application filing, search, and examination fees)

Charge any Additional Fees required under 37 crRARAGA, 9, 2FaaQDQpplication and reexamination processing fee)CL 1 002

Page 10 of 509 TCL 1002

Charge any Additional Fees required under 37 C.F.R. Section 1.19 (Document supply fees)

Charge any Additional Fees required under 37 C.F.R. Section 1.20 (Post Issuance fees)

Charge any Additional Fees required under 37 C.F.R. Section 1.21 (Miscellaneous fees and charges)

File Listing:

Document gs File Size(Bytes)/ Multi Pages

360001_Application.pdf
5a2195ef350dfe96b37393d43d086ca74d1

5a3al

Multipart Description/PDFfiles in .zip description

ee

Warnings
Information:

100418
Drawings-only black and white line

drawings 360001_Drawings.pdf 7e6a5c9ce489409aee5 203093 163 18a7b7d}
231f2

acc3daf05 193121879d529dab5b36dbed6.
aed4e

1032318

0457161c63792567d97d461 3dade7a99db|
6d9934

9542301 783d227 14df47e76295ef00c93 73
37ec

Page 11 of 509 TCL 1002

This AcknowledgementReceipt evidences receipt on the noted date by the USPTOofthe indicated documents,
characterized by the applicant, and including page counts, where applicable. It serves as evidence of receipt similar to a
Post Card, as described in MPEP 503.

New Applications Under 35 U.S.C. 111
If a new application is being filed and the application includes the necessary componentsfora filing date (see 37 CFR
1.53(b)-(d) and MPEP 506), a Filing Receipt (37 CFR 1.54) will be issued in due course and the date shownonthis
AcknowledgementReceiptwill establish thefiling date of the application.

National Stage of an International Application under 35 U.S.C. 371
If a timely submission to enter the national stage of an international application is compliant with the conditions of 35
U.S.C. 371 and other applicable requirements a Form PCT/DO/EO/903indicating acceptanceof the application as a
national stage submission under 35 U.S.C. 371 will be issued in addition to the Filing Receipt, in due course.

New International Application Filed with the USPTO as a Receiving Office
If a new internationalapplication is being filed and the international application includes the necessary components for
an internationalfiling date (see PCT Article 11 and MPEP 1810), a Notification of the International Application Number
and of the International Filing Date (Form PCT/RO/105)will be issued in due course, subject to prescriptions concerning
nationalsecurity, and the date shownon this AcknowledgementReceiptwill establish the internationalfiling date of
the application.

Page 11 of 509 TCL 1002

Page 12 of 509 TCL 1002

GRAPHICS PROCESSING ARCHITECTURE EMPLOYING A UNIFIED SHADER

RELATED APPLICATIONS

[0001] This application is a continuation of co-pending U.S. Application Serial No.

12/791,597, filed June 1, 2010, entitled “GRAPHICS PROCESSING ARCHITECTURE

EMPLOYING A UNIFIED SHADER”, having as inventors Steven Morein et al., owned by

instant assignee and is incorporated herein by reference, which is a continuation of co-pending

U.S. Application Serial No. 11/842,256, filed August 21, 2007, entitled “GRAPHICS

PROCESSING ARCHITECTURE EMPLOYING A UNIFIED SHADER’, having as inventors

Steven Morein et al., owned byinstant assignee andis incorporated herein by reference, which is

a continuation of U.S. Application Serial No. 11/117,863, filed April 29, 2005, which has issued

into U.S. Patent No. 7,327,369, entitled “GRAPHICS PROCESSING ARCHITECTURE

EMPLOYING A UNIFIED SHADER’, having as inventors Steven Morein et al., and owned by

instant assignee and is incorporated herein by reference which is a continuation of U.S.

Application Serial No. 10/718,318, filed on November 20, 2003, which has issued into U.S.

Patent No. 6,897,871, entitled “GRAPHICS PROCESSING ARCHITECTURE EMPLOYING A

UNIFIED SHADER’, having as inventors Steven Morein et al., and ownedby instant assignee

and is incorporated herein by reference.

FIELD OF THE INVENTION

[0002] The present invention generally relates to graphics processors and, more

particularly, to a graphics processor architecture employing a single shader.

BACKGROUND OF THE INVENTION

[0003] In computer graphics applications, complex shapes and structures are formed

through the sampling, interconnection and rendering of more simple objects, referred to as

1

CHICAGO/#2201074.1 Page 12 of 509 TCL 1002

Page 13 of 509 TCL 1002

primitives. An example of such a primitive is a triangle, or other suitable polygon. These

primitives, in turn, are formed by the interconnection of individual pixels. Color and texture are

then applied to the individual pixels that comprise the shape based on their location within the

primitive and the primitives orientation with respect to the generated shape; thereby generating

the object that is rendered to a corresponding display for subsequent viewing.

[0004] The interconnection of primitives and the application of color and textures to

generated shapes are generally performed by a graphics processor. Conventional graphics

processors include a series of shaders that specify how and with what correspondingattributes, a

final image is drawn on a screen, or suitable display device. As illustrated in FIG. 1, a

conventional shader 10 can be represented as a processing block 12 that accepts a plurality of

bits of input data, such as, for example, object shape data (14) in object space (x,y,z); material

properties of the object, such as color (16); texture information (18); luminance information (20);

and viewing angle information (22) and provides output data (28) representing the object with

texture and other appearance properties applied thereto (x’, y’, z’).

[0005] In exemplary fashion,as illustrated in FIGS. 2A-2B, the shader accepts the vertex

coordinate data representing cube 30 (FIG. 2A) as inputs and provides data representing, for

example, a perspectively corrected view of the cube 30° (FIG. 2B) as an output. The corrected

view maybe provided, for example, by applying an appropriate transformation matrix to the data

representing the initial cube 30. More specifically, the representation illustrated in FIG. 2B is

provided by a vertex shader that accepts as inputs the data representing, for example, vertices

Vx, Vy and Vz, among others of cube 30 and providing angularly oriented vertices Vx-,Vy- and

Vz, including any appearanceattributes of corresponding cube 30”.

2

CHICAGO/#2201074.1 Page 13 of 509 TCL 1002

Page 14 of 509 TCL 1002

[0006] In addition to the vertex shader discussed above, a shader processing block that

operates on the pixel level, referred to as a pixel shader is also used when generating an object

for display. Generally, the pixel shader provides the color value associated with each pixel of a

rendered object. Conventionally, both the vertex shader and pixel shader are separate

components that are configured to perform only a single transformation or operation. Thus, in

order to perform a position and a texture transformation of an input, at least two shading

operations and hence, at least two shaders, need to be employed. Conventional graphics

processors require the use of both a vertex shader and a pixel shader in order to generate an

object. Because both types of shaders are required, known graphics processors are relatively

large in size, with mostof the real estate being taken up by the vertex and pixel shaders.

[0007] In addition to the real estate penalty associated with conventional graphics

processors, there is also a corresponding performance penalty associated therewith. In

conventional graphics processors, the vertex shader and the pixel shader are juxtaposed in a

sequential, pipelined fashion, with the vertex shader being positioned before and operating on

vertex data before the pixel shader can operate on individual pixel data.

[0008] Thus, there is a need for an improved graphics processor employing a shaderthat

is both space efficient and computationally effective.

BRIEF DESCRIPTION OF THE DRAWINGS

[0009] The present invention and the associated advantages and features thereof, will

becomebetter understood and appreciated upon review of the following detailed description of

the invention, taken in conjunction with the following drawings, where like numerals represent

like elements, in which:

[0010] FIG. 1 is a schematic block diagram of a conventional shader;

3

CHICAGO/#2201074.1 Page 14 of 509 TCL 1002

Page 15 of 509 TCL 1002

[0011] FIGS. 2A-2B are graphical representations of the operations performed by the

shaderillustrated in FIG.1;

[0012] FIG. 3 is a schematic block diagram of a conventional graphics processor

architecture;

[0013] FIG. 4A is a schematic block diagram of a graphics processor architecture

according to the present invention;

[0014] FIG. 4B is a schematic block diagram of an optional input component to the

graphics processor according to an alternate embodimentof the present invention; and

[0015] FIG. 5 is an exploded schematic block diagram of the unified shader employed in

the graphics processorillustrated in FIG. 4A.

DETAILED DESCRIPTION OF THE INVENTION

[0016] Briefly stated, the present invention is directed to a graphics processor that

employs a unified shader that is capable of performing both the vertex operations and the pixel

operations in a space saving and computationally efficient manner. In an exemplary

embodiment, a graphics processor according to the present invention includes an arbiter circuit

for selecting one of a plurality of inputs for processing in response to a control signal; and a

shader, coupled to the arbiter, operative to process the selected one of the plurality of inputs, the

shader including means for performing vertex operations and pixel operations, and wherein the

shader performs oneof the vertex operations or pixel operations based on the selected one of the

plurality of inputs.

[0017] The shader includes a general purpose register block for storing at least the

plurality of selected inputs, a sequencer for storing logical and arithmetic instructions that are

used to perform vertex and pixel manipulation operations and a processor capable of executing

4

CHICAGO/#2201074.1 Page 15 of 509 TCL 1002

Page 16 of 509 TCL 1002

both floating point arithmetic and logical operations on the selected inputs according to the

instructions maintained in the sequencer. The shader of the present invention is referred to as a

“unified” shader because it is configured to perform both vertex and pixel operations. By

employing the unified shader of the present invention, the associated graphics processor is more

space efficient than conventional graphics processors because the unified shader takes up less

real estate than the conventional multi-shader processor architecture.

[0018] In addition, according to the present invention, the unified shader is more

computationally efficient because it allows the shader to be flexibly allocated to pixels or

vertices based on workload.

[0019] Referring now to FIG.3, illustrated therein is a graphics processor incorporating a

conventional pipeline architecture. As shown, the graphics processor 40 includes a vertex fetch

block 42 which receives vertex information relating to a primitive to be rendered from an off-

chip memory 55 on line 41. The fetched vertex data is then transmitted to a vertex cache 44 for

storage on line 43. Upon request, the vertex data maintained in the vertex cache 44 is

transmitted to a vertex shader 46 on line 45. As discussed above, an example of the information

that is requested by and transmitted to the vertex shader 46 includes the object shape, material

properties (e.g. color), texture information, and viewing angle. Generally, the vertex shader 46is

a programmable mechanism whichapplies a transformation position matrix to the input position

information (obtained from the vertex cache 44), thereby providing data representing a

perspectively corrected image of the object to be rendered, along with any texture or color

coordinates thereof.

[0020] After performing the transformation operation, the data representing the

transformedvertices are then provided to a vertex store 48 on line 47. The vertex store 48 then

5

CHICAGO/#2201074.1 Page 16 of 509 TCL 1002

Page 17 of 509 TCL 1002

transmits the modified vertex information contained therein to a primitive assembly block 50 on

line 49. The primitive assembly block 50 assembles, or converts, the input vertex information

into a plurality of primitives to be subsequently processed. Suitable methods of assembling the

input vertex information into primitives is knownin the art and will not be discussed in greater

detail here. The assembled primitives are then transmitted to a rasterization engine 52, which

converts the previously assembled primitives into pixel data through a process referred to as

walking. The resulting pixel data is then transmitted to a pixel shader 54 on line 53.

[0021] The pixel shader 54 generates the color and additional appearance attributes that

are to be applied to a given pixel, and applies the appearanceattributes to the respective pixels.

In addition, the pixel shader 54 is capable of fetching texture data from a texture map 57 as

indexed by the pixel data from the rasterization engine 52 by transmitting such information on

line 55 to the texture map. The requested texture data is then transmitted back from the texture

map 57 on line 57° and stored in a texture cache 56 before being routed to the pixel shader on

line 58. Once the texture data has been received, the pixel shader 54 then performs specified

logical or arithmetic operations on the received texture data to generate the pixel color or other

appearance attribute of interest. The generated pixel appearance attribute is then combined with

a base color, as provided by the rasterization engine on line 53, to thereby provide a pixel color

to the pixel corresponding at the position of interest. The pixel appearanceattribute present on

line 59 is then transmitted to post raster processing blocks (not shown).

[0022] As described above, the conventional graphics processor 40 requires the use of

two separate shaders: a vertex shader 46 and a pixel shader 54. A drawbackassociated with such

an architecture is that the overall footprint of the graphics processoris relatively large as the two

6

CHICAGO/#2201074.1 Page 17 of 509 TCL 1002

Page 18 of 509 TCL 1002

shaders take up a large amount of real estate. Another drawback associated with conventional

graphics processor architectures is that can exhibit poor computationalefficiency.

[0023] Referring now to FIG. 4A, in an exemplary embodiment, the graphics processor

60 of the present invention includes a multiplexer 66 having vertex (e.g. indices) data provided at

a first input thereto and interpolated pixel parameter(e.g. position) data and attribute data from a

rasterization engine 74 provided at a second input. A control signal generated by an arbiter 64is

transmitted to the multiplexer 66 on line 63. The arbiter 64 determines which of the two inputs

to the multiplexer 66 is transmitted to a unified shader 62 for further processing. The arbitration

scheme employed by the arbiter 64 is as follows: the vertex data on the first input of the

multiplexer 66 is transmitted to the unified shader 62 on line 65 if there is enough resources

available in the unified shader to operate on the vertex data; otherwise, the interpolated pixel

parameter data present on the second input will be passed to the unified shader 62 for further

processing.

[0024] Referring briefly to FIG. 5, the unified shader 62 will now be described. As

illustrated, the unified shader 62 includes a general purpose register block 92, a plurality of

source registers: including source register A 93, source register B 95, and source register C 97, a

processor (e.g. CPU) 96 and a sequencer 99. The general purpose register block 92 includes

sixty four registers, or available entries, for storing the information transmitted from the

multiplexer 66 on line 65 or any other information to be maintained within the unified shader.

The data present in the general purpose register block 92 is transmitted to the plurality of source

registers via line 109.

[0025] The processor 96 may be comprised of a dedicated piece of hardware or can be

configured as part of a general purpose computing device (i.e. personal computer). In an

7

CHICAGO/#2201074.1 Page 18 of 509 TCL 1002

Page 19 of 509 TCL 1002

exemplary embodiment, the processor 96 is adapted to perform 32-bit floating point arithmetic

operations as well as a complete series of logical operations on corresponding operands. As

shown, the processor is logically partitioned into two sections. Section 96 is configured to

execute, for example, the 32-bit floating point arithmetic operations of the unified shader. The

second section, 96A, is configured to perform scaler operations (e.g. log, exponent, reciprocal

square root) of the unified shader.

[0026] The sequencer 99 includes constants block 91 and an instruction store 98. The

constants block 91 contains, for example, the several transformation matrices used in connection

with vertex manipulation operations. The instruction store 98 contains the necessary instructions

that are executed by the processor 96 in order to perform the respective arithmetic and logic

operations on the data maintained in the general purpose register block 92 as provided by the

source registers 93-95. The instruction store 98 further includes memoryfetch instructionsthat,

when executed, causes the unified shader 62 to fetch texture and other types of data, from

memory 82 (FIG. 4A). In operation, the sequencer 99 determines whether the next instruction to

be executed (from the instruction store 98) is an arithmetic or logical instruction or a memory

(e.g. texture fetch) instruction. If the next instruction is a memory instruction or request, the

sequencer 99 sends the request to a fetch block (not shown) which retrieves the required

information from memory 82 (FIG. 4A). The retrieved information is then transmitted to the

sequencer 99, through the vertex texture cache 68 (FIG. 4A) as described in greater detail below.

[0027] If the next instruction to be executed is an arithmetic or logical instruction, the

sequencer 99 causes the appropriate operandsto be transferred from the general purposeregister

block 92 into the appropriate source registers (93, 95, 97) for execution, and an appropriate

signal is sent to the processor 96 on line 101 indicating what operation or series of operations are

8

CHICAGO/#2201074.1 Page 19 of 509 TCL 1002

Page 20 of 509 TCL 1002

to be executed on the several operands present in the source registers. At this point, the

processor 96 executes the instructions on the operands present in the source registers and

provides the result on line 85. The information present on line 85 may be transmitted back to the

general purpose register block 92 for storage, or transmitted to succeeding components of the

graphics processor 60.

[0028] As discussed above, the instruction store 98 maintains both vertex manipulation

instructions and pixel manipulation instructions. Therefore, the unified shader 99 of the present

invention is able to perform both vertex and pixel operations, as well as execute memory fetch

operations. As such, the unified shader 62 of the present invention is able to perform both the

vertex shading and pixel shading operations on data in the context of a graphics controller based

on information passed from the multiplexer. By being adapted to perform memory fetches, the

unified shader of the present invention is able to perform additional processes that conventional

vertex shaders cannot perform; while at the same time, perform pixel operations.

[0029] The unified shader 62 has ability to simultaneously perform vertex manipulation

operations and pixel manipulation operations at various degrees of completion by being able to

freely switch between such programsorinstructions, maintained in the instruction store 98, very

quickly. In application, vertex data to be processed is transmitted into the general purpose

register block 92 from multiplexer 66. The instruction store 98 then passes the corresponding

control signals to the processor 96 on line 101 to perform such vertex operations. However, if

the general purpose register block 92 does not have enough available space therein to store the

incoming vertex data, such information will not be transmitted as the arbitration scheme of the

arbiter 64 is not satisfied. In this manner, any pixel calculation operations that are to be, or are

currently being, performed by the processor 96 are continued, based on the instructions

9

CHICAGO/#2201074.1 Page 20 of 509 TCL 1002

Page 21 of 509 TCL 1002

maintained in the instruction store 98, until enough registers within the general purpose register

block 92 becomeavailable. Thus, through the sharing of resources within the unified shader 62,

processing of image data is enhanced as there is no down timeassociated with the processor 96.

[0030] Referring back to FIG. 4A, the graphics processor 60 further includes a cache

block 70, including a parameter cache 70A and a position cache 70B which accepts the pixel

based output of the unified shader 62 on line 85 and stores the respective pixel parameter and

position information in the corresponding cache. The pixel information present in the cache

block 70 is then transmitted to the primitive assembly block 72 on line 71. The primitive

assembly block 72 is responsible for assembling the information transmitted thereto from the

cache block 70 into a series of triangles, or other suitable primitives, for further processing. The

assembled primitives are then transmitted on line 73 to rasterization engine block 74, where the

transmitted primitives are then converted into individual pixel data information through a

walking process, or any other suitable pixel generation process. The resulting pixel data from

the rasterization engine block 74 is the interpolated pixel parameter data that is transmitted to the

second input of the multiplexer 66 on line 75.

[0031] In those situations when vertex data is transmitted to the unified shader 62

through the multiplexer 66, the resulting vertex data generated by the processor 96,is transmitted

to a render back end block 76 which converts the resulting vertex data into at least one of several

formats suitable for later display on display device 84. For example, if a stained glass

appearance effect is to be applied to an image, the information corresponding to such appearance

effect is associated with the appropriate position data by the render back end 76. The

information from the render back end 76 is then transmitted to memory 82 and a display

10

CHICAGO/#2201074.1 Page 21 of 509 TCL 1002

Page 22 of 509 TCL 1002

controller line 80 via memory controller 78. Such appropriately formatted information is then

transmitted on line 83 for presentation on display device 84.

[0032] Referring now to FIG. 4B, shown therein is a vertex block 61 which is used to

provide the vertex information at the first input of the multiplexer 66 according to an alternate

embodiment of the present invention. The vertex block 61 includes a vertex fetch block 61A

which is responsible for retrieving vertex information from memory 82, if requested, and

transmitting that vertex information into the vertex cache 61B. The information stored in the

vertex cache 61B comprises the vertex information that is coupled to the first input of

multiplexer 66.

[0033] As discussed above, the graphics processor 60 of the present invention

incorporates a unified shader 62 which is capable of performing both vertex manipulation

operations and pixel manipulation operations based on the instructions stored in the instruction

store 98. In this fashion, the graphics processor 60 of the present invention takes up less real

estate than conventional graphics processors as separate vertex shaders and pixel shaders are no

longer required. In addition, as the unified shader 62 is capable of alternating between

performing vertex manipulation operations and pixel manipulation operations, graphics

processing efficiency is enhanced as one type of data operations is not dependent upon another

type of data operations. Therefore, any performance penalties experienced as a result of

dependentoperations in conventional graphics processors are overcome.

[0034] The above detailed description of the present invention and the examples

described therein have been presented for the purposes of illustration and description. It is

therefore contemplated that the present invention cover any and all modifications, variations and

11

CHICAGO/#2201074.1 Page 22 of 509 TCL 1002

Page 23 of 509 TCL 1002

equivalents that fall within the spirit and scope of the basic underlying principles disclosed and

claimed herein.

12

CHICAGO/#2201074.1 Page 23 of 509 TCL 1002

Page 24 of 509 TCL 1002

CLAIMS

Whatis claimedis:

1. A method comprising:

performing vertex manipulation operations and pixel manipulation operations by

transmitting vertex data to a general purpose register block, and performing vertex operations on

the vertex data by a processor unless the general purpose register block does not have enough

available space therein to store incoming vertex data; and

continuing pixel calculation operations that are to be or are currently being performed by

the processor based on instructions maintained in an instruction store until enough registers

within the general purpose register block becomeavailable.

2. A unified shader, comprising:

a general purpose register block for maintaining data;

a processorunit;

a sequencer, coupled to the general purpose register block and the processorunit, the

sequencer maintaining instructions operative to cause the processor unit to execute vertex

calculation and pixel calculation operations on selected data maintained in the general purpose

register block; and

wherein the processor unit executes instructions that generate a pixel color in response to

the selected one of the plurality of inputs and generates vertex position and appearance data in

response to a selected oneof the plurality of inputs.

3. A unified shader comprising:

13

CHICAGO/#2201074.1 Page 24 of 509 TCL 1002

Page 25 of 509 TCL 1002

a processor unit operative to perform vertex calculation operations and pixel calculation

operations; and

shared resources, operatively coupled to the processor unit;

the processor unit operative to use the shared resources for either vertex data or pixel

information and operative to perform pixel calculation operations until enough shared resources

becomeavailable and then use the shared resources to perform vertex calculation operations.

4, A unified shader comprising:

a processor unit operative to perform vertex calculation operations and pixel calculation

operations; and

shared resources, operatively coupled to the processor unit;

the processor unit operative to use the shared resources for either vertex data or pixel

information and operative to perform vertex calculation operations until enough shared resources

becomeavailable and then use the shared resources to perform pixel calculation operations.

5. A unified shader comprising:

a processorunit;

a sequencer coupledto the processor unit, the sequencer maintaining instructions

operative to cause the processor unit to execute vertex calculation and pixel calculation

operations on selected data maintained in a store depending upon an amountof space available in

the store.

14

CHICAGO/#2201074.1 Page 25 of 509 TCL 1002

Page 26 of 509 TCL 1002

6. The shader of claim 5, wherein the sequencerfurther includescircuitry operative

to fetch data from a memory.

7. The shaderof claim 5, further including a selection circuit operative to provide

information to the store in responseto a controlsignal.

8. The shader of claim 5, wherein the processor unit executes instructions that

generate a pixel color in responseto the selected one of the plurality of inputs.

9. The shader of claim 5, wherein the processor unit executes vertex calculations

while the pixel calculationsare still in progress.

10. The shader of claim 5, wherein the processor unit generates vertex position and

appearance data in response to a selected one of the plurality of inputs.

11. The shader of claim 7, wherein the control signal is provided by an arbiter.

12. A graphics processor comprising:

a unified shader comprising a processor unit that executes vertex calculations while the

pixel calculationsare still in progress.

13. The graphics processor of claim 12 wherein the unified shader comprises a

sequencer coupled to the processor unit, the sequencer maintaining instructions operative to

15

CHICAGO/#2201074.1 Page 26 of 509 TCL 1002

Page 27 of 509 TCL 1002

cause the processor unit to execute vertex calculation and pixel calculation operations on

selected data maintained in a store depending upon an amountof space available in the store.

14. The graphics processor of claim 12 comprising a vertex block operative to fetch

vertex information from memory.

15. A unified shader comprising:

a processor unit flexibly controlled to perform vertex manipulation operations and pixel

manipulation operations based on vertex or pixel workload.

16. The shader of claim 15 comprising an instruction store and wherein the processor

unit performs the vertex manipulation operations and pixel manipulation operations at various

degrees of completion based on switching between instructionsin the instruction store.

16

CHICAGO/#2201074.1 Page 27of 509 TCL 1002

Page 28 of 509 TCL 1002

GRAPHICS PROCESSING ARCHITECTURE EMPLOYING A UNIFIED SHADER

ABSTRACT

[0035] A graphics processing architecture employing a single shader is disclosed. The

architecture includes a circuit operative to select one of a plurality of inputs in response to a

control signal; and a shader, coupled to the arbiter, operative to process the selected one of the

plurality of inputs, the shader including means for performing vertex operations and pixel

operations, and wherein the shader performs one of the vertex operations or pixel operations

based on the selected one of the plurality of inputs. The shader includes a register block whichis

used to store the plurality of selected inputs, a sequencer which maintains vertex manipulation

and pixel manipulations instructions and a processor capable of executing both floating point

arithmetic and logical operations on the selected inputs in response to the instructions maintained

in the sequencer.

17

CHICAGO/#2201074.1 Page 28of 509 TCL 1002

Page 29 of 509 TCL 1002

(LYVMOIMd)L“Sis
ATONVONIMAIAAONVNININTviva

(z‘4A«x)YaqVHSAYNLXAL
YO109dAdVHSLoardo

cl

TCL 1002Page 29 of 509

Page 30 of 509 TCL 1002

30

FIG. 2A

(PRIOR ART)

FIG. 2B

(PRIOR ART)

Page 30 of 509 TCL 1002

Page 31 of 509 TCL 1002

6° aesLo.
| TEXTURE |

MEMORY 3 MAP |

41 43
44

VERTEX FETCH V-CACHE

42 15

VERTEX VERTEX 48
SHADER STORE

46
AT 49

PRIMITIVE 50
ASSEMBLY

51

RASTERIZATION|92
ENGINE

53

TO 55
57 PIXEL

SHADER

FROM TEXTURE 54
o7 CACHE[|58

56

59

FIG. 3 POST RASTER

(PRIOR ART) PROCESSING

Page 31 of 509 TCL 1002

Page 32 of 509 TCL 1002

INDICES

64 63

UNIFIED

SHADER MEMORY
DATA

RENDER

BACK

END POSITION

CACHE

71

PRIMITIVE

MEMORY ASSEMBLY
CONTROLLER

73

RASTERIZATION

DISPLAY ENGINE
CONTROLLER

8 84 82

DISPLAY MEMORY

FIG. 4A

Page 32 of 509 TCL 1002

Page 33 of 509 TCL 1002

INDICES

VERTEX

CACHE

FIG. 4B

FROM MUX MEMORY

67

CONSTANTS

SOURCE A
FIG.5 \

Page 33 of 509 TCL 1002

Page 34 of 509 TCL 1002

DECLARATION Attorney DocketNumber €100.02.0001
FOR UTILITY OR DESIGN : First Nemed Inventor: Morein ef al.

PATENT APPLICATION COMPLETE iF KNOWN

(27 CER LG} ’ Aspheation Nember: UnknownSdtheae

BS Declaration Suomitied with Initial Filing, OR PutingDates af} Declaration Submitted after Initial Filmg (surcharge Group Art Unit Unknown
(27 CER L6(e}} required) Examiner Name: Unknown

As 2 belownamed inventer, I hereby declare that:
Myresidence, post office address¢, and citizenship are as stated below next to my manic.
Y believe] am the original, Grst and sole inventor (Gif only one name is Usted below} or an original, Grat and joint
inventor (if pharal names are listed below) ofthe subject matter which is claimed and for. hich a paterdis spaght on
the invention entitled: A €GRAPHICS PROCESSING ARCHITECTURE EMPLOYINGATUNIFIED
SHADER

reowBS Bled Ox ___as United StatesApplication Number ___oras PCT
taternational Application Number ee and wass amended¢onSORAY¥Y¥) fF
appicable}. ,

i bherehy state¢ have reviewed andunderstand the contents of the above identified specification, inchiding thetrh

claims, as amendsnied by ayesendment specificallyreferred to above.I acknowiedgs the duty to disclose information which is material to patentability as defineGin 37 CFR 1.456.. nd 7
 BThereby claims foreign priority benefits under 39 UA115{3}-(d}ar 2650s) of any foreign appleation{s) for patent or inventor's certiflesie,365{a) ofny PCT intemation api ation which designated at least ane cauniry other than the United States ofAmerica, Ysted below and haveop

alse identified* below. By checking the box, avy foreign application for patent orinventar’s certiGeate, or of aby BACT international application . oo

a
S

having a filivg re thet of the apwiication on otis priorityisclaimed. .r > “ep enn RinPlate|BelindaMat2 Xone A die heed =} Priox Foreign i t ForeignFiling Date | Prierity Not | Copy Attached? i
[| (MMIDD/YYYY) |Claimed | YES NO. |

oo i Q i

Ln a . ee . wand
} Additional foreign application naanbers ase Hsted on a gsupplementtal priurity data §heet PTO/SB/OIE aitushed hereto.

Thereby claim the benefit wuier 33 U.S.C, 115{c) ofany United Sintes provisional spplication(s} listed below,

“Application Number(s} : oot ~__Biling Data {MMBDAYYYyy :i , i

—————
ication numbers are listed an a supplemental prisSrity data sheet PTC/C/SBAIEB attached hereto.

 mt ada

Li Additional provisional app!

Thereby njaisn the bereft uder 35 USC. 126 of any United Sates apniication(s), or365(0) of any PCT jevteenationvai application Sesignaing the
United Stales of America, tssed below and, insofar as the subject matter of cach of the claims af this appication is nok Gscinand in the pricr
United Sinies or PCT Intemational application in the mamner«povided |by the first paragraph of 35 USC. 215, Lacknawledgethe dutyto discloseinformation which is material io patentability as defined in 37 CFR 1.55 which became availble between theeBling date of the prisr spphieat{O83and the natonsl or PCT intstemationa} fHing date of this appsioation. . ,

>

MS

 is|

po ‘S.ParentApplication or PCT | “ParentFilingDate taePatent Numbe .LnrentNumber L _MM@DYYYY) f applicable) eei i ~
| nF — o nn
bee onennntedeeteeeee es vend

 Ld Additional US. of RC temational apphoatien mumbers.are Hstedon 2 supplemental ppriority deta sheat PTO/SB/OZB attached herata.

Page 340f509 = © ~~ ~TCL 1002

Page 35 of 509 TCL 1002

.

As a named inventor, 1 hereby appoint the following registered practitioner(s} to prosecute this application andte
transaction all business in the Patent and Trademark Office connected therewith:

amegeias[BaeRegistrationNNamber| Name Registr:

aoeTEpannenae!TyStenoe

Shek epgSee(34416 /Aaeelos Bufalino| fosoph P.Krause 2 RobertBeiser

 bes cenearenar ParanaAIRESNEi MichaelaPurgeon i"BrententA. Boyd_ r“Timmothyf,Bechen ast38 ee
 a AddiSonal registereds penctidonerts)s} named on supplemonial Registerei Practitioner Information sheet P”TOSBOE siteched heretes

. Directall carrrrespondance to: Vedder, Price, Kaufman & Kammbolz
, 22 N. LaSalle Street, Suite 2600

| CBicage, Hinole 60681 .
. Telephone: 322-689-7509

Facsimile: 322-669-5005

Thereby declare that aff statements made herein of my own knowledge are true and that alf siutements made on information and belief ureyf3

deligved fs be true; and further that these siatements were made with the knowledge that willful false statements and the Uke so made are
punishable by fine ar imprisonment, or both, under 12 U.S.C. 1001 and that such wifkid false statements may jeopardize the validity of dhe

_ application or any patent issued thereon.

 Name of Sole ¢or Hirst Inventor: (3Apetition fas.heen tGiafeaethis ue§unsigned invertor~.

tacassnd-middici% BINNS F
hes

<—Seen _£. ee aa 5: ee“InventorS | EeB a "| Date a —_ i'Signature ee | jo cee
Residence_ke Oe Cantridgs | Siefil eyUsfpCttzensiip:USrcPoststOffice.Address| 10 Magazins, ape 301 __. OO
"Gliy:¢‘Cambridg ~ | State:aie2A [2OR13s Y Gonninn US i

_NameofAdditional Joint Inventer: 2 Apetitox hasbeenfiledforthis unsigned inventor
: Given Name(first and middie2fiany] i _. Femuly Name orSumame a

LefebvreifLaurent : fenyaoe 5SOCeaeFZ : Anneei inventor's : Bate

Signature oosaoeof ———|Residence : Cis Catedee | Site: Me|County:YYCad LsCitzenship:feCaMMSO”
\{Post©OfficeAddressjfft) PARERCHERE _
Cay:City: t State: a _l 2pDes“CAS|coumby: CAusoeaepeeetetennernnnntameetabyenamartaes eennncen

_Name of Additional Joint Inventor: a A petition has been Hed for this unsiSigned. inventor a
Given Name(frst and middle[if sny}

[____GivenName(fistandmidcle(fany))__|__FamilyNameorSums 2

foennrenga nnnAh

i Inventor’s wo i f zal itae a oe # :
(SignatureOf) ehte tales tl
t Residence A ity: Ariagton Stas:Mates 7 US “|Citizenship: US :eeenertnrnennnrennerannnnrenmnnmnnnanceinene eereeeeetnNeelamenat

|PostOffice Address [PAS BleasantStreet _ _
|City:ArlingtonseaieMAacne|SoySd

Name of Additional Joint Inventor: OA\petition &has beenfiledforthisunsignedinventor
af(____GivenName(Hirst and middie(fany))[FamilyNNemeorSumeme

) Andi i Skende i

aScaraoeRR ERNERR Paesl; iuventer’s T 5 > y Date, i\Signatere| wre og ide ees©. Residence City: Sirreeweburybury|StatxMelee,Viz 7Country: Li , Citzenship: US i
|SRestGEREE . HenncennenaienereneeeenteteutattentincnnmmnnennnnnantPost Office Address [|9SSheridanSikeht :
(fis: Shrewsbury 7fStente: Deedee Cyae_ “TZiPISS. : ; | ‘ountry: £2

2eee

Page350f509 TCL 1002

Page 36 of 509 TCL 1002

PATENT APPLICATION FEE DETERMINATION RECORD Application or Docket Number
Substitute for Form PTO-875 13/109,738

APPLICATION AS FILED - PART| OTHER THAN

(Column 1) (Column 2) SMALL ENTITY OR SMALL ENTITY

BASIC FEE
(37 CFR 1.16(a), (b), or (c))
SEARCH FEE
(37 CFR 1.16(K), (i), or (m)) N/A N/A N/A 540

SCNasen(37 CFR 1.16(0)

TOTAL CLANSa7 OFA ‘6==>oR apaINDEPENDENT CCAS
If the specification and drawings exceed 100

APPLICATION SIZE_|sheets of paper, the application size fee dueis
FEE $270 ($135 for small entity) for each additional
(37 CFR 1.16(s)) 50 sheetsorfraction thereof. See 35 U.S.C.

41(a)(1)(G) and 37 CFR 1.16(s).

MULTIPLE DEPENDENT CLAIM PRESENT(37 CFR 1.16(j))

* If the difference in column1 is less than zero, enter "0" in column 2. TOTAL

APPLICATION AS AMENDED- PARTII

OTHER THAN

(Column1) (Column 2) (Column 3) SMALL ENTITY
CLAIMS HIGHEST

REMAINING NUMBER ADDITIONAL
AFTER PREVIOUSLY FEE($)

AMENDMENT PAID FOR
Total

(37 CFR 1.16(i))

Independent(37 CFR 1.16(h))

Application Size Fee (37 CFR 1.16(s))
AMENDMENTA

FIRST PRESENTATION OF MULTIPLE DEPENDENTCLAIM (37 CFR 1.16(j))

(Column 1) (Column 2) (Column 3)
CLAIMS HIGHEST

REMAINING NUMBER PRESENT ADDITIONAL
AFTER PREVIOUSLY EXTRA FEE($)

AMENDMENT PAID FOR
Total

(37 CFR 1.16(i))
Independent

(37 CFR 1.16(h))

Application Size Fee (37 CFR 1.16(s))
AMENDMENTB

FIRST PRESENTATION OF MULTIPLE DEPENDENTCLAIM (37 CFR 1.16(j))

* |f the entry in column 1 is less than the entry in column 2, write "0" in column 3.
* If the "Highest Number Previously Paid For” IN THIS SPACEis less than 20, enter "20".

** If the "Highest Number Previously Paid For” IN THIS SPACEis less than 3, enter "3".
The "Highest Number Previously Paid For" (Total or Independent) is the highest found in the appropriate box in column 1.

Page 36 of 509 TCL 1002

Page 37 of 509 TCL 1002

UNITED STATES PATENT AND TRADEMARK OFFIGE
UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office

Address: COMMISSIONER FOR PATENTS
! OX.

Alexandria, Virginia 22313-1450www.uspto.gov

APPLICATION FILING or GRP ART
NUMBER 371(c) DATE UNIT FIL FEE REC'D ATTY.DOCKET.NO ITOT CLAIMSJIND CLAIMS

13/109,738 —0S/17/2011_——«(2628 1970 00100.36.0001 16 7

CONFIRMATION NO.2020

29153 FILING RECEIPT

ADVANCED MICRO DEVICES, INC.

C/O VEDDERPRICEP.C. AC00000004794362
222 N.LASALLE STREET

CHICAGO, IL 60601

Date Mailed: 06/01/2011

Receipt is acknowledged of this non-provisional patent application. The application will be taken up for examination
in due course. Applicant will be notified as to the results of the examination. Any correspondence concerning the
application mustinclude the following identification information: the U.S. APPLICATION NUMBER, FILING DATE,
NAME OF APPLICANT, and TITLE OF INVENTION. Fees transmitted by check or draft are subject to collection.
Please verify the accuracy of the data presented on this receipt. If an error is noted onthis Filing Receipt, please
submit a written requestfor a Filing Receipt Correction. Please provide a copyofthis Filing Receipt with the
changes noted thereon. If you received a "Notice to File Missing Parts" for this application, please submit
any corrections to this Filing Receipt with your reply to the Notice. When the USPTO processesthe reply
to the Notice, the USPTO will generate another Filing Receipt incorporating the requested corrections

Applicant(s)
Stephen Morein, Cambridge, MA;
Laurent Lefebvre, Lachgnaie, CANADA;
Andy Gruber, Arlington, MA;
Andi Skende, Shrewsbury, MA;

Assignment For Published Patent Application
ATI TECHNOLOGIES ULC, Markham, CANADA

Powerof Attorney:
Robert Beiser--28687 Timothy Bechen--48126
Angelo Bufalino--29622 Brent Boyd--51020
Joseph Krause--32578
Christopher Reckamp--34414
Michael Turgeon--39404

Domestic Priority data as claimed by applicant
This application is a CON of 12/791 ,597 06/01/2010
which is a CON of 11/842,256 08/21/2007 ABN
which is a CON of 11/117,863 04/29/2005 PAT 7,327,369
which is a CON of 10/718,318 11/20/2003 PAT 6,897,871

Foreign Applications (You may beeligible to benefit from the Patent Prosecution Highway program atthe
USPTO.Please see http://www.uspto.gov for more information.)

If Required, Foreign Filing License Granted: 05/27/2011

page 1 of 3

Page 37 of 509 TCL 1002

Page 38 of 509 TCL 1002

The country code and numberof your priority application, to be usedfor filing abroad under the Paris Convention,
is US 13/109,738

Projected Publication Date: 09/08/2011

Non-Publication Request: No

Early Publication Request: No
Title

GRAPHICS PROCESSING ARCHITECTURE EMPLOYING A UNIFIED SHADER

Preliminary Class

345

PROTECTING YOUR INVENTION OUTSIDE THE UNITED STATES

Since the rights granted by a U.S. patent extend only throughout the territory of the United States and have no
effect in a foreign country, an inventor who wishes patent protection in another country must apply for a patent
in a specific country or in regional patent offices. Applicants may wish to consider thefiling of an international
application under the Patent Cooperation Treaty (PCT). An international (PCT) application generally has the same
effect as a regular national patent application in each PCT-membercountry. The PCT process simplifies the filing
of patent applications on the sameinvention in membercountries, but does notresult in a grantof "an international
patent" and doesnoteliminate the needof applicantsto file additional documents and fees in countries where patent
protection is desired.

Almost every country has its own patent law, and a person desiring a patent in a particular country must make an
application for patent in that country in accordancewith its particular laws. Since the laws of many countries differ
in various respects from the patent law of the United States, applicants are advised to seek guidance from specific
foreign countries to ensure that patent rights are not lost prematurely.

Applicants also are advised that in the case of inventions madein the United States, the Director of the USPTO must
issue a license before applicants can apply for a patent in a foreign country. Thefiling of a U.S. patent application
serves as a request for a foreign filing license. The application's filing receipt contains further information and
guidance asto the status of applicant's license for foreignfiling.

Applicants may wish to consult the USPTO booklet, "General Information Concerning Patents”(specifically, the
section entitled "Treaties and Foreign Patents") for more information on timeframes and deadlinesforfiling foreign
patent applications. The guide is available either by contacting the USPTO Contact Center at 800-786-9199, orit
can be viewed on the USPTO website at http://“www.uspto.gov/web/offices/pac/doc/general/index.html.

For information on preventing theft of your intellectual property (patents, trademarks and copyrights), you may wish
to consult the U.S. Government website, http:/Avww.stopfakes.gov. Part of a Department of Commerceinitiative,
this website includes self-help "toolkits" giving innovators guidance on how to protectintellectual property in specific
countries such as China, Korea and Mexico. For questions regarding patent enforcementissues, applicants may
call the U.S. Governmenthotline at 1-866-999-HALT (1-866-999-4158).

page 2 of 3

Page 38 of 509 TCL 1002

Page 39 of 509 TCL 1002

LICENSE FOR FOREIGN FILING UNDER

Title 35, United States Code, Section 184

Title 37, Code of Federal Regulations, 5.11 & 5.15

GRANTED

The applicant has been granted a license under 35 U.S.C. 184, if the phrase "IF REQUIRED, FOREIGN FILING
LICENSE GRANTED"followed by a date appears on this form. Such licenses are issuedin all applications where
the conditions for issuance of a license have been met, regardless of whetheror not a license may be required as
set forth in 37 CFR 5.15. The scope andlimitations of this license are set forth in 37 CFR 5.15(a) unless an earlier
license has been issued under 37 CFR 5.15(b). The license is subject to revocation upon written notification. The
date indicatedis the effective date of the license, unless an earlier license of similar scope has been granted under
37 CFR 5.13 or 5.14.

This licenseis to be retained by the licensee and maybe usedat any time onorafter the effective date thereof unless
it is revoked. This license is automatically transferred to any related applications(s) filed under 37 CFR 1.53(d). This
license is not retroactive.

The grantof a license doesnot in any way lessen the responsibility of a licensee for the security of the subject matter
as imposed by any Governmentcontract or the provisions of existing laws relating to espionage and the national
security or the export of technical data. Licensees should apprise themselvesof current regulations especially with
respect to certain countries, of other agencies, particularly the Office of Defense Trade Controls, Department of
State (with respect to Arms, Munitions and Implements of War (22 CFR 121-128)); the Bureau of Industry and
Security, Department of Commerce (15 CFR parts 730-774); the Office of Foreign AssetsControl, Department of
Treasury (31 CFR Parts 500+) and the Department of Energy.

NOT GRANTED

No license under 35 U.S.C. 184 has been granted at this time, if the phrase "IF REQUIRED, FOREIGN FILING
LICENSE GRANTED" DOESNOTappearonthis form. Applicant maystill petition for a license under 37 CFR 5.12,
if a license is desired before the expiration of 6 months from thefiling date of the application. If 6 months has lapsed
from thefiling date of this application and the licensee has not received any indication of a secrecy order under 35
U.S.C. 181, the licensee mayforeignfile the application pursuant to 37 CFR 5.15(b).

page 3 of 3

Page 39 of 509 TCL 1002

Page 40 of 509 TCL 1002

Doc code: IDS

Doc description: Information Disclosure Statement (IDS) Filed

PTO/SB/08a (01-10)
Approvedfor use through 07/31/2012. OMB 0651-0031

U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE
Underthe Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number.

INFORMATION DISCLOSURE

STATEMENT BY APPLICANT

(Not for submission under 37 CFR 1.99)

Application Number 13109738

Filing Date 2011-05-17

First Named Inventor|Stephen Morein

Art Unit | 2628
Examiner Name na

Attorney Docket Number | 90100.36.0001

U.S.PATENTS Remove

Examiner] Cite Kind Nameof Patentee or Applicant Pages,Columns,Lines where
ae ie Patent Number Issue Date . Relevant Passages or RelevantInitial No Code’ of cited Document ;

Figures Appear

1 3550962 1996-08-27 Nakamuraetal.

2 3818469 1998-10-06 Lawlesset al.

3 6118452 2000-09-12 Gannett

4 6353439 2002-03-05 Lindholm etal.

5 6384824 2002-05-07 Morganetal.

6 6417858 2002-07-09 Bosch et al.

7 6573893 2003-06-03 Naqvi et al.

8 6650327 2002-11-18 Airey et al.

Page 40 of 509 TCL 1002EFS Web 2.1.17

Page 41 of 509 TCL 1002

INFORMATION DISCLOSURE

STATEMENT BY APPLICANT

(Not for submission under 37 CFR 1.99)

Application Number 13109738

Filing Date 2011-05-17

First Named Inventor|Stephen Morein

Art Unit | 2628
Examiner Name na
Attorney Docket Number | 00100.36.0001

6650330

6704018

6724394

6731289

w==== ~-Bo
6809732

6864893

ao 6897871

6980209

= 7015913

7038685

7327369

EFS Web 2.1.17

2003-11-18 Lindholm etal.

2004-03-09 Mori et al.

2004-04-20 Zatz et al.

2004-05-04 Peercy etal.

2004-10-26 Zatz et al.

2005-03-08 Zatz

2005-05-24 Morein etal.

2005-12-27 Donhametal.

2006-03-21 Lindholm etal.

2006-05-02 Lindholm

2008-02-05 Morein etal.

Page 41 of 509 TCL 1002

Page 42 of 509 TCL 1002

INFORMATION DISCLOSURE

STATEMENT BY APPLICANT

(Not for submission under 37 CFR 1.99)

Application Number 13109738

Filing Date 2011-05-17

First Named Inventor|Stephen Morein

Art Unit | 2628 Examiner Name na
| 00100.36.0001Attorney Docket Number

 5485559 1996-01-16 Sakaibara et al.

7239322 B2 2007-07-03 Lefebvre etal.

B2
7742053 B2 2010-06-22 Lefebvre etal.

If you wish to add additional U.S. Patent citation information please click the Add button.

U.S.PATENT APPLICATION PUBLICATIONS

Publication

Number

Examiner

Initial*

20030076320

20030164830

20040041814

20040164987

20050068325

EFS Web 2.1.17

Kind|Publication

Code’! Date

Page 42 of 509

Nameof Patentee or Applicant
of cited Document

Add

Remove

Pages,Columns,Lines where
Relevant Passages or Relevant
Figures Appear

TCL 1002

Page 43 of 509 TCL 1002

INFORMATION DISCLOSURE

STATEMENT BY APPLICANT

(Not for submission under 37 CFR 1.99)

Application Number 13109738

Filing Date 2011-05-17

First Named Inventor|Stephen Morein

Art Unit | 2628
Examiner Name na

Attorney Docket Number | 90100.36.0001

20100231592

20030030643

20070222785

20070222787

20050200629

20070222786

20070285427

20100156915

Examiner Cite|Foreign Document
Initial* Number?

2299408

EFS Web 2.1.17

Country Ki
Code? j Code?4| Date

2010-09-16 Morein etal.

2003-02-13 Taylor et al.

2007-09-27 Lefebvre etal.

2007-09-27 Lefebvre etal.

2005-09-15 Morein etal.

2007-09-27 Lefebvre etal.

2007-12-13 Morein etal.

2010-06-24 Lefebvre etal.

If you wish to add additional U.S. Published Application citation information please click the Add button.

FOREIGN PATENT DOCUMENTS

Nameof Patentee or
ind|Publication

Applicant of cited
Document

Add

Remove

Pages,Columns,Lines
where Relevant

Passages or Relevant
Figures Appear

— mane
Page 43 of 509 TCL 1002

Page 44 of 509 TCL 1002

Application Number 13109738

Filing Date 2011-05-17

INFORMATION DISCLOSURE

STATEMENT BY APPLICANT

(Not for submission under 37 CFR 1.99)

First Named Inventor|Stephen Morein

Art Unit | 2628

Examiner Name na
Attorney Docket Number | 00100.36.0001

_ —ee

 S- ee—|
If you wish to add additional Foreign Patent Documentcitation information please click the Add button

NON-PATENT LITERATURE DOCUMENTS Remove

. . Include nameof the author (in CAPITAL LETTERS},title of the article (when appropriate), title of the itemExaminer] Cite . : . .
an (book, magazine, journal, serial, symposium, catalog, etc}, date, pages(s), volume-issue number(s), TSInitials No : : .

publisher, city and/or country where published.

1 European Patent Office Examination Report; EP Application No. 04798938.9; dated November9, 2006; pages 1-3. [|

2 PURCELL, TIMOTHY J. et al.; Ray Tracing on Programmable Graphics Hardware; SIGGRAPH ‘02; San Antonio, TX; Ol
ACM Transactions on Graphics; July 2002; vol. 21, no. 3; pgs. 703-712.

3 MARK, WILLIAM R.et al.; CG: A system for programming graphics hardwarein a C-like language; SIGGRAPH '03; Ol
San Diego, CA; ACM Transactions on Graphics; July 2002; vol. 22, no. 3; pgs. 896-907.

4 BRETERNITZ, JR., MAURICIO et al.; Compilation, Architectural Support, and Evaluation of SIMD Graphics Pipeline Ol
Programs on a General-Purpose CPU; IEEE; 2003; pgs. 1-11.

5 International Search Report and Written Opinion; International Application No. PCT/IB2004/003821- dated March 27, Ol2005.

6 EP Supplemental Search Report; EP Application No. 10075688.1; dated February 25, 2011. [|

7 EP Supplemental Search Report; EP Application No. 10075686.5; dated February 25, 2011. [|

Page 44 of 509 TCL 1002EFS Web 2.1.17

Page 45 of 509 TCL 1002

Application Number 13109738

Filing Date 2011-05-17

INFORMATION DISCLOSURE

STATEMENT BY APPLICANT

(Not for submission under 37 CFR 1.99)

First Named Inventor|Stephen Morein

Art Unit | 2628

Examiner Name na

Attorney Docket Number | 00100.36.0001

 EP Supplemental Search Report; EP Application No. 10075687.3; dated February 25, 2011.

EP Supplemental Search Report; EP Application No. 10075685.7; dated February 25, 2011.

ELDRIDGE, MATTHEWet al.; Pomegranate: A Fully Scalable Graphics Architecture; Computer Graphics, SIGGRAPH
2000 Conference Proceedings: July 23, 2000.

OWENS,JOHN D. et al.; Polygon Rendering on a Stream Architecture; Proceedings 2000 SIGGRAPH/Eurographics
Workshop on Graphics Hardware: August 21, 2000.

Chinese Office Action; Chinese Application No. 2004800405708; dated September, 2008.

Chinese Office Action; Chinese Application No. 2004800405708; dated November, 2009.

Chinese Office Action; Chinese Application No. 2004800405708; dated September, 2010

If you wish to add additional non-patentliterature documentcitation information please click the Add button Add

EXAMINER SIGNATURE

*EXAMINER:Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through a
citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

1 See Kind Codes of USPTO Patent Documents at www.USPTO.GOV or MPEP 901.04. 2 Enter office that issued the document, by the two-letter code (WIPO
Standard ST.3). * For Japanese patent documents,the indication of the year of the reign of the Emperor must precede the serial numberof the patent document.
4 Kind of document by the appropriate symbols as indicated on the document under WIPO Standard ST.16 if possible. ° Applicant is to place a check mark here if]
English language translation is attached.

Page 45 of 509 TCL 1002EFS Web 2.1.17

Page 46 of 509 TCL 1002

Application Number 13109738

Filing Date 2011-05-17

INFORMATION DISCLOSURE
First Named Inventor|Stephen Morein

STATEMENT BY APPLICANT
ha Art Unit | 2628

(Not for submission under 37 CFR 1.99)

Examiner Name na
Attorney Docket Number | 00100.36.0001

CERTIFICATION STATEMENT

Please see 37 CFR 1.97 and 1.98 to makethe appropriate selection(s):

That each item of information contained in the information disclosure statement was first cited in any communication
[_] from a foreign patent office in a counterpart foreign application not more than three months prior to thefiling of the

information disclosure statement. See 37 CFR 1.97(e}(1).

OR

That no item of information contained in the information disclosure statement was cited in a communication from a

foreign patent office in a counterpart foreign application, and, to the knowledge of the person signing the certification
after making reasonable inquiry, no item of information contained in the information disclosure statement was known to

[-] any individual designated in 37 CFR 1.56(c) more than three months prior to the filing of the information disclosure
statement. See 37 CFR 1.97(e)(2).

See attached certification statement.

[_] Fee set forth in 37 CFR 1.17 (p) has been submitted herewith.

[_] None
SIGNATURE

A signature of the applicant or representative is required in accordance with CFR 1.33, 10.18. Please see CFR 1.4(d) for the
form of the signature.

Signature {Christopher J. Reckamp/ Date (YYYY-MM-DD) 2011-07-14

Name/Print Christopher J. Reckamp Registration Number 34,414
This collection of information is required by 37 CFR 1.97 and 1.98. The information is required to obtain or retain a benefit by the
public whichis to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR
1.14. This collection is estimated to take 1 hour to complete, including gathering, preparing and submitting the completed
application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you
require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S.
Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND
FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissionerfor Patents, P.O. Box 1450, Alexandria,
VA 22313-1450.

Page 46 of 509 TCL 1002EFS Web 2.1.17

Page 47 of 509 TCL 1002

Privacy Act Statement

The Privacy Act of 1974 (P.L. 93-579) requires that you be given certain information in connection with your submission of the
attached form related to a patent application or patent. Accordingly, pursuant to the requirements of the Act, please be advised
that: (1} the general authority for the collection of this information is 35 U.S.C. 2(b)(2); (2) furnishing of the information solicited
is voluntary; and (3) the principal purpose for which the information is used by the U.S. Patent and Trademark Office is to
process and/or examine your submission related to a patent application or patent. If you do not furnish the requested
information, the U.S. Patent and Trademark Office may not be able to process and/or examine your submission, which may
result in termination of proceedings or abandonmentof the application or expiration of the patent.

The information provided by you in this form will be subject to the following routine uses:

1. The information on this form will be treated confidentially to the extent allowed under the Freedom of Information Act
(5 U.S.C. 552} and the Privacy Act (5 U.S.C. 552a). Records from this system of records may be disclosed to the
Departmentof Justice to determine whether the Freedom of Information Act requires disclosure of these record s.

A record from this system of records may be disclosed, as a routine use, in the course of presenting evidence to a
court, magistrate, or administrative tribunal, including disclosures to opposing counselin the course of settlement
negotiations.

A record in this system of records may be disclosed, as a routine use, to a Member of Congress submitting a
requestinvolving an individual, to whom the record pertains, whentheindividual has requested assistance from the
Memberwith respect to the subject matter of the record.

A record in this system of records may be disclosed, as a routine use, to a contractor of the Agency having need for
the information in order to perform a contract. Recipients of information shall be required to comply with the
requirements of the Privacy Act of 1974, as amended, pursuant to 5 U.S.C. 552a(m).

A record related to an International Application filed under the Patent Cooperation Treaty in this system of records
may be disclosed, as a routine use, to the International Bureau of the World Intellectual Property Organization, pursuant
to the Patent Cooperation Treaty.

A record in this system of records may be disclosed, as a routine use, to another federal agency for purposes of
National Security review (35 U.S.C. 181) and for review pursuant to the Atomic Energy Act (42 U.S.C. 218(c)).

A record from this system of records may be disclosed, as a routine use, to the Administrator, General Services, or
his/her designee, during an inspection of records conducted by GSAaspart of that agency's responsibility to
recommend improvements in records management practices and programs, under authority of 44 U.S.C. 2904 and
2906. Such disclosure shall be made in accordance with the GSA regulations governing inspection of records for this
purpose, and any otherrelevant(i.e., GSA or Commerce) directive. Such disclosure shall not be used to make
determinations about individuals.

A record from this system of records may be disclosed, as a routine use, to the public after either publication of
the application pursuant to 35 U.S.C. 122(b) or issuance of a patent pursuant to 35 U.S.C. 151. Further, a record
may be disclosed, subject to the limitations of 37 CFR 1.14, as a routine use, to the public if the record wasfiled in
an application which became abandoned or in which the proceedings were terminated and which application is
referenced by either a published application, an application open to public inspections or an issued patent.

A record from this system of records may be disclosed, as a routine use, to a Federal, State, or local law
enforcement agency,if the USPTO becomes awareof a violation or potential violation of law or regulation.

Page 47 of 509 TFEL-1002
EFS Web 2.1.17

Page 48 of 509 TCL 1002

EP2299408A2

EuropalschesPatentamt

EuropeanPatent Office

Office européendes brevets
(12)

(43) Date of publication:
23.03.2011 Bulletin 2011/12

(21) Application number: 10075687.3

(22) Dateoffiling: 19.11.2004

(84) Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FRGB GR
HU IE IS IT LILU MC NL PL PT RO SE SISK TR

Designated Extension States:
AL HR LT MK YU

(30) Priority: 20.11.2003 US 718318

(62) Document number(s) of the earlier application(s) in
accordancewith Art. 76 EPC:

04798938.9 / 1 706 847

(71) Applicant: ATI Technologies Inc.
Markham,

Ontario L3T 7X6 (CA)

(72) Inventors:
¢ Morein, Steven

Cambridge, MA 02139 (US)

(54)

(57) Agraphics processor, comprising: an arbitercir-
cuit for selecting one of a plurality of inputs in response
to a control signal; and a shader, coupled to the arbiter
circuit, operative to process the selected oneof the plu-

OBJECT.

VIEWING
ANGLE

SHADER

(11) EP 2 299 408 A2

EUROPEAN PATENT APPLICATION

(51) Int CL:
GO6T 15/00 (2017.04) GO6T 15/80 (2011.91)

« Lefebvre, Laurent
Lachenaie

Quebec J6W 6A5 (CA)

« Gruber, Andy
Arlington, MA 02476 (US)

* Skende, Andi

Shrewsbury, MA 01545 (US)

(74) Representative: Waldren, Robin Michael
Marks & Clerk LLP

90 Long Acre
London

WC2E 9RA(GB)

Remarks:

This application was filed on 01-10-2010 asa

divisional application to the application mentioned
under INID code 62.

A graphics processing architecture employing a unified shader

rality of inputs, the shader including meansfor performing

vertex operations and pixel operations, and performing
one of the vertex operations or pixel operations based
on the selected one ofthe plurality of inputs, wherein the
shader provides a appearanceattribute.

40

12

Oy Zz)

FIG. 1

(PRIOR ART)

Ag by Jouve, Of OG k (FR) TCL 1002

Page 49 of 509 TCL 1002

1 EP 2 299 408 A2 2

Description

FIELD OF THE INVENTION

[0001] The present invention generally relates to
graphics processors and, moreparticularly, to a graphics
processorarchitecture employing a single shader.

BACKGROUND OF THE INVENTION

[0002] In computer graphics applications, complex
shapes and structures are formed through the sampling,

interconnection and rendering of more simple objects,

referred to as primitives. An example of such a primitive
is a triangle, or other suitable polygon. Theseprimitives,
in turn, are formed by the interconnection of individual

pixels. Color and texture are then applied to the individual
pixels that comprise the shape based on their location
within the primitive and the primitives orientation with re-
spect to the generated shape; thereby generating the
object that is rendered to a corresponding display for sub-

sequent viewing.
[0003] The interconnection of primitives and the appli-
cation of color and textures to generated shapesare gen-

erally performed by a graphics processor. Conventional
graphics processors include a series of shaders that
specify how and with what corresponding attributes, a

final image is drawn on a screen,or suitable display de-
vice. As illustrated in FIG. 1, a conventional shader 10

can be represented as a processing block 12 that accepts
a plurality of bits of input data, such as, for example,
object shape data (14) in object space (x,y,z); material
properties of the object, such as color (16); texture infor-

mation (18); luminance information (20); and viewing an-
gle information (22) and provides output data (28) rep-
resenting the object with texture and other appearance

properties applied thereto (x’, y’, z’).
[0004] Inexemplary fashion, asillustrated in FIGS. 2A-
2B, the shader accepts the vertex coordinate data rep-

resenting cube 30 (FIG. 2A) as inputs and provides data
representing, for example, a perspectively corrected
view of the cube 30’ (FIG. 2B) as an output. The corrected
view may be provided, for example, by applying an ap-
propriate transformation matrix to the data representing
the initial cube 30. More specifically, the representation

illustrated in FIG. 2B is provided by a vertex shader that
accepts as inputs the data representing, for example,

vertices V,, Vy and V,, among others of cube 30 and
providing angularly oriented vertices V,,Vy and Vz, in-
cluding any appearanceattributes of corresponding cube
30’.

[0005] In addition to the vertex shader discussed
above, a shader processing block that operates on the
pixel level, referred to as a pixel shader is also used when

generating an object for display. Generally, the pixel
shaderprovides the colorvalue associated with eachpix-
el of a rendered object. Conventionally, both the vertex
shaderand pixel shader are separate components that

Page 49,of 509

10

15

20

25

30

35

40

45

50

55

are configured to perform only a single transformation or

operation. Thus, in order to perform a position and a tex-
ture transformation of an input, at least two shading op-
erations and hence, at least two shaders, need to be

employed. Conventional graphics processors require the
use of both a vertex shader and a pixel shader in order
to generate an object. Because both types of shaders

are required, known graphics processorsare relatively
large in size, with most of the real estate being taken up
by the vertex and pixel shaders.

[0006] In addition to the real estate penalty associated
with conventional graphics processors, there is also a

corresponding performance penalty associated there-
with. In conventional graphics processors, the vertex
shaderand the pixel shaderare juxtaposed in a sequen-
tial, pipelined fashion, with the vertex shader being po-

sitioned before and operating on vertex data before the
pixel shader can operate on individual pixel data.
[0007] Thus, there is a need for an improved graphics
processor employing a shader that is both spaceefficient
and computationally effective.

SUMMARYOFTHE INVENTION

[0008] Briefly stated, the present inventionis directed
to a graphics processor that employs a unified shader
that is capable of performing both the vertex operations

and the pixel operations in a space saving and compu-
tationally efficient manner. In an exemplary embodiment,
a graphics processor according to the present invention
includes an arbiter circuit for selecting one of a plurality
of inputs for processing in response to a control signal:
and a shader, coupled to the arbiter, operative to process

the selected oneof the plurality of inputs, the shader in-
cluding meansfor performing vertex operations and pixel
operations, and wherein the shader performs oneof the

vertex operations or pixel operations based on the se-
lected one of the plurality of inputs.
[0009] The shader includes a general purpose register

block for storing at least the plurality of selected inputs,
a sequencerfor storing logical and arithmetic instructions
that are used to perform vertex and pixel manipulation
operations and a processor capable of executing both
floating point arithmetic and logical operations on the se-
lected inputs according to the instructions maintainedin

the sequencer. The shader of the present invention is
referred to as a "unified" shader becauseit is configured
to perform both vertex and pixel operations. By employ-

ing the unified shaderof the present invention, the asso-
ciated graphics processor is more space efficient than
conventional graphics processors because the unified

shader takes up less real estate than the conventional
multi-shader processorarchitecture.
[0010] In addition, according to the present invention,
the unified shader is more computationally efficient be-
causeit allows the shaderto be flexibly allocated to pixels
or vertices based on workload.

TCL 1002

Page 50 of 509 TCL 1002

3 EP 2 299 408 A2 4

BRIEF DESCRIPTION OF THE DRAWINGS

[0011] The present invention and the associated ad-
vantages and features thereof, will become better under-
stood and appreciated upon review of the following de-
tailed description of the invention, taken in conjunction
with the following drawings, where like numerals repre-
sentlike elements, in which:

FIG. 1 is aschematic block diagram of aconventional
shader;

FIGS. 2A-2B are graphical representations of the op-

erations performed bythe shader illustrated in FIG.
1;

FIG. 3is aschematic block diagram of a conventional
graphics processorarchitecture;

FIG. 4A is a schematic block diagram of a graphics
processorarchitecture according to the present in-
vention;

FIG. 4B is aschematic block diagram of an optional

input componentto the graphics processor accord-
ing to an alternate embodiment of the present inven-
tion; and

FIG. 5 is an exploded schematic block diagram of

the unified shader employed in the graphics proces-
sor illustrated in FIG. 4A.

DETAILED DESCRIPTION OF THE INVENTION

[0012] FIG.3, illustrates a graphics processor incor-
porating a conventional pipeline architecture. As shown,

the graphics processor 40 includes a vertex fetch block
42 which receives vertex information relating to a primi-
tive to be rendered from an off-chip memory 55 on line
41. The fetched vertex data is then transmitted to a vertex

cache 44for storage on line 43. Upon request, the vertex
data maintained in the vertex cache 44is transmitted to

a vertex shader 46 on line 45. As discussed above, an

exampleofthe information that is requested by and trans-
mitted to the vertex shader46 includes the object shape,

material properties (e.g. color), texture information, and
viewing angle. Generally, the vertex shader46 is a pro-
grammable mechanism which applies a transformation

position matrix to the input position information (obtained
from the vertex cache 44), thereby providing data repre-
senting a perspectively corrected image of the object to

be rendered, along with any texture or color coordinates
thereof.

[0013] After performing the transformation operation,
the data representing the transformed vertices are then
provided to a vertex store 48 online 47. The vertex store
48 then transmits the modified vertex information con-

tained therein to a primitive assembly block 50 on line

Page 50,o0f 509

10

15

20

25

30

35

40

45

50

55

49. The primitive assembly block 50 assembles,or con-

verts, the input vertex information into a plurality of prim-
itives to be subsequently processed. Suitable methods
of assembling the input vertex information into primitives

is knownin the art and will not be discussed in greater
detail here. The assembled primitives are then transmit-
ted to a rasterization engine 52, which converts the pre-
viously assembled primitives into pixel data through a
process referred to as walking. The resulting pixel data
is then transmitted to a pixel shader 54 on line 53.

[0014] The pixel shader 54 generates the color and
additional appearance attributes that are to be applied

to a given pixel, and applies the appearanceattributes
to the respective pixels. In addition, the pixel shader 54
is capable of fetching texture data from a texture map 57
as indexed by the pixel data from the rasterization engine

52 by transmitting such information on line 55 to the tex-
ture map. The requested texture data is then transmitted
back from the texture map 57 on line 57’ and stored ina
texture cache 56 before being routed to the pixel shader
online 58. Once the texture data has been received, the

pixel shader 54 then performs specified logical or arith-
metic operations on the received texture data to generate
the pixel color or other appearanceattribute of interest.

The generated pixel appearanceattribute is then com-
bined with a base color, as provided by the rasterization
engine on line 53, to thereby provide a pixel color to the

pixel corresponding at the position of interest. The pixel
appearanceattribute present on line 59 is then transmit-
ted to post raster processing blocks (not shown).
[0015] As described above, the conventional graphics
processor 40 requires the use of two separate shaders:
a vertex shader 46 and a pixel shader 54. A drawback
associated with such an architecture is that the overall

footprint of the graphics processoris relatively large as
the two shaders take up a large amountofreal estate.

Another drawback associated with conventional graphics
processorarchitectures is that can exhibit poor compu-
tational efficiency.

[0016] Referring now to FIG. 4A, in an exemplary em-
bodiment, the graphics processor 60 of the presentin-
vention includes a multiplexer 66 having vertex (e.g. in-

dices) data provided at a first input thereto and interpo-
lated pixel parameter (e.g. position) data and attribute
data from a rasterization engine 74 provided at a second
input. A control signal generated by an arbiter 64 is trans-
mitted to the multiplexer 66 on line 63. The arbiter 64
determines whichof the two inputs to the multiplexer 66
is transmitted to a unified shader 62 for further process-

ing. The arbitration scheme employed bythe arbiter 64
is as follows: the vertex data on the first input of the mul-
tiplexer 66 is transmitted to the unified shader 62 on line
65 if there is enough resources available in the unified
shader to operate on the vertex data; otherwise, the in-

terpolated pixel parameter data present on the second
input will be passed to the unified shader 62 for further
processing.
[0017] Referring briefly to FIG. 5, the unified shader

TCL 1002

Page 51 of 509 TCL 1002

5 EP 2 299 408 A2 6

62 will now be described. Asillustrated, the unified shader

62 includes a general purpose register block 92, a plu-
rality of source registers: including source register A 93,
source register B 95, and source register C 97, a proc-
essor (e.g. CPU) 96 and a sequencer 99. The general
purposeregister block 92 includes sixty four registers, or
available entries, for storing the information transmitted

from the multiplexer 66 on line 65 or any other information
to be maintained within the unified shader. The data

presentin the general purposeregister block 92 is trans-
mitted to the plurality of source registers via line 109.
[0018] The processor 96 may be comprised of a ded-

icated piece of hardware or can be configured as part of

a general purpose computing device(i.e, personal com-
puter). In an exemplary embodiment, the processor 96
is adapted to perform 32-bit floating point arithmetic op-

erations as well as a complete series of logical operations
on corresponding operands. As shown, the processoris
logically partitioned into two sections. Section 96 is con-
figured to execute, for example, the 32-bit floating point
arithmetic operations of the unified shader. The second

section, 96A,is configured to perform scaler operations
(e.g. log, exponent, reciprocal square root) of the unified
shader.

[0019] The sequencer 99 includes constants block 91
and an instruction store 98. The constants block 91 con-

tains, for example, the several transformation matrices

used in connection with vertex manipulation operations.
The instruction store 98 contains the necessary instruc-
tions that are executed by the processor96in order to
perform the respective arithmetic and logic operations
on the data maintained in the general purpose register
block 92 as provided by the source registers 93-95. The

instruction store 98 further includes memory fetch in-
structions that, when executed, causes the unified shad-

er 62 to fetch texture and other types of data, from mem-

ory 82 (FIG. 4A). In operation, the sequencer 99 deter-
mines whether the next instruction to be executed (from
the instruction store 98) is an arithmetic or logical instruc-

tion or a memory (e.g. texture fetch) instruction. If the
next instruction is a memory instruction or request, the
sequencer 99 sends the request to a fetch block (not
shown) which retrieves the required information from
memory 82 (FIG. 4A). The retrieved information is then
transmitted to the sequencer 99, through the vertex tex-

ture cache 68 (FIG. 4A) as described in greater detail
below.

[0020] If the next instruction to be executed is an arith-

metic or logical instruction, the sequencer 99 causes the
appropriate operandsto be transferred from the general
purpose register block 92 into the appropriate source reg-

isters (93, 95,97) forexecution, and an appropriate signal
is sent to the processor 96 on line 101 indicating what
operation or series of operations are to be executed on
the several operands present in the source registers. At
this point, the processor 96 executes the instructions on
the operands present in the source registers and pro-

vides the result on line 85. The information present on

Page 51,0f 509

10

15

20

25

30

35

40

45

50

55

line 85 may be transmitted back to the general purpose

register block 92 for storage, or transmitted to succeeding
components of the graphics processor 60.
[0021] As discussed above, the instruction store 98

maintains both vertex manipulation instructions and pixel
manipulation instructions. Therefore, the unified shader
99 of the present invention is able to perform both vertex
and pixel operations, as well as execute memory fetch
operations. As such, the unified shader62 of the present
invention is able to perform both the vertex shading and

pixel shading operations on datain the context of a graph-
ics controller based on information passed from the mul-

tiplexer. By being adapted to perform memory fetches,
the unified shaderof the present invention is able to per-
form additional processes that conventional vertex shad-
ers cannot perform; while at the sametime, perform pixel

operations.
[0022] The unified shader 62 has ability to simultane-
ously perform vertex manipulation operations and pixel
manipulation operations at various degrees of comple-
tion by being able to freely switch between such programs
or instructions, maintained in the instruction store 98,

very quickly. In application, vertex data to be processed
is transmitted into the general purpose register block 92

from multiplexer 66. The instruction store 98 then passes

the corresponding control signals to the processor 96 on
line 101 to perform such vertex operations. However, if
the general purpose register block 92 does not have
enough available space therein to store the incoming ver-
tex data, such information will not be transmitted as the
arbitration schemeof the arbiter 64 is not satisfied. In this

manner, any pixel calculation operations that are to be,
or are currently being, performed by the processor 96
are continued, based on the instructions maintained in

the instruction store 98, until enough registers within the
general purpose register block 92 become available.

Thus, through the sharing of resources within the unified

shader 62, processing of image data is enhanced as
there is no downtime associated with the processor 96.
[0023] Referring back to FIG. 4A, the graphics proc-
essor 60 further includes a cache block 70, including a
parameter cache 70A and a position cache 70B which

accepts the pixel based output of the unified shader 62
on line 85 and stores the respective pixel parameter and
position information in the corresponding cache. The pix-
el information present in the cache block 70 is then trans-
mitted to the primitive assembly block 72 on line 71. The
primitive assembly block 72 is responsible for assembling
the information transmitted thereto from the cache block

70 into a series of triangles, or other suitable primitives,
for further processing. The assembledprimitives are then
transmitted on line 73 to rasterization engine block 74,
wherethe transmitted primitives are then converted into
individual pixel data information through a walking proc-

ess, or any other suitable pixel generation process. The
resulting pixel data from the rasterization engine block
74 is the interpolated pixel parameter data that is trans-
mitted to the second input of the multiplexer 66 on line 75.

TCL 1002

Page 52 of 509 TCL 1002

7 EP 2 299 408 A2 8

[0024] In those situations when vertex data is trans-

mitted to the unified shader 62 through the multiplexer
66, the resulting vertex data generated by the processor
96, is transmitted to a render back end block 76 which

converts the resulting vertex data into at least one of sev-
eral formats suitable for later display on display device
84. For example, if a stained glass appearanceeffectis

to be applied to an image, the information corresponding
to such appearanceeffect is associated with the appro-
priate position data by the render back end 76. The in-
formation from the render back end 76is then transmitted

to memory 82 and a display controller line 80 via memory

controller 78. Such appropriately formatted information

is then transmitted on line 83 for presentation on display
device 84.

[0025] Referring now to FIG. 4B, shown therein is a

vertex block 61 which is used to provide the vertex infor-
mation at the first input of the multiplexer 66 according
to an alternate embodimentof the present invention. The
vertex block 61 includes a vertex fetch block 61A which

is responsible for retrieving vertex information from mem-

ory 82, if requested, and transmitting that vertex informa-
tion into the vertex cache 61 B. The information stored

in the vertex cache 61 B comprisesthe vertex information

that is coupled to the first input of multiplexer 66.
[9026] As discussed above, the graphics processor 60
of the present invention incorporates a unified shader 62

which is capable of performing both vertex manipulation
operations and pixel manipulation operations based on
the instructions stored in the instruction store 98. In this

fashion, the graphics processor60 of the present inven-
tion takes up less real estate than conventional graphics
processors as separate vertex shaders and pixel shaders

are no longer required. In addition, as the unified shader
62 is capable of alternating between performing vertex
manipulation operations and pixel manipulation opera-

tions, graphics processing efficiency is enhanced as one
type of data operations is not dependent upon another
type ofdata operations. Therefore, any performance pen-

alties experienced as a result of dependent operations
in conventional graphics processors are overcome.
[0027] The above detailed description of the present
invention and the examples described therein have been
presented for the purposesofillustration and description.
It is therefore contemplated that the present invention

cover any andall modifications, variations and equiva-
lents that fall within the scope of the basic underlying
principles disclosed and claimed herein.

Claims

1. Agraphics processor, comprising: an arbiter circuit
for selecting one of a plurality of inputs in response
to a control signal; and a shader, coupled to the ar-
biter circuit, operative to process the selected one
of the plurality of inputs, the shader including means

for performing vertex operations and pixel opera-

Page 52,0f 509

10

15

20

25

30

35

40

45

50

55

10.

tions, and performing one of the vertex operations

or pixel operations based on the selected one of the
plurality of inputs, wherein the shaderprovides a ap-
pearanceattribute.

The graphics processorof claim 1, further including
a vertex storage block for maintaining vertex infor-
mation.

The graphics processorof claim 2, wherein the ver-

tex storage block further includes a parameter cache
operative to maintain appearanceattribute data for

a corresponding vertex and a position cache opera-
tive to maintain position data for a corresponding ver-
tex.

The graphics processorof claim 1, wherein the ap-
pearanceattribute is color, and the color is associ-
ated with a corresponding pixel when the selected
one of the plurality inputs is pixel data.

The graphics processorof claim 1, wherein the ap-
pearance attribute is position, and the position at-
tribute is associated with a corresponding vertex

whenthe selected one of the plurality of inputs is
vertex data.

The graphics processorof claim 5, wherein the ap-
pearanceattribute is color, and the colorattribute is
associated with a corresponding pixel when the se-
lected one of the plurality of inputs is pixel data.

The graphics processorof claim 5, wherein the ap-

pearanceattribute is one of the following: color, light-
ing, texture, normal and position data.

The graphics processorof claim 1, wherein the ap-

pearance value is depth.

The graphics processorof claim 1, further including
a selection circuit, wherein the selection circuit is a

multiplexer, and the control signal is provided by an

arbiter, wherein the arbiter is coupled to the multi-
plexer.

The graphics processorof claim 1, wherein the shad-
er provides vertex position data and further including
a primitive assembly block, coupled to the shader,
operative to generate primitives in response to the

vertex position data.

TCL 1002

Page 53 of 509 TCL 1002

EP 2 299 408 A2

(LuVYOrdd)L‘Sls

 LOsrao

él

TCL 1002Page 53,of 509

Page 54 of 509 TCL 1002

EP 2 299 408 A2

30

FIG. 2A

(PRIOR ART)

Page 54,of 509 TCL 1002

Page 55 of 509 TCL 1002

EP 2 299 408 A2

55 ze

{ TEXTURE |
MEMORY MAP

pammonmeannema:oul

VERTEX FETCH V-CACHE

VERTEX VERTEX
SHADER STORE

PRIMITIVE 0
ASSEMBLY

51

“RASTERIZATION
ENGINE —

53

TO 5
57 PIXEL

. SHADER

FROM TEXTURE 64
57 CACHE 58

56
59

FIG. 3 POST RASTER
ROCESSIN(PRIOR ART) PROCESSING

Page 55,0f 509 TCL 1002

Page 56 of 509 TCL 1002

EP 2 299 408 A2

INDICES

64 63

UNIFIED
SHADER MEMORY

DATA

RENDER

BACK
END

79 MEMORY

71

PRIMITIVE
ASSEMBLY

CONTROLLER 73

RASTERIZATION

at ENGINE

DISPLAY

CONTROLLER

75

8 84 82

DISPLAY : MEMORY

FIG. 4A

Page 56,o0f 509 TCL 1002

Page 57 of 509 TCL 1002

EP 2 299 408 A2

INDICES

 VERTEX

FIG. 4B
sewnereses

61B

61A

UX MEMORYFROM M PETCH
67

 SOURCE A

Page 5/,0f 509 TCL 1002

Page 58 of 509 TCL 1002

EP2309460A1

EuropdischesPatentamt

EuropeanPatent Office

Office européendes brevets
(12)

(43) Date of publication:
13.04.2011 Bulletin 2011/15

(21) Application number: 10075688.1

(22) Dateoffiling: 19.11.2004

(11) EP 2 309 460 A1

EUROPEAN PATENT APPLICATION

(51) Int CL:
GO6T 15/00 (2071.01) GO6T 15/80 (2011.01)

(84) Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FIFR GB GR

HU IE IS IT LILU MC NL PL PT RO SE SISK TR

Designated Extension States:
AL HR LT MK YU

(30) Priority: 20.11.2003 US 718318

(62) Document number(s) of the earlier application(s} in
accordance with Art. 76 EPC:

04798938.9 /1 706 847

(71) Applicant: ATI Technologies ULC
Markham, Ontario L3T 7X6 (CA)

(72) Inventors:
* Morein, Steven

Cambridge, Massachusetts 02139 (US)

¢ Lefebvre, Laurent

Lachenale J6W BAS (CA)

* Gruber, Andy
Arlington, Massachusetts 02476 (US)

¢ Skende, Andi

Shrewsbury, Massachusetts 01545 (US)

(74) Representative: Waldren, Robin Michael
Marks & Clerk LLP

90 Long Acre
London

WC2E 9RA (GB)

Remarks:

This application was filed on 01-10-2010 as a

divisional application to the application mentioned
underINID code 62.

(54)

(57) Agraphics processor, comprising: an arbitercir-
cuit for selecting one of a plurality of inputs in response

to a control signal; a shader, coupled to the arbiter circuit,

operative to process the selected one of the plurality of
inputs, the shader including meansfor performing vertex

operations and pixel operations, and performing one of
the vertex operations or pixel operations based on the
selected one ofthe plurality of inputs, wherein the shader

 OBJECT.

A graphics processing architecture employing a unified shader

provides a appearanceattribute; a vertex storage block
for maintaining vertex information; wherein the vertex

storage block further includes a parameter cache oper-

ative to maintain appearance attribute data for a corre-
sponding vertex and a position cache operative to main-

tain position data for a corresponding vertex; and wherein
the appearance attribute is color, and the color is asso-
ciated with a corresponding pixel when the selected one

of the plurality inputs is pixel data.

1a

12

oy. Zz)

FIG.1

(PRIOR ART)

ag by 08 Of, 209, TCL 1002

Page 59 of 509 TCL 1002

1 EP 2 309 460 A1 2

Description

FIELD OF THE INVENTION

[0001] The present invention generally relates to

graphics processors and, moreparticularly, to a graphics
processor architecture employing a single shader.

BACKGROUND OFTHE INVENTION

[0002] In computer graphics applications, complex
shapes andstructures are formed through the sampling,

interconnection and rendering of more simple objects,
referred to as primitives. An example of such a primitive
is a triangle, or other suitable polygon. These primitives,

in turn, are formed by the interconnection of individual

pixels. Color and texture are then applied to the individual

pixels that comprise the shape based on their location
within the primitive and the primitives orientation with re-

spect to the generated shape; thereby generating the
object thatis rendered to a corresponding display for sub-

sequent viewing.
[0003] Theinterconnection of primitives and the appli-

cation of color and textures to generated shapes are gen-

erally performed by a graphics processor. Conventional
graphics processors include a series of shaders that
specify how and with what corresponding attributes, a

final image is drawn on a screen,or suitable display de-
vice. As illustrated in FIG. 1, a conventional shader 10

can be represented as a processing block 12 that accepts

a plurality of bits of input data, such as, for example,
object shape data (14) in object space (x,y,z); material

properties of the object, such as color (16); texture infor-
mation (18); luminance information (20); and viewing an-

gle information (22) and provides output data (28) rep-
resenting the object with texture and other appearance

properties applied thereto (x’, y’, z’}.

[0004] Inexemplary fashion, asillustrated in FIGS. 2A-
2B, the shader accepts the vertex coordinate data rep-

resenting cube 30 (FIG. 2A) as inputs and provides data
representing, for example, a perspectively corrected
view of the cube 30’ (FIG. 2B) as an output. The corrected

view may be provided, for example, by applying an ap-

propriate transformation matrix to the data representing

the initial cube 30. More specifically, the representation
illustrated in FIG. 2B is provided by a vertex shaderthat

accepts as inputs the data representing, for example,

vertices V,, Vy and Vz, among others of cube 30 and
providing angularly oriented vertices Vy,Vy and Vz, in-
cluding any appearanceattributes ofcorresponding cube
30’.

[0005] In addition to the vertex shader discussed

above, a shader processing block that operates on the
pixellevel, referred to as a pixel shaderis also used when

generating an object for display. Generally, the pixel
shaderprovidesthe color value associated with each pix-

el of a rendered cbject. Conventionally, both the vertex

shader and pixel shader are separate componentsthat

Page 59,of 509

72

15

20a

25

30a

35

40

45

50

55

are configured to perform only a single transformation or
operation. Thus, in order to perform a position and a tex-

ture transformation of an input, at least two shading op-
erations and hence, at least two shaders, need to be

employed. Conventional graphics processors require the
use of both a vertex shader and a pixel shaderin order
to generate an object. Because both types of shaders

are required, known graphics processors are relatively
large in size, with mostof the real estate being taken up

by the vertex and pixel shaders.

[0006] In addition to the real estate penalty associated
with conventional graphics processors, there is also a

corresponding performance penalty associated there-
with. In conventional graphics processors, the vertex
shader and the pixel shaderare juxtaposed in a sequen-

tial, pipelined fashion, with the vertex shader being pc-

sitioned before and operating on vertex data before the

pixel shader can operate on individual pixel data.
[0007] Thus, there is a need for an improved graphics

processor employing a shaderthatis both space efficient
and computationally effective.

SUMMARYOF THE INVENTION

[0008] Briefly stated, the present invention is directed
to a graphics processor that employs a unified shader
that is capable of performing both the vertex operations

and the pixel operations in a space saving and compu-
tationally efficient manner. In an exemplary embodiment,

a graphics processor according to the present invention

includes an arbiter circuit for selecting one of a plurality
of inputs for processing in response to a control signal:

and a shader, coupled to the arbiter, operative to process
the selected one of the plurality of inputs, the shaderin-

cluding meansfor performing vertex operations andpixel
operations, and wherein the shader performs one ofthe

vertex operations or pixel operations based on the se-

lected one of the plurality of inputs.
[0009] Theshader includes a general purpose register

block for storing at least the plurality of selected inputs,
a sequencerfor storing logical and arithmetic instructions
that are used to perform vertex and pixel manipulation

operations and a processor capable of executing both

floating point arithmetic and logical operations on the se-

lected inputs according to the instructions maintained in
the sequencer. The shader of the present invention is

referred to as a “unified” shader becauseit is configured
to perform both vertex and pixel operations. By employ-

ing the unified shader of the present invention, the asso-
ciated graphics processor is more space efficient than

conventional graphics processors because the unified

shader takes up less real estate than the conventional
multi-shader processor architecture.
[0010]=In addition, according to the present invention,

the unified shader is more computationally efficient be-
causeit allows the shaderto beflexibly allocated to pixels
or vertices based on workload.

TCL 1002

Page 60 of 509 TCL 1002

3 EP 2 309 460 A1 4

BRIEF DESCRIPTION OF THE DRAWINGS

[0011] The present invention and the associated ad-

vantages and features thereof, will become better under-
stood and appreciated upon review of the following de-

tailed description of the invention, taken in conjunction
with the following drawings, where like numerals repre-
sent like elements, in which:

FIG. 1is aschematic block diagram of a conventional
shader;

FIGS. 2A-2B are graphical representations of the op-

erations performed by the shaderillustrated in FIG.
1;

FIG. 3is aschematic block diagram of a conventional

graphics processor architecture;

FIG. 4A is a schematic block diagram of a graphics
processor architecture according to the presentin-
vention;

FIG. 4B is a schematic block diagram of an optional

input componentto the graphics processor accord-
ing to an alternate embodimentof the present inven-
tion; and

FIG. 5 is an exploded schematic block diagram of

the unified shader employed in the graphics proces-
sorillustrated in FIG. 4A.

DETAILED DESCRIPTION OF THE INVENTION

[0012] FIG. 3, illustrates a graphics processor incor-
porating a conventional pipeline architecture. As shown,

the graphics processor40 includes a vertex fetch block

4? which receives vertex information relating to a primi-
tive to be rendered from an off-chip memory 55 on line
41. The fetched vertex data is then transmitted to a vertex

cache44 for storage on line 43. Upon request, the vertex
data maintained in the vertex cache 44is transmitted to

a vertex shader 46 on line 45. As discussed above, an

example ofthe information that is requested by and trans-

mitted to the vertex shader46 includes the object shape,
material properties (e.g. color}, texture information, and
viewing angle. Generally, the vertex shader46 is a pro-

grammable mechanism which applies a transformation
position matrix to the input position information (obtained

from the vertex cache 44), thereby providing data repre-

senting a perspectively corrected image of the object to

be rendered, along with any texture or color coordinates
thereof.

[0013] After performing the transformation operation,

the data representing the transformed vertices are then
provided to a vertex store 48 on line 47. The vertex store
48 then transmits the modified vertex information con-

tained therein to a primitive assembly block 50 on line

Page 60,0f 509

72

15

20a

25

30a

35

40

45

50

55

49. The primitive assembly block 50 assembles, or con-
verts, the input vertex information into a plurality of prim-

itives to be subsequently processed. Suitable methods

of assembling the input vertex information into primitives

is known in the art and will not be discussed in greater
detail here. The assembled primitives are then transmit-
ted to a rasterization engine 52, which converts the pre-

viously assembled primitives into pixel data through a
process referred to as walking. The resulting pixel data

is then transmitted to a pixel shader 54 on line 53.

[0014] The pixel shader 54 generates the color and
additional appearance attributes that are to be applied

to a given pixel, and applies the appearance attributes
to the respective pixels. In addition, the pixel shader 54

is capable of fetching texture data from a texture map 57
as indexed by the pixel data from the rasterization engine

52 by transmitting such information on line 55 to the tex-

ture map. The requested texture data is then transmitted
back from the texture map 57 on line 57’ and stored ina

texture cache 56 before being routed to the pixel shader
on line 58. Once the texture data has been received, the

pixel shader 54 then performs specified logical or arith-
metic operations on the received texture data to generate

the pixel color or other appearance attribute of interest.

The generated pixel appearance attribute is then com-
bined with a base color, as provided by the rasterization

engine on line 53, to thereby provide a pixel color to the
pixel corresponding at the position of interest. The pixel
appearanceattribute present on line 59 is then transmit-

ted to post raster processing blocks (not shown).

[0015] As described above, the conventional graphics

processor 40 requires the use of two separate shaders:
a vertex shader 46 and a pixel shader 54. A drawback
associated with such an architecture is that the overall

footprint of the graphics processoris relatively large as
the two shaders take up a large amount of real estate.

Another drawback associated with conventional graphics

processor architectures is that can exhibit poor compu-
tational efficiency.

[0016] Referring now to FIG. 4A, inan exemplary em-
bodiment, the graphics processor 60 of the present in-

vention includes a multiplexer 66 having vertex (e.g. in-
dices) data provided at a first input thereto and interpo-

lated pixel parameter (e.g. position) data and attribute

data from a rasterization engine 74 provided at a second
input. A control signal generated by an arbiter 64is trans-

mitted to the multiplexer 66 on line 63. The arbiter 64
determines which of the two inputs to the multiplexer 66

is transmitted to a unified shader 62 for further process-
ing. The arbitration scheme employed by the arbiter 64

is as follows: the vertex data onthefirst input of the mul-

tiplexer 66 is transmitted to the unified shader 62 on line
65 if there is enough resources available in the unified
shader to operate on the vertex data; otherwise, the in-

terpolated pixel parameter data present on the second
input will be passed to the unified shader 62 for further

processing.

[0017] Referring briefly to FIG. 5, the unified shader

TCL 1002

Page 61 of 509 TCL 1002

5 EP 2 309 460 A1 6

6? will now be described. Asillustrated, the unified shader

62 includes a general purpose register block 92, a plu-

rality of source registers: including source register A 93,

source register B 95, and source register C 97, a proc-
essor (e.g. CPU) 96 and a sequencer 99. The general

purposeregister block 9? includes sixty four registers, or
available entries, for storing the information transmitted

fromthe multiplexer 66 on line 65 or any other information
to be maintained within the unified shader. The data

presentin the general purpose register block 92 is trans-

mitted to the plurality of source registers via line 109.
[0018] The processor 96 may be comprised of a ded-

icated piece of hardware or can be configured as part of
a general purpose computing device (i.e. personal com-
puter). In an exemplary embodiment, the processor 96

is adapted to perform 32-bit floating point arithmetic op-

erations as well as acomplete series of logical operations

on corresponding operands. As shown, the processoris
logically partitioned into two sections. Section 96 is con-

figured to execute, for example, the 32-bit floating point
arithmetic operations of the unified shader. The second

section, 96A, is configured to perform scaler operations
(e.g. log, exponent, reciprocal square root} of the unified
shader.

[0019] The sequencer 99 includes constants block 91
and aninstruction store 98. The constants block 91 con-

tains, for example, the several transformation matrices

used in connection with vertex manipulation operations.
The instruction store 98 contains the necessary instruc-

tions that are executed by the processor 96 in orderto

perform the respective arithmetic and logic operations
on the data maintained in the general purpose register

block 9? as provided by the source registers 93-95. The
instruction store 98 further includes memory fetch in-
structions that, when executed, causes the unified shad-

er 62 to fetch texture and other types of data, from mem-

ory 82 (FIG. 4A). In operation, the sequencer 99 deter-

mines whetherthe next instruction to be executed {from
the instruction store 98) is an arithmetic or logical instruc-

tion or a memory (e.g. texture fetch) instruction. If the
next instruction is a memory instruction or request, the
sequencer 99 sends the request to a fetch block (not

shown) which retrieves the required information from

memory 82 (FIG. 4A). The retrieved information is then

transmitted to the sequencer 99, through the vertex tex-
ture cache 68 (FIG. 4A} as described in greater detail
below.

[0020] Ifthe next instruction to be executed is an arith-
metic or logical instruction, the sequencer 99 causes the

appropriate operands to be transferred from the general

purpose register block 92 into the appropriate source reg-

isters (93, 95, 97} for execution, and an appropriate signal
is sent to the processor 96 on line 101 indicating what
operation or series of operations are to be executed on

the several operands present in the source registers. At
this point, the processor 96 executes the instructions on

the operands present in the source registers and pro-

vides the result on line 85. The information present on

Page 61,0f 509

72

15

20a

25

30a

35

40

45

50

55

line 85 may be transmitted back to the general purpose

register block 9? for storage,or transmitted to succeeding
components of the graphics processor 60.

[0021] As discussed above, the instruction store 98

maintains both vertex manipulation instructions and pixel
manipulation instructions. Therefore, the unified shader
99 of the present invention is able to perform both vertex

and pixel operations, as well as execute memory fetch
operations. As such, the unified shader 62 of the present

invention is able to perform both the vertex shading and

pixel shading operations on data in the context of a graph-

ics controller based on information passed from the mul-
tiplexer. By being adapted to perform memory fetches,
the unified shaderof the present invention is able to per-

form additional processes that conventional vertex shad-
ers cannot perform; while at the same time, perform pixel

operations.

[0022] The unified shader 62 has ability to simultane-
ously perform vertex manipulation operations and pixel

manipulation operations at various degrees of comple-
tion by being able to freely switch between such programs
or instructions, maintained in the instruction store 98,

very quickly. In application, vertex data to be processed

is transmitted into the general purpose register block 92

from multiplexer 66. The instruction store 98 then passes
the corresponding control signals to the processor 96 on

line 101 to perform such vertex operations. However,if
the general purpose register block 92 does not have

enough available spacetherein to store the incoming ver-
tex data, such information will not be transmitted as the
arbitration schemeofthe arbiter 64 is not satisfied. In this

manner, any pixel calculation operations that are to be,
or are currently being, performed by the processor 96
are continued, based on the instructions maintained in

the instruction store 98, until enough registers within the
general purpose register block 92 become available.

Thus, through the sharing of resources within the unified

shader 62, processing of image data is enhanced as
there is no down time associated with the processor 96.

[0023] Referring back to FIG. 4A, the graphics proc-
essor 60 further includes a cache block 70, including a

parameter cache 70A and a position cache 70B which
accepts the pixel based output of the unified shader 62

on line 85 and stores the respective pixel parameter and

position information in the corresponding cache. The pix-

el information present in the cache block70is then trans-
mitted to the primitive assembly block 7? on line 71. The
primitive assembly block 72 is responsible for assembling
the information transmitted thereto from the cache block

70 into a series of triangles, or other suitable primitives,

for further processing. The assembled primitives are then

transmitted on line 73 to rasterization engine block 74,
where the transmitted primitives are then converted into

individual pixel data information through a walking proc-
ess, or any othersuitable pixel generation process. The

resulting pixel data from the rasterization engine block
74 is the interpolated pixel parameter data that is trans-

mitted to the secondinput of the multiplexer 66 on line 75.

TCL 1002

Page 62 of 509 TCL 1002

7 EP 2 309 460 A1 8

[0024] In those situations when vertex data is trans-
mitted to the unified shader 62 through the multiplexer

66, the resulting vertex data generated by the processor
96, is transmitted to a render back end block 76 which

converts the resulting vertex data into at least one of sev-

eral formats suitable for later display on display device
84. For example, if a stained glass appearance effect is

to be applied to an image, the information corresponding
to such appearance effect is associated with the appro-

priate position data by the render back end 76. the infor-
mation from the render back end 76is then transmitted

to memory 82 and a display controllerline 80 via memory

controller 78. Such appropriately formatted information
is then transmitted on line 83 for presentation on display
device 84.

[0025] Referring now to FIG. 4B, shown therein is a

vertex block 61 which is used to provide the vertex infor-

mation at the first input of the multiplexer 66 according
to an alternate embedimentof the present invention. The
vertex block 61 includes a vertex fetch block 61A which

is responsible for retrieving vertex information from mem-

ory 82, if requested, and transmitting that vertex informa-
tion into the vertex cache 61 B. The information stored

inthe vertex cache 61 B comprises the vertex information

that is coupled to thefirst input of multiplexer 66.
[0026] As discussed above, the graphics processor 60
of the presentinvention incorporates a unified shader 62

which is capable of performing both vertex manipulation
operations and pixel manipulation operations based on
the instructions stored in the instruction store 98. In this

fashion, the graphics processor 60 of the present inven-
tion takes up less real estate than conventional graphics

processors as separate vertex shaders and pixel shaders
are no longer required. In addition, as the unified shader

62 is capable of alternating between performing vertex
manipulation operations and pixel manipulation opera-

tions, graphics processing efficiency is enhanced as one

type of data operations is not dependent upon another
type ofdata operations. Therefore, any performance pen-

alties experienced as a result of dependent operations
in conventional graphics processors are overcome.
[0027] The above detailed description of the present

invention and the examples described therein have been

presented for the purposesofillustration and description.

It is therefore contemplated that the present invention
cover any and all modifications, variations and equiva-

lents that fall within the scope of the basic underlying
principles disclosed and claimed herein.

Claims

1. A graphics processor, comprising: an arbiter circuit
for selecting one of a plurality of inputs in response

to a control signal; a shader, coupled to the arbiter
circuit, operative to process the selected one of the

plurality of inputs, the shader including means for

performing vertex operations and pixel operations,

Page 62,0f 509

72

15

20a

25

30a

35

40

45

50

55

and performing one of the vertex operations or pixel

operations based on the selected one ofthe plurality
of inputs, wherein the shaderprovides a appearance

attribute; a vertex storage block for maintaining ver-

tex information; wherein the vertex storage blockfur-
ther includes a parameter cache operative to main-
tain appearance attribute data for a corresponding

vertex and a position cache operative to maintain
position data for a corresponding vertex; and where-

in the appearanceattribute is color, and the coloris

associated with a corresponding pixel when the se-

lected one of the plurality inputs is pixel data.

The graphics processorof claim 1 wherein the ap-

pearance attribute is position, and the position at-
tribute is associated with a corresponding vertex

when the selected one of the plurality of inputs is
vertex data.

TCL 1002

Page 63 of 509 TCL 1002

EP 2 309 460 A1

(LuvYOordd)L“Sld

(2449YACVHS

eb

TCL 1002Page 63,0f 509

Page 64 of 509 TCL 1002

EP 2 309 460 A1

30

FIG. 2A

(PRIOR ART)

FIG. 2B

(PRIOR ART)

Page 64,0f 509 TCL 1002

Page 65 of 509 TCL 1002

EP 2 309 460 A1

55 57jooseesesventasseesee

TEXTURE
MEMORY MAPeeee peeeeeeeneeenl

Reneeeeeeeel

wares

VERTEX VERTEX
SHADER STORE

PRIMITHVE 50
ASSEMBLY

51

“RASTERIZATION|42 ©
ENGINE -

53.

TO 5
57 PIXEL

. ; SHADER
FROM TEXTURE 5d

57 CACHE [56

5
59

FIG. 3 POST RASTER
ROCES(PRIOR ART) PROCESSING

Page 65,0f 509 TCL 1002

Page 66 of 509 TCL 1002

EP 2 309 460 A1

INDICES

6
64 65

UNIFIED
SHADER MEMORY

60 DATA.

79

MEMORY
CONTROLLER

DISPLAY

CONTROLLER

8 84 , 82

DISPLAY MEMORY

FIG, 4A

Page 66,0f 509 TCL 1002

Page 67 of 509 TCL 1002

EP 2 309 460 A1

INDICES 61
nonereeeedneneceatnceeeeLovwnnerennenenenny

Cueeeeeeee

Page 6/%f 509

TO MUX

FIG. 4B

MEMORY
FETGH

67

TCL 1002

Page 68 of 509 TCL 1002

EP 2 309 460 A1

EuropaischesPatentamt
European

Application Number
eean EUROPEAN SEARCH REPORT
des brevets” EP 10 Q? 5688

DOCUMENTS CONSIDERED TO BE RELEVANT

Category Citation of document with indication, where appropriate, Relevant}GLASSIFIGATIONOETHE|OF THEof relevant passages to claim APPLICATION}GLASSIFIGATIONOETHE|
US 2003/164830 Al (KENT OSMAN) 1,2 INV.
4 September 2003 (2003-09-04) G06T15/00
* abstract; figures 1A,1B,1C,1D * GO6T15/80
* paragraphs [0906], [9007], [oo12] *
* paragraphs [0079], [0091] - [0095],
[9102], [0154] - [0156], [9170] *

US 6 417 858 B1 (BOSCH DEREK ET AL)
9 July 2002 (2002-07-09)
* abstract; figures 2,3,4,5 *
* column 3, lines 22-32 *
* column 8, line 47 - line 61 *
* colum 9, line 10 - line 21; claim 24 *

US 6 353 439 Bl (LINDHOLM JOHN ERIK ET AL)]1,2
5 March 2002 (2002-03-05)
* columm &, lines 22-53; figures
1B,2B,4,4B *

BRETERNITZ M ET AL: "Compilation,
architectural support,and evaluation of TECHNICALFIELDS
SIMD graphics pipeline programs on a SEARCHED {Pc
general-purpose CPU", GO6T
27 September 2003 (2003-09-27), PARALLEL
ARCHITECTURES AND COMPILATION TECHNIQUES,
2903. PACT 2003. PROCEEDINGS. 12TH
INTERNATIONAL CONFERENCE ON 2/7 SEPT. - 1

OCT. 2003, PISCATAWAY, NJ, USA,IEEE,
PAGE(S) 135- 145, XP910662182,
ISBN: 0-7695-2021-9

* page 1 - page 3; figures 1,2 *

-{--

The present search report has been drawn upforall claims
ho

Place of search Date of|26February2011of the search ExaminerMunich 25|26February20112011 Meinl, Wolfgang
CATEGORY OF CITED DOCUMENTS. T: theory or pringiple underlying the invention

E: earlier patent document, but published on, or
X: particularly relevant if taken alone afterthefiling date
Y : partioularly relevantif combined with another D : dooument cited in the application

dooument of the same oategary L : dooument sited for other reasons
A>: technological background
O7: nen-written disclosure &: memberof the same patent family, correspondingP: intermediate document document

EPOFORM150303.82(PO4C01)

Page 68,pf 509 TCL 1002

Page 69 of 509 TCL 1002

EP 2 309 460 A1

EuropaischesPatentamt
European

PatentOftce EUROPEAN SEARCH REPORT Application Number
des brevets EP 10 O7 5688

DOCUMENTS CONSIDERED TO BE RELEVANT

Citation ofCethincigation, where appropriate,

A OWENS J D ET AL: “POLYGON RENDERING ON A |1,2
STREAM ARCHITECTURE",
PROCEEDINGS 2000 SIGGRAPH/EUROGRAPHICS
WORKSHOP ON GRAPHICS HARDWARE. INTERLAKEN,
SWITZERLAND, AUG. 21 - 22, 2000; [SIGGRAPH
/ EUROGRAPHICS WORKSHOP ON GRAPHICS
HARDWARE], NEW YORK, NY : ACM, US,
21 August 2000 (2000-08-21), pages 23-32,
XP000964471,
DOI: DOI:10.1145/346876.346883
ISBN: 978-1-58113-257-1

* abstract; figures 1,3 *
* Sections 2, 2.1, 2.2, 3. *

MARK WR ET AL: "Cg: a system for
programming graphics hardware in a C-like
language",
ACM TRANSACTIONS ON GRAPHICS ACM USA,
vol. 22, no. 3, July 2003 (2003-07), pages
896-907, XP002624786,
ISSN: 0730-0301 TECHNICAL FIELDS

* abstract; figure 2 * SEARCHED (IPC)
* page 899, column 1, lines 17-50 *

The present search report has been drawn upforall claims
Place of search Date of completion of the search Examiner

Munich 25 February 2011 Meinl, Wolfgang
CATEGORY OF CITED DOCUMENTS T : theory or principle underlying the invention

E: earlier patent dosument, but published on, or
X: particularly relevantif taken alone after the filing date
¥: particularly relevant if combined with another D: documentcited in the application

document of the same category L: document cited for other reasons
A: technological background
0: non-written disclosure & : memberof the same patent family, correspondingP: intermediate dooument dooument

EPOFORM150803.82(Podco1)PO

Page 69,pf 509 TCL 1002

Page 70 of 509 TCL 1002

EP 2 309 460 A1

ANNEX TO THE EUROPEAN SEARCH REPORT
ON EUROPEAN PATENTAPPLICATION NO. EP 10 Q7 5688

This annexlists the patent family members relating to the patent documentscited in the above-mentioned European search report.
The members are as contained in the European Patent Office EDPfile on
The European Patent Office is in no wayliable for these particulars which are merely given for the purpose of information.

25-02-2011

Patent document Publication Patent family Publication
cited in search report date member(s} date

US 2003164830 Al 04-09-2003 NONE

EPOFORMP045S

For more details about this annex : see Official Journal of the European Patent Office, No. 12/82

Page 70,f 509 TCL 1002

Page 71 of 509 TCL 1002

EP2296116A2

(1 9) EuropalschesPatentamt

EuropeanPatent Office

Office européendes brevets (11) EP 2 296 116 A2

(12) EUROPEAN PATENT APPLICATION

(43) Date of publication:
16.03.2011 Bulletin 2011/11

(21) Application number: 10075686.5

(22) Dateoffiling: 19.11.2004

(84) Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FRGB GR
HU IE IS IT LILU MC NL PL PT RO SE SISK TR

Designated Extension States:
AL HR LT MK YU

(30) Priority: 20.11.2003 US 718318

(62) Document number(s) of the earlier application(s) in
accordancewith Art. 76 EPC:

04798938.9 / 1 706 847

(71) Applicant: ATI Technologies Inc.
Markham,

Ontario L3T 7X6 (CA)

(72) Inventors:
¢ Morein, Steven

Cambridge, Massachusetts 02139 (US)

(51) Int CL:

GO6T 15/00 (2011.91)

« Lefebvre, Laurent

Lachenaie, Quebec J6W 6A5 (CA)

« Gruber, Andy
Arlington, Massachusetts 02476 (US)

* Skende, Andi

Shrewsbury, Massachusetts 01545 (US)

(74) Representative: Waldren, Robin Michael
Marks & Clerk LLP

90 Long Acre
London

WC2E 9RA (GB)

Remarks:

This application was filed on 01-10-2010 asa
divisional application to the application mentioned
under INID code 62.

(54) A graphics processing architecture employing a unified shader

(57) A method comprising:
performing vertex manipulation operations and pixel ma-
nipulation operations by transmitting vertex data to a gen-
eral purposeregister block, and performing vertex oper-
ations on the vertex data by a processor unless the gen-
eral purpose register block does not have enough avail-
able space therein to store incoming vertex data; and

continuing pixel calculation operations that are to be or
are currently being performed by the processor based
on instructions maintained in an instruction store until

enough registers within the general purpose register
block become available.

INDICES

 ARBITER

UNIFIED
SHADER MEMORY

84

MEMORY

FIG. 4A

 8 a4

DISPLAY

>AQ by Jouve, Of, us (FR) TCL 1 002

Page 72 of 509 TCL 1002

1 EP 2 296 116 A2 2

Description

FIELD OF THE INVENTION

[0001] The present invention generally relates to
graphics processors and, moreparticularly, to a graphics
processorarchitecture employing a single shader.

BACKGROUND OF THE INVENTION

[0002] In computer graphics applications, complex
shapes and structures are formed through the sampling,

interconnection and rendering of more simple objects,

referred to as primitives. An example of such a primitive
is a triangle, or other suitable polygon. Theseprimitives,
in turn, are formed by the interconnection of individual

pixels. Color and texture are then applied to the individual
pixels that comprise the shape based on their location
within the primitive and the primitives orientation with re-
spect to the generated shape; thereby generating the
object that is rendered to a corresponding display for sub-

sequent viewing.
[0003] The interconnection of primitives and the appli-
cation of color and textures to generated shapesare gen-

erally performed by a graphics processor. Conventional
graphics processors include a series of shaders that
specify how and with what corresponding attributes, a

final image is drawn on a screen,or suitable display de-
vice. As illustrated in FIG. 1, a conventional shader 10

can be represented as a processing block 12 that accepts
a plurality of bits of input data, such as, for example,
object shape data (14) in object space (x,y,z); material
properties of the object, such as color (16); texture infor-

mation (18); luminance information (20); and viewing an-
gle information (22) and provides output data (28) rep-
resenting the object with texture and other appearance

properties applied thereto (x’, y’, z’).
[0004] Inexemplary fashion, asillustrated in FIGS. 2A-
2B, the shader accepts the vertex coordinate data rep-

resenting cube 30 (FIG. 2A) as inputs and provides data
representing, for example, a perspectively corrected
view of the cube 30’ (FIG. 2B) as an output. The corrected
view may be provided, for example, by applying an ap-
propriate transformation matrix to the data representing
the initial cube 30. More specifically, the representation

illustrated in FIG. 2B is provided by a vertex shader that
accepts as inputs the data representing, for example,

vertices Vy, Vy and Vz, among others of cube 30 and
providing angularly oriented vertices Vx, Vy and Vz, in-
cluding any appearanceattributes of corresponding cube
30’.

[0005] In addition to the vertex shader discussed
above, a shader processing block that operates on the
pixel level, referred to as a pixel shader is also used when

generating an object for display. Generally, the pixel
shaderprovides the colorvalue associated with eachpix-
el of a rendered object. Conventionally, both the vertex
shaderand pixel shader are separate components that

Page 72,o0f 509

10

15

20

25

30

35

40

45

50

55

are configured to perform only a single transformation or

operation. Thus, in order to perform a position and a tex-
ture transformation of an input, at least two shading op-
erations and hence, at least two shaders, need to be

employed. Conventional graphics processors require the
use of both a vertex shader and a pixel shader in order
to generate an object. Because both types of shaders

are required, known graphics processorsare relatively
large in size, with most of the real estate being taken up
by the vertex and pixel shaders.

[0006] In addition to the real estate penalty associated
with conventional graphics processors, there is also a

corresponding performance penalty associated there-
with. In conventional graphics processors, the vertex
shaderand the pixel shaderare juxtaposed in a sequen-
tial, pipelined fashion, with the vertex shader being po-

sitioned before and operating on vertex data before the
pixel shader can operate on individual pixel data.
[0007] Thus, there is a need for an improved graphics
processor employing a shader that is both spaceefficient
and computationally effective.

SUMMARYOFTHE INVENTION

[0008] Briefly stated, the present inventionis directed
to a graphics processor that employs a unified shader
that is capable of performing both the vertex operations

and the pixel operations in a space saving and compu-
tationally efficient manner. In an exemplary embodiment,
a graphics processor according to the present invention
includes an arbiter circuit for selecting one of a plurality
of inputs for processing in response to a control signal:
and a shader, coupled to the arbiter, operative to process

the selected oneof the plurality of inputs, the shader in-
cluding meansfor performing vertex operations and pixel
operations, and wherein the shader performs oneof the

vertex operations or pixel operations based on the se-
lected one of the plurality of inputs.
[0009] The shader includes a general purpose register

block for storing at least the plurality of selected inputs,
a sequencerfor storing logical and arithmetic instructions
that are used to perform vertex and pixel manipulation
operations and a processor capable of executing both
floating point arithmetic and logical operations on the se-
lected inputs according to the instructions maintainedin

the sequencer. The shader of the present invention is
referred to as a "unified" shader becauseit is configured
to perform both vertex and pixel operations. By employ-

ing the unified shaderof the present invention, the asso-
ciated graphics processor is more space efficient than
conventional graphics processors because the unified

shader takes up less real estate than the conventional
multi-shader processorarchitecture.
[0010] In addition, according to the present invention,
the unified shader is more computationally efficient be-
causeit allows the shaderto be flexibly allocated to pixels
or vertices based on workload.

TCL 1002

Page 73 of 509 TCL 1002

3 EP 2 296 116 A2 4

BRIEF DESCRIPTION OF THE DRAWINGS

[0011] The present invention and the associated ad-
vantages and features thereof, will become better under-
stood and appreciated upon review of the following de-
tailed description of the invention, taken in conjunction
with the following drawings, where like numerals repre-
sentlike elements, in which:

FIG. 1 is aschematic block diagram of aconventional
shader;

FIGS. 2A-2B are graphical representations of the op-

erations performed bythe shader illustrated in FIG.
1;

FIG. 3is aschematic block diagram of a conventional
graphics processorarchitecture;

FIG. 4A is a schematic block diagram of a graphics
processorarchitecture according to the present in-
vention;

FIG. 4B is aschematic block diagram of an optional

input componentto the graphics processor accord-
ing to an alternate embodiment of the present inven-
tion; and

FIG. 5 is an exploded schematic block diagram of

the unified shader employed in the graphics proces-
sor illustrated in FIG. 4A.

DETAILED DESCRIPTION OF THE INVENTION

[0012] FIG.3, illustrates a graphics processor incor-
porating a conventional pipeline architecture. As shown,

the graphics processor 40 includes a vertex fetch block
42 which receives vertex information relating to a primi-
tive to be rendered from an off-chip memory 55 on line
41. The fetched vertex data is then transmitted to a vertex

cache 44for storage on line 43. Upon request, the vertex
data maintained in the vertex cache 44is transmitted to

a vertex shader 46 on line 45. As discussed above, an

exampleofthe information that is requested by and trans-
mitted to the vertex shader46 includes the object shape,

material properties (e.g. color), texture information, and
viewing angle. Generally, the vertex shader46 is a pro-
grammable mechanism which applies a transformation

position matrix to the input position information (obtained
from the vertex cache 44), thereby providing data repre-
senting a perspectively corrected image of the object to

be rendered, along with any texture or color coordinates
thereof.

[0013] After performing the transformation operation,
the data representing the transformed vertices are then
provided to a vertex store 48 online 47. The vertex store
48 then transmits the modified vertex information con-

tained therein to a primitive assembly block 50 on line

Page 73,0f 509

10

15

20

25

30

35

40

45

50

55

49. The primitive assembly block 50 assembles,or con-

verts, the input vertex information into a plurality of prim-
itives to be subsequently processed. Suitable methods
of assembling the input vertex information into primitives

is knownin the art and will not be discussed in greater
detail here. The assembled primitives are then transmit-
ted to a rasterization engine 52, which converts the pre-
viously assembled primitives into pixel data through a
process referred to as walking. The resulting pixel data
is then transmitted to a pixel shader 54 on line 53.

[0014] The pixel shader 54 generates the color and
additional appearance attributes that are to be applied

to a given pixel, and applies the appearanceattributes
to the respective pixels. In addition, the pixel shader 54
is capable of fetching texture data from a texture map 57
as indexed by the pixel data from the rasterization engine

52 by transmitting such information on line 55 to the tex-
ture map. The requested texture data is then transmitted
back from the texture map 57 on line 57’ and stored ina
texture cache 56 before being routed to the pixel shader
online 58. Once the texture data has been received, the

pixel shader 54 then performs specified logical or arith-
metic operations on the received texture data to generate
the pixel color or other appearanceattribute of interest.

The generated pixel appearanceattribute is then com-
bined with a base color, as provided by the rasterization
engine on line 53, to thereby provide a pixel color to the

pixel corresponding at the position of interest. The pixel
appearanceattribute present on line 59 is then transmit-
ted to post raster processing blocks (not shown).
[0015] As described above, the conventional graphics
processor 40 requires the use of two separate shaders:
a vertex shader 46 and a pixel shader 54. A drawback
associated with such an architecture is that the overall

footprint of the graphics processoris relatively large as
the two shaders take up a large amountofreal estate.

Another drawback associated with conventional graphics
processorarchitectures is that can exhibit poor compu-
tational efficiency.

[0016] Referring now to FIG. 4A, in an exemplary em-
bodiment, the graphics processor 60 of the presentin-
vention includes a multiplexer 66 having vertex (e.g. in-

dices) data provided at a first input thereto and interpo-
lated pixel parameter (e.g. position) data and attribute
data from a rasterization engine 74 provided at a second
input. A control signal generated by an arbiter 64 is trans-
mitted to the multiplexer 66 on line 63. The arbiter 64
determines whichof the two inputs to the multiplexer 66
is transmitted to a unified shader 62 for further process-

ing. The arbitration scheme employed bythe arbiter 64
is as follows: the vertex data on the first input of the mul-
tiplexer 66 is transmitted to the unified shader 62 on line
65 if there is enough resources available in the unified
shader to operate on the vertex data; otherwise, the in-

terpolated pixel parameter data present on the second
input will be passed to the unified shader 62 for further
processing.
[0017] Referring briefly to FIG. 5, the unified shader

TCL 1002

Page 74 of 509 TCL 1002

5 EP 2 296 116 A2 6

62 will now be described. Asillustrated, the unified shader

62 includes a general purpose register block 92, a plu-
rality of source registers: including source register A 93,
source register B 95, and source register C 97, a proc-
essor (e.g. CPU) 96 and a sequencer 99. The general
purposeregister block 92 includes sixty four registers, or
available entries, for storing the information transmitted

from the multiplexer 66 on line 65 or any other information
to be maintained within the unified shader. The data

presentin the general purposeregister block 92 is trans-
mitted to the plurality of source registers via line 109.
[0018] The processor 96 may be comprised of a ded-

icated piece of hardware or can be configured as part of

a general purpose computing device(i.e. personal com-
puter). In an exemplary embodiment, the processor 96
is adapted to perform 32-bit floating point arithmetic op-

erations as well as a complete series of logical operations
on corresponding operands. As shown, the processoris
logically partitioned into two sections. Section 96 is con-
figured to execute, for example, the 32-bit floating point
arithmetic operations of the unified shader. The second

section, 96A,is configured to perform scaler operations
(e.g. log, exponent, reciprocal square root) of the unified
shader.

[0019] The sequencer 99 includes constants block 91
and an instruction store 98. The constants block 91 con-

tains, for example, the several transformation matrices

used in connection with vertex manipulation operations.
The instruction store 98 contains the necessary instruc-
tions that are executed by the processor96in order to
perform the respective arithmetic and logic operations
on the data maintained in the general purpose register
block 92 as provided by the source registers 93-95. The

instruction store 98 further includes memory fetch in-
structions that, when executed, causes the unified shad-

er 62 to fetch texture and other types of data, from mem-

ory 82 (FIG. 4A). In operation, the sequencer 99 deter-
mines whether the next instruction to be executed (from
the instruction store 98) is an arithmetic or logical instruc-

tion or a memory (e.g. texture fetch) instruction. If the
next instruction is a memory instruction or request, the
sequencer 99 sends the request to a fetch block (not
shown) which retrieves the required information from
memory 82 (FIG. 4A). The retrieved information is then
transmitted to the sequencer 99, through the vertex tex-

ture cache 68 (FIG. 4A) as described in greater detail
below.

[0020] If the next instruction to be executed is an arith-

metic or logical instruction, the sequencer 99 causes the
appropriate operandsto be transferred from the general
purpose register block 92 into the appropriate source reg-

isters (93, 95,97) forexecution, and an appropriate signal
is sent to the processor 96 on line 101 indicating what
operation or series of operations are to be executed on
the several operands present in the source registers. At
this point, the processor 96 executes the instructions on
the operands present in the source registers and pro-

vides the result on line 85. The information present on

Page 74,of 509

10

15

20

25

30

35

40

45

50

55

line 85 may be transmitted back to the general purpose

register block 92 for storage, or transmitted to succeeding
components of the graphics processor 60.
[0021] As discussed above, the instruction store 98

maintains both vertex manipulation instructions and pixel
manipulation instructions. Therefore, the unified shader
99 of the present invention is able to perform both vertex
and pixel operations, as well as execute memory fetch
operations. As such, the unified shader62 of the present
invention is able to perform both the vertex shading and

pixel shading operations on datain the context of a graph-
ics controller based on information passed from the mul-

tiplexer. By being adapted to perform memory fetches,
the unified shaderof the present invention is able to per-
form additional processes that conventional vertex shad-
ers cannot perform; while at the sametime, perform pixel

operations.
[0022] The unified shader 62 has ability to simultane-
ously perform vertex manipulation operations and pixel
manipulation operations at various degrees of comple-
tion by being able to freely switch between such programs
or instructions, maintained in the instruction store 98,

very quickly. In application, vertex data to be processed
is transmitted into the general purpose register block 92

from multiplexer 66. The instruction store 98 then passes

the corresponding control signals to the processor 96 on
line 101 to perform such vertex operations. However, if
the general purpose register block 92 does not have
enough available space therein to store the incoming ver-
tex data, such information will not be transmitted as the
arbitration schemeof the arbiter 64 is not satisfied. In this

manner, any pixel calculation operations that are to be,
or are currently being, performed by the processor 96
are continued, based on the instructions maintained in

the instruction store 98, until enough registers within the
general purpose register block 92 become available.

Thus, through the sharing of resources within the unified

shader 62, processing of image data is enhanced as
there is no downtime associated with the processor 96.
[0023] Referring back to FIG. 4A, the graphics proc-
essor 60 further includes a cache block 70, including a
parameter cache 70A and a position cache 70B which

accepts the pixel based output of the unified shader 62
on line 85 and stores the respective pixel parameter and
position information in the corresponding cache. The pix-
el information present in the cache block 70 is then trans-
mitted to the primitive assembly block 72 on line 71. The
primitive assembly block 72 is responsible for assembling
the information transmitted thereto from the cache block

70 into a series of triangles, or other suitable primitives,
for further processing. The assembledprimitives are then
transmitted on line 73 to rasterization engine block 74,
wherethe transmitted primitives are then converted into
individual pixel data information through a walking proc-

ess, or any other suitable pixel generation process. The
resulting pixel data from the rasterization engine block
74 is the interpolated pixel parameter data that is trans-
mitted to the second input of the multiplexer 66 on line 75.

TCL 1002

Page 75 of 509 TCL 1002

7 EP 2 296 116 A2 8

[0024] In those situations when vertex data is trans-

mitted to the unified shader 62 through the multiplexer
66, the resulting vertex data generated by the processor
96, is transmitted to a render back end block 76 which

converts the resulting vertex data into at least one of sev-
eral formats suitable for later display on display device
84. For example, if a stained glass appearanceeffectis

to be applied to an image, the information corresponding
to such appearanceeffect is associated with the appro-
priate position data by the render back end 76. The in-
formation from the render back end 76is then transmitted

to memory 82 and a display controller line 80 via memory

controller 78. Such appropriately formatted information

is then transmitted on line 83 for presentation on display
device 84.

[0025] Referring now to FIG. 4B, shown therein is a

vertex block 61 which is used to provide the vertex infor-
mation at the first input of the multiplexer 66 according
to an alternate embodimentof the present invention. The
vertex block 61 includes a vertex fetch block 61A which

is responsible for retrieving vertex information from mem-

ory 82, if requested, and transmitting that vertex informa-
tion into the vertex cache 61 B. The information stored

in the vertex cache 61 B comprisesthe vertex information

that is coupled to the first input of multiplexer 66.
[9026] As discussed above, the graphics processor 60
of the present invention incorporates a unified shader 62

which is capable of performing both vertex manipulation
operations and pixel manipulation operations based on
the instructions stored in the instruction store 98. In this

fashion, the graphics processor60 of the present inven-
tion takes up less real estate than conventional graphics
processors as separate vertex shaders and pixel shaders

are no longer required. In addition, as the unified shader
62 is capable of alternating between performing vertex
manipulation operations and pixel manipulation opera-

tions, graphics processing efficiency is enhanced as one
type of data operations is not dependent upon another
type ofdata operations. Therefore, any performance pen-

alties experienced as a result of dependent operations
in conventional graphics processors are overcome.
[0027] The above detailed description of the present
invention and the examples described therein have been
presented for the purposesofillustration and description.
It is therefore contemplated that the present invention

cover any andall modifications, variations and equiva-
lents that fall within the scope of the basic underlying
principles disclosed and claimed herein.

Claims

1. A method comprising:

performing vertex manipulation operations and
pixel manipulation operations by transmitting
vertex data to a general purposeregister block,

and performing vertex operations on the vertex

Page 75,o0f 509

10

15

20

25

30

35

40

45

50

55

data by a processorunless the general purpose

register block does not have enough available
spacetherein to store incoming vertex data; and
continuing pixel calculation operations that are

to be or are currently being performed by the
processor based on instructions maintained in
an instruction store until enough registers within
the general purpose register block become
available.

2. A unified shader, comprising:

a general purpose register block for maintaining
data;

a processorunit operative to:

perform vertex manipulation operations and
pixel manipulation operations by transmit-
ting vertex data to a general purposeregis-
ter block, and perform vertex operations on
the vertex data unless the general purpose

register block does not have enough avail-
able space therein to store incoming vertex
data and continue pixel calculation opera-

tions that are to be or are currently being
performed based on instructions main-
tained in an instruction store until enough

registers within the general purpose register
block becomeavailable.

TCL 1002

Page 76 of 509 TCL 1002

EP 2 296 116 A2

(LuVYOldd)b‘Sid

YaqVHS

LOSrao

cl

TCL 1002Page 76,0f 509

Page 77 of 509 TCL 1002

EP 2 296 116 A2

30a

30b

FIG. 2A

(PRIOR ART)

FIG. 2B

(PRIOR ART)

Page 7770f 509 TCL 1002

Page 78 of 509 TCL 1002

EP 2 296 116 A2

6° peoceecneeeLer
{ TEXTURE |

MEMORY | !
Lwawewreseneeeswneseenes

VERTEX VERTEX
SHADER STORE

PRIMITIVE 50
ASSEMBLY

51

‘RASTERIZATION[52 -
ENGINE ~

53

TO 5
57 PIXEL

. . SHADER
FROM TEXTURE 64

57 CACHE[56

56

59

FIG. 3 POST RASTER

(PRIOR ART) PROCESSING

Page 78,0f 509 TCL 1002

Page 79 of 509 TCL 1002

EP 2 296 116 A2

INDICES

Ga 63

UNIFIED
SHADER

RENDER

BACK

END

79

71

MEMORY ASSEMBLY
CONTROLLER 73

RASTERIZATION

ENGINE

DISPLAY

CONTROLLER
81

75

8 84 . 82

DISPLAY . MEMORY

FIG. 4A

Page 79,of 509 TCL 1002

Page 80 of 509 TCL 1002

EP 2 296 116 A2

INDICES

 VERTEX

CACHE

FIG. 4Beneescevenseonasansy
Ls

61A * ~61B

FROM MUX MEMORY
99 FETCH

67

 CONSTANTS

94

=|&97SOURCE A SOURCE B SOURCE C

~a------L--965A
vy)

CPU
sanemeaweant

Page 80,ef 509 TCL 1002

Page 81 of 509 TCL 1002

PATENT COOPERATION TREATY

PCT

INTERNATIONAL SEARCH REPORT

(PCT Artie 1@ and Rules 48 and 44}

FOR FURTHER see Form POTASA220
ACTION 45 well as, whers apnltabie, Rem 5 below.

Agokoawts of agers Gesciarence

SH~4 7388

; international appication No.

iyewaational Ning date (daymontivvear? Earliest! Prianty Uste(aepnoniiveart

 my
OOa tak LS/AL/2oo4 20/3122

 Applaarsg

i:

[ATI TECHNOLOGIES, INC

:::
This Imemationa Seat: Report has been scenaned by this Intemational Seancnnig Authariy acd ip inanamitied othe anniteant
according Ni Aniols 18. 8 copy is beinglrananitted to the labepigtional Burda,

This inemational Search Repod consisis ofa gidofaets,eres :
ix} ihis alae BOgOMpaied by | copy at each orig: art document ated 4 this neport.

%. Basis of the regert

a. WS fagho the kengutege, the intemationg! search was canied aut on the basis af the iterations sonication in the
fargquage in which § was filed. unisss otareise iadlgated under this tem.

pry 3 is R y ‘ 4, 2 4 +, , se, :
; “The infaniitonal search was canied cut on the bests of a dassiatonof the international Spplcation tuminied ©

"Shs Aunhonity (Auis 23h}.
ponent etsistiuieroisrsbinenrrsesdLeeearetrmdenend

bh |f WHS sagan! ts any nucleodide and/or aming acid sequence disclosedih the Intemational application, ga8 Bex Noo.

& [} Sunuin claime ware found unsearshabie (See Box fi,

R PUT unity of favention fs tanking (see Box i),

FS] the wntis eopeived as submitted by the applicant
{ Beitont hed been astanished Sy tvs Authorityto read as sows:

&. With regard 09 S93 sbstrant,

(=) the text is sppmved ag submitedby the anpficant,
[_] ihe text has been astatichest, aoveuding to Rule a@.2(h), by this Authonly ag Rl aposars ip Box No. IV. The aggiloant

may, withi ane month trim the date of mailing of fis Intemational seardhreport, submit commants i6 ANS Authority,

$. With sagard te the aireinge,

& the tiguie of the drawingsto be sultiched! wth the abstract is Figues No, SR _
[X} ae suggestby the applicant,

:

i;:::

|
‘

:

:

‘::
i
ii

i

;

;

i;;

on ‘ . * P
{_} Sa selected hyieAuthority, baosuse ihe applicant lailad to suggest a Figure.
{_) a8 nefeoted by this Authority, because thig Rgure better characterizes the invention,

VELLAPOLEPLAPPLEPPLESSLOTESTEDECOEIDELILLESDELPPLEPEAPADSSIASTASEDADESSUTSTOSTOELETLIIELIELIOSTECODPSPPSPLPPESSSTLSEPPUOREORIEDLELLELEIDLOOOCDTEE

 L.

Fomt ROTISS2ni ivst sheet) Ganuary BO}

Page 81 of 509 TCL 1002

Page 82 of 509 TCL 1002

a INTERNATIONAL SEARCH REPORT } Intemational Apptication No

POTAIBRO06/003821

BJEGT MATIER| A. CLARSINGATIONeyTPC ? SH6Tste5/08

Ackrorciag winfemations Patent Cinssifcation (PC) or te both naions cisssifiegtion andc
5. FIELOG SEARCHED

} Mivmum donunenitien searched (chauitication system fowed hy
(IFC 7|agay

 seasiticgtion sweats}

rennet~nenannnnnnenenyreeeeecenanennasnaaaonnennnnenennmnnannneenannnnaniannscocoaatanonnhrmriananaaisitiitiont nanny
Gocumaniation sesmhed ther Siwy minkmurs decumentition i ike extant thet such documents am Sickadad in the fiekis gaarchadtiSEDELEOIIDODEDILIMECTbebereenserinsertsDitbtdBobbBiecirnic dataSeed conaatied dures the Intemiadanad search inane of data base asd, where practiog! search terns used}

tPo-Internal, INSPEC

 2
AFOS2

| ase‘ : paragraphs oe7s "SBO9T ~ “S90084 :
| ‘01021, ‘OIBEE ~ “Q1S61, ‘0170! i

cE US & 417 858 81 (BOSCH BEREK ET AL) f4-26; 3 guty 2902 (2002~-07~09}
‘ : cole 8, Vine a? - line &1

i calumn $9, line 10 + Tine 21: claim 24:
i figure 5

la | GS 6 383 439 B2 (LINDHOLM JOHN ERIK ET AL) | 1a-g0
i % Narch 2002 (2002~03~-058) : i

column 26, line 16 ~ Tne 68; Figures
i $3,328 3

—po fom
i |

 Further documentsosfished in tha anrtinvatiog af box C. ix } Patent farely members. ans tisiad ih saner,

z & os = pAqronhannannonon* Spaniat catAQUAof ated daxumants: “Ty lala fanuinent publehed ater tig iniematinnsdBion date

i
aeedloniy ale aac not in conffiet wilh the anstioation tat :“AS Socket defining the gaianhaate ofthe ad wach Is ned : ¥ sy iconsiders fp Seat Ranier ERWRNCE sendaeHidorsignd tus prlncinies us theory unddrhyoug the :

"ES earder SecoSal pubtiched anf aller the iMemationad “> Hocumant of particilar mievanog: the claimed imation :Hing chit wanna be ouiskterd naval or camial be conetiored toi Ph StepsSonumentcsmy peeSeulis on ororly adginis} or involve an bovendive glen when Me Gocignard BR taken clare
; MERE: is shies To RNaGish the pulllontion date ef anciier "y* document of particular ralovanne: the clained inventionGatiat oF eSheraecial ABHOR {SS SpEctied} cannes ba Conederet fo ivONe AN HOGI stagwisn the

“C? document avamtngte an orsf digcionue, soa, achiidtion ar cnument is contdnedbwith ome or more other such dticu.
offer Mesns menis, such olnbination being obvious in a Deenon Hiihed ;{<8 ghounient pishikehed rigs je the inematianal {ing date but ithe an. ;alae then She prority dale clgirneat *S? doeaneunt member of fhe same patent tamity :

Dats of the ached oumplationof the Wematlonal sexyah Date oF maiieg of the intemational each report is
:
‘ 2 March 2005

Name xad maitng acess of isRS

22/03/2008

 Authoredofficer

Corepeads Palani Ottis, PB. Seid Astana g i
3s 2RSG HY Ribswiik ie ~FQ}9G~2040, Tx, St St ge a, gFax GRIN BOGOR ™ Tibaux, § i

SNrenatantaatieannnnnnnanichtfAoOAnnnrenactcannesfutben RAAhpeenenaienneinenaia evseeneneeerienhMnnennnnenichmeteannand
Sem FOTASARTE isoatnasheets ManiaeyBes

Page 83 of 509 TCL 1002

 SOLELLEELLELEPPEPISOPIPERSISISISISLIPLOMOODDERECEELLELTELELERLEEEAEPIIISIESILISISIDLIDEIPLELIPOPPOPPPLESESPEDEPPEEEEEELEEEEEEELEEEEEEEEEISISAIISESASESPEDEEPPDPEOOESeeeeeeerecendsiegesPESISISIDIEPRPPDPOOOOODOPLEDOPLPEREEEELLEEELSES“nenee, AOLGLtesessneeoirpnroresSRAEEPEPESIPERSEDEDeereeeesEEREEETEERERDAPODAPOPOODEPEDOEPEPOPPOPELEESELD:
TCL 1002&af

y

SOULELALCEPREEECELEELEESTESEAIIIESEIIDARAODADODOTLESIEEEPOPPEPPLOLPEPEELAELEEEREREECEREESEREELEDRDIPEELPOSIDRDARREIRDEORLELOEOCELELEDESEOEddéeCte:
reasFAaREEEESSSESSSISSEDDDIODODODPADAPRPTEOCEOLECETPOLEDOLEEEacadacaecaieyagiARALYEAASLEDEDESPAPEDEEEDDRatnameneterestELettttetittttdieedddrsécds)

~ Radovanfg anes Mik

intarnsuonal Appiiostion Na

PARALLEL

2TH
y
&

*Cempi lation,

“OMPILATION TECHNIQUES ,

RENCE ON 2? SEPT. - 1

column, paragraph 4 -

»x

w
8‘=

~s*Ne

=
Se

AL

“ATAWAY, Nd. USA TEEE,
CONF

E(S} 335-148 , XPO1GG62182

eT

efi-hand
, Tight-hand column, paragraph 4

INTERNATIONAL SEARCH REPORT

TURES AND
2003, PACT 2003, PROCEEGINGS.

ONAL

O03, PIS

‘

¥>
INTERNA)
OF8

O-7698-2021-9
-

graphics pipeline programs on a
eral-purpose CPUS

TE

2
3

~;
3

7 September 2003 (2005-06-27 3,

UMENTS COMMDERED TO SE RELEVANT

TERNITZ §

rchitectural suppert,and evaluation of

5

8 ’

%,zez3OSfinbetER,OO.

S

8
88

ae

oon

ey
z
S

age

t

a

bhcf$ateebeeSDiok5HoeESOLPCEUTEMEEEETAUEEESA

PEOLEOPARDEDLOLOLEDEDLLLLDLLDELLEEEOCCETLESELEEDRYDESYEROEORERAEREADIDISPELDEDDLELEDDOODCOOOLIOEEEECEDEEEESEDEESTNESUESEALALAASaeDennen,niePROROOELIILELLDLDEDELLDNDDDDOOLLLLLEPTLLEPELELETEELTLELEDLLEEEEESEAWNTAADUREREAEOIETITIDEDEDEDEDE,

Galegary© : Castine of Gooument, wih kebiestion, where agnrnpriate, ofthe rekivant passages —
‘ExrCantinwstiony DU

EPEEELEAELLEEAEANENDDEDPEEREPEDP

iteseEATSeee

épagePage 83 of 509
Bont, POTASAE IO (oontinaation of gagand ahast} Lignasiy 208}

Page 84 of 509 TCL 1002

INTERNATIONAL SEARCH REPORT9yeoymyinfiamatoant Aopkartion Ro i

POT/1B2008/903821
ivermation on patent family mambere

reneeeneenintantenteeming soopersotecerseennceaansntnnnnnnnnnnnmmnanernnmd
t= Patent decumeni i Pudtination ‘ Patani Jannily Pubtioation

cited by search regent : date i memberts} die SpaceeetaetnanAniARABS neonbeanwonwe(NAARNARADAAREEARN: o_

US 2903164830 A 04-09-2003 NONE |

WS 641788gg Bi NO-07-2002 NONE
US G3EMIO|BLSOSC*«SOG~ZOUR US 6198488 B1 06-03-2001

AU 148591 A THOFOO

cA 2902371 Al 87-86-2001 |
EP 1261939 al O4-~12-R002
Jf 2nogsisasy y 7-1-2003
WO G141089 Al O7-08-200%
US 2003112246 Al 19-06-2503
US BOOIOIFS26 Al 20-08-2001

us 6844880 83 {E-01-20018 |
AU 2064501 A 12-08-2004 |
cA 2302370 Al §7~06-2001
EP L2S8371 Al fi-ne-20g2
JP 8008815853 T O7-95-2003
NO O1giaF3 Al O7-G6-2001
US 2002198859 Al #6~12-8002
US HOORISOTAG Al O8-18-2003
US 2003112248 al 19-f6-D003

US 2OO3IOR0S4 Al OS-08~2008
US 003180568 Al 09-10-2003
US 5482595 Bi 17-08-2002
us 6342888 Bi 29-01-2002

3
i

AOACELEEahhahe

US 2801905209 Al 28-06-2001
US 2002 TORSI9 Al O8-O8-2002
US 2003103050 Al $8-8-2003
US 2002027553 Al OF~-O3~2002
US 2002047846 Al S5~-H4-2002Ao AERTENRENAIRENtAPRAEReeNAO ORPSAAPteaaaemaaaawgeenewaCSSO AE EASARLSPA

neneebenENCCCECECCEtEEtttts

onanannaANRARRRRRRRODODOPOPOPEDODPDIDDDORE
}

RAnnnancrinnninennynANRAtteareadelARRANMACARRAN

Page 84 of 509 TCL 1002
Aaeenrenennntnnntintannnnnnaahanne

FoROTARW210 tpaterd tamily srnas} Laeniainy Batty

Page 85 of 509 TCL 1002

PATENT COOPERATION TREATY

From ihe
INTEANA TIONAL SEARCHING AUTHORITY ooo =Y «

i Fat PCT

WRITTEN OPINION OF THEson form PCTASALSS

{PCT Rule 435i¢. 1}

Date of malig
fvaytnoniyeart seo fon POTARARTS ineeend sheath
FOR FURTHERACTION
Sen peagraph 2 below

hternationa apeication No.

PGTABZOD400582 4

 Prinsity date iayinenthyean .
20.97.2008

| Intemational fing csie Mapinonyeart
49.41.2008 bnweeacanarenet

j niemational Patent GisesMication UPC) or both national
1; SOSTIOO

ant

TECHNOLOGIES, ING

1. This opinion contains indications relating (@ ihe following. deme:

iJ Box No. Basle of the apinion
CY Box Nie, 4 Priority

C3 Sox NeiN Non-astablishment of opinion with regard ts novelly, joventive step andindugiial applicability
TJ Sox MeLack of unity of invention

RJ Bex No. V¥ Reasoned statement under Sule 43b%. {aliwith regard to novelty, Inventive slep or industrial
: applicabity, ciations and explanations susporiing such stalement

(2 Box Ns. Vio Gartain documents cited

' CF Box Ne, VN Certain defeats in the international application
(3 Box No. VIN Certain observations an the intermational application

(2. FURTHER ACTION
2

¥ a Samand toy infemational preliminary exantination Is made, this opinion wil usually be considered io be €
written opinion of iteintermational Preliminary Examining Authority IPE, However, this dews ant apaly where
the appoint chooses an Authority other than this ane te be the [PEA and the chosen [PEA Sas sotifed the
Intemational Qureau under Rule 66.tis) thai writion opinions of this intematingal Searching Authority
ww sal ba so considered.

* this opinionis, as provided above, considerad to be a written opidion of tha PEA, the applicant is invited ta
submit tg the IPEA 3 written reply ingether, where appropriate, with amendments, hefore the expication of thres
months fromthe date of mating of Form POTASAGZ0arhelothe expination of 22 manths fromthe orority. dats,
whichever expires ater,

For further optinas, see Farm POTASASEO.

3. Por hucther dstaiis, see sntes to Form POTASAS20.

sar

Egropenn Pstont Giice s .
D-S0S88 Munich Tibaux, M , ¢
Tol s9 88 S393 . 0 Tx: SARGHE opmof %

i:poceccrerrectvcederenensereren:
 Pasnewa mac ainarnrtrenis atennRANANNRREALSSUSttenantteMEERSREBNEReeeseen seers: Ae

ytenceetretrentotternnconan enetenneagee naARREEEEerenn oteOReetete VReeeceeeenin

) NenererensrscesussesesisprnatobedFax 08-89 S258 - 2455 Telaghone No. 4B 8S SSSRRRSS oi

INTERNATIONAL SEARCHING AUTHORITY

‘s
{‘;ttttttti

i;
i
:
}:

Nteewaterneciecirenecoven,

Porm (POTASAZSTY (Cover Shoat} (Manuay 2064} Page 85 of 509 TCL 4 002

Page 86 of 509 TCL 1002

WRITTEN OPINION OF THE intemational application No.
INTERNATIONAL SEARCHING AUTHORITY POTMBLO04.00382 1WetieneBARARO es(PRAADAAARAAAABAAISAAARARAAADRAA rent

 ackORRRAAAAAAAAAACN

Box No.i Basis of the opinion AAAS

1. With regard to the language, ins opinion has been established on the basis of he international applicationin
thelanguage in which i was Hed, unless otherwise indicated under this tem.

Li This opinion has beenestablished on the basis of a translation from the original language inte ihe following
language which is the language af a Iransistion furnished for the purposes of infemational search
funder Rules 12.3 and 23. 1{Ds.

ya . Wath regard to anynucleotide andor amino acid sequence disclosed in the international aplication and
necessary io the claimed invention, this opinion has been established on the basis of:

3. type of materiak

i islets) relaied to the sequence listing

b. format of matanak

o
<
LJ di wyriien formal

i) in computer mariable farm

©. time. of lingdurnishing:

[) contgined in the inersational application as Hed.

L] filed fagether with the international application in computer seadable form.

LI furnished subsaquentiy ta this Authority for the purposes of search.

3. in addition, in the case that more than one version or copyof a sequence fisting andar table relating thereto
has been Tied or furnished, fu requirad statements that the information in the subsequent ar additional
copies is identiog! to that in the application as filed or does not go beyond the application as filed, as
appropiate, were funishedk

4, Addivanal comunents:

Form PITESA EST Manuary 2004) Page 86 of 509 TCL 1002

Page 87 of 509 TCL 1002

oneness

WRITTEN OFNION OF THE infemational apolication No.
INTERNATIONAL SEARCHING AUTHORITY PCOTABZ004HOSR21eeteranOCAARRAOARIAVNRWWVADER LO

se

Box No. ¥ Reasoned statement under Rule 43b/8.1(a\() with regard to novelty, Inventive step or |
industial applicability; citationsand explanations supporting such statement

%, Statement

Novelly (N} Yes. Claims 4-20
No: Claims

invertive ‘step (5 Yas: aims E36
No:«6Glaims

industrial anolcahility (18) Yea: Claims 20
Nex«=Claima

2. Eilations anc explanations

S88 separate sheet

Form POTISA8Y Uanuary 2008) Page 87 of 509 TCL 1002

Page 88 of 509 TCL 1002

_SRA

WRITTEN OPINION OF THE intemational application No,
INTERNATIONAL SEARCHING

AUTHORITY (SEPARATE SHEET

Re Hem ¥.

* The folowing documents are referred to in this cornmunioation:

D1: US 2003/154830 Al (KENT OSMAN} 4 September 2003 (2003-09-04)
De: US-B1-9 417 858 (BOSCH DEREK ET AL} § July 2002 (2002-07-09)
Do: UG-B1-6 383 489 (LINDHOLM JOHN ERIK ET AL} 5 March 2002 (2002-03-05)
Dé. BRETERNITE M ET AL: “Compilation, architectural supporand evaluation of

SIMD graphics pipeline programs on a general-purpose CPL" 27 September
2009 (2003-09-27), PARALLEL ARCHITEGTURES AND COMPILATION
TECHNIQUES, 2003. PACT 2003. PROCEEDINGS. 12TH INTERNATIONAL
CONFERENCE ON 27 SEPT. - 1 OCT. 2003, PISCATAWAY, Nu. USAIEEE.
PAGE(S) 185-148 , KP010662182 ISBN: 0-7695-2021-9

= UOocument D1, which is consicered to represent the most relevant state of the art for
ihe subject-matter of claim 1, discloses (the references In parentheses applying to
{his Gocument) & graphics processor comprising 4 shader (Shading Uni’, ses
paragraph 79} connected to a “Pixel Unit" by a private data path. A “Vertex Shading
Uni" performs the veriex operations on the vertices entered in double buffered put
buffers in round robin fashion.

An arnier (in the “Context Unit’, see paragraph 102} selects one of a plurality of

tens

afeerate
StWFoewo

For POTASA/Z2? (Senamis Shoog (kheet 1} {EMOdarary 28}

Page 88 of 509 TCL 1002

Page 89 of 509 TCL 1002

WRITTEN OPINION OF THE international aoplication No.
INTERNATIONAL SEARCHING

AUTHORITYISEPARATE SHEET) POTARe004008821

won.

th>UE£
omieee

Fort PCTASAQS7 (Sangrate Sheet} (Shest 2) EPOsanuary 2004}

Page 89 of 509 TCL 1002

Page 90 of 509 TCL 1002

WRITTEN OPINION OF THE infemationa! applieation No.
INTERNATIONAL SEARCHING

AUTHOSITY(SEPARATE SHEET} __ POTABZOO4003821

a
“5

agpwwaerer
£3

wanomgpty
ee8

raeaoyee
DP@
heOSte

eeEh@
wyamhgage

Sonn POTASAS7 (Sepanite Sheet} (Sheat 3} (EPOJanuary 2004}

Page 90 of 509 TCL 1002

Page 91 of 509 TCL 1002

WRITTEN OPINION OF THE infernatinnal application No.
INTERNATIONAL SEARCHING

AUTHORITY (SEPARATE SHEET POTAB2004/008R21

geee.

weweeoyEi

eeay
wre

Bm"-Syor
Farm PORMSASO7 (Sepemie Sheet} (Sheet 4) (EPOJanuary 2004}

Page 91 of 509 TCL 1002

Page 92 of 509 TCL 1002

WRITTEN OPINION OF THE infemational angicatian Ne.
INTERNATIONAL SEARCHING

AUTHORITY (SEPARATE SHEET) Poe

LHPiggcree%
iy

miyoF

eo

aeOS

Fon POTASA@2Y Separete Sheath (Gheat 8 {EFO-January 204}

Page 92 of 509 TCL 1002

Page 93 of 509 TCL 1002

WRITTENOPINION OF THE international apmiication No.
INTERNATIONAL SEARCHING |

AUTHORITY (SEPARATE SHEET PCTAB2004003821

meeyeeteteeo
wateOO1Feortkom

OPOEme
Foon PCTISAGS? (Sepmate Sheet) (Shast 4) (EACdanuary 2d}

Page 93 of 509 TCL 1002

Page 94 of 509 TCL 1002

SSSR

WRITTEN GFINION OF THE internalional application Na.
INTERNATIONAL SEARCHING

AUTHORITY (SEPARATE SHEET) _. POTABZ004003821

From is, the subleci-natter of independent claim 1 differs in that the shader
performs both verlex operations and pixel operations (performing one of the vertex
operations or pixel operations based on a selected input), thus constitufing a “unified
shaderin the sense of the application and providing an appearance attribute.

é.1 The subject-matter of claim 1 is therefore novel (Articie Sas} PGT)

3 Document 02, which is considered to represent the most relevant state of the art for
the subject-matter of claim 14, discloses {the references in parentheses applying to
this document):

Dé discloses a sequencer ("main sequencer’ 515) conlrolling instructions for inter alla
the shader unit ($60).

A similar aystern is disclosed in D2.

Fyom this, the subject-matierof independent claim { differs in that the sequencer is in
@ unified shader in the sense of the application.

Fam POTASAGRH Saparate Shoal) (Sheet T} EPCanuary 2004)

Page 94 of 509 TCL 1002

Page 95 of 509 TCL 1002

WRITTEN OPINION OF THE infenational angication Ne.
INTERNATIONAL SEARCHING

AUTHORITY (SEPARATE SHEET) POTAB2004008821

3.1 The subject matter of claim 14 is therefore novel (Article 38(2) PCT)

4 The problem to be solved by ihe present invention may be regarded as fo design a
shaderable to simultaneously perform vertex manipulations and pixel manipulations
ai venous degrees of completion and to freely and quickly switch between the
program instructions for performing such operations.

4,1 The solution to this problem proposed in claims 1 and 14 of the present application je
coneicgred as involving an inventive step (Article 34/4} PCT) because the available
prior an ieaches away from a unified shader performing vertex operations and pixel
uperations (performing one of the vertex operations or pixel operations based on a
Selgcied input} as claimed in claims t and 14, since the oror art uses the vertex
Shader and the pixel shader in diferent phases of a graphies operation algerthmes
{sea D4 page <, left-hand column, paragraph 4 - right-hand column, paragraph 3 and
ipcaies them in different entities (see D4 page 2 right-hand columnlast paragraph -
bage ¢, jeR-hand column, first paragraph).

= Akhough claims 1 and 14 have been drafted as separaie indesendent claims, they
appearto relaie effectively to the same subject-matter (unified shader} and to differ
from each other only with regard to the definition of the subject-matter for which
protection i sought! The aforementianed claims therefore lack conciseness and ag
such do not meat the requirements of Article 6 PCT.

Pom POTIGARS? (Separate Sheet (Shee 8} EPOJanuary 2004}

‘ Page 95 of 509 TCL 1002

Page 96 of 509 TCL 1002

Electronic AcknowledgementReceipt

10516788

Application Number: 13109738

International Application Number:

Confirmation Number:

Title of Invention: GRAPHICS PROCESSING ARCHITECTURE EMPLOYING A UNIFIED SHADER

First Named Inventor/Applicant Name: Stephen Morein

Customer Number: 29153

Christopher J. Reckamp/Christine Wright

Filer Authorized By: Christopher J. Reckamp

Attorney Docket Number: 00100.36.0001

Receipt Date: 14-JUL-2011

Filing Date: 17-MAY-2011

Time Stamp: 10:53:09

Application Type: Utility under 35 USC 111)

Paymentinformation:

Submitted with Payment

File Listing:

Document gs File Size(Bytes)/ Multi Pages

Transmittal Letter 360001_IDSCoverSheet.pdf
9d 16005 cb579bb43<005776d9c540cb522

21b70f

Information: Page 96 of 509 TCL 1002

Page 97 of 509 TCL 1002

; ; 614273
Information Disclosure Statement(IDS)

Form (SB08) 360001_IDS.pdf 6341 8bb63ea68el 61 7a9a01 ae9c60a8f6d7
3388c

Information:

246983

Foreign Reference EP2299408A2.pdf
09f1 ee596dd08ae098b8de9075 3cca7 1578

e874

Information:

328840

Foreign Reference EP2309460A1.pdf
652151662ba7749073d0478aad6f3179399

113ab

Information:

251856

Foreign Reference EP2296116A2.pdf
3837df67af5 13987e35c30ecd59d833d5cc5}

767e

Information:

NonPatentLiterature NPL1.pdf
48c81a430e79648900c23d28f2748cc808f3|

064

Information:

1165150

NonPatentLiterature NPL2.pdf
a4a9767027a73f7b846 165895994405 151

47e9d

Information:

862733

NonPatentLiterature NPL3.pdf
d8b6fc637 196ac63024fdcad91205f2d4fa3

8e63

Information:

1641023

NonPatentLiterature NPL4.pdf
9a70a0366ccb14a76cb08fa9239cfd5d4ba0

0046

Information:

795051

NonPatentLiterature NPL5.pdf
9e7a348ae054c8103 18a66921 1fb8a8479fq

f6e2

Information:

Page 98 of 509 TCL 1002

128778

NonPatentLiterature NPL6.pdf
5e72407f302a6fc732392e925 1 9bdcef4a43

e48e

Information:

NonPatentLiterature NPL7.pdf
80ba23171009ea91 7b5 afl b38bb401073d}

4334d

Information:

125523

NonPatentLiterature NPL8.pdf
30150629503 15bOfc5 eee6fb58c9ef345 7ce

dceS

Information:

NonPatentLiterature NPL9.pdf
£03209cd7e559d624e99a1 ca9ed.a5062b82|

dd118

Information:

1320776

NonPatentLiterature NPL10.pdf
08d008e350c1d0391f8d16ea605cdb10b73

cadea

Information:

NonPatentLiterature NPL12.pdf
934b6429d64be5f3326e40de2al fefc12a21

0043

Information:

NonPatentLiterature NPL13.pdf
b97d9c1be4736c1 e004665027a2 1f369d44|

eb22e

Information:

791431

NonPatentLiterature NPL14.pdf
e7424e47ecbdf946ad92946192b1b43afa3

1b54b

Information:

1258222

NonPatentLiterature NPL11.pdf
9b87dd5c1e49d6956277a8777615f14b72a}

dbbe4

Information:

Page 99 of 509 TCL 1002

TotalFiles Size (in bytes) 9950261

This AcknowledgementReceipt evidences receipt on the noted date by the USPTOofthe indicated documents,
characterized by the applicant, and including page counts, where applicable. It serves as evidence of receipt similar to a
Post Card, as described in MPEP 503.

New Applications Under 35 U.S.C. 111
If a new application is being filed and the application includes the necessary componentsfora filing date (see 37 CFR
1.53(b)-(d) and MPEP 506), a Filing Receipt (37 CFR 1.54) will be issued in due course and the date shownonthis
AcknowledgementReceiptwill establish thefiling date of the application.

National Stage of an International Application under 35 U.S.C. 371
If a timely submission to enter the national stage of an international application is compliant with the conditions of 35
U.S.C. 371 and other applicable requirements a Form PCT/DO/EO/903indicating acceptanceof the application as a
national stage submission under 35 U.S.C. 371 will be issued in addition to the Filing Receipt, in due course.

New International Application Filed with the USPTO as a Receiving Office
If a new internationalapplication is being filed and the international application includes the necessary components for
an internationalfiling date (see PCT Article 11 and MPEP 1810), a Notification of the International Application Number
and of the International Filing Date (Form PCT/RO/105)will be issued in due course, subject to prescriptions concerning
nationalsecurity, and the date shownon this AcknowledgementReceiptwill establish the internationalfiling date of
the application.

Page 99 of 509 TCL 1002

Page 100 of 509 TCL 1002

PATENT APPLICATION

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicants: Steven Moreinet al. Examiner: na
Serial No.: 13/109,738 Art Unit: na

Filing Date: May 17, 2011 Docket No.: 00100.36.0001
Confirmation No.: 2020

Title: GRAPHICS PROCESSING ARCHITECTURE EMPLOYINGA UNIFIED

SHADER

INFORMATION DISCLOSURE STATEMENT

IN ACCORDANCE WITH 37 CER§§1.97(b) AND 1.98

Pursuant to 37 CFR §§ 1.97(b)(3) and 1.98, Applicants respectfully submit Form

PTO/SB/08A. The submission ofthe listed documentis not an admission that the information is

prior art, analogous or otherwise material. It is respectfully requested that the listed document be

considered and made of record in the present application.

Respectfully submitted,

Date: July 14, 2011 By: /Christopher J. Reckamp/
Christopher J. Reckamp
Registration No. 34,414

Vedder Price P.C.

222 N. LaSalle Street

Chicago, IL 60601
(312) 609-7500
FAX: (312) 609-5005

CHICAGO/#2205021.1 Page 100 of 509 TCL 1002

Page 101 of 509 TCL 1002

UNITED STATES PATENT AND TRADEMARK OFFICE
UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Address: COMMISSIONER FOR PATENTS

P.O. Box 1450
Alexandria, Virginia 22313-1450
www.uspto.gov

 APPLICATION NO. FILING DATE FIRST NAMED INVENTOR ATTORNEY DOCKET NO. CONFIRMATIONNO.

13/109,738 05/17/2011 Stephen Morein 00100.36.0001 2020

29153 7590 07/21/2011

ADVANCED MICRO DEVICES, INC.
C/O VEDDERPRICEP.C. WASHBURN,DANIEL C
222 N.LASALLE STREET
CHICAGO, IL 60601

2628

MAIL DATE DELIVERY MODE

07/21/2011 PAPER

Please find below and/or attached an Office communication concerning this application or proceeding.

The time period for reply, if any, is set in the attached communication.

Page 101 of 509 TCL 1002
PTOL-90A (Rev. 04/07)

Page 102 of 509 TCL 1002

Application No. Applicant(s)

 13/109,738 MOREIN ET AL.

Office Action Summary Examiner Art Unit
DANIEL WASHBURN 2628

-- The MAILING DATEof this communication appears on the cover sheet with the correspondence address--
Period for Reply

A SHORTENED STATUTORY PERIOD FOR REPLYIS SET TO EXPIRE 3 MONTH(S) OR THIRTY(30) DAYS,

WHICHEVER IS LONGER, FROM THE MAILING DATE OF THIS COMMUNICATION.Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed
after SIX (6) MONTHS from the mailing date of this communication.

- If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication.
- Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED(35 U.S.C. § 133).

Anyreply received by the Office later than three months after the mailing date of this communication, evenif timely filed, may reduce any
earned patent term adjustment. See 37 CFR 1.704(b).

Status

1)X] Responsive to communication(s)filed on 17 May 2011.

a)L] This action is FINAL. 2b) This action is non-final.
3)L] Sincethis application is in condition for allowance except for formal matters, prosecution as to the merits is

closed in accordance with the practice under Ex parte Quayle, 1935 C.D. 11, 453 O.G. 213.

Disposition of Claims

4)X] Claim(s) 1-16 is/are pending in the application.

4a) Of the above claim(s) is/are withdrawn from consideration.

5)L] Claims) is/are allowed.
6)X] Claim(s) 1-16 is/are rejected.

7)LJ Claim(s) ___ is/are objected to.
8)L] Claim(s)___ are subject to restriction and/or election requirement.

Application Papers

9)L] The specification is objected to by the Examiner.
0)X] The drawing(s)filed on 17 May 2071 is/are: a)X] accepted or b)[_] objected to by the Examiner.

Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a).

Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d).

11)L] The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152.

Priority under 35 U.S.C. § 119

12)L] Acknowledgmentis made ofa claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f).
a)LJ All b)L] Some*c)L] Noneof:

1.0] Certified copies of the priority documents have beenreceived.
2.L] Certified copies of the priority documents have been received in Application No.

3.L] Copiesof the certified copies of the priority documents have been receivedin this National Stage
application from the International Bureau (PCT Rule 17.2(a)).

* See the attached detailed Office action for a list of the certified copies not received.

Attachment(s)

1) x Notice of References Cited (PTO-892) 4) | Interview Summary (PTO-413)
2) CJ Notice of Draftsperson’s Patent Drawing Review (PTO-948) Paper No(s)/Mail Date. __
3) [J] Information Disclosure Statement(s) (PTO/SB/08) 5) L] Noticeof Informal Patent Application

Paper No(s)/Mail Date. 6) C Other:

U.S. Patent and Trademark Office

PTOL-326 (Rev. 08-06) PEEFPODBFAOI Part of Paper No./Mail DatF EOL 7002

Page 103 of 509 TCL 1002

Application/Control Number: 13/109,738 Page 2

Art Unit: 2628

DETAILED ACTION

Claim Rejections - 35 USC § 102

The following is a quotation of the appropriate paragraphs of 35 U.S.C. 102 that

form the basis for the rejections underthis section madein this Office action:

A personshall be entitled to a patent unless —

(e) the invention was described in (1) an application for patent, published under section 122(b), by
another filed in the United States before the invention by the applicant for patent or (2) a patent
granted on an application for patent by another filed in the United States before the invention by the
applicant for patent, except that an international application filed under the treaty defined in section
351 (a) shall have the effects for purposes of this subsection of an applicationfiled in the United States
onlyif the international application designated the United States and was published underArticle 21 (2)
of suchtreaty in the English language.

Claims 1-16 are rejected under 35 U.S.C. 102(e) as being anticipated by

Lindholm (US 7,038,685).

RE claim 1, Lindholm describes a method comprising:

performing vertex manipulation operations and pixel manipulation operations by

transmitting vertex data to a general purposeregister block, and performing vertex

operations on the vertex data by a processor unless the general purpose register block

does not have enough available space therein to store incoming vertex data (

3:59-65: “Programmable Graphics Processing Pipeline 150 is programmed to
operate on surface, primitive, vertex, fragment, pixel, sample or any other data. For
simplicity, the remainder of this description will use the term 'samples'to refer to
graphics data such as surfaces,primitives, vertices, pixels, fragments, or the like."

6:38-59: “FIG.4 is an illustration of an alternate embodiment of Execution

Pipeline 240 containing at least one Multi-Threaded Processing Unit 400 ... In one
embodiment TSR [Thread Storage Resource] 325 stores thread data for each of at least
two thread types, wheretheat least two thread types may includepixel, primitive and
vertex.”

7:6-10: “In an alternate embodiment, Thread Control Unit 420 is configured to
assign threads to source samples or allocate locations in Register File 350 using thread
allocation priorities”.

Page 103 of 509 TCL 1002

Page 104 of 509 TCL 1002

Application/Control Number: 13/109,738 Page 3

Art Unit: 2628

7:36-43: “Once a thread is assigned to a source sample, the thread is allocated
storage resources suchas locations in a Register File 350 to retain intermediate data
generated during execution of program instructions associated with the thread."

9:33-56: "Instruction Dispatcher 440 gathers the source data from Pixel Input
Buffer 215, Vertex Input Buffer 220 or Register File 350 specified in an instruction and
outputs the instruction and source data to Execution Unit 470 including at least one
PCU 375 ... Execution Unit 470 is configured by the program instruction to
simultaneously process samples using PCUs 375to perform operations."

15:7-13: “In step 877 Thread Control Unit 320 or 420 determinesif storage
resourcesfor storing intermediate data generated during execution of the thread are
available. The storage resources may be in graphics memory. When storage
resources are not available in step 877, Thread Control Unit 320 or 420 does not
proceed to step 880 until a storage resources becomeavailable. In step 880 Thread
Control Unit 320 dispatches the thread assigned to the sample and sourcedata to at
least one PCU 375."

Thus, Lindholm describes performing vertex manipulation operations and pixel

manipulation operations by transmitting vertex data to a general purpose register block

(sample data, such as vertex or pixel data, is transmitted to Register File 350) and

performing vertex operations on the vertex data by a processor unless the general

purpose register block does not have enough available space therein to store incoming

vertex data (the multi-threaded processing unit 400 carries out vertex operations on

vertex data unless the Register File 350 doesn’t have enough room to store the

incoming vertex data, in which casethe thread associated with the vertex data and

vertex operations must wait until enough space becomesavailable); and

continuing pixel calculation operations that are to be or are currently being

performed by the processor basedoninstructions maintained in an instruction store

until enough registers within the general purpose register block becomeavailable(

Page 104 of 509 TCL 1002

Page 105 of 509 TCL 1002

Application/Control Number: 13/109,738 Page 4

Art Unit: 2628

7:6-21: “In an alternate embodiment, Thread Control Unit 420 is configured to
assign threads to source samples or allocate locations in Register File 350 using thread
allocation priorities based on an amount of sample data in Pixel Input Buffer 215 and
another amount of sample data in Vertex Input Buffer 220."

8:15-58: "Thread Selection Unit 415 reads one or more thread entries based on

thread execution priorities and outputs selected thread entries to Instruction Cache 410.
Instruction cache 410 determinesif the program instructions corresponding to the
program counters and sample type included in the thread state data for each thread
entry are available in Instruction Cache 410 ... The program instructions corresponding
to the program counters from the one or more thread entries are output by Instruction
Cache 410 to ... Instruction Scheduler 430 ... Each clock cycle, Instruction Scheduler
430 evaluates whether any instruction within the IWU [instruction window unit] 435 can
be executed based on theavailability of computation resources in an Execution Unit
470 and source data stored in Register File 350. An instruction specifies the location of
source data needed to execute the instruction."

15:7-13: “In step 877 Thread Control Unit 320 or 420 determinesif storage
resourcesfor storing intermediate data generated during execution of the thread are
available. The storage resources may be in graphics memory. When storage
resources are not available in step 877, Thread Control Unit 320 or 420 does not
proceed to step 880 until a storage resources becomeavailable. In step 880 Thread
Control Unit 320 dispatches the thread assigned to the sample and sourcedata to at
least one PCU 375."

Thus, Lindholm is considered to describe an embodimentincluding continuing

pixel calculation operations that are to be or are currently being performed by the

processor based on instructions maintained in an instruction store until enough registers

within the general purpose register block becomeavailable, as the Execution Unit 470

may be carrying out calculations for one or morehighpriority pixel threads based on

instructions stored in Instruction Cache 410 and/or IWU 435 while a low priority vertex

thread is waiting for the one or morepixel threadsto finish such that whenthepixel

threadsfinish the system will deallocate the resources assigned to the completed pixel

threads in the Register File 350 and will allocate the requested amountof resources to

the queued up vertex thread).

Page 105 of 509 TCL 1002

Page 106 of 509 TCL 1002

Application/Control Number: 13/109,738 Page 5

Art Unit: 2628

RE claim 2, Lindholm describes a unified shader, comprising:

a general purpose register block for maintaining data (

7:37-43: “Once a thread is assigned to a source sample, the thread is allocated
storage resources suchas locations in a Register File 350 to retain intermediate data
generated during execution of program instructions associated with the thread.”);

a processorunit (FIG. 4 “Execution Unit 470” and “PCU 375”);

a sequencer, coupled to the general purpose register block and the processor

unit, the sequencer maintaining instructions operative to cause the processorunit to

execute vertex calculation and pixel calculation operations on selected data maintained

in the general purpose register block(

8:33-9:32 “Each clockcycle, Instruction Scheduler 430 evaluates whether any
instruction within the IWU 435 can be executed based on theavailability of computation
resources in an Execution Unit 470 and source data stored in Register File 350."

9:33-56 "Instruction Dispatcher 440 gathers the source data from Pixel Input
Buffer 215, Vertex Input Buffer 220 or Register File 350 specified in an instruction and
outputs the instruction and source data to Execution Unit 470 including at least one
PCU 375 ... Execution Unit 470 is configured by the program instruction to
simultaneously process samples using PCUs 375to perform operations."); and

wherein the processor unit executes instructions that generate a pixel color in

responseto the selected one ofthe plurality of inputs and generates vertex position and

appearancedata in responseto a selected one ofthe plurality of inputs (

9:39-46 “Execution Unit 470 is configured by the program instruction to
simultaneously process samples using PCUs 375 to perform operations ... and output
the processed sample to a destination specified by the instruction. The destination may
be Vertex Output Buffer 260, Pixel Output Buffer 270, or Register File 350.”

4:42-5:35 “Execution Pipelines 240 may receivefirst samples, such as higher-
order surface data, and tessellate the first samples to generate second samples, such
as vertices. Execution Pipelines 240 may be configured to transform the second
samples from an object-based coordinate representation (object space) to an
alternatively based coordinate system such as world space or normalized device

Page 106 of 509 TCL 1002

Page 107 of 509 TCL 1002

Application/Control Number: 13/109,738 Page 6

Art Unit: 2628

coordinates ... Execution Pipelines 240 output processed samples, such asvertices,
that are stored in a Vertex Output Buffer 260 ... Each Execution Pipeline 240 signals to
Pixel Input Buffer 240 when a sample can be accepted ... programmable computation
units (PCUs) within an Execution Pipeline 240 ... perform operations such as
tessellation, perspective correction, texture mapping, shading, blending, and the like.
Processed samplesare output from each Execution Pipeline 240 to a Pixel Output
Buffer 270."

Thus, the Execution Unit 470 is considered a processorunit that executes

instructions that generate a pixel color in response to the selected oneofthe plurality of

inputs and generates vertex position and appearance data in responseto a selected

oneof the plurality of inputs (also see 4:22-5:35)).

RE claim 3, Lindholm describes a unified shader comprising:

a processorunit operative to perform vertex calculation operations and pixel

calculation operations (FIG. 4 “Execution Unit 470” and “PCU 375”.

6:38-59 “FIG.4 is an illustration of an alternate embodiment of Execution

Pipeline 240 containing at least one Multi-Threaded Processing Unit 400 ... In one
embodiment TSR [Thread Storage Resource] 325 stores thread data for each ofat least
two thread types, wheretheat least two thread types mayincludepixel, primitive and
vertex.”

9:33-56 "Instruction Dispatcher 440 gathers the source data from Pixel Input
Buffer 215, Vertex Input Buffer 220 or Register File 350 specified in an instruction and
outputs the instruction and source data to Execution Unit 470 including at least one
PCU 375 ... Execution Unit 470 is configured by the program instruction to
simultaneously process samples using PCUs 375to perform operations."

Thus, the Execution Unit 470 and internal PCU 375 are collectively considered a

processorunit operative to perform vertex calculation operations and pixel calculation

operations); and

Page 107 of 509 TCL 1002

Page 108 of 509 TCL 1002

Application/Control Number: 13/109,738 Page 7

Art Unit: 2628

shared resources, operatively coupled to the processorunit (FIG.4 illustrates

Register File 350 coupled to Execution Unit 470, and 7:37-43 describes that the

Register File 350 is shared among threads);

the processorunit operative to use the shared resourcesfor either vertex data or

pixel information and operative to perform pixel calculation operations until enough

shared resources becomeavailable and then use the shared resources to perform

vertex calculation operations (7:37-43,all types of processing threads can use the

Register File 350, where thread typesinclude vertex and pixel threads (see 6:43-44).

7:6-36 “In an alternate embodiment, Thread Control Unit 420 is configured to
assign threads to source samples or allocate locations in Register File 350 using thread
allocation priorities based on an amountof sample data in Pixel Input Buffer 215 and
another amountof sample data in Vertex Input Buffer 220."

15:7-13 “In step 877 Thread Control Unit 320 or 420 determinesif storage
resourcesfor storing intermediate data generated during execution of the thread are
available. The storage resources may be in graphics memory. When storage
resources are not available in step 877, Thread Control Unit 320 or 420 does not
proceed to step 880 until a storage resources becomeavailable. In step 880 Thread
Control Unit 320 dispatches the thread assigned to the sample and sourcedata to at
least one PCU 375."

Thus, whenpixel threads havepriority over vertex threads the processorunitwill

allocate the pixel data to the Register File 350 and will perform pixel calculation

operations until enough shared resources becomeavailable in the Register File 350 to

begin carrying out vertex threads, which may happenasa result of a completion of most

of the pixel threads ora shift in priority such that the vertex threads now have the

highestpriority, and then use the Register File 350 to perform vertex calculation

operations.

RE claim 4, Lindholm describes a unified shader comprising:

Page 108 of 509 TCL 1002

Page 109 of 509 TCL 1002

Application/Control Number: 13/109,738 Page 8

Art Unit: 2628

a processorunit operative to perform vertex calculation operations and pixel

calculation operations (see the corresponding section in the rejection of claim 3); and

shared resources, operatively coupled to the processor unit (see the

corresponding section in the rejection of claim 3);

the processorunit operative to use the shared resourcesfor either vertex data or

pixel information and operative to perform vertex calculation operations until enough

shared resources becomeavailable and then use the shared resourcesto perform pixel

calculation operations (7:37-48, all types of processing threads can use the Register

File 350, where thread typesinclude vertex andpixel threads (see 6:43-44).

7:6-36 “In an alternate embodiment, Thread Control Unit 420 is configured to
assign threads to source samples or allocate locations in Register File 350 using thread
allocation priorities based on an amountof sample data in Pixel Input Buffer 215 and
another amountof sample data in Vertex Input Buffer 220."

15:7-13 “In step 877 Thread Control Unit 320 or 420 determinesif storage
resourcesfor storing intermediate data generated during execution of the thread are
available. The storage resources may be in graphics memory. When storage
resources are not available in step 877, Thread Control Unit 320 or 420 does not
proceed to step 880 until a storage resources becomeavailable. In step 880 Thread
Control Unit 320 dispatches the thread assigned to the sample and sourcedata to at
least one PCU 375."

Thus, when vertex threads have priority over pixel threads the processorunit will

allocate the vertex data to the Register File 350 and will perform vertex calculation

operations until enough shared resources becomeavailable in the Register File 350 to

begin carrying out pixel threads, which may happenasa result of a completion of most

of the vertex threadsora shift in priority such that the pixel threads now havethe

highestpriority, and then use the Register File 350 to perform pixel calculation

operations.

Page 109 of 509 TCL 1002

Page 110 of 509 TCL 1002

Application/Control Number: 13/109,738 Page 9

Art Unit: 2628

RE claim 5, Lindholm describes a unified shader comprising:

a processorunit (FIG. 4 “Execution Unit 470” and “PCU 375”);

a sequencercoupledto the processor unit, the sequencer maintaining

instructions operative to cause the processorunit to execute vertex calculation and pixel

calculation operations on selected data maintained in a store depending upon an

amountof space available in the store (

8:33-9:32 “Each clock cycle, Instruction Scheduler 430 evaluates whether any
instruction within the IWU 435 can be executed based on theavailability of computation
resources in an Execution Unit 470 and source data stored in Register File 350."

9:33-56 "Instruction Dispatcher 440 gathers the source data from Pixel Input
Buffer 215, Vertex Input Buffer 220 or Register File 350 specified in an instruction and
outputs the instruction and source data to Execution Unit 470 including at least one
PCU 375 ... Execution Unit 470 is configured by the program instruction to
simultaneously process samples using PCUs 375to perform operations."

7:6-10 “In an alternate embodiment, Thread Control Unit 420 is configured to
assign threads to source samples or allocate locations in Register File 350 using thread
allocation priorities”.

15:7-13 “In step 877 Thread Control Unit 320 or 420 determinesif storage
resourcesfor storing intermediate data generated during execution of the thread are
available. The storage resources may be in graphics memory. When storage
resources are not available in step 877, Thread Control Unit 320 or 420 does not
proceed to step 880 until a storage resources becomeavailable. In step 880 Thread
Control Unit 320 dispatches the thread assigned to the sample and sourcedata to at
least one PCU 375."

Thus, the Scheduler 430 and Instruction Dispatcher 440 are collectively

considered a sequencer coupled to the Execution Unit 470, the sequencer maintaining

instructions operative to cause the Execution Unit 470 to execute vertex calculation and

pixel calculation operations on selected data maintained in a Register File 350

depending upon an amountof space available in the Register File 350).

Page 110 of 509 TCL 1002

Page 111 of 509 TCL 1002

Application/Control Number: 13/109,738 Page 10

Art Unit: 2628

RE claim 6, Lindholm describes the shaderof claim 5, wherein the sequencer

further includes circuitry operative to fetch data from a memory(

9:33-56 "Instruction Dispatcher 440 gathers the source data from Pixel Input
Buffer 215, Vertex Input Buffer 220 or Register File 350”).

RE claim 7, Lindholm describes the shaderof claim 5, further including a

selection circuit operative to provide information to the store in responseto a control

signal(

6:60-7:36 “Thread allocation priority, as described further herein, is used to
assign a thread to a source sample. A thread allocation priority is specified for each
sample type and Thread Control Unit 420 is configured to assign threads to samples or
allocate locations in a Register File 350 based on the priority assigned to each sample
type. The thread allocation priority may be fixed, programmable, or dynamic.”

The Thread Control Unit 420 is considered a selection circuit operative to provide

information to the store (Register File 350) in response to a control signal, where the

control signal is the thread allocation priority associated with each thread or thread

type).

RE claim 8, Lindholm describes the shaderof claim 5, wherein the processorunit

executesinstructions that generate a pixel color in response to the selected one of the

plurality of inputs (

5:11-35 “Pixel Input Buffer 215 outputs the samples to each Execution Pipeline
240 ... Each Execution Pipeline 240 signals to Pixel Input Buffer 240 when a sample
can be accepted... programmable computation units (PCUs) within an Execution
Pipeline 240 ... perform operations suchas tessellation, perspective correction, texture
mapping, shading, blending, and the like. Processed samples are output from each
Execution Pipeline 240 to a Pixel Output Buffer 270.").

RE claim 9, Lindholm describes the shaderof claim 5, wherein the processorunit

executes vertex calculations while the pixel calculations arestill in progress(

Page 111 of 509 TCL 1002

Page 112 of 509 TCL 1002

Application/Control Number: 13/109,738 Page 11

Art Unit: 2628

6:38-59 “FIG.4 is an illustration of an alternate embodiment of Execution

Pipeline 240 containing at least one Multi-Threaded Processing Unit 400 ... In one
embodiment TSR [Thread Storage Resource] 325 stores thread data for each of at least
two thread types, wheretheat least two thread types may include pixel, primitive and
vertex.”

9:39-49 “Execution Unit 470 is configured by the program instruction to
simultaneously process samples using PCUs 375 to perform operations ... Execution
Unit 470 can simultaneously process samplesof different types, and, likewise, execute
threadsofdifferent types.”).

RE claim 10, Lindholm describes the shaderof claim 5, wherein the processor

unit generates vertex position and appearance data in response to a selected oneof the

plurality of inputs (

4:42-5:35 “Execution Pipelines 240 mayreceive first samples, such as higher-
order surface data, and tessellate the first samples to generate second samples, such
as vertices. Execution Pipelines 240 may be configured to transform the second
samples from an object-based coordinate representation (object space) to an
alternatively based coordinate system such as world space or normalized device
coordinates ... Execution Pipelines 240 output processed samples, such asvertices,
that are stored in a Vertex Output Buffer 260”).

RE claim 11, Lindholm describes the shaderof claim 7, wherein the control

signal is provided by an arbiter(

6:60-7:36 “Thread allocation priority, as described further herein, is used to
assign a thread to a source sample. A thread allocation priority is specified for each
sample type and Thread Control Unit 420 is configured to assign threads to samples or
allocate locations in a Register File 350 based on the priority assigned to each sample
type. The threadallocation priority may befixed, programmable, or dynamic ... In an
alternate embodiment, Thread Control Unit 420 is configured to assign threads to
source samples or allocate locations in Register File 350 using thread allocation
priorities based on an amountof sample data in Pixel Input Buffer 215 and another
amount of sample data in Vertex Input Buffer 220 ... In a further alternate embodiment,
Thread Control Unit 420 is configured to assign threads to source samplesor allocate
locations in Register File 350 using thread allocation priorities based on graphics
primitive size”.

Page 112 of 509 TCL 1002

Page 113 of 509 TCL 1002

Application/Control Number: 13/109,738 Page 12

Art Unit: 2628

Thus, while an arbiter isn't explicitly described, the Examiner considersit inherent

that some portion of the system acts as an arbiter, and therefore can be considered an

arbiter, as someportion of the system assignspriorities to thread and sample types

according to the current processing circumstances, in order to moreefficiently process

the data).

RE claim 12, Lindholm describes a graphics processor comprising:

a unified shader comprising a processorunit that executes vertex calculations

while the pixel calculations are still in progress (

6:38-59 “FIG.4 is an illustration of an alternate embodiment of Execution

Pipeline 240 containing at least one Multi-Threaded Processing Unit 400 ... In one
embodiment TSR [Thread Storage Resource] 325 stores thread data for each of at least
two thread types, wheretheat least two thread types mayincludepixel, primitive and
vertex.”

9:39-49 “Execution Unit 470 is configured by the program instruction to
simultaneously process samples using PCUs 375 to perform operations ... Execution
Unit 470 can simultaneously process samples of different types, and, likewise, execute
threadsofdifferent types.”).

RE claim 13, Lindholm describes the graphics processorof claim 12 wherein the

unified shader comprises a sequencer coupled to the processorunit, the sequencer

maintaining instructions operative to cause the processorunit to execute vertex

calculation and pixel calculation operations on selected data maintained in a store

depending upon an amountof space available in the store (see the corresponding

section in the rejection of claim 5).

RE claim 14, Lindholm describes the graphics processorof claim 12 comprising

a vertex block operative to fetch vertex information from memory (seethe rejection of

claim 6).

Page 113 of 509 TCL 1002

Page 114 of 509 TCL 1002

Application/Control Number: 13/109,738 Page 13

Art Unit: 2628

RE claim 15, Lindholm describes a unified shader comprising:

a processorunit flexibly controlled to perform vertex manipulation operations and

pixel manipulation operations based on vertex or pixel workload (

7:6-36 “Thread Control Unit 420 is configured to assign threads to source
samplesorallocate locations in Register File 350 using thread allocation priorities
based on an amountof sample data in Pixel Input Buffer 215 and another amountof
sample data in Vertex Input Buffer 220 ... In a further alternate embodiment, Thread
Control Unit 420 is configured to assign threads to source samplesor allocate locations
in Register File 350 using thread allocation priorities based on graphics primitive size
(numberof pixels or fragments includedin a primitive)”.

9:39-49 “Execution Unit 470 is configured by the program instruction to
simultaneously process samples using PCUs 375 to perform operations ... Execution
Unit 470 can simultaneously process samplesof different types, and, likewise, execute
threadsofdifferent types.”).

RE claim 16, Lindholm describes the shaderof claim 15 comprising an

instruction store and wherein the processor unit performs the vertex manipulation

operations and pixel manipulation operations at various degrees of completion based on

switching betweeninstructionsin the instruction store (FIG. 4 and 8:15-46 describes

Instruction Cache 410, which is considered aninstruction store.

9:33-56 "Instruction Dispatcher 440 gathers the source data from Pixel Input
Buffer 215, Vertex Input Buffer 220 or Register File 350 specified in an instruction and
outputs the instruction and source data to Execution Unit 470 including at least one
PCU 375 ... Execution Unit 470 is configured by the program instruction to
simultaneously process samples using PCUs 375 to perform operations... Execution
Unit 470 can simultaneously process samples of different types, and, likewise, execute
threadsof different types.”

Thus, the Execution Unit 470 performs the vertex manipulation operations and

pixel manipulation operations at various degrees of completion based on switching

betweeninstructions in the instruction store).

Page 114 of 509 TCL 1002

Page 115 of 509 TCL 1002

Application/Control Number: 13/109,738 Page 14

Art Unit: 2628

Conclusion

Anyinquiry concerning this communication or earlier communications from the

examiner should be directed to DANIEL WASHBURNwhosetelephone numberis

(571)272-5551. The examiner can normally be reached on 9:30 A.M. to 6 P.M..

If attempts to reach the examiner by telephone are unsuccessful, the examiner’s

supervisor, Ulka Chauhan can be reached on 571-272-7782. The fax phone numberfor

the organization wherethis application or proceeding is assigned is 571-273-8300.

Information regarding the status of an application may be obtained from the

Patent Application Information Retrieval (PAIR) system. Status information for

published applications may be obtained from either Private PAIR or Public PAIR.

Status information for unpublished applications is available through Private PAIR only.

For more information about the PAIR system, see http://pair-direct.uspto.gov. Should

you have questions on accessto the Private PAIR system, contact the Electronic

Business Center (EBC) at 866-217-9197 (toll-free). If you would like assistance from a

USPTO Customer Service Representative or access to the automatedinformation

system, call 800-786-9199 (IN USA OR CANADA)or 571-272-1000.

/DANIEL WASHBURN/

Primary Examiner, Art Unit 2628
7/12/11

Page 115 of 509 TCL 1002

Page 116 of 509 TCL 1002

Application/Control No. Applicant(s)/Patent Under
Reexamination

18/109,738 MOREIN ET AL.
Notice of References Cited Examiner Art Unit

DANIEL WASHBURN 2628 Page 1 of 1
U.S. PATENT DOCUMENTS

Document Number Date

Country Code-Number-Kind Code eaeYYYY Name ClassificationUS-7,038,685|05-2006|2006 [LindholmJohnErkJohn Erik|35/501

*A copyof this reference is not being furnished with this Office action. (See MPEP § 707.05(a).)
Dates in MM-YYYYformat are publication dates. Classifications may be US orforeign.
U.S. Patent and Trademark Office

PTO-892 (Rev. 01-2001) Notice of References Cited Part of Paper No. 20110712

Page 116 of 509 TCL 1002

Page 117 of 509 TCL 1002

Application/Control No. Applicant(s)/Patent Under
Reexamination

Index of Claims 13109738 MOREIN ET AL.

Examiner Art Unit

DANIEL WASHBURN 2628

Rejected | Cancelled Non-Elected Appeal

= Allowed | Restricted Objected
(1 Claims renumberedin the same order as presented by applicant OU CPA

CLAIM DATE

Final OrginalforinavaoryffFeGa
eG
eG
eG
PO

Pp7ftwe|

<

pos|vy|ft P|
poo|ow|
Ceee | pT
pourPe
eeee ee
a ee

aaaaaee

<

U.S. Patent and TrademarkOffice Part of Paper No. : 20110712

Page 117 of 509 TCL 1002

Page 118 of 509 TCL 1002

Application/Control No. Applicant(s)/Patent Under
Reexamination

Search Notes 13109738 MOREIN ETAL.

Examiner Art Unit

DANIEL WASHBURN 2628

SEARCHED

|Class| —CsC*Subclass—CidECCiate|SExaminer
72/4

SEARCH NOTES

Search Notes

Searched EAST(all databases) see searchhistory printout 7/12/11
Also see searchhistories for apps 12/791,597 and 11/842,256 7/12/11
conducted inventor name search 7/12/11

INTERFERENCE SEARCH

/DANIEL WASHBURN/

Primary Examiner.Art Unit 2628
U.S. Patent and Trademark Office Page 1 1 8 of 909 Part IG

Page 119 of 509 TCL 1002

Page 1 of 1

UNITED STATES PATENT AND TRADEMARK OFFICE
UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Address: COMMISSIONER FOR PATENTS

P.O. Box 1450
Alexandria, Virginia 22313-1450
www.uspto.gov

BIB DATA SHEET

CONFIRMATIONNO.2020

SERIAL NUMBER FILINGor. 371(c) GROUP ARTUNIT ATTORNEY DOCKET
13/109,738 05/17/2011 00100.36.0001

RULE

APPLICANTS

Stephen Morein, Cambridge, MA;
Laurent Lefebvre, Lachgnaie, CANADA;
Andy Gruber, Arlington, MA;
Andi Skende, Shrewsbury, MA;

** CONTINUING DATA *8*tte8tetekeeeeeriieie

This application is a CON of 12/791,597 06/01/2010 ABN
which is a CONof 11/842,256 08/21/2007 ABN
which is a CONof 11/117,863 04/29/2005 PAT 7,327,369
which is a CON of 10/718,318 11/20/2003 PAT 6,897,871

RK FOREIGN APPLICATIONS KEEKEKREKERERERERERERERERER

** IF REQUIRED, FOREIGN FILING LICENSE GRANTED **
05/27/2011

Foreign Priority claimed ves t4No STATE OR SHEETS TOTAL |INDEPENDENT
35 USC 119(a-d) conditions met O Yes Wino C) Met after COUNTRY DRAWINGS CLAIMS CLAIMSAllowance
Verified and /DANIEL C

WASHBURN/ MA 5 16 7
Acknowledged Examiner's Signature Initials

ADDRESS

ADVANCED MICRO DEVICES, INC.
C/O VEDDERPRICEP.C.

222 N.LASALLE STREET

CHICAGO, IL 60601
UNITED STATES

GRAPHICS PROCESSING ARCHITECTURE EMPLOYING A UNIFIED SHADER

U All Fees

LI 1.16 Fees (Filing)
FEES: Authority has been given in PaperFILING FEE : :

RECEIVED |No. to charge/credit DEPOSIT ACCOUNT {U1 1.17 Fees (Processing Ext. of time)
for following: L) 1.18 Fees (Issue)

LJ Other

LI Credit

BIB (Rev. 05/07).

Page 119 of 509 TCL 1002

Page 120 of 509 TCL 1002

EASTSearch History

EAST Search History

EAST Search History (Prior Art)

ae)

Default

Operator
‘Search Query ‘Plurals ‘Time Stamp

OFF=(2011/07/12
13:27

seccoren"
RA3

345/501.ccls.©US-PGPUB;
USPAT; USOCR; |
FPRS; EPO;

peeeecececeecececcecececcecececrecececrececearcrececcecececrecececrecesterecececcerececrerereceerececeerececeerececeeds

‘::::::::
3

‘O 2 //12:ON 2011/07/11
; :; :; :; :; :

: 13:29
; :
: i .::::::::::::::::::
:

JPO; DERWENT;
‘IBM_TDB

s s
s s 3 bs

EAST SearchHistory (I nterference)

<This search history is empty>

7/12/2011 1:53:40 PM

C:\ Documents and Settings\ dwashburn1\ My Documents\ EAST\ Workspaces\ Morein
et al. 11117863.wsp

Page 120 of 509 TCL 1002

file:///Cl/Documents%20and%20Settings/dwashburn 1/My%20Do...3109738/EASTSearchHistory. 13109738AccessibleVersion.htm7/12/2011 1:53:57 PM

Page 121 of 509 TCL 1002

UNITED STATES PATENT AND TRADEMARK OFFIGE
UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office

Address: COMMISSIONER FOR PATENTS
! OX.

Alexandria, Virginia 22313-1450www.uspto.gov

APPLICATION NUMBER FILING OR 371(C) DATE FIRST NAMED APPLICANT ATTY. DOCKET NO./TITLE

13/109,738 05/17/2011 Stephen Morein 00100.36.0001
CONFIRMATION NO.2020

29153 PUBLICATION NOTICE

ADVANCED MICRO DEVICES, INC.

C/O VEDDER PRICEP.C. IOC0000000497227/60
222 N.LASALLE STREET

CHICAGO, IL 60601

Title:GRAPHICS PROCESSING ARCHITECTURE EMPLOYING A UNIFIED SHADER

Publication No.US-2011-0216077-A1

Publication Date:09/08/201 1

NOTICE OF PUBLICATION OF APPLICATION

The above-identified application will be electronically published as a patent application publication pursuant to 37
CFR 1.211, et seq. The patent application publication number and publication date are set forth above.

The publication may be accessed through the USPTO's publically available Searchable Databasesvia the
Internet at www.uspto.gov. The direct link to access the publication is currently http:/Awww.uspto.gov/pattt/.

The publication process established by the Office does not provide for mailing a copy of the publication to
applicant. A copy of the publication may be obtained from the Office upon paymentof the appropriate fee set forth
in 37 CFR 1.19(a)(1). Orders for copies of patent application publications are handled by the USPTO's Office of
Public Records. The Office of Public Records can be reached by telephone at (703) 308-9726 or (800) 972-6382,
by facsimile at (703) 305-8759, by mail addressed to the United States Patent and Trademark Office, Office of
Public Records, Alexandria, VA 22313-1450 or via the Internet.

In addition, information on the status of the application, including the mailing date of Office actions and the
dates of receipt of correspondencefiled in the Office, may also be accessed via the Internet through the Patent
Electronic Business Center at www.uspto.gov using the public side of the Patent Application Information and
Retrieval (PAIR) system. The direct link to access this status information is currently http://pair.-uspto.gov/. Prior to
publication, such status information is confidential and may only be obtained by applicant using the private side of
PAIR.

Further assistance in electronically accessing the publication, or about PAIR, is available by calling the Patent
Electronic Business Center at 1-866-217-9197.

Office of Data Managment, Application Assistance Unit (571) 272-4000, or (571) 272-4200, or 1-888-786-0101

page 1 of 1

Page 121 of 509 TCL 1002

Page 122 of 509 TCL 1002

PATENT APPLICATION

IN THE UNITED STATES PATENT AND TRADEMARKOFFICE

Applicants:|Stephen Moreinetal. Examiner: Daniel C. Washburn
Serial No.: 13/109,738 Art Unit: 2628
Filing Date: May 17, 2011 Docket No.: 00100.36.0001
Confirmation No.: 2020

Title: GRAPHICS PROCESSING ARCHITECTURE EMPLOYINGA UNIFIED

SHADER

Mail Stop Amendment
Commissioner for Patents

P.O. Box 1450

Alexandria, VA 22313-1450

RESPONSE

DearSir:

In responseto the office action mailed July 21, 2011, Applicants petition for a three

month extension of time and respond as follows:

Listing of the Claims begins on page 2 ofthis paper.

Remarksbegin on page6 ofthis paper.

BDDBO1 9084641v1 Page 122 of 509 TCL 1002

Page 123 of 509 TCL 1002

Listing of the Claims:

1. (original) A method comprising:

performing vertex manipulation operations and pixel manipulation operations by

transmitting vertex data to a general purposeregister block, and performing vertex operations on

the vertex data by a processor unless the general purpose register block does not have enough

available space therein to store incoming vertex data; and

continuing pixel calculation operations that are to be or are currently being performed by

the processor based on instructions maintained in an instruction store until enough registers

within the general purpose register block becomeavailable.

2. (original) A unified shader, comprising:

a general purposeregister block for maintaining data;

a processorunit;

a sequencer, coupled to the general purpose register block and the processorunit, the

sequencer maintaining instructions operative to cause the processor unit to execute vertex

calculation and pixel calculation operations on selected data maintained in the general purpose

register block; and

wherein the processor unit executes instructions that generate a pixel color in response to

the selected one of the plurality of inputs and generates vertex position and appearance data in

responseto a selected one ofthe plurality of inputs.

3. (original) A unified shader comprising:

BDDBO1 9084641v1 Page 123 of 509 TCL 1002

Page 124 of 509 TCL 1002

a processor unit operative to perform vertex calculation operations and pixel calculation

operations; and

shared resources, operatively coupled to the processor unit;

the processor unit operative to use the shared resourcesfor either vertex data or pixel

information and operative to perform pixel calculation operations until enough shared resources

become available and then use the shared resources to perform vertex calculation operations.

4. (original) A unified shader comprising:

a processor unit operative to perform vertex calculation operations and pixel calculation

operations; and

shared resources, operatively coupled to the processor unit;

the processor unit operative to use the shared resourcesfor either vertex data or pixel

information and operative to perform vertex calculation operations until enough shared resources

become available and then use the shared resources to perform pixel calculation operations.

5. (original) A unified shader comprising:

a processorunit;

a sequencer coupled to the processor unit, the sequencer maintaining instructions

operative to cause the processor unit to execute vertex calculation and pixel calculation

operations on selected data maintained in a store depending upon an amountof space available in

the store.

BDDBO1 9084641v1 Page 1@4 of 509 TCL 1002

Page 125 of 509 TCL 1002

6. (original) The shader of claim 5, wherein the sequencer further includes circuitry

operative to fetch data from a memory.

7. (original) The shader of claim 5, further includinga selection circuit operative to

provide information to the store in response to a control signal.

8. (original) The shader of claim 5, wherein the processor unit executes instructions

that generate a pixel color in responseto the selected one ofthe plurality of inputs.

9. (original) The shader of claim 5, wherein the processor unit executes vertex

calculations while the pixel calculationsarestill in progress.

10. (original) The shader of claim 5, wherein the processor unit generates vertex

position and appearance data in responseto a selected oneofthe plurality of inputs.

11. (original) The shader of claim 7, wherein the control signal is provided by an

arbiter.

12. (original) A graphics processor comprising:

a unified shader comprising a processor unit that executes vertex calculations while the

pixel calculationsare still in progress.

BDDBO1 9084641v1 Page 125 of 509 TCL 1002

Page 126 of 509 TCL 1002

13. (original) The graphics processor of claim 12 wherein the unified shader

comprises a sequencer coupledto the processor unit, the sequencer maintaining instructions

operative to cause the processor unit to execute vertex calculation and pixel calculation

operations on selected data maintained in a store depending upon an amountof space available in

the store.

14. (original) The graphics processor of claim 12 comprising a vertex block operative

to fetch vertex information from memory.

15. (original) A unified shader comprising:

a processorunit flexibly controlled to perform vertex manipulation operations and pixel

manipulation operations based on vertex or pixel workload.

16. (original) The shader of claim 15 comprising an instruction store and wherein the

processor unit performs the vertex manipulation operations and pixel manipulation operationsat

various degrees of completion based on switching between instructions in the instruction store.

BDDBO1 9084641v1 Page 126 of 509 TCL 1002

Page 127 of 509 TCL 1002

REMARKS

Applicants respectfully traverse and request reconsideration.

Claims 1-16 stand rejected under 35 U.S.C. § 102(e) as allegedly being anticipated by

U.S. Patent No. 7,038,685 (Lindholm). Applicants respectfully submit herewith Declarations

under 37 C.F.R. § 1.131 for inventors Laurent Lefebvre, Andrew E. Gruber, Stephen L. Morein

and Andi P. Skende establishing conception and reduction to practice of the currently claimed

subject matter prior to the June 30, 2003 priority date of Lindholm. It is believed that Lindholm

does not claim the same patentable invention as defined by 37 C.F.R. § 41.203(a) and that the

present rejection is not based on a statutory bar, i.e., Lindholm qualifies as prior art only under

35 U.S.C. § 102(e). Accordingly, the attached Declarations are relied on to establish prior

reduction to practice of the claimed subject matter, particularly with regard to independent

claims 1-5, 12 and 15.

Regarding the reduction to practice evidenced by the attached Declarations, Applicants

first note that, properly presented, a Rule 131 declaration may demonstrate prior inventionifit

provides a “showing offacts . . . as to establish reduction to practice prior to the effective date of

the reference.” 37 C.F.R. § 1.131(b). As set forth in M.P.E.P. § 715.07(1), evidence in support

of asserted facts demonstrating prior invention may be provided in the form of “an

accompanying model.” With regard to an apparatus and/or process implemented by an

integrated circuit or the like, Applicants respectfully submit that a simulation of such an

apparatus and/or circuit may effectively serve as a “model” demonstrating successful reduction

to practice. Specifically, Applicants respectfully submit that evidence of (i) a successful

computer-based simulation of a physical embodiment and/or (ii) a description of a physical

embodiment capable of translation to implement the actual physical embodiment, coupled with

BDDBO1 9084641v1 Page 127 of 509 TCL 1002

Page 128 of 509 TCL 1002

successfully testing of the resulting physical embodimentis sufficient to demonstrate an actual

reduction to practice for the purposes of Rule 131 declaration. (See McDonnell Douglas Corp.v.

U.S., 670 F. 2d 156, 161 (Ct. Cl. 1982) (where court concludes that “physical tests proved that

the computer approved device . . . failed in actual practice . . . to perform in the manner

intended” and that subsequent successful physical testing was the first reduction to practice, a

necessary implication is that a valid reduction to practice would result if actual physical testing

demonstrates that prior computer simulation was adequate.); Mosaid Tech. Inc, v. Samsung Elec.

Co., 362 F.Supp.2d 526, 547 (D.N.J. 2005) (noting that the McDonnell case suggested “that a

computer simulation may be a valid reduction to practice, but not if subsequent, actual physical

testing provesthat it is inadequate,” and that “there are areas of science where a successfully run

simulation represents the end of the inventive process and the construction of the physical

embodimentis but a matter of mere routine and mechanical application [such that] a simulation

should be a valid reduction to practice.’’))

With regard to the instant application, as shown in the attached Declarations, Applicants

have provided evidence that both a simulation and hardware design description (expressed in a

hardware design language capable of conversion to a physical embodiment) subsequently lead to

a successfully tested physical embodiment of (and, therefore, actual reduction to practice of) the

subject matter recited in the independent claims. More particularly, the attached Declarations

demonstrate invention of the recited subject matter in claims 1-5, 12 and 15 prior to the effective

filing date of the Lindholm reference.

Thus, in light of the Declarations, Applicants respectfully submit that Lindholm is not

available as prior art against, and therefore obviates the sole basis for rejecting, the above claims,

which claims are therefore in suitable condition for allowance. Applicants further note that

BDDBO1 9084641v1 Page 128 of 509 TCL 1002

Page 129 of 509 TCL 1002

claims 6-11, 13, 14 and 16 are dependent upon, and therefore incorporate the limitations of,

respective ones of claims 5, 12 and 15. As such, claims 6-11, 13, 14 and 16 are also allowable

for the same reasons presented aboverelative to their respective independent claims.

Applicant respectfully submits that the claims are now believed to be in condition for

allowance andthat a timely Notice of Allowance be issued in this case. If the Examiner believes

that personal communication will expedite prosecution of this application, the Examiner is

invited to telephone the undersignedat (312) 356-5094.

Respectfully submitted,

Dated: January 18, 2012 By:___/Christopher J. Reckamp/
Christopher J. Reckamp
Reg. No. 34,414

Faegre Baker Daniels LLP
311 S. Wacker Drive

Chicago, IL 60606
PHONE:(312) 356-5094
FAX: (312) 212-6501

BDDBO1 9084641v1 Page 120 of 509 TCL 1002

Page 130 of 509 TCL 1002

PATENT

ATTORNEY DOCKET NO. 00100.36.0001

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant: Stephen Moreinet al.)
|)

Serial No. 13/109,738) Art Unit:2628
og.)

Filed: May17, 2011) Examiner: Daniel C. Washburn
)

For: GRAPHICS PROCESSING :
ARCHITECTURE EMPLOYING A Confirmation No. 2020
UNIFIED SHADER

DECLARATION UNDER37 C.F.R. § 1.131

Commissioner for Patents

P.O. Box 1450

Alexandria, VA 22314-1450

Sir:

We, Stephen L Moreinacitizen of the U.S. residing at 367 Santana Heights, Unit 3027,
San Jose California 95128; Laurent Lefebvre, a citizen of Canada residing at 1055 Garden
Avenue, Mascouche, Quebec, CANADA, J7L-0A1; Andrew E. Gruber a citizen of the U.S.
residing at 25] Pleasant Street, Arlington, Massachusetts 02476; and Andi Petrit Skendeacitizen
of the U.S. residing at 35 Sunrise Avenue, Worcester, Massachusetts 01606, do hereby declare
that:

1, Weare joint inventors of the subject matter described and claimed in U.S. Patent
Application No. 13/109,738 (hereinafter “the Invention”), filed in the United States of America
on May 17, 2011, entitled “Graphics Processing Architecture Employing a Urified Shader”,
which application is a continuation of and claims priority to U.S. Patent Anplication No.
12/791,597filed June 1, 2010, which application is a continuation of and claimspriority to U.S.
Patent Application No. 11/842,256 filed August 21, 2007, which application is a continuation of
and claims priority to U.S. Patent Application No. 11/117,863 filed April 29, 2005 (now U.S.
Patent No. 7,327,369), which application is a continuation of and claims priority to U.S. Patent
Application No. 10/718,318 filed November 20, 2003 (hereinafter “the “318 application”; now
U.S. Patent No. 6,897,871).

2. We conceived the Invention prior to June 30, 2003 while employed by ATI
Technologies Inc. and/or one ofits wholly owned subsidiaries (“ATI”) as indicated by attached
Exhibits A and B. Exhibit A is a copy of emulation code files entitled Reg_file.cpp,
Instruction_store.cpp, Arbiter.cpp, Gpr_manager.cpp, sq_alu.cpp and sq_block_model.cpp that,

Page 130 of 509 TCL 1002

CHICAGO/#2239588. 1

Page 131 of 509 TCL 1002

based on information and belief, we invented and assisted in coding prior to June 30, 2003 the
(“Model Code”). Exhibit B is a copy of hardware register transfer level (RTL)files (“the Chip
Design Code”) entitled sq_gpr_alloc.v, Sq_alu_instr_seq.v,|sq_instruction_store_v,
sp_macc_gpr.v, sp_vector.v, sq.v, sq_export_alloc.v, sq_ctl_flow_seq.v, sq_alu_instr_seq.v,
sq_thread_arb.v and sq_shader_seq.v, that, based on information and belief, we assisted in
creating prior to June 30, 2003. Prior to June 30, 2003 we created a graphics processing system
that operated as claimed using a computer system that successfully executed the Model Code.
Prior to June 30, 2003 wealso created a graphics processing system as claimed in the form of a
computer system that used an RTL simulator to successfully validate the operation of an
integrated circuit version of the claimed graphics processing system and method. Atleast the
following language and citations adequately support the above:

a. As shown in Exhibit A, the Model Code comprises various software instructions
written in the well-known C++ language. When executed by the computer system , the
Model Code caused the computer system to operate as claimed in at least claims 1-5, 12
and 15 of the Invention.

b. Using the Model Code, we successfully verified the operation cf the claimed
subject matter for its intended purpose through emulation thereof.

c. As shown in Exhibit B, the Chip Design Code comprises various instructions
written in a well-known hardware description language. The Chip Design Code was used
by an RTL simulator system to validate the operation of an integrated circuit version of
the claimed graphics processing system and method asclaimed in at least claims 1-5, 12
and 15. As further known bypractitioners in the field of integrated circuit design, such
instructions are used to generate gate level detail for silicon fabrication.

d. On information and belief, the computer system operating the Model Code and
the RTL simulator system operating the Chip Design Code represents the claimed
structure and operation embodied in an integrated graphics processing circuit chip
referred to as the ATI KENOSchip produced by ATI on or about October, 2004 that was
incorporated in the XBOX 360 product.

Accordingly, the contents of Exhibits A and B establish the possession by us of the whole
Invention, falling within the scope of currently pending claims, such as but notlimited to at least
claims 1-5, 12 and 15.

Page 1314, of 509 TCL 1002
CHICAGOA#2239588.1

Page 132 of 509 TCL 1002

3. Each of us hereby declare that all statements made herein are of my own
knowledge, are true and that all statements made on information and belief are believed to be
true; and each of us further declare that these statements were made with the knowledge that
willful false statements and the like so made are punishable by fine or imprisonya€nt, or both,
under § 1001 of Title 18 of the United States Code andthat such willful false Statements may
jeopardizethe validity of the application or any patent issued therefrom. f

 Dated: ev a Y } Ao/)

Dated:

Laurent Lefebvre

Dated:

Andrew E. Gruber

Dated:
Andi Petrit Skende

Page 132 of 509 | TCL 1002
CHICAGO/#2239588.1

Page 133 of 509 TCL 1002

3. Each of us hereby declare that all statements made herein are of my own
knowledge, are true andthat all statements made on information and belief are believed to be
true; and each of us further declare that these statements were made with the knowledge that
willful false statements and the like so made are punishable by fine or imprisonment, or both,
under § 1001 of Title 18 of the United States Code and that such willful false statements may
jeopardize the validity of the application or any patent issued therefrom.

Dated:

Stephen L. Morein

Dated: OCTabeR Z XS ZuLA Lo
Laurent Lefebvre

Dated:

Andrew E. Gruber

Dated:

Andi Petrit Skende

3

CHICAGO/#2239588.1 Page 133 of 509 TCL 1002

Page 134 of 509 TCL 1002

3. Each of us hereby declare that all statements made herein are of my own
knowledge, are true andthat all statements made on information and belief are believed to be
true; and each of us further declare that these statements were made with the knowledgethat
willful false statements and the like so made are punishable by fine or imprisonment, or both,
under § 1001 of Title 18 of the United States Code and that such willful false statements may
jeopardize the validity of the application or any patent issued therefrom.

Dated:

Stephen L. Morein

Dated:

Laurent Lefebvre

waein [23./y we
Andrew E. Gruber

Dated:

Andi Petrit Skende

Page 134 of 509 TCL 1002
3

CHICAGO/#2239588.1

Page 135 of 509 TCL 1002

3. Each of us hereby declare that all statements made herein ate of my own
knowledge, are true and that all statements made on information and belief are believed ta be
true; and each of us further declare that these statements were made with the knowledge that
willful false statements and the like so made are punishable by fine or imprisonment, or both,
under § 1001 of Title 18 of the United States Code and that such willful false statements may
jeopardize the validity of the application or any patent issued therefrom.

Dated:

Stephen L. Morein

Dated:
Laurent Lefebvre

Dated:

Andrew E. Gruber

Dated: Necanuber 22, 208) ft GS
Andi Petrit Skende

Page 135 of 509 - TCL 1002
CHICAGOH223 9588.1

Page 136 of 509 TCL 1002

EXHIBIT A —- MODEL CODE

Reg_file.cpp

#include "regfile.h”

RegFile: :RegFile()
{

for (int i=031<128;i++)
for (int j=0;j<16; j++)

for (int k=0;k<43; k++)
regValues[i].Val[j].field[k].clamp(@);

}

void RegFile::GetConstValues(const RegVect* &Values,int Addr)
{

Values = &(regValues[Addr].Val1[@]);
}

void RegFile::GetValues(RegVect* &Values,int Addr)
{

Values = &(regValues[Addr].Val1[@]);
}

Instruction store:

Instruction_store.cpp
#include "instruction_store.h”

IStore: :IStore()
{

for (int i1=03;1<4096; i++)
{

instructions[i]
instructions[i]
instructions[i]
instructions[i]
instructions[i]
instructions[i]
instructions[i]
instructions[i]
instructions[i]
instructions[i]
instructions[i]
instructions[i]

}

. byte@=0xee;

. byte1=0xee;

. byte2=0xee;

. byte3=0xee;

. byte4=0xee;

. byte5=0xee;

. byte6=0xee;

. byte7=0xee;

. byte8=0xee;

. byte9=0xee ;

. byte10=0xee;

. byte11=0xee;

void IStore::GetInst(Instruction &inst,int addr)
{

inst = instructions[addr];
}

1

Page 136 of 509 TCL 1002

Page 137 of 509 TCL 1002

void IStore: :GetInst(ALU_Instruction &aluInst, int addr)
{

aluInst.SrcASel ((instructions[addr].byte11 & @x8@) >> 7);
aluInst.SrcBSel ((instructions[addr].byte11 & @x4@) >> 6);
aluInst.SrcCSel = ((instructions[addr].byte11 & @x2@) >> 5);
aluInst.VectorOpcode = ((instructions[addr].byte11 & @x1F));
aluInst.SourceARegPointer = ((instructions[addr].byte1@));
aluInst.SourceBRegPointer = ((instructions[addr].byte9));
aluInst.SourceCRegPointer = ((instructions[addr].byte8));
aluInst.Constan@RelAbs = ((instructions[addr].byte7 & @x8@) >> 7);
aluInst.ConstaniRelAbs = ((instructions[addr].byte7 & @x4@) >> 6);
aluInst.RelativeAddrRegSel = ((instructions[addr].byte7 & @x2@) >> 5);
aluInst.PredicateSelect = ((instructions[addr].byte7 & @x18) >> 3);
aluInst.SourceANegate = ((instructions[addr].byte7 & @x@4) >> 2);
aluInst.SourceBNegate ((instructions[addr].byte7 & @x@2) >> 1);
aluInst.SourceCNegate = ((instructions[addr].byte7 & @x@1))3
aluInst.SourceASwizzle (Cinstructions[addr].byte6));
aluInst.SourceBSwizzle = ((instructions[addr].byte5));
aluInst.SourceCSwizzle = ((instructions[addr].byte4));
aluInst.ScalarOpcode = ((instructions[addr].byte3 & @xfc) >> 2);
aluInst.ScalarClamp = ((instructions[addr].byte3 & @x@2) >> 1);
aluInst.VectorClamp = ((instructions[addr].byte3 & @x@1))3
aluInst.ScalarwriteMask = ((instructions[addr].byte2 & @xf@) >> 4);
aluInst.VectorwriteMask = ((instructions[addr].byte2 & @xef));
aluInst.ScalarResultPointer = ((instructions[addr].byte1))3
aluInst.VectorResultPointer = ((instructions[addr].byte@))3

}

void IStore::GetInst(TInstrPacked &texInst, int addr)
{

}

void IStore::GetInst(CF_Instruction &cfInst, int addr, bool left)
{

texInst.unpack((const uint8*) (&instructions[addr]));

// read from bytes 11 thru 6
if (left)
{

cfInst.opCode = ((instructions[addr].byte11 & @xF@) >> 4);
cfInst.addrMode = ((instructions[addr].byte11 & @x@8) >> 3);
cfInst.bufferSel = ((instructions[addr].byte11 & @x@6) >> 1);
cfInst.condition = ((instructions[addr].byte11 & @x@4) >> 2);
cfInst.boolAddr = ((instructions[addr].byte11 & @x@3) << 6) |

((instructions[addr].byte1@ & @xFC) >> 2);
cfInst.direction = ((instructions[addr].byte1@ & @x@2) >> 1);
cfInst.instTypeSer = ((instructions[addr].byte1@ & @x@3) << 16) |

((instructions[addr].byte9) << 8) |
((instructions[addr].byte8));

cfInst.predBreak = ((instructions[addr].byte8 & @x2@) >> 5);
cfInst.loopId = ((instructions[addr].byte8 & @x1F));
cfInst.count = ((instructions[addr].byte7 & @xF@) >> 4);
cfInst.force = ((instructions[addr].byte7 & @x2@) >> 5);
cfInst.jcAddress = ((instructions[addr].byte7 & @x1F) << 8) |

((instructions[addr].byte6));
cfInst.address = ((instructions[addr].byte7 & @x@F) << 8) |

((instructions[addr].byte6));
cfInst.allocSize = ((instructions[addr].byte6 & @x®F));

2

Page 137 of 509 TCL 1002

Page 138 of 509 TCL 1002

// read from bytes 5 thru @
else

{
cfInst.opCode = ((instructions[addr].byte5 & Q@xF@) >> 4);
cfInst.addrMode = ((instructions[addr].byte5 & @x@8) >> 3);
cfInst.bufferSel = ((instructions[addr].byte5 & @x@6) >> 1);
cfInst.condition = ((instructions[addr].byte5 & @x@4) >> 2);
cfInst.boolAddr = ((instructions[addr].byte5 & @x@3) << 6) |

((instructions[addr].byte4 & @xFC) >> 2);
cfInst.direction = ((instructions[addr].byte4 & @x@2) >> 1);
cfInst.instTypeSer = ((instructions[addr].byte4 & @x@3) << 16) |

((instructions[addr].byte3) << 8) |
((instructions[addr].byte2));

cfInst.predBreak = ((instructions[addr].byte2 & @x2@) >> 5);
cfInst.loopId = ((instructions[addr].byte2 & @x1F));
cfInst.count = ((instructions[addr].byte1 & @xF@) >> 4);
cfInst.force = ((instructions[addr].byte1 & @x2@) >> 5);
cfInst.jcAddress = ((instructions[addr].byte1 & @x1F) << 8) |

((instructions[addr].byte@));
cfInst.address = ((instructions[addr].byte1 & @x@F) << 8) |

((instructions[addr].byte@));
cfInst.allocSize = ((instructions[addr].byte@ & @x@F));

}
}

void IStore::SetInst(const Instruction &inst,int addr)
{

instructions[addr]=inst;
}

Performing operations on pixels or vertices:
Arbiter.cpp
boolean Arbiter: :chooseAluStation(int &lineNumber, Shader_Type &sType,

bool otherAluRunning, const CfMachine& otherCFMachine,bool &predOn)
{

int i;
int vertexPick = -1;
int pixelPick = -1;
bool pcSpace;
int lineCheck;
predOn = true;

// do pixels first
lineCheck = pixelHead;
for (i=0;i<pixelRsCount; i++)
{

if (pixelStation[lineCheck].status.valid != @ &&
pixelStation[lineCheck].status.ressourceNeeded == ALU

&& IpixelStation[lineCheck].status.event)
{

// no allocation needed

if (pixelStation[lineCheck].status.allocation == SQNO_ALLOC)
{

}
// we need to make sure there is space in the appropriate buffer

pixelPick = lineCheck;

3

Page 138 of 509 TCL 1002

Page 139 of 509 TCL 1002

else if (pixelStation[lineCheck].status.allocation == SQMEMORY &&
(pixelStation[lineCheck].status.allocationSize+1)*4 <= sq->pSX_SQ->GetExportBuffer()/4

&& pendingAllocs < 2 && sq->pSX_SQ->GetValid())
{

pixelPick = lineCheck;

else if (pixelStation[lineCheck].status.allocation ==
SQ_PARAMETER_PIXEL &&

pixelStation[lineCheck].status.allocationSize <= sq->pSX_SQ-
>GetExportBuffer()/4

&& pendingAllocs < 2 && sq->pSX_SQ->GetValid())
{

pixelPick = lineCheck;
}
// make sure the status says we can pick this pixel
if (pixelPick != -1)
{

// check for serial with texture pending
if (pixelStation[pixelPick].status.serial &&

pixelStation[pixelPick].status.texReadsOutstanding)
pixelPick = -1;

// if last or alloc is set we can only pick the two oldests
threads also for color exports

else if ((pixelStation[pixelPick].status.last
|| pixelStation[pixelPick].status.allocation ==

SQ_PARAMETER_PIXEL)&&
1(pixelPick==pixelHead || pixelPick==((pixelHead-

1)%MAX_PIX_RESERVATION_SIZE)))
pixelPick = -1;

// cannot pick last if texture reads are outstanding
else if (pixelStation[pixelPick].status.last &&

pixelStation[pixelPick].status.texReadsOutstanding)
pixelPick = -1;

// can only pick the second to old if the first is already
running and last is set

else if (pixelStation[pixelPick].status.last && pixelHead !=
pixelPick)

{
if (pixelStation[pixelPick].status.first | |

IpixelStation[pixelHead].status.last
|| pixelStation[pixelHead].status.valid)
pixelPick = -1;

else

{
predOn = false;
break;

}
}
else

break;
}

}// endif pixels

lineCheck = (lineCheck+1)%MAX_PIX_RESERVATION_SIZE;
}// end for loop

lineCheck = vertexHead;
for (i=0;i<vertexRsCount ; i++)

A

Page 139 of 509 TCL 1002

Page 140 of 509 TCL 1002

{
if (vertexStation[lineCheck].status.valid]= @ &&

vertexStation[lineCheck].status.ressourceNeeded == ALU
&&] vertexStation[lineCheck].status.event)

{
// no allocation needed

if (vertexStation[lineCheck].status.allocation == SQNO_ALLOC)
{

vertexPick = lineCheck;
}
// we need to make sure there is space in the appropriate buffer
else

{
if (vertexStation[lineCheck].status.allocation == SQMEMORY)
{

if

(((vertexStation[lineCheck].status.allocationSize+1)*4 <= sq->pSX_SQ-
>GetExportBuffer()/4)

&& sq->pSX_SQ->GetValid() && pendingAllocs <2)
{

vertexPick = lineCheck;
}

}
else if (vertexStation[lineCheck].status.allocation ==

SQ_PARAMETER_PIXEL)
{

// determine if there is space in the PCs for an
eventual PC export

pcSpace =
checkPC((vertexStation[lineCheck].status.allocationSize+1) *4);

if (pcSpace)
{

// make sure every older threads have their
position allocated

bool alloc_done = true;
int alloc_line = vertexHead;
while (lineCheck != alloc_line)
{

if

(vertexStation[alloc_line].status.pcAllocated == false)
{

alloc_done = false;
break;

alloc_line =
(alloc_line+1)%MAX_VTX_RESERVATIONSIZE;

}
if (alloc_done)
{

vertexPick = lineCheck;
}

}

else if (vertexStation[lineCheck].status.allocation ==
SQ_POSITION

&& (sq->pSX_SQ->GetPositionReady() >=
vertexStation[lineCheck].status.allocationSize)

&& sq->pSX_SQ->GetValid()

5

Page 140 of 509 TCL 1002

Page 141 of 509 TCL 1002

&& pendingAllocs <2)
{

// make sure every older threads have their position
allocated

bool alloc_done = true;
int alloc_line = vertexHead;
while (lineCheck != alloc_line)
{

if

(vertexStation[alloc_line].status.posAllocated == false)
{

alloc_done = false;
break;

}
alloc_line

(alloc_line+1)%MAX_VTX_RESERVATION_SIZE;
}
if (alloc_done)
{

vertexPick = lineCheck;

}
}

}
// make sure the status says we can pick this vertex
if (vertexPick != -1)
{

// check for serial with texture pending
if (vertexStation[vertexPick].status.serial &&

vertexStation[vertexPick].status.texReadsOutstanding)
vertexPick = -1;

// if last is set we can only pick the two oldests threads
else if (vertexStation[vertexPick].status.last &&

1 (vertexPick==vertexHead || vertexPick==((vertexHead-
1)%MAX_VTX_RESERVATION_SIZE)))

vertexPick = -1;
// cannot pick last if texture reads are outstanding
else if (vertexStation[vertexPick].status.last &&

vertexStation[vertexPick].status.texReadsOutstanding)
vertexPick = -1;

// can only pick the second to old if the first is already
running

else if ((vertexStation[vertexPick].status.last) && vertexHead
l= vertexPick)

{
if (vertexStation[vertexPick].status.first | |

IvertexStation[vertexHead].status.last
|| vertexStation[vertexHead].status.valid)
vertexPick = -1;

else

{
predOn = false;
break;

}
}
else

break;

}// endif vertex

6

Page 141 of 509 TCL 1002

Page 142 of 509 TCL 1002

lineCheck = (lineCheck+1)%MAX_VTX_RESERVATION_SIZE;
}// end for loop

// right now vertices have priority over pixels always,
// will have to change this when the registers are there.
if (vertexPick |= -1)
{

lineNumber = vertexPick;
sType = VERTEX;

// HERE WE MUST DO THE ALLOCATION

// also send a pulse to the SX if we need a buffer (position or multipass)

if (vertexStation[vertexPick].status.allocation != SQ_NO_ALLOC)
{

// parameter cache allocation
if (vertexStation[vertexPick].status.allocation ==

SQ_PARAMETER_PIXEL)
{

vertexStation[vertexPick].status.pcAllocated = true;
vertexStation[vertexPick].data.pcBasePtr = sq->pcHead;
vertexStation[vertexPick].data.exportId = @;

if (sq-
>pcHead+(vertexStation[vertexPick].status.allocationSize)*4 < 128)

{
sq->pcHead = sq-

>pcHead+(vertexStation[vertexPick].status.allocationSize)*4;
}
else

{
sq->pcHead =

(vertexStation[vertexPick].status.allocationSize)*4-(128-sq->pcHead) ;
sq->checkHigh = !sq->checkHigh;

}
sq-

>pcAllocated.push((vertexStation[vertexPick].status.allocationSize)*4);

// position
else if (vertexStation[vertexPick].status.allocation == SQPOSITION)
{

// starting a new allocation
pendingAllocs ++;

vertexStation[vertexPick].status.posAllocated = true;
vertexStation[vertexPick].status.pulseSx = true;
sq->pSQ_SX->SetValid(true);
uinteger<3> st;
st = vertexStation[vertexPick].data.state;
sq->pSQ_SX->SetSQ_SX_exp_state(st);
sq->pSQ_SX->SetSQ_SX_exp_alu_id(exportId);
vertexStation[vertexPick].data.exportId = exportId;
exportiId = !exportid;
uinteger<2> temp;
temp = 2;
Sq->pSQ_SX->SetSQ_SX_exp_type(temp);
sq->pSQ_SX->SetSQ_SX_exp_valid(true) ;

7

Page 142 of 509 TCL 1002

Page 143 of 509 TCL 1002

temp = vertexStation[vertexPick].status.allocationSize-1;
sq->pSQ_SX->SetSQ_SX_exp_number(temp) ;

}
// multipass
else

{
// starting a new allocation
pendingAllocs ++;

vertexStation[vertexPick].status.pcAllocated = true;
vertexStation[vertexPick].status.pulseSx = true;
Ssq->pSQ_SX->SetValid(true);
uinteger<3> st;
st = vertexStation[vertexPick].data.state;
sq->pSQ_SX->SetSQ_SX_exp_state(st);
sq->pSQ_SX->SetSQ_SX_exp_alu_id(exportId);
vertexStation[vertexPick].data.exportId = exportId;
exportiId = lexportId;
uinteger<2> temp;
temp = 3;
Sq->pSQ_SX->SetSQ_SX_exp_type(temp) ;
Ssq->pSQ_SX->SetSQ_SX_exp_valid(true);
temp = vertexStation[vertexPick].status.allocationSize;
Ssq->pSQ_SX->SetSQ_SX_exp_number(temp) ;

}

// dump the interface
if (sq->m_dumpSQ > @)
{

sq->pSQ_SX->GetNewA11(&(sq->m_sqSxDump->_data));
if (sq->m_sqSxDump->_data.Valid)
{

sq->m_sqSxDump - >Dump() ;
}

}

// clear the allocation fields

vertexStation[vertexPick].status.allocationSize = Q;
vertexStation[vertexPick].status.allocation = SQNO_ALLOC;

}
return true;

if (pixelPick != -1)
{

lineNumber = pixelPick;
sType PIXEL;

if (pixelStation[pixelPick].status.allocation != SQ_NO_ALLOC)
{

// starting a new allocation
pendingAllocs ++;

if (pixelStation[pixelPick].status.allocation == SQ_PARAMETER_PIXEL)
{

sq->pSQ_SX->SetValid(true);
uinteger<3> st;
st = pixelStation[pixelPick].data.state;
sq->pSQ_SX->SetSQSX_exp_state(st);

8

Page 143 of 509 TCL 1002

Page 144 of 509 TCL 1002

}

sq->pSQ_SX->SetSQ_SX_exp_alu_id(exportId);
pixelStation[pixelPick].data.exportId = exportId;
exportiId = !exportId;
uinteger<2> temp;

sq->setContextNumber(st);
uint8 mode = sq->SQ_PROGRAM_CNTL.getPS_EXPORT_MODE();
// exporting Z
if (mode &@x@1)

temp = 1;
// not exporting Z
else

temp = Q;
sq->pSQ_SX->SetSQSX_exp_type(temp);
sq->pSQ_SX->SetSQSX_exp_valid(true) ;
temp = pixelStation[pixelPick].status.allocationSize-temp-1;
sq->pSQ_SX->SetSQSX_exp_number(temp);

}
// multipass
else

{
sq->pSQ_SX->SetValid(true) ;
uinteger<3> st;
st = pixelStation[pixelPick].data.state;
Ssq->pSQ_SX->SetSQ_SX_exp_state(st);
sq->pSQ_SX->SetSQ_SX_exp_alu_id(exportId);
pixelStation[pixelPick].data.exportId = exportId;
pixelStation[pixelPick].status.pulseSx = true;
exportiId = !exportId;
uinteger<2> temp;
temp = 3;
Sq->pSQ_SX->SetSQ_SX_exp_type(temp) ;
Ssq->pSQ_SX->SetSQ_SX_exp_valid(true);
temp = pixelStation[pixelPick].status.allocationSize;
sq->pSQ_SX->SetSQ_SX_exp_number(temp) ;
pixelStation[pixelPick].status.pulseSx = true;

}

// dump the interface
if (sq->m_dumpSQ > @)
{

sq->pSQ_SX->GetNewA11(&(sq->m_sqSxDump->_data));
if (sq->m_sqSxDump->_data.Valid)
{

sq->m_sqSxDump - >Dump() ;
}

}

// clear the allocation fields

pixelStation[pixelPick].status.allocationSize = Q;
pixelStation[pixelPick].status.allocation = SQ_NO_ALLOC;

return true;

}

return false;

9

Page 144 of 509 TCL 1002

Page 145 of 509 TCL 1002

Checking for GPR space:
Gpr_manager.cpp

#include "gpr_manager.h”
#include "user_block_model.h”

GPR_manager: :GPR_manager(cUSER_BLOCK_SQ *pSQ)
{

// set the pointer to the SQ
sq = pSQ;

// set the limits (READ REGISTERS)
pixLimit = sq->SQ_GPR_MANAGEMENT.REG_SIZE_PIX;
vertLimit = 128-sq->SQ_GPR_MANAGEMENT.REGSIZE_VTX;

baseCountPix = @;
freeCountPix = @;
pixTestHigh = true;

baseCountVert
freeCountVert

127;
127;

vertTestHigh = true;
}

boolean GPR_manager::testAllocate(int number_gpr,int &base_addr,Shader_Type stype)
{

bool wrap = false;
int testBaseCount;

if (stype == PIXEL)

testBaseCount = baseCountPix;
base_addr= baseCountPix;

// special case for MAX GPRs
if (number_gpr == pixLimit)
{

if (freeCountPix==baseCountPix && pixTestHigh &&
freeCountPix != -1)

{
return false;

}
else

return true;

}

if (testBaseCount + number_gpr < pixLimit)
testBaseCount = testBaseCount + number_gpr;

else

{
testBaseCount = number_gpr-(pixLimit-testBaseCount) ;
// we wrapped change the test type
pixTestHigh = !pixTestHigh;
wrap = true;

}
if (pixTestHigh)
{

10

Page 145 of 509 TCL 1002

Page 146 of 509 TCL 1002

}

else

}

// vertices
else

{

if (wrap)
pixTestHigh =

if (testBaseCount >=
{

// allocation

return false;
}
else

{
// not enough
return true;

}

if (wrap)
pixTestHigh =

if (testBaseCount <=
{

// allocation

return false;

return true;

IpixTestHigh;
freeCountPix && freeCountPix != -1)

succesfull

space in GPRs

!pixTestHigh;
freeCountPix && freeCountPix |= -1)

succesfull

testBaseCount = baseCountVert;
base_addr= baseCountVert;

// special case for MAX GPRs
if (number_gpr == -(vertLimit-128))
{

if (freeCountVert==baseCountVert && vertTestHigh &&
freeCountVert != -1)

{
return false;

}
else

}
return true;

if (testBaseCount - number_gpr >= vertLimit)
testBaseCount = testBaseCount - number_gpr;

else

{

}

testBaseCount = 128-(number_gpr-(testBaseCount-vertLimit));
// we wrapped change the test type
vertTestHigh = !vertTestHigh;
wrap = true;

if (vertTestHigh)
{

if (wrap)

Page 146 of 509

11

TCL 1002

Page 147 of 509 TCL 1002

}

vertTestHigh = !vertTestHigh;
if (testBaseCount <= freeCountVert && freeCountVert != -1)
{

// allocation succesfull

return false;

}
else

{
return true;

}
}
else

{
if (wrap)

vertTestHigh = !vertTestHigh;
if (testBaseCount >= freeCountVert && freeCountVert != -1)
{

// allocation succesfull

return false;
}
else

{
return true;

}
}

void GPR_manager: :allocate(int number_gpr,int &base_addr,

{
Shader_Type stype)

if (stype == PIXEL)
{

}

base_addr = baseCountPix;

// special case for MAX GPRs
if (number_gpr == pixLimit)
{

freeCountPix = -1;
}

if (baseCountPix + number_gpr < pixLimit)
baseCountPix = base_addr + number_gpr;

else

{
baseCountPix = number_gpr-(pixLimit-base_addr);
// we wrapped change the test type
pixTestHigh = !pixTestHigh;

}

// vertices
else

{
base_addr = baseCountVert;

// special case for MAX GPRs
if (number_gpr == -(vertLimit-128))
{

12

Page 147 of 509 TCL 1002

Page 148 of 509 TCL 1002

freeCountVert = -1;
}

if (baseCountVert - number_gpr >= vertLimit)
baseCountVert = base_addr - number_gpr;

else

{
baseCountVert = 128-(number_gpr-(base_addr-vertLimit));
// we wrapped change the test type
vertTestHigh = !vertTestHigh;

}
}

}

void GPR_manager: :deAllocate(int number_gpr,Shader_Type stype)
{

switch (stype)
{
case PIXEL:

// special case for MAX GPRs
if (number_gpr == pixLimit)
{

baseCountPix = @;
freeCountPix = @;
pixTestHigh = true;
break;

}
if (freeCountPix + number_gpr < pixLimit)

freeCountPix += number_gpr;
else

{
freeCountPix = number_gpr-(pixLimit-freeCountPix);
// we wrapped change the test type
pixTestHigh = !pixTestHigh;

}
break;

case VERTEX:

// special case for MAX GPRs
if (number_gpr == -(vertLimit-128))
{

baseCountVert = 127;
freeCountVert = 127;
vertTestHigh = true;
break;

}
if (freeCountVert - number_gpr > vertLimit)

freeCountVert -= number_gpr;
else

{
freeCountVert = 128-(number_gpr-(freeCountVert-vertLimit));
// we wrapped change the test type
vertTestHigh = !vertTestHigh;

}
break;

}3
}

13

Page 148 of 509 TCL 1002

Page 149 of 509 TCL 1002

Write data to the GPRs:

Sq_block_model.cpp
// write to the SP dummy interface
RegVect* values;

regFile[j]->GetValues(values,address);

interpData.Address[i]=i+tbase_ptr;
interpData.NumParams = interp_params;

for (int k=0;k<163;k++)
{

interpData.InterpData[i][k][j].field[@]=values[k].field[e];

interpData.InterpData[i][k][j].field[1]=values[k].field[1];

interpData.InterpData[i][k][j].field[2]=values[k].field[2];

interpData.InterpData[i][k][j].field[3]=values[k].field[3];
}
// increment the GPR address

if (address+1 < gpr_manager->pixLimit)
{

address ++;
}
else

{
address = Q;

}

sq_alu.cpp

#include "user_block_model.h"
#include "sq_alu.h"
#include "sq_sp.h"
#include <iostream>

#include "Scalar_HW/mathen.h"

using namespacestd;

|[onn

SQ_ALU::SQ_ALU()
{

CoissuedInstruction = true;

mathScalar = new MathEn();

}

SQ_ALU::~SQ_ALU()

delete mathScalar;

}

|[----- This function represents the entry point to the ALU from the Sequencer------------------

14

Page 149 of 509 TCL 1002

Page 150 of 509 TCL 1002

void SQ_ALU::Execute(RegFile* Reg, OutBuffer &ExportBuffer ,const CStore & Constants,uint32
SrcAAddr, uint32 SrcBAddr, uint32 SrcCAddr,uint32 DestAddr, uint32 ScalarDestAddr, Alulnstruction
Instruction,

unsignedint valids[], uint32 Vectorindex,SQ_SP* pSQ_SP,
Shader_Type currentAluType,bool pred[],cUSER_BLOCK_SQ*

pSQ, int idAlu)
{

int i;

sq = pSQ;
// fill the dummyinterface
SQ_SP_data SPData;
static Constant constant[4];
static int PMasks[4][4] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}:
static int CMask[4] = {0,0,0,0}:
static int RAddr[4] = {0,0,0,0};
static int WAddr[4] = {0,0,0,0}:
static bool REn|[4] = {false,false,false,false};
static bool WEn[4] = {false,false,false false};

SPData.Phase = Vectorlndex;

for (i=0;i<4;i++)
{

SPData.ConstantValue[i]=constant[Vectorlndex].field[0];
SPData.ExportValid[i]=valids[i);
SPData.ExportWValid[i]=2;
SPData.Valids[i] = PMasks[VectorIndex][i];

}

SPData.ExportCount=VectorIndex;
SPData.ExportLast=0;
SPData.CMask = CMask[VectorIndex];
SPData.RdAddr = RAddr[Vectorlndex];
SPData.WrAddr = WAdadr[VectorlIndex];
SPData.RdEnable = REn[Vectorlndex];
SPData.WrEnable = WEn|[VectorIndex];
SPData.IndexCnt= 0;

SPData.SType = currentAluType;

if (SPData.Phase == 0)
SPData.InstStart = true;

else

SPData.InstStart = false;

switch(Vectorlndex)
{
case 0:

SPData. Instruction = Instruction.SrcASel + (Instruction.SourceANegate << 2) +
(Instruction.SourceASwizzle << 4) +
(Instruction.VectorResultPointer&0x3F)<< 12);

break;
case 1:

SPData. Instruction = Instruction.SrcBSel + (Instruction.SourceBNegate << 2) +
(Instruction.SourceBSwizzle << 4) +
((Instruction.ScalarResultPointer&0x3F)<<12);

break;

15

Page 150 of 509 TCL 1002

Page 151 of 509 TCL 1002

case 2:

SPData. Instruction = Instruction.SrcCSel + (Instruction.SourceCNegate << 2) +
(Instruction.SourceCSwizzle << 4);

break;
case 3:

SPData. Instruction = Instruction.VectorOpcode + (Instruction.ScalarOpcode << 5)+
(Instruction.VectorClamp << 11) +

(Instruction.ScalarClamp << 12)+
(Instruction.VectorWriteMask << 13) +

(Instruction.ScalarWriteMask << 17);
break;

}

// do all the static stuff for next turn

if (Instruction.SrcASel)
Constants.GetConstValue(constant[VectorIndex],SrcAAddr);

else if (Instruction.SrcBSel)
Constants.GetConstValue(constant[VectorIndex],SrcBAddr);

else if (Instruction.SrcCSel)
Constants.GetConstValue(constant[VectorIndex],SrceCAddr);

for (i=0;i<4;i++)
PMasks[VectorlIndex][i] = valids[i];

switch(VectorIndex)
{
case 0: // interpolator and SRC A

CMask[VectorIndex] = 127-SrcAAddr;
RAddr[Vectorlndex] = SrcAAdadr;
WAddr[VectorIndex] = 126-SrcAAddr;
REn[VectorIndex] = true;
WeEn[VectorIndex] = false;
break;

case 1: //TX and SRC B

CMask[VectorlIndex] = 125-SrcBAddr;
RAddr[Vectorlndex] = SrcBAdadr;
WAddr[VectorIndex] = 124-SrcBAddr;
REn[VectorIndex] = true;
WeEn[VectorIndex] = false;
break;

case 2: // Vector and SRC C

CMask[VectorlIndex] = Instruction.VectorWriteMask;
RAddr[VectorIndex] = SrcCAddr;
REn[VectorIndex] = false; // no tree operands for now
// if exporting

if (Instruction.VectorResultPointer & 0x80) != 0) && (Instruction.PredicateSelect < 2)) {
WAddr[Vectorlndex] = Instruction.VectorResultPointer & Ox3F;
WEn[Vectorlndex] = false;

}
else {

WAddr[VectorIndex] = DestAddr;
WEn[Vectorlndex] = true;

}
break;

case 3: // Scalar and TX

CMask[Vectorlndex] = Instruction.ScalarWriteMask;

16

Page 151 of 509 TCL 1002

Page 152 of 509 TCL 1002

RAddr[VectorIndex] = 123-ScalarDestAddr;
REn[VectorIndex] = false;
// if exporting

if (((Instruction.ScalarResultPointer & 0x80) != 0) && (Instruction.PredicateSelect < 2)) {
WAddr[Vectorlndex] = Instruction.ScalarResultPointer & Ox3F;
WEn[Vectorlndex] = false;

}
i*

else {
WAddr[VectorIndex] = ScalarDestAddr;
WEn[Vectorlndex] = true;

}*/ 11 No scalar ops for now...
break;

}

pSQ_SP->SetAll(&SPData);
pSQ_SP->SetValid(true);

// Real Emulator code

CurrentRegFile = Reg;
OutputBuffer = &ExportBuffer;
CurrentAlulnstruction = Instruction;
AluPhase = VectorlIndex;

AluType = currentAluType;
Predicates = &(pred[0]);
validBits= &(valids[0]);
Aluld = idAlu;

ExecuteAlulnstruction(SrcAAddr,SrcBAddr, SrcCAddr, DestAddr,ScalarDestAddr,VectorIndex,Con

void SQ_ALU::ExecuteAlulnstruction(uint32 SrcAPtr, uint32 SrcBPtr, uint32 SrcCPtr, uint32 DstPtr,uint32
ScalarDestPtr,uint32 Vectorindex,const CStore & Constants)
{

VectorData SrcA, SrcB, SrcC, VectorResult;
mfloat<8 ,23,128> ScalarResult;
VectorData TempSrc;

bool error = false;

const RegVect* InputVectorA;
const RegVect* InputVectorB;
const RegVect* InputVectorC;

Constant ConstantA;
Constant ConstantB;
Constant ConstantC;

RegisterFileRead(SrcAPtr, SrcBPtr,SrcCPtr, InputVectorA,|InputVectorB ,InputVectorC);

//Going through all the 128bit vectors (16 of them)
//Theyall have the same relative location inside their respective GPRfiles.
for(uint8 vector_id = 0; vector_id <16 ; vector_id ++)

17

Page 152 of 509 TCL 1002

Page 153 of 509 TCL 1002

SrcAReg.red =InputVectorA[vector_id].field[0];
SrcAReg.green =InputVectorA[vector_id].field[1];
SrcAReg.blue =InputVectorA[vector_id].field[2];
SrcAReg.alpha =InputVectorA[vector_id].field[3];

SrcBReg.red =InputVectorB[vector_id].field[0];
SrcBReg.green =InputVectorB[vector_id].field[1];
SrcBReg.blue =InputVectorB[vector_id].field[2];
SrcBReg.alpha =InputVectorB[vector_id].field[3];

SrcCReg.red =InputVectorC[vector_id].field[0];
SrcCReg.green =InputVectorC[vector_id].field[1];
SrcCReg.blue =InputVectorC[vector_id].field[2];
SrcCReg.alpha =InputVectorC[vector_id].field[3];

// set the constants

int cAddr =0;

// relative addressing of the constant store via address register
if (CurrentAlulnstruction.SrcASel == 0 && CurrentAlulnstruction.ConstanORelAbs == 1

CurrentAlulnstruction.RelativeAddrRegSel == 1)
{

cAddr = SrcAPtr + ConstantOffsets[AluPhase* 16+vector_id];
if (AluType == VERTEX)
{

if ((cAddr - sq->SQ_VS_CONST.getBASE())
> sq->SQ_VS_CONST.getSIZE())

{
cAddr= 0;

if (((validBits[vector_id/4])>>(vector_id%4))&0x01)
error = true;

}
}
else

{
if ((cAddr - sq->SQ_PS_CONST.getBASE())

> sq->SQ_PS_CONST.getSIZE())

cAddr= 0;

if (((validBits[vector_id/4])>>(vector_id%4))&0x01)
error = true;

}
}

Constants.GetConstValue(ConstantA, cAddr);
}
else

Constants.GetConstValue(ConstantA,SrcAPtr);

// relative addressing of the constant store via address register
if (((CurrentAlulnstruction.SrcASel == 1 &&

CurrentAlulnstruction.SrcBSel == 0 && CurrentAlulnstruction.Constan0RelAbs

(CurrentAlulnstruction.SrcASel == 0 &&

18

Page 153 of 509 TCL 1002

Page 154 of 509 TCL 1002

) Il

}
else

CurrentAlulnstruction.SrcBSel == 0 && CurrentAlulnstruction.Constan1RelAbs

CurrentAlulnstruction.RelativeAddrRegSel == 1)

cAddr = SrcBPtr + ConstantOffsets[AluPhase*16+vector_id];

if (AluType == VERTEX)
{

if ((cAddr - sq->SQ_VS_CONST.getBASE())
> sq->SQ_VS_CONST.getSIZE())

{
cAddr= 0;

if (((validBits[vector_id/4])>>(vector_id%4))&0x01)
error = true;

}
}
else

{
if ((cAddr - sq->SQ_PS_CONST.getBASE())

> sq->SQ_PS_CONST.getSIZE())
{

cAddr= 0;

if (((validBits[vector_id/4])>>(vector_id%4))&0x01)
error = true;

}
}

Constants.GetConstValue(ConstantB, cAddr);

Constants.GetConstValue(ConstantB, SrcBPtr);

// relative addressing of the constant store via address register
if (((CurrentAlulnstruction.SrcASel == 1 &&

CurrentAlulnstruction.SrcBSel == 1 &&

CurrentAlulnstruction.SrcCSel == 0 && CurrentAlulnstruction.Constan0RelAbs

((CurrentAlulnstruction.SrcASel == 0 ||
CurrentAlulnstruction.SrcBSel == 0) && CurrentAlulnstruction.SrcCSel ==
&& CurrentAlulnstruction.ConstaniRelAbs == 1)) &&
CurrentAlulnstruction.RelativeAddrRegSel == 1)

cAddr = SrcCPtr + ConstantOffsets[AluPhase*16+vector_id];

if (AluType == VERTEX)

if (cAddr - sq->SQ_VS_CONST.getBASE())
> sq->SQ_VS_CONST.getSIZE())

{
cAddr = 0;

if (((validBits[vector_id/4])>>(vector_id%4))&0x01)
error = true;

}
}
else

{

19

Page 154 of 509 TCL 1002

Page 155 of 509 TCL 1002

if ((cAddr - sq->SQ_PS_CONST.getBASE())
> sq->SQ_PS_CONST.getSIZE())

cAddr = 0;

if (((validBits[vector_id/4])>>(vector_id%4))&0x01)
error = true;

}
}

Constants.GetConstValue(ConstantC, cAddr);
}
else

Constants.GetConstValue(ConstantC, SrcCPtr);

// there was an addressing error
if (error)

if (sq->SQ_DEBUG_MISC_0.getDB_PROB_ON())

if (sq->SQ_DEBUG_MISC_0.getDB_PROB_COUNT() == 0)
{

sq->SQ_DEBUG_MISC_0.setDB_PROB_COUNT(1);
sq->SQ_DEBUG_MISC_0.setDB_PROB_ADDR(0);

}
else

sq->SQ_DEBUG_MISC_0.setDB_PROB_COUNT(sq-
>SQ_DEBUG_MISC_0.getDB_PROB_COUNT()+1);

}
}

//muxing&swizzling&modification of input arguments
||-nnnnn-nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

uint32 SrcASel,SrcBSel,SrcCSel;
SrcASel = CurrentAlulnstruction.SrcASel;
SrcBSel = CurrentAlulnstruction.SrcBSel;
SrcCSel = CurrentAlulnstruction.SrcCSel;

uint8 SrcASelRelAbs, SrcBSelRelAbs,SrcCSelRelAbs;

SrcASelRelAbs = ((CurrentAlulnstruction.SourceARegPointer)>>6) & 0x01;
SrcBSelRelAbs = ((CurrentAlulnstruction.SourceBRegPointer)>>6) & 0x01;
SrcCSelRelAbs = ((CurrentAlulnstruction.SourceCRegPointer)>>6) & 0x01;

switch(SrcASel)
{
case NON_CONSTANT:

switch(SrcASelRelAbs)
{
case ABSOLUTE_REG:
case RELATIVE_REG:

SrcA.alpha = SrcAReg.alpha;
SrcA.red = SrcAReg.red;
SrcA.green = SrcAReg.green;
SrcA.blue = SrcAReg.blue;
break;

default:

20

Page 155 of 509 TCL 1002

Page 156 of 509 TCL 1002

break;

}
break;

case CONSTANT:

SrcA.red = ConstantA.field[0];
SrcA.green = ConstantA.field[1];
SrcA.blue = ConstantA.field[2];
SrcA.alpha = ConstantA.field[3];
break;

switch(SrcBSel)
{
case NON_CONSTANT:

switch(SrcBSelRelAbs)
{
case ABSOLUTE_REG:
case RELATIVE_REG:

SrcB.alpha = SrcBReg.alpha;
SrcB.red = SrcBReg.red;
SrcB.green = SrcBReg.green;
SrcB.blue = SrcBReg.blue;
break;

default:

break;
}
break;

case CONSTANT:

SrcB.red = ConstantB.field[0];
SrcB.green = ConstantB-field[1];
SrcB.blue = ConstantB.field[2];
SrcB.alpha = ConstantB.field[3];
break;

}

switch(SrcCSel)
{
case NON_CONSTANT:

switch(SrcCSelRelAbs)
{
case ABSOLUTE_REG:
case RELATIVE_REG:

SrcC.alpha = SrcCReg.alpha;
SrcC.red = SrcCReg.red;
SrcC.green = SrcCReg.green;
SrcC.blue = SrcCReg. blue;
break;

default:

break;

}break;
case CONSTANT:

SrcC.red = ConstantC.field[0];
SrcC.green = ConstantC.field[1];
SrcC.blue = ConstantC.field[2];
SrcC.alpha = ConstantcC.field[3];

21

Page 156 of 509 TCL 1002

Page 157 of 509 TCL 1002

break;

}

swizzling of arguments
uint8 SrcASwizzleAlpha = CurrentAlulnstruction.SourceASwizzle >> 6;
uint8 SrcASwizzleBlue = (CurrentAlulnstruction.SourceASwizzle >> 4)&0x3;
uint8 SrcASwizzleGreen = (CurrentAlulnstruction.SourceASwizzle >>2)&0x3;
uint8 SrcASwizzleRed = (CurrentAlulnstruction.SourceASwizzle)&0x3;

TempSrc.alpha = SrcA.alpha;
TempSrc.red = SrcA.red;
TempSrc.green =SrcA.green;
TempSrc.blue= SrcA.blue;

switch(SrcASwizzleAlpha)

case 0:break;
case 1:

SrcA.alpha = TempSrc.red;
break;

case 2:

SrcA.alpha = TempSrc.green;
break;

case 3:

SrcA.alpha = TempSrc.blue;
break;

}

switch(SrcASwizzleRed)

case 0:break;
case 1:

SrcA.red = TempSrc.green;
break;

case 2:

SrcA.red = TempSrc.blue;
break;

case 3:

SrcA.red = TempSrc.alpha;
break;

}

switch(SrcASwizzleGreen)

case 0:break;
case 1:

SrcA.green = TempSrc.blue;
break;

case 2:

SrcA.green = TempSrc.alpha;
break;

case 3:

SrcA.green = TempSrc.red;
break;

}

22

Page 157 of 509 TCL 1002

Page 158 of 509 TCL 1002

switch(SrcASwizzleBlue)

case 0:break;
case 1:

SrcA.blue = TempSrc.alpha;
break;

case 2:

SrcA.blue = TempSrc.red;
break;

case 3:

SrcA.blue = TempSrc.green;
break;

}
|[--------------------------======

TempSrc.alpha = SrcB.alpha;
TempSrc.red = SrcB.red;
TempSrc.green =SrcB.green;
TempSrc.blue= SrcB.blue;

uint8 SrcBSwizzleAlpha = (CurrentAlulnstruction.SourceBSwizzle >> 6)&0x3;
uint8 SrcBSwizzleBlue = (CurrentAlulnstruction.SourceBSwizzle >> 4)&0x3;
uint8 SrcBSwizzleGreen = (CurrentAlulnstruction.SourceBSwizzle >>2)&0x3;
uint8 SrcBSwizzleRed = (CurrentAlulnstruction.SourceBSwizzle)&0x3;

switch(SrcBSwizzleAlpha)

case 0:break;
case 1:

SrcB.alpha = TempSrc.red;
break;

case 2:

SrcB.alpha = TempSrc.green;
break;

case 3:

SrcB.alpha = TempSrc.blue;
break;

}

switch(SrcBSwizzleRed)
{
case 0:break;
case 1:

SrcB.red = TempSrc.green;
break;

case 2:

SrcB.red = TempSrc.blue;
break;

case 3:

SrcB.red = TempSrc.alpha;
break;

}

switch(SrcBSwizzleGreen)

23

Page 158 of 509 TCL 1002

Page 159 of 509 TCL 1002

case 0:break;
case 1:

SrcB.green = TempSrc.blue;
break;

case 2:

SrcB.green = TempSrc.alpha;
break;

case 3:

SrcB.green = TempSrc.red;
break;

}

switch(SrcBSwizzleBlue)

case 0:break;
case 1:

SrcB.blue = TempSrc.alpha;
break;

case 2:

SrcB.blue = TempSrc.red;
break;

case 3:

SrcB.blue = TempSrc.green;
break;

}

[famarnnnena

TempSrc.alpha = SrcC.alpha;
TempSrc.red = SrcC.red;
TempsSrc.green =SrcC.green;
TempSrc.blue= SrcC.blue;

uint8 SrcCSwizzleAlpha = CurrentAlulnstruction.SourceCSwizzle >> 6;
uint8 SrcCSwizzleBlue = (CurrentAlulnstruction.SourceCSwizzle >> 4)&0x3;
uint8 SrcCSwizzleGreen = (CurrentAlulnstruction.SourceCSwizzle >>2)&0x3;
uint8 SrcCSwizzleRed = (CurrentAlulnstruction.SourceCSwizzle)&0x3;

switch(SrcCSwizzleAlpha)
{
case 0:break;
case 1:

SrcC.alpha = TempSrc.red;
break;

case 2:

SrcC.alpha = TempSrc.green;
break;

case 3:

SrcC.alpha = TempSrc.blue;
break;

}

switch(SrcCSwizzleRed)

24

Page 159 of 509 TCL 1002

Page 160 of 509 TCL 1002

case 0:break;
case 1:

SrcC.red = TempSrc.green;
break;

case 2:

SrcC.red = TempSrc.blue;
break;

case 3:

SrcC.red = TempSrc.alpha;
break;

}

switch(SrcCSwizzleGreen)

case 0:break;
case 1:

SrcC.green = TempSrc.blue;
break;

case 2:

SrcC.green = TempSrc.alpha;
break;

case 3:

SrcC.green = TempSrc.red;
break;

}

switch(SrcCSwizzleBlue)

case 0:break;
case 1:

SrcC.blue = TempSrc.alpha;
break;

case 2:

SrcC.blue = TempSrc.red;
break;

case 3:

SrcC.blue = TempSrc.green;
break;

}

// ABS MODIFIER

uint8 SrcAAbs = (CurrentAlulnstruction.SourceARegPointer>>7)&0x01;
uint8 SrcBAbs = (CurrentAlulnstruction.SourceBRegPointer>>7)&0x01;
uint8 SreCAbs = (CurrentAlulnstruction.SourceCRegPointer>>7)&0x01;
uint8 Cst0Abs = (CurrentAlulnstruction.VectorResultPointer>>7)&0x01;

if (SrcASel == NON_CONSTANT)
{

switch (SrcAAbs){
case NO_ABS_MOD:

break;
case ABS_MOD:

SrcA.red.abs();
SrcA.green.abs();

25

Page 160 of 509 TCL 1002

Page 161 of 509 TCL 1002

SrcA.blue.abs();
SrcA.alpha.abs();
break;

default:

break;

}
}
else

{
switch (Cst0Abs){
case NO_ABS_MOD:

break;
case ABS_MOD:

SrcA.red.abs();
SrcA.green.abs();
SrcA.blue.abs();
SrcA.alpha.abs();
break;

default:

break;

}
}

if (SrcBSel == NON_CONSTANT)
{

switch (SrcBAbs){
case NO_ABS_MOD:

break;
case ABS_MOD:

SrcB.red.abs();
SrcB.green.abs();
SrcB.blue.abs();
SrcB.alpha.abs();
break;

default:

break;

}

else if (SrcBSel == CONSTANT)

switch (Cst0Abs){
case NO_ABS_MOD:

break;
case ABS_MOD:

SrcB.red.abs();
SrcB.green.abs();
SrcB.blue.abs();
SrcB.alpha.abs();
break;

default:

break;

}
}

if (SrcCSel == NON_CONSTANT)
{

26

Page 161 of 509 TCL 1002

Page 162 of 509 TCL 1002

switch (SrcCAbs){
case NO_ABS_MOD:

break;
case ABS_MOD:

SrcC.red.abs();
SrcC.green.abs();
SrcC.blue.abs();
SrcC.alpha.abs();

PreviousScalar[Aluld][VectorIndex][vector_id].alpha.abs();
PreviousScalar[Aluld][VectorIndex][vector_id].red.abs();
PreviousScalar[Aluld][VectorIndex][vector_id].green.abs();
PreviousScalar[Aluld][VectorIndex][vector_id].blue.abs();
break;

default:

break;

}
}
else if (SrcCSel == CONSTANT)

switch (Cst0Abs){
case NO_ABS_MOD:

break;
case ABS_MOD:

SrcC.red.abs();
SrcC.green.abs();
SrcC.blue.abs();
SrcC.alpha.abs();

PreviousScalar[Aluld][VectorIndex][vector_id].alpha.abs();
PreviousScalar[Aluld][Vectorlndex][vector_id].red.abs();
PreviousScalar[Aluld][Vectorlndex][vector_id].green.abs();
PreviousScalar[Aluld][VectorIndex][vector_id].blue.abs();
break;

default:

break;

}
}

|fommnmnnnnnnnnnnnnnnnnnnnnnmnnnnmanana

//negate input modifiers
uint8 SrcANegate= CurrentAlulnstruction.SourceANegate;
uint8 SrcBNegate= CurrentAlulnstruction.SourceBNegate;
uint8 SrcCNegate= CurrentAlulnstruction.SourceCNegate;

switch(SrcANegate){
case NIL:break;
case NEGATE:

SrcA.alpha.neg();
SrcA.red.neg();
SrcA.green.neg();
SrcA.blue.neg();
break;

default:

break;
}

27

Page 162 of 509 TCL 1002

Page 163 of 509 TCL 1002

switch(SrcBNegate){
case NIL:break;
case NEGATE:

SrcB.alpha.neg();
SrcB.red.neg();
SrcB.green.neg();
SrcB.blue.neg();
break;

default:

break;

}

switch(SrcCNegate){
case NIL:break;
case NEGATE:

SrcC.alpha.neg();
SrcC.red.neg();
SrcC.green.neg();
SrcC.blue.neg();

PreviousScalar[Aluld][VectorIndex][vector_id].alpha.neg();
PreviousScalar[Aluld][VectorIndex][vector_id].red.neg();
PreviousScalar[Aluld][VectorIndex][vector_id].green.neg();
PreviousScalar[Aluld][VectorIndex][vector_id].blue.neg();
break;

default:

break;

}

|[------------------------—-===nnnnnnnnnnnnnnn

//Execute ALU opcode
ExecuteAluOpcode(SrcA,SrcB,SrcC,VectorResult,ScalarResult,vector_id);

// Clamp results if told to
VectorResult.red = Clamp(VectorResult.red, true);
VectorResult.green = Clamp(VectorResult.green,true);
VectorResult.blue = Clamp(VectorResult. blue true);
VectorResult.alpha = Clamp(VectorResult.alpha, true);

ScalarResult = Clamp(ScalarResult,false);

/{Save Previous Vector and Scalar

PreviousVector[Aluld][Vectorlndex][vector_id].alpha = VectorResult.alpha;
PreviousVector[Aluld][VectorIndex][vector_id].red = VectorResult.red;
PreviousVector[Aluld][VectorlIndex][vector_id].green = VectorResult.green;
PreviousVector[Aluld][VectorIndex][vector_id].blue = VectorResult.blue;

PreviousScalar[Aluld][VectorIndex][vector_id].alpha = ScalarResult;
PreviousScalar[Aluld][VectorIndex][vector_id].red = ScalarResult;
PreviousScalar[Aluld][VectorIndex][vector_id].green = ScalarResult;
PreviousScalar[Aluld][VectorIndex][vector_id].blue = ScalarResult;

[famanennnnanan

28

Page 163 of 509 TCL 1002

Page 164 of 509 TCL 1002

Accumulate the result into an array of 16x128
VectorVector.Val[vector_id].field[0] =VectorResult.red;
VectorVector.Val[vector_id].field[1] =VectorResult.green;
VectorVector.Val[vector_id].field[2] =VectorResult.blue;
VectorVector.Val[vector_id].field[3] =VectorResult.alpha;

ScalarVector.Val[vector_id].field[0] =ScalarResult;
ScalarVector.Val[vector_id].field[1] =ScalarResult;
ScalarVector.Val[vector_id].field[2] =ScalarResult;
ScalarVector.Val[vector_id].field[3] =ScalarResult;

[femmemennomennnnnnnnnnnnnnnnnnnannnmnnanmannnmannna

Exporting the results
bool Export = (CurrentAlulnstruction.ScalarResultPointer>>7)&0x1;

if(Export)

// fog exports
if (((CurrentAlulnstruction.VectorResultPointer&0x3F) >= 16) &&

((CurrentAlulnstruction.VectorResultPointer&0x3F) < 20) &&
(CurrentAlulnstruction.VectorWriteMask&0x01) &&

(CurrentAlulnstruction.ScalarWriteMask&0x01))
{

unsignedint inVect;
unsigned int inFog;
unsigned int blended;

// RED

float value = VectorResult.red.getReal();
inVect = *(reinterpret_cast<unsigned int*>(&value));
value = ScalarResult.getReal();
inFog = *(reinterpret_cast<unsigned int*>(&value));
inFog = inFog >> 8;

blended = (inVect) | (inFog&0x3F);
value = *(reinterpret_cast<float*>(&blended));

// export blended red
OutputBuffer->values[vector_id].field[0] = value;

// GREEN

value = VectorResult.green.getReal();
inVect = *(reinterpret_cast<unsigned int*>(&value));
blended = (inVect) | ((inFog>>6)&0x3F);
value = *(reinterpret_cast<float*>(&blended));

// export blended green
OutputBuffer->values[vector_id].field[1] = value;

// BLUE

value = VectorResult.blue.getReal();
inVect = *(reinterpret_cast<unsigned int*>(&value));
blended = (inVect) | ((inFog>>12)&0x3F);
value = *(reinterpret_cast<float*>(&blended));

29

Page 164 of 509 TCL 1002

Page 165 of 509 TCL 1002

// export blended blue
OutputBuffer->values[vector_id].field[2] = value;

i ALPHA

value = VectorResult.alpha.getReal();
inVect = *(reinterpret_cast<unsigned int*>(&value));
blended = (inVect) | ((inFog>>18)&0x3F);
value = *(reinterpret_cast<float*>(&blended));

// export blended alpha
OutputBuffer->values[vector_id].field[3] = value;

else

// RED COMPONENT

if (CurrentAlulnstruction.VectorWriteMask&0x01 &&
CurrentAlulnstruction.ScalarWriteMask&0x01)

OutputBuffer->values[vector_id].field[0] = 1.0;
else if (CurrentAlulnstruction.VectorWriteMask&0x01)

OutputBuffer->values[vector_id].field[0] = VectorResult.red;
else if (CurrentAlulnstruction.ScalarWriteMask&0x01)

OutputBuffer->values[vector_id].field[0] = ScalarResult;
// GREEN COMPONENT

if (CurrentAlulnstruction.VectorWriteMask>>1)&0x01 &&
(CurrentAlulnstruction.ScalarWriteMask>>1)&0x01)

OutputBuffer->values[vector_id].field[1] = 1.0;
else if ((CurrentAlulnstruction.VectorWriteMask>>1)&0x01)

OutputBuffer->values[vector_id].field[1] = VectorResult.green;
else if ((CurrentAlulnstruction.ScalarWriteMask>>1)&0x01)

OutputBuffer->values[vector_id].field[1] = ScalarResult;
// BLUE COMPONENT

if ((CurrentAlulnstruction.VectorWriteMask>>2)&0x01 &&
(CurrentAlulnstruction.ScalarWriteMask>>2)&0x01)

OutputBuffer->values[vector_id].field[2] = 1.0;
else if ((CurrentAlulnstruction.VectorWriteMask>>2)&0x01)

OutputBuffer->values[vector_id].field[2] = VectorResult.blue;
else if ((CurrentAlulnstruction.ScalarWriteMask>>2)&0x01)

OutputBuffer->values[vector_id].field[2] = ScalarResult;
// ALPHA COMPONENT

if (CurrentAlulnstruction.VectorWriteMask>>3)&0x01 &&
(CurrentAlulnstruction.ScalarWriteMask>>3)&0x01)

OutputBuffer->values[vector_id].field[3] = 1.0;
else if ((CurrentAlulnstruction.VectorWriteMask>>3)&0x01)

OutputBuffer->values[vector_id].field[3] = VectorResult.alpha;
else if ((CurrentAlulnstruction.ScalarWriteMask>>3)&0x01)

OutputBuffer->values[vector_id].field[3] = ScalarResult;
}

/! predicate the exports here
int predValid;
int predicat;
intj;
for (int i=0;i<4;i++)
{

30

Page 165 of 509 TCL 1002

Page 166 of 509 TCL 1002

predValid = validBits[i];
predicat = 0;

if (CurrentAlulnstruction.PredicateSelect == 2)
{

for (j=0;j<4;j++)
predicat += (!(Predicates[i*4+j]))<<j;

predValid &= predicat;
}
else if (CurrentAlulnstruction.PredicateSelect == 3)
{

for (j=0;j<4;j++)
predicat += Predicates[i*4+j]<<j;

predValid &= predicat;
}

OutputBuffer->valids[i]=predValid;

OutputBuffer->valid = true;
}

/Mrite the result into register files
RegisterFileWrite(CurrentAlulnstruction.VectorWriteMask,CurrentAlulnstruction.ScalarWriteMask,

ScalarDestPtr,DstPtr);
}

|fnmnrnenearer

void SQ_ALU::ExecuteAluOpcode(VectorData SrcA, VectorData SrcB, VectorData SrcC, VectorData &
VectorResult,mfloat<8,23,128> & ScalarResult, int i)
{

mfloat<8 ,23,128> red;

mfloat<8 ,23,128> green;
mfloat<8 ,23,128> blue;
mfloat<8,23,128> alpha;

mfloat<8 ,23,128> one;

one.putReal((float) 1.0);
mfloat<8 ,23,128> zero;

zero.putReal((float)0.0);
mfloat<8,23,128> two;

two.putReal((float)2.0);

CoissuedInstruction = true;

//Executing Vector Opcode
switch(CurrentAlulnstruction.VectorOpcode)
{
case ADDv:

if(sq->isHardwareAccurate())
{

VectorResult.alpha = multiply_add(SrcA.alpha,one,SrcB.alpha);
VectorResult.red = multiply_add(SrcA.red,one,SrcB.red);
VectorResult.green = multiply_add(SrcA.green,one,SrcB.green);
VectorResult.blue = multiply_add(SrcA.blue,one,SrcB.blue);

31

Page 166 of 509 TCL 1002

Page 167 of 509 TCL 1002

else

{
VectorResult.alpha.add(SrcA.alpha,SrcB.alpha);
VectorResult.red.add(SrcA.red,SrcB.red);
VectorResult.green.add(SrcA.green,SrcB.green);
VectorResult.blue.add(SrcA.blue,SrcB.blue);

}
break;

}
case MAXv:

VectorResult.alpha.max(SrcA.alpha,SrcB.alpha);
VectorResult.red.max(SrcA.red,SrcB.red);
VectorResult.green.max(SrcA.green,SrcB.green);
VectorResult.blue.max(SrcA. blue, SrcB. blue);
break;

case MINv:

VectorResult.alpha.min(SrcA.alpha,SrcB.alpha);
VectorResult.red.min(SrcA.red,SrcB.red);
VectorResult.green.min(SrcA.green,SrcB.green);
VectorResult.blue.min(SrcA.blue,SrcB.blue);
break;

case MULv:

if(sq->isHardwareAccurate())

}

VectorResult.alpha = multiply_add(SrcA.alpha, SrcB.alpha,zero);
VectorResult.red = multiply_add(SrcA.red, SrcB.red,zero);
VectorResult.green = multiply_add(SrcA.green, SrcB.green,zero);
VectorResult.blue = multiply_add(SrcA.blue, SrcB.blue,zero);

else

{

}
break;

VectorResult.alpha.mul(SrcA.alpha,SrcB.alpha);
VectorResult.red.mul(SrcA.red,SrcB.red);
VectorResult.green.mul(SrcA.green,SrcB.green);
VectorResult.blue.mul(SrcA.blue,SrcB. blue);

case SETEv:

VectorResult.alpha = (SrcA.alpha == SrcB.alpha) ? 1.0:0.0;
VectorResult.red = (SrcA.red == SrcB.red) ? 1.0:0.0;
VectorResult.green = (SrcA.green == SrcB.green) ? 1.0:0.0;
VectorResult.blue = (SrcA.blue == SrcB.blue) ? 1.0:0.0;
break;

case SETGTV:

VectorResult.alpha = (SrcA.alpha > SrcB.alpha) ? 1.0:0.0;
VectorResult.red = (SrcA.red > SrcB.red) ? 1.0:0.0;
VectorResult.green = (SrcA.green > SrcB.green) ? 1.0:0.0;
VectorResult.blue = (SrcA.blue > SrcB.blue) ? 1.0:0.0;
break;

case SETGTEv:

VectorResult.alpha = (SrcA.alpha >= SrcB.alpha) ? 1.0:0.0;
VectorResult.red = (SrcA.red >= SrcB.red) ? 1.0:0.0;
VectorResult.green = (SrcA.green >= SrcB.green) ? 1.0:0.0;
VectorResult.blue = (SrcA.blue >= SrcB.blue) ? 1.0:0.0;

32

Page 167 of 509 TCL 1002

Page 168 of 509 TCL 1002

break;
case SETNEv:

VectorResult.alpha = (SrcA.alpha != SrcB.alpha) ? 1.0:0.0;
VectorResult.red = (SrcA.red != SrcB.red) ? 1.0:0.0;
VectorResult.green = (SrcA.green != SrcB.green) ? 1.0:0.0;
VectorResult.blue = (SrcA.blue != SrcB.blue) ? 1.0:0.0;
break;

case FRACv:

VectorResult.alpha.sub(SrcA.alpha, (float)((int)SrcA.alpha.getReal()));
VectorResult.red.sub(SrcA.red, (float)((int)SrcA.red.getReal()));
VectorResult.green.sub(SrcA.green (float)((int)SrcA.green.getReal()));
VectorResult.blue.sub(SrcA.blue ,(float)((int)SrcA.blue.getReal()));
break;

case TRUNCv:

VectorResult.alpha = (float)((int)SrcA.alpha.getReal());
VectorResult.red = (float)((int)SrcA.red.getReal());
VectorResult.green = (float)((int)SrcA.green.getReal());
VectorResult.blue = (float)((int)SrcA.blue.getReal());
break;

case FLOORV:

if (SrcA.alpha.getReal() >= 0)
VectorResult.alpha = (float)((int)SrcA.alpha.getReal());

else

VectorResult.alpha = (float)((int)SrcA.alpha.getReal())-1.Of;
if (SrcA.red.getReal() >= 0)

VectorResult.red = (float)((int)SrcA.red.getReal());
else

VectorResult.red = (float)((int)SrcA.red.getReal())-1.0f;
if (SrcA.green.getReal() >= 0)

VectorResult.green = (float)((int)SrcA.green.getReal());
else

VectorResult.green = (float)((int)SrcA.green.getReal())-1.0f;
if (SrcA.blue.getReal() >= 0)

VectorResult.blue = (float)((int)SrcA. blue.getReal());
else

VectorResult.blue = (float)((int)SrcA.blue.getReal())-1.0f;
break;

case MULADDv:

if(sq->isHardwareAccurate())

else

VectorResult.alpha = multiply_add(SrcA.alpha, SrcB.alpha,SrcC.alpha);
VectorResult.red = multiply_add(SrcA.red, SrcB.red,SrcC.red);
VectorResult.green = multiply_add(SrcA.green, SrcB.green,SrcC.green);
VectorResult.blue = multiply_add(SrcA.blue, SrcB.blue,SrcC.blue);

VectorResult.alpha.mad(SrcA.alpha,SrcB.alpha,SrcC.alpha);
VectorResult.red.mad(SrcA.red,SrcB.red,SrcC. red);
VectorResult.green.mad(SrcA.green,SrcB.green,SrcC.green);
VectorResult.blue.mad(SrcA.blue,SrcB.blue,SrcC. blue);

CoissuedInstruction = false;
break;

case DOTAv:

if(sq->isHardwareAccurate())

33

Page 168 of 509 TCL 1002

Page 169 of 509 TCL 1002

else

}
break;

case DOT3v:

VectorResult.alpha = multiply_add(SrcA.alpha, SrcB.alpha,zero);
VectorResult.red = multiply_add(SrcA.red, SrcB.red,zero);
VectorResult.green = multiply_add(SrcA.green, SrcB.green,zero);
VectorResult.blue = multiply_add(SrcA.blue, SrcB.blue,zero);

VectorResult.alpha = multiply_add(one,VectorResult.alpha,VectorResult.red);
VectorResult.alpha = multiply_add(one,VectorResult.alpha,VectorResult.green);
VectorResult.alpha = multiply_add(one,VectorResult.alpha,VectorResult.blue);
VectorResult.red = VectorResult.alpha;
VectorResult.green = VectorResult.alpha;
VectorResult.blue = VectorResult.alpha;

alpha.mul(SrcA.alpha, SrcB.alpha);
red.mul(SrcA.red, SrcB.red);
green.mul(SrcA.green, SrcB.green);
blue.mul(SrcA.blue, SrcB.blue);

VectorResult.alpha.add(alpha,red);
VectorResult.alpha +=green;
VectorResult.alpha +=blue;
VectorResult.red = VectorResult.alpha;
VectorResult.green = VectorResult.alpha;
VectorResult.blue = VectorResult.alpha;

if(sq->isHardwareAccurate())

else

}
break;

case CNDEv:

VectorResult.red = multiply_add(SrcA.red, SrcB.red,zero);
VectorResult.green = multiply_add(SrcA.green, SrcB.green,zero);
VectorResult.blue = multiply_add(SrcA.blue, SrcB.blue,zero);

VectorResult.red = multiply_add(one,VectorResult.red,VectorResult.green);
VectorResult.red = multiply_add(one,VectorResult.red,VectorResult.blue);
VectorResult.green = VectorResult.red;
VectorResult.blue = VectorResult.red;
VectorResult.alpha = VectorResult.red;

red.mul(SrcA.red,SrcB.red);
green.mul(SrcA.green, SrcB.green);
blue.mul(SrcA.blue,SrcB.blue);
VectorResult.red.add(red,green);
VectorResult.red += blue;
VectorResult.alpha = VectorResult.red;
VectorResult.green = VectorResult.red;
VectorResult.blue = VectorResult.red;

VectorResult.alpha = (SrcA.alpha == 0.0) ? SrcB.alpha:SrcC.alpha;
VectorResult.red = (SrcA.red == 0.0) ? SrcB.red:SrcC.red;

34

Page 169 of 509 TCL 1002

Page 170 of 509 TCL 1002

VectorResult.green = (SrcA.green == 0.0) ? SrcB.green:SrcC.green;
VectorResult.blue = (SrcA.blue == 0.0) ? SrcB.blue:SrcC. blue;
break;

case CNDGTv:

VectorResult.alpha = (SrcA.alpha > 0.0) ? SrcB.alpha:SrcC.alpha;
VectorResult.red = (SrcA.red > 0.0) ? SrcB.red:SrcC.red;
VectorResult.green = (SrcA.green > 0.0) ? SrcB.green:SrcC.green;
VectorResult.blue = (SrcA.blue > 0.0) ? SrcB.blue:SrcC. blue;
break;

case CNDGTEv:

VectorResult.alpha = (SrcA.alpha >= 0.0) ? SrcB.alpha:SrcC.alpha;
VectorResult.red = (SrcA.red >= 0.0) ? SrcB.red:SrcC.red;
VectorResult.green = (SrcA.green >= 0.0) ? SrcB.green:SrcC.green;
VectorResult.blue = (SrcA. blue >= 0.0) ? SrcB.blue:SrcC.blue;
break;

case CUBEv:

if (SrcA.red > SrcA.green && SrcA.red > SrcA.blue)
{

VectorResult.red = SrcA.red;

if (SrcA.red >= 0)
{

VectorResult.green =0;
VectorResult.alpha = -SrcA.blue;
VectorResult.blue = -SrcA.green;

}
else

{
VectorResult.green =1;
VectorResult.alpha = SrcA.blue;
VectorResult.blue = -SrcA.green;

}
}
else if (SrcA.green > SrcA.blue)
{

VectorResult.red = SrcA.green;
if (SrcA.green >= 0)
{

VectorResult.green =2;
VectorResult.alpha = SrcA.red;
VectorResult.blue = SrcA.blue;

}
else

{
VectorResult.green =3;
VectorResult.alpha = SrcA.red;
VectorResult.blue = -SrcA.blue;

}
}
else

{
VectorResult.red = SrcA.blue;

if (SrcA.blue >= 0)

VectorResult.green =4;
VectorResult.alpha = SrcA.red;
VectorResult.blue = -SrcA.green;

35

Page 170 of 509 TCL 1002

Page 171 of 509 TCL 1002

else

{
VectorResult.green =5;
VectorResult.alpha = -SrcA.red;
VectorResult.blue = -SrcA.green;

}
}
if(sq->isHardwareAccurate())

{
VectorResult.red = multiply_add(VectorResult.red,two,zero);

}
else

{
VectorResult.red.mul(2,VectorResult.red);

}
break;

case MAX4v:

if (SrcA.red > SrcA.green && SrcA.red > SrcA.blue && SrcA.red > SrcA.alpha)
VectorResult.alpha = SrcA.red;

else if (SrcA.green > SrcA.blue && SrcA.green > SrcA.alpha)
VectorResult.alpha = SrcA.green;

else if (SrcA.blue > SrcA.alpha)
VectorResult.alpha = SrcA.blue;

else

VectorResult.alpha = SrcA.alpha;

VectorResult.red = VectorResult.alpha;
VectorResult.green = VectorResult.alpha;
VectorResult.blue = VectorResult.alpha;
break;

case DOT2ADDv:

{
if(sq->isHardwareAccurate())

VectorResult.red = multiply_add(SrcA.red, SrcB.red,zero);
VectorResult.green = multiply_add(SrcA.green, SrcB.green,zero);

VectorResult.red = multiply_add(one,VectorResult.red,VectorResult.green);
VectorResult.red = multiply_add(one,VectorResult.red,SrcC.red);
VectorResult.alpha = VectorResult.red;
VectorResult.green = VectorResult.red;
VectorResult.blue = VectorResult.red;

}
else

{
VectorResult.red.mul(SrcA.red,SrcB.red);
VectorResult.green.mul(SrcA.green,SrcB.green);
VectorResult.red.add(VectorResult.red,VectorResult.green);
VectorResult.red.add(VectorResult.red,SrcC.red);

VectorResult.alpha = VectorResult.red;
VectorResult.green = VectorResult.red;
VectorResult.blue = VectorResult.red;

}
break;

case PRED_SETE_PUSHv:

36

Page 171 of 509 TCL 1002

Page 172 of 509 TCL 1002

// check for predication
if ((CurrentAlulnstruction.PredicateSelect&0x01) == Predicates|i] ||

(CurrentAlulnstruction.PredicateSelect>>1) == 0)
{

if (SrcB.alpha.getReal() == 0.0f && SrcA.red.getReal() == 0.0f)
{

Predicates[i] = true;
VectorResult.red = 0.0f;

}
else

{
Predicates[i] = false;
VectorResult.red = SrcA.red.getReal()+1.0f;

}
}
break;

case PRED_SETGT_PUSHv:
// check for predication
if ((CurrentAlulnstruction.PredicateSelect&0x01) == Predicates|i] ||

(CurrentAlulnstruction.PredicateSelect>>1) == 0)

if (SrcB.alpha.getReal() > 0.0f && SrcA.red.getReal() == 0.0f)

Predicates|i] = true;
VectorResult.red = 0.0f;

}
else

Predicates[i] = false;
VectorResult.red = SrcA.red.getReal()+1.0f;

}
}
break;

case PRED_SETGTE_PUSHv:
// check for predication
if ((CurrentAlulnstruction.PredicateSelect&0x01) == Predicates|i] ||

(CurrentAlulnstruction.PredicateSelect>>1) == 0)
{

if (SrcB.alpha.getReal() >= 0.0f && SrcA.red.getReal() == 0.0f)

Predicates[i] = true;
VectorResult.red = 0.0f;

}
else

Predicates[i] = false;
VectorResult.red = SrcA.red.getReal()+1.0f;

}
}
break;

case PRED_SETNE_PUSHv:
// check for predication
if ((CurrentAlulnstruction.PredicateSelect&0x01) == Predicates|i] ||

(CurrentAlulnstruction.PredicateSelect>>1) == 0)

if (SrcB.alpha.getReal() != 0.0f && SrcA.red.getReal() == 0.0f)

37

Page 172 of 509 TCL 1002

Page 173 of 509 TCL 1002

Predicates[i] = true;
VectorResult.red = 0.0f;

}
else

{
Predicates[i] = false;
VectorResult.red = SrcA.red.getReal()+1.0f;

}
}
break;

case KILLEv:

// check for predication
if (CurrentAlulnstruction.PredicateSelect&0x01) == Predicates|i] ||

(CurrentAlulnstruction.PredicateSelect>>1) == 0)

if (SrcA.alpha.getReal() == SrcB.alpha.getReal() && SrcA.red.getReal() ==
SrcB.red.getReal() &&

SrcA.green.getReal() == SrcB.green.getReal() && SrcA.blue.getReal()
== SrcB.blue.getReal())

validBits[i/4] = validBits[i/4]&(OxEF>>(4-(i%4)));

}
break;

case KILLGTv:

// check for predication
if (CurrentAlulnstruction.PredicateSelect&0x01) == Predicates|i] ||

(CurrentAlulnstruction.PredicateSelect>>1) == 0)
{

SrcB.red.getReal() &&
if (SrcA.alpha.getReal() > SrcB.alpha.getReal() && SrcA.red.getReal() >

SrcA.green.getReal() > SrcB.green.getReal() && SrcA.blue.getReal() >
SrcB.blue.getReal())

validBits[i/4] = validBits[i/4]&(OxEF>>(4-(i%4)));

}
break;

case KILLGTEv:

// check for predication
if ((CurrentAlulnstruction.PredicateSelect&0x01) == Predicates|i] ||

(CurrentAlulnstruction.PredicateSelect>>1) == 0)
{

SrcB.red.getReal() &&
if (SrcA.alpha.getReal() >= SrcB.alpha.getReal() && SrcA.red.getReal() >=

SrcA.green.getReal() >= SrcB.green.getReal() && SrcA.blue.getReal()
>= SrcB.blue.getReal())

validBits[i/4] = validBits[i/4]&(OxEF>>(4-(i%4)));

}
break;

case KILLNEv:

// check for predication
if (CurrentAlulnstruction.PredicateSelect&0x01) == Predicates|i] ||

38

Page 173 of 509 TCL 1002

Page 174 of 509 TCL 1002

(CurrentAlulnstruction.PredicateSelect>>1) == 0)

if (SrcA.alpha.getReal() != SrcB.alpha.getReal() && SrcA.red.getReal() !=
SrcB.red.getReal() &&

SrcA.green.getReal() != SrcB.green.getReal() && SrcA.blue.getReal() !=
SrcB.blue.getReal())

{
validBits[i/4] = validBits[i/4]&(OxEF>>(4-(i%4)));

}
}
break;

case MOVAv:

// check for predication
if (CurrentAlulnstruction.PredicateSelect&0x01) == Predicates|i] ||

(CurrentAlulnstruction.PredicateSelect>>1) == 0)
{

ConstantOffsets[i+AluPhase*16] = floor(SrcA.alpha.getReal()+0.5);
}
VectorResult.red = SrcA.red;

VectorResult.green = SrcA.green;
VectorResult.blue = SrcA.blue;
VectorResult.alpha = SrcA.alpha;
break;

case DSTv:

default:

<< std::endl;

}

VectorResult.red = 1.0f;

if(sq->isHardwareAccurate())
VectorResult.green = multiply_add(SrcA.green, SrcB.green,zero);

else

VectorResult.green.mul(SrcA.green,SrcB.green);
VectorResult.blue = SrcA.blue;
VectorResult.alpha = SrcB.alpha;
break;

std::cerr << "Unsuported Vector Opcode in SP: " << CurrentAlulnstruction.VectorOpcode

Executing Scalar Opcode
//Note: There is a coissue only when vector opcode uses two sourcesor less

nanCheck nanValue;
Vector4 result,in;

if(CoissuedI|nstruction)
{

switch(CurrentAlulnstruction.ScalarOpcode)
{
case ADDs:

if(sq->isHardwareAccurate())
ScalarResult = multiply_add(SrcC.alpha,one,SrcC.red);

else

ScalarResult.add(SrcC.alpha,SrcC.red);
break;

case ADD_PREVs:
if(sq->isHardwareAccurate())

39

Page 174 of 509 TCL 1002

Page 175 of 509 TCL 1002

ScalarResult =

multiply_add(SrcC.alpha,one,PreviousScalar[Aluld][AluPhase][i].red);
else

ScalarResult.add(SrcC.alpha,PreviousScalar[Aluld][AluPhase][i].red);
break;

case MULs:

if(sq->isHardwareAccurate())
ScalarResult = multiply_add(SrcC.alpha,SrcC.red,zero);

else

ScalarResult.mul(SrcC.alpha,SrcC.red);
break;

case MUL_PREVs:
if(sq->isHardwareAccurate())

ScalarResult =

multiply_add(SrcC.alpha,PreviousScalar[Aluld][AluPhase][i].red,zero);
else

ScalarResult.mul(SrcC.alpha,PreviousScalar[Aluld][AluPhase][i].red);
break;

case MUL_PREV2s:
nanValue.f = PreviousScalar[Aluld][AluPhase][i].red.getReal();
if (nanValue.u == OxFF7FFFFF|| nanValue.u == OxFF800000||

SrcC.red.getReal() <= 0)
{

nanValue.u = OxFF7FFFFF;
ScalarResult = nanValue f;

}
else

if(sq->isHardwareAccurate())
ScalarResult =

multiply_add(SrcC.alpha,PreviousScalar[Aluld][AluPhase][i].red,zero);
else

ScalarResult.mul(SrcC.alpha,PreviousScalar[Aluld][AluPhase][i].red);
}
break;

case MINs:

ScalarResult.min(SrcC.alpha,SrcC.red);
break;

case MAXs:

ScalarResult.max(SrcC.alpha,SrcC.red);
break;

case SETEs:

ScalarResult = (SrcC.alpha == 0.0) ? 1.0:0.0;
break;

case SETNEs:

ScalarResult = (SrcC.alpha != 0.0) ? 1.0:0.0;
break;

case SETGTs:

ScalarResult = (SrcC.alpha > 0.0) ? 1.0:0.0;
break;

case SETGTEs:

ScalarResult= (SrcC.alpha >= 0.0) ? 1.0:0.0;
break;

case FRACs:

ScalarResult.sub(SrcC.alpha, (float)((int)SrcC.alpha.getReal()));

40

Page 175 of 509 TCL 1002

Page 176 of 509 TCL 1002

break;
case TRUNCs:

ScalarResult= (float)((int)SrcC.alpha.getReal());
break;

case FLOORs:

if (SrcC.alpha.getReal() > 0)
ScalarResult = (float)((int)SrcC.alpha.getReal());

else

ScalarResult = (float)((int)SrcC.alpha.getReal())-1.Of;
break;

case EXP_IEEE:
nanValue.f = SrcC.alpha.getReal();
H0

if (SrcC.alpha.getReal() == 0.0f)

ScalarResult = 1.0f;

}
I NAN

else if (nanValue.f != nanValue.f)

ScalarResult = nanValue.f;

}
i+ INF

else if (nanValue.u == 0x7F800000)

ScalarResult = nanValuef;
}
Hf - INF

else if (nanValue.u == OxFF800000)

ScalarResult = 0.0f;

}
If + MAX_FLT
else if (nanValue.u == Ox7F7FFFFF)
{

nanValue.u = 0x7F800000;
ScalarResult = nanValue Ff;

}
Il - MAX_FLT
else if (nanValue.u == OxFF7FFFFF)
{

ScalarResult = 0.0f;

}
else

{
if(sq->isHardwareAccurate())

in.x = SrcC.alpha.getReal();
mathScalar->ExpBase2FullDX4(&result.x,&in.x);
ScalarResult = result.x;

}
else

{
ScalarResult = pow(2,SrcC.alpha.getReal());

}
}

Al

Page 176 of 509 TCL 1002

Page 177 of 509 TCL 1002

break;
case LOG_CLAMP:

nanValue.f = SrcC.alpha.getReal();
H0

if (SrcC.alpha.getReal() == 0.0f)
{

nanValue.u = OxFF7FFFFF;
ScalarResult = nanValuef;

}
/i NAN

else if (nanValue.f != nanValue.f)
{

ScalarResult = nanValuef;

}
// +INF

else if (nanValue.u == 0x7F800000)

ScalarResult = nanValue.f;

}
i - INF

else if (nanValue.u == OxFF800000)
{

nanValue.u = R400_NAN;
ScalarResult = nanValuef;

}
// neg
else if (nanValue.f < 0)
{

nanValue.u = R400_NAN;
ScalarResult = nanValue.f;

}
else

{
if(sq->isHardwareAccurate())
{

in.x = SrcC.alpha.getReal();
mathScalar->LogBase2FullDX4(&result.x,&in.x);
ScalarResult = result.x;

}
else

ScalarResult = log(SrcC.alpha.getReal())/log(2);
}

}
break;

case LOG_IEEE:
nanValue.f = SrcC.alpha.getReal();
H0

if (SrcC.alpha.getReal() == 0.0f)
{

nanValue.u = OxFF800000;
ScalarResult = nanValuef;

}
I NAN

else if (nanValue.f != nanValue.f)
{

42

Page 177 of 509 TCL 1002

Page 178 of 509 TCL 1002

ScalarResult = nanValue.f;

}
i+ INF

else if (nanValue.u == 0x7F800000)
{

ScalarResult = nanValuef;

}
Hf - INF

else if (nanValue.u == OxFF800000)
{

nanValue.u = R400_NAN;
ScalarResult = nanValue f;

}
// neg
else if (nanValue.f < 0)
{

nanValue.u = R400_NAN;
ScalarResult = nanValue.f;

}
else

{
if(sq->isHardwareAccurate())
{

in.x = SrcC.alpha.getReal();
mathScalar->LogBase2FullDX4(&result.x,&in.x);
ScalarResult = result.x;

}
else

{
ScalarResult = log(SrcC.alpha.getReal())/log(2);

}
}
break;

case RECIP_CLAMP:
nanValue.f = SrcC.alpha.getReal();
+0

if (nanValue.u == 0x00000000)
{

nanValue.u = Ox7F7FFFFF;
ScalarResult = nanValue.f;

}
H-0

else if (nanValue.u == 0x80000000)
{

nanValue.u = OxFF7FFFFF;
ScalarResult = nanValue.f;

}
/i NAN

else if (nanValue.f != nanValue.f)
{

ScalarResult = nanValue f;

}
H+ INF

else if (nanValue.u == 0x7F800000)
{

nanValue.u = 0x80000000;

43

Page 178 of 509 TCL 1002

Page 179 of 509 TCL 1002

ScalarResult = nanValue.f;

}
i - INF

else if (nanValue.u == OxFF800000)
{

nanValue.u = 0x00000000;
ScalarResult = nanValue.f;

if(sq->isHardwareAccurate())
{

in.x = SrcC.alpha.getReal();
mathScalar->RecipF F(&result.x,&in.x);
ScalarResult = result.x;

}
else

ScalarResult.div(1.0,SrcC.alpha);
break;

case RECIP_FF:
nanValue.f = SrcC.alpha.getReal();
+0

if (nanValue.u == 0x00000000)
{

nanValue.u = 0x00000000;
ScalarResult = nanValue f;

}
1-0

else if (nanValue.u == 0x80000000)
{

nanValue.u = 0x80000000;
ScalarResult = nanValue.f;

}
/1 NAN

else if (nanValue.f != nanValue-.f)

ScalarResult = nanValue.f;

}
I} + INF

else if (nanValue.u == 0x7F800000)
{

nanValue.u = 0x80000000;
ScalarResult = nanValue.f;

}
i - INF

else if (nanValue.u == OxFF800000)
{

nanValue.u = 0x00000000;
ScalarResult = nanValue.f;

else

if(sq->isHardwareAccurate())

in.x = SrcC.alpha.getReal();
mathScalar->RecipFF(&result.x,&in.x);
ScalarResult = result.x;

44

Page 179 of 509 TCL 1002

Page 180 of 509 TCL 1002

else

ScalarResult.div(1.0,SrcC.alpha);
}
break;

case RECIP_IEEE:
nanValue.f = SrcC.alpha.getReal();
+0

if (nanValue.u == 0x00000000)
{

nanValue.u = 0x7F800000;
ScalarResult = nanValue f;

}
1-0

else if (nanValue.u == 0x80000000)
{

nanValue.u = OxFF800000;
ScalarResult = nanValue.f;

}
/1 NAN

else if (nanValue.f != nanValue.f)

ScalarResult = nanValue f;

}
I} + INF

else if (nanValue.u == 0x7F800000)
{

nanValue.u = 0x80000000;
ScalarResult = nanValue.f;

}
i - INF

else if (nanValue.u == OxFF800000)
{

nanValue.u = 0x00000000;
ScalarResult = nanValue-.f;

}
else

if(sq->isHardwareAccurate())

in.x = SrcC.alpha.getReal();
mathScalar->RecipFF(&result.x,&in.x);
ScalarResult = result.x;

}
else

ScalarResult.div(1.0,SrcC.alpha);
}
break;

case RECIPSQ_CLAMP:
nanValue.f = SrcC.alpha.getReal();
+0

if (nanValue.u == 0x00000000)
{

nanValue.u = Ox7F7FFFFF;
ScalarResult = nanValue.f;

}
H-0

45

Page 180 of 509 TCL 1002

Page 181 of 509 TCL 1002

else if (nanValue.u == 0x80000000)
{

nanValue.u = OxFF7FFFFF;
ScalarResult = nanValue.f;

}
/1 NAN

else if (nanValue.f != nanValue.f)
{

ScalarResult = nanValuef;

}
Hf + INF

else if (nanValue.u == 0x7F800000)
{

nanValue.u = 0x00000000;
ScalarResult = nanValue.f;

}
i - INF

else if (nanValue.u == OxFF800000)
{

nanValue.u = R400_NAN;
ScalarResult = nanValue.f;

}
if -

else if (nanValue.f < 0.0f)
{

nanValue.u = R400_NAN;
ScalarResult = nanValuef;

if(sq->isHardwareAccurate())

in.x = SrcC.alpha.getReal();
mathScalar->RecipSqrtF F(&result.x,&in.x);
ScalarResult = result.x;

}
else

ScalarResult = sqrt(ScalarResult.div(1.0,SrcC.alpha).getReal());
break;

case RECIPSQ_FF:
nanValue.f = SrcC.alpha.getReal();
+0

if (nanValue.u == 0x00000000)
{

nanValue.u = 0x00000000;
ScalarResult = nanValue.f;

}
H-0

else if (nanValue.u == 0x80000000)
{

nanValue.u = 0x80000000;
ScalarResult = nanValuef;

}
/i NAN

else if (nanValue.f != nanValue.f)
{

ScalarResult = nanValue.f;

}

46

Page 181 of 509 TCL 1002

Page 182 of 509 TCL 1002

i+ INF

else if (nanValue.u == 0x7F800000)
{

nanValue.u = 0x00000000;
ScalarResult = nanValue.f;

}
Hf - INF

else if (nanValue.u == OxFF800000)
{

nanValue.u = R400_NAN;
ScalarResult = nanValuef;

}
if -

else if (nanValue.f < 0.0f)
{

nanValue.u = R400_NAN;
ScalarResult = nanValue.f;

}
else

if(sq->isHardwareAccurate())
{

in.x = SrcC.alpha.getReal();
mathScalar->RecipSqrtFF(&result.x,&in.x);
ScalarResult = result.x;

}
else

ScalarResult = sqrt(ScalarResult.div(1.0,SrcC.alpha).getReal());
}
break;

case RECIPSQ_IEEE:
nanValue.f = SrcC.alpha.getReal();
+0

if (nanValue.u == 0x00000000)
{

nanValue.u = 0x7F800000;
ScalarResult = nanValuef;

}
1-0

else if (nanValue.u == 0x80000000)
{

nanValue.u = OxFF800000;
ScalarResult = nanValue.f;

}
/1 NAN

else if (nanValue.f != nanValue.f)

ScalarResult = nanValuef;

}
Hf + INF

else if (nanValue.u == 0x7F800000)
{

nanValue.u = 0x00000000;
ScalarResult = nanValue.f;

i - INF

47

Page 182 of 509 TCL 1002

Page 183 of 509 TCL 1002

else if (nanValue.u == OxFF800000)
{

nanValue.u = R400_NAN;
ScalarResult = nanValue.f;

}
il -

else if (nanValue.f < 0.0f)
{

nanValue.u = R400_NAN;
ScalarResult = nanValuef;

}
else

{
if(sq->isHardwareAccurate())
{

in.x = SrcC.alpha.getReal();
mathScalar->RecipSqrtF F(&result.x,&in.x);
ScalarResult = result.x;

}
else

ScalarResult = sqrt(ScalarResult.div(1.0,SrcC.alpha).getReal());
}
break;

case MOVAs:

// check for predication
if ((CurrentAlulnstruction.PredicateSelect&0x01) == Predicates|i] ||

(CurrentAlulnstruction.PredicateSelect>>1) ==
ConstantOffsets[i+AluPhase*16] = floor(SrcC.alpha.getReal()+0.5);

ScalarResult = SrcC.alpha;
break;

case MOVA_FLOORs:
// check for predication
if (CurrentAlulnstruction.PredicateSelect&0x01) == Predicates|i] ||

(CurrentAlulnstruction.PredicateSelect>>1) ==
ConstantOffsets[i+AluPhase* 16] = floor(SrcC.alpha.getReal());

ScalarResult = SrcC.alpha;
break;

case SUBs:

if(sq->isHardwareAccurate())

green = -1.0f;
ScalarResult = multiply_add(SrcC.red,green,SrcC.alpha);

}
else

ScalarResult.sub(SrcC.alpha,SrcC.red);
break;

case SUB_PREVs:
if(sq->isHardwareAccurate())
{

green = -1.0f;
ScalarResult =

multiply_add(PreviousScalar[Aluld][AluPhase][i].red,green,SrcC.alpha);

else

ScalarResult.sub(SrcC.alpha,PreviousScalar[Aluld][AluPhase][i].red);
break;

48

Page 183 of 509 TCL 1002

Page 184 of 509 TCL 1002

case PRED_SETEs:
// check for predication
if ((CurrentAlulnstruction.PredicateSelect&0x01) == Predicates|i] ||

(CurrentAlulnstruction.PredicateSelect>>1) == 0)
{

if (SrcC.alpha.getReal() == 0.0f)
{

Predicates[i]= true;
ScalarResult = 0.0f;

}
else

{
Predicates[i] = false;
ScalarResult = 1.0f;

}
}
break;

case PRED_SETGTs:
// check for predication
if (CurrentAlulnstruction.PredicateSelect&0x01) == Predicates|i] ||

(CurrentAlulnstruction.PredicateSelect>>1) == 0)

if (SrcC.alpha.getReal() > 0.0f)
{

Predicates[i]= true;
ScalarResult = 0.0f;

}
else

{
Predicates[i] = false;
ScalarResult = 1.0f;

}
}
break;

case PRED_SETGTEs:
// check for predication
if (CurrentAlulnstruction.PredicateSelect&0x01) == Predicates|i] ||

(CurrentAlulnstruction.PredicateSelect>>1) == 0)

if (SrcC.alpha.getReal() >= 0.0f)

Predicates[i]= true;
ScalarResult = 0.0f;

}
else

Predicates[i] = false;
ScalarResult = 1.0f;

}
}
break;

case PRED_SETNEs:
// check for predication
if ((CurrentAlulnstruction.PredicateSelect&0x01) == Predicates|i] ||

(CurrentAlulnstruction.PredicateSelect>>1) == 0)
{

49

Page 184 of 509 TCL 1002

Page 185 of 509 TCL 1002

if (SrcC.alpha.getReal() != 0.0f)

Predicates[i]= true;
ScalarResult = 0.0f;

}
else

{
Predicates[i] = false;
ScalarResult = 1.0f;

}
}
break;

case PRED_SET_INVs:
// check for predication
if ((CurrentAlulnstruction.PredicateSelect&0x01) == Predicates|i] ||

(CurrentAlulnstruction.PredicateSelect>>1) == 0)

if (SrcC.red.getReal() == 1.0f)
{

Predicates[i]= true;
ScalarResult = 0.0f;

}
else

{
Predicates[i] = false;
if (SrcC.red.getReal() == 0.0f)

ScalarResult = 1.0f;
else

ScalarResult = SrcC.red.getReal();
}

}
break;

case PRED_SET_POPs:
// check for predication
if (CurrentAlulnstruction.PredicateSelect&0x01) == Predicates|i] ||

(CurrentAlulnstruction.PredicateSelect>>1) == 0)

if (SrcC.red.getReal()-1.0f <= 0.0f)

Predicates[i]= true;
ScalarResult = 0.0f;

}
else

Predicates[i] = false;
ScalarResult = SrcC.red.getReal()-1.0f;

}
}
break;

case PRED_SET_CLRs:
// check for predication
if ((CurrentAlulnstruction.PredicateSelect&0x01) == Predicates|i] ||

(CurrentAlulnstruction.PredicateSelect>>1) == 0)
{

Predicates[i] = false;
// set to maxfloat

50

Page 185 of 509 TCL 1002

Page 186 of 509 TCL 1002

nanValue.u = Ox7F7FFFFF;
ScalarResult = nanValue.f;

}
break;

case PRED_SET_RESTOREs:
// check for predication
if ((CurrentAlulnstruction.PredicateSelect&0x01) == Predicates|i] ||

(CurrentAlulnstruction.PredicateSelect>>1) == 0)
{

if (SrcC.red.getReal() == 0.0f)
{

Predicates[i] = true;
ScalarResult = 0.0f;

}
else

Predicates[i] = false;
ScalarResult = SrcC.red.getReal();

}
}
break;

case KILLEs:

// check for predication
if ((CurrentAlulnstruction.PredicateSelect&0x01) == Predicates|i] ||

(CurrentAlulnstruction.PredicateSelect>>1) == 0)

if (SrcC.alpha.getReal() == 0.0f)

validBits[i/4] = validBits[i/4]&(OxEF>>(4-(1%4)));

}
break;

case KILLGTs:

// check for predication
if (CurrentAlulnstruction.PredicateSelect&0x01) == Predicates|i] ||

(CurrentAlulnstruction.PredicateSelect>>1) == 0)

if (SrcC.alpha.getReal() > 0.0f)

validBits[i/4] = validBits[i/4]&(OxEF>>(4-(1%4)));

}
break;

case KILLGTEs:

// check for predication
if ((CurrentAlulnstruction.PredicateSelect&0x01) == Predicates|i] ||

(CurrentAlulnstruction.PredicateSelect>>1) == 0)

if (SrcC.alpha.getReal() >= 0.0f)

validBits[i/4] = valid Bits[i/4]&(OxEF>>(4-(i%4)));

}
break;

case KILLNEs:

// check for predication

51

Page 186 of 509 TCL 1002

Page 187 of 509 TCL 1002

if ((CurrentAlulnstruction.PredicateSelect&0x01) == Predicates|i] ||
(CurrentAlulnstruction.PredicateSelect>>1) == 0)

if (SrcC.alpha.getReal() != 0.0f)
{

validBits[i/4] = valid Bits[i/4]&(OxEF>>(4-(1%4)));

}
break;

case KILLONEs:

// check for predication
if ((CurrentAlulnstruction.PredicateSelect&0x01) == Predicates|i] ||

(CurrentAlulnstruction.PredicateSelect>>1) == 0)

if (SrcC.alpha.getReal() == 1.0f)

validBits[i/4] = validBits[i/4]&(OxEF>>(4-(i%4)));
}

break;
case SQRT_IEEE:

nanValue.f = SrcC.alpha.getReal();
+0

if (nanValue.u == 0x00000000)
{

nanValue.u = 0x00000000;
ScalarResult = nanValue.f;

}
H-0

else if (nanValue.u == 0x80000000)
{

nanValue.u = 0x80000000;
ScalarResult = nanValuef;

}
// NAN

else if (nanValue.f != nanValue.f)

ScalarResult = nanValuef;

}
I} + INF

else if (nanValue.u == 0x7F800000)
{

nanValue.u = 0x7F800000;
ScalarResult = nanValue.f;

}
i - INF

else if (nanValue.u == OxFF800000)
{

nanValue.u = R400_NAN;
ScalarResult = nanValuef;

}
If -

else if (nanValue.f < 0.0f)
{

nanValue.u = R400_NAN;
ScalarResult = nanValue.f;

52

Page 187 of 509 TCL 1002

Page 188 of 509 TCL 1002

}
else

ScalarResult = pow(2,0.5*log(SrcC.alpha.getReal())/log(2));
break;

default:

std::cerr << "Scalar Opcode Not supported: " <<
((int)CurrentAlulnstruction.ScalarOpcode) << std::endl;

break;

}
}

}
|[ennnnnnnnnnnnnnnnnnnnnanannnnnnnnnnnnnnnnnnnnnnnnnnnnnn

void SQ_ALU::RegisterFileRead(uint32 SrcAPtr,uint32 SrcBPtr,uint32 SrcCPtr,const RegVect*
&lnputVectorA,

const RegVect* &lnputVectorB,const RegVect*
&IlnputVectorC)
{

CurrentRegFile->GetConstValues(InputVectorA,SrcAPtr);
CurrentRegFile->GetConstValues(InputVectorB ,SrcBPtr);
CurrentRegFile->GetConstValues(InputVectorC, SrcCPtr);

}
|fommennnnnnnnnnnnnnannnannannannanananaanannanmananananaaananaasaaanuanumnaammammummamuses

void SQ_ALU:: RegisterFileWrite(uint8 VectorWriteMask, uint8 ScalarWriteMask,uint32 ScalarAddr,
uint32 VectorAddr)

{

//grabing a pointer to the GPRentry in location VectorAddr
RegVect* CurrentRegEntry;
CurrentRegFile->GetValues(CurrentRegEntry, VectorAddr);

// if not exporting
if ((((CurrentAlulnstruction.ScalarResultPointer>>7)&0x1))

if (VectorWriteMask != 0x0)

for (int vector_id = 0; vector_id < 16 ; vector_id ++){
for(int channel = 0; channel < 4 ; channel ++){

if (VectorWriteMask&(1<<channel))
if ((CurrentAlulnstruction.PredicateSelect&0x01) ==

Predicates[vector_id]||
(CurrentAlulnstruction.PredicateSelect>>1) ==

0)
CurrentRegEntry[vector_id].field[channel] =

VectorVector.Val[vector_id].field[channel];

}

}

//grabing a pointer to the GPR entry in location ScalarAddr
CurrentRegFile->GetValues(CurrentRegEntry, ScalarAddr);
// if not exporting
if ((((CurrentAlulnstruction.ScalarResultPointer>>7)&0x1))

if (ScalarWriteMask != 0x0)
{

53

Page 188 of 509 TCL 1002

Page 189 of 509 TCL 1002

for (int vector_id = 0; vector_id < 16 ; vector_id ++){
for(int channel = 0; channel < 4 ; channel ++){
if (ScalarWriteMask&(1<<channel))

if ((CurrentAlulnstruction.PredicateSelect&0x01) ==
Predicates[vector_id]||

(CurrentAlulnstruction.PredicateSelect>>1) ==
0)

CurrentRegEntry[vector_id].field[channel] =
ScalarVector.Val[vector_id].field[channel];

}
}

}

|farmrnnena

mfloat<8,23,128> SQ_ALU::Clamp(mfloat<8 23, 128> result, bool vector)

mfloat<8 ,23,128> one;

one.putReal((float) 1.0);
mfloat<8 ,23,128> zero;

zero.putReal((float)0.0);
mfloat<8,23,128> result_clamped;

if(vector){
result_clamped = ((result > one) & CurrentAlulnstruction.VectorClamp) ? one: result;
result_clamped = ((result < zero) & CurrentAlulnstruction.VectorClamp) ? zero :

result_clamped;

else{
result_clamped = ((result > one) & CurrentAlulnstruction.ScalarClamp) ? one: result;
result_clamped = ((result < zero) & CurrentAlulnstruction.ScalarClamp) ? zero :

result_clamped;

return (result_clamped);

Sq_block_model.cpp
#include <chip/ar_code/ar_chip_interface.h>
#include <gfx/sq/user_block_model.h>
#include <gfx/sx/user_block_model.h>
#include <gfx/sq/sq_dumps.h>
#include <sys/rom/user_block_model.h>
#include <reg/crayola_offset.h>
#include <numbers/numbers.h>

#include <tex/tconst.h>

#include <core/registry.h>

54

Page 189 of 509 TCL 1002

Page 190 of 509 TCL 1002

#include <iostream>

#include <queue>

#include "reg_file.h”
#include "sq_alu.h"
#include "constant_store.h"”
#include "interpolators.h”
#include "instruction_store.h"
#include "arbiter.h"

#include "alu_types.h"”

//#define DEBUG_SEQ

using namespacestd;

||awnnnnana nn nnn nnnnnnnn nn nnn nnnnnnnn nnn nnnnnnnnnnnnnnnnanannena

cUSER_BLOCK_SQ::cUSER_BLOCK_SQ (cAR_CHIP_INTERFACE*
pchip, uint32 block_id,

cMODEL_BLOCK_PARAMETERS& blockParameters):
cAR_BLOCKSQ(pchip, block_id, blockParameters), interpolators(parameters)
{

int 1,];
std::cout << "block SQ constructor" << std::endl;

#ifndef MSDOS

m_dumpSQ = Core::Registry::read("HKEYLOCALMACHINE\\SOFTWARE\\ATI
Technologies\\Debug\\SqDump", 0);

#else

m_dumpSQ = (uint32)(getenv("SqDump"));
#endif // End MSDOS

pSC_SQ=NULL;
pSC_SP=NULL;
pSQ_SC=NULL;
pVGT_SQVerts=NULL;
pVGT_SQvertsready=NULL;
psQ_SP_Interp=NULL;
pSQ_SX=NULL;
pSP_SX=NULL;
pSQ_TP=NULL;
pSX_SQ=NULL;
pSQ_SP=NULL;
pIP_SQ=NULL;
psSQ_CPPIX =NULL;
pSQ_CP_VTX=NULL;
pSQRB=NULL;

55

Page 190 of 509 TCL 1002

Page 191 of 509 TCL 1002

regFile[0]=NULL;
regFile[1]=NULL;
regFile[2]=NULL;
regFile[3]|=NULL;
arbiter=NULL;

gpr_manager=NULL;
m_sqfpDump = NULL;
m_spSxDump = NULL;
m_sqSxDump = NULL;

idle0 = idlel_7=0;

if(m_dumpSQ>0) {
m_sqIpDump =new cSqTp_Dump("sq_tp.dmp");

m_spSxDump =new cSpSx_Dump("sp_sx.dmp");
m_sqSxDump =new cSqSx_Dump("sq_sx.dmp");
m_sqScDump =new cSqSc_Dump("sq_sc.dmp");
m_sqSpInterpDump =new cSqSpInterp_Dump("sq_sp_interp.dmp");
pcFile = fopen("sq_sx_pc.dmp","wb");

auto_count_pix = 0;
auto_count_vtx = 0;

// set up the registerfiles
for (=0;1<4;1++)

regFile[iJ= new RegFileQ;

// clean the output buffer
outBuffer.valid = false;
for (i=0;1<16;1++)
{

outBuffer.values[i].field[0]=0.0;
outBuffer.values[i].field[1]=0.0;
outBuffer.values[i].field[2]=0.0;
outBuffer.values[i].field[3]=0.0;

}

// ORDER IS RGBAA in [3] B in [2] G in [1] and R in [0] OR
// ORDER IS XYZW W in [3] Z in [2] Y in [1] and X in [0]

// init the parameterstoreto all 0s
for §=0:)<16,j++)
{

for G=0;1<128;i++)
{

parameters[i].Vall[j].field[0] = 0.0;

56

Page 191 of 509 TCL 1002

Page 192 of 509 TCL 1002

parameters[i].Vall[j].field[1] = 0.0;
parameters[i].Vall[j].field[2] = 0.0;
parameters[i].Vall[j].field[3] = 0.0;

}

// clean the pixel input buffer
for §=0:)<4;)++)

interp[j].new_vector = false;
interp[j].pc_dealloc = 0;
interp[j].state_id = 0;

}

// clear the vertex shader ready counts
for (=0;1<8;i++)
{

}

for (i=0;1<64;1++)
for (j=0;j<2,j++)
{

vertexReady[i]=0;

stagingRegisters[1][j].field[0] = 0.0f,;
stagingRegisters[1][j].field[1] = 0.0f,;
stagingRegisters[1][j].field[2] = 0.0f,;
stagingRegisters[1][j].field[3] = 0.0f,;

}

for (=0;1<3;i++)
for §=0:)<16,j++)
{

RTParameters|i][j].field[0] = 0.0f;
RTParameters[i][j].field[1] = 0.0f;
RTParameters|i][j].field[2] = 0.0f;
RTParameters|i][j].field[3] = 0.0f;

}

// set the parameter cache headto 0
pcHead= 0;
// set the parameter cache head to 127
pcFree = 127;
// set the test type
checkHigh = true;

// create the ALU arbiter

57

Page 192 of 509 TCL 1002

Page 193 of 509 TCL 1002

}

arbiter = new Arbiter(this,m_dumpSQ);

// create the GPR manager
gpr_manager = new GPR_manager(this);

currentwritestate = 0;

void CUSER_BLOCK_SQ::Reset()
{

int 1];
for (=0;1<4;i1++)

delete regFile[i];

delete arbiter;

delete gpr_manager;

regFile[0]=NULL;
regFile[1]=NULL;
regFile[2]=NULL;
regFile[3]|=NULL;
arbiter=NULL;
gpr_manager=NULL;

idle0 = idlel_7=0;

auto_count_pix = 0;
auto_count_vtx = 0;

// set up the registerfiles
for (=0;1<4;1++)

regFile[iJ= new RegFileQ;

// clean the output buffer
outBuffer.valid = false;

for (i=0;1<16;1++)
{

outBuffer.values[i].field[0]=0.0;
outBuffer.values[i].field[1]=0.0;
outBuffer.values[i].field[2]=0.0;
outBuffer.values[i].field[3]=0.0;

}

// ORDER IS RGBAA in [3] B in [2] G in [1] and R in [0] OR
// ORDER IS XYZWWin [3] Z in [2] Y in [1] and X in [0]

// init the parameterstoreto all 0s

58

Page 193 of 509 TCL 1002

Page 194 of 509 TCL 1002

for (j=0;j<16;j++)
{

for G=0;1<128;i++)
{

parameters[i].Vall[j].field[0] = 0.0;
parameters[i].Vall[j].field[1] = 0.0;
parameters[i].Vall[j].field[2] = 0.0;
parameters[i].Vall[j].field[3] = 0.0;

}
}

// clean the pixel input buffer
for (j=0,j<4:j++)

interp[j].new_vector = false;
interp[j].pc_dealloc = 0;
interp[j].state_id = 0;

}

// clear the vertex shader ready counts
for (=0;1<8;i++)
{

}

for (i=0;1<64;1++)
for ((=0;j<2,j++)

vertexReady[i]=0;

stagingRegisters[1][j].field[0] = 0.0f,;
stagingRegisters[1][j].field[1] = 0.0f,;
stagingRegisters[1][j].field[2] = 0.0f,;
stagingRegisters[1][j].field[3] = 0.0f,;

}

for (=0;1<3;i1++)
for G=0;j<16;j++)
{

RTParameters|i][j].field[0] = 0.0f;
RTParameters[i][j].field[1] = 0.0f;
RTParameters|i][j].field[2] = 0.0f;
RTParameters|1i][j].field[3] = 0.0f;

}

// set the parameter cache head to 0
pcHead= 0;
// set the parameter cache head to 127

59

Page 194 of 509 TCL 1002

Page 195 of 509 TCL 1002

pcFree = 127;
// set the test type
checkHigh = true;

// create the ALUarbiter

arbiter = new Arbiter(this,m_dumpSQ);

// create the GPR manager
gpr_manager = new GPR_manager(this);

currentwritestate = 0;
}

cUSER_BLOCK_SQ::~cUSER_BLOCKSQ(void)

{ . .
int 1;

for (G=0;1<4;i++)
delete regFile[i];

if(m_dumpSQ>0) {
delete(m_sqTpDump);
delete(m_spSxDump);
delete(m_sqSxDump);

delete(m_sqScDump);
delete(m_sqSpInterpDump);
fprintf(pcFile,"END\n");
fclose(pcFile);

delete arbiter;

delete gpr_manager;
}

[PS Pa aR ns he ie he ie ne fe ie Ae ae fe ee ie ae ne fe ie 2A 2 as fe fe fe 2 ae fe ie 2A 2 ae fe fe fe it ae ae fe ie Ae 2 ae fe ie fe 2 ae ae fe ie Ae 2 ae fe fe fe 2 ae ae fe it
2 og 8 OO OK OK

// Main function for block

[PS Pa aR ns he ie he ie ne fe ie Ae ae fe ee ie ae ne fe ie 2A 2 as fe fe fe 2 ae fe ie 2A 2 ae fe fe fe it ae ae fe ie Ae 2 ae fe ie fe 2 ae ae fe ie Ae 2 ae fe fe fe 2 ae ae fe it
2K of 2 oi ok ok ok

void CUSER_BLOCK_SQ::Main()

FetchQ);
Process();
OutputQ);

[PS Pa aR ns he ie he ie ne fe ie Ae ae fe ee ie ae ne fe ie 2A 2 as fe fe fe 2 ae fe ie 2A 2 ae fe fe fe it ae ae fe ie Ae 2 ae fe ie fe 2 ae ae fe ie Ae 2 ae fe fe fe 2 ae ae fe it
2 og 8 OO OK OK

// Fetch function for block

60

Page 195 of 509 TCL 1002

Page 196 of 509 TCL 1002

[PS Pa aR ns he ie he ie ne fe ie Ae ae fe ee ie ae ne fe ie 2A 2 as fe fe fe 2 ae fe ie 2A 2 ae fe fe fe it ae ae fe ie Ae 2 ae fe ie fe 2 ae ae fe ie Ae 2 ae fe fe fe 2 ae ae fe it
2 og 8 OO OK OK

void cCUSER_BLOCK_SQ::Fetch(void)
{

static sq_indx_count = 0;

// grab the output of the PA and copyit localy
pSC_SQ->GetAll(&sc_sq_data);
pSC_SP->GetAll(&sc_sp_data);

// grab the output of the VGT and copyit localy
pVGT_SQVerts->GetAll(&vgt_sq_vertsdata);

if(tpVGT_SQvertsready->GetReady())
vetsq_vertsdata.VGTSQsend = false;

#if 0

if (vgt_sq_vertsdata.VGT_SQsend && vgt_sqvertsdata.VGTSQindxvalid) {
sq_indx_countt++;

}
if (vet_sq_vertsdata.VGTSQsend &E&

vetsq_vertsdata.VGTSQendof_vtxvect) {
printf("sq_blockmodel: cov -- received %d_ real indices from

VGT\n"",sq_indx_count);
fflush(stdout);
sq_indx_count = 0;

}
#endif

// ok for more new stuff

pVGT_SQvertsready->SetReady(true);

// invalidate the TP interface

psQ_TP->SetValid(false);

// invalidate SX interfaces

pSQ_SX->SetValid(false);
pSQSX->SetSQSX_exp_valid(false);
pSQSX->SetSQSX_freedone(false);
pSP_SX->SetValid(false);

// invalidate SP interface

pSQ_SP->SetValid(false);

// invalidate CP interfaces

pSQ_CP_VTX->SetValid(false);

61

Page 196 of 509 TCL 1002

Page 197 of 509 TCL 1002

pSQ_CP_PIX->SetValid(false);

// invalidate SP interface

pSQ_SP_Interp->SetValid(false);

// invalidate SC interface

psQ_SC->SetSQSCdeccntr_cnt(false);
psQSC->SetSQSC_free_buf(false);

// TEXTURE PIPE INTERFACE READ

static int phase = 0;
// grab the return from the texture pipeifvalid
if (pTP_SQ->GetValidQ)
{

TXColor returnColor;

uinteger<7> registerAddress;
RegVect* txAddr;
int valid;

registerAddress = pTP_SQ->GetTP_SP_gpr_dstQ);
regFile[phase]->GetValues(txAddr,registerAddress);

// Here we write the data to the GPRs. Weonly write data that has a
// write mask activated

for (int i=0;i<16;i++)
{

returnColor = pTP_SQ->GetTP_SP_data(i);
valid = pTP_SQ->GetTP_SP_pix_mask(i/4).getValueQ);
if ((valid>>(%4))&0x01)

if (pTP_SQ->GetTP_SP_cmask(0))
txAddr[i].field[0]=returnColor.x;

if (pTP_SQ->GetTP_SP_cmask(1))
txAddr[i].field[1]=returnColor.y;

if (pTP_SQ->GetTP_SP_cmask(2))
txAddr[i].field[2]|=returnColor.z;

if (pTP_SQ->GetTP_SP_cmask(3))
txAddr[i].field[3]=returnColor.w;

}
}

// increment the phase
phase ++;

if (phase == 4)
{

62

Page 197 of 509 TCL 1002

Page 198 of 509 TCL 1002

phase =0;
// all texture instrucions of the clause have returned we can place
// the vector back in the next RS

if (pTP_SQ->GetTP_SQ_data_rdy())

// set the ready flag in the RS
if (pTP_SQ->GetTP_SQ_typeQ) == VERTEX)

arbiter->vertexStation[pTP_SQ-
>GetTP_SQthread_id()].status.texReadsOutstanding = false;

else

{
arbiter->pixelStation[pTP_SQ-

>GetTP_SQthread_id()].status.texReadsOutstanding = false;

}

[PS Pa aR ns he ie he ie ne fe ie Ae ae fe ee ie ae ne fe ie 2A 2 as fe fe fe 2 ae fe ie 2A 2 ae fe fe fe it ae ae fe ie Ae 2 ae fe ie fe 2 ae ae fe ie Ae 2 ae fe fe fe 2 ae ae fe it
Os ois 2k 2s Ok of ok

// Process pixels function for block
[PS Pa aR ns he ie he ie ne fe ie Ae ae fe ee ie ae ne fe ie 2A 2 as fe fe fe 2 ae fe ie 2A 2 ae fe fe fe it ae ae fe ie Ae 2 ae fe ie fe 2 ae ae fe ie Ae 2 ae fe fe fe 2 ae ae fe it

Os ois 2k 2s Ok of ok

void cCUSER_BLOCK_SQ::ProcessPixels(void)

int 1,];
int deallocating = 0;

int ready = 0;

static boolfirst_transfert = true;
static int buf_read = 0;
static int lineSQ[4] = {0,0,0,0};
static int lineSP[4] = {0,0,0,0};
static int SQ_buf_id=0;

static int QWrote = 0;
bool pulsed = false;
PixInputs pix;

// first deal with these one clock transfers

63

Page 198 of 509 TCL 1002

Page 199 of 509 TCL 1002

if (sc_sq_data.SC_SQevent && sc_sqdata.SCSQvalid)

// filter out all events but fot the PSDEALLOCand PS_TSDEALLOC
if (sc_sqdata.SC_SQevent_id == PS_DEALLOC |

sc_sq_data.SC_SQevent_id==PSDONETS
|| sc_sqdata.SSC_SQevent_id==RSTPIXCNT)

{
pix.event = sc_sq_data.SC_SQevent_id;
pix.state = sc_sqdata.SC_SQstateid;
eventFIFO.push(pix);
if (pix.state == 0)

idleO ++;
else

idlel_7 ++;

psQSC->SetSQSCdec_cntr_cnt(true);
pulsed = true;

}
// new vector and dealloc tokens (without any other data)
else if (first_transfert && sc_sq_dataSSC_SQ_quad_mask[0] ==

&E& sc_sqdatasSSCSQquadmask[1] == 0 &E&
sc_sq_data.SC_SQquad_mask[2]==0 &&

sc_sq_data.SC_SQquadmask[3]==0 && sc_sq_data.SC_SQvalid)
{

if (sc_sq_data.SC_SQpc_dealloc > 0)
{

pix.event = 200+sc_sq_data.SCSQpc_dealloc;
pix.state = sc_sqdata.SC_SQstateid;
eventFIFO.push(pix);
psQSC->SetSQSCdec_cntr_cnt(true);
pulsed = true;
if (pix.state == 0)

idleO ++;
else

idlel_7 ++;

if (sc_sq_data.SC_SQnew_vector)
{

psQSC->SetSQSCdec_cntr_cnt(true);
pix.event = 300;
pix.state = sc_sqdata.SC_SQstateid;
eventFIFO.push(pix);
pulsed = true;
if (pix.state == 0)

idleO ++;
else

64

Page 199 of 509 TCL 1002

Page 200 of 509 TCL 1002

idlel_7 ++;
}

}
// accumulate the control data if something sent by the SC
else if (sc_sq_data.SC_SQvalid)

if (first_transfert)
{

if (sc_sq_data.SC_SQstateid == 0)
idleO += 4;

else

idlel_7 += 4;
}
first_transfert = false;

// get the first pixel group signal and saveit
if (sc_sq_data.SC_SQnewvector != 0)
{

interp[SQbuf_id].newvector =sc_sqdata.SSC_SQnewvector;
pulsed = true;
psQSC->SetSQSCdec_cntr_cnt(true);

}
if (sc_sq_data.SC_SQpc_dealloc > 0)

interp[SQ_buf_id].pc_dealloc += sc_sq_data.SSC_SQpc_dealloc;
}

// load the control data in the control buffers

for (i=0;1<4;i1+-+)

if (sc_sq_data.SC_SQquad_mask[i])
{

// get the associated state and saveit
interp[SQbuf_id].stateid=sc_sqdata.SC_SQstateid;

interp[SQ_buf_id].noIncrement =
sc_sq_data.SC_SQno_inc_pix_cnt;

interp[SQ_buf_id].ptrO[lineSQ[i]%4] [i] =
sc_sq_data.SCSQpc_ptr0;

interp[SQ_buf_id].ptr1[lineSQ[iJ%4] [i] =
sc_sq_data.SC_SQpc_ptrl;

interp[SQ_buf_id].ptr2[lineSQ[i]%4] [1] =
sc_sq_data.SC_SQ_pc_ptr2;

interp[SQ_buf_id].provok[lineSQ[i]%4][1] =
sc_sq_data.SCSQprovok_vtx;

65

Page 200 of 509 TCL 1002

Page 201 of 509 TCL 1002

interp[SQ_buf_id].pix_mask[lineSQ[i]%4][1] =
sc_sq_data.SC_SQpix_mask[i];

interp[SQ_buf_id].lod_correct[lineSQ[i]%4][i]
sc_sq_data.SC_SQlodcorrect[i].getValue();

// get the primitive type
interp[SQ_buf_id].prim_type[lineSQ[i]%4][1] =

sc_sq_data.SCSQprimtype;

lineSQ[i] = CineSQ[iJ+1)%4;
QWrote ++;

}

// manage completion of a pixel vector
if (QWrote == 16)

QWrote = 0;

// a valid non eventvector is 100

pix.event = 100;
eventFIFO.push(pix);
first_transfert = true;

setContextNumber(interp[SQ_buf_id].state_id.getValue(Q);
// increment by one more buffer is sending two buffers down
if (SQCONTEXTMISC.getSC_SAMPLECNTLQ) ==

CENTROIDSANDCENTERS){
SQbuf_id=(SQ_buf_id+1)%4;

}
SQbuf_id=(SQ_buf_id+1)%4;

}

// if the event fifo contains something, try to put it in the RS
if (!eventFIFO.empty())
{

pix = eventFIFO.frontQ);
if (pix.event < 100)
{

if (pix.event == RST_PIX_CNT)
{

if (pix.state == 0)
idleO --;

else

66

Page 201 of 509 TCL 1002

Page 202 of 509 TCL 1002

idlel_7 --;
auto_count_pix = 0;
eventFIFO.popQ);

}
else if (tarbiter-

>AddVector(pix.event,PIXEL,pix.state,interp[buf_read].pix_mask,true,interp[buf_read].lod_corr
ect))

{
eventFIFO.popQ);

}
}
else if (pix.event == 100 && !pulsed)
{

ready=1;

else if (pix.event >= 200 && pix.event < 300)
{

deallocating = pix.event - 200;
eventFIFO.popQ);
if (pix.state == 0)

idleO --;
else

idlel_7 --;
}
// new vector

else if (pix.event == 300)
{

if (vertexReady[pix.state]>0)
{

vertexReady|[pix.state]--;
eventFIFO.popQ);
if (pix.state == 0)

idle--;
else

idlel_7 --;
}

}
}

// accumulate data interface

if (sc_spdata.SC_SP_valid)

for (i=0;1<4;i1+-+)
{

if (sc_sp_data.SC_SP_valid[i])
{

67

Page 202 of 509 TCL 1002

Page 203 of 509 TCL 1002

// ij data
if (sc_sp_data.SC_SP_type[i] == CENTROID)

for (j=0;j<4;j++)

interp[lineSP[1]/4].I[lineSP[1]%4][1*4+4 Ll
lI

sc_sp_data.SC_SP1datafi].I[j];
interp[lineSP[1]/4].J[lineSP[i]%4][1*444 Ll

lI

sc_sp_data.SCSP1data[i].J[j];
}

}
else if (sc_sp_data.SC_SP_type[i] == CENTER)

for §=0:)<4;)++)

interp[(lineSP[1]/4+1)%4].I[lineSP[1]%4][i*4+j] = sc_spdata.SC_SP_ijdata[i].I[j];

interp[(lineSP[1]/4+1)%4].J[lineSP[1]%4][i*44]] = sc_spdata.SC_SP_ydata[i].J[j];

}

// xy data
else if (sc_sp_data.SC_SP_type[i] == XY_FACENESS)
{

interp[lineSP[1]/4].X[lineSP[i]%4][i] =
(sc_spdata.SC_SP_1jdata[i].I[0] >> 12) & Oxfff,;

interp[lineSP[1]/4].Y[lineSP[i]%4][i] =
(sc_spdata.SC_SP_1data[i].I[0] & Oxfff);

interp[lineSP[1]/4].face[lineSP[i]%4][1] =
(sc_spdata.SC_SP_1data[i].I[0] >> 24) & 0x1;

}

// changeline in the SP
if (sc_sp_data.SC_SP_last_quad_data[i])

// if sending more than one buffer
if ((lineSP[i]+1)%4 == 0)
{

setContextNumber(interp[lineSP[i]/4].state_id.getValue());
if

(SQCONTEXTMISC.getSC_SAMPLE_CNTLQ == CENTROIDSANDCENTERS)
lineSP[i] = (lineSP[i]+4)% 16;

}
lineSP[i] = (lineSP[i]+1)%16;

68

Page 203 of 509 TCL 1002

Page 204 of 509 TCL 1002

}

// if IJ buffer filled, interpolate the results
// also allocate the GPRs.

if (ready > 0)

// set the state to the currentstate

setContextNumber(interp[buf_read].state_id.getValue());

int base_ptr;
int numReg;
numReg = SQPROGRAMCNTL.getPSNUM_REG(+1;
boolean GPR_full = true;
boolean station_full =true;
int address;

// if the data is ready in the PC
if (‘interp[buf_read].new_vector |

vertexReady[interp[buf_read].state_id]>0 ||
interp[buf_read].prim_type[0][0] >= 4) // Real Time

{
// check for space in both GPRsandreservation station 0
GPR_full = gpr_manager->testAllocate(numReg,base_ptr,PIXEL);
if ({}GPR_full)
{

station_full = arbiter->AddVector(base_ptr,PIXEL,

interp[buf_read].state_id,interp[buf_read].pix_mask,false,
interp[buf_read].lod_correct);

}

// if we have place for everything AND thereis valid data
// in the PCsifthis is thefirst vector...

if ({GPR_full && !station_full)
{

// Structure for the SQ->SP dummyinterface
SQSPinterpdata interpData;

// clear the firstVector flag and decrementthe count if
// the pixel group was accepted
if (interp[buf_read].new_vector)

interp[buf_read].new_vector = false;
vertexReady[interp[buf_read].state_id]--;

69

Page 204 of 509 TCL 1002

Page 205 of 509 TCL 1002

}

gpr_manager->allocate(numReg,base_ptr,PIXEL);
// loop for the four lines
for (j=0;j<4;j++)

address = base_ptr;
int IJlineIndex;
// loop for the numberofparameters to interpolate
int interp_params;
if (SQPROGRAMCNTL.getPARAMGEN()

&& SQPROGRAMCNTL.getGENINDEXPIX()
interp_params =

SQPROGRAMCNTL.getVS_EXPORTCOUNT()}+3;
else if

(SQPROGRAMCNTL.getPARAM_GEN() |
SQPROGRAMCNTL.getGENINDEXPIX()

interp_params =
SQPROGRAMCNTL.getVS_EXPORTCOUNT()+2;

else

interp_params =
SQPROGRAMCNTL.getVS_EXPORTCOUNT()+1;

if (interp_params > 16)
interp_params = 16;

for (i=0;i<interp_params;it++)
{

int shade =

SQ_INTERPOLATORCNTL.getPARAMSHADE();

1))&0x01);
bool flat = !((shade >> (interp_params-

// deal with the center/centroid stuff here

IJlineIndex = j;
uint Buffer;
ijBuffer = buf_read;
if

(SQ_INTERPOLATORCNTL.getSAMPLINGPATTERN() != 0)

int samplingPattern =
SQ_INTERPOLATORCNTL.getSAMPLINGPATTERNO;

if ((samplingPattern >> 1)&0x01)
ijBuffer = (buf_read+1)%4;

70

Page 205 of 509 TCL 1002

Page 206 of 509 TCL 1002

interpolators.Interpolate(regFile[j],address,interp[1jBuffer] I[IJlineIndex],
interp[1jBuffer].J[TJlineIndex],

interp[buf_read].ptr0[j],interp[buf_read]-ptr1[j],

interp[buf_read].ptr2[j],i,interp[buf_read].prim_type[]j],this,

interp[buf_read].X[j],interp[buf_read].Y[j],interp[buf_read].face[j],flat,interp[buf_read].p
rovok{j],!interp[buf_read].noIncrement);

// write to the SP dummyinterface
RegVect* values;

regFile[j]->GetValues(values,address);

interpData.Address[i]=it+base_ptr;
interpData.NumParams= interp_params;

for (int k=0;k<16;k++)
{

interpData.InterpData[i][k][j].field[0]=values[k].field[0];

interpData.InterpData[i][k][j].field[1]=values[k].field[1];

interpData.InterpData[i][k][j].field[2]=values[k].field[2];

interpData.InterpData[i][k][j].field[3]=values[k].field[3];

// increment the GPR address

if (address+1 < gpr_manager->pixLimit)
{

address ++;

address = 0;

pSQ_SP_Interp->SetAll(&interpData);
pSQ_SP_Interp->SetValid(true);

// dump the SQ->SPinterpolator dummyinterface
if(m_dumpSQ>0) {

Page 206 of 509 TCL 1002

Page 207 of 509 TCL 1002

if (pSQ_SP_Interp->GetNewValidQ)

psQ_SP_Interp-
>GetNewAll(&(m_sqSpInterpDump->_data));

m_sqSpInterpDump->Dump();
}

}

// signify to the SC that we freed a buffer
psQSC->SetSQSC_free_buf(true);
// And a control line

psQSC->SetSQSCdec_cntr_cnt(true);

// pop the event queueto signify that we consumeda buffer
eventFIFO.popQ);

// set the deallocation flags
if (interp[buf_read].pc_dealloc >0)
{

deallocating = interp[buf_read].pc_dealloc;
interp[buf_read].pc_dealloc = 0;

}

// swap buffers
buf_read = (buf_read+1)%4;
// increment one more if multiple buffers for current state
if (SQCONTEXT_MISC.getSC_SAMPLECNTLQ ==

CENTROIDSANDCENTERS)
buf_read = (buf_read+1)%4;

} // endif GPR and RS ready
} // endif data ready

} // endif ready processpixel

// dump the SQ->SC interface
if(m_dumpSQ>0) {

if (pSQ_SC->GetNewValidQ)

pSQ_SC->GetNewAll(&(m_sqScDump->_data));
m_sqScDump->Dump();

}
}

//PC Deallocation

static int deallocation = 0;
int dealloc;

72

Page 207 of 509 TCL 1002

Page 208 of 509 TCL 1002

while (deallocating > 0)
{

stores" << std::endl;

// new dealocation scheme(groups of 16)
if (pcAllocated.empty()
{

std::cerr << "Error in SQ, trying to dealocate empty parameter

}
dealloc = pcAllocated.front()/4;
deallocation ++;

if (deallocation == 4)

pcAllocated.popQ);
deallocation = 0;

}

if (pcFree + dealloc < 128)
pcFree += dealloc;

else

{
pcFree = dealloc-(128-pcFree);
checkHigh = !checkHigh;

}
deallocating --;

} // end while PC dealloc
}

void cCUSER_BLOCK_SQ::ProcessVerts(void)
{

static int stageCount = 0;

// current staging register layer
static int layer =0;

static bool doubleSent = false;

static uinteger<4> valids[4][4];

static bool ready = false;

// used to keep the state around if we needtostall
static uinteger<3> vState;

// compute the numberofvalid pipes

73

Page 208 of 509 TCL 1002

Page 209 of 509 TCL 1002

int dis = pChip->pROM-
>ROM_BADPIPEDISABLEREGISTER.DISABLESP_VTX;

if (vget_sq_vertsdata.VGT_SQ_send && !ready &&
!vet_sq_vertsdata.VGTSQevent)

{
vState = vgtsq_vertsdata.VGT_SQstate;

RegVect value;
value.field[0]= vgt_sq_vertsdata.VGTSQvsisr_data[0];
value.field[1]= vgt_sq_vertsdata.VGTSQvsisr_data[1];
value.field[2]= vgt_sq_vertsdata.VGTSQvsisr_data[2];

stagingRegisters[stageCount][layer] = value;

if (stageCount == 0 && layer == 0)

if (vState == 0)
idleO += 4;

else

idlel_7 += 4;
}

if ((stageCount%4) == 0 && layer==0)
valids[stageCount/16][(stageCount/4)%4] =0;

// only validate if VsisrData is valid
if (vgt_sq_vertsdata.VGT_SQindx_valid)

if (layer == 0)
valids[stageCount/16][(stageCount/4)%4] +=

1<<(stageCount™%4);
stageCount++;
if (stageCount%4 == 0)

if (((stageCount == 16 || stageCount == 32|| stageCount ==
48) && dis&0x01) ||

((stageCount == 4 || stageCount == 20 || stageCount
== 36 || stageCount == 52) && dis&0x02)||

((stageCount == 8 || stageCount == 24|| stageCount
== 40 || stageCount == 56) && dis&0x04)||

((stageCount == 12 || stageCount == 28 ||
stageCount == 44 || stageCount == 60) && dis&0x08))

{
stageCount += 4;

}

74

Page 209 of 509 TCL 1002

Page 210 of 509 TCL 1002

}

// reset the layer to 0
layer = 0;

if (vgt_sq_vertsdata.VGTSQend_of_vtx_vect)

for (int i=stageCount;i<64;1++)

if ((i%4) == 0)
valids[i/16][(i/4)%4] =0;

if (!vgt_sq_verts_data.VGT_SQvsisr_continued)
ready = true;

}

if (vgt_sq_vertsdata.VGT_SQvsisr_continued)

layer = 1;
if ((stageCount-4)%4 == 0 && (stageCount-4) >0)

if (((stageCount == 16 || stageCount == 32 || stageCount ==
48) && dis&0x01) ||

((stageCount == 4 || stageCount == 20 || stageCount
== 36 || stageCount == 52) && dis&0x02)||

((stageCount == 8 || stageCount == 24|| stageCount
== 40 || stageCount == 56) && dis&0x04)||

((stageCount == 12 || stageCount == 28 ||
stageCount == 44 || stageCount == 60) && dis&0x08))

stageCount -= 4;
}

}
stageCount--;
doubleSent = true;

}

// regular end of vector (not early terminated)
if (stageCount == 64)

ready = true;

}

// event processing
static int eventld;

75

Page 210 of 509 TCL 1002

Page 211 of 509 TCL 1002

static bool sentEvt = false;

float templd;
static int evState;

if (vgt_sq_vertsdata.VGTSQsend && vgt_sq_vertsdata.VGTSQevent &&
!sentEvt)

{
tempId = vgt_sqvertsdata.VGT_SQvsisr_data[0].getRealQ);
eventId = reinterpret_cast<uint32&>(templd);
eventId = eventId & Ox1F;

// filter out all events but fot the VSDEALLOC and VS_TSDEALLOC
if (eventId == VS_DEALLOC|| eventId == VS_DONE_TS// cp events

CACHEFLUSHTS
|| eventlId == CONTEXTDONE || eventlId ==

| eventId == CACHEFLUSH | eventId ==
CACHEFLUSHANDINVTSEVENT

{
|| eventId == CACHEFLUSHANDINVEVENT)// Rb events

sentEvt = true;

evState = vgt_sqvertsdata.VGT_SQstate;
if (evState == 0)

idleO ++;
else

idlel_7 ++;
}
else if (eventId == RST_VTX_CNT)

auto_count_vtx = 0;

(tarbiter-
>AddVector(eventld,VERTEX,evState,valids,true,interp[0].lod_correct))

sentEvt = false;

else // we are full stop sending data

}

if (sentEvt)
{

if

{

{

}
}

if (ready)

vetsq_vertsdata.VGTSQsend = false;
pVGT_SQvertsready->SetReady(false);

// set the state to the current vector

setContextNumber(vState.getValue());

76

Page 211 of 509 TCL 1002

Page 212 of 509 TCL 1002

// copy everything to GPRs
int base_ptr;
int numReg;
numReg = SQPROGRAMCNTL.getVS_NUM_REG()+1;
boolean GPR_full=true;
boolean station_full=true;

// check for space in both GPRsandreservation station 0
GPR_full = gpr_manager->testAllocate(numReg,base_ptr,VERTEX);
if ({GPR_full)
{

station_full = arbiter->AddVector(base_ptr,VERTEX,
vState,valids,false,interp[0].lod_correct);

}

if ({GPR_full && !station_full)
{

gpr_manager->allocate(numReg,base_ptr,VERTEX);
// allocation succesfull write the data

int 1,];
RegVect* vtAddr;
RegVect* vtAddr1;
RegVect* vtAuto;
int address;

for §=0:)<4;)++)

// counting GPRsin reverse order for vertices
address = base_ptr;
regFile[j]->GetValues(vtAddr,address);
if (address > gpr_manager->vertLimit)

address--;
else

address = 127;

regFile[j]->GetValues(vtAddr1 address);
if (address > gpr_manager->vertLimit)

address--;
else

address = 127;
regFile[j]->GetValues(vtAuto,address);
for (i=0;1<16;1++)
{

vtAddr[i]=stagingRegisters[j* 16+1][0];
if (doubleSent)
{

77

Page 212 of 509 TCL 1002

Page 213 of 509 TCL 1002

vtAddrl [i]=stagingRegisters[j*16+i][1];
}
// auto generated index
if

(SQPROGRAMCNTL.getGENINDEXVTXQ)

vtAuto[i].field[0]=auto_count_vtx;
autocountvtx ++;

}
}

}

// clear the buffers

stageCount = (dis&0x01)*4;
layer = 0;
doubleSent = false;
ready = false;

else // we are full

{
vetsq_vertsdata.VGTSQsend = false;
pVGT_SQvertsready->SetReady(false);

}

[PS Pa aR ns he ie he ie ne fe ie Ae ae fe ee ie ae ne fe ie 2A 2 as fe fe fe 2 ae fe ie 2A 2 ae fe fe fe it ae ae fe ie Ae 2 ae fe ie fe 2 ae ae fe ie Ae 2 ae fe fe fe 2 ae ae fe it
2 og 8 OO OK OK

// Process function for block

[PS Pa aR ns he ie he ie ne fe ie Ae ae fe ee ie ae ne fe ie 2A 2 as fe fe fe 2 ae fe ie 2A 2 ae fe fe fe it ae ae fe ie Ae 2 ae fe ie fe 2 ae ae fe ie Ae 2 ae fe fe fe 2 ae ae fe it
Os ois 2k 2s Ok of ok

void cCUSER_BLOCK_SQ:: Process(void)
{

ProcessVerts();
ProcessPixels();

// execute the arbiter

arbiter->Execute();
}

[PS Pa aR ns he ie he ie ne fe ie Ae ae fe ee ie ae ne fe ie 2A 2 as fe fe fe 2 ae fe ie 2A 2 ae fe fe fe it ae ae fe ie Ae 2 ae fe ie fe 2 ae ae fe ie Ae 2 ae fe fe fe 2 ae ae fe it
2 og 8 OO OK OK

// Output function for block
[PS Pa aR ns he ie he ie ne fe ie Ae ae fe ee ie ae ne fe ie 2A 2 as fe fe fe 2 ae fe ie 2A 2 ae fe fe fe it ae ae fe ie Ae 2 ae fe ie fe 2 ae ae fe ie Ae 2 ae fe fe fe 2 ae ae fe it

2 og 8 OO OK OK

78

Page 213 of 509 TCL 1002

Page 214 of 509 TCL 1002

void cCUSER_BLOCK_SQ::Output(void)
{

int1;

static int current_export = 0;
static int export_count = 0;
static int currentPtr[4];

if (outBuffer.valid)
{

outBuffer.valid = false;
// VERTEX PARAMETER CACHE EXPORT

if ((outputType == VERTEX) && (currentExportDest < 16))
{

int pcPointer;
// new export block reset the counts
currentPtr[0] = currentAluPC;
currentPtr[1]

(currentAluPC+(SQPROGRAMCNTL.getVS_EXPORTCOUNT()+1))%128;
currentPtr[2]

(currentAluPC+(SQPROGRAMCNTL.getVSEXPORTCOUNT()+1)*2)%128; currentPtr[3]
(currentAluPC+(SQPROGRAM.CNTL.getVS_EXPORTCOUNT()+1)*3)%128;

currentExportDest)%128;

outBuffer.values[i].field[0];

outBuffer.values[i].field[1];

outBuffer.values[i].field[2];

outBuffer.values[i].field[3];

// set pcPointer to the correct value
pcPointer = (currentPtr[current_export]

// copy data to the PCs
int valid;

for (i=0;1<16;1++)

valid = outBuffer.valids[i/4].getValue(Q);
if ((valid >> 1%4) &0x01)

if (export_mask & 0x01)
parameters[pcPointer].Val[1].field[0]

if (export_mask & 0x02)
parameters[pcPointer].Val[1i].field[1]

if (export_mask & 0x04)
parameters[pcPointer].Val[i].field[2]

if (export_mask & 0x08)
parameters[pcPointer].Val[1].field[3]

79

Page 214 of 509 TCL 1002

Page 215 of 509 TCL 1002

}

// dump the valuesto a file
if(m_dumpSQ>0) {

dumpPcValues(export_mask, pcPointer, outBuffer);
}

current_exportt+,
if (current_export == 4)
{

current_export=0;

}// end parameter cache export
// other exports
else

pSP_SX->SetValid(true);
for (i=0;1<16;i++)

psP_SX-
>SetSP_SX_color(outBuffer.values[i].field[0],1*4);

psP_SX-
>SetSP_SX_color(outBuffer.values[i].field[1],i*4+1);

psP_SX-
>SetSP_SX_color(outBuffer.values[i].field[2],i*4+2);

psP_SX-
>SetSP_SX_color(outBuffer.values[i].field[3],1*4+3);

—

psP_SX->SetSP_SX_exp_pvalid(outBuffer.valids[i/4],1/4);

uinteger<6> dest;
dest = currentExportDest;

psP_SX->SetSP_SX_dest(dest);
pSP_SX->SetSP_SX_alu_id(currentExportAlu);
uinteger<2> exp_count;
exp_count = export_count;
pSP_SX->SetSP_SX_export_count(exp_count);
export_count = (export_count+1)%4;

pSP_SX->SetType(outputType);

if(m_dumpSQ>0) {
pSP_SX->GetNewAll(&(m_spSxDump->_data));
m_spSxDump->Dump();

}

80

Page 215 of 509

Page 216 of 509 TCL 1002

} // end other exports

}

bool cUSER_BLOCK_SQ::handleRegisterAccess(ACCESSaccess, uint32 spaceOffset,
uint32 byteEnable, uint32& data)

bool handled = false;
static int count = 0;
TConstPackedtstate;
Loop loop;
uint32 cfBool;
uint32 gfxDecode;

if (access == WRITE_ACCESS)
{

// Remove GFX decode from spaceOffset
if (spaceOffset >= 0x8000 && spaceOffset < 0x10000)

gfxDecode = (spaceOffset >> 12) & 0x7;
spaceOffset = spaceOffset & ~(0x7 << 12);

}

// grab the CP_STATE_COPY
if (spaceOffset == (mmGFXCOPYSTATE<<2))
{

int previouswritestate = data & 0x7;
currentwritestate = gfxDecode;

// clear the vertex ready counts for the new state to come (may
have been screwed up

// by the mem exports.
vertexReady[current_write_state]=0;

// copy the constant tables
int1;
for (i=0;1<512;i++)
{

constantStore[previouswritestate].GetConstValue(cst,1);
constantStore[current_write_state].WriteValue(cst,i);

for (i=0;1<32;1++)
{

textureStateStore[previous_write_state].GetConstTState(tstate,1);
textureStateStore[current_write_state].WriteTState(tstate,1);

81

Page 216 of 509 TCL 1002

Page 217 of 509 TCL 1002

for (=0;1<8;i++)
{

cfBool =

controlFlowStore[previouswrite_state].GetConstBooleans(1);

controlFlowStore[current_write_state].WriteBooleans(cfBool,1);

for (i=0;1<32;1++)
{

controlFlowStore[previous_write_state].GetConstLoop(loop,1);
controlFlowStore[current_write_state].WriteLoop(loop,i);

}
}

else if ((spaceOffset >= (mmSQ_INSTRUCTION_ALU_0<<2)) && (spaceOffset <
((mmSQINSTRUCTIONALU_0 + 4096*3)<<2)))

{
int address = ((spaceOffset>>2) -

(mmSQINSTRUCTIONALU_0))/3;
Packet pckt;
pckt = reinterpret_cast<Packet&>(data);
switch (count) {
case 0:

inst.byte0 = pckt.byte0;
inst.bytel = pckt.byte1;
inst.byte2 = pckt.byte2;
inst.byte3 = pckt.byte3;
break;

case |:

inst.byte4 = pckt.byte0;
inst.byte5 = pckt.byte1;
inst.byte6 = pckt.byte2;
inst.byte7 = pckt.byte3;
break;

case 2:

inst.byte8 = pckt.byte0;
inst.byte9 = pckt.byte1;
inst.byte10 = pckt.byte2;
inst.bytel1 = pckt.byte3;
break;

bs
count ++;

// write the instruction to instruction memory
if (count == 3)

82

Page 217 of 509 TCL 1002

Page 218 of 509 TCL 1002

count = 0;

instructionStore.SetInst(inst,address);
}

handled = true;
}
else if ((spaceOffset >= (mmSQCONSTANTRT_0<<2)) && (spaceOffset <

((mmSQ_CONSTANTRT_0 + 256*4)<<2)))

int address = ((spaceOffset>>2) - (mmSQCONSTANTRT_0)) /4;
est.field[count].putField(data);
count ++;

if (count == 4)

count = 0;

constantStore[0].WriteValue(cst,address);
}

handled = true;
}
else if ((spaceOffset >= (mmSQCONSTANT0<<2)) && (spaceOffset <

((mmSQCONSTANT0 + 512*4)<<2)))

int address = ((spaceOffset>>2) - (mmSQCONSTANT0)) /4;
est.field[count].putField(data);
count ++;

if (count == 4)
{

count = 0;

constantStore[current_writestate].WriteValue(cst,address);
}

handled = true;

}
else if ((spaceOffset >= (mmSQFETCH_0<<2)) && (spaceOffset <

((mmSQ_FETCH_0 + 32*6)<<2)))
{

int address = ((spaceOffset>>2) - (mmSQFETCH_0))/6;
tStateData[count] = data;
count ++;

if (count == 6)
{

count = 0;

tstate-unpack(tStateData);

83

Page 218 of 509 TCL 1002

Page 219 of 509 TCL 1002

textureStateStore[current_write_state].WriteTState(tstate,address);

handled = true;
}

else if ((spaceOffset >= (mmSQFETCH_RT_0<<2)) && (spaceOffset <
((mmSQ_FETCH_RT_0 + 32*6)<<2)))

int address = ((spaceOffset>>2) - (mmSQFETCHRT_0))/6;
tStateData[count] = data;
count ++;

if (count == 6)
{

count = 0;
TConstPackedtstate;

tstate-unpack(tStateData);
textureStateStore[0].WriteTState(tstate,address);

}
handled = true;

}
else if ((spaceOffset >= (mmSQCFBOOLEANS<<2)) && (spaceOffset

<((mmSQ_CFBOOLEANS+ 8)<<2)))

int address = ((spaceOffset>>2) - (mmSQCFBOOLEANS));

controlFlowStore[currentwritestate].WriteBooleans(data,address);
handled = true;

}
else if ((spaceOffset >= (mmSQCFLOOP<<2)) && (spaceOffset <

((mmSQ_CFLOOP + 32)<<2)))
{

int address = ((spaceOffset>>2) - (mmSQ_CF_LOOP));
Loop loop;

loop.count = data & OxFF;
loop.start= (data >> 8) & OxFF;
loop.step = (data >> 16) & OxFF;

controlFlowStore[currentwritestate].WriteLoop(loop,address);
handled = true;

}
else if ((spaceOffset >= (mmSQ_CFRTBOOLEANS<<2)) &&

(spaceOffset < ((mmSQCFRTBOOLEANS+ 8)<<2)))
{

int address = ((spaceOffset>>2) - (mmSQCFRTBOOLEANS));

84

Page 219 of 509 TCL 1002

Page 220 of 509 TCL 1002

controlFlowStore[0].WriteBooleans(data,address);
handled = true;

}
else if ((spaceOffset >= (mmSQCFRTLOOP<<2)) && (spaceOffset <

((mmSQ_CF_RT_LOOP+ 32)<<2)))
{

int address = ((spaceOffset>>2) - (mmSQCF_RT_LOOP));
Loop loop;

loop.count = data & OxFF;
loop.start= (data >> 8) & OxFF;
loop.step = (data >> 16) & OxFF;

controlFlowStore[0].WriteLoop(loop,address);
handled = true;

}
else if ((spaceOffset >= (mmSQRTVOPARAMOR<<2)) &&

(spaceOffset < ((mmSQRT_VO_PARAMOR + 16*3*4)<<2)))
{

int address = ((spaceOffset>>2) - (mmSQRTVOPARAMOR));

RTParameters[address/(16*4)][address/4].field[address%4]==reinterpret_cast<float&>(d
ata);

handled = true;

}

return handled;

}

void CUSER_BLOCK_SQ::setParameter(float param, int index, int memNum,intfield)
{

}

bool cUSER_BLOCK_SQ::IdleQ

parameters[index].Val[memNum].field[field]=param;

bool idle=true;

if (idleO > 0 || idlel_7 >0)
idle = false;

#ifdef DEBUG_SEQ
static bool prev_idle = true;
if (idle != prev_idle)

85

Page 220 of 509 TCL 1002

Page 221 of 509 TCL 1002

if (idle)
std::cerr << "Sequencer Idle" << std::endl;

else

std::cerr << "Sequencer Active" << std::endl;
prev_idle = idle;

}
#endif

return idle;
}

bool cUSER_BLOCK_SQ::Idle0Q

if (idleO >0)
return false;

else

return true;

}

bool cUSER_BLOCKSQ::Idlel_70

if (idlel_7 >0)
return false;

else

return true;

}

void cUSER_BLOCK_SQ::dumpPcValues(int expmask,int pcPointer,const OutBuffer&
values)

{
static bool first = true;
int1;

if (first)
{

first = false;

fprintf(pcFile,"--PC Pointer (PC) (7 bits)\n");
fprintf(pcFile,"--Channel Mask (MSK) (4 bits)\n");
fprintf(pcFile,"--Data Mask (VAL) (16 bits)\n");
fprintf(pcFile,"--Colors (COL) (32 bits)\n");
fprintf(pcFile,"--P MV C C C C C

C C C C C C C C C C

C C C C C C C C C C

C C C C C C C C C C

C C C C C C C C C C

86

Page 221 of 509 TCL 1002

Page 222 of 509 TCL 1002

Cc Cc Cc Cc Cc Cc Cc Cc Cc Cc

Cc Cc Cc Cc Cc Cc Cc Cc C \n");
fprintf(pcFile,"--C SA 0 0 0 0 0 0

0 0 0 0 1 1 1 1 1 1 1

1 1 1 2 2 2 2 2 2 2 2

2 2 3 3 3 3 3 3 3 3 3

3 4 4 4 4 4 4 4 4 4 4

5 5 5 5 5 5 5 5 5 5 6

6 6 6 \n");
fprintf(pcFile,"-- KL 0 1 2 3 4 5

6 7 8 9 0 1 2 3 4 5 6

7 8 9 0 1 2 3 4 5 6 7

8 9 0 1 2 3 4 5 6 7 8

9 0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9 0

1 2 3 \n");
}

fprintf(pcFile,” %02x %oX %X%XXOX",
pcPointer,expmask,outBuffer.valids[0].getValueQ),

outBuffer.valids[1].getValue(),outBuffer.valids[2].getValueQ),outBuffer.valids[3].getVal
ue());

for (i=0;1<16;1++)
{

fprintf(pcFile,"% 010.5e % 010.5e % 010.5e % 010.5e",
outBuffer.values|[i].field[0].getReal(),
outBuffer.values|[i].field[1].getReal(),
outBuffer.values[i].field[2].getReal(),
outBuffer.values|[i].field[3].getRealQ);

}

fprintf(pcFile,"\n");

float var[4];
fprintf(pcFile,” ");

for (i=0;1<16;i++)
{

for (int w=0;w<4;wt++)
var[w] = outBuffer.values[i].field[w].getRealQ);

fprintf(pcFile,"%08x %08x %08x %O08&x ",
(reinterpret_cast<unsigned int>(&var[0])),
(reinterpret_cast<unsigned int>(&var[1])),

87

Page 222 of 509 TCL 1002

Page 223 of 509 TCL 1002

(reinterpret_cast<unsigned int>(&var[2])),
(reinterpret_cast<unsigned int>(&var[3]))
);

fprintf(pcFile,"\n");
}

Sq_block_model.cpp
TF RRR AE AREAEE EE EE AEAAEAE AEAI AE A IAA EEEE A FE A A A FEEE

// Output function for block
[FRR RR AEAAAEE EE EE AEAAEAE AE A EA A EEEE EE A A AE FE FE EE FE AE A HE 2

void cUSER_BLOCK_SQ: : Output (void)
{

int i;
static int current_export = 9;
static int export_count = 9;
static int currentPtr[4];

if (outBuffer. valid)
{

outBuffer.valid = false;
// VERTEX PARAMETER CACHE EXPORT

if ((outputType == VERTEX) && (currentExportDest < 16))

int pcPointer;
// new export block reset the counts
currentPtr[@] = currentAluPC;
currentPtr[1] =

(currentAluPC+(SQ_PROGRAM_CNTL.getVS_EXPORT_COUNT()+1))%128;
currentPtr[2] =

(currentAluPC+(SQ_PROGRAM_CNTL.getVS_EXPORT_COUNT()+1)*2)%128;
currentPtr[3] =

(currentAluPC+(SQ_PROGRAM_CNTL.getVS_EXPORT_COUNT()+1)*3)%128;

// set pcPointer to the correct value
pcPointer = (currentPtr[current_export] + currentExportDest)%128;

// copy data to the PCs
int valid;

for (i1=0;1<16;i++)
{

valid = outBuffer.valids[i/4].getValue();
if ((valid >> i1%4) &@x@1)
{

if (export_mask & @x@1)
parameters[pcPointer].Val[i].field[@]

outBuffer.values[i].field[@];
if (export_mask & @x@2)

parameters[pcPointer].Val[i].field[1]
outBuffer.values[i].field[1];

if (export_mask & @x@4)
parameters[pcPointer].Val[i].field[2]

outBuffer.values[i].field[2];
if (export_mask & @x@8)

88

Page 223 of 509 TCL 1002

Page 224 of 509 TCL 1002

parameters[pcPointer].Val[i].field[3] =
outBuffer.values[i].field[3];

}

// dump the values to a file
if(m_dumpSQ>@) {

dumpPcValues(export_mask, pcPointer, outBuffer);
}

current_export++;

if (current_export == 4)
{

current_export=0;

}// end parameter cache export
// other exports
else

{
pSP_SX->SetValid(true) ;
for (i1=0;1<16; i++)
{

pSP_SX->SetSP_SX_color(outBuffer.values[i].field[@],i*4);
pSP_SX->SetSP_SX_color(outBuffer.values[i].field[1],i*4+1);
pSP_SX->SetSP_SX_color(outBuffer.values[i].field[2],i*4+2);
pSP_SX->SetSP_SX_color(outBuffer.values[i].field[3],i*4+3);
pSP_SX->SetSP_SX_exp_pvalid(outBuffer.valids[i/4],i/4);

}
uinteger<6> dest;
dest = currentExportDest;

pSP_SX->SetSP_SX_dest(dest) ;
pSP_SX->SetSP_SX_alu_id(currentExportAlu) ;
uinteger<2> exp_count;
exp_count = export_count;
pSP_SX->SetSP_SX_export_count(exp_count) ;
export_count = (export_count+1)%4;

pSP_SX->SetType(outputType);

if(m_dumpSQ>@) {
pSP_SX->GetNewAl11(&(m_spSxDump->_data));
m_spSxDump->Dump();

} // end other exports

Regarding fetching data from memory, The texture fetcher allows fetching from memory. The
arbiter.cpp file picks the programsthat need to fetch data in this function:
boolean Arbiter: :chooseTexStation(int &lineNumber,Shader_Type &sType)
{

int i;
int vertexPick = -1;
int pixelPick = -1;
int lineCheck;

// do pixels first

89

Page 224 of 509 TCL 1002

Page 225 of 509 TCL 1002

lineCheck = pixelHead;
for (i=0;i<pixelRsCount; i++)
{

if (pixelStation[lineCheck].status.valid &&
pixelStation[lineCheck].status.ressourceNeeded == TEXTURE

&& IpixelStation[lineCheck].status.event)
{

pixelPick=lineCheck;
}
// enforce restrictions based on the status

if (pixelPick != -1)
{

// no texture ops while texture reads are outstanding
if (pixelStation[pixelPick].status.texReadsOutstanding)

pixelPick = -1;
else

break;

}

lineCheck = (lineCheck+1)%MAX_PIX_RESERVATION_SIZE;
}

lineCheck = vertexHead;

for (i=0;i<vertexRsCount; i++)
{

if (vertexStation[lineCheck].status.valid &&
vertexStation[lineCheck].status.ressourceNeeded == TEXTURE

&& I!vertexStation[lineCheck].status.event)
{

}
vertexPick=lineCheck;

// enforce restrictions based on the status

if (vertexPick |= -1)
{

// no texture ops while texture reads are outstanding
if (vertexStation[vertexPick].status.texReadsOutstanding)

vertexPick = -1;
else

break;

}

lineCheck = (lineCheck+1)%MAX_VTX_RESERVATION_SIZE;
}

if (vertexPick != -1)
{

lineNumber = vertexPick;
sType = VERTEX;
return true;

}
if (pixelPick != -1)
{

lineNumber = pixelPick;
sType = PIXEL;
return true;

}

90

Page 225 of 509 TCL 1002

Page 226 of 509 TCL 1002

return false;

Thenfills in a request in this function:
void Arbiter::fillTextureInterface(int textureInstAddr,int texturePhase,boolean last)
{

const RegVect* txAddr;
TXAddr address;
uinteger<7> registerAddress;
uinteger<7> writeAddress;
uint8 maxSize;
int basePtr = textureCFMachine.stationData->data.gprBase;

sq->pSQ_TP->SetValid(true);

// Get the instruction

TInstrPacked inst;

// set the state to the current running ALU
sq->setContextNumber (textureCFMachine. stationData->data.state) ;

sq->instructionStore.GetInst(inst, textureInstAddr);
switch (textureCFMachine.sType)
{
case PIXEL:

maxSize = sq->gpr_manager->pixLimit;
// compute the addresses (read address)
if ((inst.getSRC_GPR() + basePtr) < maxSize)

registerAddress=inst.getSRC_GPR() + basePtr;
else

registerAddress = inst.getSRC_GPR()-(maxSize-basePtr);
// write address

if ((inst.getDST_GPR() + basePtr) < maxSize)
writeAddress = inst.getDST_GPR() + basePtr;

else

writeAddress = inst.getDST_GPR()-(maxSize-basePtr);
break;

case VERTEX:

maxSize = sq->gpr_manager->vertLimit;
// compute the addresses (read address)
if ((basePtr - inst.getSRC_GPR()) >= maxSize)

registerAddress = basePtr - inst.getSRC_GPR();
else

registerAddress = 128-(inst.getSRC_GPR()-(basePtr-maxSize));
// write address

if ((basePtr - inst.getDST_GPR()) >= maxSize)
writeAddress = basePtr - inst.getDST_GPR();

else

writeAddress = 128-(inst.getDST_GPR()-(basePtr-maxSize));
break;

3
sq->regFile[texturePhase]->GetConstValues(txAddr, registerAddress) ;
int i;
for (i=0;1<16;i++)
{
//Do the swizzle for the TP

91

Page 226 of 509 TCL 1002

Page 227 of 509 TCL 1002

inst.doSrcSwizzle(txAddr[i].field[@], txAddr[i].field[1], txAddr[i].field[2],
txAddr[i].field[3],

address.x, address.y, address.z);
sq->pSQ_TP->SetSP_TP_fetch_addr(address,i);

}
for (i=0;1<4;i++)
{

uinteger<4> valids;
valids = textureCFMachine.stationData->data.valids[texturePhase][i];
// modify the mask to turn on any pixels that are off if not fetch valid

only
if (linst.getFETCHVALID_ONLY())
{

if (valids.getValue() != @)
valids = @x@F;

}

// now modify the mask based on the predicate vector
if (inst.getPRED_SELECT())
{

bool pred = (inst.getPRED_CONDITION() == 1);
if (pred != textureCFMachine.stationData-

>data.predicates[texturePhase*16+i*4])

// kill the pixel
valids = valids.getValue() & @xE;

}
if (pred != textureCFMachine.stationData-

>data. predicates [texturePhase*16+i*4+1])
{

// kill the pixel
valids = valids.getValue() & @xD;

if (pred != textureCFMachine.stationData-
>data. predicates [texturePhase*16+1*4+2])

{
// kill the pixel
valids = valids.getValue() & @xB;

if (pred != textureCFMachine.stationData-
>data. predicates [texturePhase*16+i*4+3])

{
// kill the pixel
valids = valids.getValue() & @x7;

}
}
sq->pSQ_TP->SetSQ_TP_pix_mask(valids,i);

// send the LOD correction bits

uinteger<9> LODCorrect;
LODCorrect = textureCFMachine. stationData-

>data.LodCorrect [texturePhase] [i];
sq->pSQ_TP->SetSQ_TP_lod_correct(LODCorrect,i);

}

92

Page 227 of 509 TCL 1002

Page 228 of 509 TCL 1002

sq->pSQ_TP->SetSQ_TP_write_gpr_index(writeAddress) ;
sq->pSQ_TP->SetSQ_TP_last(last);
uinteger<6> line;
line = textureCFMachine.lineNumber;
sq->pSQ_TP->SetSQ_TP_thread_id(line);
sq->pSQ_TP->SetSQ_TP_type(textureCFMachine.sType);
TConstPacked tpConst;
sq->textureStateStore[textureCFMachine. stationData-

>data.state].GetConstTState(tpConst,inst.getCONST_INDEX());
sq->pSQ_TP->SetSQ_TP_const(tpConst) ;
sq->pSQ_TP->SetSQ_TP_instr(inst);
uinteger<3> ctxId;
ctxId = textureCFMachine.stationData->data.state;
sq->pSQ_TP->SetSQ_TP_ctx_id(ctxId);

if(sq->m_dumpSQ>@e) {
Ssq->pSQ_TP->GetNewA11(&(sq->m_sqTpDump->_data));
Sq->m_sqTpDump ->Dump() ;

93

Page 228 of 509 TCL 1002

Page 229 of 509 TCL 1002

EXHIBIT B — CHIP DESIGN CODE

sq_gpr_alloc.v
/*

hers's a description of the basic operation:

@ 1<- tail @ 1<- tail QO. @ 3. <- head, tail
1. <- head 1.2 1.2s <-:«stail 1.2
200 2.2 2.20 2.20
30 3002 3002 3020
4 4. <- head 4ss S-:«sChead 43.
5 5 5 538
6K- somax 6s K-soax 6K-smax 6K= sax
7 5 Fo 5 7 5 Fo >

- initially, head = tail = @, and max is set to be one more than the maximum allowable location
- req 1 allocates one location, head is incremented to 1
- req 2 allocates three locations, head is incremented to 4
- another request for 3 spaces would not be granted since there are now only two free locations
- when the space taken by reg 1 is dealloc'd, increment tail to 1 (frees up one location)
- now req 3 allocates three locations, head is incremented to 7, which is greater than max, so it is

wrapped around by subtracting max (7 - 6 = 1)

*/

// - keep track of the free space -

wire [PTR_WIDTH-1:0] pix_free; // number of free pixel locations
wire [PTR_WIDTH-1:0] vtx_free; //

assign pix_free = pix_wrapped_q ? pix_tail_q - pix_head_q : pix_max_q - pix_head_q + pix_tail_q;
assign vtx_free = vtx_wrapped_q ? vtx_head_q - vtx_tail_q : ~vtx_max_q - vtx_tail_q + vtx_head_q; //

svtx_max = 127 - vtx_max

wire pix_ok_to_alloc = (pix_alloc_space <= pix_free); // OK to allocate pixel space
wire pix_alloc = pix_ok_to_alloc & pix_alloc_req; // signals the start of a pixel alloc operation
wire pix_dealloc = pix_dealloc_req; // signals the start of a pixel dealloc operation (always

OK to dealloc?)
wire pix_head_wraps = (new_pix_head >= pix_max_q); // new pix_head wraps
wire pix_tail_wraps = (new_pix_tail >= pix_max_q); // new pix_tail wraps

wire vtx_ok_to_alloc = (vtx_alloc_space <= vtx_free); // OK to allocate vertex space
wire vtx_alloc = vtx_ok_to_alloc & vtx_allocreq; // signals the start of a vertex alloc operation
wire vtx_dealloc = vtx_dealloc_req; // signals the start of a vertex dealloc operation
wire vtx_head_wraps = (new_vtx_head <= vtx_max_q); // new vtx_head wraps
wire vtx_tail_wraps = (new_vtx_tail <= vtx_max_q); // new vtx_tail wraps

case (ra_current_state)
IDLE:

begin
// - look for any of the four requests
// - if the request is accepted
// - go to the corresponding acknowledge state
// - update the base_ptr register on alloc requests

if (pix_alloc)
begin

ra_next_state = P_ALLOC_ACK;
next_pix_alloc_ack = HI;

if (pix_head_wraps)

1

Page 229 of 509 TCL 1002

Page 230 of 509 TCL 1002

begin
next_pix_wrapped = HI;
next_pix_head = new_pix_head - pix_max_q;

end
else

begin
next_pix_head = new_pix_head;

end

next_base_ptr = pix_head_q; // for pixels, the space starts with the current head pointer
end

else if (vtx_alloc)
begin

ra_next_state = V_ALLOC_ACK;
next_vtx_alloc_ack = HI;

if (vtx_head_wraps)
begin

next_vtx_wrapped = HI;
next_vtx_head = new_vtx_head + ~vtx_max_q; // ~vtx_max = 127 - vtx_max
//next_base_ptr = new_vtx_head + ~vtx_max + 1; // for verts, the space starts with

the new head pointer
end

else

begin
next_vtx_head = new_vtx_head;
//next_base_ptr = new_vtx_head + 1; // for verts, the space starts with the new head

pointer
end

next_base_ptr = next_vtx_head + 1; // for verts, the space starts with the new head
pointer

// (coding trick - commented out lines above explain)

end

Sq_alu_instr_seq.v
EL
// sq_alu_instr_seq.v
//
// - receives instruction from alu instr queue (AIQ)
// - reads constants (but data goes directly to ais_output mux)
// - sends instruction to SP over 4 cycles (starting on the correct phase)

input [1:0] aigq_export_info; // {exp_id, pulse_sx}
input [@:@] aiq_last_in_group; // last instruction flag
input [@:@] aiq_last_in_shader; // last instruction flag
input [@:@] aiq_thread_type; // @: pixel, 1: vertex (shows we operate on either pixel or vertex)
input [2:0] aiq_context_id; // context_id (from ctl packet)
input [5:0] aiq_thread_id; // clause number

// - recall that a @ here means src is a constant (while 1 means src is a gpr)...

wire ca_fetch = ~aigq_instr[95];
wire cb_fetch = ~aiq_instr[94];
wire cc_fetch = ~aiq_instr[93];

// - instruction bits 63:61 are used as the const addr msb (these bits are decoded and replaced
// before entering the AIQ

wire [8:0] ca_addr = {aig_instr[63], aiq_instr[87:80]};
wire [8:0] cb_addr={aig_instr[62], aigq_instr[79:72]};
wire [8:0] cc_addr={aig_instr[61], aigq_instr[71:64]};

[J wore nn ne eee en ener n reer
// -- Input Staging Register --

2

Page 230 of 509 TCL 1002

Page 231 of 509 TCL 1002

|] ---
// - need to send the vector type and the thread_id back to the thread buffers when
// the all the instructions we wanted to run for this thread are done (this will
/ cause the thread to become valid again)
// - register this info in from the AIQ on an AIQ pop in order to hold it until the
// AIS is done

executed

case (ais_current_state)
AIS@:

// - wait until this machine is started by the AIQ read SM
// - write OSR data into thread buff on new thread (when there was a previous thread...)
// - ais_done does updates the thread_buff and clears the alu_instr_pending status bit
// - don't assert ais_done yet if the previous instr was a pred set (wait for the pred set
If data to arrive from the SP)
begin

ais_instr_stall = HI;

if (ais_start)
begin

//if (aiq_new_thread & osr_valid_q & ~osr_pred_set_flag_q) ais_done = HI;

ais_instr_start = HI;
ais_instr_stall = LO;
ais_next_state = AIS1;

end
end

AIS1: begin ais_next_state = AIS2; end

AIS2: begin ais_next_state = AIS3; end

AIS3: begin ais_next_state = AIS4; end

// ** the AIQ was just popped by the ACS SM, so now must use info saved in ISR ** //

AIS4: begin ais_next_state = AIS5; end

AIS5: begin ais_next_state = AIS6; end

AIS6:

begin
// - the pred set data is loaded now from the previous instr, so assert done now
// - also write new predicate data into predicate register (in ais_output)

if (isr_new_thread_q & osr_pred_set_flag_q) ais done = HI;

ld_osr = HI;
ais_next_state = AIS7;

end

AIS7:

// - pop the thread off the reservation station buffer when the last instr of the shader is

// - send free_done when pulse_sx is set, or this is the last instruction of a pixel shader
(since this

end

// is when the pixel export is done)

begin
if (isr_last_in_group_q & ~isr_last_in_shader_q) ais_done = HI;

if (isr_pulse_sx_q) ais_free_done = HI; // pixel last logic put into pulse_sx generation

if (isr_last_in_shader_q) ais_pop = HI;

ais_next_state = AIS@;
end

endcase

3

Page 231 of 509 TCL 1002

Page 232 of 509 TCL 1002

// - end ais state machine

The ais machineis the “alu instruction sequencer”it executes instructions on either vertices or pixels depending on type. The file
sq_instruction_store.v contains the memory with all the instructions to be performed on either PS or VS:

Sq_instruction_store_v

// Access to the is (instruction store) is divided into 4 phases:
// @: texture instruction read
// 1: alu instruction read
// The alu phase alternates between phases for alu@ and alul.
// 2: CP write (or read for debug)
// 3: control flow instruction read
// The control flow phase is shared for accesses by alu@, alul1 and tex
// controlled by is_sub_phase.

// address mux
always @(/*AUTOSENSE*/addr or data_cnt or i_alu@_addr

or i_alu@_cf_addr or i_alul_addr or i_alul_cf_addr
or i_is_phase or i_is_sub_phase or i_tex_addr
or i_tex_cf_addr or q_rbi_addr_in)

begin
// default values
d_addr = addr;
d_we = 1'b@;
case (i_is_phase)

TEX_PHASE :
begin

d_addr
end

i_tex_addr;

ALU_PHASE :
begin

d_addr
d_we

end
&data_cnt; // data_cnt == 3

CP_PHASE :
begin

d_addr
end

CF_PHASE :
begin

case (i_is_sub_phase)
2'bee :

d_addr = i_alu@_cf_addr;
2'b10 :

d_addr
default :

d_addr i_tex_cf_addr;
endcase // case(i_is_sub_phase)

end

endcase // case(i_is_phase)

i_alui1_cf_addr;

end // always @ (...

Claim 2:

4

i_is_sub_phase[@] ? i_alul_addr : i_alu@_addr;

= q_rbi_addr_in[11:@]; // top bits are zeros by now

Page 232 of 509 TCL 1002

Page 233 of 509 TCL 1002

sp_macc_gpr.v

// Filename : macc_reg.v
// Description : This module represents the MACC (Multiply and Accumulate) unit plus
// : the corrensponding GPR (register file) module.
// Author : Andi Skende

rfsd2_128x128cm1sw8_core ugpr_mem(.QB(reg_data),
-ADRA_buf(gpr_wr_addr),
.DA_buf(input_gpr),
-WEMA_buf(subword_write_mask),
-WEA_buf(gpr_wr_ena),
.MEA_buf(gpr_wr_ena),
.CLKA(sclk),
. BISTEA(1'b@),
-ADRB_buf(sq_sp_gpr_rd_addr),
.OEB_buf(1'b1),
-MEB_buf(sq_sp_mem_rd_ena),
.CLKB(sclk),
.BISTEB(1"b@),
.AWTB(1'b@)I

Thisis the instantiation of the GPR memory, 128x128.

Sp_vector.v (showsthe instanciation of 4 multiply accumulate modules and | scalar module):

[[nnn n nn rrr rrr rrr rrr rrr rrrrncnrccc nn nnn ccc nn cnn c cn nnn cnn c ens nnn ccc sce see c cence esc c esr csne-

//Scalar Unit instantiation
[[nnn nnn rrr rrr rrr rrr nnn rrr rrr cnn cr rrr cn ccc rnc ne rncce reno cnn enc c co ne neces nrc es cssee

sp_scalar_lut uscalar(
-1AG_ME_OPCODE(scalar_opcode),
-i1AG_ME_IN_A(scalar_input_alpha),
-i1AG_ME_IN_B(scalar_input_red),
.iAG_ME_IN_C(32'b@),
.1AG_ME_ABS_A(scalar_input_abs),
.1AG_ME_ABS_B(scalar_input_abs),
.1AG_ME_ABS_C(scalar_input_abs),
.1AG_ME_A_NEGATE(scalar_input_negate),
.i1AG_ME_B_NEGATE(scalar_input_negate * scalar_opcode_sub),
.1AG_ME_C_NEGATE(scalar_input_negate),
.oOME_RESULT(scalar_result),
~sclk(sclk)
)3

//replicating the scalar_result (32 bits) to all of the four channels of the write back path into GPRs
//masking is done at the GPRs input
assign scalar_result_bus = { scalar_result, scalar_result, scalar_result, scalar_result};

//Instantiation of all four MACC units that create a Vector Unit
11 hatetataiatatataietanatatataianatatanetenenaieianananeiaiaiaiaieiaianaiaiaaiaiaieiaiaiaiaiaiateiaiaiataiatanatateialatalaneeieiaieieiaiatalanatetaiaiiaiaiaiateiaieieieiaiaiaananeiaiaieiaiaieiaenael

sp_macc_gpr usp_macc_gpr@(.ovector_output(VectorResult@),
-oscalar_input_alpha(scalar_input@_alpha),
-oscalar_input_red(scalar_input@_red),
-oscalar_input_negate(scalar_input@_negate),
.oscalar_input_abs(scalar_input@_abs),
.oscalar_opcode(scalar_opcode@),
-oregdata(RegData@), .oexport_dst(sq_sp_exp_dst),

-Sq_Sp_instruct(sq_sp_instruct), .sq_sp_instruct_start(sq_sp_instruct_start), .sq_sp_stall(sq_sp_stall),
-Sq_sp_gpr_rd_addr(sq_sp_gpr_rd_addr),

5

Page 233 of 509 TCL 1002

Page 234 of 509 TCL 1002

-Sq_Sp_gpr_wr_addr(sq_sp_wr_addr),.sq_sp_wr_ena(sq_sp_wr_ena@), .sq_sp_mem_rd_ena(sq_sp_mem_rd_ena),.sq_sp_
mem_wr_ena(sq_sp_mem_wr_ena@),

.-Sq_Sp_gpr_cmask(sq_sp_channel_mask),.sq_sp_pred_override(sq_sp_pred_override),

-Sq_sp_gpr_phase_mux(sq_sp_gpr_phase_mux),.iInterpolated(InputData@), .sq_sp_constant(sq_sp_constant),
.iscalar_data(scalar_result_bus),.tp_sp_data(tp_sp_data),
.tp_sp_gpr_dst(tp_sp_gpr_dst),

.tp_sp_gpr_cmask(tp_sp_gpr_cmask),.tp_sp_data_valid(tp_spdata_valid[@]),
-sclk(sclk), .srst(srst));

sp_macc_gpr usp_macc_gpri1(.ovector_output(VectorResult1),
-oscalar_input_alpha(scalar_input1_alpha),
.oscalar_input_red(scalar_inputi_red),
.oscalar_input_negate(scalar_input1_negate),
.oscalar_input_abs(scalar_inputi1_abs),
.oscalar_opcode(scalar_opcode1),

.oregdata(RegData1),.sq_sp_instruct(q@_instruct),.sq_sp_instruct_start(q@_instruct_start),.sq_sp_stall(q@
_instruct_stall),

-Sq_sp_gpr_rd_addr(q@_gpr_rd_addr),

-Sq_Sp_gpr_wr_addr(q@_gpr_wr_addr),.sq_sp_wr_ena(sq_sp_wr_enal),.sq_sp_mem_rd_ena(q@_gpr_mre),.sq_sp_mem_w
r_ena(sq_sp_mem_wr_ena1),

-Sq_Sp_gpr_cmask(q@_gpr_cmask), .Sq_sp_pred_override(q@_pred_override),

-Sq_Sp_gpr_phase_mux(q@_gpr_phase_mux), .iInterpolated(InputData1),.sq_sp_constant(q@_sq_constant),
-iscalar_data(scalar_result_bus),.tp_sp_data(tp_sp_data),
.tp_sp_gpr_dst(q@_tp_gpr_dst),

.tp_sp_gpr_cmask(q@_tp_gpr_cmask),.tp_sp_data_valid(tp_spdata_valid[1]),
.sclk(sclk), .srst(srst));

sp_macc_gpr usp_macc_gpr2(.ovector_output(VectorResult2),
-oscalar_input_alpha(scalar_input2_alpha),
.oscalar_input_red(scalar_input2_red),
.oscalar_input_negate(scalar_input2_negate),
.oscalar_input_abs(scalar_input2_abs),
-oscalar_opcode(scalar_opcode2),

-oregdata(RegData2),.sq_sp_instruct(ql_instruct),.sq_sp_instruct_start(qi_instruct_start),.sq_sp_stall(ql
_instruct_stall),

-Sg_Sp_gpr_rd_addr(qi_gpr_rd_addr),

-Sq_Sp_gpr_wr_addr(qi_gpr_wr_addr), .sq_sp_wr_ena(sq_sp_wr_ena2),.sq_sp_mem_rd_ena(ql_gpr_mre),.sq_sp_mem_w
r_ena(sq_sp_mem_wr_ena2),

-Sg_Sp_gpr_cmask(q1_gpr_cmask),.sq_sp_pred_override(ql_pred_override),

-Sq_Sp_gpr_phase_mux(ql_gpr_phase_mux), .iInterpolated(InputData2),.sq_sp_constant(ql1_sq_constant),
-iscalar_data(scalar_result_bus),.tp_sp_data(tp_sp_data),
.tp_sp_gpr_dst(ql_tp_gpr_dst),

.tp_sp_gpr_cmask(q1_tp_gpr_cmask),.tp_sp_data_valid(tp_spdata_valid[2]),
.sclk(sclk), .srst(srst));

sp_macc_gpr usp_macc_gpr3(.ovector_output(VectorResult3),
-oscalar_input_alpha(scalar_input3_alpha),
-oscalar_input_red(scalar_input3_red),
.oscalar_input_negate(scalar_input3_negate),
.oscalar_input_abs(scalar_input3_abs),
.oscalar_opcode(scalar_opcode3),

.oregdata(RegData3),.sq_sp_instruct(q2_instruct),.sq_sp_instruct_start(q2_instruct_start),.sq_sp_stall(q2
_instruct_stall),

-Sq_sp_gpr_rd_addr(q2_gpr_rd_addr),

-Sq_Sp_gpr_wr_addr(q2_gpr_wr_addr), .sq_sp_wr_ena(sq_sp_wr_ena3),.Ssq_sp_mem_rd_ena(q2_gpr_mre),.sq_sp_mem_w
r_ena(sq_sp_mem_wr_ena3),

-Sq_Sp_gpr_cmask(q2_gpr_cmask),.sq_sp_pred_override(q2_pred_override),

6

Page 234 of 509 TCL 1002

Page 235 of 509 TCL 1002

-Sq_Sp_gpr_phase_mux(q2_gpr_phase_mux),.iInterpolated(InputData3),.sq_sp_constant(q2_sq_constant),

.tp_sp_gpr_cmask(q2_tp_gpr_cmask),.tp_sp_data_valid(tp_spdata_valid[3]),

.iscalar_data(scalar_result_bus), .tp_sp_data(tp_sp_data),.sclk(sclk),

.tp_sp_gpr_dst(q2_tp_gpr_dst),

-srst(srst));
11 haketataiataiataietanatatatenaiatatanenenaiaiaianatataiaaiaiaieiananeiananaiaiaieiaiataiaiaianeiaiaiataiatetatatetaiatatateeneiaieieiaiataianatataiaieiaiataateieieiaeieiaiaieeneneiaiaieialaiaeiaael

//Muxing the gpr vector results into one final vector result conrolled by the phase_mux signal or a
registered version of it
[[n-nonanennnnnnnnnnnnnnnnennnnnnneee

Sq.v
[[won nn nena nnn nen nnn nennnncence

// SQ-SP GPR

output [1: 8]

control Interface

SQSP_gpr_wr_addr;
u@_SQSP_gpr_wr_eng;
u@_SQSP_gpr_wr_en1;
u@_SQSP_gpr_wr_en2;
u@_SQSP_gpr_wr_en3;
u1_SQ_SP_gpr_wr_en@;
u1_SQ_SP_gpr_wr_en1;
u1_SQ_SP_gpr_wr_en2;
u1_SQ_SP_gpr_wr_en3;
u2_SQ_SP_gpr_wr_en@;
u2_SQ_SP_gpr_wr_en1;
u2_SQ_SP_gpr_wr_en2;
u2_SQ_SP_gpr_wr_en3;
u3_SQ_SP_gpr_wr_en@;
u3_SQ_SP_gpr_wr_en1;
u3_SQ_SP_gpr_wr_en2;
u3_SQ_SP_gpr_wr_en3;
SQSP_gpr_rd_addr;
SQSP_gpr_rd_en;
SQSP_gpr_phase_mux;
SQ_SP_channel_mask;

SQ_SP_gpr_input_mux;
output [°AUTO_COUNT_SIZE - 1 :@] SQ_SP_auto_count;

[[=22n enn e nen n een enenennennnneeneeeee
// SQ-SP :
[[2a nnn nennennnncen nen ne nenneeeee

output
output
output
output

output
output

output
output

output
output
output
output

Instruction interface

[@:@] SQ_SP_instruct_start;
[@:@] SQSP_stall;
[23:8] SQ_SP_instruct;
[127:@] SQ_SP_const;

[@:
[@:

[7:
[7:

8]
8]

8]
8]

SQSP_exporting;
SQSP_exp_id;

u@_SQSX_kill_mask;
u1_SQSX_kill_mask;

u@_SQSP_pred_override;
u1_SQSP_pred_override;
u2_SQSP_pred_override;
u3_SQSP_pred_override;

// valid bits/kill mask

7

Page 235 of 509 TCL 1002

Page 236 of 509 TCL 1002

Sq_export_alloc.v
always @(alloc_cmd)

Showsthe SQ able to execute any types of export commands(position, pass-thru (appearance), pix (color).

An example of a shared resourceis the instruction store, accesses to it are controlled by:

begin
casez (alloc_cmd)

// - vtx pos alloc
7'b1_@10001
7'b1_@10010 :

// - vtx pass thru
7'b1_118108
7'b1_111000
7'b1_11110

// - pix without z
7'b@_1@9018
7'b@_102100 :
7'b@_1@0118
7'b@_1@1000 :

// - pix with z
7'b@_1@0011
7'b@_1@0101
7'b@180111 :
7'b@_1@1001

// - pix pass thru
7'b@_11100 :
7'b@111000
7'b@11110

default: sx_exp_
endcase

end

sq_ctl_flow_seq.v
module sq_ctl_flow_seq
(

cfs_type_strap,

is_phase,
is_subphase,
cfs_phase,
cfc_phase,

// local registers
// - per chip
inst_base_vtx,
inst_base_pix,

// - per context
vs_program_base_set,
ps_program_base_set,

vs_export_count_set,
vs_export_mode_set,
ps_export_mode_set,

: Sx_exp_cmd = 5'b1@@@_1;
sx_exp_cmd = 5'b1@@11;

: sx_exp_cmd = 5'b11_@@1;
: Sx_exp_cmd = 5'b11_@1_1;
: Sx_exp_cmd = 5'b11_1@1;

: Sx_exp_cmd = 5'b@@_@@_1;
sx_exp_cmd = 5'be@@@11;

: sx_exp_cmd = 5'b@@_1@1;
sx_exp_cmd = 5'be@@111;

: sx_exp_cmd = 5'b@1_@@1;
: sx_exp_cmd = 5'b@1_@11;

sx_exp_cmd = 5'b@1_10@1;
: sx_exp_cmd = 5'b@1_111;

sx_exp_cmd = 5'b11_@@1;
: sx_exp_cmd = 5'b11_@11;
: sx_exp_cmd = 5'b11_1@1;

cmd = 5'bxxxx@;

If

/f
/
/
If

/
If

/
If

//
//
//

// thread arbiter input
arbrts,
arb_state,
arb_status,
arb_thread_type,
cfs_rtr_q,

//
//
//
//
//

@@:alu@, ?1:tex, 1@:alul

@@:CF, @1:Tex, 10:ALU, 11:CP
@@:alu@, @1:tex, 1@:alul, 11:tex
@@:alu@, @1:tex, 1@:alul, 11:tex
@:alu, 1:tex,

vertex base

pixel base

connected to
connected to

connected to
connected to
connected to

SQ_VS_PROGRAM.BASE (12 bits)
SQ_PS_PROGRAM.BASE (12 bits)

SQ_PROGRAMCNTL.VS_EXPORT_COUNT (4 bits)
SQ_PROGRAMCNTL.VS_EXPORTMODE (3 bits)
SQ_PROGRAMCNTL.PSEXPORTMODE (3 bits)

vertex or pixel
CFS can take a new packet

8

Page 236 of 509 TCL 1002

Page 237 of 509 TCL 1002

Sq_alu_instr_seq.v
EL
// sq_alu_instr_seq.v
/
// - receives instruction from alu instr queue (AIQ)
// - reads constants (but data goes directly to ais_output mux)
// - sends instruction to SP over 4 cycles (starting on the correct phase)

input [1:
input
input
input
input
input

@] aig_export_info; // {exp_id, pulse_sx}
[@:@] aigq_last_in_group; // last instruction flag
[@:@] aiq_last_in_shader; // last instruction flag
[@:@] aiq_thread_type; // @: pixel, 1: vertex (shows we operate on either pixel or vertex)
[2:@] aiq_context_id; // context_id (from ctl packet)
[5:8] aigq_thread_id; // clause number

// - recall that a @ here means src is a constant (while 1 means src is a gpr)..

wire
wire
wire

// -
If

wire
wire
wire

jf wn

ca_fetch = ~aiq_instr[95];
cb_fetch = ~aiq_instr[94];
cc_fetch = ~aiq_instr[93];

instruction bits 63:61 are used as the const addr msb (these bits are decoded and replaced
before entering the AIQ

[8:0] ca_addr = {aig_instr[63], aig_instr[87:80]};
[8:8] cb_addr = {aig_instr[62], aig_instr[79:72]};
[8:8] cc_addr = f{aig_instr[61], aig_instr[71:64]};

// - need to send the vector type and the thread_id back to the thread buffers when
the all the instructions we wanted to run for this thread are done (this will
cause the thread to become valid again)

// - register this info in from the AIQ on an AIQ pop in order to hold it until the
AIS is done

case (ais_current_state)
AIS@:

// - wait until this machine is started by the AIQ read SM
// - write OSR data into thread buff on new thread (when there was a previous thread...)
// - ais_done does updates the thread_buff and clears the alu_instr_pending status bit
// - don’t assert aisdone yet if the previous instr was a pred set (wait for the pred set
// data to arrive from the SP)
begin

ais_instr_stall = HI;

if (ais_start)
begin

//if (aiq_new_thread & osr_valid_q & ~osr_pred_set_flag_q) ais_done = HI;

ais_instr_start = HI;
ais_instr_stall = LO;
ais_next_state = AIS1;

end
end

AIS1: begin ais_next_state = AIS2; end

AIS2: begin ais_next_state = AIS3; end

AIS3: begin ais_next_state = AIS4; end

// ** the AIQ was just popped by the ACS SM, so now must use info saved in ISR ** //

AIS4: begin ais_next_state = AIS5; end

9

Page 237 of 509 TCL 1002

Page 238 of 509 TCL 1002

executed

AIS5: begin ais_next_state = AIS6; end

AIS6:

begin
// - the pred set data is loaded now from the previous instr, so assert done now
// - also write new predicate data into predicate register (in aisoutput)

if (isr_new_thread_q & osr_pred_set_flag_q) ais _done = HI;

ld_osr = HI;
ais_next_state = AIS7;

end

AIS7:

// - pop the thread off the reservation station buffer when the last instr of the shader is

// - send free_done when pulse_sx is set, or this is the last instruction of a pixel shader
(since this

end

// is when the pixel export is done)

begin
if (isr_last_in_group_q & ~isr_last_in_shader_q) ais_done = HI;

if (isr_pulse_sx_q) ais_free_done = HI; // pixel last logic put into pulse_sx generation

if (isr_last_in_shader_q) ais_pop = HI;

ais_next_state = AIS@;
end

endcase

// - end ais state machine

sq_thread_arb.v
// - vertex request priority encoder

reg [0:0] vtx_winner_vld;
reg [3:0] vtx_winner;

always @(vtx_req_q)
begin

casez (vtx_req_q)

end

16'beeeeeeee_eeee_eee@: begin vtx_winner_vld = LO; vtx_winner = 4'hf; end
16'b1@e@@_eeee_eeeeEGA@: begin vtx_winner_vld = HI; vtx_winner = 4'hf; end
16'b?1@@eee@e_eeGe_EGA@: begin vtx_winner_vld = HI; vtx_winner = 4'he; end
16'b??1@ee@e@eeeGA_EGA@: begin vtx_winner_vld = HI; vtx_winner = 4'hd; end
16'b???1@e@@eGe@00E800: begin vtx_winner_vld = HI; vtx_winner = 4'hc; end
16'b????_1000@@00@@00: begin vtx_winner_vld = HI; vtx_winner = 4'hb; end
16'b????_?10@@@00EG@0@: begin vtx_winner_vld = HI; vtx_winner = 4'ha; end
16'b????_??1@@@0@@@0@: begin vtx_winner_vld = HI; vtx_winner = 4'h9; end
16'b????_???1@@@@EG@Q@: begin vtx_winner_vld = HI; vtx_winner = 4'h8; end
16'b????_????100@G00: begin vtx_winner_vld = HI; vtx_winner = 4'h7; end
16'b????_P??? 2?10@@@@@: begin vtx_winner_vld = HI; vtx_winner = 4'h6; end
16'b????_ PP?????1@@@@@: begin vtx_winner_vld = HI; vtx_winner = 4'h5; end
16'b????_ PP??????1@@@@: begin vtx_winner_vld = HI; vtx_winner = 4'h4; end
16'b????_ PP???PP???1000: begin vtx_winner_vld = HI; vtx_winner = 4'h3; end
16'bP???_ Pp???PP???2100: begin vtx_winner_vld = HI; vtx_winner = 4'h2; end
16'b?P???_ Pp???PPP???10: begin vtx_winner_vld = HI; vtx_winner = 4'h1; end
16'bP???_ PPP?PPPP_P??1: begin vtx_winner_vld = HI; vtx_winner = 4'h@; end
default: begin vtx_winner_vld = X; vtx_winner = 4'bxxxx; end

endcase

// - pixel request priority encoder

10

Page 238 of 509 TCL 1002

Page 239 of 509 TCL 1002

reg [0:0] pix_winner_vld;
reg [3:0] pix_winner;

always @(pix_req_q)
begin

casez (pix_req_q)
//16' beeee@EAeeGAeeBAe: begin pix_winner_vld = LO; pix_winner = 4'hf; end
16'b1ee@@_eee@e_eeGe_EGA@: begin pix_winner_vld = HI; pix_winner = 4'hf; end
16'b?1@@eee@e_ee@Ge_EGAG: begin pix_winner_vld = HI; pix_winner = 4'he; end
16'b??1@ee@e@e_ee@Ge_EGA@: begin pix_winner_vld = HI; pix_winner = 4'hd; end
16'b???1ee@@eee@00E800: begin pix_winner_vld = HI; pix_winner = 4'hc; end
16'b????_1000@@00E@00: begin pix_winner_vld = HI; pix_winner = 4'hb; end
16'b????_?10@@@00EG@0@: begin pix_winner_vld = HI; pix_winner = 4'ha; end
16'b????_??1@@@0@EG@0@: begin pix_winner_vld = HI; pix_winner = 4'h9; end
16'b????_???1@@@@E800: begin pix_winner_vld = HI; pix_winner = 4'h8; end
16'b????_ ????100@@@0@: begin pix_winner_vld = HI; pix_winner = 4'h7; end
16'b????_?????10@@@0@: begin pix_winner_vld = HI; pix_winner = 4'h6; end
16'b????_P???_ ??1@@@@@: begin pix_winner_vld = HI; pix_winner = 4'h5; end
16'b????_ PP??????1@@@@: begin pix_winner_vld = HI; pix_winner = 4'h4; end
16'b????_ PP??? ????_1000: begin pix_winner_vld = HI; pix_winner = 4'h3; end
16'bP???_ PPP?PPP?_?10@: begin pix_winner_vld = HI; pix_winner = 4'h2; end
16'bP???_ PPP?PPP?_??1@: begin pix_winner_vld = HI; pix_winner = 4'h1; end
16'bP???_ 2???Pe??PP?l: begin pix_winner_vld = HI; pix_winner = 4'h@; end
//default: begin pix_winner_vld = X; pix_winner = 4'bxxxx; end
default: begin pix_winner_vld = LO; pix_winner = 4'bxxxx; end

endcase
end

// - if cfs1 is enabled, alternate btwn rts@ and rts1
// - if cfs1 is disabled, mask rts1 and always use rts@
// - what is the algorithm here? really want to send the thread to the CFS that's available (default
// to cfs@ if both are available)
// - so getting rid of forced toggle btwn cfs@ and cfs1 - remember to to comment out cfs_turn

// - there is only one winner max per cycle, so only one of the two RTSsS is active in one cycle
// - it doesn't matter which ALU pipe is used to process a thread, as long as threads are processed in

order

// of being selected by the arbiter (i.e. there should be no way for a thread in one ALU pipe to pass
a thread

// in the other ALU pipe when they are from the same context)

//assign arb_rts@ = arb_rts & («cfs_turn | ~cfs1_enable);
//assign arb_rts1 = arbrts & cfs_turn & cfsi1_enable;

//wire [0:0] cfs_rtr = cfs_rtre | cfs_rtri;

wire [@:@] send_to_cfs@ = cfs_rtr@;
wire [@:@] send_to_cfsl = ~cfs_rtré@ & cfs_rtr1 & cfsl_enable;

assign arb_rts@ = arb_rts & send_to_cfs@;
assign arb_rtsl = arb_rts & send_to_cfs1;

wire [@:@] arb_xfc@ = arb_rts® & cfs_rtr@;
wire [@:@] arb_xfcl = arb_rts1 & cfs_rtr1;

wire [@:@] arb_xfc = arb_xfc@ | arb_xfcl;

[f won nn rere e reer eee
// -- Arb Output Mux --
[f wren nner ene eee e ne
// - choose between tex state/status and pix state/status depending on overall winner
// - vtx tex has no lod
// - vtx alu has no lod
// - pix tex does have LOD (PIX_CTL_PKT_WIDTH and CTL_PKT_WIDTH have lod)
// - pix alu has no lod

11

Page 239 of 509 TCL 1002

Page 240 of 509 TCL 1002

always @(type_winner_q or vtx_state or pix_state)
begin

//arb_state = {STATE_WIDTH{LO}};
case (type_winner_q)

HI: arb_state = vtx_state; // these are unequal - msb's get @'s by above assignment
LO: arb_state = pix_state;
//default: arb_state = {STATE_WIDTH{X}};

endcase
end

always @(type_winner_q or vtx_status or pix_status)
begin

//arb_status = {STATUS_WIDTH{LO}};
case (type_winner_q)

HI: arb_status = vtx_status;
LO: arb_status = pix_status;
//default: arb_status = {STATUSWIDTH{X}};

endcase
end

sq_shader_seq.v

// shader_seq.v
if

// - instantiates 16 reservation stations

if

// issues:

If -

if

LLL

module sq_shader_seq
(

shader_seq_type, // a strap thattells this module if it's a vertex or pixel shader seq

// control packet input
input_cp, // control packet data from the input SM
input_rts, // rts from the input SM
input_rtr, // rtr from texture RSO

// texture clause arbiter interface

tex_req, // 8 texture RS requests
tex_cp, /! vector of 8 control packets
tex_rtr, // 8 RTSs(not fulls) to the ALU arbiters
tca_winner_ack, /! 8 ack bits from arb - only the winnerbit is set
tca_empty_ack, /! 8 ack bits from arb - each empty requesting clause is ack'd to moveit to next

RS

TP_SQ_data_rdy, // data ready indicator from TPC - increment the alu RS counter
TP_SQ_type, // the vector type: pixel=0, vertex=1
TP_SQ_clause_num, // the alu RS number whosecount should be incremented

// alu clausearbiter interface

alu_req, If
alu_cp, If
alu_rtr, If
aca_winner_ack, If
aca_empty_ack, If

12

Page 240 of 509 TCL 1002

Page 241 of 509 TCL 1002

aisO_data_rdy, // done indicator from AISO - increment the tex RS counter
aisO_vector_type, // the vector type: pixel=0, vertex=1
aisOQ_clause_num, // the tex RS number whose count should be incremented

ais1_data_rdy, // done indicator from AIS1 - increment the tex RS counter
ais1_vector_type, // the vector type: pixel=0, vertex=1
ais1_clause_num, // the tex RS number whose count should be incremented

// exit SM interface

state_change,// a pulse high indicates that the state exiting the SS has changed
old_state, // the state that has finished (because a new state has emerged)
dealloc_req, // request to deallocate GPRs
dealloc_ack, // the dealloc request has been acknowleged

clk,
reset

// -- parameters--

parameter CP_WIDTH = 8;
parameter STATE_WIDTH = 3;

parameter FIFO_WIDTH = CP_WIDTH;
parameter FIFO_DEPTH = 4;
parameter FIFO_ADDR_BITS= 2;

parameter LO = 1'b0;
parameter HI = 1'b1;
parameter X = 1'bx;

]| eonnnnnnmnnnnnnnnnnnnnnnnnnnnnnnnnennenerenenerennnnnenannnnnnnnnns

I} -- ios --

]] wwnnnnnnnanannnnnnnnnnnnnnnnnnnnnnnnnnneneenenennanennnnennnnnnnennnns

input shader_seq_type;

input [CP_WIDTH-1:0] input_cp;
input input_rts;
output input_rtr;

output[8:0] tex_req;
output [8*CP_WIDTH-1:0] tex_cp;
output[8:1] tex_rtr;

input [7:0] tca_winner_ack;
input [7:0] tca_empty_ack;

input [0:0] TP_SQ_data_rdy;
input [0:0] TP_SQ_type;
input [2:0] TP_SQ_clause_num;

output[7:0] alu_req;

13

Page 241 of 509 TCL 1002

Page 242 of 509 TCL 1002

output [8*CP_WIDTH-
output[7:0]

input [7:0]
input [7:0]

input
input
input [2:0]

input
input
input [2:0]

output
output[2:0]
output
input

input
input

1:0] alu_cp;
alu_rtr;

aca_winner_ack;
aca_empty_ack;

aisO_data_rdy;
aisO_vector_type;

aisOQ_clause_num;

ais1_data_rdy;
ais1_vector_type;

ais1_clause_num;

state_change;
old_state;
dealloc_req;

dealloc_ack;

clk;
reset;

// - output register declarations

reg [8:0]
Hreg [7:0]

a

// -- internal signals --
|] arnrnenennnnnn

wire [CP_WIDTH-1:0]
wire [CP_WIDTH-1:0]
wire [CP_WIDTH-1:0]
wire [CP_WIDTH-1:0]
wire [CP_WIDTH-1:0]
wire [CP_WIDTH-1:0]
wire [CP_WIDTH-1:0]
wire [CP_WIDTH-1:0]
wire [CP_WIDTH-1:0]
wire [CP_WIDTH-1:0]
wire [CP_WIDTH-1:0]
wire [CP_WIDTH-1:0]
wire [CP_WIDTH-1:0]
wire [CP_WIDTH-1:0]
wire [CP_WIDTH-1:0]
wire [CP_WIDTH-1:0]

// group all the control

wire [8*CP_WIDTH-1:0] tex_cp = {tex_ctl_pkt7, tex_ctl_pkt6, tex_ctl_pkt5, tex_ctl_pkt4,

wire [8*CP_WIDTH-1:0] alu_cp = {alu_ctl_pkt7, alu_ctl_pkt6, alu_ctl_pkt5, alu_ctl_pkt4,

tex_req;
alu_req;

tex_ctl_pkt0;
tex_ctl_pkt1;
tex_ctl_pkt2;
tex_ctl_pkt3;
tex_ctl_pkt4;
tex_ctl_pkt5;
tex_ctl_pkt6;
tex_ctl_pkt7;
alu_ctl_pkt0;
alu_ctl_pkt1;
alu_ctl_pkt2;
alu_ctl_pkt3;
alu_ctl_pkt4;
alu_ctl_pkt5;
alu_ctl_pkt6;
alu_ctl_pkt7;

packets together into one big vector for output to the arbiter

tex_ctl_pkt3, tex_ctl_pkt2, tex_ctl_pkt1, tex_ctl_pkt0};

14

Page 242 of 509 TCL 1002

Page 243 of 509 TCL 1002

alu_ctl_pkt8, alu_ctl_pkt2, alu_ctl_pkt1, alu_ctl_pkt0};

reg [0:0] tpc_data_rdy;
reg [0:0] tpc_type;
reg [2:0] tpc_clause_num;

Uf eomennnennnnnnnnnnnnnnnnnnnnnnnnannannnnananmanaanaanananaanaamanmmmmammmaanene

// -- combinationallogic --
Uf ponwnnennennnnnnnnnnnnnnmannannannannanananaanaanananennannanaamaamananaaaammasmmmmaaes

// - select the RS counter to increment based on clause number sent by TPC/AIS
// - counts represent the numberof valid entries ina RS FIFO; because ctl packets are
// moved into the next RS before the vector they represent has actually finished, the
// count is used to gate the requests to the next arbiter until the clause is actually
/ done

// - this is a decoder enabled by data_rdy

reg [7:0] tpc_cnt_inc;
reg [7:0] aisO_cnt_inc;
reg [7:0] ais1_cnt_inc;

always @(tpc_data_rdy or toc_clause_num ortpc_type or shader_seq_type)
begin

tpc_cnt_inc = 8'h00;
if (tpc_data_rdy & (tpc_type == shader_seq_type))
tpc_cnt_inc[tpc_clause_num] = 1'b1;

end

always @(aisO_data_rdy or aisO_clause_num or aisOQ_vector_type or shader_seq_type)
begin

aisO_cnt_inc = 8'h00;
if (aisO_data_rdy & (aisO_vector_type == shader_seq_type))
aisO_cnt_inc[aisO_clause_num]= 1'b1;

end

always @(ais1_data_rdy or ais1_clause_num or ais1_vector_type or shader_seq_type)
begin

ais1_cnt_inc = 8'h00;
if (ais1_data_rdy & (ais1_vector_type == shader_seq_type))
ais1_cnt_inc[ais1_clause_num] = 1'b1;

end

wire [7:0] ais_cnt_inc = aisO_cnt_inc | ais1_cnt_inc;

// - create the RS request by masking the RS FIFO rts when the associated RS countis zero
// - this is done because a control packet is moved to the next RS before the RS can actually tell
// the arbiter aboutit

// - in both cases, in orderto facilitate the advancementof empty clauses, the packet is moved
/{ tothe next RS when thearbiter selectsit

// - in the case of alu RSs, the TPC mustindicate that the texture data has been loaded into the

/1 GPRs before incrementing the count
// - in the case of tex RSs, the AIS will increment the count when it's done

/wire [FIFO_ADDR_BITS-1:0] tex_count [0:8]; // tex_count[8] is for the exit RS

15

Page 243 of 509 TCL 1002

Page 244 of 509 TCL 1002

/wire [FIFO_ADDR_BITS-1:0] alu_count[0:7];
wire [FIFO_ADDR_BITS-1:0] tex_count0;
wire [FIFO_ADDR_BITS-1:0] tex_countt1;
wire [FIFO_ADDR_BITS-1:0] tex_count2;
wire [FIFO_ADDR_BITS-1:0] tex_counts3;
wire [FIFO_ADDR_BITS-1:0] tex_count4;
wire [FIFO_ADDR_BITS-1:0] tex_count5;
wire [FIFO_ADDR_BITS-1:0] tex_count6;
wire [FIFO_ADDR_BITS-1:0] tex_count?7;
wire [FIFO_ADDR_BITS-1:0] tex_count8;
wire [FIFO_ADDR_BITS-1:0] alu_count0;
wire [FIFO_ADDR_BITS-1:0] alu_countt1;
wire [FIFO_ADDR_BITS-1:0] alu_count2;
wire [FIFO_ADDR_BITS-1:0] alu_counts3;
wire [FIFO_ADDR_BITS-1:0] alu_count4;
wire [FIFO_ADDR_BITS-1:0] alu_count5;
wire [FIFO_ADDR_BITS-1:0] alu_counté6;
wire [FIFO_ADDR_BITS-1:0] alu_count7;

wire [8:0] tex_rts; // tex_rts[8] is for the exit RS
wire [7:0] alu_rts;

// - this could be donein the reservation station...

always @(tex_rts or tex_count)
HM for (i=0; i<9; i=i+1) begin
Hf tex_req[i] = tex_rts[i] & |(tex_countt[i]);
if end

always @(alu_rts or alu_count)
for (i=0; i<8; i=i+1) begin

Hf alu_req[i] = alu_rts[i] & |(alu_count{[i]);
i end

assign tex_req[0] = tex_rts[0] & |tex_count0;
assign tex_req[1] = tex_rts[1] & |tex_count1;
assign tex_req[2] = tex_rts[2] & |tex_count2;
assign tex_req[3] = tex_rts[3] & |tex_count3;
assign tex_req[4] = tex_rts[4] & |tex_count4;
assign tex_req[5] = tex_rts[5] & |tex_count5;
assign tex_req[6] = tex_rts[6] & |tex_count6;
assign tex_req[7] = tex_rts[7] & |tex_count7;
assign tex_req[8] = tex_rts[8] & |tex_counts;
assign alu_req[0] = alu_rts[0] & |alu_count0;
assign alu_req[1] = alu_rts[1] & |alu_count1;
assign alu_req[2] = alu_rts[2] & |alu_count2;
assign alu_req[3] = alu_rts[3] & |alu_count3;
assign alu_req[4] = alu_rts[4] & |alu_count4;
assign alu_req[5] = alu_rts[5] & |alu_count5;
assign alu_req[6] = alu_rts[6] & |alu_count6;
assign alu_req[7] = alu_rts[7] & |alu_count?7;

// - the acknowledge to a RSis the OR of the winner and empty ack vectors
/{ -the ack advancesthe ctl packet to the next RS
// - want to advance wheneither the clause was picked bythe arbiter or when
// the clause is empty (no instructions)

16

Page 244 of 509 TCL 1002

Page 245 of 509 TCL 1002

wire [7:0] tca_ack = tca_winner_ack| tca_empty_ack;

/{wire [7:0] aca_winner_ack = acaQ_winner_ack | aca1_winner_ack;
/{wire [7:0] aca_empty_ack = aca0_empty_ack | acai_empty_ack;
wire [7:0] aca_ack = aca_winner_ack | aca_empty_ack;

]| ---------------~~~~~=nanannnnnanannnn

// -- registers --
|| -----------~~~~~~~~annannnnnnnnnnnnnnnnnnnn

// - block input registers for signals from TPC

always @(posedgeclk)
begin

tpc_data_rdy <= TP_SQ_data_rdy;
tpc_type <= TP_SQ_type;
tpc_clause_num <= TP_SQ_clause_num;

end

|| --—---—------—=-

// -- state machines--

|| --—---—-------—=-

|| --—---—-------—=-

// -- module instatiations --

|| ------------------------------------—-----------------------------------—----—=-----—=-

// 16 reservation stations: 8 texture, 8 alu

//- the RSs are connected tex to alu to tex etc., with an exit RS connected after alu rs7 (like tex rs8)
// - the write rts/rtr for tex rsO is from the input sm
// - the read rts's are qualified with the RS count and sentto the arbiter
// - the arbiter sends an ack whichrtr’s the sender andrts's the receiver(i.e. next RS)
// - the next RS rtr goes back to the arbiter and must be high to enable a grant

wire tex_rsQ_cnt_inc = input_rts & input_rtr;

res_station // tex rsO
#(.DATA_BITS(FIFO_WIDTH), .NUM_WORDS(FIFO_DEPTH), .ADDR_BITS(FIFO_ADDR_BITS))
u_tex_rs0

(.write_rts(input_rts), .write_rtr(input_rtr), .write_data(input_cp),
.read_rts (tex_rts[0]), .read_rtr (tca_ack[0]),§.read_data (tex_ctl_pkt0),
.empty_inc(LO), .count_ince(tex_rsO_cnt_inc), .count(tex_count0),
.clk(clk), .reset(reset)

res_station // alu rsO
#(.DATA_BITS(FIFO_WIDTH), .NUM_WORDS(FIFO_DEPTH), .ADDR_BITS(FIFO_ADDR_BITS))
u_alu_rsO

(.write_rts(tca_ack[0]), .write_rtr(alu_rtr[0]), .write_data(tex_ctl_pkt0),
.read_rts (alu_rts[0]), .read_rtr (aca_ack[0]), .read_data (alu_ctl_pkt0),
.empty_inc(tca_empty_ack[0]), .count_inc(tpc_cnt_inc[0]), .count(alu_count0),
.clk(clk), .reset(reset)

res_station // tex rs1

17

Page 245 of 509 TCL 1002

Page 246 of 509 TCL 1002

#(.DATA_BITS(FIFO_WIDTH), .NUM_WORDS(FIFO_DEPTH), .ADDR_BITS(FIFO_ADDR_BITS))
u_tex_rs1

(.write_rts(aca_ack[0]), .write_rtr(tex_rtr[1]), .write_data(alu_ctl_pkt0),
.read_rts (tex_rts[1]), .read_rtr (tca_ack[1]),|.read_data (tex_ctl_pkt1),
.empty_inc(aca_empty_ack[0]), .count_inc(ais_cnt_inc[0]), .count(tex_countt),
.clk(clk), .reset(reset)

res_station // alu rs1
#(.DATA_BITS(FIFO_WIDTH), .NUM_WORDS(FIFO_DEPTH), .ADDR_BITS(FIFO_ADDR_BITS))
u_alu_rs1

(.write_rts(tca_ack[1]), .write_rtr(alu_rtr[1]), .write_data(tex_ctl_pkt1),
.read_rts (alu_rts[1]), .read_rtr(aca_ack[1]), .read_data (alu_ctl_pkt1),
.empty_inc(tca_empty_ack[1]), .count_inc(tpc_cnt_inc[1]), .count(alu_count1),
.clk(clk), .reset(reset)

res_station // tex rs2
#(.DATA_BITS(FIFO_WIDTH), .NUM_WORDS(FIFO_DEPTH), .ADDR_BITS(FIFO_ADDR_BITS))
u_tex_rs2

(.write_rts(aca_ack[1]), .write_rtr(tex_rtr[2]), .write_data(alu_ctl_pkt1),
.read_rts (tex_rts[2]), .read_rtr(tca_ack[2]), .read_data (tex_ctl_pkt2),
.empty_inc(aca_empty_ack[1]), .count_inc(ais_cnt_inc[1]), .count(tex_count2),
.clk(clk), .reset(reset)

res_station // alu rs2
#(.DATA_BITS(FIFO_WIDTH), .NUM_WORDS(FIFO_DEPTH), .ADDR_BITS(FIFO_ADDR_BITS))
u_alu_rs2

(.write_rts(tca_ack[2]), .write_rtr(alu_rtr[2]), .write_data(tex_ctl_pkt2),
.read_rts (alu_rts[2]), .read_rtr(aca_ack[2]), .read_data (alu_ctl_pkt2),
.empty_inc(tca_empty_ack[2]), .count_inc(tpc_cnt_inc[2]), .count(alu_count2),
.clk(clk), .reset(reset)

res_station // tex rs3
#(.DATA_BITS(FIFO_WIDTH), .NUM_WORDS(FIFO_DEPTH), .ADDR_BITS(FIFO_ADDR_BITS))
u_tex_rs3

(.write_rts(aca_ack[2]), .write_rtr(tex_rtr[3]), .write_data(alu_ctl_pkt2),
.read_rts (tex_rts[3]), .read_rtr(tca_ack[3]), .read_data (tex_ctl_pkt3),
.empty_inc(aca_empty_ack[2]), .count_inc(ais_cnt_inc[2]), .count(tex_counts3),
.clk(clk), .reset(reset)

res_station // alu rs3
#(.DATA_BITS(FIFO_WIDTH), .NUM_WORDS(FIFO_DEPTH), .ADDR_BITS(FIFO_ADDR_BITS))
u_alu_rs3

(.write_rts(tca_ack[3]), .write_rtr(alu_rtr[3]), .write_data(tex_ctl_pkt3),
.fead_rts (alu_rts[3]), .read_rtr(aca_ack[3]), .read_data (alu_ctl_pkt3),
.empty_inc(tca_empty_ack[3]), .count_inc(tpc_cnt_inc[3]), .count(alu_counts3),
.clk(clk), .reset(reset)

res_station // tex rs4
#(.DATA_BITS(FIFO_WIDTH), .NUM_WORDS(FIFO_DEPTH), .ADDR_BITS(FIFO_ADDR_BITS))
u_tex_rs4

(-write_rts(aca_ack[3]), .write_rtr(tex_rtr[4]), .write_data(alu_ctl_pkt3),
.read_rts (tex_rts[4]), .read_rtr(tca_ack[4]), .read_data (tex_ctl_pkt4),
.empty_inc(aca_empty_ack[3]), .count_inc(ais_cnt_inc[3]), .count(tex_count4),
.clk(clk), .reset(reset)

res_station // alu rs4

18

Page 246 of 509 TCL 1002

Page 247 of 509 TCL 1002

#(.DATA_BITS(FIFO_WIDTH), .NUM_WORDS(FIFO_DEPTH), .ADDR_BITS(FIFO_ADDR_BITS))
u_alu_rs4

(.write_rts(tca_ack[4]), .write_rtr(alu_rtr[4]), .write_data(tex_ctl_pkt4),
.read_rts (alu_rts[4]), .read_rtr(aca_ack[4]), .read_data (alu_ctl_pkt4),
.empty_inc(tca_empty_ack[4]), .count_inc(tpc_cnt_inc[4]), .count(alu_count4),
.clk(clk), .reset(reset)

res_station // tex rs5
#(.DATA_BITS(FIFO_WIDTH), .NUM_WORDS(FIFO_DEPTH), .ADDR_BITS(FIFO_ADDR_BITS))
u_tex_rs5

(.write_rts(aca_ack[4]), .write_rtr(tex_rtr[5]), .write_data(alu_ctl_pkt4),
.read_rts (tex_rts[5]), .read_rtr(tca_ack[5]), .read_data (tex_ctl_pkt5),
.empty_inc(aca_empty_ack[5]), .count_inc(ais_cnt_inc[4]), .count(tex_count5),
.clk(clk), .reset(reset)

res_station // alu rs5
#(.DATA_BITS(FIFO_WIDTH), .NUM_WORDS(FIFO_DEPTH), .ADDR_BITS(FIFO_ADDR_BITS))
u_alu_rs5

(.write_rts(tca_ack[5]), .write_rtr(alu_rtr[5]), .write_data(tex_ctl_pkt5),
.read_rts (alu_rts[5]), .read_rtr(aca_ack[5]), .read_data (alu_ctl_pkt5),
.empty_inc(tca_empty_ack[4]), .count_inc(tpc_cnt_inc[5]), .count(alu_count5),
.clk(clk), .reset(reset)

res_station // tex rs6
#(.DATA_BITS(FIFO_WIDTH), .NUM_WORDS(FIFO_DEPTH), .ADDR_BITS(FIFO_ADDR_BITS))
u_tex_rs6

(.write_rts(aca_ack[5]), .write_rtr(tex_rtr[6]), .write_data(alu_ctl_pkt5),
.read_rts (tex_rts[6]), .read_rtr(tca_ack[6]), .read_data (tex_ctl_pkt6),
.empty_inc(aca_empty_ack[5]), .count_inc(ais_cnt_inc[5]), .count(tex_count6),
.clk(clk), .reset(reset)

res_station // alu rs6
#(.DATA_BITS(FIFO_WIDTH), .NUM_WORDS(FIFO_DEPTH), .ADDR_BITS(FIFO_ADDR_BITS))
u_alu_rs6

(.write_rts(tca_ack[6]), .write_rtr(alu_rtr[6]), .write_data(tex_ctl_pkt6),
.read_rts (alu_rts[6]), .read_rtr(aca_ack[6]), .read_data (alu_ctl_pkt6),
.empty_inc(tca_empty_ack[6]), .count_inc(tpc_cnt_inc[6]), .count(alu_counté6),
.clk(clk), .reset(reset)

res_station // tex rs7
#(.DATA_BITS(FIFO_WIDTH), .NUM_WORDS(FIFO_DEPTH), .ADDR_BITS(FIFO_ADDR_BITS))
u_tex_rs7

(.write_rts(aca_ack[6]), .write_rtr(tex_rtr[7]), .write_data(alu_ctl_pkt6),
.read_rts (tex_rts[7]), .read_rtr(tca_ack[7]), .read_data (tex_ctl_pkt7),
.empty_inc(aca_empty_ack[6]), .count_inc(ais_cnt_inc[6]), .count(tex_count?7),
.clk(clk), .reset(reset)

res_station // alu rs7
#(.DATA_BITS(FIFO_WIDTH), .NUM_WORDS(FIFO_DEPTH), .ADDR_BITS(FIFO_ADDR_BITS))
u_alu_rs7

(.write_rts(tca_ack[7]), .write_rtr(alu_rtr[7]), .write_data(tex_ctl_pkt7),
.read_rts (alu_rts[7]), .read_rtr(aca_ack[7]), .read_data (alu_ctl_pkt7),
.empty_inc(tca_empty_ack[7]), .count_inc(tpc_cnt_inc[7]), .count(alu_count7),
.clk(clk), .reset(reset)

);

19

Page 247 of 509 TCL 1002

Page 248 of 509 TCL 1002

wire [2:0] new_state;

HexitRS

res_station
#(.DATA_BITS(STATE_WIDTH), .NUM_WORDS(FIFO_DEPTH), .ADDR_BITS(FIFO_ADDR_BITS))
u_tex_rs8

(.write_rts(aca_ack[7]), .write_rtr(tex_rtr[8]), .write_data(alu_ctl_pkt7[STATE_WIDTH-1:0]),
.read_rts (tex_rts[8]), .read_rtr(exit_sm_rtr), .read_data (new_state),
.empty_inc(aca_empty_ack[7]), .count_inc(ais_cnt_inc[7]), .count(tex_count8),
.clk(clk), .reset(reset)

);

|| ------------------------

// -- exit state machine --

|| ------------------------

exit_sm
u_exit_sm
(

-new_state_rts(tex_req[8]),
-new_state_rtr(exit_sm_rtr),
.new_state(new_state),

.State_diff(state_change),

.old_state_q(old_state),

.dealloc_req(dealloc_req),

.dealloc_ack(dealloc_ack),

.clk(clk),

.reset(reset)

endmodule

20

Page 248 of 509 TCL 1002

Page 249 of 509 TCL 1002

Electronic Patent Application Fee Transmittal

Title of Invention: GRAPHICS PROCESSING ARCHITECTURE EMPLOYING A UNIFIED SHADER

ferina

Utility under 35 USC 111(a) Filing Fees

Sub-Total in

USD(S$)
Description Fee Code Quantity

ee

Extension - 3 months with $0 paid Page 449 of BO9 TGb002

Page 250 of 509 TCL 1002

Miscellaneous:

Total in USD($)

Page 250 of 509 TCL 1002

Page 251 of 509 TCL 1002

Electronic AcknowledgementReceipt

ne

eine

Title of Invention: GRAPHICS PROCESSING ARCHITECTURE EMPLOYING A UNIFIED SHADER

ee

Paymentinformation:

Submitted with Payment yes

Deposit Account 020390

TheDirector of the USPTO is hereby authorized to charge indicated fees and credit any overpaymentas follows:

Charge any Additional Fees required under 37 C.F.R. Section 1.16 (National application filing, search, and examination fees)

Charge any Additional Fees required under 37 cARAGRoeAt (AfEAADlication and reexamination processing fee)CL 1 002

Page 252 of 509 TCL 1002

Charge any Additional Fees required under 37 C.F.R. Section 1.19 (Document supply fees)

Charge any Additional Fees required under 37 C.F.R. Section 1.20 (Post Issuance fees)

Charge any Additional Fees required under 37 C.F.R. Section 1.21 (Miscellaneous fees and charges)

File Listing:

Document DocumentDescription File Size(Bytes)/ Multi Pages
Number P Message Digest|Part/.zip| (if appl.)

120979

360001_Response.pdf
5ea628e325d222b0f8f3ef2eed 1 ab6fSfds5

6460

Multipart Description/PDFfiles in .zip description

Amendment/Req. Reconsideration-After Non-Final Reject

Applicant Arguments/Remarks Made in an Amendment pefe
Information:

124271

Miscellaneous Incoming Letter 360001_Declaration.pdf
bbb6bc0b6e0428a869fcb8.a5497285 7d 38d)

43dd7

Information:

738779

Miscellaneous Incoming Letter 360001_ExhibitA.pdf
1b5bd3d447e9b644e4b83f48efS4eaeb5f3qf

260167

23c581deb4alade2018254c5a4bf3ca4dc
519a1

Fee Worksheet (SB06) fee-info.pdf
156554244122c7c58b7a8c2f3 1ad5fe86e79

a08a

Page 252 of 509 TCL 1002

Page 253 of 509 TCL 1002

This AcknowledgementReceipt evidences receipt on the noted date by the USPTOofthe indicated documents,
characterized by the applicant, and including page counts, where applicable. It serves as evidence of receipt similar to a
Post Card, as described in MPEP 503.

New Applications Under 35 U.S.C. 111
If a new application is being filed and the application includes the necessary componentsfora filing date (see 37 CFR
1.53(b)-(d) and MPEP 506), a Filing Receipt (37 CFR 1.54) will be issued in due course and the date shownonthis
AcknowledgementReceiptwill establish thefiling date of the application.

National Stage of an International Application under 35 U.S.C. 371
If a timely submission to enter the national stage of an international application is compliant with the conditions of 35
U.S.C. 371 and other applicable requirements a Form PCT/DO/EO/903indicating acceptanceof the application as a
national stage submission under 35 U.S.C. 371 will be issued in addition to the Filing Receipt, in due course.

New International Application Filed with the USPTO as a Receiving Office
If a new internationalapplication is being filed and the international application includes the necessary components for
an internationalfiling date (see PCT Article 11 and MPEP 1810), a Notification of the International Application Number
and of the International Filing Date (Form PCT/RO/105)will be issued in due course, subject to prescriptions concerning
nationalsecurity, and the date shownon this AcknowledgementReceiptwill establish the internationalfiling date of
the application.

Page 253 of 509 TCL 1002

Page 254 of 509 TCL 1002

UNITED STATES PATENT AND TRADEMARK OFFICE
UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Address: COMMISSIONER FOR PATENTS

P.O. Box 1450
Alexandria, Virginia 22313-1450
www.uspto.gov

 APPLICATION NO. FILING DATE FIRST NAMED INVENTOR ATTORNEY DOCKET NO. CONFIRMATIONNO.

13/109,738 05/17/2011 Stephen Morein 00100.36.0001 2020

29153 7590 03/15/2012

ADVANCED MICRO DEVICES, INC.
C/O Faegre Baker Daniels LLP WASHBURN,DANIEL C
311 S. WACKER DRIVE
CHICAGO, IL, 60606

2628

NOTIFICATION DATE DELIVERY MODE

03/15/2012 ELECTRONIC

Please find below and/or attached an Office communication concerning this application or proceeding.

The time period for reply, if any, is set in the attached communication.

Notice of the Office communication was sent electronically on above-indicated "Notification Date" to the
following e-mail address(es):

inteas @faegrebd.com
cynthia.payson@ faegredb-.com

Page 254 of 509 TCL 1002
PTOL-90A (Rev. 04/07)

Page 255 of 509 TCL 1002

Application No. Applicant(s)

 13/109,738 MOREIN ET AL.

Office Action Summary Examiner Art Unit
DANIEL WASHBURN 2628

-- The MAILING DATEof this communication appears on the cover sheet with the correspondence address --
Period for Reply

A SHORTENED STATUTORY PERIOD FOR REPLYIS SET TO EXPIRE 3 MONTH(S) OR THIRTY(30) DAYS,

WHICHEVER IS LONGER, FROM THE MAILING DATE OF THIS COMMUNICATION.Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed
after SIX (6) MONTHS from the mailing date of this communication.

- If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication.
- Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133).

Any reply received by the Office later than three months after the mailing date of this communication, evenif timely filed, may reduce any
earned patent term adjustment. See 37 CFR 1.704(b).

Status

1)X] Responsive to communication(s)filed on 18 January 2012.

2a)X] This action is FINAL. 2b) This action is non-final.
3)L] Anelection was madebythe applicant in responseto a restriction requirementset forth during the interview on

___; the restriction requirement and election have beenincorporated into this action.

4)L] Sincethis application is in condition for allowance except for formal matters, prosecution as to the merits is

closed in accordance with the practice under Ex parte Quayle, 1935 C.D. 11, 453 O.G. 213.

Disposition of Claims

5) Claim(s) 1-16 is/are pending in the application.

5a) Of the above claim(s) is/are withdrawn from consideration.

6)L] Claims) is/are allowed.
7)X] Claim(s) 1-16 is/are rejected.

8)L] Claim(s) ___ is/are objected to.
9)L] Claim(s)___ are subject to restriction and/or election requirement.

Application Papers

10) The specification is objected to by the Examiner.

11)L] The drawing(s)filed on is/are: a)L_] accepted or b)_] objected to by the Examiner.
Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a).

Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d).

12) The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152.

Priority under 35 U.S.C. § 119

13).] Acknowledgmentis made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f).

a)LJ All b)L] Some * c)L] Noneof:
1.] Certified copies of the priority documents have beenreceived.

2.L] Certified copies of the priority documents have been received in Application No.
3.L] Copiesof the certified copies of the priority documents have been received in this National Stage

application from the International Bureau (PCT Rule 17.2(a)).

* See the attached detailed Office action for a list of the certified copies not received.

Attachment(s)

1) Cc Notice of References Cited (PTO-892) 4) | Interview Summary (PTO-413)
2) [J Notice of Draftsperson’s Patent Drawing Review (PTO-948) Paper No(s)/Mail Date. __
3) XX] Information Disclosure Statement(s) (PTO/SB/08) 5) L] Noticeof Informal Patent Application

Paper No(s)/Mail Date. 6) C Other:

U.S. Patent and Trademark Office

PTOL-326 (Rev. 03-11) PEGPPSSsOF09 Part of Paper No./Mail Date €312>9002

Page 256 of 509 TCL 1002

Application/Control Number: 13/109,738 Page 2

Art Unit: 2628

DETAILED ACTION

Specification

Applicant is reminded of the proper language and format for an abstract of the
disclosure.

The abstract should be in narrative form and generally limited to a single
paragraph on a separate sheetwithin the range of 50 to 150 words. It is important that
the abstract not exceed 150 wordsin length since the space providedfor the abstract
on the computer tape used bytheprinteris limited. The form and legal phraseology
often used in patent claims, such as "means"and"said," should be avoided. The
abstract should describe the disclosure sufficiently to assist readers in deciding whether
there is a need for consulting the full patent text for details.

The language should be clear and concise and should not repeat information
given in the title. It should avoid using phrases which can be implied, such as, "The
disclosure concerns," "The disclosure defined by this invention,” "The disclosure
describes,"etc.

Declarationfiled under 37 CFR 1.131

The declaration filed 1/18/12 under 37 CFR 1.131 has been considered butis

ineffective to overcometheprior art reference Lindholm (US 7,038,685, “the Lindholm

reference’).

The declaration does not meet the requirements of 37 CFR 1.131 section (a).

37 CFR 1.131 section (a) states (in relevant part):

“(a) Whenanyclaim of an application or a patent under reexamination is
rejected, the inventorof the subject matter of the rejected claim, the ownerof the patent
under reexamination, or the party qualified under §§ 1.42, 1.43, or 1.47, may submit an
appropriate oath or declaration to establish invention of the subject matter of the
rejected claim prior to the effective date of the reference or activity on which the
rejection is based. The effective date of a U.S. patent, U.S. patent application
publication, or international application publication under PCT Article 21(2) is the earlier
of its publication date or date thatit is effective as a reference under 35 U.S.C. 102(e).
Prior invention may not be established underthis section in any country other
than the United States, a NAFTA country, or a WTO membercountry.Prior
invention may not be established under this section before December8, 1993,in

Page 256 of 509 TCL 1002

Page 257 of 509 TCL 1002

Application/Control Number: 13/109,738 Page 3

Art Unit: 2628

a NAFTA country other than the United States, or before January 1, 1996, ina
WTO membercountry other than a NAFTA country.” (emphasis added)

Section 2 of Applicants’ declaration describes (in relevant part):

“2. We conceived the Invention prior to June 30, 2003 while employed by ATI
Technologies Inc. and/or oneof its wholly owned subsidiaries ("ATI") as indicated by
attached Exhibits A and B ... Prior to June 30, 2003 we created a graphics processing
system that operated as claimed using a computer system that successfully executed
the Model Code. Prior to June 30, 2003 we also created a graphics processing system
as Claimed in the form of a computer system that used an RTL simulator to successfully
validate the operation of an integrated circuit version of the claimed graphics processing
system and method.”

As quoted from Applicants’ declaration, section 2 describes conception and

reduction to practice of the claimed invention prior to June 30, 2003. Section 2 further

describes that the conception and reduction to practice of the claimed invention was

carried out while the inventors were employed by ATI Technologies Inc. and/or one of

its wholly owned subsidiaries.

However, section 2, and the declaration as a whole, fails to specify whether or

not the conception and reduction to practice was carried out in the United States, a

NAFTA country, or a WTO membercountry. As quoted from 37 CFR 1.131 section (a),

“[p]rior invention may not be established underthis section in any country other than the

United States, a NAFTA country, or a WTO memory country”. Thus, the declaration is

ineffective to overcome the Lindholm reference due tothisfirst deficiency.

Further, the declaration does not meet the requirements of 37 CFR 1.131 section

(b).

37 CFR 1.131 section (b) states:

“(o) The showing of facts shall be such, in character and weight, as to
establish reduction to practice prior to the effective date of the reference, or conception

Page 257 of 509 TCL 1002

Page 258 of 509 TCL 1002

Application/Control Number: 13/109,738 Page 4

Art Unit: 2628

of the invention prior to the effective date of the reference coupled with duediligence
from prior to said date to a subsequentreduction to practice or to the filing of the
application. Original exhibits of drawings or records, or photocopies thereof, must
accompanyandform part of the affidavit or declaration or their absence must be
satisfactorily explained.”

MPEP 715.07 [R-3] "Facts and Documentary Evidence", section |. "General

Requirements", offers further guidance regarding the requirements of 37 CFR 1.131

section (b).

MPEP 715.07, section |., describes (in relevant part):

“The essential thing to be shown under 37 CFR 1.1371 is priority of invention and
this may be donebyany satisfactory evidence of the fact. FACTS, not conclusions,
mustbe alleged. Evidence in the form of exhibits may accompanytheaffidavit or
declaration. Each exhibit relied upon should be specifically referred to in the affidavit or
declaration, in terms of whatit is relied upon to show ... when reviewing a 37 CFR
1.131 affidavit or declaration, the examiner must considerall of the evidence presented
in its entirety, including the affidavits or declarations and all accompanying exhibits,
records and “notes.” An accompanying exhibit need not support all claimed limitations,
provided that any missing limitation is supported by the declaration itself. Ex parte
Ovshinsky, 10 USPQ2d 1075 (Bd. Pat. App. & Inter. 1989).

The affidavit or declaration and exhibits must clearly explain which facts or
data applicant is relying on to show completion of his or her invention prior to the
particular date. Vague and general statements in broad terms about what the
exhibits describe along with a general assertion that the exhibits describe a
reduction to practice “amounts essentially to mere pleading, unsupported by
proof or a showingof facts” and, thus, does not satisfy the requirements of 37
CFR 1.131(b). In re Borkowski, 505 F.2d 713, 184 USPQ 29 (CCPA 1974). Applicant
mustgive a clear explanation of the exhibits pointing out exactly what facts are
established and relied on by applicant. 505 F.2d at 718-19, 184 USPQ at 33. See
also In re Harry, 333 F.2d 920, 142 USPQ 164 (CCPA 1964) (Affidavit “asserts that
facts exist but does nottell what they are or when they occurred.”).” (emphasis added)

Section 2 of Applicants’ declaration describes (in relevant part):

“Prior to June 30, 2003 we created a graphics processing system that operated
as Claimed using a computer system that successfully executed the Model Code. Prior
to June 30, 2003 we also created a graphics processing system as claimed in the form
of a computer system that used an RTL simulator to successfully validate the operation

Page 258 of 509 TCL 1002

Page 259 of 509 TCL 1002

Application/Control Number: 13/109,738 Page 5

Art Unit: 2628

of an integrated circuit version of the claimed graphics processing system and method
At least the following language and citations adequately support the above:

a. As shownin Exhibit A, the Model Code comprises various software
instructions written in the well-known C++ language. When executed by the
computer system, the Model Code caused the computer system to operate as
claimedin at least claims 1-5, 12 and 15 of the Invention.

b. Using the Model Code, we successfully verified the operation of the
claimed subject matterfor its intended purpose through emulation thereof.

c. As shownin Exhibit B, the Chip Design Code comprises various
instructions written in a well-known hardware description language. The Chip
Design Code was used by an RTL simulator system to validate the operation of
an integrated circuit version of the claimed graphics processing system and
method as claimedin at least claims 1-5, 12 and 15. As further known by
practitionersin the field of integrated circuit design, such instructions are used to
generate gate level detail for silicon fabrication.

d. On information andbelief, the computer system operating the Model
Code and the RTL simulator system operating the Chip Design Code represents
the claimed structure and operation embodied in an integrated graphics
processing circuit chip referred to as the ATI XENOSchip produced by ATI on or
about October, 2004 that was incorporated in the XBOX 360 product.

Accordingly, the contents of Exhibits A and B establish the possession byusof
the whole Invention, failing within the scope of currently pending claims, such as but not
limited to at least claims 1-5, 12 and 15.”

As quoted from Applicants’ declaration, section 2 describes that Exhibit A is

Model Codethat, when executed by the computer system, caused the computer system

to operate as claimedin at least claims 1-5, 12, and 15 of the Invention. Further,

section 2 describes that Exhibit B is Chip Design Code that was used by an RTL

simulator system to validate operation of an integrated circuit version of the claimed

graphics processing system and method asclaimedin at least claims 1-5, 12, and 15.

However, section 2, and the declaration as a whole,fails to clearly explain which

facts or data applicantis relying on to show completion of his or her invention prior to

Page 259 of 509 TCL 1002

Page 260 of 509 TCL 1002

Application/Control Number: 13/109,738 Page 6

Art Unit: 2628

the June 30, 2003. The portions of Applicants’ declaration quoted above are considered

nothing more than vague and general statements in broad terms about whatthe exhibits

describe along with general assertions that the exhibits describe a reduction to practice,

which does notsatisfy the requirements of 37 CFR 1.131 section (b). Thus, the

declaration is ineffective to overcomethe Lindholm reference due to this second

deficiency.

Regarding claim 1, the Examineris unable to determine which portions of Exhibit

A and/or Exhibit B describe the claimed method stepsof “performing vertex

manipulation operations and pixel manipulation operations...and continuing pixel

calculation operations that are to be or are currently being performed by the

processor..."

Regarding claim 2, the Examineris unable to determine which portions of Exhibit

A and/or Exhibit B describe the claimed “unified shader, comprising: a general purpose

register block...a processor unit; and a sequencer, coupled to the general purpose

register block and the processorunit...”

Regarding claims 3 and 4, the Examiner is unable to determine whichportions of

Exhibit A and/or Exhibit B describe the claimed “unified shader comprising: a processor

unit...and shared resources...the processor unit operative to use the shared

resources...”

Regarding claim 5, the Examineris unable to determine which portions of Exhibit

A and/or Exhibit B describe the claimed “unified shader comprising: a processorunit; a

sequencercoupled to the processorunit...”

Page 260 of 509 TCL 1002

Page 261 of 509 TCL 1002

Application/Control Number: 13/109,738 Page 7

Art Unit: 2628

Regarding claim 12, the Examineris unable to determine whichportions of

Exhibit A and/or Exhibit B describe the claimed “graphics processor comprising: a

unified shader comprising a processorunit...”

Regarding claim 15, the Examineris unable to determine whichportions of

Exhibit A and/or Exhibit B describe the claimed “unified shader comprising: a processor

unit flexibly controlled...”

Thus,for at least the reasons given above, the declaration filed 1/18/12 under 37

CFR 1.131 is ineffective to overcomethe Lindholm reference.

As an additional note, the Examiner wouldlike to point out that US Pat

7,015,913, to Lindholm etal., filed June 27", 2003, appears,after brief review,to

include a disclosurethat is similar to US Pat 7,038,685 to Lindholm, which is used in the

rejections that follow (see FIG. 2 of each patent). The Examiner has not given Lindholm

et al. (US 7,015,913) a thorough review as to whetheror notit teaches one or moreof

Applicants’ claims, but it may be worth Applicants’ time to review Lindholm et al. (US

7,015,913) and adjust the declaration such that conception and reduction to practice of

the claimed invention is declared to have occurredprior to June 27", 2003(if such a

statementis true), in order to avoid a future rejection based on the teachingsof prior art

reference Lindholm et al. (US 7,015,913).

Claim Rejections - 35 USC § 102

The following is a quotation of the appropriate paragraphsof 35 U.S.C. 102 that

form the basis for the rejections underthis section madein this Office action:

A personshall be entitled to a patent unless —

Page 261 of 509 TCL 1002

Page 262 of 509 TCL 1002

Application/Control Number: 13/109,738 Page 8

Art Unit: 2628

(e) the invention was described in (1) an application for patent, published under section 122(b), by
another filed in the United States before the invention by the applicant for patent or (2) a patent
granted on an application for patent by another filed in the United States before the invention by the
applicant for patent, except that an international application filed under the treaty defined in section
351 (a) shall have the effects for purposesof this subsection of an applicationfiled in the United States
onlyif the international application designated the United States and was published underArticle 21(2)
of suchtreaty in the English language.

Claims 1-16 are rejected under 35 U.S.C. 102(e) as being anticipated by

Lindholm (US 7,038,685).

RE claim 1, Lindholm describes a method comprising:

performing vertex manipulation operations and pixel manipulation operations by

transmitting vertex data to a general purposeregister block, and performing vertex

operations on the vertex data by a processor unless the general purpose register block

does not have enough available space therein to store incoming vertex data (

3:59-65: “Programmable Graphics Processing Pipeline 150 is programmed to
operate on surface,primitive, vertex, fragment, pixel, sample or any other data. For
simplicity, the remainder of this description will use the term 'samples'to refer to
graphics data such as surfaces,primitives, vertices, pixels, fragments, or the like."

6:38-59: “FIG.4 is an illustration of an alternate embodiment of Execution

Pipeline 240 containing at least one Multi-Threaded Processing Unit 400 ... In one
embodiment TSR [Thread Storage Resource] 325 stores thread data for each of at least
two thread types, where the at least two thread types mayincludepixel, primitive and
vertex.”

7:6-10: “In an alternate embodiment, Thread Control Unit 420 is configured to
assign threads to source samples or allocate locations in Register File 350 using thread
allocation priorities”.

7:36-43: “Once a thread is assigned to a source sample, the thread is allocated
storage resources suchas locations in a Register File 350 to retain intermediate data
generated during execution of program instructions associated with the thread."

9:33-56: "Instruction Dispatcher 440 gathers the source data from Pixel Input
Buffer 215, Vertex Input Buffer 220 or Register File 350 specified in an instruction and
outputs the instruction and source data to Execution Unit 470 including at least one
PCU 375 ... Execution Unit 470 is configured by the program instruction to
simultaneously process samples using PCUs 375to perform operations."

Page 262 of 509 TCL 1002

Page 263 of 509 TCL 1002

Application/Control Number: 13/109,738 Page 9

Art Unit: 2628

15:7-13: “In step 877 Thread Control Unit 320 or 420 determinesif storage
resourcesfor storing intermediate data generated during execution of the thread are
available. The storage resources may be in graphics memory. When storage
resources are not available in step 877, Thread Control Unit 320 or 420 does not
proceed to step 880 until a storage resources becomeavailable. In step 880 Thread
Control Unit 320 dispatches the thread assigned to the sample and sourcedata to at
least one PCU 375."

Thus, Lindholm describes performing vertex manipulation operations and pixel

manipulation operations by transmitting vertex data to a general purpose register block

(sample data, such as vertex or pixel data, is transmitted to Register File 350) and

performing vertex operations on the vertex data by a processor unless the general

purpose register block does not have enough available space therein to store incoming

vertex data (the multi-threaded processing unit 400 carries out vertex operations on

vertex data unless the Register File 350 doesn’t have enough room to store the

incoming vertex data, in which casethe thread associated with the vertex data and

vertex operations must wait until enough space becomesavailable); and

continuing pixel calculation operations that are to be or are currently being

performed by the processor based on instructions maintained in an instruction store

until enough registers within the general purpose register block become available (

7:6-21: “In an alternate embodiment, Thread Control Unit 420 is configured to
assign threads to source samplesor allocate locations in Register File 350 using thread
allocation priorities based on an amountof sample data in Pixel Input Buffer 215 and
another amountof sample data in Vertex Input Buffer 220."

8:15-58: "Thread Selection Unit 415 reads one or more thread entries based on

thread execution priorities and outputs selected thread entries to Instruction Cache 410.
Instruction cache 410 determinesif the program instructions corresponding to the
program counters and sample type included in the thread state data for each thread
entry are available in Instruction Cache 410 ... The program instructions corresponding
to the program counters from the one or more thread entries are output by Instruction

Page 263 of 509 TCL 1002

Page 264 of 509 TCL 1002

Application/Control Number: 13/109,738 Page 10

Art Unit: 2628

Cache 410 to ... Instruction Scheduler 430 ... Each clock cycle, Instruction Scheduler
430 evaluates whether any instruction within the IWU [instruction window unit] 485 can
be executed based on theavailability of computation resources in an Execution Unit
470 and source data stored in Register File 350. An instruction specifies the location of
source data needed to execute the instruction."

15:7-13: “In step 877 Thread Control Unit 320 or 420 determinesif storage
resourcesfor storing intermediate data generated during execution of the thread are
available. The storage resources may be in graphics memory. When storage
resources are not available in step 877, Thread Control Unit 320 or 420 does not
proceed to step 880 until a storage resources becomeavailable. In step 880 Thread
Control Unit 320 dispatches the thread assigned to the sample and sourcedata to at
least one PCU 375."

Thus, Lindholm is considered to describe an embodimentincluding continuing

pixel calculation operations that are to be or are currently being performed by the

processor based on instructions maintained in an instruction store until enough registers

within the general purpose register block becomeavailable, as the Execution Unit 470

may be carrying out calculations for one or morehighpriority pixel threads based on

instructions stored in Instruction Cache 410 and/or IWU 435 while a low priority vertex

thread is waiting for the one or morepixel threadsto finish such that when thepixel

threadsfinish the system will deallocate the resources assigned to the completed pixel

threads in the Register File 350 and will allocate the requested amountof resources to

the queued up vertex thread).

RE claim 2, Lindholm describes a unified shader, comprising:

a general purpose register block for maintaining data (

7:37-43: “Once a thread is assigned to a source sample, the thread is allocated
storage resources suchas locations in a Register File 350 to retain intermediate data
generated during execution of program instructions associated with the thread.”);

a processorunit (FIG. 4 “Execution Unit 470” and “PCU 375”);

Page 264 of 509 TCL 1002

Page 265 of 509 TCL 1002

Application/Control Number: 13/109,738 Page 11

Art Unit: 2628

a sequencer, coupled to the general purpose register block and the processor

unit, the sequencer maintaining instructions operative to cause the processorunit to

execute vertex calculation and pixel calculation operations on selected data maintained

in the general purposeregister block(

8:33-9:32 “Each clock cycle, Instruction Scheduler 430 evaluates whether any
instruction within the IWU 435 can be executed based on theavailability of computation
resources in an Execution Unit 470 and source data stored in Register File 350."

9:33-56 "Instruction Dispatcher 440 gathers the source data from Pixel Input
Buffer 215, Vertex Input Buffer 220 or Register File 350 specified in an instruction and
outputs the instruction and source data to Execution Unit 470 including at least one
PCU 375 ... Execution Unit 470 is configured by the program instruction to
simultaneously process samples using PCUs 375to perform operations."); and

wherein the processor unit executes instructions that generate a pixel color in

response to the selected one of the plurality of inputs and generates vertex position and

appearancedata in responseto a selected one ofthe plurality of inputs (

9:39-46 “Execution Unit 470 is configured by the program instruction to
simultaneously process samples using PCUs 375to perform operations ... and output
the processed sample to a destination specified by the instruction. The destination may
be Vertex Output Buffer 260, Pixel Output Buffer 270, or Register File 350.”

4:42-5:35 “Execution Pipelines 240 may receivefirst samples, such as higher-
order surface data, and tessellate the first samples to generate second samples, such
as vertices. Execution Pipelines 240 may be configured to transform the second
samples from an object-based coordinate representation (object space) to an
alternatively based coordinate system such as world space or normalized device
coordinates ... Execution Pipelines 240 output processed samples, such asvertices,
that are stored in a Vertex Output Buffer 260 ... Each Execution Pipeline 240 signals to
Pixel Input Buffer 240 when a sample can be accepted ... programmable computation
units (PCUs) within an Execution Pipeline 240 ... perform operations such as
tessellation, perspective correction, texture mapping, shading, blending, and the like.
Processed samples are output from each Execution Pipeline 240 to a Pixel Output
Buffer 270."

Page 265 of 509 TCL 1002

Page 266 of 509 TCL 1002

Application/Control Number: 13/109,738 Page 12

Art Unit: 2628

Thus, the Execution Unit 470 is considered a processorunit that executes

instructions that generate a pixel color in response to the selected oneofthe plurality of

inputs and generates vertex position and appearance data in responseto a selected

oneof the plurality of inputs (also see 4:22-5:35)).

RE claim 3, Lindholm describes a unified shader comprising:

a processorunit operative to perform vertex calculation operations and pixel

calculation operations (FIG. 4 “Execution Unit 470” and “PCU 375”.

6:38-59 “FIG.4 is an illustration of an alternate embodiment of Execution

Pipeline 240 containing at least one Multi-Threaded Processing Unit 400 ... In one
embodiment TSR [Thread Storage Resource] 325 stores thread data for each of at least
two thread types, wheretheat least two thread types mayincludepixel, primitive and
vertex.”

9:33-56 "Instruction Dispatcher 440 gathers the source data from Pixel Input
Buffer 215, Vertex Input Buffer 220 or Register File 350 specified in an instruction and
outputs the instruction and source data to Execution Unit 470 including at least one
PCU 375 ... Execution Unit 470 is configured by the program instruction to
simultaneously process samples using PCUs 375to perform operations."

Thus, the Execution Unit 470 and internal PCU 375 are collectively considered a

processorunit operative to perform vertex calculation operations and pixel calculation

operations); and

shared resources, operatively coupled to the processorunit (FIG.4 illustrates

Register File 350 coupled to Execution Unit 470, and 7:37-43 describes that the

Register File 350 is shared among threads);

the processorunit operative to use the shared resourcesfor either vertex data or

pixel information and operative to perform pixel calculation operations until enough

shared resources becomeavailable and then use the shared resources to perform

Page 266 of 509 TCL 1002

Page 267 of 509 TCL 1002

Application/Control Number: 13/109,738 Page 13

Art Unit: 2628

vertex calculation operations (7:37-43,all types of processing threads can use the

Register File 350, where thread typesinclude vertex and pixel threads (see 6:43-44).

7:6-36 “In an alternate embodiment, Thread Control Unit 420 is configured to
assign threads to source samples or allocate locations in Register File 350 using thread
allocation priorities based on an amountof sample data in Pixel Input Buffer 215 and
another amountof sample data in Vertex Input Buffer 220."

15:7-13 “In step 877 Thread Control Unit 320 or 420 determinesif storage
resourcesfor storing intermediate data generated during execution of the thread are
available. The storage resources may be in graphics memory. When storage
resources are not available in step 877, Thread Control Unit 320 or 420 does not
proceed to step 880 until a storage resources becomeavailable. In step 880 Thread
Control Unit 320 dispatches the thread assigned to the sample and sourcedata to at
least one PCU 375."

Thus, whenpixel threads havepriority over vertex threads the processorunitwill

allocate the pixel data to the Register File 350 and will perform pixel calculation

operations until enough shared resources becomeavailable in the Register File 350 to

begin carrying out vertex threads, which may happenasa result of a completion of most

of the pixel threads ora shift in priority such that the vertex threads now havethe

highestpriority, and then use the Register File 350 to perform vertex calculation

operations.

RE claim 4, Lindholm describes a unified shader comprising:

a processorunit operative to perform vertex calculation operations and pixel

calculation operations (see the corresponding section in the rejection of claim 3); and

shared resources, operatively coupled to the processor unit (see the

corresponding section in the rejection of claim 3);

the processorunit operative to use the shared resourcesfor either vertex data or

pixel information and operative to perform vertex calculation operations until enough

Page 267 of 509 TCL 1002

Page 268 of 509 TCL 1002

Application/Control Number: 13/109,738 Page 14

Art Unit: 2628

shared resources becomeavailable and then use the shared resources to perform pixel

calculation operations (7:37-48, all types of processing threads can use the Register

File 350, where thread typesinclude vertex andpixel threads (see 6:43-44).

7:6-36 “In an alternate embodiment, Thread Control Unit 420 is configured to
assign threads to source samples or allocate locations in Register File 350 using thread
allocation priorities based on an amountof sample data in Pixel Input Buffer 215 and
another amountof sample data in Vertex Input Buffer 220."

15:7-13 “In step 877 Thread Control Unit 320 or 420 determinesif storage
resourcesfor storing intermediate data generated during execution of the thread are
available. The storage resources may be in graphics memory. When storage
resources are not available in step 877, Thread Control Unit 320 or 420 does not
proceed to step 880 until a storage resources becomeavailable. In step 880 Thread
Control Unit 320 dispatches the thread assigned to the sample and source data to at
least one PCU 375."

Thus, when vertex threads have priority over pixel threads the processorunitwill

allocate the vertex data to the Register File 350 and will perform vertex calculation

operations until enough shared resources becomeavailable in the Register File 350 to

begin carrying out pixel threads, which may happenasa result of a completion of most

of the vertex threadsora shift in priority such that the pixel threads now havethe

highestpriority, and then use the Register File 350 to perform pixel calculation

operations.

RE claim 5, Lindholm describes a unified shader comprising:

a processorunit (FIG. 4 “Execution Unit 470” and “PCU 375”);

a sequencercoupledto the processor unit, the sequencer maintaining

instructions operative to cause the processorunit to execute vertex calculation and pixel

calculation operations on selected data maintained in a store depending upon an

amountof space available in the store (

Page 268 of 509 TCL 1002

Page 269 of 509 TCL 1002

Application/Control Number: 13/109,738 Page 15

Art Unit: 2628

8:33-9:32 “Each clockcycle, Instruction Scheduler 430 evaluates whether any
instruction within the IWU 435 can be executed based on theavailability of computation
resources in an Execution Unit 470 and source data stored in Register File 350."

9:33-56 "Instruction Dispatcher 440 gathers the source data from Pixel Input
Buffer 215, Vertex Input Buffer 220 or Register File 350 specified in an instruction and
outputs the instruction and source data to Execution Unit 470 including at least one
PCU 375 ... Execution Unit 470 is configured by the program instruction to
simultaneously process samples using PCUs 375to perform operations."

7:6-10 “In an alternate embodiment, Thread Control Unit 420 is configured to
assign threads to source samples or allocate locations in Register File 350 using thread
allocation priorities”.

15:7-13 “In step 877 Thread Control Unit 320 or 420 determinesif storage
resourcesfor storing intermediate data generated during execution of the thread are
available. The storage resources may be in graphics memory. When storage
resources are not available in step 877, Thread Control Unit 320 or 420 does not
proceed to step 880 until a storage resources becomeavailable. In step 880 Thread
Control Unit 320 dispatches the thread assigned to the sample and sourcedata to at
least one PCU 375."

Thus, the Scheduler 430 and Instruction Dispatcher 440 are collectively

considered a sequencer coupled to the Execution Unit 470, the sequencer maintaining

instructions operative to cause the Execution Unit 470 to execute vertex calculation and

pixel calculation operations on selected data maintained in a Register File 350

depending upon an amountof space available in the Register File 350).

RE claim 6, Lindholm describes the shaderof claim 5, wherein the sequencer

further includescircuitry operative to fetch data from a memory(

9:33-56 "Instruction Dispatcher 440 gathers the source data from Pixel Input
Buffer 215, Vertex Input Buffer 220 or Register File 350”).

RE claim 7, Lindholm describes the shaderof claim 5, further including a

selection circuit operative to provide information to the store in responseto a control

signal(

Page 269 of 509 TCL 1002

Page 270 of 509 TCL 1002

Application/Control Number: 13/109,738 Page 16

Art Unit: 2628

6:60-7:36 “Thread allocation priority, as described further herein, is used to
assign a thread to a source sample. A thread allocation priority is specified for each
sample type and Thread Control Unit 420 is configured to assign threads to samples or
allocate locations in a Register File 350 based on thepriority assigned to each sample
type. The thread allocation priority may befixed, programmable, or dynamic.”

The Thread Control Unit 420 is considered a selection circuit operative to provide

information to the store (Register File 350) in responseto a control signal, where the

control signal is the thread allocation priority associated with each thread or thread

type).

RE claim 8, Lindholm describes the shaderof claim 5, wherein the processorunit

executesinstructions that generate a pixel color in response to the selected one of the

plurality of inputs (

5:11-35 “Pixel Input Buffer 215 outputs the samples to each Execution Pipeline
240 ... Each Execution Pipeline 240 signals to Pixel Input Buffer 240 when a sample
can be accepted... programmable computation units (PCUs) within an Execution
Pipeline 240 ... perform operations such as tessellation, perspective correction, texture
mapping, shading, blending, and the like. Processed samples are output from each
Execution Pipeline 240 to a Pixel Output Buffer 270.").

RE claim 9, Lindholm describes the shaderof claim 5, wherein the processorunit

executes vertex calculations while the pixel calculations arestill in progress(

6:38-59 “FIG.4 is an illustration of an alternate embodiment of Execution

Pipeline 240 containing at least one Multi-Threaded Processing Unit 400... In one
embodiment TSR [Thread Storage Resource] 325 stores thread data for each of at least
two thread types, wheretheat least two thread types mayincludepixel, primitive and
vertex.”

9:39-49 “Execution Unit 470 is configured by the program instruction to
simultaneously process samples using PCUs 375 to perform operations ... Execution
Unit 470 can simultaneously process samples of different types, and, likewise, execute
threadsofdifferent types.”).

Page 270 of 509 TCL 1002

Page 271 of 509 TCL 1002

Application/Control Number: 13/109,738 Page 17

Art Unit: 2628

RE claim 10, Lindholm describes the shaderof claim 5, wherein the processor

unit generates vertex position and appearance data in response to a selected oneof the

plurality of inputs (

4:42-5:35 “Execution Pipelines 240 may receivefirst samples, such as higher-
order surface data, and tessellate the first samples to generate second samples, such
as vertices. Execution Pipelines 240 may be configured to transform the second
samples from an object-based coordinate representation (object space) to an
alternatively based coordinate system such as world space or normalized device
coordinates ... Execution Pipelines 240 output processed samples, such asvertices,
that are stored in a Vertex Output Buffer 260”).

RE claim 11, Lindholm describes the shaderof claim 7, wherein the control

signal is provided by an arbiter(

6:60-7:36 “Thread allocation priority, as described further herein, is used to
assign a thread to a source sample. A thread allocation priority is specified for each
sample type and Thread Control Unit 420 is configured to assign threads to samplesor
allocate locations in a Register File 350 based on the priority assigned to each sample
type. The thread allocation priority may be fixed, programmable, or dynamic ... In an
alternate embodiment, Thread Control Unit 420 is configured to assign threads to
source samples or allocate locations in Register File 350 using thread allocation
priorities based on an amountof sample data in Pixel Input Buffer 215 and another
amount of sample data in Vertex Input Buffer 220 ... In a further alternate embodiment,
Thread Control Unit 420 is configured to assign threads to source samplesor allocate
locations in Register File 350 using thread allocation priorities based on graphics
primitive size”.

Thus, while an arbiter isn't explicitly described, the Examiner considersit inherent

that some portion of the system acts as an arbiter, and therefore can be considered an

arbiter, as someportion of the system assignspriorities to thread and sample types

according to the current processing circumstances, in order to moreefficiently process

the data).

RE claim 12, Lindholm describes a graphics processor comprising:

Page 271 of 509 TCL 1002

Page 272 of 509 TCL 1002

Application/Control Number: 13/109,738 Page 18

Art Unit: 2628

a unified shader comprising a processorunit that executes vertex calculations

while the pixel calculations are still in progress (

6:38-59 “FIG.4 is an illustration of an alternate embodiment of Execution

Pipeline 240 containing at least one Multi-Threaded Processing Unit 400 ... In one
embodiment TSR [Thread Storage Resource] 325 stores thread data for each of at least
two thread types, wherethe at least two thread types may includepixel, primitive and
vertex.”

9:39-49 “Execution Unit 470 is configured by the program instruction to
simultaneously process samples using PCUs 375 to perform operations ... Execution
Unit 470 can simultaneously process samplesof different types, and, likewise, execute
threadsofdifferent types.”).

RE claim 13, Lindholm describes the graphics processorof claim 12 wherein the

unified shader comprises a sequencer coupled to the processorunit, the sequencer

maintaining instructions operative to cause the processorunit to execute vertex

calculation and pixel calculation operations on selected data maintained in a store

depending upon an amountof space available in the store (see the corresponding

section in the rejection of claim 5).

RE claim 14, Lindholm describes the graphics processorof claim 12 comprising

a vertex block operative to fetch vertex information from memory (see the rejection of

claim 6).

RE claim 15, Lindholm describes a unified shader comprising:

a processorunit flexibly controlled to perform vertex manipulation operations and

pixel manipulation operations based on vertex or pixel workload (

7:6-36 “Thread Control Unit 420 is configured to assign threads to source
samplesor allocate locations in Register File 350 using thread allocation priorities
based on an amountof sample data in Pixel Input Buffer 215 and another amountof
sample data in Vertex Input Buffer 220 ... In a further alternate embodiment, Thread
Control Unit 420 is configured to assign threads to source samplesor allocate locations

Page 272 of 509 TCL 1002

Page 273 of 509 TCL 1002

Application/Control Number: 13/109,738 Page 19

Art Unit: 2628

in Register File 350 using thread allocation priorities based on graphics primitive size
(numberof pixels or fragments included in a primitive)”.

9:39-49 “Execution Unit 470 is configured by the program instruction to
simultaneously process samples using PCUs 375 to perform operations ... Execution
Unit 470 can simultaneously process samples of different types, and, likewise, execute
threadsofdifferent types.”).

RE claim 16, Lindholm describes the shaderof claim 15 comprising an

instruction store and wherein the processor unit performs the vertex manipulation

operations and pixel manipulation operations at various degrees of completion based on

switching betweeninstructionsin the instruction store (FIG. 4 and 8:15-46 describes

Instruction Cache 410, which is considered aninstruction store.

9:33-56 "Instruction Dispatcher 440 gathers the source data from Pixel Input
Buffer 215, Vertex Input Buffer 220 or Register File 350 specified in an instruction and
outputs the instruction and source data to Execution Unit 470 including at least one
PCU 375 ... Execution Unit 470 is configured by the program instruction to
simultaneously process samples using PCUs 375 to perform operations... Execution
Unit 470 can simultaneously process samples of different types, and, likewise, execute
threadsof different types.”

Thus, the Execution Unit 470 performs the vertex manipulation operations and

pixel manipulation operations at various degrees of completion based on switching

betweeninstructions in the instruction store).

Conclusion

THIS ACTION IS MADEFINAL. Applicant is reminded of the extension of time

policy as set forth in 37 CFR 1.136(a).

A shortened statutory period for reply to this final action is set to expire THREE

MONTHSfrom the mailing date of this action. In the eventa first reply is filed within

TWO MONTHSofthe mailing date of this final action and the advisory action is not

Page 273 of 509 TCL 1002

Page 274 of 509 TCL 1002

Application/Control Number: 13/109,738 Page 20

Art Unit: 2628

mailed until after the end of the THREE-MONTHshortenedstatutory period, then the

shortened statutory period will expire on the date the advisory action is mailed, and any

extension fee pursuantto 37 CFR 1.136(a) will be calculated from the mailing date of

the advisory action. In no event, however,will the statutory period for reply expire later

than SIX MONTHSfrom the mailing date ofthis final action.

Anyinquiry concerning this communication or earlier communications from the

examiner should be directed to DANIEL WASHBURNwhosetelephone numberis

(571)272-5551. The examiner can normally be reached on 9:30 A.M. to 6 P.M..

If attempts to reach the examiner by telephone are unsuccessful, the examiner’s

supervisor, Ulka Chauhan can be reached on 571-272-7782. The fax phone numberfor

the organization wherethis application or proceeding is assigned is 571-273-8300.

Information regarding the status of an application may be obtained from the

Patent Application Information Retrieval (PAIR) system. Status information for

published applications may be obtained from either Private PAIR or Public PAIR.

Status information for unpublished applications is available through Private PAIR only.

For more information about the PAIR system, see http://pair-direct.uspto.gov. Should

you have questions on accessto the Private PAIR system, contact the Electronic

Business Center (EBC) at 866-217-9197 (toll-free). If you would like assistance from a

USPTO Customer Service Representative or access to the automatedinformation

system, call 800-786-9199 (IN USA OR CANADA)or 571-272-1000.

/DANIEL WASHBURN/

Primary Examiner, Art Unit 2628
3/11/12

Page 274 of 509 TCL 1002

Page 275 of 509 TCL 1002

Application/Control No. Applicant(s)/Patent Under
Reexamination

Search Notes 13109738 MOREIN ETAL.

Examiner Art Unit

DANIEL WASHBURN 2628

SEARCHED

<8—_Subelass___Pete_aaiiupdated|ta|

SEARCH NOTES

Searched EAST(all databases) see searchhistory printout Pate_|__Examiner_|
|Alsoseesearchhistoriesforapps12/791,597and11/842,256|72/11TDW
|conductedinventornamesearchTTTW

INTERFERENCE SEARCH

/DANIEL WASHBURN/

Primary Examiner.Art Unit 2628
U.S. Patent and Trademark Office Page 275 of 509 Part of Paper nol:Gileod,Q02

Page 276 of 509 TCL 1002

Receiptdate: 07/14/2011 13109738 - GAlebioaGee,
eye . . . Approvedfor use through 07/31/2012. OMB 0651-0031

Doc description: Information Disclosure Statement (IDS) Filed U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE
Underthe Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number.

Application Number 13109738

Filing Date 2011-05-17

INFORMATION DISCLOSURE First Named Inventor|Stephen Morein
STATEMENT BY APPLICANT |... ES
(Not for submission under 37 CFR 1.99)

Examiner Name na

Attorney Docket Number | 90100.36.0001

U.S.PATENTS Remove

Examiner] Cite Kind Nameof Patentee or Applicant Pages,Columns,Lines where
ae ie Patent Number Issue Date . Relevant Passages or RelevantInitial No Code’ of cited Document .

Figures Appear

1 3550962 1996-08-27 Nakamuraetal.

2 3818469 1998-10-06 Lawlesset al.

3 6118452 2000-09-12 Gannett

4 6353439 2002-03-05 Lindholm etal.

5 6384824 2002-05-07 Morganetal.

6 6417858 2002-07-09 Bosch et al.

7 6573893 2003-06-03 Naqvi et al.

8 6650327 2002-11-18 Airey et al.

crswe2it7 ALL REFERENCES CONSS#189S808ePT WHERE LINED THRESHHQ94%) Ww

Page 277 of 509 TCL 1002

Receipt date: 07/14/2011

INFORMATION DISCLOSURE

STATEMENT BY APPLICANT

(Not for submission under 37 CFR 1.99)

Application Number 13109738 13109738 - GAU: 2628

Filing Date 2011-05-17

First Named Inventor|Stephen Morein

Art Unit | 2628
Examiner Name na

Attorney Docket Number | 90100.36.0001

6650330

6704018

6724394

6731289

w==== ~-Bo
6809732

6864893

ao 6897871

6980209

= 7015913

7038685

7327369

EFS Web 2.1.17

2003-11-18 Lindholm etal.

2004-03-09 Mori et al.

2004-04-20 Zatz et al.

2004-05-04 Peercy etal.

2004-10-26 Zatz et al.

2005-03-08 Zatz

2005-05-24 Morein etal.

2005-12-27 Donhametal.

2006-03-21 Lindholm etal.

2006-05-02 Lindholm

2008-02-05 Morein etal.

ALL REFERENCES CONSSS720DS5QePT WHERE LINED THRQ0%pWw

Page 278 of 509 TCL 1002

Receipt date: 07/14/2011 Application Number 13109738 13109738 - GAU: 2628
Filing Date 2011-05-17

INFORMATION DISCLOSURE

STATEMENT BY APPLICANT

(Not for submission under 37 CFR 1.99)

First Named Inventor|Stephen Morein

Art Unit | 2628

 Examiner Name na
Attorney Docket Number | 00100.36.0001

5485559 1996-01-16 Sakaibara et al.

7239322 B2 2007-07-03 Lefebvre etal.

If you wish to add additional U.S. Patent citation information pleaseclick the Add button. Add

U.S.PATENT APPLICATION PUBLICATIONS Remove

Pages,Columns,Lines where
Relevant Passages or Relevant
Figures Appear

Examiner Publication Kind|Publication Nameof Patentee or Applicant
Initial* Number Code'| Date of cited Document

20050068325 2005-03-31

erswe21t7 ALL REFERENCES CONSS#2429DS808epT WHERE LINED THRESHAHQ94%D Ww

Page 279 of 509 TCL 1002

Receipt date: 07/14/2011 Application Number 13109738 13109738 - GAU: 2628
Filing Date 2011-05-17

INFORMATION DISCLOSURE

STATEMENT BY APPLICANT

(Not for submission under 37 CFR 1.99)

First Named Inventor|Stephen Morein

Art Unit | 2628

 Examiner Name na

Attorney Docket Number | 00100.36.0001

20100231592 Moreinetal.

20030030643 Taylor et al.

20070222785 Lefebvre etal

20070222787 Lefebvre etal

20050200629 Moreinetal.

20070222786 Lefebvre etal

20070285427 Moreinetal.

20100156915 2010-06-24 Lefebvre etal.

If you wish to add additional U.S. Published Application citation information pleaseclick the Add button. Add

FOREIGN PATENT DOCUMENTS Remove

Nameof Patenteeor Pages,Columns,Lines

Examiner Cite|Foreign Document Country Kind|Publication Applicantofcited where Relevant
Initial* Number3 Code2 | Code4 Date PP Passages or Relevant

Document Figures Appear

j_ — mane

erswe21t7 ALL REFERENCES CONSS#2#129S808ePT WHERE LINED THRESHHQ94%D Ww

Page 280 of 509 TCL 1002

Receipt date: 07/14/2011 Application Number 13109738 13109738 - GAU: 2628
Filing Date 2011-05-17

INFORMATION DISCLOSURE

STATEMENT BY APPLICANT

(Not for submission under 37 CFR 1.99)

First Named Inventor|Stephen Morein

Art Unit | 2628

 Examiner Name na
Attorney Docket Number | 00100.36.0001

_ —ee

 S- ee—|
If you wish to add additional Foreign Patent Documentcitation information please click the Add button

NON-PATENT LITERATURE DOCUMENTS Remove

Include nameof the author (in CAPITAL LETTERS},title of the article (when appropriate), title of the item
(book, magazine, journal, serial, symposium, catalog, etc}, date, pages(s), volume-issue number(s), TS
publisher, city and/or country where published.

Examiner] Cite

Initials*|No

1 European Patent Office Examination Report; EP Application No. 04798938.9; dated November9, 2006; pages 1-3. [|

PURCELL, TIMOTHY J. et al.; Ray Tracing on Programmable Graphics Hardware; SIGGRAPH ‘02; San Antonio, TX; Ol
ACM Transactions on Graphics; July 2002; vol. 21, no. 3; pgs. 703-712.

3 MARK, WILLIAM R.et al.; CG: A system for programming graphics hardwarein a C-like language; SIGGRAPH '03; Ol
San Diego, CA; ACM Transactions on Graphics; July 2002; vol. 22, no. 3; pgs. 896-907.

4 BRETERNITZ, JR., MAURICIO et al.; Compilation, Architectural Support, and Evaluation of SIMD Graphics Pipeline Ol
Programs on a General-Purpose CPU; IEEE; 2003; pgs. 1-11.

5 International Search Report and Written Opinion; International Application No. PCT/IB2004/003821- dated March 27, Ol2005.

6 EP Supplemental Search Report; EP Application No. 10075688.1; dated February 25, 2011. [|

7 EP Supplemental Search Report; EP Application No. 10075686.5; dated February 25, 2011. [|

crswe21t7 ALL REFERENCES CONS99=#899E508epT WHERE LINED THRESHAHQ94%D Ww

Page 281 of 509 TCL 1002

Receipt date: 07/14/2011 Application Number 13109738 13109738 - GAU: 2628
Filing Date 2011-05-17

INFORMATION DISCLOSURE

STATEMENT BY APPLICANT

(Not for submission under 37 CFR 1.99)

First Named Inventor|Stephen Morein

Art Unit | 2628

Examiner Name na

Attorney Docket Number | 00100.36.0001

EP Supplemental Search Report; EP Application No. 10075687.3; dated February 25, 2011.

EP Supplemental Search Report; EP Application No. 10075685.7; dated February 25, 2011.

ELDRIDGE, MATTHEWet al.; Pomegranate: A Fully Scalable Graphics Architecture; Computer Graphics, SIGGRAPH
2000 Conference Proceedings: July 23, 2000.

OWENS,JOHN D. et al.; Polygon Rendering on a Stream Architecture; Proceedings 2000 SIGGRAPH/Eurographics
Workshop on Graphics Hardware: August 21, 2000.

Chinese Office Action; Chinese Application No. 2004800405708; dated September, 2008.

Chinese Office Action; Chinese Application No. 2004800405708; dated November, 2009.

Chinese Office Action; Chinese Application No. 2004800405708; dated September, 2010

If you wish to add additional non-patentliterature documentcitation information please click the Add button Add

EXAMINER SIGNATURE

ExaminerSignature /Daniel Washburn/ Date Considered 03/1 1/2012

*EXAMINER:Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through a
citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

1 See Kind Codes of USPTO Patent Documents at www.USPTO.GOV or MPEP 901.04. 2 Enter office that issued the document, by the two-letter code (WIPO
Standard ST.3). * For Japanese patent documents,the indication of the year of the reign of the Emperor must precede the serial numberof the patent document.
4 Kind of document by the appropriate symbols as indicated on the document under WIPO Standard ST.16 if possible. ° Applicant is to place a check mark here if]
English language translation is attached.

crswe21t7 ALL REFERENCES CONS99#8295908epT WHERE LINED THRESHH99%DWw

Page 282 of 509 TCL 1002

EASTSearch History

EAST Search History

EAST Search History (Prior Art)

iSearch Query Plurals(Time

TEaann eeebtbeEEEReedfaceted haatbeeen

1345/501 .ccls.

Bh aa aavanan en enean en eneen payne ae payne an ea eas an ea eas anes eas aseaeas as passe aseseasaseasasaseaeasassaeasd Mavaessuacesssvaeasaseaeasd bavasanuaeaeaseaeaeaseaeas devavasaseaeasaseaeas Rasvasaseaeasaseaeasaseaeasd

Ylindholm.in. and nvidia.as.

eeeneeest ba eeeee eeeee heeneeeeeeneeeeeeeeeeeeeeneeeeeeeeeetReeereeee beeeeeeet beehet

dlindholm.in. and nvidia.as. and shader

SBawneee ened haceeeEeEEEEEEEEEEEEEEEEfeedfeentbE

Ylindholm.in. and nvidia.as. and shader and |
‘vertex and pixel \

indholm.in. and nvidia.as. and shader and
‘vertex and pixel and sequencer

‘lindholm.in. and nvidia.as. and shader and | US- PGPUB;}
‘vertex and pixel and sequenc$3 :IUSPAT;

#USOCR;
HFPRS;
EPO; JPO; }
¥DERWENT;:
qIBM_TDB

‘pixel adj input adj buffer and vertex adj©¢US-PGPUB;:
jinput adj buffer and vertex adj output adj GUSPAT; ;
Hbuffer and pixel adj output adj buffer {USOCR;

NFPRS,
EPO; JPO; :
|IDERWENT;.

 a25 ipixel adj input adj buffer and vertex adj ¥US- PGPUB;:08 a aor
: ; T *Page 282 of 509

file:///C\/Users/dwashburn 1/Documents/e-Red%20Folder/13109738/EASTSearchHistory.13109738_AccessibleVersion.htm[3/1 1/2012 2:55:30 PM]

L 1002

Page 283 of 509 TCL 1002

EASTSearch History

"20070222786"
"20070285427" | "20100156915"|
4"20100231592" | "5485559" | "5550962" | |
"5818469" | "6118452" | "6353439"|

‘input adj buffer and vertex adj output adj {USPAT; | 14:29
buffer and pixel adj output adj buffer and USOCR; : ;
raster adj unit FPRS;

EPO; JPO; |

|IDERWENT;

10/609967

4("20030030643" | "20030076320"|
"20040041814"|
"20050068325"|

|"20050200629" | "20070222785"
| "20070222787"|

"6417858" | "6573893"|
"6650330"|"6704018"|
"6731289"|"6809732"|
"6897871"|"6980209"|

|"7015913" "7038685"|"7239322"
#"7327369"|"7742053"

EAST Search History (Interference)

< This search history is empty>

3/11/2012 2:55:21 PM

C:\ Users\ dwashburn1\ Documents\ EAST\ Workspaces\ Morein et al. 11117863.wsp

Page 283 of 509

TCL 1002

file:///C\/Users/dwashburn 1/Documents/e-Red%20Folder/13109738/EASTSearchHistory.13109738_AccessibleVersion.htm[3/1 1/2012 2:55:30 PM]

Page 284 of 509 TCL 1002

Application/Control No. Applicant(s)/Patent Under
Reexamination

Index of Claims 13109738 MOREIN ET AL.

Examiner Art Unit

DANIEL WASHBURN 2628

Rejected | Cancelled Non-Elected

(1 Claims renumberedin the same order as presented by applicant

CLAIM DATE

Final|Original[oviiazorijostveor2}||TT

pot|weEw
aaaGG
aaaGe
aaaa

aa
eeee P|
aaaeG
pos|vy|w[| PT
poo|ew|we|
Ceee PT
poate
eeeeee | ee
a ee
|14|;: }}15

wot owTw|TC

< <

U.S. Patent and TrademarkOffice Part of Paper No. : 20120311

Page 284 of 509 TCL 1002

Page 285 of 509 TCL 1002

PTO/SB/30 (07-09)
Approved for use through 07/31/2012. OMB 0651-0031

U.S. Patent and Trademark Office; US. DEPARTMENT OF COMMERCE
Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number.

Reauest Application Number 18/108, 738
a, or Filing Date May 17 2014

Continued Examination (RCE) : 7 3
|Examinat rth

Mail Stop RCE Art Unit
Commissionerfor Patents Daniel C. Washburn

|
P.O. Box 1450

Alexandria, VA 22313-1450 Attorney Docket Number |®0100.36.000:
This is a Request for Continued Examination (RCE) under 37 CFR 1.114 of the above-identified application.
Request for Continued Examination (RCE) practice under 37 CFR 1.114 does not apply to anyutility or plant application filed prior to June 8,
1995, or to any design application. See Instruction Sheet for RCEs(not to be submitted to the USPTO) on page2.

Submission required under 37 CFR 1.114) Note: If the RCE is proper, any previously filed unentered amendments and
amendments enclosed with the RCE will be entered in the order in which they werefiled unless applicant instructs otherwise.If
applicant does not wishto have any previously filed unentered amendment(s) entered, applicant must request non-entry of such
amendmeni(s).

Previously submitted. If a final Office action is outstanding, any amendmentsfiled after the final Office action may be
a. considered as a submission evenif this box is not checked.

CJ Consider the arguments in the Appeal Brief or Reply Brief previouslyfiled on
li. [] Other

b. Enclosed

I. Amendment/Reply iii. [| Information Disclosure Statement (IDS)
ii. [| Affidavit(s)/ Declaration(s) iv. Other Replacement Abstract

Miscellaneous

Suspension of action on the above-identified application is requested under 37 CFR 1.103(c) for a
period of months. (Period of suspension shall not exceed 3 months; Fee under 37 CFR 1.17(i) required)
Other

The RCE fee under 37 CFR 1.17(e) is required by 37 CFR 1.114 whenthe RCEisfiled.

The Director is hereby authorized to charge the following fees, any underpaymentof fees, or credit any overpayments, to
Deposit Account No. 02-0380

RCEfee required under 37 CFR 1.17(e)

ii. Extension of time fee (37 CFR 1.136 and 1.17)

iii, [| Other
b. [| Checkin the amountof $ enclosed

C.[] Paymentbycredit card (Form PTO-2038enclosed)
WARNING: Information on this form may becomepublic. Credit card information should not be included onthis form. Provide credit
card information and authorization on PTO-2038.

SIGNATURE OF APPLICANT, ATTORNEY, OR AGENT REQUIRED

Signature iChristopher J. Reckamo/ Date September 17, 2012

Name(Print/Type) Christapher J. Reckamp Registration No. |a44i4
CERTIFICATE OF MAILING OR TRANSMISSION

| hereby certify that this correspondenceis being deposited with the United States Postal Service with sufficient postage asfirst class mail in an envelope
addressed to: Mail Stop RCE, Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450 or facsimile transmitted to the U.S. Patent and Trademark
Office on the date shown below.

a
Nane Panty)|OOSCSCSCCCC*?
This collection of information is required by 37 CFR 1.114. The information is required to obtain or retain a benefit by the public whichis to file (and by the USPTO
to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.11 and 1.14. This collection is estimated to take 12 minutes to complete,
including gathering, preparing, and submitting the completed application form to the USPTO. Timewill vary depending uponthe individual case. Any comments on
the amountof time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and
Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SE ND FEES OR COMPLETED FORMS TO_ THIS
ADDRESS. SEND TO: Mail Stop RCE, Commissionerfor Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

If you need assistance in com eS call.1-800-PTO-9199 and select option 2.age 285 of 509 TCL 1002

Page 286 of 509 TCL 1002

Electronic Patent Application Fee Transmittal

Title of Invention: GRAPHICS PROCESSING ARCHITECTURE EMPLOYING A UNIFIED SHADER

fein

Utility under 35 USC 111(a) Filing Fees

Sub-Total in

USD(S$)
Description Fee Code Quantity

ee

Extension - 3 months with $0 paid Page 486 of B09 TGb002

Page 287 of 509 TCL 1002

Miscellaneous:

Total in USD (S$) 2200

Page 287 of 509 TCL 1002

Page 288 of 509 TCL 1002

Electronic AcknowledgementReceipt

International Application Number: Bd

Title of Invention: GRAPHICS PROCESSING ARCHITECTURE EMPLOYING A UNIFIED SHADER

First Named Inventor/Applicant Name:

Application Type: Utility under 35 USC 111)

Paymentinformation:

Submitted with Payment

Payment was successfully received in RAM $2200

RAM confirmation Number 14512

Deposit Account 020390

File Listing:

Document gs » File Size(Bytes)/ Mult Page 2 9 y TCLPaS2ge 268401 pan ant TS

Page 289 of 509 TCL 1002

Extension of Time 36001-Extension-Time.pdf
79ce6d6cd 14bdf5f5e61865d262cbe8d 115

al840

Information:

360001-Response.pdf
88229b33dcb3cfc0e421a2497cbf0a02cd 9d}

52dc

Multipart Description/PDFfiles in .zip description

cence[see
Amendment Submitted/Entered with Filing of CPA/RCE

Amendment Submitted/Entered with Filing of CPA/RCE pefo

Information:

Request for Continued Examination
(RCE) 2b5a0b84836700326a0625e81e8130d639

efc66b

This is not a USPTO supplied RCE SB30 form.

Fee Worksheet (SB06) fee-info.pdf
£c31d73f740d0f1 ecad2a9095838aa7f6d8s

ada4

Page 289 of 509 TCL 1002

Page 290 of 509 TCL 1002

This AcknowledgementReceipt evidences receipt on the noted date by the USPTOofthe indicated documents,
characterized by the applicant, and including page counts, where applicable.It serves as evidence of receipt similar to a
Post Card, as described in MPEP 503.

New Applications Under 35 U.S.C. 111
If a new application is being filed and the application includes the necessary componentsfora filing date (see 37 CFR
1.53(b)-(d) and MPEP 506), a Filing Receipt (37 CFR 1.54) will be issued in due course and the date shownonthis
AcknowledgementReceiptwill establish thefiling date of the application.

National Stage of an International Application under 35 U.S.C. 371
If a timely submission to enter the national stage of an international application is compliant with the conditions of 35
U.S.C. 371 and other applicable requirements a Form PCT/DO/EO/903indicating acceptanceof the application as a
national stage submission under 35 U.S.C. 371 will be issued in addition to the Filing Receipt, in due course.

New International Application Filed with the USPTO as a Receiving Office
If a new internationalapplication is being filed and the international application includes the necessary components for
an internationalfiling date (see PCT Article 11 and MPEP 1810), a Notification of the International Application Number
and of the International Filing Date (Form PCT/RO/105)will be issued in due course, subject to prescriptions concerning
nationalsecurity, and the date shownon this AcknowledgementReceiptwill establish the internationalfiling date of
the application.

Page 290 of 509 TCL 1002

Page 291 of 509 TCL 1002

PTOISB/Z2 (09-11)
Approved for use through 07/34/2012, OMB 0651-0031

U.S. Patent and Trademark Office; U.S. DEPARMENT OF COMMERCE
Under the paperwork Reduction Act of 1995, no persons are required to respand to a collection of information unless it displays a valid QMB contrai number.

g Docket Nurnber (Optional)

| 00700.36.0001

Application Number 13/108,738 i Fited May 17, 2011

For GRAPHICS PROCESSING ARCHITECTURE EMPLOYING A UNIFIED SHADER

Art Unit 2628 Examiner Daniel C. Washburn
aang

This is a request under the provisions of 37 CFR 1.136{a) to extend the period for filing a replyin the above identified
application.

PETITION FOR EXTENSION GF TIME UNDER 37 CFR 1.136(a}

The requested extension and fee are as follows (check time period desired and enter the appropriate fee below):

Fee Small Entity Fee

One month G7 CFR 1.17(ay1}} $156 $75 3

Two months (37 CFR 1.17(aK2)) $580 $280 $

Three months (37 CFR 1.77(av3y $1276 $635 g1270.00

Four months (37 CFR 1.47fayay 84980 $990 S

{| Five months (37 CFR 1.17(a)(5)) $2890 $4345 §

Aaplicant claims smail ently status. See 37 CFR 1.27.

A check in the amount of the fee is enclosed.

Payment by crecit card. Form PTO-2096 is attached.

The Director has already been authorized to charge fees in this application fo a Deposit Account.

The Director is hereby authorized to charge any fees which may be required, or credit any overpayrnent, to
Depasit Account Number 02-0390

WARNING: Information on this form may become public. Credit card information should not be included on this form.
Provide credit card information and authorization on PTO-2038.

bam the | applicantfinventor.
assignee of record of the entire interest. See G7 CFR 3.771.

Statement under 37 CFR 3.73(b) is enclased (Form PTO/SB/96)}.

attorney or agent of record. Registration Number34474

attorney or agent under 37 OFR 1.34.
Registration nurnber if acting under 37 CFR 1.34

September 17, 2072

Signature Date

Ghristopher J. Reckamp 342 356 5094

Typed or printed name Telephone Number

NOTE: Signatures of all the inventors or assignees of record of the entire interest or their representative(s) are required. Subrnit multiple forms if more than one ¥
signature is required, see below.

forms are submitted.

Th Olle naf information is required by 37 CFR 1.136(a). The information is required to obtain or retain a benefit by the public whichis to file (and by the
USPTO to process) an appil . Corifidentiality is governed by 35 ULS.C. 122 and 37 CFR 1.117 and 1.14. This collection is estimated to take G minutes to

complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any
camments an the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chie? information Officer,
U.S. Patent and Trademark Office, U.S. Department of Commerce, P.0. Box 1450, Alexandria, VA 2 3-1450. DO NOT SEND FEES GR COMPLETED
FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1456,

if you need assistance in camoteting the farm, call 1-800-PTO-G19¢ and select option2

Page 291 of 509 . TCL 1002

Page 292 of 509 TCL 1002

PATENT APPLICATION

IN THE UNITED STATES PATENT AND TRADEMARKOFFICE

Applicants:|Stephen Moreinetal. Examiner: Daniel C. Washburn
Serial No.: 13/109,738 Art Unit: 2628
Filing Date: May 17, 2011 Docket No.: 00100.36.0001
Confirmation No.: 2020

Title: GRAPHICS PROCESSING ARCHITECTURE EMPLOYINGA UNIFIED

SHADER

PRELIMINARY AMENDMENT

DearSir:

In responseto the final office action mailed March 15, 2012, Applicants submit a Request

for Continued Examination, petition for a three month extension of time and submit the

following preliminary amendment:

Amendments to the Abstract begin on page 2 of this paper and include a replacement Abstract

and a clean copy showing the amended Abstract.

Amendments to the Claims begins on page3 ofthis paper.

Remarksbegin on page7 ofthis paper.

BDDBO1 9460871v1 Page 292 of 509 TCL 1002

Page 293 of 509 TCL 1002

Amendmentsto the Specification

Please replace the Abstract with the following amended Abstract:

GRAPHICS PROCESSING ARCHITECTURE EMPLOYING A UNIFIED SHADER

ABSTRACT

A graphics processing architecture in one example performs vertex manipulation

 operations gid pixel raanipulation operations by transmitting vertex data to a general

purposeregisterblock.andperformingvertexoperationsonthevertexdata bya

srocessor unless the gseneral mumose register block does not have enough available snace

therein io store incoming vertex data: and contimuics pixcl calculation operations that are

to be or are currently being pertorraed by the processor based on instructions maintained

become available. [n one exarrpie, a general purpose resister block maintains data, A

sequencer, coupled to the general purpose ropister block and to 2 processor unit,

maintains instructions operative to cause the processor unit to execute vertex calculation

andpixelcalculationoperationsonselecteddatamautainedinthegeneralpurpose

register block: and the processor unit executes instnictions that generate a pinel color in

response to the selected one of the plurality of inputs and cenerates vertex position and

selected one of the plurality of inputs. -empleyinea pearance data in response to 4

BDDBO1 9460871v1 Page 293 of 509 TCL 1002

Page 294 of 509 TCL 1002

BDDBO1 9460871v1 Page 2% of 509 TCL 1002

Page 295 of 509 TCL 1002

Amendments to the Claims:

Rewrite the claims as set forth below. This listing of claims replaces all prior versions and
listings of claimsin the application:

Listing of the Claims:

1. (original) A method comprising:

performing vertex manipulation operations and pixel manipulation operations by

transmitting vertex data to a general purpose register block, and performing vertex operations on

the vertex data by a processor unless the general purpose register block does not have enough

available space therein to store incoming vertex data; and

continuing pixel calculation operationsthat are to be or are currently being performed by

the processor based on instructions maintained in an instruction store until enoughregisters

within the general purpose register block becomeavailable.

2. (original) A unified shader, comprising:

a general purpose register block for maintaining data;

a processor unit;

a sequencer, coupled to the general purpose register block and the processorunit, the

sequencer maintaining instructions operative to cause the processor unit to execute vertex

calculation and pixel calculation operations on selected data maintained in the general purpose

register block; and

wherein the processor unit executes instructions that generate a pixel color in response to

the selected one ofthe plurality of inputs and generates vertex position and appearance data in

responseto a selected oneofthe plurality of inputs.

BDDBO1 9460871v1 Page 295 of 509 TCL 1002

Page 296 of 509 TCL 1002

3. (original) A unified shader comprising:

a processor unit operative to perform vertex calculation operations and pixel calculation

operations; and

shared resources, operatively coupled to the processor unit;

the processor unit operative to use the shared resources for either vertex data or pixel

information and operative to perform pixel calculation operations until enough shared resources

becomeavailable and then use the shared resources to perform vertex calculation operations.

4. (original) A unified shader comprising:

a processor unit operative to perform vertex calculation operations and pixel calculation

operations; and

shared resources, operatively coupled to the processor unit;

the processor unit operative to use the shared resources for either vertex data or pixel

information and operative to perform vertex calculation operations until enough shared resources

becomeavailable and then use the shared resources to perform pixel calculation operations.

5. (original) A unified shader comprising:

a processor unit;

a sequencer coupled to the processor unit, the sequencer maintaining instructions

operative to cause the processor unit to execute vertex calculation and pixel calculation

operations on selected data maintained in a store depending upon an amountof space available in

the store.

BDDBO1 9460871v1 Page 296 of 509 TCL 1002

Page 297 of 509 TCL 1002

6. (original) The shader of claim 5, wherein the sequencer further includes circuitry

operative to fetch data from a memory.

7. (original) The shader of claim 5, further including a selection circuit operative to

provide information to the store in responseto a control signal.

8. (original) The shader of claim 5, wherein the processor unit executes instructions

that generate a pixel color in responseto the selected one ofthe plurality of inputs.

9. (canceled)

10. (original) The shader of claim 5, wherein the processor unit generates vertex

position and appearance data in response to a selected one ofthe plurality of inputs.

11. (original) The shader of claim 7, wherein the control signal is provided by an

arbiter.

12. — 14. (canceled)

15. (original) A unified shader comprising:

a processor unit flexibly controlled to perform vertex manipulation operations and pixel

manipulation operations based on vertex or pixel workload.

BDDBO1 9460871v1 Page 297 of 509 TCL 1002

Page 298 of 509 TCL 1002

16. (original) The shader of claim 15 comprising an instruction store and wherein the

processor unit performs the vertex manipulation operations and pixel manipulation operationsat

various degrees of completion based on switching between instructions in the instruction store.

BDDBO1 9460871v1 Page 298 of 509 TCL 1002

Page 299 of 509 TCL 1002

REMARKS

Applicants respectfully traverse and request reconsideration.

Applicants’ attorney wishes to thank the Examiner for the courtesies extended during the

telephone conference of September 17, 2012.

Applicants cancel claims 9 and 12-14 without prejudice. Applicants have also amended

the Abstract.

Claims 1-16 stand rejected under 35 U.S.C. § 102(e) as allegedly being anticipated by

U.S. Patent No. 7,038,685 (Lindholm). Applicants respectfully request reconsideration and

respectfully submit that the declaration is proper and that the declaration is more than "vague

general statements in broad terms...". To the contrary, the statements and Exhibits set for facts

sufficient to show a conception and reduction to practice sufficient to show priority of invention.

To the extent additional information would be helpful, Applicants respectfully submit by way of

examplethat:

As to claim 1 for example, Exhibit B Chip Design Code — sq_gpralloc.v and

Sq_alu_instr_seq.v — are believed to illustrate, inter alia, loading either pixel or vertices in the

GPRif there is space for them (e.g., transmission to general purpose register (gpr) blocks unless

the gpr block does not have space); performing pixel and vertex manipulations; the ais machine

is the "alu instruction sequencer" and it executes instructions on either vertices or pixels

depending on type. the file sq_instruction_store.v contains the memory with the instructions to

be performed oneither pixels (PS) or vertices (VS).

As to claims 2-5 for example, Exhibit B Chip Design Code — spmaccgpr.v,

SP_vector.v, Sq.v , Sq_export_alloc.v, sq_ctl_flow_seq.v, Sq_alu_instr_seq.v - are believed to

illustrate, inter alia, the general purpose register and processor (e.g., multiply and accumulate

BDDBO1 9460871v1 Page 299 of 509 TCL 1002

Page 300 of 509 TCL 1002

(MAC or MACC)logic) and a sequencer coupled to the general purpose register and processor

unit and operation of the sequencer and processorunit.

Applicant respectfully submits that the claims are now believed to be in condition for

allowance andthat a timely Notice of Allowancebe issued in this case. If the Examiner believes

that personal communication will expedite prosecution of this application, the Examiner is

invited to telephone the undersigned at (312) 356-5094.

Respectfully submitted,

Dated: September 17, 2012 By:___/Christopher J. Reckamp/
Christopher J. Reckamp
Reg. No. 34,414

Faegre Baker Daniels LLP
311 S. Wacker Drive

Chicago, IL 60606
PHONE:(312) 356-5094
FAX: (312) 212-6501

BDDBO1 9460871v1 Page 300 of 509 TCL 1002

Page 301 of 509 TCL 1002

GRAPHICS PROCESSING ARCHITECTURE EMPLOYING A UNIFIED SHADER

ABSTRACT

A graphics processing architecture in one example performs vertex manipulation

operations and pixel manipulation operations bytransmitting vertex data to a general purpose

register block, and performung vertex operations on the vertex data by a processor aniess the

general purpose register block does not have enough availabic space therein to store incorning

vertex data; and continues pixel calculation operations that are to be or are currently being

performed by the processor based on mstructions maintained in an instruction store until cnough

registers within the goneral purpose register block becamic availabic. In one example, a general

purpose register block maintains data. A secnencer, coupled to the general purpose register block

and to a processor unit, mamtains instructions operative to cause the processor unit to exconte

vertex calculation andpixel calculation operations on selected data maintamed in the general

purpose register block; and the processor unit executes instructions that generate a pixel color in

response to the selected one of the plurality of inputs and generates vertex position and

appearance data in response to a selected one of the plurality of inputs.

17

Page 301 of 509 TCL 1002

Page 302 of 509 TCL 1002

REPLACEMENT SHEET

Application No. 13/109,738

GRAPHICS PROCESSING ARCHITECTURE EMPLOYING A UNIFIED SHADER

ABSTRACT

A graphics processing architecture in one example performs vertex manipulation

operations and pixel manipulation operations by transrottiing vertex data to a general purpose

register block, and performing vertex operations on the vertex data by a processor uniess the

general purpasc register block dees not have enough available space therein to store incenung

vertex data: and continues pixel calculation operations that are to be or are currently being

performed by the processor based on instructions raaintamedin an instruction store until enough

registers within the general purpose register block becorne available. In one example, a general

purpose register block maintains data. A sequencer, coupled to the general purpose register block

and to a processor urut, thaiiains instructions operative to cause the processor unit to execute

vertex calculation and pixci calculation operations on selected data maintained im the general

purpose register block; and the processor unit executes instructions that generate a pixel color in

response to the selected one of the plurality of inputs and generates vertex position and

appearance data in response te aselected one ofthe plurality of inputs.

17

Page 302 of 509 TCL 1002

Page 303 of 509 TCL 1002

PTO/SB/06 (07-06)
Approved for use through 1/31/2007. OMB 0651-0032

U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE
Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number.

PATENT APPLICATION FEE DETERMINATION RECORD[|4ppiication or Docket Number Filing Date
Substitute for Form PTO-875 13/109,738 05/17/2011|[J Tobe Mailed

APPLICATION AS FILED — PART| OTHER THAN

(Column1) (Column 2) SMALL ENTITY [] OR SMALL ENTITY
RUNGER FLED RATE

L] Basic FEE N/A N/A37 GFR 1.16(a), (b), or (¢

[1 SEARCH FEE N/A N/A37 GFR 1.16(k), (i), or (m

oO EXAMINATION FEE NWA(37 CFR 1.16(0), (p), or (q))

TOTAL CLAIMS j .
37 CFR 1.16(i minus 20 =
INDEPENDENT CLAIMS
37 CFR1.16(h

FEE ($)

If the specification and drawings exceed 100

[APPLICATIONSIZE FEE sheets of paper, the application size fee due
(7 CFR.1 168) is $250 ($125 for small entity) for each‘ additional 50 sheets or fraction thereof. See

35 U.S.C. 41(a)(1)(G) and 37 CFR 1.16(s).

[_] MULTIPLE DEPENDENT CLAIM PRESENT(37 CFR 1,16(j)
* If the difference in column 1 is less than zero, enter “O” in column 2.

APPLICATION AS AMENDED — PARTII
OTHER THAN

(Column 1) (Column 2) (Column3) SMALL ENTITY OR SMALL ENTITY
CLAIMS HIGHEST
REMAINING NUMBER PRESENT ADDITIONAL ADDITIONAL

09/17/2012 AFTER PREVIOUSLY EXTRA FEE ($) FEE ($)
AMENDMENT PAID FOR

Total (37 CFR * : a

Independent + . vee

LC] Application Size Fee (837 CFR 1.16(s))

Cc FIRST PRESENTATION OF MULTIPLE DEPENDENTCLAIM (37 CFR 1.16(j))

oa
Z
Lu
=
a
Z
Lu
=
<x

(Column 1) (Column 2) (Column 3)
CLAIMS HIGHEST

REMAINING NUMBER ADDITIONAL ADDITIONAL

AFTER PREVIOUSLY FEE($) FEE ($)
AMENDMENT PAID FOR

1.16(i

37 CFR 1.16(h

[_] Application Size Fee (37 CFR 1.16(s))

CT FIRST PRESENTATION OF MULTIPLE DEPENDENTCLAIM (37 CFR 1.16(j))
AMENDMENT
* If the entry in column 1 is less than the entry in column2, write “O” in column 3. Legal Instrument Examiner:
** If the “Highest NumberPreviously Paid For” IN THIS SPACEis less than 20, enter “20”. /LAWANDA MILTON/ ,
*** If the “Highest Number Previously Paid For’ IN THIS SPACEis less than 3, enter “3”.
The “Highest Number Previously Paid For’ (Total or Independent) is the highest numberfound in the appropriate box in column 1.

This collection of information is required by 37 CFR 1.16. The information is required to obtain or retain a benefit by the public whichis tofile (and by the USPTOto
process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 12 minutes to complete, including gathering,
preparing, and submitting the completed application form to the USPTO. Time will vary depending upontheindividual case. Any comments on the amountof time you
require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and TrademarkOffice, U.S.
Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMSTO THIS
ADDRESS. SEND TO: Commissionerfor Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

If you need assistance in completing the form, call 1-800-PTO-9199 and select option 2.

Page 303 of 509 TCL 1002

Page 304 of 509 TCL 1002

UNITED STATES PATENT AND TRADEMARK OFFICE
UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Address: COMMISSIONER FOR PATENTS

P.O. Box 1450
Alexandria, Virginia 22313-1450
www.uspto.gov

 APPLICATION NO. FILING DATE FIRST NAMED INVENTOR ATTORNEY DOCKET NO. CONFIRMATIONNO.

13/109,738 05/17/2011 Stephen Morein 00100.36.0001 2020

29153 7590 12/06/2012

ADVANCED MICRODEVICES, INC.
C/O Faegre Baker Daniels LLP CHEN, FRANK S
311 S. WACKER DRIVE
CHICAGO, IL, 60606

2677

NOTIFICATION DATE DELIVERY MODE

12/06/2012 ELECTRONIC

Please find below and/or attached an Office communication concerning this application or proceeding.

The time period for reply, if any, is set in the attached communication.

Notice of the Office communication was sent electronically on above-indicated "Notification Date" to the
following e-mail address(es):

inteas @faegrebd.com
cynthia.payson@ faegredb-.com
michelle.davis @ faegrebd.com

Page 304 of 509 TCL 1002
PTOL-90A (Rev. 04/07)

Page 305 of 509 TCL 1002

Application No. Applicant(s)

13/109,738 MOREIN ET AL.

Office Action Summary Examiner Art Unit
FRANK CHEN 2677

-- The MAILING DATEof this communication appears on the cover sheet with the correspondence address--
Period for Reply

A SHORTENED STATUTORY PERIOD FOR REPLYIS SET TO EXPIRE 3 MONTH(S) OR THIRTY(30) DAYS,

WHICHEVER IS LONGER, FROM THE MAILING DATE OF THIS COMMUNICATION.Extensions of time may be available underthe provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed
after SIX (6) MONTHS from the mailing date of this communication.

- If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication.
- Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED(35 U.S.C. § 133).

Anyreply received by the Office later than three months after the mailing date of this communication, evenif timely filed, may reduce any
earned patent term adjustment. See 37 CFR 1.704(b).

Status

1) Responsive to communication(s)filed on 17 September 2012.
2a)L] This action is FINAL. 2b)X] This action is non-final.

3)L] An election was madebythe applicant in response to a restriction requirementset forth during the interview on

; the restriction requirement and election have been incorporated into this action.

4)_] Sincethis application is in condition for allowance exceptfor formal matters, prosecution as to the merits is

closed in accordance with the practice under Ex parte Quayle, 1935 C.D. 11, 453 O.G. 213.

Disposition of Claims

5)X] Claim(s) 1-8,10,11,15 and 16 is/are pending in the application.

5a) Of the above claim(s) is/are withdrawn from consideration.

6)L] Claim(s) ___ is/are allowed.
7) Claim(s) 1-8,10,11,15 and 16 is/are rejected.

8)L] Claim(s) ___is/are objectedto.
9)L] Claim(s) are subject to restriction and/or election requirement.

* If any claims have been determined allowable, you maybeeligible to benefit from the Patent Prosecution Highway
program at a participating intellectual property office for the corresponding application. For more information, please see
htto//Awww.uspto.gov/patenis/init events/ooh/index.jiso or send an inquiry to PPHieedback@usopio.qov.

Application Papers

10)L] The specification is objected to by the Examiner.
11) The drawing(s) filed on is/are: a)[_] accepted or b)[_] objected to by the Examiner.

Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a).

Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d).

Priority under 35 U.S.C. § 119

12)[] Acknowledgmentis made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d)or(f).

a)L] All)LJ Some * c)L] Noneof:
1..] Certified copies of the priority documents have been received.

2.L] Certified copies of the priority documents have been received in Application No.
3.L] Copiesof the certified copies of the priority documents have been receivedin this National Stage

application from the International Bureau (PCT Rule 17.2(a)).

* See the attached detailed Office action for a list of the certified copies not received.

Attachment(s)

1) Xx Notice of References Cited (PTO-892) 3) CT] Interview Summary (PTO-413)
Paper No(s)/Mail Date.

2) | Information Disclosure Statement(s) (PTO/SB/08) 4) | Other:
Paper No(s)/Mail Date

U.S. Patent and Trademark Office age J O
PTOL-326 (Rev. 09-12) Office Action Summary Part of Paper No./Mail Date 2012112o

Page 306 of 509 TCL 1002

Application/Control Number: 13/109,738 Page 2

Art Unit: 2677

DETAILED ACTION

Claim Status

1. Claims 1-8,10-11, and 15-16 are currently pending in this application.

2. Claims 9 and 12-14 have been canceled.

Specification

3. Applicant is reminded of the proper language and formatfor an abstract of
the disclosure.

The abstract should be in narrative form and generally limited to a
single paragraph on a separate sheetwithin the range of 50 to 150 words.
The form and legal phraseology often used in patent claims, such as "means"
and "said," should be avoided. The abstract should describe the disclosure
sufficiently to assist readers in deciding whetherthere is a need for consulting the
full patent text for details.

The language should be clear and concise and should not repeat
information givenin the title. It should avoid using phrases which can beimplied,
such as, "The disclosure concerns," "The disclosure defined by this invention,"
"The disclosure describes,"etc.

4. The abstract of the disclosure is objected to because it exceeds 150

words. Correction is required. See MPEP § 608.01 (b).

Declaration filed under 37 CFR 1.131

The declaration filed 1/18/12 under 37 CFR 1.131 and the Applicants

Argument/Remarks Made in an Amendmentfiled 9/17/2012 have been

considered butis ineffective to overcometheprior art reference Lindholm (US

7,038,685, “the Lindholm reference”).

The declaration does not meet the requirements of 37 CFR 1.131 section

(a).

37 CFR 1.131 section (a) states (in relevant part):

Page 306 of 509 TCL 1002

Page 307 of 509 TCL 1002

Application/Control Number: 13/109,738 Page 3

Art Unit: 2677

“(a) Whenany claim of an application or a patent under reexamination
is rejected, the inventor of the subject matter of the rejected claim, the ownerof
the patent
under reexamination, or the party qualified under §§ 1.42, 1.43, or 1.47, may
submit an appropriate oath or declaration to establish invention of the subject
matter of the rejected claim prior to the effective date of the referenceoractivity
on whichthe rejection is based. The effective date of a U.S. patent, U.S. patent
application publication, or international application publication under PCT Article
21(2) is the earlier of its publication date or date that it is effective as a reference
under 35 U.S.C. 102(e). Prior invention may not be established underthis
section in any country other than the United States, a NAFTA country,or a
WTO membercountry. Prior invention may not be established underthis
section before December8, 1993, ina NAFTA country other than the United
States, or before January 1, 1996, ina WTO membercountry other than a
NAFTA country.” (emphasis added)

Section 2 of Applicants’ declaration describes (in relevant part):

“2. We conceived the Invention prior to June 30, 2003 while employed by
ATI Technologies Inc. and/or one of its wholly owned subsidiaries ("ATI") as
indicated by attached Exhibits A and B ... Prior to June 30, 2003 we created a
graphics processing system that operated as claimed using a computer system
that successfully executed the Model Code. Prior to June 30, 2003 we also
created a graphics processing system as claimed in the form of a computer
system that used an RTL simulator to successfully validate the operation of an
integrated circuit version of the claimed graphics processing system and
method.”

As quoted from Applicants’ declaration, section 2 describes conception

and reduction to practice of the claimed invention prior to June 30, 2003. Section

2 further describes that the conception and reduction to practice of the claimed

invention was carried out while the inventors were employed by AT|

Technologies Inc. and/or oneof its wholly owned subsidiaries.

However, section 2, and the declaration as a whole, fails to specify

whetheror not the conception and reduction to practice was carried out in the

United States, a NAFTA country, or a WTO membercountry. As quoted from 37

CFR 1.131 section (a), “[p]rior invention may not be established underthis

Page 307 of 509 TCL 1002

Page 308 of 509 TCL 1002

Application/Control Number: 13/109,738 Page 4

Art Unit: 2677

section in any country other than the United States, a NAFTA country, ora WTO

memory country”. Thus, the declaration is ineffective to overcome the Lindholm

reference dueto this first deficiency.

Moreover, the applicants in their Remarksfiled on 9/17/2012 do not

appear to addressthis issue. In the Remarks, the applicants attempt to further

correlate the claim limitations to the submitted reduction to practice evidence

(Exhibit B Chip Design Code) of the Declaration Under 37 CFR 1.131 filed on

1/18/2012 but do not appear to show that reduction to practice was carried outin

the United States, a NAFTA country, or a WTO membercountry. Therefore, the

declaration continues to not meet the requirements of 37 CFR 1.131 section (a).

Further, the declaration does not meet the requirements of 37 CFR 1.131

section (b).

37 CFR 1.131 section (b) states:

“(o) The showing of facts shall be such, in character and weight, as to
establish reduction to practice prior to the effective date of the reference, or
conception of the invention prior to the effective date of the reference coupled
with due diligence from prior to said date to a subsequentreduction to practice or
to thefiling of the application. Original exhibits of drawings or records,or
photocopies thereof, must accompany and form part of the affidavit or declaration
or their absence must be satisfactorily explained.”

MPEP 715.07 [R-3] "Facts and Documentary Evidence", sectionI.

"General Requirements", offers further guidance regarding the requirements of

37 CFR 1.131 section (b).

MPEP 715.07, section I|., describes (in relevant part):

“The essential thing to be shown under 37 CFR 1.131 is priority of
invention and this may be done by anysatisfactory evidenceof the fact. FACTS,
not conclusions, must be alleged. Evidencein the form of exhibits may

Page 308 of 509 TCL 1002

Page 309 of 509 TCL 1002

Application/Control Number: 13/109,738 Page 5

Art Unit: 2677

accompanytheaffidavit or declaration. Each exhibit relied upon should be
specifically referred to in the affidavit or declaration, in terms of whatit is relied
upon to show ... when reviewing a 37 CFR 1.131 affidavit or declaration, the
examiner must considerall of the evidence presentedin its entirety, including the
affidavits or declarations and all accompanying exhibits, records and “notes.” An
accompanying exhibit need not support all claimed limitations, provided that any
missing limitation is supported by the declaration itself. Ex parte Ovshinsky, 10
USPQ2d 1075 (Bd. Pat. App. & Inter. 1989).

The affidavit or declaration and exhibits must clearly explain which
facts or data applicant is relying on to show completion of his or her
invention prior to the particular date. Vague and general statements in
broad terms about whatthe exhibits describe along with a general
assertion that the exhibits describe a reduction to practice “amounts
essentially to mere pleading, unsupported by proof or a showing of facts”
and, thus, does notsatisfy the requirements of 37 CFR 1.131(b). In re
Borkowski, 505 F.2d 713, 184 USPQ 29 (CCPA 1974). Applicant must give a
clear explanation of the exhibits pointing out exactly what facts are
established andrelied on by applicant. 505 F.2d at 718-19, 184 USPQat 33.
See also In re Harry, 333 F.2d 920, 142 USPQ 164 (CCPA 1964)(Affidavit
“asserts that facts exist but does nottell what they are or when they occurred.”).”
(emphasis added)

Applicants’ Remarksfiled on 09/17/2012 contains the following in the

second to last paragraph whichrecites:

“As to claims 2-5 for example, Exhibit B Chip Design Code-
p_macc_gpr.v, SP_vector.v, Sq.v, Sq_export_alloc.v, sq ctl flow_seq.v,
Sq_alu_instr_seq.v - are believedtoillustrate, inter alia, the general purpose
register and processor(e.g., Multiply and accumulate (MAC or MACC)logic) and
a sequencer coupled to the general purpose register and processor unit and
operation of the sequencer and processorunit.”

However, this paragraph as a wholeis considered nothing more than

vague and general statements in broad terms about whatthe exhibits describe

along with general assertions that the exhibits describe a reduction to practice,

which does notsatisfy the requirements of 37 CFR 1.131 section (b). Thus, the

declaration in view of the Remarkis ineffective to overcome the Lindholm

reference dueto this second deficiency.

Page 309 of 509 TCL 1002

Page 310 of 509 TCL 1002

Application/Control Number: 13/109,738 Page 6

Art Unit: 2677

Regarding claim 1, the Examineris able to determine which sections of

Exhibit B Chip Design Code correspondsto whichlimitations of Claim 1 after

reviewing the Remarksfiled on 9/17/2012 . However, the Examineris unable to

do so for Claims 2-5 as they are not satisfactorily explained in the Remarks.

Therefore, the most recent declaration filed 1/18/12 under 37 CFR 1.131

and Remarksfiled on 9/17/2012 are togetherineffective to overcome the

Lindholm reference. As an additional note, the Examiner would like to point out

that US Pat 7,015,913, to Lindholm etal., filed June 27", 2003, appears,after

brief review, to include a disclosure that is similar to US Pat 7,038,685 to

Lindholm, which is usedin the rejections that follow (see FIG. 2 of each patent).

The Examiner has not given Lindholm et al. (US 7,015,913) a thorough review as

to whetherornotit teaches one or more of Applicants’ claims, but it may be

worth Applicants’ time to review Lindholm et al. (US 7,015,913) and adjust the

declaration such that conception and reduction to practice of the claimed

invention is declared to have occurred prior to June 27", 2003 (if such a

statementis true), in order to avoid a future rejection based on the teachings of

prior art reference Lindholm et al. (US 7,015,913).

Claim Rejections - 35 USC § 112

5. The following is a quotation of 35 U.S.C. 112(b):

(B) CONCLUSION.—Thespecification shall conclude with one or more claims
particularly pointing out and distinctly claiming the subject matter which the
inventor or a joint inventor regards as the invention.

The following is a quotation of 35 U.S.C. 112 (pre-AlA), second paragraph:

Page 310 of 509 TCL 1002

Page 311 of 509 TCL 1002

Application/Control Number: 13/109,738 Page 7

Art Unit: 2677

The specification shall conclude with one or moreclaims particularly pointing out
and distinctly claiming the subject matter which the applicant regards as his
invention.

6. Claim 2 recites the limitation "the selected oneofthe plurality of inputs" in

“in responseto the selected one ofthe plurality of inputs.” There is insufficient

antecedentbasis for this limitation in the claim. Proper amendmentis requested.

7. Claim 8 recites the limitation "the selected oneofthe plurality of inputs” in

“in responseto the selected oneofthe plurality of inputs.” There is insufficient

antecedentbasis for this limitation in Claim 8 or Claim 5. Proper amendmentis

requested.

Claim Rejections - 35 USC § 102

8. The following is a quotation of the appropriate paragraphsof 35

U.S.C. 102 that form the basis for the rejections under this section madein this

Office action:

A personshall be entitled to a patent unless —

(e) the invention was described in (1) an application for patent, published undersection
122(b), by another filed in the United States before the invention by the applicant for patent or
(2) a patent granted on an application for patent by another filed in the United States before
the invention by the applicant for patent, except that an international application filed under
the treaty defined in section 351 (a) shall have the effects for purposesof this subsection of an
application filed in the United States only if the international application designated the United
States and was published underArticle 21(2) of such treaty in the English language.

Claims 1-8, 10-11, and 15-16 are rejected under 35 U.S.C. 102(e) as

being anticipated by Lindholm (US 7,038,685).

RE claim 1, Lindholm describes a method comprising:

performing vertex manipulation operations and pixel manipulation

operations by transmitting vertex data to a general purpose register block, and

performing vertex operations on the vertex data by a processor unless the

Page 311 of 509 TCL 1002

Page 312 of 509 TCL 1002

Application/Control Number: 13/109,738 Page 8

Art Unit: 2677

general purposeregister block does not have enough available space therein to

store incoming vertex data (

3:59-65: “Programmable Graphics Processing Pipeline 150 is
programmedto operate on surface,primitive, vertex, fragment, pixel, sample or
any other data. For simplicity, the remainderof this description will use the term
‘samples’to refer to graphics data such as surfaces, primitives, vertices, pixels,
fragments,or thelike."

6:38-59: “FIG. 4 is an illustration of an alternate embodiment of Execution

Pipeline 240 containing at least one Multi-Threaded Processing Unit 400... In
one embodiment TSR [Thread Storage Resource] 325 stores thread data for
each of at least two thread types, where the at least two thread types may
include pixel, primitive and vertex.”

7:6-10: “In an alternate embodiment, Thread Control Unit 420 is
configured to assign threads to source samplesor allocate locations in Register
File 350 using thread allocation priorities".

7:36-43: “Once a thread is assigned to a source sample, the thread is
allocated storage resources such as locations in a Register File 350 to retain
intermediate data generated during execution of program instructions associated
with the thread."

9:33-56: "Instruction Dispatcher 440 gathers the source data from Pixel
Input Buffer 215, Vertex Input Buffer 220 or Register File 350 specified in an
instruction and outputs the instruction and source data to Execution Unit 470
including at least one PCU 375 ... Execution Unit 470 is configured by the
program instruction to simultaneously process samples using PCUs 375to
perform operations."

15:7-13: “In step 877 Thread Control Unit 320 or 420 determinesif storage
resourcesfor storing intermediate data generated during execution of the thread
are available. The storage resources may be in graphics memory. When
storage resources are not available in step 877, Thread Control Unit 320 or 420
does not proceedto step 880 until a storage resources becomeavailable. In
step 880 Thread Control Unit 320 dispatches the thread assigned to the sample
and sourcedata to at least one PCU 375."

Thus, Lindholm describes performing vertex manipulation operations and

pixel manipulation operations by transmitting vertex data to a general purpose

register block (sample data, such as vertex or pixel data, is transmitted to

Page 312 of 509 TCL 1002

Page 313 of 509 TCL 1002

Application/Control Number: 13/109,738 Page 9

Art Unit: 2677

Register File 350) and performing vertex operations on the vertex data by a

processor unless the general purpose register block does not have enough

available space therein to store incoming vertex data (the multi-threaded

processing unit 400 carries out vertex operations on vertex data unless the

Register File 350 doesn’t have enough room to store the incoming vertex data, in

which case the thread associated with the vertex data and vertex operations

must wait until enough space becomesavailable); and

continuing pixel calculation operations that are to be or are currently being

performed by the processor basedoninstructions maintained in an instruction

store until enough registers within the general purpose register block become

available (

7:6-21: “In an alternate embodiment, Thread Control Unit 420 is
configured to assign threads to source samples or allocate locations in Register
File 350 using thread allocation priorities based on an amount of sample data in
Pixel Input Buffer 215 and another amount of sample data in Vertex Input Buffer
220."

8:15-58: "Thread Selection Unit 415 reads one or morethread entries

based on thread execution priorities and outputs selected thread entries to
Instruction Cache 410. Instruction cache 410 determinesif the program
instructions corresponding to the program counters and sample typeincludedin
the thread state data for each thread entry are available in Instruction Cache 410
... The program instructions corresponding to the program counters from the one
or more thread entries are output by Instruction Cache 410 to ... Instruction
Scheduler 430 ... Each clock cycle, Instruction Scheduler 430 evaluates whether
any instruction within the IWU [instruction window unit] 435 can be executed
based on the availability of computation resources in an Execution Unit 470 and
source data stored in Register File 350. An instruction specifies the location of
source data neededto execute the instruction."

15:7-13: “In step 877 Thread Control Unit 320 or 420 determinesif storage
resourcesfor storing intermediate data generated during execution of the thread
are available. The storage resources may be in graphics memory. When
storage resources are not available in step 877, Thread Control Unit 320 or 420

Page 313 of 509 TCL 1002

Page 314 of 509 TCL 1002

Application/Control Number: 13/109,738 Page 10

Art Unit: 2677

does not proceedto step 880 until a storage resources becomeavailable. In
step 880 Thread Control Unit 320 dispatches the thread assigned to the sample
and sourcedata to at least one PCU 375."

Thus, Lindholm is considered to describe an embodimentincluding

continuing pixel calculation operations that are to be or are currently being

performed by the processor basedoninstructions maintained in an instruction

store until enough registers within the general purpose register block become

available, as the Execution Unit 470 may be carrying out calculations for one or

morehigh priority pixel threads based on instructions stored in Instruction Cache

410 and/or IWU 435 while a low priority vertex thread is waiting for the one or

morepixel threadsto finish such that whenthe pixel threadsfinish the system will

deallocate the resources assigned to the completedpixel threadsin the Register

File 350 and will allocate the requested amountof resources to the queued up

vertex thread).

RE claim 2, Lindholm describes a unified shader, comprising:

a general purpose register block for maintaining data (

7:37-43: “Once a thread is assigned to a source sample, the thread is
allocated storage resources such as locations in a Register File 350 to retain
intermediate data generated during execution of program instructions associated
with the thread.”);

a processorunit (FIG. 4 “Execution Unit 470” and “PCU 375”);

a sequencer, coupled to the general purpose register block and the

processorunit, the sequencer maintaining instructions operative to cause the

processorunit to execute vertex calculation and pixel calculation operations on

selected data maintained in the general purposeregister block(

Page 314 of 509 TCL 1002

Page 315 of 509 TCL 1002

Application/Control Number: 13/109,738 Page 11

Art Unit: 2677

8:33-9:32 “Each clock cycle, Instruction Scheduler 430 evaluates whether
any instruction within the IWU 435 can be executed based on the availability of
computation resources in an Execution Unit 470 and source data stored in
Register File 350."

9:33-56 "Instruction Dispatcher 440 gathers the source data from Pixel
Input Buffer 215, Vertex Input Buffer 220 or Register File 350 specified in an
instruction and outputs the instruction and source data to Execution Unit 470
including at least one PCU 375 ... Execution Unit 470 is configured by the
program instruction to simultaneously process samples using PCUs 375to
perform operations."); and

wherein the processor unit executesinstructions that generate a pixel

color in responseto the selected oneofthe plurality of inputs and generates

vertex position and appearancedata in responseto a selected one of the

plurality of inputs (

9:39-46 “Execution Unit 470 is configured by the program instruction to
simultaneously process samples using PCUs 375to perform operations ... and
output the processed sample to a destination specified by the instruction. The
destination may be Vertex Output Buffer 260, Pixel Output Buffer 270, or
Register File 350.”

4:42-5:35 “Execution Pipelines 240 may receivefirst samples, such as
higher-order surface data, and tessellate the first samples to generate second
samples, such as vertices. Execution Pipelines 240 may be configured to
transform the second samples from an object-based coordinate representation
(object space) to an alternatively based coordinate system such as world space
or normalized device coordinates ... Execution Pipelines 240 output processed
samples, such as vertices, that are stored in a Vertex Output Buffer 260 ... Each
Execution Pipeline 240 signals to Pixel Input Buffer 240 when a sample can be
accepted ... programmable computation units (PCUs) within an Execution
Pipeline 240 ... perform operations suchas tessellation, perspective correction,
texture mapping, shading, blending, and the like. Processed samplesare output
from each Execution Pipeline 240 to a Pixel Output Buffer 270."

Thus, the Execution Unit 470 is considered a processorunit that executes

instructions that generate a pixel color in response to the selected one of the

Page 315 of 509 TCL 1002

Page 316 of 509 TCL 1002

Application/Control Number: 13/109,738 Page 12

Art Unit: 2677

plurality of inouts and generates vertex position and appearance data in

responseto a selected one of the plurality of inputs (also see 4:22-5:35)).

RE claim 3, Lindholm describes a unified shader comprising:

a processorunit operative to perform vertex calculation operations and

pixel calculation operations (FIG. 4 “Execution Unit 470” and “PCU 375”.

6:38-59 “FIG.4 is an illustration of an alternate embodiment of Execution

Pipeline 240 containing at least one Multi-Threaded Processing Unit 400... In
one embodiment TSR [Thread Storage Resource] 325 stores thread data for
each of at least two thread types, where the at least two thread types may
include pixel, primitive and vertex.”

9:33-56 "Instruction Dispatcher 440 gathers the source data from Pixel
Input Buffer 215, Vertex Input Buffer 220 or Register File 350 specified in an
instruction and outputs the instruction and source data to Execution Unit 470
including at least one PCU 375 ... Execution Unit 470 is configured by the
program instruction to simultaneously process samples using PCUs 375 to
perform operations."

Thus, the Execution Unit 470 and internal PCU 375arecollectively

considered a processorunit operative to perform vertex calculation operations

andpixel calculation operations); and

shared resources, operatively coupled to the processorunit (FIG. 4

illustrates Register File 350 coupled to Execution Unit 470, and 7:37-43

describes that the Register File 350 is shared amongthreads);

the processor unit operative to use the shared resourcesfor either vertex

data or pixel information and operative to perform pixel calculation operations

until enough shared resources become available and then use the shared

resourcesto perform vertex calculation operations (7:37-48,all types of

Page 316 of 509 TCL 1002

Page 317 of 509 TCL 1002

Application/Control Number: 13/109,738 Page 13

Art Unit: 2677

processing threads can use the Register File 350, where thread types include

vertex and pixel threads (see 6:43-44).

7:6-36 “In an alternate embodiment, Thread Control Unit 420 is configured
to assign threads to source samplesorallocate locations in Register File 350
using thread allocation priorities based on an amountof sample datain Pixel
Input Buffer 215 and another amount of sample data in Vertex Input Buffer 220."

15:7-13 “In step 877 Thread Control Unit 320 or 420 determinesif storage
resourcesfor storing intermediate data generated during execution of the thread
are available. The storage resources may be in graphics memory. When
storage resources are not available in step 877, Thread Control Unit 320 or 420
does not proceedto step 880 until a storage resources become available. In
step 880 Thread Control Unit 320 dispatches the thread assigned to the sample
and sourcedata to at least one PCU 375."

Thus, whenpixel threads havepriority over vertex threads the processor

unit will allocate the pixel data to the Register File 350 and will perform pixel

calculation operations until enough shared resources becomeavailable in the

Register File 350 to begin carrying out vertex threads, which may happen as a

result of a completion of most of the pixel threads ora shift in priority such that

the vertex threads now havethehighestpriority, and then use the RegisterFile

350 to perform vertex calculation operations.

RE claim 4, Lindholm describes a unified shader comprising:

a processorunit operative to perform vertex calculation operations and

pixel calculation operations (see the corresponding section in the rejection of

claim 3); and

shared resources, operatively coupled to the processor unit (see the

corresponding section in the rejection of claim 3);

Page 317 of 509 TCL 1002

Page 318 of 509 TCL 1002

Application/Control Number: 13/109,738 Page 14

Art Unit: 2677

the processorunit operative to use the shared resourcesfor either vertex

data or pixel information and operative to perform vertex calculation operations

until enough shared resources becomeavailable and then use the shared

resources to perform pixel calculation operations (7:37-48,all types of processing

threads can use the Register File 350, where thread types include vertex and

pixel threads (see 6:43-44).

7:6-36 “In an alternate embodiment, Thread Control Unit 420 is configured
to assign threads to source samplesorallocate locations in Register File 350
using thread allocation priorities based on an amountof sample datain Pixel
Input Buffer 215 and another amount of sample data in Vertex Input Buffer 220."

15:7-13 “In step 877 Thread Control Unit 320 or 420 determinesif storage
resourcesfor storing intermediate data generated during execution of the thread
are available. The storage resources may be in graphics memory. When
storage resources are not available in step 877, Thread Control Unit 320 or 420
does not proceedto step 880 until a storage resources becomeavailable. In
step 880 Thread Control Unit 320 dispatches the thread assigned to the sample
and sourcedata to at least one PCU 375."

Thus, when vertex threads have priority over pixel threads the processor

unit will allocate the vertex data to the Register File 350 and will perform vertex

calculation operations until enough shared resources becomeavailable in the

Register File 350 to begin carrying out pixel threads, which may happen as a

result of a completion of most of the vertex threadsora shift in priority such that

the pixel threads now havethe highest priority, and then use the Register File

350 to perform pixel calculation operations.

RE claim 5, Lindholm describes a unified shader comprising:

a processorunit (FIG. 4 “Execution Unit 470” and “PCU 375”);

Page 318 of 509 TCL 1002

Page 319 of 509 TCL 1002

Application/Control Number: 13/109,738 Page 15

Art Unit: 2677

a sequencercoupled to the processor unit, the sequencer maintaining

instructions operative to cause the processorunit to execute vertex calculation

and pixel calculation operations on selected data maintained in a store

depending upon an amountof spaceavailable in the store (

8:33-9:32 “Each clock cycle, Instruction Scheduler 430 evaluates whether
any instruction within the IWU 435 can be executed based on the availability of
computation resources in an Execution Unit 470 and source data stored in
Register File 350."

9:33-56 "Instruction Dispatcher 440 gathers the source data from Pixel
Input Buffer 215, Vertex Input Buffer 220 or Register File 350 specified in an
instruction and outputs the instruction and source data to Execution Unit 470
including at least one PCU 375 ... Execution Unit 470 is configured by the
program instruction to simultaneously process samples using PCUs 375to
perform operations."

7:6-10 “In an alternate embodiment, Thread Control Unit 420 is configured
to assign threads to source samplesor allocate locations in Register File 350
using thread allocation priorities”.

15:7-13 “In step 877 Thread Control Unit 320 or 420 determinesif storage
resourcesfor storing intermediate data generated during execution of the thread
are available. The storage resources maybe in graphics memory. When
storage resources are not available in step 877, Thread Control Unit 320 or 420
does not proceedto step 880 until a storage resources becomeavailable. In
step 880 Thread Control Unit 320 dispatches the thread assigned to the sample
and sourcedata to at least one PCU 375."

Thus, the Scheduler 430 and Instruction Dispatcher 440 are collectively

considered a sequencer coupled to the Execution Unit 470, the sequencer

maintaining instructions operative to cause the Execution Unit 470 to execute

vertex calculation and pixel calculation operations on selected data maintained in

a Register File 350 depending upon an amount of space available in the Register

File 350).

Page 319 of 509 TCL 1002

Page 320 of 509 TCL 1002

Application/Control Number: 13/109,738 Page 16

Art Unit: 2677

RE claim 6, Lindholm describes the shaderof claim 5, wherein the

sequencerfurther includescircuitry operative to fetch data from a memory(

9:33-56 "Instruction Dispatcher 440 gathers the source data from Pixel
Input Buffer 215, Vertex Input Buffer 220 or Register File 350”).

RE claim 7, Lindholm describes the shaderof claim 5, further including a

selection circuit operative to provide information to the store in response to a

control signal(

6:60-7:36 “Thread allocation priority, as described further herein, is used
to assign a thread to a source sample. A thread allocation priority is specified for
each sample type and Thread Control Unit 420 is configured to assign threads to
samplesorallocate locations in a Register File 350 based on thepriority
assigned to each sample type. The thread allocation priority maybefixed,
programmable, or dynamic.”

The Thread Control Unit 420 is considered a selection circuit operative to

provide information to the store (Register File 350) in response to a control

signal, where the control signal is the thread allocation priority associated with

eachthread or thread type).

RE claim 8, Lindholm describes the shaderof claim 5, wherein the

processorunit executesinstructions that generate a pixel color in responseto the

selected one ofthe plurality of inputs (

5:11-35 “Pixel Input Buffer 215 outputs the samples to each Execution
Pipeline 240 ... Each Execution Pipeline 240 signals to Pixel Input Buffer 240
when a sample can be accepted ... programmable computation units (PCUs)
within an Execution Pipeline 240 ... perform operations such astessellation,
perspective correction, texture mapping, shading, blending, and thelike.
Processed samples are output from each Execution Pipeline 240 to a Pixel
Output Buffer 270.").

Page 320 of 509 TCL 1002

Page 321 of 509 TCL 1002

Application/Control Number: 13/109,738 Page 17

Art Unit: 2677

RE claim 10, Lindholm describes the shaderof claim 5, wherein the

processorunit generates vertex position and appearance data in response to a

selected oneof the plurality of inputs (

4:42-5:35 “Execution Pipelines 240 may receivefirst samples, such as
higher-order surface data, and tessellate the first samples to generate second
samples, such as vertices. Execution Pipelines 240 may be configured to
transform the second samples from an object-based coordinate representation
(object space) to an alternatively based coordinate system such as world space
or normalized device coordinates ... Execution Pipelines 240 output processed
samples, such as vertices, that are stored in a Vertex Output Buffer 260”).

RE claim 11, Lindholm describes the shader of claim 7, wherein the

control signal is provided by an arbiter(

6:60-7:36 “Thread allocation priority, as described further herein, is used
to assign a thread to a source sample. A thread allocation priority is specified for
each sample type and Thread Control Unit 420 is configured to assign threads to
samplesorallocate locations in a Register File 350 based on thepriority
assigned to each sample type. The thread allocation priority may befixed,
programmable, or dynamic... In an alternate embodiment, Thread Control Unit
420 is configured to assign threads to source samplesor allocate locationsin
Register File 350 using thread allocation priorities based on an amount of sample
data in Pixel Input Buffer 215 and another amount of sample data in Vertex Input
Buffer 220 ... In a further alternate embodiment, Thread Control Unit 420 is
configured to assign threads to source samples or allocate locations in Register
File 350 using thread allocation priorities based on graphicsprimitive size”.

Thus, while an arbiter isn't explicitly described, the Examiner considersit

inherent that someportion of the system acts as an arbiter, and therefore can be

considered an arbiter, as some portion of the system assigns priorities to thread

and sample types according to the current processing circumstances, in order to

moreefficiently process the data).

RE claim 15, Lindholm describes a unified shader comprising:

Page 321 of 509 TCL 1002

Page 322 of 509 TCL 1002

Application/Control Number: 13/109,738 Page 18

Art Unit: 2677

a processorunit flexibly controlled to perform vertex manipulation

operations and pixel manipulation operations based on vertex or pixel workload (

7:6-36 “Thread Control Unit 420 is configured to assign threads to source
samplesorallocate locations in Register File 350 using thread allocation
priorities based on an amountof sample data in Pixel Input Buffer 215 and
another amount of sample data in Vertex Input Buffer 220 ... In a further
alternate embodiment, Thread Control Unit 420 is configured to assign threads to
source samples or allocate locations in Register File 350 using thread allocation
priorities based on graphicsprimitive size (numberof pixels or fragments
includedin a primitive)”.

9:39-49 “Execution Unit 470 is configured by the program instruction to
simultaneously process samples using PCUs 375 to perform operations...
Execution Unit 470 can simultaneously process samplesof different types, and,
likewise, execute threadsof different types.”).

RE claim 16, Lindholm describes the shaderof claim 15 comprising an

instruction store and wherein the processorunit performs the vertex manipulation

operations and pixel manipulation operations at various degrees of completion

based on switching betweeninstructions in the instruction store (FIG. 4 and 8:15-

46 describes Instruction Cache 410, which is considered an instruction store.

9:33-56 "Instruction Dispatcher 440 gathers the source data from Pixel
Input Buffer 215, Vertex Input Buffer 220 or Register File 350 specified in an
instruction and outputs the instruction and source data to Execution Unit 470
including at least one PCU 375 ... Execution Unit 470 is configured by the
program instruction to simultaneously process samples using PCUs 375to
perform operations... Execution Unit 470 can simultaneously process samples of
different types, and, likewise, execute threadsof different types.”

Thus, the Execution Unit 470 performs the vertex manipulation operations and

pixel manipulation operations at various degrees of completion based on

switching betweeninstructions in the instruction store).

Page 322 of 509 TCL 1002

Page 323 of 509 TCL 1002

Application/Control Number: 13/109,738 Page 19

Art Unit: 2677

9. Additionally, Claims 1-8, 10-11, and 15-16 are further rejected under 35

U.S.C. 103 as being unpatentable over Shenet al (U.S. Patent No. 7,646817B1)

in view of Parikh et al. (U.S. Patent No. 6,697,074 B2).

10 Regarding Claim 1, Shen discloses A method comprising:

performing vertex manipulation operations and pixel manipulation

operations (Col. 6, lines 39-45 reciting “At block 326, video decoding

application 216 may optionally be configured to direct GPU 208 to perform

special effects processing on the reconstructed image. For example, GPU 208

may be directed to perform vertex-based or pixel-based special effects

processing such as de-interlacing, inverse telecine, scaling, fading in or out, and

image sharpening or blurring.” The GPU can perform vertex-based or pixel-

based special effects processing which correspondsto performing vertex

manipulation operation and pixel manipulation operations. Here the “or” can be

interpreted to include the meaning of “and” since “or” includes the meaning of

“and.” Nothing in the specification of Shen indicates an exclusive "or" meaning.

In fact the GPU of Shen is shownto perform operations on per-pixel and per-

vertex.) and performing vertex operations on the vertex data by a processor

and (Col. 4, lines 8-12 reciting “Exemplary GPU 208 includes a programmable

vertex shader 212 for performing graphics operations on a per-vertex basis, and

a programmablepixel shader 214 for performing graphics operations on a per-

pixel basis.” The programmable vertex shader performs graphics operations on

vertex data sentto it, thus the programmable vertex shader 212 processes vertex

Page 323 of 509 TCL 1002

Page 324 of 509 TCL 1002

Application/Control Number: 13/109,738 Page 20

Art Unit: 2677

data and the vertex shader 212 is included within the GPU 208, which

correspondsto a processor.)

continuing pixel calculation operations that are to be or are currently

being performed by the processor(Col. 6, lines 16 reciting “At block 322,

video decoding application 216 directs the pixel shader component 214 of GPU

208 to perform color space conversion processing on the reconstructed image.

Color space conversion processing is performed pixel-by-pixel to convert an

image from a color space in which it was created (e.g., YUV) to a color space

supported by display device 204 (e.g., RGB).” The color space conversion

correspondsto pixel calculation operations that are to be performedby the

processor becausepixel shaderis acting on pixel calculations that occurafter

vertex calculation operations and is performed by the pixel shader componentof

the GPU 208.) based on instructions maintained in an instruction store until

enoughregisters within the general purpose register block become

available. (Col. 4, lines 30-32 reciting “Accelerated video decoding may be

described in the general context of computer-executable instructions, such as

application modules, being executed by a computer.” Accelerated video

decoding whichincludes per-pixel operations is described in computer-

executable instructions. Theseinstructions which are in the form of computer-

executable instructions are used for execution. The computer-readable memory

medium correspondsto the instruction store that stores the computer-executable

instructions.)

Page 324 of 509 TCL 1002

Page 325 of 509 TCL 1002

Application/Control Number: 13/109,738 Page 21

Art Unit: 2677

While Shen doesnotexplicitly disclose by transmitting vertex data to a

general purposeregister block, and unless the general purpose register

block does not have enoughavailable space therein to store incoming

vertex data; Parikh does disclose by transmitting vertex data to a general

purposeregister block, (Col. 14, lines 2-6 reciting “Main processor 110 can

also load a numberof graphics values(e.g., transformation matrices,pixel

formats, vertex formats, etc. by writing to registers within the graphics and audio

processors.” Thus, pixel and vertex data may be both written to registers that are

within the graphics processor. Therefore, the registers within the graphics

processors are general purposeregisters for storing at least pixel and vertex data

and additional data formats.)

unless the general purpose register block does not have enough

available space therein to store incoming vertex data; (Col. 14, lines 2-6

reciting “Main processor 110 can also load a numberof graphics values(e.g.,

transformation matrices, pixel formats, vertex formats, etc. by writing to registers

within the graphics and audio processors.” The numberof registers available in

the graphics processorwill be finite and they mayall befilled with only pixel

format(pixel data). Therefore, if all the registers areall filled with non-vertex

data, the processor may not read and processvertex format (vertex data).)

lt would have been obviousfor oneof ordinary skill in the art to combine

the teachings of Parikh with the teachings of Shen becauseboth are drawn to

analogousart. Shen discloses accelerated decoding of video bitstreams using a

graphics processing unit (GPU). The GPU generates vertex data which are

Page 325 of 509 TCL 1002

Page 326 of 509 TCL 1002

Application/Control Number: 13/109,738 Page 22

Art Unit: 2677

processed for vertex-basedor pixel-based special effects processing such as de-

interlacing, inverse telecine, scaling, fading in or out, and image sharpening or

blurring. Parikh is drawn to a unique vertex representation allowing the graphics

pipeline to retain vertex state information and to mix indexed and direct vertex

values and attributes. Parikh further teachesthat it is possible to store vertex

format and pixel format and other graphics information into registers of the

graphics processor. Thus, the GPU of Shen may be modified with the registers

taught in Parikh so that the generated vertex values may be stored in the GPU

for later access. Oneofordinary skill in the art would be motivated to combine

the registers of Parikh with the GPU of Shenin order to store the vertex data

generated in Shen to moreefficiently construct polygons and other graphical

objects. Therefore, it would be obvious to one of ordinaryskill in the art to

combine the teachings of Parikh with the teachings of Shen.

11. Regarding Claim 2, Shen discloses a processorunit; (Col. 4, lines 8-12

reciting “Exemplary GPU 208 includes a programmable vertex shader 212 for

performing graphics operations on a per-vertex basis, and a programmablepixel

shader 214 for performing graphics operations on a per-pixel basis.” The GPU

208, which correspondsto a processor.)

a sequencer, coupled to the processorunit, the sequencer

maintaining instructions operative to cause the processorunit to execute

vertex calculation and pixel calculation operations on selected data

maintained in the general purpose register block; and (Col. 4, lines 29-44

reciting “Accelerated video decoding may be described in the general context of

Page 326 of 509 TCL 1002

Page 327 of 509 TCL 1002

Application/Control Number: 13/109,738 Page 23

Art Unit: 2677

computer-executable instructions, such as application modules, being executed

by a computer. Generally, application modules include routines, programs,

objects, components,data structures, etc. that perform particular tasks or

implementparticular abstract data types. Video decoding application 216 may be

implemented using any numberof programming techniques and may be

implemented in local computing environments or in distributed computing

environments where tasks are performed by remote processing devicesthat are

linked through various communications networks based on any numberof

communication protocols. In such a distributed computing environment,

application modules may be located in both local and remote computer storage

media including memory storage devices.” The memory storage devices

corresponds to the sequencer becauseit stores the computer-executable

instructions, such as application modules, which are in asequence. The

application modules may be located in local computer storage media and such

local storage medium is coupled to the processorsince it is accessible by the

processor.)

wherein the processorunit executes instructions that generate a

pixel color in responseto the selected oneof the plurality of inputs and

generates vertex position and appearance data in responseto a selected

oneof the plurality of inputs. (Col. 6, lines 39-45 reciting “At block 326, video

decoding application 216 may optionally be configured to direct GPU 208 to

perform special effects processing on the reconstructed image. For example,

GPU 208 may be directed to perform vertex-based or pixel-based special effects

Page 327 of 509 TCL 1002

Page 328 of 509 TCL 1002

Application/Control Number: 13/109,738 Page 24

Art Unit: 2677

processing such as de-interlacing, inverse telecine, scaling, fading in or out, and

image sharpening or blurring.” The GPU can perform vertex-basedorpixel-

based special effects processing which correspondsto receiving a select input to

perform. The special effects processing suchas inverse telecine and scalling or

fading correspondsto generating pixel color.)

While Shen doesnotexplicitly disclose A unified shader, comprising: a

general purposeregister block for maintaining data; and general purpose

register block and the Parikh does disclose A unified shader, comprising: a

general purposeregister block for maintaining data; (Co/. 14, lines 2-6

reciting “Main processor 110 can also load a numberof graphics values(e.g.,

transformation matrices, pixel formats, vertex formats, etc. by writing to registers

within the graphics and audio processors.” Thus, pixel and vertex data may be

both written to registers that are within the graphics processor. Therefore, the

registers within the graphics processors are general purposeregisters that can

store at least pixel and vertex data and additional formats of data.)

general purposeregister block and the (Col. 14, lines 2-6 reciting “Main

processor 110 can also load a numberof graphics values(e.g., transformation

matrices, pixel formats, vertex formats, etc. by writing to registers within the

graphics and audio processors.” Thus, pixel and vertex data may be both written

to registers that are within the graphics processor. Therefore, the registers within

the graphics processors are general purposeregisters that can store at least

pixel and vertex data and additional formats of data.)

Page 328 of 509 TCL 1002

Page 329 of 509 TCL 1002

Application/Control Number: 13/109,738 Page 25

Art Unit: 2677

lt would have been obviousfor oneof ordinary skill in the art to combine

the teachings of Parikh with the teachings of Shen becauseboth are drawn to

analogousart. Shen discloses accelerated decoding of video bitstreams using a

graphics processing unit (GPU). The GPU generates vertex data which are

processed for vertex-basedor pixel-based special effects processing such as de-

interlacing, inverse telecine, scaling, fading in or out, and image sharpening or

blurring. Parikh is drawn to a unique vertex representation allowing the graphics

pipeline to retain vertex state information and to mix indexed and direct vertex

values and attributes. Parikh further teachesthatit is possible to store vertex

format and pixel format and other graphics information into registers of the

graphics processor. Thus, the GPU of Shen may be modified with the registers

taught in Parikh so that the generated vertex values may be stored in the GPU

for later access. Oneofordinary skill in the art would be motivated to combine

the registers of Parikh with the GPU of Shenin order to store the vertex data

generated in Shen to moreefficiently construct polygons and other graphical

objects. Therefore, it would be obvious to oneof ordinary skill in the art to

combine the teachings of Parikh with the teachings of Shen.

12. Regarding Claim 3, Shen discloses A unified shader comprising:

a processorunit operative to perform vertex calculation operations

and pixel calculation operations; and (Col. 6, lines 39-45 reciting “At block

326, video decoding application 216 may optionally be configured to direct GPU

208 to perform special effects processing on the reconstructed image. For

example, GPU 208 may bedirected to perform vertex-based or pixel-based

Page 329 of 509 TCL 1002

Page 330 of 509 TCL 1002

Application/Control Number: 13/109,738 Page 26

Art Unit: 2677

special effects processing such as de-interlacing, inverse telecine, scaling, fading

in or out, and image sharpening or blurring.” The GPU can perform vertex-based

or pixel-based special effects processing which correspondsto performing vertex

manipulation operation and pixel manipulation operations. Here the “or” can be

interpreted to include the meaning of “and” since “or” includes the meaning of

“and.” Nothing in the specification of Shen indicates an exclusive "or" meaning.

In fact the GPU of Shen is shownto perform operations on per-pixel and per-

vertex.)

While Shen doesnot disclose shared resources, operatively coupled to

the processorunit; Parikh does disclose shared resources, operatively

coupledto the processorunit; (Col. 14, lines 2-6 reciting “Main processor 110

can also load a numberof graphics values (e.g., transformation matrices,pixel

formats, vertex formats, etc. by writing to registers within the graphics and audio

processors.” Thus, pixel and vertex data may be both written to registers that are

within the graphics processor. Therefore, the registers within the graphics

processors are shared resources that may be used to store at least pixel formats,

vertex formats, and additional data formats.)

the processorunit operative to use the shared resourcesfor either

vertex data or pixel information and operative to perform pixel calculation

operations until enough shared resources becomeavailable and then use

the shared resourcesto perform vertex calculation operations. (Col. 14,

lines 2-6 reciting “Main processor 110 can also load a numberof graphics values

(e.g., transformation matrices, pixel formats, vertex formats, etc. by writing to

Page 330 of 509 TCL 1002

Page 331 of 509 TCL 1002

Application/Control Number: 13/109,738 Page 27

Art Unit: 2677

registers within the graphics and audio processors.” The registers available in

the graphics processorwill be finite and they mayall befilled with pixel format

(pixel data). Therefore, if there is no empty registers left and the registers are all

filled with non-vertex data, the processor may not read and processvertex format

(vertex data).)

lt would have been obviousfor oneof ordinary skill in the art to combine

the teachings of Parikh with the teachings of Shen becauseboth are drawn to

analogousart. Shen discloses accelerated decoding of video bitstreams using a

graphics processing unit (GPU). The GPU generates vertex data which are

processed for vertex-basedor pixel-based special effects processing such as de-

interlacing, inverse telecine, scaling, fading in or out, and image sharpeningor

blurring. Parikh is drawn to a unique vertex representation allowing the graphics

pipeline to retain vertex state information and to mix indexed and direct vertex

values and attributes. Parikh further teachesthat it is possible to store vertex

format and pixel format and other graphics information into registers of the

graphics processor. Thus, the GPU of Shen may be modified with the registers

taught in Parikh so that the generated vertex values may be stored in the GPU

for later access. Oneofordinary skill in the art would be motivated to combine

the registers of Parikh with the GPU of Shenin order to store the vertex data

generated in Shen to moreefficiently construct polygons and other graphical

objects. Therefore, it would be obviousto one ofordinaryskill in the art to

combine the teachings of Parikh with the teachings of Shen.

Page 331 of 509 TCL 1002

Page 332 of 509 TCL 1002

Application/Control Number: 13/109,738 Page 28

Art Unit: 2677

13. Regarding Claim 4, Shen discloses A unified shader comprising: a

processorunit operative to perform vertex calculation operations and pixel

calculation operations; and (Col. 6, lines 39-45 reciting “At block 326, video

decoding application 216 may optionally be configured to direct GPU 208 to

perform special effects processing on the reconstructed image. For example,

GPU 208 may be directed to perform vertex-basedor pixel-based special effects

processing such as de-interlacing, inverse telecine, scaling, fading in or out, and

image sharpening or blurring.” The GPU can perform vertex-basedor pixel-

based special effects processing which correspondsto performing vertex

manipulation operation and pixel manipulation operations. Here the “or” can be

interpreted to include the meaning of “and” since “or” includes the meaning of

“and.” Nothing in the specification of Shen indicates an exclusive "or" meaning.

In fact the GPU of Shen is shownto perform operations on per-pixel and per-

vertex.)

Parikh discloses shared resources, operatively coupled to the

processorunit; (Col. 14, lines 2-6 reciting “Main processor 110 can also load a

numberof graphics values(e.g., transformation matrices, pixel formats, vertex

formats, etc. by writing to registers within the graphics and audio processors.”

The registers available in the graphics processorwill be finite and they mayall be

filled with pixel format (pixel data). Therefore, if there is no emptyregistersleft

and the registers areall filled with non-vertex data, the processor may not read

and processvertex format (vertex data).)

Page 332 of 509 TCL 1002

Page 333 of 509 TCL 1002

Application/Control Number: 13/109,738 Page 29

Art Unit: 2677

the processorunit operative to use the shared resourcesfor either

vertex data or pixel information and operative to perform vertex calculation

operations until enough shared resources becomeavailable and then use

the shared resourcesto perform pixel calculation operations. (Col. 6, lines

39-45 reciting “At block 326, video decoding application 216 may optionally be

configured to direct GPU 208 to perform special effects processing on the

reconstructed image. For example, GPU 208 may bedirected to perform vertex-

basedor pixel-based special effects processing such as de-interlacing, inverse

telecine, scaling, fading in or out, and image sharpening or blurring.” The GPU

can perform vertex-based or pixel-based special effects processing which

correspondsto performing vertex manipulation operation and pixel manipulation

operations. Here the “or” can be interpreted to include the meaning of “and”

since “or” includes the meaning of “and.” Nothing in the specification of Shen

indicates an exclusive "or" meaning. In fact the GPU of Shen is shownto

perform operations on per-pixel and per-vertex.)

lt would have been obviousfor oneof ordinary skill in the art to combine

the teachings of Parikh with the teachings of Shen becauseboth are drawnto

analogousart. Shen discloses accelerated decoding of video bitstreams using a

graphics processing unit (GPU). The GPU generates vertex data which are

processed for vertex-basedor pixel-based special effects processing such as de-

interlacing, inverse telecine, scaling, fading in or out, and image sharpening or

blurring. Parikh is drawn to a unique vertex representation allowing the graphics

pipeline to retain vertex state information and to mix indexed and direct vertex

Page 333 of 509 TCL 1002

Page 334 of 509 TCL 1002

Application/Control Number: 13/109,738 Page 30

Art Unit: 2677

values and attributes. Parikh further teachesthatit is possible to store vertex

format and pixel format and other graphics information into registers of the

graphics processor. Thus, the GPU of Shen may be modified with the registers

taught in Parikh so that the generated vertex values maybe stored in the GPU

for later access. Oneofordinary skill in the art would be motivated to combine

the registers of Parikh with the GPU of Shenin order to store the vertex data

generated in Shen to moreefficiently construct polygons and other graphical

objects. Therefore, it would be obvious to oneof ordinaryskill in the art to

combine the teachings of Parikh with the teachings of Shen.

14. Regarding Claim 5, Shenfurther discloses A unified shader comprising:

a processorunit; (Col. 4, lines 8-12 reciting “Exemplary GPU 208 includes a

programmable vertex shader 212 for performing graphics operations on a per-

vertex basis, and a programmablepixel shader 214 for performing graphics

operations on a per-pixel basis.” The GPU 208, which corresponds to a

processor.)

a sequencer coupledto the processorunit, the sequencer

maintaining instructions operative to cause the processorunit to execute

vertex calculation and pixel calculation operations on selected data

maintained in a store depending upon an amountof space available in the

store. (Col. 4, lines 29-44 reciting “Accelerated video decoding may be described

in the general context of computer-executable instructions, such as application

modules, being executed by a computer. Generally, application modules include

routines, programs, objects, components,data structures, etc. that perform

Page 334 of 509 TCL 1002

Page 335 of 509 TCL 1002

Application/Control Number: 13/109,738 Page 31

Art Unit: 2677

particular tasks or implementparticular abstract data types. Video decoding

application 216 may be implemented using any numberof programming

techniques and may be implemented in local computing environments or in

distributed computing environments wheretasks are performed by remote

processing devicesthat are linked through various communications networks

based on any number of communication protocols. In such a distributed

computing environment, application modules may be located in both local and

remote computer storage media including memory storage devices.” The

memory storage devices correspondsto the sequencer becauseit stores the

computer-executable instructions, such as application modules, which are in a

sequence. The application modules may be located in local computer storage

media and suchlocal storage medium is coupled to the processorsinceitis

accessible by the processor.)

lt would have been obviousfor oneof ordinary skill in the art to combine

the teachings of Parikh with the teachings of Shen becauseboth are drawn to

analogousart. Shen discloses accelerated decoding of video bitstreams using a

graphics processing unit (GPU). The GPU generates vertex data which are

processed for vertex-basedor pixel-based special effects processing such as de-

interlacing, inverse telecine, scaling, fading in or out, and image sharpening or

blurring. Parikh is drawn to a unique vertex representation allowing the graphics

pipeline to retain vertex state information and to mix indexed and direct vertex

values and attributes. Parikh further teachesthatit is possible to store vertex

format and pixel format and other graphics information into registers of the

Page 335 of 509 TCL 1002

Page 336 of 509 TCL 1002

Application/Control Number: 13/109,738 Page 32

Art Unit: 2677

graphics processor. Thus, the GPU of Shen may be modified with the registers

taught in Parikh so that the generated vertex values may be stored in the GPU

for later access. Oneofordinary skill in the art would be motivated to combine

the registers of Parikh with the GPU of Shenin order to store the vertex data

generated in Shen to moreefficiently construct polygons and other graphical

objects. Therefore, it would be obvious to oneof ordinaryskill in the art to

combine the teachings of Parikh with the teachings of Shen.

15. Regarding Claim 6, Shen further discloses The shaderof claim 5,

wherein the sequencerfurther includes circuitry operative to fetch data

from a memory.(Col. 4, lines 29-44 reciting “Accelerated video decoding may

be described in the general context of computer-executable instructions, such as

application modules, being executed by a computer. Generally, application

modulesinclude routines, programs, objects, components, data structures,etc.

that perform particular tasks or implement particular abstract data types. Video

decoding application 216 may be implemented using any numberof

programming techniques and may be implemented in local computing

environments or in distributed computing environments where tasks are

performed by remote processing devices that are linked through various

communications networks based on any number of communication protocols.In

such a distributed computing environment, application modules may be located

in both local and remote computer storage media including memory storage

devices.” The communications network based on communication protocols

Page 336 of 509 TCL 1002

Page 337 of 509 TCL 1002

Application/Control Number: 13/109,738 Page 33

Art Unit: 2677

correspondsto circuitry operative to fetch the instructions from the remote

computer storage media.)

16. Regarding Claim 7, Shen further discloses The shaderof claim 5,

further including a selection circuit operative to provide information to the

store in responseto a controlsignal. (Col. 4, lines 29-44 reciting “Accelerated

video decoding may be described in the general context of computer-executable

instructions, such as application modules, being executed by a computer.

Generally, application modules include routines, programs, objects, components,

data structures, etc. that perform particular tasks or implement particular abstract

data types. Video decoding application 216 may be implemented using any

numberof programming techniques and may be implemented in local computing

environments or in distributed computing environments where tasks are

performed by remote processing devices that are linked through various

communications networks based on any number of communication protocols.In

such a distributed computing environment, application modules may be located

in both local and remote computer storage media including memory storage

devices.” The communications networks also correspondsto selective circuit

that provides information to the memory storage devices.)

17.|Regarding Claim 8, Shen further discloses The shaderof claim 5,

further including a selection circuit operative to provide information to the

store in responseto a controlsignal. (Col. 6, lines 39-45 reciting “At block

326, video decoding application 216 may optionally be configured to direct GPU

208 to perform special effects processing on the reconstructed image. For

Page 337 of 509 TCL 1002

Page 338 of 509 TCL 1002

Application/Control Number: 13/109,738 Page 34

Art Unit: 2677

example, GPU 208 may bedirected to perform vertex-based or pixel-based

special effects processing such as de-interlacing, inverse telecine, scaling,fading

in or out, and image sharpening orblurring.” Fading in or out correspondsto

pixel color in response to the GPU 208receiving directions (plurality of inputs)

from the video decoding application 216.)

18.|Regarding Claim 10, Shen further discloses The shaderof claim 5,

wherein the processor unit generates vertex position and appearance data

in responseto a selected oneof the plurality of inputs. (Col. 6, lines 39-45

reciting “At block 326, video decoding application 216 may optionally be

configured to direct GPU 208 to perform special effects processing on the

reconstructed image. For example, GPU 208 maybe directed to perform vertex-

basedor pixel-based special effects processing such as de-interlacing, inverse

telecine, scaling, fading in or out, and image sharpeningorblurring.” Both

scaling and inverse telecine correspondsto vertex position (scaling) and

appearancedata (reversetelecine).)

19. Regarding Claim 11, Shen further discloses The shaderof claim 5,

wherein the processor unit generates vertex position and appearance data

in responseto a selected oneof the plurality of inputs. (Col. 6, lines 39-45

reciting “At block 326, video decoding application 216 may optionally be

configured to direct GPU 208 to perform special effects processing on the

reconstructed image. For example, GPU 208 may bedirected to perform vertex-

based or pixel-based special effects processing such as de-interlacing, inverse

telecine, scaling, fading in or out, and image sharpening orblurring.” De-

Page 338 of 509 TCL 1002

Page 339 of 509 TCL 1002

Application/Control Number: 13/109,738 Page 35

Art Unit: 2677

interlacing, inverse telecine, and scaling all correspond to vertex position

(scaling) and appearancedata (reverse telecine).)

20. Regarding Claim 15, Shen discloses A unified shader comprising: a

processorunitflexibly controlled to perform vertex manipulation

operations and pixel manipulation operations based on vertex or pixel

workload.(Col. 6, lines 39-45 reciting “At block 326, video decoding application

216 may optionally be configured to direct GPU 208 to perform special effects

processing on the reconstructed image. For example, GPU 208 may be directed

to perform vertex-based or pixel-based special effects processing such as de-

interlacing, inverse telecine, scaling, fading in or out, and image sharpening or

blurring. The GPU correspondsto a processorunit flexibly controlled, and the

reconstructed image correspondsto the workloadsince the reconstructed image

will have varying numbersof vertex and pixel data to process.)

21. Regarding Claim 16, Shen further discloses The shaderof claim 15

comprising an instruction store and wherein the processor unit performs

the vertex manipulation operations and pixel manipulation operations at

various degrees of completion based on switching betweeninstructionsin

the instruction store. (Col. 4, lines 29-44 reciting “Accelerated video decoding

may be described in the general context of computer-executable instructions,

such as application modules, being executed by a computer. Generally,

application modules include routines, programs, objects, components, data

structures, etc. that perform particular tasks or implement particular abstract data

types. Video decoding application 216 may be implemented using any numberof

Page 339 of 509 TCL 1002

Page 340 of 509 TCL 1002

Application/Control Number: 13/109,738 Page 36

Art Unit: 2677

programming techniques and may be implemented in local computing

environments or in distributed computing environments where tasks are

performed by remote processing devices that are linked through various

communications networks based on any number of communication protocols.In

such a distributed computing environment, application modules may be located

in both local and remote computer storage media including memory storage

devices.” The local and remote computer storage media including memory

storage devices correspondsto the instruction store. Computer executable

instructions correspondsto the vertex and pixel manipulation operations whichis

completed at various degrees according to the structure of the application

module (stored instructions) on the storage device(instruction store).)

CONTACT

22. Any inquiry concerning this communication or earlier communications from

the examiner should be directed to FRANK CHEN whosetelephone numberis

(571)270-7993. The examiner can normally be reached on 8 - 5, Monday-

Friday.

If attempts to reach the examiner by telephone are unsuccessful, the

examiner's supervisor, Kee Tung can be reached on (571)272-7794. The fax

phone numberfor the organization wherethis application or proceeding is

assigned is 571-273-8300.

Information regarding the status of an application may be obtained from

the Patent Application Information Retrieval (PAIR) system. Status information

for published applications may be obtained from either Private PAIR or Public

Page 340 of 509 TCL 1002

Page 341 of 509 TCL 1002

Application/Control Number: 13/109,738 Page 37

Art Unit: 2677

PAIR. Status information for unpublished applications is available through

Private PAIR only. For more information about the PAIR system, seehttp://pair-

direct.uspto.gov. Should you have questions on accessto the Private PAIR

system, contact the Electronic Business Center (EBC) at 866-217-9197(toll-

free). If you would like assistance from a USPTO Customer Service

Representative or access to the automated information system, call 800-786-

9199 (IN USA OR CANADA)or 571-272-1000.

/FRANK CHEN/

Examiner, Art Unit 2677

/KEE M TUNG/

Supervisory Patent Examiner, Art Unit 2677

Page 341 of 509 TCL 1002

Page 342 of 509 TCL 1002

Application/Control No. Applicant(s)/Patent Under
Reexamination

13/109,738 MOREIN ET AL.
Notice of References Cited Examiner Art Unit

FRANK CHEN 2677 Page 1 of 1
U.S. PATENT DOCUMENTS

Date
MM-YYYY

02-2004

01-2010

Document Number
Country Code-Number-Kind Code

US-6,697,074 B2

US-7,646,817 B2

US-

US-

US-

US-

US-

US-

US-

US-

US-

US-

US-

Classification

Parikh etal. 345/522

Shenetal. 375/240.25

A

2© ©

FOREIGN PATENT DOCUMENTS

Country Classification
Document Number Date

Country Code-Number-Kind Code MM-YYYY

|

U
*A copyof this reference is not being furnished with this Office action. (See MPEP § 707.05(a).)
Dates in MM-YYYYformat are publication dates. Classifications may be US orforeign.
U.S. Patent and Trademark Office

PTO-892 (Rev. 01-2001) Notice of References Cited Part of Paper No. 20121129

Page 342 of 509 TCL 1002

Page 343 of 509 TCL 1002

Application/Control No. Applicant(s)/Patent Under
Reexamination

Index of Claims 13109738 MOREIN ET AL.

Examiner

FRANK CHEN

Rejected = Cancelled
2 Allowed +|Restricted

(1 Claims renumbered in the same order as presented by applicant .D. 1.

CLAIM

Final|Originallov2izorifosivaora|ivsorzore||TT
Pot
Pe
Ps
Poa
Ps
eeeeee Pt
Pom
aeeee PoE
Poe

| PT
Po
PoefwTw a
Post a
Poa
PsP

wot we|oePe

U.S. Patent and Trademark Office Part of Paper No. : 20121129

Page 343 of 509 TCL 1002

Page 344 of 509 TCL 1002

EASTSearch History

EAST Search History

EAST Search History (Prior Art)

{Search Query Plurals(Time

 (reaeetp (SRRTREOaparatat0F
: {USOCR; FPRS; EPO;

aaens an eae ban sn vane en end besa eaean sn eaeas pa eaeas ys yaeaspseaeaspseaeasaseaeasaseaeasaseaeasaseaeasd Gavacunuacgessuaeasasuseasaseseasasuavasaspaeasssyaeas Qsasasssyaeaesspaeasasaaee Gasseasassaeaeasaaead desseasasaaeasasaseaeasaasaas

"6697074" pn. 4US-PGPUB; USPAT;
: HUSOCR; FPRS; EPO;

 single WITH shader WITHpixel]US-PGPUB; USPAT;
WITH vertex '|EPO; JPO; DERWENT;|

41BM_TDB

unified ADJ shader$2 qUS-PGPUB; USPAT;

4EPO; JPO; DERWENT; ;
41BM_TDB

dunified ADJ shader$2 {US-PGPUB; USPAT;

ee eeeeeee ed Rene eeseeneebeeeneeeeeeeeeeneeeeeeeeeeeeeeee heeneeieeneeeeeeeeeeeeeed heeeeeeethetbe!

pixel WITH vertex WITH US-PGPUB; USPAT;
combination WITH shader {USOGR; FPRS; EPO;

Teaacaeeeenesd bancebeEEEEEERandhaventfaceteet beeen

‘combination WITH shader ‘1US-PGPUB; USPAT:

|USOOR; FPRS; EPO; wereeset bed hnnnnnnnneeGinneeeee beenGee

{combination ADJ shader ‘1US-PGPUB; USPAT;
i s1USOCR; FPRS; EPO;

‘single WITH shader {US-PGPUB; USPAT;
| '|USOCR; FPRS; EPO;

aanannannat anaannanannaet Qa naaae foaaaaaaaaceeaaas foaaaaaaaaaaaaaaaaaaaaaaaas foasaaaaaaaaaaaaaaaag Qasaaaaaaaaaaaaaaaaaaaaaaaae

‘Isingle NEAR shader {US-PGPUB; USPAT;
|USOCR; FPRS; EPO;

 ‘single ADJ shader US-PGPUB: USPAT. {OR(ON(2019/11/29.

: 4USOCR; FPRS; EPO;

aavnsan nae han sa enna een ead besa ea sansa ea eee ea eaees es eaeas as ea eas aseaeas as eaeasaseaeasaseseasaseaeaed Savaessua cesses uaeas as uaeas gs uaeasaseaeasaseaeasaseaeasRaavassseaeasaseaeasasaaee basavasassaeaeaseaead fesavasasaaeasasaseasasaaeas

Jsingle WITH shader WITH pixel: US-PGPUB; USPAT;
WITH vertex 4{USOCR; FPRS; EPO;

iJPO; DERWENT;
4|BM_TDB

single NEAR shader WITH pixel: US-PGPUB; USPAT;
{WITHvertex 1USOCR; FPRS; EPO;

Pade 344 of 509

file:///C\/Users/fchen/Documents/e-Red%20Folder/13109738/EASTSearchHistory.13109738_AccessibleVersion.htm[12/1/2012 2:40:22 PM]

Page 345 of 509 TCL 1002

EASTSearch History

file:///C\/Users/fchen/Documents/e-Red%20Folder/13109738/EASTSearchHistory.13109738_AccessibleVersion.htm[12/1/2012 2:40:22 PM]

single NEAR shader

‘icombin3 WITHpixel WITH
vertex WITH shader

jintegrated WITHpixel WITH
vertex WITH shader

‘simultaneou$4 WITHpixel
¥WITH vertex WITH sahder

Jsimultaneou$4 WITH pixel
yWITH vertex WITH shader

concurrent WITHpixel WITH
vertex WITH shader

‘coexist WITH pixel WITH
vertex WITH shader

‘contemporaneous WITHpixel
YWITHvertex WITH shader

contemporary WITH pixel
YWITH vertex WITH shader

4synchron$4 WITH pixel WITH
vertex WITH shader

‘combined WITH pixel WITH
vertex WITH shader

‘icumulat$4 WITH pixel WITH
vertex WITH shader

‘composite WITH pixel WITH
vertex WITH shader

{JPO; DERWENT;
{IBM_TDB

‘1US-PGPUB; USPAT:
USOCR; FPRS; EPO;

|US-PGPUB; USPAT;
JUSOCR; FPRS; EPO;

1US-PGPUB; USPAT;

}USOCR; FPRS; EPO;

{US-PGPUB; USPAT;
4USOGR; FPRS; EPO;

US. PGPUB: USPAT:
JUSOCR; FPRS; EPO;

1US-PGPUB; USPAT;

}USOCR; FPRS; EPO;

4US-PGPUB; USPAT;
JUSOCR; FPRS; EPO;

US-PGPUB; USPAT;

lho:b: FPRS; EPO;

Page 346 of 509 TCL 1002

EASTSearch History

1S26 144 ‘lincorporat$5 WITHpixel WITH {}US-PGPUB; USPAT; OR (2012/1 1/293
\ ‘vertex WITH shader 3USOCR; FPRS; EPO; ; ;

\JPO; DERWENT;
i1BM_TDB

jintegration WITH pixel WITH 4US-PGPUB; USPAT;
dvertex WITH shader }USOCR; FPRS; EPO;

yJPO; DERWENT;

HUS- PGPUB: USPAT;‘iconsolida$5 WITH pixel WITH |
|USOCR; FPRS; EPO;vertex WITH shader

‘cooperat$5 WITH pixel WITH
vertex WITH shader

avn annaban sa enna en ead besa ea ean sa enna ea eaeas as eaeas as eaeas as eaeas as eaeas nausea aseseasaseaeaed Savacgnua cesses uaeas as uaeas gs uaeasasuaeasaseaeasaseaeas Raasassseaeasaseaeasasaaee basavasassaeaeaseaead fesavaeasaaeasasaaeasasaaeas

undivided WITH pixel WITH
vertex WITH shader weeeeeeeest evesseeneee Reneeeneee eneeenenaeeeenenentbaneeeeerenneteeeeeeeens Geenaeeeeneet beeen!heen

Jone WITHpixel WITH vertex
{WITH shader

‘lone WITH only WITH pixel—§US-PGPUB; USPAT;
YWITH vertex WITH shader {USOCR; FPRS; EPO;

‘single WITH pixel WITH vertex :4US- PGPUB; USPAT;
YWITH shader 4USOCR; FPRS; EPO;

eaveceed bitEEEedRaced facetbeet

unified ADJ shader ‘1US-PGPUB; USPAT;
‘1USOCR; FPRS; EPO;
HJPO; DERWENT;

avn en eae ban sn enna en end besa enean sa eaeae ea eaees ya eaean ps eaeasasyaeasaseaeassseaeasaseaeasaseaead GavacssuacuesauaeasasuaeasaspaeasasyseasasuseasssaaeasRvasasssyaeaeaseaeaeasaaee Gasavasaseaeaeasaaead desseasassaeasasaseaeasaasaas

'(US-PGPUB; USPAT;

1US-PGPUB; USPAT;

}USOCR; FPRS; EPO;

avn an ened Na saeaeasnnead Ran eaeas sa eaean ea eaean aa eaean pa eaeas as eaeas as eaeasgseaeasaseaeasaseaeasns bevasgsuacue seen an gsuasasasyasasaseseasaseasasaseseasd foasaasuaeaesseseasaseaeas devaeasasvaeasaseaeas Avavasaseaeasaseaeasaseaeasd

Lindholm AND shader

%Lindholm AND programmable
YWITH graphics WITH

'{US-PGPUB; USPAT:
3USOCR; FPRS; EPO;

Page346of509

file:///C\/Users/fchen/Documents/e-Red%20Folder/13109738/EASTSearchHistory.13109738_AccessibleVersion.htm[12/1/2012 2:40:22 PM]

 ‘processor WITH vertex WITH
ypixel WITH shad$4

Page 347 of 509 TCL 1002

EASTSearch History

‘vertex WITH pixel WITH
ushad$4

graphics WITH processor WITH:
vertex WITH pixel WITH
shader

‘graphics WITH processor WITH:
‘vertex WITH pixel WITH
processing

graphics WITH processor WITH:
‘vertex WITH pixel WITH
processing WITHregister

‘graphics WITHprocessor WITH:
vertex WITH pixel WITH
yoperations

‘igraphics WITHprocessor WITH:
vertex WITH manipulation
dWITH pixel WITH calculation

processor WITH vertex WITH
manipulation WITH pixel WITH:
ycalculation

processor WITH vertex WITH
pixel WITHcalculation

graphics WITH processor WITH!
dual WITH pixel WITH vertex

GPU WITHvertex WITHpixel
{WITH (operations OR
dmanipulation OR calculation)

vertex WITH data WITH
general WITH purpose WITH
register

‘general WITH purpose WITH
‘register WITH vertex

4((general$1purpose WITH:
: ::: :: :: :: :: :: :: ::::::::

dregister) OR GPR) WITH

;vertex

[oenera WITH purpose WITH US-PGPUB; USPAT;

US-PGPUB; USPAT;

{USOCR; FPRS; EPO;

US-PGPUB; USPAT;
|USOCR; FPRS; EPO;

US-PGPUB; USPAT;

|USOOR; FPRS; EPO;
jJPO; DERWENT;
‘|| BM_TDB

US-PGPUB; USPAT;
USOCR; FPRS; EPO;
uJPO; DERWENT;
4IBM_TDB

US-PGPUB; USPAT;
JUSOCR; FPRS; EPO;
PO; DERWENT;

{US-PGPUB; USPAT:

|UsocR FPRS; EPO;

US-PGPUB; USPAT;
|USOOR; FPRS; EPO;

US-PGPUB; USPAT;
4{USOGR; FPRS; EPO;

'{US-PGPUB; USPAT;
JUSOCR; FPRS; EPO;
|JPO; DERWENT;

(US-POPUB: USPAT;
}USOCR; FPRS; EPO;

Pade 347 of 509

(2012/11/30:

jor a Sa
3 T :

file:///C\/Users/fchen/Documents/e-Red%20Folder/13109738/EASTSearchHistory.13109738_AccessibleVersion.htm[12/1/2012 2:40:22 PM]

L 1002

Page 348 of 509 TCL 1002

EASTSearch History

‘vertex NEAR data WITHstor$3

{WITHregister

USOCR; FPRS; EPO;
‘JPO; DERWENT;

‘general WITH purpose WITH
yregister SAME vertex

‘vertex WITH data WITHstore ;
YWITHregister :

‘vertex NEAR data WITH store |
YWITHregister :

US-PGPUB; USPAT;
|USOCR; FPRS; EPO;

‘vertex NEAR data WITH '1US-PGPUB; USPAT;
jtransmit WITHregister 3USOCR; FPRS; EPO;

‘vertex NEAR data WITH i1US-PGPUB; USPAT;
jtransmit$5 WITH register 3USOCR; FPRS; EPO;

‘vertex WITH pixel WITH
register

EAST Search History (Interference)

< This search history is empty>

12/1/2012 2:40:15 PM

C:\ Users\ fchen\ Documents\ EAST\ Workspaces\ 1310973820110216077_Morein_et_al.wsp

Page 348 of 509 TCL 1002

file:///C\/Users/fchen/Documents/e-Red%20Folder/13109738/EASTSearchHistory.13109738_AccessibleVersion.htm[12/1/2012 2:40:22 PM]

Page 349 of 509 TCL 1002

Application/Control No. Applicant(s)/Patent Under
Reexamination

Search Notes 13109738 MOREIN ETAL.

Hi sramine! Art UnitFRANK CHEN 9677

SEARCHED

lassSubclass

Class 504=oi988865ia1/12

SEARCH NOTES

-geaishodZASTAOASNeoypitNotesSeraEASTGDSsoSatNSRB ara[on

INTERFERENCE SEARCH

/FRANK CHEN/
Examiner.Art Unit 2677

U.S. Patent and TrademarkOffice Page 349 of 909 Part of Paper nol:Gb1,002

Page 350 of 509 TCL 1002

PATENT APPLICATION

IN THE UNITED STATES PATENT AND TRADEMARKOFFICE

Applicants:|Stephen Moreinetal. Examiner: Frank S. Chen
Serial No.: 13/109,738 Art Unit: 2677
Filing Date: May 17, 2011 Docket No.: 00100.36.0001
Confirmation No.: 2020

Title: GRAPHICS PROCESSING ARCHITECTURE EMPLOYINGA UNIFIED

SHADER

AMENDMENT AND RESPONSE

DearSir:

In responseto the office action mailed December 6, 2012, Applicants petition for a three

month extension of time and respond as follows:

Amendments to the Abstract begin on page 2 of this paper and include a replacement Abstract
and a clean copy showing the amended Abstract.

Amendments to the Claims begins on page3 ofthis paper.

Remarksbegin on page7 ofthis paper.

DMS_US 52220360v1 Page 350 of 509 TCL 1002

Page 351 of 509 TCL 1002

Amendments to the Specification

Please replace the Abstract with the following amended Abstract:

ABSTRACT

A graphics processing architecture in one example performs vertex manipulation

operations and pixel manipulation operations by transmitting vertex data to a general purpose

register block, and performing vertex operations on the vertex data by a processer uniess the

general purpose register block does not have enough available spacethereto store incoming

vertex data; and continues pixel calculation operations that are to be or are currently being

performed by the processor based on instructions maintained m an instruction stare until enough

 registers within the general purpose register block becorne available.

purpose-reainterblockmantains-dutaA-caguancer,coupledio-the-ceneralpurposeregisterblock

and-io-2-processer-unit,alaiieins-instractons-operaiiveto-cause-thepracesser-ant-to-eNnceute

fesponse-to-theselected-oneofthephivahtyofmpats-and-paneratesverter-pasition-and

apposrance-cata-in-respenie-to-a-selected-ane-ofihe-pluralityofinpais

DMS_US 52220360v1 Page 351 of 509 TCL 1002

Page 352 of 509 TCL 1002

Page 353 of 509 TCL 1002

Page 354 of 509 TCL 1002

Page 355 of 509 TCL 1002

Page 356 of 509 TCL 1002

Page 357 of 509 TCL 1002

Page 358 of 509 TCL 1002

Page 359 of 509 TCL 1002

Page 360 of 509 TCL 1002

Page 361 of 509 TCL 1002

Page 362 of 509 TCL 1002

Page 363 of 509 TCL 1002

Page 364 of 509 TCL 1002

Page 365 of 509 TCL 1002

Page 366 of 509 TCL 1002

Page 367 of 509 TCL 1002

Page 368 of 509 TCL 1002

Page 369 of 509 TCL 1002

Page 370 of 509 TCL 1002

Page 371 of 509 TCL 1002

Page 372 of 509 TCL 1002

Page 373 of 509 TCL 1002

Page 374 of 509 TCL 1002

Page 375 of 509 TCL 1002

Page 376 of 509 TCL 1002

Page 377 of 509 TCL 1002

Page 378 of 509 TCL 1002

Page 379 of 509 TCL 1002

Page 380 of 509 TCL 1002

Page 381 of 509 TCL 1002

Page 382 of 509 TCL 1002

Page 383 of 509 TCL 1002

Page 384 of 509 TCL 1002

Page 385 of 509 TCL 1002

Page 386 of 509 TCL 1002

Page 387 of 509 TCL 1002

Page 388 of 509 TCL 1002

Page 389 of 509 TCL 1002

Page 390 of 509 TCL 1002

Page 391 of 509 TCL 1002

Page 392 of 509 TCL 1002

Page 393 of 509 TCL 1002

Page 394 of 509 TCL 1002

Page 395 of 509 TCL 1002

Page 396 of 509 TCL 1002

Page 397 of 509 TCL 1002

Page 398 of 509 TCL 1002

Page 399 of 509 TCL 1002

Page 400 of 509 TCL 1002

Page 401 of 509 TCL 1002

Page 402 of 509 TCL 1002

Page 403 of 509 TCL 1002

Page 404 of 509 TCL 1002

Page 405 of 509 TCL 1002

Page 406 of 509 TCL 1002

Page 407 of 509 TCL 1002

Page 408 of 509 TCL 1002

Page 409 of 509 TCL 1002

Page 410 of 509 TCL 1002

Page 411 of 509 TCL 1002

Page 412 of 509 TCL 1002

Page 413 of 509 TCL 1002

Page 414 of 509 TCL 1002

Page 415 of 509 TCL 1002

Page 416 of 509 TCL 1002

Page 417 of 509 TCL 1002

Page 418 of 509 TCL 1002

Page 419 of 509 TCL 1002

Page 420 of 509 TCL 1002

Page 421 of 509 TCL 1002

Page 422 of 509 TCL 1002

Page 423 of 509 TCL 1002

Page 424 of 509 TCL 1002

Page 425 of 509 TCL 1002

Page 426 of 509 TCL 1002

Page 427 of 509 TCL 1002

Page 428 of 509 TCL 1002

Page 429 of 509 TCL 1002

Page 430 of 509 TCL 1002

Page 431 of 509 TCL 1002

Page 432 of 509 TCL 1002

Page 433 of 509 TCL 1002

Page 434 of 509 TCL 1002

Page 435 of 509 TCL 1002

Page 436 of 509 TCL 1002

Page 437 of 509 TCL 1002

Page 438 of 509 TCL 1002

Page 439 of 509 TCL 1002

Page 440 of 509 TCL 1002

Page 441 of 509 TCL 1002

Page 442 of 509 TCL 1002

Page 443 of 509 TCL 1002

Page 444 of 509 TCL 1002

Page 445 of 509 TCL 1002

Page 446 of 509 TCL 1002

Page 447 of 509 TCL 1002

Page 448 of 509 TCL 1002

Page 449 of 509 TCL 1002

Page 450 of 509 TCL 1002

Page 451 of 509 TCL 1002

Page 452 of 509 TCL 1002

Page 453 of 509 TCL 1002

Page 454 of 509 TCL 1002

Page 455 of 509 TCL 1002

Page 456 of 509 TCL 1002

Page 457 of 509 TCL 1002

Page 458 of 509 TCL 1002

Page 459 of 509 TCL 1002

Page 460 of 509 TCL 1002

Page 461 of 509 TCL 1002

Page 462 of 509 TCL 1002

Page 463 of 509 TCL 1002

Page 464 of 509 TCL 1002

Page 465 of 509 TCL 1002

Page 466 of 509 TCL 1002

Page 467 of 509 TCL 1002

Page 468 of 509 TCL 1002

Page 469 of 509 TCL 1002

Page 470 of 509 TCL 1002

Page 471 of 509 TCL 1002

Page 472 of 509 TCL 1002

Page 473 of 509 TCL 1002

Page 474 of 509 TCL 1002

Page 475 of 509 TCL 1002

Page 476 of 509 TCL 1002

Page 477 of 509 TCL 1002

Page 478 of 509 TCL 1002

Page 479 of 509 TCL 1002

Page 480 of 509 TCL 1002

Page 481 of 509 TCL 1002

Page 482 of 509 TCL 1002

Page 483 of 509 TCL 1002

Page 484 of 509 TCL 1002

Page 485 of 509 TCL 1002

Page 486 of 509 TCL 1002

Page 487 of 509 TCL 1002

Page 488 of 509 TCL 1002

Page 489 of 509 TCL 1002

Page 490 of 509 TCL 1002

Page 491 of 509 TCL 1002

Page 492 of 509 TCL 1002

Page 493 of 509 TCL 1002

Page 494 of 509 TCL 1002

Page 495 of 509 TCL 1002

Page 496 of 509 TCL 1002

Page 497 of 509 TCL 1002

Page 498 of 509 TCL 1002

Page 499 of 509 TCL 1002

Page 500 of 509 TCL 1002

Page 501 of 509 TCL 1002

Page 502 of 509 TCL 1002

Page 503 of 509 TCL 1002

Page 504 of 509 TCL 1002

Page 505 of 509 TCL 1002

Page 506 of 509 TCL 1002

Page 507 of 509 TCL 1002

Page 508 of 509 TCL 1002

Page 509 of 509 TCL 1002

