
APPENDIX A

Ebay Exhibit 1013, Page 1 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

A research center for augmenting human intellect *

by DOUGLAS C. ENGELBART
and WILLIAM K. ENGLISH

Stanford Research Institute
Menlo Park, California

1 SUMMARY

la This paper describes a multisponsor re­
search center at Stanford Research Institute in
man-computer interaction.

lal For its laboratory facility, the Center
has a time-sharing computer (65K, 24-bit
core) with a 4.5 megabyte swapping drum
and a 96 megabyte file-storage disk. This
serves twelve CRT work stations simultane­
ously.

lal a Special hardware completely removes
from the CPU the burden of display re­
freshing and input sampling, even though
these are done directly out of and into core.

lalb The display in a user's office appears
on a high-resolution (875-line) commercial
television monitor, and provides both char­
acter and vector portrayals. A relatively
standard typewriter keyboard is supple­
mented by a five-key handset used (option­
ally) for entry of control codes and brief
literals. An SRI cursor device called the
"mouse" is used for screen pointing and
selection.

lalbl The "mouse" is a hand-held X-Y
transducer usable on any flat surface; it
is described in greater detail further on.

Ia2 Special-purpose high-level languages and
associated compilers provide rapid, flexible
development and modification of the reper­
toire of service functions and of their control
procedures (the latter being the detailed user

•Principal sponsors are: Advanced Research Projects Agency
and National Aeronautics and Space Agency (NAS1-7897), and
Rome Air Development Center F30602-68-C-0286.

actions and computer feedback involved in
controlling the application of these service
functions).

lb User files are organized as hierarchical
structures of data entities, each composed of
arbitrary combinations of text and figures. A
repertoire of coordinated service features en­
ables a skilled user to compose, study, and mod­
ify these files with great speed and flexibility,
and to have searches, analyses data manipula­
tion, etc. executed. In particular, special sets of
conventions, functions, and working methods
have been developed to air programming, logi­
cal design, documentation, retrieval, project
management, team interaction, and hard-copy
production.

2 INTRODUCTION

2a In the Augmented Human Intellect (AHI)
Research Center at Stanford Research Institute
a group of researchers is developing an experi­
mental laboratory around an interactive, multi-
console computer-display system, and is work­
ing to learn the principles by which interactive
computer aids can augment their intellectual
capability.

2b The research objective is to develop prin­
ciples and techniques for designing an "aug­
mentation system."

2bl This includes concern not only for the
technology of providing interactive computer
service, but also for changes both in ways of
conceptualizing, visualizing, and organizing
working material, and in procedures ancj
methods for working individually and coop­
eratively.

395

Ebay Exhibit 1013, Page 2 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1476589.1476645&domain=pdf&date_stamp=1968-12-09
http://crossmark.crossref.org/dialog/?doi=10.1145%2F1476589.1476645&domain=pdf&date_stamp=1968-12-09

396 Fall Joint Computer Conference, 1968

2c The research approach is strongly empirical.
At the workplace of each member of the subject
group we aim to provide nearly full-time avail­
ability of a CRT wor^ station, and then to work
continuously to improve both the service avail­
able at the stations and the aggregate value de­
rived therefrom by the group over the entire
range of its roles and activities.

2d Thus the research group is also the subject
group in the experiment.

2dl Among the special activities of the group
are the evolutionary development of a com­
plex hardware-software system, the design of
new task procedures for the system's users,
and careful documentation of the evolving
system designs and user procedures.

2d2 The group also has the usual activities
of managing its activities, keeping up with
outside developments, publishing reports, etc.

2d3 Hence, the particulars of the augmenta­
tion system evolving here will reflect the na­
ture of these tasks—i.e., the system is aimed
at augmenting a system-development project
team. Though the primary research goal is
to develop principles of analysis and design
so as to understand how to augment human
capability, choosing the researchers them­
selves as subjects yields as valuable secondary
benefit a system tailored to help develop com­
plex computer-based systems.

2e This "bootstrap" group has the interesting
(recursive) assignment of developing tools and
techniques to make it more effective at carrying
out its assignment.

2el Its tangible product is a developing aug­
mentation system to provide increased capa­
bility for developing and studying augmenta­
tion systems.

2e2 This system can hopefully be transferred,
as a whole or by pieces of concept, principle
and technique, to help others develop augmen­
tation systems for aiding many other dis­
ciplines and activities.

2f In other words we are concentrating fully
upon reaching the point where we can do all
of our work on line—placing in computer store
all of our specifications, plans, designs, pro­
grams, documentation, reports, memos, bibliog­

raphy and reference notes, etc., and doing all
of our scratch work, planning, designing, de­
bugging, etc., and a good deal of our intercom­
munication, via the consoles.

2fl We are trying to maximize the coverage
of our documentation, using it as a dynamic
and plastic structure that we continually de­
velop and alter to represent the current state
of our evolving goals, plans, progress, knowl­
edge, designs, procedures, and data.

2g The display-computer system to support this
experiment is just (at this writing) becoming
operational. Its functional features serve a
basic display-oriented user system that we have
evolved over five years and through three other
computers. Below are described the principal
features of these systems.

3 THE USER SYSTEM

3a Basic Facility

3al As "seen" by the user, the basic facility
has the following characteristics:

3ala 12 CRT consoles, of which 10 are
normally located in offices of AHI research
staff.

3alb The consoles are served by an SDS
940 time-sharing computer dedicated to
full-time service for this staff, and each
console may operate entirely independently
of the others.

Sale Each individual has private file space,
and the group has community space, on a
high-speed disc with a capacity of 96 mil­
lion characters.

3a2 The system is not intended to serve a
general community of time-sharing users, but
is being shaped in its entire design toward
the special needs of the "bootstrapping" ex­
periment.

3b Work Stations

3bl As noted above, each work station is
equipped with a display, an alphanumeric
keyboard, a mouse, and a five-key handset.

3b2 The display at each of the work stations
(see Figure 1) is provided on a high-resolu­
tion, closed-circuit television monitor.

Ebay Exhibit 1013, Page 3 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Research Center for Augmenting Human Intellect 397

FIGURE 1—Typical work station, with TV display, typewriter
keyboard, mouse, and chord handset

3b3 The alphanumeric keyboard is similar to
a Teletype keyboard. It has 96 normal char­
acters in two cases. A third-case shift key
provides for future expansion, and two spe­
cial keys are used for system control.

3b4/TKe mouse produces two analog voltages
ast het wo wheels (see Figure 2) rotate, each
changing in proportion to the X or Y move­
ment over the table top.

SbJ^a These voltages control—via an A/D
converter, the computer's memory, and the
display generator—the coordinates of a
tracking spot with which the user may
"point" to positions on the screen.

3bUb Three buttons on top of the mouse
are used for special control.

3bUc A set of experiments, comparing
(within our techniques of interaction) the

FIGURE 2—Underside of mouse

relative speed and accuracy obtained with
this and other selection devices showed the
mouse to be better than a light pen or a joy­
stick (see Refs. English 1 and English 2).

3bAcl Compared to a light pen, it is gen­
erally less awkward and fatiguing to use,
and it has a decided advantage for use
with raster-scan, write-through storage
tube, projection, or multiviewer display
systems.

3b5 The five-key handset has 31 chords or
unique key-stroke combinations, in five
"cases."

3b5a The first four cases contain lower-
and upper-case letters and punctuation,
digits, and special characters. (The chords
for the letters correspond to the binary
numbers from 1 to 26.)

3b5b The fifth case is "control case." A
particular chord (the same chord in each
case) will always transfer subsequent in­
put-chord interpretations to control case.

3b5c In control case, one can "backspace"
through recent input, specify underlining
for subsequent input, transfer to another
case, visit another case for one character
or one word, etc.

3b5d One-handed typing with the handset
is slower than two-handed typing with the
standard keyboard. However, when the
user works with one hand on the handset
and one on the mouse, the coordinated in-

Ebay Exhibit 1013, Page 4 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

398 Fall Joint Computer Conference, 1968

terspersion of control characters and short
literal strings from one hand with mouse-
control actions from the other yields con­
siderable advantage in speed and smooth­
ness of operation.

3b5dl For literal strings longer than
about ten characters, one tends to trans­
fer from the handset to the normal key­
board.

3b5d2 Both from general experience and
from specific experiment, it seems that
enough handset skill to make its use
worthwhile can generally be achieved
with about five hours of practice. Be­
yond this, skill grows with usage.

3c Structure of Files

3d Our working information is organized
into files, with flexible means for users to set
up indices and directories, and to hop from
file to file by display-selection or by typed-in
file-name designations. Each file is highly
structured in its internal organization.

3cla The specific structure of a given file
is determined by the user, and is an im­
portant part of his conceptual and "study-
manipulate" treatment of the file.

3c2 The introduction of explicit "structur­
ing" to our working information stems from
a very basic feature of our conceptual frame­
work (see Refs. Engelbartl and Engelbart2)
regarding means for augmenting human in­
tellect.

3c2a With the view that the symbols one
works with are supposed to represent a
mapping of one's associated concepts, and
further that one's concepts exist in a "net­
work" of relationships as opposed to the
essentially linear form of actual printed
records, it was decided that the concept-
manipulation aids derivable from real-time
computer support could be appreciably en­
hanced by structuring conventions that
would make explicit (for both the user and
the computer) the various types of network
relationships among concepts.

3c2b As an experiment with this concept,
we adopted some years ago the convention
of organizing all information into explicit

hierarchical structures, with provisions for
arbitrary cross-referencing among the ele­
ments of a hierarchy.

3c2bl The principal manifestation of
this hierarchical structure is the break­
ing up of text into arbitrary segments
called "statements," each of which bears
a number showing its serial location in
the text and its "level" in an "outline" of
the text. This paper is an example of
hierarchical text structure.

3c2c To set up a reference link from State­
ment A to Statement B, one may refer in
Statement A either to the location number
of B or to the "name" of B. The difference
is that the number is vulnerable to subse­
quent structural change, whereas the name
stays with the statement through changes
in the structure around it.

3c2cl By convention, the first word of
a statement is treated as the name of the
statement, if it is enclosed in paren­
theses. For instance, Statement 0 on the
screen of Figure 1 is named "FJCC."

3c2c2 References to these names may be
embedded anywhere in other statements,
for instance as "see(AFI)," where spe­
cial format informs the viewer explicitly
that this refers to a statement named
"AFI," or merely as a string of char­
acters in a context such that the viewer
can infer the referencing.

3c2c3 This naminga nd linking, when
added to the basic hierarchical form,
yields a highly flexible general structur­
ing capability. These structuring con­
ventions are expected to evolve relatively
rapidly as our research progresses.

3c3 For some material, the structured-
statement form may be undesirable. In
these cases, there are means for suppress­
ing the special formatting in the final print­
out of the structured text.

3cU The basic validity of the structured-
text approach has been well established by
our subsequent experience.

Scba We have found that in both off-line
and on-line computer aids, the concep-

Ebay Exhibit 1013, Page 5 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Research Center for Augmenting Human Intellect 399

tion, stipulation, and execution of sig­
nificant manipulations are made much
easier by the structuring conventions.

BcUb Also, in working on line at a CRT
console, not only is manipulation made
much easier and more powerful by the
structure, but a user's ability to get
about very quickly within his data, and
to have special "views" of it generated
to suit his need, are significantly aided
by the structure.

ScUc We have come to write all of our
documentation, notes, reports, and pro­
posals according to these conventions,
because of the resulting increase in our
ability to study and manipulate them
during composition, modification, and
usage. Our programming systems also
incorporate the conventions. We have
found it to be fairly universal that after
an initial period of negative reaction in
reading explicitly structured material,
one comes to prefer it to material printed
in the normal form.

3d File Studying

3dl The computer aids are used for two prin­
cipal "studying" operations, both concerned
with construction of the user's "views," i.e.,
the portion of his working text that he sees
on the screen at a given moment.

3dla Display Start

3dial The first operation is finding a
particular statement in the file (called
the "display start") ; the view will then
begin with that statement, This is equiva­
lent to finding the beginning of a par­
ticular passage in a hard-copy document.

3dlb Form of View

3dlbl The second operation is the speci­
fication of a "form" of view—it may
simply consist of a screenful of text
which sequentially follows the point spec­
ified as the display start, or it may be
constructed in other ways, frequently so
as to give the effect of an outline.

3dlc In normal, off-line document study­
ing, one often does the first type of opera­
tion, but the second is like a sissors-and-

staple job and is rarely done just to aid
one's studying.

3did (A third type of service operation
that will undoubtedly be of significant aid
to studying is question answering. We do
not have this type of service.)

3d2 Specification of Display Start

3d2a The display start may be specified in
several ways:

3d2al By direct selection of a statement
which is on the display—the user simply
points to any character in the statement,
using the mouse.

3d2a2 If the desired display start is not
on the display, it may be selected in­
directly if it bears a "marker."

3d2a2a Markers are normally invisi­
ble. A marker has a name of up to five
characters, and is attached to a char­
acter of the text. Referring to the
marker by name (while holding down
a special button) is exactly equivalent
to pointing to the character with the
mouse.

3d2a2b The control procedures make it
extremely quick and easy to fix and
call markers.

3d2a3 By furnishing either the name or
the location number of the statement,
which can be done in either of two basic
ways:

3d2a3a Typing from the keyboard

3d2a3b Selecting an occurrence of the
name or number in the text. This may
be done either directly or via an in­
direct marker selection.

3d2b After identifying a statement by one
of the above means, the user may request
to be taken directly there for his next view.
Alternately, he may request instead that
he be taken to some statement bearing a
specified structure relationship to the one
specifically identified. For instance, when
the user identifies Statement 3E4 by one
of the above means (assume it to be a
member of the list 3E1 through 3E7), he
may ask to be taken to

Ebay Exhibit 1013, Page 6 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

400 Fall Joint Computer Conference, 1968

3d2bl Its successor, i.e., Statement 3E5

3d2b2 Its predecessor, i.e., Statement
3E3

3d2b3 Its list tail, i.e., Statement 3E7

3d2bU Its list head, i.e., Statement 3E1

3d2b5 Its list source, i.e., Statement 3E

3d2b6 Its subhead, i.e., Statement 3E4A

3d2c Besides being taken to an explicitly
identified statement, a user may ask to go
to the first statement in the file (or the
next after the current location) that con­
tains a specified word or string of char­
acters.

3d2cl He may specify the search string
by typing it in, by direct (mouse) selec­
tion, or by indirect (marker) selection.

3d3 Specification of Form of View

SdSa The "normal" view beginning at a
given location is like a frame cut out from
a long scroll upon which the hierarchical
set of statements is printed in sequential
order. Such a view is displayed in Figure 1.

SdSb Otherwise, three independently vari­
able view-specification conditions may be
applied to the construction of the displayed
view: level clipping, line truncation, and
content filtering. The view is simultaneous­
ly affected by all three of these.

3d3bl Level: Given a specified level
parameter, L (L = 1, 2, . . . , ALL), the
view generator will display only those
statements whose "depth" is less than
or equal to L. (For example, Statement
3E4 is third level, 3E second, 4B2C1 fifth,
etc.) Thus it is possible to see only first-
level statements, or only first-, second-,
and third level statements, for example.

3d3b2 Truncation: Given a specified
truncation parameter, T (T = 1, 2, . . .,
ALL), the view generator will show only
the first T lines of each statement being
displayed.

3d3b3 Content: Given a specification for
desired content (written in a special
high-level content-analysis language) the
view generator optionally can be directed

to display only those statements that
have the specified content.

3d3b3a One can specify simple strings,
or logical combinations thereof, or such
things as having the word "memory"
within four words of the word "alloca­
tion."

3d3b3b Content specifications are writ­
ten as text, anywhere in the file. Thus
the full power of the system may be
used for composing and modifying them.

3d3b3c Any one content specification can
then be chosen for application (by select­
ing it directly or indirectly). It is com­
piled immediately to produce a machine-
code content-analysis routine, which is
then ready to "filter" statements for the
view generator.

3d3c In addition, the following format fea­
tures of the display may be independently
varied: indentation of statements accord­
ing to level, suppression of location num­
bers and/or names of statements, and sepa­
ration of statements by blank lines.

3d3d. The user controls these view speci­
fications by means of brief, mnemonic char­
acter codes. A skilled user will readjust
his view to suit immediate needs very
quickly and frequently; for example, he
may change level and truncation settings
several times in as many seconds.

3dU "Freezing" Statements

3d4a One may also pre-empt an arbitrary
amount of the upper portion of the screen
for holding a collection of "frozen" state­
ments. The remaining lower portion is
treated as a reduced-size scanning frame,
and the view generator follows the same
rules for filling it as described above.

SdJ+b The frozen statements may be inde­
pendently chosen or dismissed, each may
have line truncation independent of the
rest, and the order in which they are dis­
played is arbitrary and readily changed.
Any screen-select operand for any com­
mand may be selected from any portion of
the display (including the frozen state­
ments).

Ebay Exhibit 1013, Page 7 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Research Center for Augmenting Human Intellect 401

3d5 Examples

3d5a Figures 3 and 4 show views generated
from the same starting point with different
level-clipping parameters. This example hap­
pens to be of a program written in our Ma­
chine-Oriented language (MOL, see below).

3d5b Figure 5, demonstrates the freezing
feature with a view of a program (the same
one shown in Figure 8) written in our Con­
trol Metalanguage (CML, see below). State­
ments 3C, 3C2, 2B, 2B1, 2B2, 2B3, and 2B4
are frozen, and statements from 2J on are
shown normally with L = 3, T = 1.

3d5bl The freezing here was used to hold
for simultaneous view four different func­
tionally related process descriptions.
The subroutines (+BUG1SPEC) and

Betid* nm&m, *«&.*«>»»»«, u»6t«I. i •
4«wKi»twiiK.ii«*). itaeto, ifstjM, «•$«», a»*ee-c8
nam SM:' n'.txmx'' i'.nmmi
SP NtBttft B*N
IP mum . « •tw* - t
mm itmh

FIGURE 3—View of an MOL program, with level parameter
set to 3 and truncation to 1

r
fiSOWtl W . a « S : .«»-•';

M U « « » » ; « . K « « I : « , «wc«.'*8, I . ; J . E ' « ; . : s
iEtttft SHM*t US?.-1, sii«£-». tfOSM, CS-18W, SP«€-«i
ffitwstsrw!' * • , « » . - • i ' , cKKijiti
If MEWtt MS

ttMK

»! ,*mU«t«MS; i (Mil
If KMR , « WW

««»
K* I MM* « ! « I 10 NfttB JO
X « S *• KAKK:
SfiTOHJj •
!*!!> HOttR » It
! « b $F USt IKES
WWR - Oi
WJP HUMS ttO

t t% **P SWSs

*» S-jHiilSI'tC) HA . i-.ASfc
am (CD) w o Cs:
ag* saws spictoti) at' >MU Rtrtmi
» l EHbCASi WHO *C »

W>T© f S

FIGURE 4—Same program as Figure 3, but with level parameter
changed to 6 (several levels still remain hidden from view)

*J i -VAin W . CASE

u% « S H tore t&;
« i <CA} RErWttl
*JJ EK&CASE MEPEAr 0 ! .}

» I*0EU
iK! rC Sf B) * SfiBI) H,IM SESBO » SELfrSiCt P i)

J l S*VCR5 tAt,A*<A},A4,AS) «p»«oao fc£llKlr«f>»
i l l >t> CIA!! >CH HO fAI«-Ai (St* US C(A15 <CM I Us t M « - * f « M / ' W
at2 «f»> $AKPU *OSDS v - ^ v V ^ v

IK i*tfM»rJ 'SPECir iAiiJSSB!,TRl>£} Uf*=0 iS SW s» «A«»f»U«»l : s v ; : ;SS>

FIGURE 5—View of CML program, showing six frozen state­
ments and illustrating use of reference hopping

(+ WAIT were located by use of the
hop-to-name feature described above.

3e File Modification

3 el Here we use a standard set of editing
operations, specifying with each operation a
particular type of text entity.

3 el a Operations: Delete, Insert, Replace,
Move, Copy.

3elb Entities (within text of statements):
Character, Text (arbitrary strings), Word,
Visible (print string), Invisible (gap
string).

3elc Entities (for structure manipula­
tion) : Statement, Branch (statement plus
all substructure), Group (sublist of branch­
es), Plex (complete list of branches).

3e2 Structure may also be modified by join­
ing statements, or breaking a statement into
two at a specified point.

3e3 Generally, an operation and an entity
make up a command, such as "Delete Word."
To specify the command, the user types the
first letter of each word in the command:
thus "DW" specifies "Delete Word." There
are occasional cases where a third word is
used or where the first letter cannot be used
because of ambiguities.

3f File Output

3fl Files may be sent to any of a number of
different output devices to produce hard
copy—an upper/lower-case line printer, an

Ebay Exhibit 1013, Page 8 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

402 Fall Joint Computer Conference, 1968

on-line high-quality typewriter, or paper tape
to drive various typewriters.

3fla In future it will be possible to send
files via magnetic tape to an off-line CRT-
to-film system from which we can produce
Xerox prints, Multilith masters, or micro­
form records.

3f2 Flexible format control may be exercised
in this process by means of specially coded
directives embedded in the files—running
headers, page numbering, line lengths, line
centering, suppression of location numbers,
indenting, right justification (hyphenless),
etc., are controllable features.

3g Compiling and Debugging

3gl Source-code files written in any of our
compiler languages (see below), or in the
SDS 940 assembly language (ARPAS, in
which our compiler output is produced) may
be compiled under on-line control. For de­
bugging, we have made a trivial addition to
the S.DS 940's DDT loader-debugger so as to
operate it from the CRT displays. Though it
was designed to operate from a Teletype
terminal, this system gains a great deal in
speed and power by merely showing with a
display the last 26 lines of what would have
been on the Teletype output.

3h Calculating

3hl The same small innovation as mentioned
above for DDT enables us to use the CAL
system from a display terminal.

3i Conferencing

3il We have set up a room specially equipped
for on-line conferencing. Six displays are
arranged in the center of a square table (see
Figure 6) so that each of twenty participants
has good visibility. One participant controls
the system, and all displays show the same
view. The other participants have mice that
control a large arrow on the screen, for use
as a pointer (with no control function).

3i2 As a quick means of finding and display­
ing (with appropriate forms of view) any
desired material from a very large collection,
this system is a powerful aid to presentation
and review conferences.

FIGURE 6—On-line conference arrangement

3x3 We are also experimenting with it in
project meetings, using it not only to keep
track of agenda items and changes but also
to log progress notes, action notes, etc. The
review aid is of course highly useful here
also.

3%U We are anxious to see what special con­
ventions and procedures will evolve to allow
us to harness a number of independent con­
soles within a conference group. This obvi­
ously has considerable potential.

SERVICE-SYSTEM SOFTWARE

4a The User's Control Language

J^OLI Consider the service a user gets from
the computer to be in the form of discrete
operations—i. e., the execution of individual
"service functions" from a repertoire com­
prising a "service system/'

4ala Examples of service functions are
deleting a word, replacing a character,
hopping to a name, etc.

Aa2 Associated with each function of this
repertoire is a "control-dialogue procedure."
This procedure involves selecting a service
function from the repertoire, setting up the
necessary parameter designations for a par­
ticular application, recovering from user
errors, and calling for the execution of the
function.

ba2a The procedure is made up of the
sequence, of keystrokes, select actions, etc.

Ebay Exhibit 1013, Page 9 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Research Center for Augmenting Human Intellect 403

made by the user, together with the inter­
spersed feedback messages from the com­
puter.

UaS The repertoire of service functions, to­
gether with their control-dialogue procedures,
constitutes the user's "control language."
This is a language for a "master-slave" dia­
logue, enabling the user to control applica­
tion of the computer's capabilities to his own
service.

4.a3a It seems clear that significant aug­
mentation of one's intellectual effectiveness
from the harnessing of computer services
will require development of a broad and
sophisticated control-language vocabulary.

ba3b It follows that the evolution of such
a control language is a very important part
of augmentation-system research.

UdU For the designer of user systems, it is
important to have good means for specifying
the nature of the functions and their respec­
tive control-dialogue procedures, so that a
design specification will be

4a4.a Concise, so that its essential features
are easily seen

UaUb Unambiguous, so that questions about
the design may be answered clearly

UdUc Canonical, so that information is
easily located

UaUd Natural, so that the form of the de­
scription fits the conceptual frame of the
design

babe Easy to compose, study, and modify,
so that the process of evolutionary design
can be facilitated.

4a5 It is also important for the user to have
a description of the service functions and
their control-dialogue procedures.

4a5a The description must again be con­
cise, unambiguous, canonical, and natural;
furthermore, it must be accurate, in that
everything relevant to the user about the
service functions and their control-dialogue
procedures is described, and everything de­
scribed actually works as indicated.

. i _ . I | HUM • NUM "DI6ir-|Slffi

FIGURE 7—State-chart portrayal of part of the text-manipula­
tion control language

Ub State-Chart Representation of Control-Lan­
guage Design

bbl Figure 7 shows a charting method that
was used in earlier stages of our work for
designing and specifying the control-pro­
cedure portions of the control language.
Even though limited to describing only the
control-dialogue procedures, this representa­
tion nonetheless served very well and led us
to develop the successive techniques described
below.

Ub2 Figure 7 shows actual control procedures
for four service functions from the repertoire
of an interactive system: Delete Word, De­
lete Text, Place Up Statement, and Forward
Statement.

bb2a The boxes contain abbreviated de­
scriptions of relevant display-feedback
conditions, representing the intermediate
states between successive user actions.
Both to illustrate how the charting con­
ventions are used and to give some feeling
for the dynamics of our user-system con­
trol procedures, we describe briefly below
both the chart symbols and the associated
display-feedback conventions that we have
developed.

bb2al The writing at the top of each
box indicates what is to be shown a?
"command feedback" at the top of the
display (see Figures 3, 4 and 5).

bb2ala An uparrow sometimes ap-

Ebay Exhibit 1013, Page 10 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

404 Fall Joint Computer Conference, 1968

pears under the first character of one
of the words of Command Feedback.

Jfb2alal This indicates to the user
that the next character he types will
be interpreted as designating a new
term to replace that being pointed
to—no uparrow under Command
Feedback signifies that keyboard ac­
tion will not affect the command
designation.

Jfb2alb "Entity" represents the entity
word (i.e., "character," "word, "state­
ment," etc.) that was last used as part
of a fully specified command.

Ub2albl The computer often "of­
fers" the user an entity option.

Jf.b2a2 The circle in the box indicates the
character to be used for the "bug" (the
tracking spot), which alternates between
the characters uparrow and plus.

Ub2a2a The uparrow indicates that a
select action is appropriate, and the
plus indicates that a select action is
inappropriate.

Jfb2a3 The string of X's, with under­
lines, indicates that the selected char­
acters are to be underlined as a means
of showing the user what the computer
thinks he has selected.

Jib2b There is frequently an X on the out­
put line from a box on the chart. This indi­
cates that the computer is to wait until the
user has made another action.

Ub2bl After this next action, the com­
puter follows a branching path, depend­
ing upon what the action was (as indi­
cated on the chart) to reach another
state-description box or one of the func­
tion-execution processes.

Uc The Control Metalanguage

Ucl In search for an improvement over the
state chart, we looked for the following spe­
cial features, as well as the general features
listed above:

•bcla A representational form using struc­
tural text so as to harness the power of
our on-line text-manipulation techniques

for composing, studying, and modifying
our designs.

J+clb A form that would allow us to specify
the service functions as well as the control-
dialogue procedures.

Jf.dc A form such that a design-descrip­
tion file could be translated by a computer
program into the actual implementation of
the control language.

Uc2 Using our Tree Meta compiler-compiler
(described below), we have developed a next
step forward in our means of designing,
specifying, implementing and documenting
our on-line control languages. The result is
called "Control Metalanguage" (CML).

JfC2a Figure 8 shows a portion of the de­
scription for the current control language,
written in Control Metalanguage.

Jpc2al This language is the means for
describing both the service functions and
their control-dialogue procedures.

4,c2b The Control Metalanguage Trans­
lator (CMLT) can' process a file contain­
ing such a description, to produce a corre­
sponding version of an interactive system
which responds to user actions exactly as
described in the file.

JfC3 There is a strong correspondence be­
tween the conventions for representing the
control procedures in Control Metalanguage
and in the state chart, as a comparison of
Figures 8 and 7 will reveal.

Jf.cSa The particular example printed out
for Figure 8 was chosen because it specifies
some of the same procedures as in Figure 7.

JfCSb For instance, the steps of display-
feedback states, leading to execution of the
"Delete Word" function, can readily be fol­
lowed in the state chart.

Jf.c3bl The steps are produced by the
user typing "D," then "W," then select­
ing a character in a given word, and then
hitting "command accept" (the CA key).

JfC3b2 The corresponding steps are out­
lined below for the Control Metalanguage
description of Figure 8, progressing
from Statement 3, to Statement 3c, to

Ebay Exhibit 1013, Page 11 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

http://Jf.dc
http://Jf.dc
http://Jf.cS
http://Jf.cS

Research Center for Augmenting Human Intellect 405

Statement 3c2, to Subroutine + BUG-
SPEC, etc.

UcSbS The points or regions in Figure 7
corresponding to these statements and
subroutines are marked by (3), (3C),
(3C2), and (+BUG1SPEC), to help
compare the two representations.

JfCSc These same steps are indicated in
Figure 8, starting from Statement 3 :

Uc3cl "D" sets up the state described in
Statement 3C

JfC3c2 "W" sets up the state described
in Statement 3C2

FIGURE 8—Metalanguage description of part of control language

3 (wc:) zap case

3A (b) [edit] dsp(backward tes*) . case

3B (c) [edit] dsp(copy tes*) :s true «> <am>adj1: . case

3B1 (c) s*«cc dsp(tcopy character) e*«cfcharacter *bug2spec
•cdlim(b1,p1,p2,p3,p4) •Cdlim(b2,p5,p6,p7,p8)
•Cpchtx(b1,p2#p4,p5,p6) ;

3B2 (w) s*«cw dsp(tcopy word) e*»w,word •bug2spec
•Wdr2(b1,p1,p2,p3,p4) •wdr2(b2,p5,p6,p7,p8)
•Cpwdvs(b1,p2,p4,p5fp6) ;

3B3 (1) s**cl dsp(tcopy line) e*«l,line +bug2spec
•Idlim(b1,p1,p2,p3,p4) •Idlim(b2,p5,p6,p7,p8) :c st b1«-sf(b1) p2,
rif :p p2>p1 cr: then (cr) else (null) , pS p6f p4 se(bl): goto
[s]

3B4 (v) s*«cv dsp(tcopy visible) e**v,visible +bug2spec
•Vdr2(b1,p1,p2,p3,p4) •Vdr2(b2,p5,p6,p7,p8)
•Cpwdvs(b1,p2,p4,p5,p6) ;

3b10 endcase +caqm ;

3C (d) [edit] dsp(delete tes*) . case

3C1 (c) s**dc dsp(tdelete character) e*=c,character +bug1spec
•cdlim(b1,p1,p2,p3,p4) +del;

3C2 (w) s*=dw dsp(tdelete word) e*«w,word +bug1spec +wdr
(b1,p1,p2,p3,P4) +del ;

3C3 (1) s*«dl dsp(tdelete line) e*»l,line +bug1spec...

Ebay Exhibit 1013, Page 12 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

406 Fall Joint Computer Conference, 1968

UoScS The subroutine +BUG1SPEC
waits for the select-word (1) and CA
(2) actions leading to the execution of
the delete-word function.

IfC3c3a Then the TWDR subroutine
takes the bug-position parameter and
sets pointers PI through P4 to delimit
the word in the text data.

UcScBb Finally, the + DEL subroutine
deletes what the pointers delimit, and
then returns to the last-defined state
(i.e., to where S * = D W) .

Ud Basic Organization of the On-Line System
(NLS)

bdl Figure 9 shows the relationships among
the major components of NLS.

Ud2 The Tree Meta Translator is a processor
specially designed to produce new translators.

4d2a There is a special language—the Tree
Meta Language—for use in describing the
translator to be produced.

Ud2b A special Tree Meta library of sub­
routines must be used, along with the out­
put of the Tree Meta Translator, to pro­
duce a functioning new translator. The
same library serves for every translator it
produces.

CMLT DISCRIPTION, IN
TREE META LANGUAGE

CONTROL-LANGUAGE
DISCRIPTION, IN
CONTROL META­

LANGUAGE

LIBRARY SUB­
ROUTINE DESCRIP­

TION IN MOL
—•4 M0L V

l TRANSLATOR J

OPERATING ON LINE
SYSTEM (NLS)

FIGURE 9—Basic organization of NLS showing use of compilers
and compiler-compiler to implement it

UdS For programming the various subrou­
tines used in our 940 systems, we have de­
veloped a special Machine-Oriented Language
(MOL), together with an MOL Translator to
convert MOL program descriptions into ma­
chine code (see Ref. Hayl for a complete
description).

Ud3a The MOL is designed to facilitate
system programming, by providing a high-
level language for iterative, conditional,
and arithmetic operations, etc., along with
a block structure and conventions for label­
ing that fit our structured-statement on­
line manipulation aids.

JtdSal These permit sophisticated com­
puter aid where suitable, and also allow
the programmer to switch to machine-
level coding (with full access to varia­
bles, labels, etc.) where core space, speed,
timing, core-mapping arrangements, etc.,
are critical.

Udk The NLS is organized as follows (letters
refer to Figure 9) :

hdUa The Control Processor (E) receives
and processes successive user actions, and
calls upon subroutines in the library (H)
to provide it such services as the following:

UdU&l Putting display feedback on the
screen

Udba2 Locating certain data in the file

UdUaS Manipulating certain working data

UdU&U Constructing a display view of
specified data according to given view­
ing parameters, etc.

UdUb The NLS library subroutines (H)
are produced from MOL programs (F) ,
as translated by the MOL Translator (G).

UdUc The Control Processor is produced
from the control-language description (D),
written in Control Metalanguage, as trans­
lated by the CMLT (C).

UdUd The CMLT, in turn, is produced from
a description (A) written in Tree Meta, as
translated by the Tree Meta Translator
(B).

Ebay Exhibit 1013, Page 13 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Research Center for Augmenting Human Intellect 407

4d5 Advantages of Metalanguage Approach
to NLS Implementation

4d5a The metalanguage approach gives us
improved means for control-language spec­
ification, in terms of being unambiguous,
concise, canonical, natural and easy to com­
pose, study and modify.

Ud5b Moreover, the Control Metalanguage
specification promises to provide in itself a
users' documentation that is completely
accurate, and also has the above desirable
characteristics to facilitate study and refer­
ence.

JfdSc Modifying the control-dialogue pro­
cedures for existing functions, or making
a reasonable range of changes or additions
to these functions, can often be accom­
plished solely by additions or changes to
the control-language record (in CML).

Ud5cl With our on-line studying, ma­
nipulating and compiling techniques,
system additions or changes at this level
can be thought out and implemented
(and automatically documented) very
quickly.

Jfd5d New functions that require basic
operations not available through existing
subroutines in the NLS library will need
to have new subroutines specified and pro­
grammed (in MOL), and then will need
new terms in CML to permit these new
functions to be called upon. This latter
requires a change in the record (A), and
a new compilation of CMLT by means of
the Tree Meta Translator.

4d5dl On-line techniques for writing
and modifying the MOL source code (F) ,
for executing the compilations, and for
debugging the routines, greatly reduce
the effort involved in this process.

5 SERVICE-SYSTEM HARDWARE (OTHER
THAN SDS 940)

5a In addition to the SDS 940, the facility in­
cludes peripheral equipment made by other
manufacturers and. equipment designed and
constructed at SRI.

5b All of the non-SDS equipment is interfaced
through the special devices channel which con­

nects to the second memory buss through the
SDS memory interface connection (MIC).

5bl This equipment, together with the RAD,
is a significant load on the second memory
buss. Not including the proposed "special
operations" equipment, the maximum ex­
pected data rate is approximately 264,000
words per second or one out of every 2.1
memory cycles. However, with the 940 varia­
ble priority scheme for memory access (see
Pirtle1), we expect less than 1 percent de­
gradation in CPU efficiency due to this load.

5b2 This channel and the controllers (with
the exception of the disc controller) were de­
signed and constructed at SRI.

5b2a In the design of the hardware serv­
ing the work stations, we have attempted
to minimize the CPU burden by making
the system as automatic as possible in its
access to memory and by formatting the
data in memory so as to minimize the
executive time necessary to process it for
the users.

5c Figure 10 is a block diagram of the special-
devices channel and associated equipment. The
major components are as follows:

5cl Executive Control

5cla This is essentially a sophisticated
multiplexer that allows independent, asyn­
chronous access to core from any of the
6 controllers connected to it. Its functions
are the following:

5cldl Decoding instructions from the
computer and passing them along as
signals to the controllers.

5cla2 Accepting addresses and requests
for memory access (input or output)
from the controllers, determining rela­
tive priority among the controllers, syn­
chronizing to the computer clock, and
passing the requests along to memory via
the MIC.

5clb The executive control includes a com­
prehensive debugging panel that allows
any of the 6 controllers to be operated off­
line without interfering with the operation
of other controllers.

Ebay Exhibit 1013, Page 14 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

408 Fall Joint Computer Conference, 1968

5c2 Disc File

5c2a This is a Model 4061 Bryant disc,
selected for compatibility with the con­
tinued 940-system development by Berke­
ley's Project GENIE, where extensive file-
handling software was developed.

5c2b As formatted for our use, the disc
will have a storage capacity of approxi­
mately 32 million words, with a data-trans­
fer rate of roughly 40,000 words per second
and average access time of 85 milliseconds.

5c2c The disc controller was designed by
Bryant in close cooperation with SRI and
Project GENIE.

5c3 Display System

5c3a The display systems consists of two
identical subsystems, each with display con­

troller, display generator, 6 CRT's, and 6
closed-circuit television systems.

5c3b The display controllers process dis­
play-command tables and display lists that
are resident in core, and pass along dis­
play-buffer contents to the display genera­
tors.

5c3c The display generators and CRT's
were developed by Tasker Industries to our
specifications. Each has general character-
vector plotting capability. They will accept
display buffers consisting of instructions
(beam motion, character writing, etc.)
from the controller. Each will drive six
5-inch high-resolution CRT's on which the
display pictures are produced.

5c3cl Character writing time is approxi­
mately 8 microseconds, allowing an aver-

TO MEMORY
INTERFACE

CONNECTOR

EXECUTIVE
HARDWARE

DISC
CONTROL

DISPLAY

CONTROL
1

DISPLAY

CONTROL
2

INPUT
DEVICES

CONTROL

SPECIAL
OPERATIONS

FIGURE 10—Special devices channel

BRYANT
DISC

T.V.
5" CAMERA

C.R.T, (875 LINES)

17" MONITOR

DISPLAY

GENERATOR
1

DISPLAY

GENERATOR

2

91

•CJD-I

CAMERA
CONTROL

rQ

12

STATIONS'

L Q rn->

MOUSE

KEYSET

KEYBOARD

MOUSE

KEYSET

KEYBOARD

NETWORK

LOW
PRIORITY
DEVICES

LINE
PRINTER

DURA/
PLOTTER

Ebay Exhibit 1013, Page 15 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Research Center for Augmenting Human Intellect 409

age of 1000 characters on each of the six
monitors when regenerating at 20 cps.

5c3d A high-resolution (875-line) closed-
circuit television system transmits display
pictures from each CRT to a television
monitor at the corresponding work-station
console.

5c3e This system was developed as a "best
solution" to our experimental-laboratory
needs, but it turned out to have properties
which seem valuable for more widespread
use:

5c3el Since only all-black or all-white
signal levels are being treated, the scan-
beam current on the cameras can be re­
duced to achieve a short-term image-
storage effect that yields flicker-free TV
output even when the display refresh
rate is as low as 15 cps. This allows a
display generator to sustain about four
times more displayed material than if
the users were viewing direct-view re­
freshed tubes.

5c3e2 The total cost of small CRT, TV
camera, amplifier-controller, and monitor
came to about $5500 per work station—
where a random-deflection, display-qual­
ity CRT of similar size would cost con­
siderably more and would be harder to
drive remotely.

5c3e3 Another cost feature which is
very important in some system environ­
ments favors this TV approach: The ex­
pensive part is centrally located; each
outlying monitor costs only about $600,
so terminals can be set up even where
usage will be low, with some video
switching in the central establishment to
take one terminal down and put another
up.

5c3f In addition to the advantages noted
above, the television display also invites
the use of such commercially available de­
vices as extra cameras, scan converters,
video switches, and video mixers to enrich
system service.

5c3fl For example, the video image of a
user's computer-generated display could
be mixed with the image from a camera
focused on a collaborator at another ter­
minal ; the two users could communicate
through both the computer and a voice
intercom. Each user would then see the
other's face superimposed on the display
of data under discussion.

5c3f2 Superimposed views from cameras
focused on film images or drawings, or
on the computer hardware, might also
be useful.

5c3f3 We have experimented with these
techniques (see Figure 11) and found
them to be very effective. They promise
to add a great deal to the value of re­
mote display terminals.

5cJf Input-Device Controller

5cJta In addition to the television monitor,
each work-station console has a keyboard,
binary keyset, and mouse.

5c£b The controller reads the state of these

5c3e4, An interesting feature of the video
system is that with the flick of a switch
the video signal can be inverted, so that
the image picked up as bright lines on
dim background may be viewed as black
lines on a light background. There is a
definite user preference for this inverted
form of display.

FIGURE 11—Television display obtained by mixing the video
signal from a remote camera with that from the computer-

generated display

Ebay Exhibit 1013, Page 16 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

410 Fall Joint Computer Conference, 1968

devices at a preset interval (about 30 milli­
seconds) and writes it into a fixed location
table in core.

5c4,bl Bits are added to information
from the keyboards, keysets and mouse
switches to indicate when a new char­
acter has been received or a switch has
changed state since the last sample. If
there is a new character or switch
change, an interrupt is issued after the
sample period.

5cJfb2 The mouse coordinates are for­
matted as a beam-positioning instruction
to the display generator. Provisions are
made in the display controller for in­
cluding an entry in the mouse-position
table as a display buffer. This allows
the mouse position to be continuously
displayed without any attention from the
CPU.

5c5 Special Operations

5c5a The box with this label in Figure 10 is
at this time only a provision in the execu­
tive control for the addition of a high-speed
device. We have tentative plans for add­
ing special hardware here to provide opera­
tions not available in the 940 instruction
set, such as character-string moves and
string-pattern matching.

5c6 Low-Priority Devices

5c6a This controller accommodates three
devices with relatively low data-transfer

rates. At this time only the line printer is
implemented, with provisions for adding
an on-line typewriter (Dura), a plotter,
and a terminal for the proposed ARPA
computer network.

5c6al The line printer is a Potter Model
HSP-3502 chain printer with 96 print­
ing characters and a speed of about 230
lines per minute.

6 REFERENCES

6a (English 1) W K ENGLISH D C ENGELBART
B HUDDART
Computer-aided display control
Final Report Contract NAS 1-3988 SRI Project 5061 Stan­
ford Research Institute Menlo Park California July 1965

6b (English2) W K ENGLISH D C ENGELBART M L
BERMAN
Display-selection techniques for text manipulation
IEEE Trans on Human Factors in Electronics Vol HFE-8
No 1 1967

6c (Engelbartl) D C ENGLEBART
Augmenting human intellect: A conceptual framework
Summary Report Contract AF 49 638 1024 SRI Project 3578
Stanford Research Institute Menlo Park California October
1962

6d (Engelbart2) D C ENGELBART
A conceptual framework for the augmentation of man's intellect
In Vistas in Information Handling Vol 1 D W Howerton and
D C Weeks eds Spartan Books Washington D C 1663

6e (Hayl)REHAY JFRULIFSON
MOL940 Preliminary speifications for an ALGOL like
machine-oriented language for the SDS 9J+0
Interim Technical Report Contract NAS 1-5940 SRI Project
5890 Stanford Research Institute Menlo Park California
March 1968

6f (Pirtlel) M PIRTLE
Intercommunication of Processors and memory
Proc Fall Joint Computer Conference Anaheim California
November 1967

Ebay Exhibit 1013, Page 17 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

APPENDIX B

Ebay Exhibit 1013, Page 18 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Ebay Exhibit 1013, Page 19 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

I N S I D E

ADRIAN KING

Ebay Exhibit 1013, Page 20 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright© 1994 by Adrian King

All rights reserved. No part of the contents of this book may be reproduced or
transmitted in any form or by any means without the written permission of the publisher.

Library of Congress Cataloging-in-Publication Data
King, Adrian, 1953-

Inside Windows 95 I Adrian King.
p. cm.

Includes index.
ISBN 1-55615-626-X
1. Windows (Computer programs)

file) I. Title.
2. Microsoft Windows (Computer

QA76.76.W56K56 1994
005.4' 469--dc20

Printed and bound in the United States of America.

123456789 QMQM 987654

93-48485
CIP

Distributed to the book trade in Canada by Macmillan of Canada, a division of Canada Publishing
Corporation.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further information
about international editions, contact your local Microsoft Corporation office. Or contact Microsoft Press
International directly at fax (206) 936-7329.

PageMaker is a registered trademark of Aldus Corporation. Apple, AppleTalk, LaserWriter, Mac,
Macintosh, and TrueType are registered trademarks of Apple Computer, Inc. LANtastic is a registered
trademark of Artisoft, Inc. Banyan and Vines are registered trademarks of Banyan Systems, Inc.
Compaq is a registered trademark of Compaq Computer Corporation. CompuServe is a registered
trademark of CompuServe, Inc. Alpha AXP, DEC, and Pathworks are trademarks of Digital Equipment
Corporation. LANstep is a trademark of Hayes Microcomputer Products, Inc. HP and LaserJet are
registered trademarks of Hewlett-Packard Company. Intel is a registered trademark and Ether Express,
Pentium, and SX are trademarks of Intel Corporation. COMDEX is a registered trademark of Interface
Group-Nevada, Inc. AS/400, IBM, Micro Channel, OS/2, and PS/2 are registered trademarks and PC/
XT is a trademark oflnternational Business Machines Corporation. 1-2-3, Lotus, and Notes are
registered trademarks of Lotus Development Corporation. Microsoft, MS, MS-DOS, and XENIX are
registered trademarks and ODBC, Win32s, Windows, Windows NT, and the Windows operating system
logo are trademarks of Microsoft Corporation. MIPS is a registered trademark and R4000 is a trade­
mark of MIPS Computer Systems, Inc. NetWare and Novell are registered trademarks of Novell, Inc.
Soft-lce/W is a registered trademark of Nu-Mega Technologies, Inc. DESQview is a registered trade­
mark and Qemm is a trademark of Quarterdeck Office Systems. OpenGL is a trademark of Silicon
Graphics, Inc. PC-NFS, Sun, and Sun Microsystems are registered trademarks of Sun Microsystems, Inc.
TOPS is a registered trademark of TOPS, a Sun Microsystems company. UNIX is a registered trademark
of UNIX Systems Laboratories.

Acquisitions Editor: Mike Halvorson
Project Editor: Erin O'Connor
Technical Editors: Seth McEvoy and Dail Magee, Jr.

Ebay Exhibit 1013, Page 21 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

CONTENTS SUMMARY

Foreword .. xvii

Preface ... xxi

Introduction .. xxv

CHAPTER ONE

THE ROAD TO CHICAGO 1
CHAPTER TWO

INTEL PROCESSOR ARCHITECTURE 33
CHAPTER THREE

A TOUR OF CHICAGO 63
CHAPTER FOUR

THE BASE SYSTEM 103
CHAPTER FIVE

THE USER INTERFACE AND THE SHELL 157
CHAPTER SIX

APPLICATIONS AND DEVICES 223
CHAPTER SEVEN

THE FILESYSTEM 275
CHAPTER EIGHT

PLUG AND PLAY 309
CHAPTER NINE

NETWORKING 341
CHAPTER TEN

MOBILE COMPUTING 381
EPILOGUE

LEAVING CHICAGO 407

Glossary ... 427

Index ... 455

Ebay Exhibit 1013, Page 22 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Ebay Exhibit 1013, Page 23 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

TABLE OF CONTENTS

Foreword . xvii

Preface ... xxi

Introduction .. xxv

CHAPTER ONE

THE ROAD TO CHICAGO......................... 1
The Mission for Windows 95 . 3

Help for the End User 3
Hardware Platforms. 4

For the Developer-32 Bits at Last . 5
Shall We Go to Chicago or Cairo? . 6

First Stop-Chicago . 7
Clients and Servers . 8

And On to Cairo . 1 O
Summary · 12

Project Goals . 13
Compatibility . 14

The Compatibility Fallback . 15

Performance . 16
Robustness-Adieu UAE? . 17
Timely Product Availability : . 18

Easy Setup and Configuration . 19
The Plug and Play Initiative 20

Configuring Windows 21
User-Level Operations 21

New Shell and User Interface 22
The New Shell . 22

Complete Protected Mode -Operating System 23
32-Bit Application Support . 24

The Jump to 32 Bits . 26

Networking and Mobile Computing . 27

Ebay Exhibit 1013, Page 24 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

vi

Bringing Windows 95 to Market. 28
For Microsoft-The Bottom Line . 30

Conclusion · 31

CHAPTER TWO

INTEL PROCESSOR ARCHITECTURE 33
Intel Inside ... 34

The Intel Processor Family 35
Backward Compatibility . 36

Processor Architecture . 37
· The 8080 and 8086 Processors . 38

The 640K Barrier . 39
The 80286 Processor . 41

The 80386 Processor . 43
80386 Memory Addressing . 45

80386 Descriptor Format . 45

The Descriptor in Summary . 48
Virtual Memory . 48

Virtual Memory Management . 49
Good Virtual Memory Management 50

Mixing 286 and 386 Programs 54
The Protection System . 54

Memory Protection . 55

Operating System Protection . 56
Device Protection . 57

Low-Level Device Access . 57
High-Level Device Access . 58
Using the 80386 Device Protection Capabilities 59

Virtual 8086 Mode . 60
Conclusion ... 61

CHAPTER THREE

A TOUR OF CHICAGO &3
System Overview . 63

The Base System . 66
Windows and Modes 67

Ebay Exhibit 1013, Page 25 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Table of Contents

Virtual Machines . 68

Windows Virtual Machines . 70
Initialization 70
The System Virtual Machine 71

MS-DOS Virtual Machines . 72
Protected Mode MS-DOS Applications . 73

DPMI ... 74
Multitasking and Scheduling . 75

Multitasking Models . 76
Critical Sections . 79
Processes in Windows . 80
Modules ... 80

API Support .. 81
Dynamic Linking . 82
Support from the Base System . 84

Memory Management . 85

Application Virtual Memory . 86
Heap Allocation . 87
Windows 95 Application Memory Management. 87

System Memory Management . 88
Windows Device Support . 90

Device Virtualization 90
Minidrivers ... 91

The Windows Interface 92
What Is a Window? . 92

Windows 95 User Interface Design 95
Windows Programming Basics 96

Event Driven Programming . 96
Message Handling 97

Program Resources 99
Windows 95 Programming . 99

Conclusion .. 101

References. 1O1

CHAPTER FOUR

THE BASE SYSTEM 103
Windows 95 Diagrammed . 104

vii

Ebay Exhibit 1013, Page 26 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

viii

Windows 95 Surveyed . 106
Protection Rings in Windows 95 . 107
Windows 95 Memory Map . 108
Tasks and Processes . 110

Virtual Machine Management . 111
Real MS-DOS . 111
Virtual Machine Scheduling . 112

The Windows 95 Schedulers . 114
Scheduling Within the System Virtual Machine 116
Controlling the Scheduler . 116
Threads and UAEs : 117
Threads and Idle Time 118
Application Message Queues . 119

Physical Memory Management. 121
Virtual Memory Management . 125

Memory Mapped Files . 127
Reserving Virtual Address Space. 128
Private Heaps . 129

Virtual Machine Manager Services . 129
Calling Virtual Machine Manager Services 131

VMM Callbacks 131
Loading VxDs . 132
The Shell VxD . 134

Getting Around in Ring Zero . 135
Calling Windows 95 Base OS Services 137
Calling from One VxD to Another . 138

VMM Service Groups 140
Application Support. 141

The API Layer . 142
Mixing 16-Bit and 32-Bit Code . 143
The Win32 Subsystem • 147
Internal Synchronization 149

Conclusion . 155
References. 156

Ebay Exhibit 1013, Page 27 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Table of Contents

CHAPTER FIVE

THE USER INTERFACE AND THE SHELL 157
Improving on Windows 3.0 and 3.1 159

System Configuration and Control . 160

Program Manager, File Manager, Task Manager 160
Control Functions . 162

Consistency . 162
Visuals.. 164

Scalability . 164
Concepts Guiding the New User Interface 165

The Document-Centric Interface . 166
Look and Feel . 167

The Windows 95 Shell . 169
Folders and Shortcuts in the Windows 95 Shell 170
Desktop Folders . 172
System Setup . 173

The Initial Desktop 174
The Desktop . 177
The Taskbar . 179

On-Screen Appearance . 182
Light Source . 184

Property Sheets . 185
Online Help ... 186

Implementation . 188
Design Retrospective . 189

The Outside Influences 189
The Development of the Shell . 190

Changes in the Shell . 192
The Taskbar . 194

Folders and Browsing. 195
Animation . 196
The Transfer Model -. 197

Other Changes . 198

The New Appearance . 198
Screen Appearance . 198
Visual Elements . 201

Scalability . 201

ix

Ebay Exhibit 1013, Page 28 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

x

Menus ... 202

Window Buttons . 204

Icons .. 204

Proportional Scroll Box and Sizing Handle 205

New Controls . 205

Tool Bar Control 205

Button List Box Control . 206

Status Window Control . 206

Column Heading Control . 207

Progress Indicator Control . 208

Slider Control . 208

Spin Box Control . 208

Rich Text Control,. 209

Tab Control . 209

Property Sheet Control . 209

List View and Tree View Controls . 21 O
New Dialog Boxes , 210

File Open Dialog . 211

Page Setup Dialog . 213

Long Filenames . 213

Windows 95 Support for MS-DOS Applications 215

Application Guidelines for Windows 95 : 217

Follow the Style Guidelines 218

Support Long Filenames . 218

Support UNC Pathnames . 218

Register Document and Data Types,
and Support Drag and Drop 218

Use Common Dialogs . 219

Reduce Multiple Instances of an Application 219

Be Consistent with the Shell . 219
Revise Online Help . 219

Support OLE Functionality . 220

Conclusion . 220

Reference -. 221

Ebay Exhibit 1013, Page 29 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Table of Contents

CHAPTER SIX

APPLICATIONS AND DEVICES 223
The Win32 API . 224

Goals for Win32. 226

Components of the Win32 API . 227

The Win32 API on Windows 95 . 229

Porting to the Win32 API . 229

Porting Tools . 229

API Changes. 230

Memory Management . 232
Version Checking . 233

Nonportable APls 233

Win32 on Windows 95. 234

Security APls . 234

Console APls . 235

32-Bit Coordinate System . 235

Unicode APls . 235

Server APls . 236

Printer Support . 236

Service Control Manager APls . 236

Event Logging 236

Detailed Differences : . 237
Programming for Windows 95 . 238

Multitasking ... 238

Memory Management . 241

Plug and Play Support . 241
The Registry . 242

The User Interface . 245

OLE ... 245

International Support 248

Structured Exception Handling . 249

The Graphics Device Interface 252

GDI Architecture 255

Performance Improvements '.-. 256

Limit Expansion 256

New Graphics Features . 257

xi

Ebay Exhibit 1013, Page 30 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

xii

TrueType 258

Metafile Support 258
Image Color Matching 259

Color Profiles 261

Communicating Color Information 261

The Display Subsystem . 262

The DIB Engine 265

The Display Mini-Driver 266

Bank-Switched Video Adapters . 267

Interfacing with the DIB Engine 268

The Printing Subsystem . 269

Printing Architecture . 270

The Printing Process . 270

Using the Universal Printer Driver. 272

Conclusion . 27 4

References. 27 4

CHAPTER SEVEN

THE FILESYSTEM 21s
Overview of the Architecture 277
Long Filename Support , 281

Storing Long Filenames . 282

Generating Short Filenames . 288

MS-DOS Support for Long Filenames. 289

Long Filenames on Other Systems 291

Installable Filesystem Manager 291
Calling a Filesystem Driver 293

Filesystem Drivers . 294

FSD Entry Points : . 295

1/0 Subsystem . 296

Device Driver Initialization 298

Controlling an 1/0 Request 299

Calldown Chains. 300

Asynchronous Driver Events 301

Interfacing to the Hardware 302

Initialization 302

Execution . 303

Interrupt 303

Ebay Exhibit 1013, Page 31 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Table of Contents

Other Layers in the Filesystem Hierarchy . 303

Volume Tracking Drivers . 304
Type Specific Drivers . 305

SCSI Manager . 306

Real Mode Drivers . 307
Conclusion . 308
References. 308

CHAPTER EIGHT

PLUG AND PLAY 309
Why Do We Need Another Standard? 310

History of the Plug and Play Project .. ~ 312
Goals for Plug and Play 314

Easy Installation and Configuration of New Devices 315

Support for a New Hardware Standard 315
New ISA Board Standard 317

Seamless Dynamic Configuration Changes 318
Compatibility with the Installed Base and Old Peripherals 319
Operating System and Hardware Independence 320
Reduced Complexity and Increased Flexibility of Hardware ... 320

The Components of Plug and Play . 321
How the Subsystem Fits Together. 325

After a System Configuration Change 328
Hardware Tree ·. 328

Device Nodes . 329
Device Identifiers 331

Hardware Information Databases 332

Plug and Play Events . 333
Configuration Manager . 333
Enumerators . 334

Resource Arbitrators - . 335
Plug and Play BIOS 336

Plug and Play Device Drivers . 337
Applications in a Plug and Play System . 338
Conclusion . 339
References. 340

xiii

Ebay Exhibit 1013, Page 32 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

xiv

CHAPTER NINE

NETWORKING 341
Windows Networking History . 342

Networking Goals . 346

Network Software Architecture 347
WOSA ... 348
Network Layers . 351
Network Operations . 353

The Multiple Provider Router . 355
32-Bit Networking APls . 357

Network Resources . 357
Connection APls . 358

Enumeration APls 359
Error Reporting APls. 360
Local Device Name APls . 360

UNC APls . 360
Password Cache API . 360

Authentication Dialog API 361
Interfacing to the Network Provider 361

The Network Provider . 362

Network Provider Services . 363
Device Redirection SPI 364
Shell SPI . 365
Enumeration SPI . 365

Authentication SPI . 366
Network Transports . 366

Network Device Drivers . 368

Network Driver Compatibility 369
Network Configurations. 370

The Network Server . 372
Server Components . 373

Network Printing : 375
Network Security . 377

Access Controls . 378
Share-Level Security 379
User-Level Security . 379

Conclusion . 379
Reference . 380

Ebay Exhibit 1013, Page 33 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Table of Contents

CHAPTER TEN

MOBILE COMPUTING 381
Remote Communications Support. 382

Remote Network Access . 385

Types of Remote Access 386
The Telephony API . 389

Telephony Applications 390

Modem Support 391

The Communications Driver . 392

The Info Center .. 394

Info Center Applications 396

Messaging APls 396

Messaging Service Providers . 397

Portable System Support. 398

Power Management . 398

Docking Station Support 399

File Synchronization . 400

The Briefcase API . 403

Conclusion . 404

EPILOGUE

LEAVING CHICAGO 407

Glossary ... 427

Index ... 455

xv

Ebay Exhibit 1013, Page 34 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Ebay Exhibit 1013, Page 35 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

FOREWORD

I first met Adrian King in 1981, on the floor of a trade show in
Amsterdam. I was new to Microsoft-a small company of 75 people
with $7.5 million in revenues-and I was on my first trip to Europe to
meet customers and distribution partners. The trade show turned out
to be a flop-more exhibitors than customers. Adrian and I by our­
selves might have outnumbered the customers.

We had a lot of time to talk to each other, and I found out that
Adrian had graduated from the University of Liverpool with a master's
degree in computer science and had joined Logica, a big European
consulting outfit, straight out of school. It was clear right off that he un­
derstood technology and a lot else besides.

We tried to figure out why the aisles were so empty, and that got us
into talking about the future for software. I remember thinking that
Adrian was an impressive guy and reflecting that with more people like
Adrian involved, the software business might really take off. But even in
our freewheeling exchange of ideas, we didn't come close to envision­
ing today's incredible market for software.

A little later, Adrian managed to convince Logica to branch out
from their consulting business into software products-no small feat at
the time-and they became Microsoft's European XENIX partner.
Through the early 1980s, Adrian and I worked together to develop the
European XENIX business. Then, in April of 1984, we met to review
XENIX support issues. That's how it started out, anyway. During the
first half of the meeting, Adrian did his best to convince me that
Microsoft had to do a number of different things to improve our
XENIX product support. During the second half, I did my best to con­
vince Adrian that he really ought to become our XENIX product man­
ager and take care of those things himself. With a little help from Bill
Gates, I was able to persuade Adrian to do just that.

Adrian did a great job, and before long we gave him even more to
do. He eventually became our director of operating systems products,
picking up responsibilities for MS-DOS and Microsoft OS/2 as well as

xvii

Ebay Exhibit 1013, Page 36 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

xviii

XENIX. At the same time I was focusing on Windows, which had be­
come a big priority for the company. We had come to believe that using
a mouse with a graphical user interface was a natural, intuitive way to
use a computer. Adrian worked on the early Windows projects, and in
November of 1985 I put him in charge of Windows/386.

The effort we put in on the early versions of Windows was a foun­
dation for the blockbuster success of Windows 3.0 and Windows 3.1.
The work that Adrian and the rest of the team did on the Windows/386
project formed the basis for much of Microsoft's MS-DOS support in
Windows 3.1 and even in Windows NT, for example. And many of the
people from that Windows/386 team are still involved in our Windows
development today.

Adrian went on to other important projects at Microsoft, and
then in 1991 he left to pursue his interest in peer-to-peer networking at
a smaller company. I'm sure' that if Adrian were still at Microsoft he'd
be deeply involved in the development of Windows 95. But at least he's
back in the Microsoft orbit-this time as a chronicler, the author of
Inside Windows 95.

Microsoft's goals for Windows 95 are the same goals we've had for
every release of Windows. We want to make computing even easier.' We
want to increase end user productivity. We want to provide a develop­
ment platform for the desktop. We want to provide a high-volume, low­
cost operating system that will spur industry growth and innovation. We
believe that Windows 95 will accomplish these goals and that Windows
95 will be even more important to the PC world than Windows 3.1,
which now has over 60 million users.

The list of great new features for Windows 95, a true 32-bit operat­
ing system, is amazingly long. Windows 95 will offer a vastly improved
user interface, true multitasking, a freshly designed filesystem, better
connectivity, better support for notebook PCs, easier installation and
configuration-all with performance at least as good as Windows 3.1
performance.

I'm very excited that Adrian has written this book about our most
important Windows operating system ever. We're lucky that Adrian
turned out to be a good writer too because he has a perspective that
only someone from the old days could bring to bear on the history and
the accomplishments of the "Chicago" Windows project. Everyone will
want to read Inside Windows 95-the interested power user, solution
providers, developers, and administrators. I heartily recommend this

Ebay Exhibit 1013, Page 37 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Foreword

book to anyone who will want to take full advantage of the technologi­
cal innovations in Windows 95. Adrian does an excellent job of explain­
ing the major architectural components of the system and provides a
lot of insight into the thinking behind the design and implementation
of Windows 95. I've greatly enjoyed reading his account of the project
and the product in this book, and I think you will too.

Steve Ballmer
Executive Vice President, Microsoft

Redmond, Washington
August 1994

Ebay Exhibit 1013, Page 38 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Ebay Exhibit 1013, Page 39 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

PREFACE

Writing a book about a yet to be released software product and pub­
lishing it before the product even ships has to be asking for trouble.
Throw in other factors such as the fact that the product in question is
one that literally thousands of people will examine and critique in
minute detail, and you can easily build a case for declining the writing
opportunity. So, of course, I accepted. Inside Windows 95 is the result.

When I started working for Microsoft in 1984, I'd already known
the company as a customer and development partner for a few years.
One thing I'd learned very quickly about Bill Gates and Steve Ballmer
is that they never, ever give up on something they believe in. In 1984
and 1985, even with massive delays in its initial planned shipment, Win­
dows was the something they weren't giving up on. My first office at
Microsoft was next to Steve Ballmer's. One day, after more bad news
about Windows shipment dates, he and his assistant packed everything
up and moved downstairs to occupy new offices in the midst of the Win­
dows development team (a group maybe ten strong at the time). Steve
was now the Windows project manager, and he wasn't about to give up.

Windows 1.0 eventually shipped in late 1985. Describing the
market's reaction as lukewarm is akin to describing Bill Gates as well
off. I remember installing the first Windows Software Development Kit
on an IBM PC XT and being at different moments impressed by its fea­
tures and bewildered by its complexity. Looking back on it now, I can
see that it was of course sheer madness for Microsoft to believe that
Windows could succeed on the limited hardware available at the time.

But Microsoft wasn't about to give up. Through successive ver­
sions, Windows gradually got better and the hardware got faster and
more capacious. In 1987 and 1988 I managed the project that pro­
duced Windows/386 and launched it on the first 386-based PC: the
Compaq Deskpro. It was my favorite time at Microsoft, and the entire
project team-all fifteen of us-were rather proud ofWindows/386. In
comparison to. MS-DOS it still didn't sell worth a darn. Even Steye
Ballmer was beginning to think that OS/2 might be the right strategy.

xxi

Ebay Exhibit 1013, Page 40 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

xxii

But Microsoft didn't give up, and on May 22, 1990, Bill Gates in­
troduced the latest and greatest release of Windows-version 3.0-to a
rapt audience in New York City. Things were different this time. It was
obvious to me in the theater that day that Windows was about to become
a seven-year-old overnight success. And it did. Bill and Steve would prob­
ably try to convince you it was planned that way. Don't believe it.
Whether the galaxies were finally in correct alignment, or a confluence
of market factors finally came about, or sheer determination finally car­
ried the day is no longer relevant-Windows was finally a hit.

I was involved only a little in the development of Windows 3.0 and
not at all in the development of Windows 3.1. Shortly before I left
Microsoft in 1991, I began working on what was eventually to become
part of the base operating system for Windows 95. Clearly I was not des­
tined to escape the project entirely, and the opportunity to write this
book on Windows 95 for Microsoft Press is one I've enjoyed a lot.
Watching a Windows release once again is fascinating. The scope of the
work that goes into a major new release of Windows these days is stag­
gering, with hundreds of people involved rather than only a few dozen.

Of course, I'm only writing about what many have built and oth­
ers have yet to go out and sell. Although the Windows team at Microsoft
is considerably bigger these days, it still includes a few people from
back when Steve Ballmer was the project manager. And Steve's current
role at Microsoft as Executive Vice President of Sales and Support
means that he is now in charge of the worldwide sales campaign for
Windows 95. Windows 95 will enter the market under some competi­
tive pressure. Proponents of UNIX, OS/2, and NetWare certainly
haven't relaxed their attempts to improve their own products and their
market shares. But Windows 95 is definitely the product to beat. I'm
quite sure Steve won't give up on this challenge either-which means
that nothing has really changed since 1985 except the location of
Steve's office and the size of his marketing budget.

Special thanks go to Erin O'Connor and her team at Microsoft
Press for overcoming my English and several other obstacles in the
preparation of this book. Claudette Moore and Mike Halvorson got the
project started, and several people at Microsoft gave time and assis­
tance to the project, for which I'm grateful. George Moore and Joe
Belfiore in particular were always willing to answer my questions. It has
been more than a year since I began work on this book, and, as I write,
I know there's still a lot of work left to finish Chicago. That effort is but
a tiny part of the total still needed to ship Chicago and make it a sue-

Ebay Exhibit 1013, Page 41 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Preface

cess. The industry magazines have already published their first reviews
of the Chicago Beta-I release. IBM has launched its anti-Chicago adver­
tising campaign. The pundits and self-styled experts have begun their
critique of a product that won't be in the stores for months yet. Win­
dows 95 has a long way to go before it will be a runaway success. But I'm
sure that will happen. Microsoft won't give up before it does.

If you'd like to talk to me about this book or about Windows 95 in
general, I'm readily available on the Internet as adriank@gravity.wa.com.
I hope you find at least some of the book useful and enjoyable. Thanks
for taking the time to read it.

Adrian Ki,ng
July 12, 1994

xx iii

Ebay Exhibit 1013, Page 42 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

xx iv

Publisher's Note

As we went to press, some aspects of Windows 95 were still under a gen­
eral nondisclosure agreement, but Microsoft had made public a great
deal of information about Windows 95. This book offers an interpreta­
tion of that information, and the author's conclusions are based on his
exploration of Beta-I. The "Chicago" story continues to unfold, and the
product will continue to be refined. For up-to-the-minute changes in
information on Windows 95, we recommend that you periodically visit
the WIN_NEWS forum, which you can find at the following locations:

On CompuServe: GO WINNEWS
On the Internet: ftp: I /ftp. microsoft. com/PerOpSys/Win_News/Chicago

http:/ /www.microsoft.com
On AOL: keyword WINNEWS
On Prodigy: jumpword WINNEWS
On Genie: WINNEWS file area on Windows RTC

You can also subscribe to Microsoft's electronic newsletter WinNews. To
subscribe, send Internet e-mail to enews@microsoft.nwnet;com and put the
words SUBSCRIBE WINNEWS in the text of the e-mail.

When Windows 95 is released, be sure to head to your bookstore for
complete accounts of developing for and using Windows 95.

Microsoft Press
September 16, 1994

Ebay Exhibit 1013, Page 43 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INTRODUCTION

To describe this book as an account of everything you could possibly
want to know about Windows 95, or indeed as an account of everything
in Windows 95, would be to mislead. The sheer scope of the Windows
95 development project makes it impossible to write the only book
about the product you'll ever need to buy. If you're an avid student of
Windows, I'm sure your sagging bookshelf will have to bear further
strain in the months ahead. If you're a regular user, you'll find a whole
host of new and exciting features to explore in Windows 95.

First a warning. Even as I write, Windows 95 is still in development
and scheduled for release a few months into the future. Microsoft
made the first external release of the product in August 1993. After in­
stallation, one of the first icons you were tempted to double-click on
produced this unsettling screen:

In many other places in the product you could find similar warn­
ings: subject to change, not yet impl,emented, and so on. It seems appropri­
ate to use the Under Construction screen at the front of this book. My
warnings won't be as dire, though, since this book does describe fea­
tures you really can expect to find when Windows 95 hits the streets late

'this year. This book is current as of the Chicago Beta-I release that

xxv

Ebay Exhibit 1013, Page 44 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIQE WINDOWS 95

xxvi

Microsoft shipped in June 1994, By and large the product was feature
complete at the time of that beta release. However (and here's that
warning), since the book has to go to the printer before the product
ships, there will undoubtedly be some changes of detail in the final re­
lease of the product. And the incompatible goals of exploring every last
feature of Windows 95 and still producing this book in advance of the
product means that some features won't be examined in much detail
and some features will be left out altogether.1

The intention of the book is to provide a technical introduction
to the Windows 95 system, including enough detail to satisfy any Win­
dows user and most system administrators and Windows programmers.
The book is also "Inside Windows 95," meaning that the emphasis is on
what the system can do, how it does it, and why its features were de­
signed and implemented in particular ways. If you're looking for a
book that teaches you how to use the Windows 95 interface, how to cus­
tomize Windows 95, or how to write Windows 95 applications, this book
isn't it. But this book does give you a thorough analysis of the system
architecture and explores every important new feature of Windows 95.

Windows 95 is a major product release for Microsoft. It incorpo­
rates significant new features for exploitation by developers, and major
advances in the user interface and in system usability that should bene­
fit the end user. Since Microsoft Windows has become such an im­
mensely successful product, new releases bear a burden of backward
compatibility. Windows 95 has to carry forward the MS-DOS legacy.
And Windows 95 isn't Microsoft's only Windows family operating sys­
tem. Windows 95 must take its place alongside Windows NT and the
forthcoming Cairo system. Chapter One explores the goals of the Win­
dows 95 project, the constraints on the development team, the market
for the product, and the role of Windows 95 in Microsoft's overall sys­
tems software strategy.

When I began work on this book, Microsoft's internal planning
had Windows 95 shipping at the end of the year-the year 1993. Win­
dows 95 would have been truly unique among operating systems if it
had shipped on the originally planned date. As I write, the testing sta­
tus of Windows 95 suggests that there's a reasonable chance that it will
indeed ship at the end of the year-the year 1994.

1. One major "change" that did make it into this book is the Windows 95 name.
Everyone had been assuming that Chicago's real name would be Windows 4.0. In July
1994 Microsoft decided on the Windows 95 name to align the operating system with a
planned company-wide revision of product names. Fortunately, they made the decision
just before the book went to press.

Ebay Exhibit 1013, Page 45 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Introduction

One aspect of the product that I can't cover in this book is exactly
how Windows 95 will be packaged and priced. Microsoft executives are
characteristically vague about these issues when responding to direct
questions. To some degree, that's a competitive response; the final
packaging and pricing decisions are rarely made until quite late in a
project's life cycle. It will probably work the way most other similar
decisions at Microsoft do: at some point Steve Ballmer will simply tell
everyone what the different boxes. should contain and how much
they'll sell for.

One difficult question I confronted as I developed this book was
how much introduction to the underlying hardware (the Intel 386 pro­
cessor) and software (Windows itself) to provide. Some authors expect
you to read other tomes as prerequisites to their own. Still others try to
teach you hexadecimal arithmetic before presenting the intimate de­
tails of fault-tolerant system design. In the end I decided to support this
book's mission by including the information I would need to refer to
while talking about the more advanced details of Windows 95. Chapters
Two and Three therefore provide a basic description of the Intel 386
processor architecture and the Windows system architecture. If you
know these subjects intimately, you can skim quickly through those two
chapters. If you never knew much about those subjects, the two chap­
ters should equip you to deal with the new information about Windows
95 in the rest of the book. If you're like me and can't always remember
exactly how the 386 paging mechanism works, or precisely what a Win­
dows task really is, Chapters Two and Three can serve as a close at hand
reference to Intel and Windows architecture.

Windows 95 is built on an operating system base that adds major
new capabilities to the system. Some of these new features, such as the
new filesystem, have already appeared in other Microsoft operating sys­
tem products, notably Windows NT and Windows for Workgroups.
Windows 95 integrates these new features and other features to provide
a full 32-bit protected mode environment for Windows applications.
And although MS-DOS compatibility is retained, there really isn't a col­
lection of files in Windows 95 that you can point to and label as
MS-DOS. Windows 95 really is a complete operating system for the very
first time in the history of this product line. In Chapter Four we'll ex­
plore the inner workings of the Windows 95 operating system base.

Every user of Windows will see a dramatic revision in the on­
screen appearance of the operating system. In addition to revising the
appearance of Windows, Microsoft has changed many of the interactive

xxvii

Ebay Exhibit 1013, Page 46 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

xxviii

procedures and added a unified system control application. In Chapter
Five we'll analyze the user interface and the new system shell. That
chapter contains a lot of screen shots illustrating various aspects of the
shell, and I'm quite sure that some of the details of these screens will
change in the final product. I already know that the visuals for the Start
menu are a little different, and the "now it's there, now it's gone" game
continues with the shell's trashcan: post-Beta-I, the trashcan was back
in the product.

Windows 95 introduces some significant changes in both the Win­
dows graphical subsystem and the Windows implementation of device
support. For the first time a Microsoft Windows system takes on the
challenge of device-independent color-a feature that has become
critical to many graphical applications. A.major improvement in the
architecture for display drivers is also a highlight of the new system­
level features you'll see in Windows 95. In Chapter Six we'll take a look
at all of these changes.

The architecture for supporting disk devices and their associated
filesystems has also changed considerably in Windows 95. A layered de­
vice architecture derived from the Windows NT design provides full
protected mode support for hard and floppy disks and CD ROM de­
vices. And integrating support for new disk devices into the system be­
comes comparatively trivial in Windows 95. Although Windows 95
continues to use the MS-DOS FAT filesystem as its default storage
scheme, the design of the new installable filesystem manager opens the
door for improved filesystem support in the future. Right now, the
most visible enhancement in the Windows 95 filesystem is its support
for long filenames-finally relieving us of the tiresome 8.3 filenaming
convention that has dogged us since 1981. In Chapter Seven we'll in­
spect the new filesystem design.

Although not limited to operation in the Windows environment,
Microsoft's Plug and Play technology makes its system debut with Win­
dows 95. Fully implemented, Plug and Play makes the task of configur­
ing and managing a complex PC a trivial one. Apple Computer won't
be able to run those Windows commercials any longer. In Chapter
Eight we'll explore the need for Plug and Play and its implementation
under Windows 95. Plug and Play capable systems have a life outside
Windows 95, and I fully expect Plug and Play systems to be a highlight
of this year's COMDEX/Fall trade show. The Plug and Play technology
really does work, and if you spend a lot of time messing around with
computers, you'll find the benefits of Plug and Play to be compelling-

Ebay Exhibit 1013, Page 47 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Introduction

so much so, that I'd recommend your waiting to buy a Plug and Play
system as your next.

Windows 95 integrates its support for network systems into the
new filesystem architecture. Windows 95 will support several simul­
taneously active networks-each with multiple connections-and pro­
vide consistent interfaces to any underlying network for applications.
Some of these features were seen for the first time with the release of
Microsoft Windows for Workgroups version 3.11 in the fall of 1993. In
Chapter Nine we'll examine network support in Windows 95. The sud­
den surge of popular interest in the Internet prompted Microsoft
to include Internet access utilities in Windows 95 quite late in the de­
velopment project. It seems likely that the "Internet readiness" of Win­
dows 95 will be a focus of at least some of the early marketing for the
product.

Microsoft intends Windows 95 to play a significant role in the
growing mobile computing market. Windows 95 features related to
that market range from integrated support for pen-based computers to
an enormously improved remote network access capability and support
for the use of laptop docking systems. In Chapter Ten we'll consider
these featur~s together under the general topic of mobile computing.
Windows 95 will include support for pen input devices and the associ­
ated "inking" operations. Unfortunately, that topic didn't make it into
this book-publishing deadlines are a little more rigid than software
development deadlines.

Apart from the pen computing capabilities, the only other major
feature of Windows 95 that is not a topic of this book is multimedia sup­
port. It will be there in the product, but even as late as the spring of
1994 its precise architecture and features were still rather vague.
Microsoft seemed to think it was pretty significant that there is aver­
sion of the popular Doom game running under Windows using the
newly announced WinG graphics library. Game products are really the
final bastion of MS-DOS-specific software. Whether Windows 95 multi­
media support will be good enough to conquer the games market re­
mains to be seen.

There are components of Windows 95 that will have been in de­
velopment for well over three years by the time you can go out and buy
the product in a store. The first order of business is to look at what
Microsoft has been trying to achieve in all that time.

xxix

Ebay Exhibit 1013, Page 48 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Ebay Exhibit 1013, Page 49 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

C H A P T E R 0 N E

THE ROAD TO CHICAGO

Throughout its design and development, Microsoft Windows 95 had
the codename "Chicago," and the introductory slide for early product
presentations depicted a map of the USA entitled "Driving Towards
Chicago " Windows 95 was not designed and developed in a
vacuum-there were a lot of stops on the way to Chicago. Beginning
with the first release of Windows in November 1985 and continuing
through the spectacularly successful introduction of Windows 3.0 in
May 1990 and beyond, Microsoft's total investment in Windows has
been enormous. Until version 3.0, the commercial returns hardly mer­
ited the investment. But no one has ever accused Microsoft of giving up
easily, and Windows slowly and steadily improved in both capabilities
and sales. The introduction of Windows 3.0 was a watershed event. It
was as if the world had suddenly discovered the benefits of Windows,
and versions 3.0 and 3.1 sold in great numbers.

In truth, a number of factors contributed to the seemingly sudden
success of Windows 3.0. Personal computers using the Intel 386 chip
were then becoming affordable. By the time Windows 3.1 was released,
386 systems were commonplace and cheap. The 386 systems provided
good performance and the best platform for Windows to run on.
Equally as important, the amount of system memory and the quality
and performance of video hardware finally matched the requirements
set by Windows. Given the now adequate level of system performance,
the real benefits of the graphical user interface became apparent to
large numbers of users.

Microsoft had long extolled the benefits of Windows, but only a
limited number of high-quality Windows-based applications were avail­
able before version 3.0. Virtually every demonstration of Windows in­
cluded Microsoft Excel, Aldus PageMaker, and very little else. There
were occasions when Microsoft's own applications development group

1

Ebay Exhibit 1013, Page 50 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

2

questioned the wisdom of pinning all their hopes on Windows, and
there were many internal debates, both formal and informal, over the rela­
tive priorities of MS-DOS, Windows, UNIX, and OS/2 as application plat­
forms. Windows 3.0 changed every company's perspective significantly,
and within several months of its release, the level of application support
for Windows had grown dramatically. Software developers were no longer
faced with the question of whether it was worthwhile to develop a Windows
version of their application-it was simply a question of how fast they
could get the Windows version to market.

Even industry journals that had relegated Windows to the also-ran
category changed their view. As the numbers of users converting to
Windows rose, so did the level of press coverage. Within two years,
reviews and discussion of MS-DOS-based products had become the mi­
nor news items, and new journals concerning themselves only with Wm­
dows had begun to take up a significant amount of magazine rack space.

It was on this stage that Windows 95 would be introduced. Before
version 3.0, new releases of Windows had received some polite (and a
lot of impolite) interest and had earned the product a few new custom­
ers. After all, those were the days when OS/2 had been designated "the
next big thing." In that context, Windows version 3.0 was an over­
achiever, surprising everyone with its improved features and popular
success. Microsoft released version 3.1 primarily to solve the problems
that widespread use of the 3.0 product had exposed.1 The product
team knew that the stage would be different for the introduction of
Windows 95. Expectations were high. Every· feature and nuance of the
product was certain to be exhaustively examined, discussed, and criti­
cized. 2 Windows 95 had to be the best version of Windows ever, and the
goals the team set for the product had to address the need to incorpo­
rate dramatic and worthwhile improvements. With sales of the current
version of Windows topping a million copies a month by mid-1993, any
new release of the product also needed to be totally reliable.

1. Foremost among these problems was the infamous UAE-the Unrecoverable
Application Error. Although UAEs were most often caused by bugs in application
programs, everyone blamed Windows for UAEs. Eliminating UAEs was the driving
motive behind the development of Windows 3.1.

2. One illustration of this high degree of interest: within two weeks of Microsoft's
first, limited, external release of the beta, someone had (illegally) provided a copy to
PC Week. They promptly published a review of the beta-almost a year in advance of
the product's planned release date.

Ebay Exhibit 1013, Page 51 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

0 N E: The Road to Chicago

Thus, the general goals for Windows 95 were set: build a great
new product that includes compelling new features and that is totally
r~liable-and, of course, develop it quickly. If you've ever worked on a
software development project, you probably recognize those grand
goals. And you know that every project team has to reduce those nebu­
lous aims to specific targets. With Windows 95, it was no different.

The Mission for Windows 95
Although the goal is expressed in different ways and set in different
contexts, one phrase summarizes the mission of the Windows 95 devel­
opment team: make it easy. The mission to make every aspect of the PC
running Windows 95 easier for users, support staff, hardware manufac­
turers, and software developers consistently reasserts itself. The project
mantra often added a qualifying phrase: make it easy, not just easier.
Throughout the design and development cycle, each aspect of Win­
dows 95 had to undergo scrutiny within the "make it easy" context.

Help for the End User
Ease of use is an overused phrase in the computer industry. Not that
many people find computers easy to use. Most people find Windows
easier to use than MS-DOS, but the Windows 95 team recognized that on
an absolute scale there was a lot left to do before using Windows would
become "easy." These are some of the problems the team recognized:

II Many users remain intimidated by computers. Many potential
customers won't buy a PC for the same reason.

II Common tasks, such as setting up a printer, are still far too
arduous and error-prone for many users.

II Carrying out a complex operation, such as remote data access,
is difficult for sophisticated users and close to impossible for
most other people.

The scope for the team's mission also needed broadening. It
would be no good making Windows easy to use. if the systems on which
it ran remained difficult to set up and configure. And Windows 95 itself
had to be easy to install and support. To make things easy for the end
user at the expense of the MIS department would be self-defeating.

3

Ebay Exhibit 1013, Page 52 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

Hardware Platforms

4

The basic architecture of today's average PC is that of~ IBM PC AT­
compatible machine, circa 1984. Despite many innovations in compo­
nents, the overall system design has remained largely unimproved.
Beyond encouraging manufacturers to ship PCs with at least a 386SX
processor, 4 MB of RAM, and good video boards, Microsoft had done
very little in the way of systematically persuading hardware companies
to innovate.

Microsoft saw Windows 95 as an opportunity to change the status
quo to the benefit of both the end user and the system manufacturer.
Central to this effort was the development of the hardware Plug and
Play specification, prepared jointly by Microsoft, Intel, Phoenix Tech­
nologies (the BIOS suppliers), and Compaq, among others. Plug and
Play aimed to eliminate most of the problems associated with setting up
and configuring PC hardware. No longer would the user need to know,
for instance, what an IRQ or an 1/0 port address was. The users, their
support staffs, and the system suppliers would all benefit from the
improved ease of system setup.

Microsoft's other major step to encourage renewed hardware inno­
vation was the decision to finally remove Windows reliance on MS-DOS
as its underlying operating system. Successive releases of Windows had
incorporated more and more operating system functions, and MS-DOS
gradually came to be used as little more than a rather inefficient disk
filing system. This trend culminates in Windows 95-a complete oper­
ating system implementation that incorporates all the features re­
quired of a fully protected 32-bit multitasking operating system. The
user needs only to install Windows 95 on the machine; MS-DOS doesn't
have to be present on the system at all. Windows 95 continues to support
MS-DOS applications using a compatibility feature that has its roots in
Microsoft Windows/386, Microsoft OS/2, and Windows NT. 3

Windows 95 offers the system manufacturer the opportunity to
produce improved hardware that doesn't have to conform strictly to
the old IBM PC AT design. Such improvements includ~ the incorpora­
tion of an improved BIOS and plug-in cards that cooperate with the op­
erating system during system setup. Since device driver software always
controls access to any hardware within a Windows 95 system, the user
can add any new device provided it has a Windows device driver.

3. Although no code is repeated, members of the Windows 95 team had accumu·
lated a significant amount of expertise when they had implemented similar compatibil­
ity features for these other operating systems.

Ebay Exhibit 1013, Page 53 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

0 N E: The Road to Chicago

The need for older-style BIOS compatibility no longer exists unless the
device must also support MS-DOS operations.

For the Developer-32 Bits at Last
Although the mission statement for Windows 95 emphasized making it
easy for users, support staff, and manufacturers, the lifeblood of Win­
dows is still application programs. Early on in life, Windows gathered
support from application developers slowly. After the introduction of
Windows 3.0, that trickle of support grew into a veritable torrent of new
applications. But developing a Windows application was never an easy
task, although the quality and variety of development tools and train­
ing material have improved by leaps and bounds over those of a few
years before. Windows 95 support for 32-bit programs helps the devel­
oper significantly:

II Developing 32-bit programs is just plain easier than develop­
ing for the 16-bit segmented model required by earlier
versions of Windows.

II The Windows 95 32-bit API is compatible with the API sup­
ported by Microsoft Windows NT. Developers who want to
produce products for both operating systems have an easier
time developing and supporting their applications.

II Windows 95 itself uses a 32-bit memory model, and many of
the limits of earlier versions of Windows disappear as a result.
Valuable system resources, such as file handles, are plentiful.
Application developers no longer have to come up with clever
schemes to minimize their demands upon the system.

Naturally, the availability and quality of applications for the new
release will help determine the success of Windows 95. At the same
time that Microsoft worked on Windows 95, they expended even more
effort on the development of Windows NT and associated products
such as the Advanced Server version of Windows NT. Further mystify­
ing the choice of platforms available to the application developer was
word of yet another Microsoft operating system-code-named Cairo­
which began to circulate in late 1992.4 Today the success of each of

4. Chicago's project codename was originally "Tripoli "-a city "very close to Cairo."
Humorists on the Windows team then asserted that the name ought to be "Spokane"­
a place not very far from Microsoft's headquarters in Redmond. Eventually, "Chicago"
was chosen-more because that was the site of the Windows 3.1 introduction than for
any other geographic significance.

5

Ebay Exhibit 1013, Page 54 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

these operating systems remains undetermined, but before going fur­
ther along the road to Chicago, we'll look at how Microsoft sees the
role of each product over the next few years.

Shall We Go to Chicago or Cairo?

6

Over the last few years, every one of us has had several opportunities to
change PC operating systems. The sheer size of the installed base of
MS-DOS systems and application software creates enormous inertia,
and with no compelling reason to change, people simply don't. This
hasn't stopped a variety of vendors from trying to replace MS-DOS with
a better mousetrap. UNIX, for example, in all its versions, has been
around even longer than MS-DOS, and each year brings a renewed
pledge of unity and coherence from the UNIX vendors. Usually the
vendor infighting reasserts itself about six months later, and UNIX
returns to its status of technical overachiever and commercial also-ran.

Microsoft, in partnership with IBM, tried to replace MS-DOS with
OS/2. After a few years and tens of millions of dollars spent in develop­
ment and promotion, OS/2 was nowhere in the market. Microsoft
abandoned its OS/2 efforts shortly after the introduction of Windows
version 3.0, when it became clear that Windows would be very success­
ful and OS/2 would never be a good enough product to justify a switch
from MS-DOS. Microsoft did press on with the development of another
advanced operating system, however-Windows NT. Why? Hadn't
enough money been wasted on trying to replace MS-DOS? Wouldn't it
have been better just to improve MS-DOS itself?

Technically speaking, MS-DOS is a severely limited operating sys­
tem. Its inability to support proper multitasking, memory protection,
and large address spaces makes it a poor base for environments where
the user wants to run several complex applications while connected to
a network. Fixing these problems involves much more than making
modifications to MS-DOS-it really does take a new operating system.
To a degree, Microsoft was able to incorporate some necessary improve­
ments to MS-DOS into successive versions of Windows. Multitasking,
limited 32-bit application support, memory protection, and other fea­
tures are now all functions of the current release of Windows. This way
of evolving an operating system also passes the test for commercial ra­
tionality. Since Windows required MS-DOS to be on the system already,
it was easy for users to upgrade, and Microsoft could add new functions
without having to change MS-DOS itself. In fact, by the time Windows

Ebay Exhibit 1013, Page 55 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

0 N E: The Road to Chicago

version 3.1 appeared, Windows used MS-DOS for not much more than
loading programs and managing the disk filesystem.

First Stop-Chicago
Windows 95 is a major step in an evolutionary process. On a system run­
ning Windows 95, there is no longer any need for a separate product
called MS-DOS. Windows 95 takes over all the operating system func­
tions. You install a single product, and when you boot the system, you go
directly into the Windows environment. You'll no longer see the familiar
C:> prompt at which you typed the win command. Naturally, Windows 95
retains MS-DOS compatibility so that you can still run all of your existing
TSR programs and any other MS-DOS applications you use. But the basic
architecture of Windows 95 is Windows with MS-DOS compatibility. It is
not MS-DOS running a Windows subsystem.

There are a lot of technical reasons for implementing Windows
95 this way. Relying at all on MS-DOS as the basic operating system
would have reduced the capability and performance of the overall sys­
tem. Now Windows truly supports the functions needed for advanced
applications and networked systems.

This evolutionary progression in the architecture was also feasible
from a marketing perspective. When Windows wasn't very popular, it
would have been impossible to persuade people to give up MS-DOS
and move to an alternative. This conversion is exactly what the OS/2
campaign failed to pull off. Now Windows is popular, and users spend
much more time running Windows applications than they do MS-DOS
applications. Thus, Windows 95 is a great upgrade to Windows 3.1, and
yes, you can still run those aging MS-DOS applications.5

At this point, you might be wondering whether Microsoft is once
again predicting the imminent demise of MS-DOS. Probably not. There
is an active MS-DOS development group at Microsoft, and MS-DOS ver­
sions 5.0, 6.0, and now 6.22 attest to their efforts. The possibility of the
protected mode operating system components of Windows 95 forming
the basis of an MS-DOS 7.0 release was the subject of much questioning
and speculation during 1993. Microsoft would not confirm the specula­
tion, at least not by July 1994, but it's impossible to ignore the commer­
cial success of the retail upgrade packages for MS-DOS 5.0 and 6.0. An
MS-DOS 7.0 upgrade release could provide both significant user benefit
and plenty ofrevenue dollars.

5. Demonstrating their personal bias quite succinctly, Microsoft executives referred to
the release of WordPerfect 6.0 for MS-DOS as "the last great DOS application."

7

Ebay Exhibit 1013, Page 56 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

Clients and Servers

8

Apart from the move to Windows, the other major trend over the last
few years has been the widespread adoption of high-speed local area
networks. Sometimes these LANs have been installed where there were
no computers before, and now they are often installed to replace main­
frame- and minicomputer-based systems. Each machine on the net­
work usually operates in one of two roles: as a client (typically the
system that's on your desk running your applications) or as a server
(where the systemwide databases and other shared resources, such as
printers, are found).

For a client system, you need a high level of usability, great graphi­
cal display performance, and an easy to manage network connection.
Some newer machines, such as the smallest portable systems, probably
spend a lot of their time not connected to anything. At some point,
though, even they have to become true clients, perhaps to print a file or
to connect to an electronic mail network.

For a server, you need performance, performance, performance,
and, of course, performance. Actually, the modern PC network server
needs to offer a lot of complex features:

11111 Performance. The server operating system must be very
efficient at transferring data across the network. To meet the
performance demand, the operating system must also support
machines using multiple processors, very high speed, high
capacity disk drives, and high-performance network hardware.

II Robustness. This word means that the system doesn't crash
and that if it does, it doesn't destroy data in the process. This
requirement extends to the operating system's ability to
protect different programs from each other's weaknesses. If
your wide area communications server falls over in a heap, for
example, you'd certainly prefer that it didn't take the database
server down with it.

1111 Security. Securing data has always been a concern for any
computer system that many people can access, whether the
access be by virtue of proximity or through incoming tele­
phone lines. Research efforts in the last few years have formal­
ized many aspects of data security, and modern operating
systems are expected to meet some specific requirements.
Most governments insist that computer systems meet demon­
strated, and certified, security standards, and many corpora­
tions have adopted a corresponding policy.

Ebay Exhibit 1013, Page 57 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

O N E: The Road to Chicago

• Network management. If you have a large network that is
geographically dispersed, you need the software tools that
allow you to manage it effectively. Activities might range from
simple tasks, such as adding and removing network printers,
to finding and updating every copy of a particular application
program throughout the network.

• Transparent distribution of data and processing power.
Ideally, a network system should allow the user to retrieve data
and access other resources without having to know the net­
work locations of the objects in question. Although your client
desktop system participates in locating and using resources,
it's the server that has to figure out where a resource is and
how to give you the most efficient access to it.

Of course, you'd like all these server features on your client ma­
chine as well. Unfortunately, implementing these advanced capabilities
takes a lot of software, and that translates into the need for more
memory, more disk space, and more processor speed. Someday we'll all
have 500-MHz processors with gigabytes of memory in our laptop ma­
chines and we'll install the most powerful version of everything. Of
course, by then, we'll have figured out some new feature.that we simply
must have and for which we still won't have enough hardware capacity.
Until then, the configuration of most desktop and portable machines
is likely to be a lot smaller and cheaper than a server configuration. Op­
erating system vendors generally target a particular product toward ei­
ther the client-type machine or the server machine.

Microsoft's operating system development efforts acknowledge
the differences between these two basic system types. For the high­
volume client-type machine, Windows 95 is the product Microsoft
wants you to use. As we'll see when we look at the features of Windows
95, there is a very close mapping between its features and user require­
ments within the client market segment.6

The lowest-power machine configuration the Windows 95 team
had in mind was an Intel 386SX-based system with 4 MB of memory, a
VGA display, and 80 MB of disk space. In 1994, that's a pretty simple
and cheap configuration. But Windows 95 had to run at least as well as
Windows 3.1 on such a system. The Windows 95 team didn't try to imple­
ment the complex security features or multiprocessor support offered

6. Another early Windows 95 marketing slogan-every Microsoft product accumu- ·
lates many before the final tagline is chosen-was "the ideal client system."

9

Ebay Exhibit 1013, Page 58 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

by Windows NT. 7 Such features would have added a lot to the operating
system's hardware requirements, and most users simply don't need or
want such features. Certainly for the portable computer market, which
represents a large share of potential Windows 95 sales, such features
are neither applicable nor even desirable.

For the server market, Microsoft says choose Windows NT. With
Windows NT, you'll get virtually unlimited capacity and the features
that meet all of the server requirements we've just looked at. Many us­
ers will have computing requirements that demand the capabilities of a
Windows NT machine right there on the desktop. Their work will also
justify the use of a machine with the power of an Intel 486, 16 MB of
memory, and 256 MB of disk space. Today that's still a pretty impressive
configuration for a desktop machine, but for a network server it's not
much more than an entry-level configuration. Of course, the incred­
ible pace of improvement in personal computer hardware will make
that 486 configuration a low-end system within a couple of years, and
users will be able to choose to move up to Windows NT functionality
with no loss ofperformance.8

And On to Cairo

10

The first thing to note about Cairo is that its new features don't make
up a complete operating system. Cairo will actually appear as Microsoft
Windows NT version something point something. Windows NT will
continue as the base operating system, performing all the memory
management, task management, device handling, printing, and so on.
In some ways, this arrangement is similar to the way in which successive
releases of Windows before Windows 95 added new capabilities to the
MS-DOS operating system. For Cairo, however, the underlying operat­
ing system is an immensely powerful one. Microsoft freely acknowl­
edges that in the first release of Windows NT it sacrificed advances in
usability to designing and building an operating system with a sophisti­
cated and long-lived architecture. Cairo seeks to augment the native ca­
pabilities of Windows NT rather than add features that should be in the
operating system proper.

7. Windows NT also runs on processors other than the Intel 80386/486/Pentium
family. This portability was never a goal for Windows 95. The enormous difficulty of
maintaining full MS-DOS and Windows compatibility, let alone the implementation
effort that would be needed.j-.made this idea a non-starter.

8. Remember that it was only early 1988 when the very first 16-MHz 386 machines
with 4 MB of memory were considered to be high-end systems.

Ebay Exhibit 1013, Page 59 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

0 N E: The Road to Chicago

If you plan to use Windows 95, then, in a sense you'll use the first
incarnation of Cairo. In particular, the new look of the Windows 95
interface and of the system shell will appear in Cairo too.9 There will be
a lot more to Cairo than the new look, of course, but as far as appear­
ance is concerned, you'll be immediately familiar with the product.
Cairo will be a completely object-oriented system, allowing you to
query networkwide for a data object and examine it as you choose.
Cairo will make it easy for you to query the network for all the memos
authored by people in your department, for example. You won't need
to know anything about filenames, filename extensions, what servers
might contain the document files, and so forth. If your network admin­
istrator increases capacity by adding a new network server and splitting
the data between the old and new servers, Cairo will keep track of what
happened. You'll formulate your next query and get the results oblivi­
ous to the fact that a configuration change has occurred.

No doubt you're wondering how much hardware power will be
necessary to run Cairo effectively. No doubt a lot. No doubt you'll need
a machine that today would be considered only for duty as a network
server. But by the time Cairo comes up for adoption as the mainstream
operating system, that amount of computing power will be available in
a reasonably priced desktop machine. Someday microprocessor engi­
neers may reach an absolute physical limit, but that seems likely to be a
day that you and I won't much care about.

So what of Windows 95 in this networked world? Microsoft plans
to extend the Windows role as the perfect client-side operating system
and to ensure its continued suitability for less powerful hardware, por­
table machines, and pen-based systems-few of which will run Cairo.
Through an update to Windows 95, Microsoft will make available the
tools that client systems will need to access Cairo systems effectively.
You'll use your Windows machine to formulate queries, for example,
but it will be the Cairo systems that take care of searching the network
and retrieving the information. Application programs designed for the
Cairo environment will exist as distributed applications. Part of the
software will run on the Windows machine and communicate with a
server-side application running somewhere else on the network.

9. A lot of the original design for the new user interface was actually done by
people on the Cairo team. It was up to the Windows 95 group to implement the
interface and bring it to market, but there was an ongoing effort to ensure consistency
with the evolving Cairo design.

11

Ebay Exhibit 1013, Page 60 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

Summary

12

i
During 1993 Microsoft began the usual seeding process that precedes
all of their major product releases. The company repeated its intention
to build Windows into a family of compatible operating systems that
would cover market requirements from mission-critical corporate com­
puting to consumer devices. The executives who gave the public pre­
sentations used the slide shown in Figure 1-1 to illustrate their view of
the evolution of the Windows family. 10

Corporate
Mission­

Critical

Personal

Non-PC

Figure 1-1.

1993

Evolution of the Windows operating system family.

1994/95

As you can see, a coherent story underlies all the different prod­
ucts. The products evolve in capability, and features can migrate to
other operating systems as microcomputer technology allows. Microsoft
itself is a firm believer in the continuing growth of microprocessor ca­
pability. This increase in horsepower is largely what allows the ad­
vanced features of, say, Windows NT version 3.1 to appear in other
operating systems.

10. The form of this slide changed over time, but the basic message remained
the same.

Ebay Exhibit 1013, Page 61 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

0 N E: The Road to Chicago

Whether Cairo will be successful is a question that can't be answered
for a few years yet, since its story will be played out much further into the
future than the Windows 95 story. Let's get back to our main subject and
take a detailed look at what the Windows 95 team set out to do.

Project Goals
Let's review the market context for Windows 95:

• Windows 95 would be the next release of an immensely
popular product, Windows 3.1.

• A huge amount of installed software, both for MS-DOS and
for Windows, placed some stringent compatibility require­
ments on Windows 95.

• There was a real desire on Microsoft's part to make Windows
95 easier to set up, use, and administer.

• There was a need, principally for the benefit of Windows
application developers, to dramatically improve the funda­
mental capabilities of the system. More resource and memory
capacity, better performance, and support for more complex
programs appeared at the top of most petitioners' lists.

• Windows 3.1 appeared in mid-1992. Obviously the next
version of Windows had to make it to market in a reasonable
amount of time after that-meaning that 1997 wouldn't cut it.

• Other operating system development projects were proceeding
in parallel at Microsoft. Care had to be taken to ensure compat­
ibility with both Windows NT and the Cairo efforts and with the
release of Windows for Workgroups 3.11 in November 1993.

From the very early discussions about what the Windows 95 product
should be, there emerged a specification that translated these loose mar­
ket requirements into a more precise statement of goals for the project.
Each section of the more detailed specification addressed these ten
issues almost as ten commandments and described how each particu­
lar feature met the basic project goals.11 The specification grouped

11. By the time work on this book began in earnest in April 1993, the Chicago
Feature Specification was approaching its eighth substantial revision and stretched to
over 200 densely printed pages. Who said software was all about writing tight code?

13

Ebay Exhibit 1013, Page 62 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

the ten issues as "The Four Requirements" and 'The Six Areas for Im­
provement." By and large, these ten goals remained unchanged during
the development project.12 Here's how the feature specification sum­
marized them (verbatim):

The four requirements:

• Compatibility

• Performance equal to or better than Windows 3.1
performance on a 4-MB system

• Robustness

• Product availability in mid-1994

The six areas for improvement:

• Great setup and easy configuration (Plug and Play)

• New shell and user interface visuals

• Integrated and complete protect mode operating system

• Great network client, peer server, and workgroup
functionality

• Great mobile computing environment

• Windows 32-bit application support

A lot of this book is a detailed examination of the major new
features of Windows 95. Before launching into the detail, it's worth tak­
ing a brief look at what these project goals really mean.

Compatibility

14

Compatibility is both the dream and the nightmare of everyone who
develops products for the PC market. The basic PC architecture was
defined by IBM's very first product introduction in August 1981. Once
the clone (later "industry standard") manufacturers were established
and software developers had figured out what compatibility meant for
them, the industry grew spectacularly. Compatibility means that you
and I can walk into a computer store,. buy any PC product there, install

12. The original requirements specified "great 4-megabyte system" and "product
availability in the first half of 1994." As you can see, the performance goal became
more precise and the availability goal exteµded beyond its upper bound.

Ebay Exhibit 1013, Page 63 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

O N E: The Road to Chicago

it, and expect it to work. Great news for us. Unfortunately for the devel­
opers of PC hardware and software, compatibility means that you and I
can walk into a computer store, buy any PC product there, install it,
and expect it to work. Any developer has to do a certain amount of
compatibility testing before releasing a product. For a straightforward
application program, the developer's testing problem is a finite one
that might only involve testing on popular networks and with popular
printers. For a more complex product, such as a memory resident com­
munications program that runs in the background, the testing matrix
becomes much larger. The development effort could involve testing for
compatibility with different networks, different modems, and different
versions of MS-DOS, PC-DOS, DR-DOS, and Windows, with other
memory resident programs, ad infinitum. This testing burden repre­
sents a substantial part of the product's development cost.

Now consider Windows 95. For the product to be successful, it
simply had to be compatible with everything that had gone before­
not only Windows applications software, but MS-DOS applications, de­
vice driver software, and network software, to name the principal foes.
If the product were truly compatible, the reasoning went, the new fea­
tures alone would persuade every user to upgrade without a second
thought. 13 And the absence of a "real" MS-DOS in the Windows 95 ar­
chitecture was a radical revision that seemed guaranteed to produce
some difficult to solve compatibility issues. Clearly, Windows 95 needed
a massive compatibility test effort, and that's what the Windows 95 team
set about organizing.

The Compatibility Fallback
Microsoft also decided that Windows 95 needed an ultimate compat­
ibility fallback. Everyone was sure that the fallback would be invoked
only in the event the user wanted to run some ancient, obscure game
software. But the fallback did represent a good insurance policy against
any case in which Windows 95 broke the compatibility regime.

The fallback solution is to allow the user to exit completely from
Windows and run an actual real mode MS-DOS. While the system runs
in this mode, a small software loader stays resident in memory. That's
the only component of Windows 95 still memory resident while the sys­
tem is in MS-DOS real mode. Once the user finishes off the Klingon
empire, the software loader traps the application program's exit call and
reloads Windows from disk, returning the system to its normal state.

13. Referred to in Microsoft vernacular as a "no brainer upgrade."

15

Ebay Exhibit 1013, Page 64 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

Performance

16

The earlier versions of Windows garnered a healthy measure of criti­
cism on several fronts. Poor performance was an oft-repeated com­
plaint. Looking back at the hardware configurations then available for
Windows, it seems amazing that the product was even usable. In 1985,
Windows was able to run on a 286-based system with a poor display
adapter (the CGA), a single megabyte of memory, and a fairly slow
hard disk. Any popular laptop system today has a comparatively much
improved display and better disk hardware, four times as much
memory, and a processor probably 25 or 30 times faster than the first
286. Naturally, Windows has obeyed one of the unwritten laws of com­
puter science and expanded to consume all the available hardware
resources.

It's hard to measure the performance of a Windows system in ab­
solute terms. Does a benchmark reading of 15 million Winmarks mean
that you'll see your desktop publishing package run at lightning speed?
Generally, users will judge a product's performance from its response
time. Snappy screen redrawing, fast file opening and closing, and quick
scrolling operations always make a good impression. Less easy to db­
serve but equally important to the overall system performance are op­
erations like network data transfers and program swapping. The
operating system vendor thus has to invest in two parallel performance
measuring activities: checking individual operations, such as how fast a
program can read a file, and observing the whole system as it runs a
mixture of applications and data transfer operations.

Microsoft's development teams have always focused on perfor­
mance issues. They tune individual software components for improved
speed and reduced memory consumption as well as raise overall system
performance by removing undesirable interactions among different
components. Within Windows 95 itself, new features such as the 32-bit
protected mode filesystem and dynamically loadable device drivers
were aimed at improving system performance. Would the end user like
to see the system run even faster? Of course, but the recent perfor­
mance of Windows 3.1 on the base configuration 386SX with 4 MB of
memory is generally considered as reasonable.

For Windows 95, the development group set itself the goal of run­
ning as well as or better than Windows 3.1 on the same base hardware
configuration. Not very ambitious, you might say. However, this goal
took into account that the system had to include the new capabilities
such as the Plug and Play subsystem with its dynamic reconfiguration fa­
cility at the same time that it ran the application mix. Adding significant

Ebay Exhibit 1013, Page 65 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

O N E: The Road to Chicago

functionality while maintaining the same level of performance is ambi­
tious. By simple extension, a Windows 95 system doing exactly what the
Windows 3.1 system did, on the same hardware, ought to run faster.
Measuring different application mixes, modeling end user activities,
and playing with the variables have been staple ingredients of Windows
95 performance analysis.

The key, repeated phrase in Microsoft's later Windows 95 presenta­
tions was "as well as Windows 3.1." The recurrence of this phrase empha­
sized the fact that Windows 3.1 on a 4-MB system running Microsoft
Office and using OLE performs dreadfully. The Windows 95 team
didn't try to address this problem. In fairness, they couldn't. An appli­
cation mix of this complexity demands more memory-at least 8 MB
and probably more. Fortunately, early 1994 saw 8 MB becoming the
default configuration for many machines, so, to some degree, the prob­
lem would be solved by the time Windows 95 was released.

In early 1994, performance tuning began in earnest, and all of the
project status reports for Windows 95 dwelt on performance tuning
issues for some months. By the time of the Beta-I release, Windows 95
performance was already as good as or better than Windows 3.1 perfor­
mance in almost every respect.

Robustness-Adieu UAE?
A robust system is a system that doesn't crash-whatever the user or
application programs do to it. If one program goes awry, the user can
halt it without affecting the operation of any other programs or losing
any data. If a program makes.erroneous requests for operating system
services, the system protects itself by terminating the offending program
with no effect on other programs.

Windows 3.0 was roundly criticized for system crashes. The infa­
mous unrecoverable application error (UAE) was a widely publicized,
and poorly understood, problem. Windows 3.0 reported a UAE when­
ever it determined that the system itself had reached an inconsistent
state. An application used a file handle to access a file that had been
deleted, for example. For most of the UAEs, the error was actually in
the application program and not in Windows itself. However, Windows
3.0 did a poor job of validating system requests generated by applica­
tion programs. Thus, an application could make an invalid request that
Windows happily accepted and tried to process. By the time the error
was discovered, there would be nothing left to do but crash the system as
a rather primitive last line of defense. Fixing this problem was a focus of
the work to produce Windows 3.1, which carefully validated almost every

17

Ebay Exhibit 1013, Page 66 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

system request before processing it. As a result, many application ven­
dors had to release updates of their products to fix software bugs that
had never been discovered before. The experience was a painful one for
all concerned, and the Windows 95 team was in no rush to repeat it.

The development team wanted Windows 95 to be extremely ro­
bust, with almost no possibility of a system crash caused by an applica­
tion program or other external factor. How do you go about ensuring
this? A lot of the answer goes back to the basic design of the system: in­
corporating careful validation of application requests, protecting sys­
tem data regions, and isolating individual software components. In
particular, the new 32-bit application programming model allowed the
Windows 95 team to implement full memory protection for individual
32-bit programs. Not only are 32-bit programs protected from each
other, but the system is also fully protected from these programs.
(Some improvements were also made for 16-bit programs, but the
options were limited because of compatibility constraints.) Once all of
this is done, you test and test and test some more.

Timely Product Availability

18

The eternal battle between the sales and marketing group and the devel­
opment group within any software project comes down to deciding
when the product is ready for release. Microsoft always sets an estimated
release date for a product way ahead of detailed planning. Then the de­
velopment team either cuts features or extends the planned release date
to allow completion of all the development work. Factors that influence
the release date include when the previous version was released, the
overall scope of the work for the new version, and how competitive the
market is. The decision to bless a particular version of the software as
the "golden master"14 involves many people from the product group,
senior managers within the development division, product support per­
sonnel, and often Bill Gates himself. If the product is simply not ready
for release because of performance inadequacies or major bugs, there's
no debate-you slip the date, and the development team continues its
work. But there finally comes a point when the software is in good shape,
all the introduction materials are ready, the support personnel are
trained, and the printed documentation is waiting in the warehouse.

14. In Microsoft parlance, the development group prepares a succession of
"release candidates" before shipment. When everyone is satisfied with the quality of
the software, the final release candidate becomes the golden master from which the
manufacturing group prepares the production version.

Ebay Exhibit 1013, Page 67 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

0 N E: The Road to Chicago

There are still some bugs that could be fixed if you were to wake up the
development team and get them to put in yet another day or another
week of effort. Do you ship the software or do you wait? In any complex
software product, from any company, bugs always remain in the ship­
ping version. Experience and judgment dictate when those bugs are
sufficiently unobtrusive that the software really is ready for shipment.

· Windows 95 has been no different in this respect. By the middle
of 1993, Microsoft had come up with the product's original, and rather
vague, shipment goal of "the first half of 1994." This date would be
about two years after the release of Windows version 3.1, and that was
one major factor in choosing the planned ship date for Windows 95.
Once the scope of the work was better understood, the development
team pinned the release date down more firmly to "mid-1994." Plans
were also made for a succession oflimited releases to software develop­
ers, beta test sites, and others before the final general release. This cycle
of controlled releases began in August 1993, almost a year before the
planned general release date. The fact that a pretty complete and func­
tional version of Windows 95 was available that early on says a lot about
the extent of the testing and improvement effort Microsoft planned for
the product before it would release the final version.

Well, guess what? The team completely blew the mid-1994 date. In
fact, the Beta-I release barely made it before the end of June. Once
again, it proved to be beyond human ability to accurately forecast the
completion date for a complex software project. This difficulty is not
unique to Microsoft's release date predictions. Virtually no one is able
to forecast with any accuracy, but Microsoft's plans are often very public.
The most public statement of the release goal was Bill Gates's speech at
the 1994 COMDEX/Spring show, when he demonstrated Windows 95
and committed to a release date of "before the end of the year."

How well "before the end of 1994" will be met remains to be seen.
But rest assured that many long workdays and sleepless nights have yet
to be invested in Windows 95.

Easy Setup and Configuration
Setting up and configuring a Windows system has never been a trivial
task. Each new release has improved the process, but even the setup for
Windows 3.0 and 3.1 (considered to have made quantum leaps in this
area) has continued to baffle a lot of users. The "make it easy" directive
governed much of the effort invested in improvements to the system

19

Ebay Exhibit 1013, Page 68 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

20

setup and configuration procedures. The Windows 95 team decided to
concentrate on these areas for major improvement:

II Hardware configuration. The Plug and Play initiative was
intended to dramatically ease the process of configuring PCs,
and Windows 95 would be the first operating system product
to support the Plug and Play standard that Microsoft, Intel,
Phoenix Technologies, and others were preparing.

II Installing and configuring Windows 95 on an existing Win­
dows 3.1 system. The team felt that this process ought to
require no user involvement beyond swapping diskettes at the
right time. After all, ifa system ran Windows 3.1, someone
must have solved any setup or configuration problems already.
Windows 95 ought to be able to use the earlier effort to ease
its own installation process.

Ill System administration and reconfiguration procedures. Every
aspect of the existing system was carefully analyzed to improve
ease of use. For example, the team felt that any user ought to
be able to set up a new printer without a problem. With
Windows 3.1, that had not always been the case.

The Plug and Play Initiative
The Plug and Play standard was an effort with a much broader scope
than simply Windows 95. Intended by its sponsors to be independent of
any particular operating system, Plug and Play defines extensions to
the existing PC hardware architecture, together with new BIOS and
device driver capabilities that aim to shield the user from hardware
setup and configuration issues. Apart from the physical process of plug­
ging a system or a device in and turning it on, Plug and Play takes over
the problems of identifying a device, assigning the device the correct
hardware configuration resources (such as an interrupt request level),
and configuring the appropriate device driver software.

Plug and Play is also independent of any particular bus architec­
ture. It will use ISA, EISA, Micro Channel, PCMCIA, or any other bus
architecture that has some market share. In the case of the ISA bus, in
which there is really no hardware support for Plug and Play operations,
the specification defines a new adapter card interface. For a small addi­
tional hardware cost (perhaps 25 or 50 cents) and with some new soft­
ware, an ISA adapter card can become Plug and Play compliant. For even
non-Plug and Play systems, a large amount of effort went into developing

Ebay Exhibit 1013, Page 69 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

0 N E: The Road to Chicago

device recognition and configuration capabilities. We'll take a detailed
look at the whole Plug and Play architecture in Chapter 8.

Configuring Windows
Configuring Windows itself has become something of a black art.
Lengthy articles, and even whole books, devote considerable attention
to every one of the often obscure lines in the Windows WIN.IN! and
SYSTEM.IN! files. Coupling the contents of these two files with the
contents of the basic CONFIG.SYS and AUTOEXEC.BAT files means
that the user trying to modify or improve the operation of Windows
faces a daunting task. The Windows 95 team decided to subject every
single entry in the configuration files to detailed scrutiny. If an entry
really wasn't needed, why was it there? Furthermore, why were there so
many special case entries? Could better default selections avoid the
need for additio.nal entries? Did Plug and Play make some entries re­
dundant? The more settings that could be eliminated, the easier the
system would be to understand.

Apart from the files that control Windows operations, many appli­
cations use private initialization files or add parameter information to
the WIN.IN! file. Rationalizing this whole configuration mess was long
overdue, and the Windows 95 team adopted the solution designed by
the Windows NT group. Windows NT uses a special file called the regis­
try to contain all the information relating to hardware, operating sys­
tem, and application configuration. Entries in the registry are available
to application programs through defined application programming in­
terfaces. Applications can add to and retrieve their private configura­
tion settings using registry access APis. No longer can the user edit the
text in a configuration file and introduce inconsistencies or other er­
rors. Windows 95 uses the registry concept in an identical way, and as
developers update application programs for Windows 95, the jumble of
configuration files will disappear.

User-Level Operations
Many basic system management operations, such as setting up printers
or modifying the layout of the Windows desktop, ought to be available
to every user. Yes, they're there, but some of them are awkward to use
and difficult to comprehend. Windows 95 addresses this problem by
consolidating and simplifying many of the day-to-day operations that
all users must perform on their own systems.

21

Ebay Exhibit 1013, Page 70 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

New Shell and User Interface

22

The most immediately striking aspect of Windows 95 is the new look of
the screen display. Microsoft uses visual designers on all of its projects
these days, and the attention to details of the Windows 95 appearance
is remarkable. No longer does a programmer spend a mere hour de­
signing a new icon for a control panel function. The process now in­
volves a visual designer who carefully considers the intent, appearance,
and overall consistency of the new visual element. At first glance,
there's no obvious difference between individual screen elements of
Windows 3.1 and those of Windows 95-no immediately apparent
changes in an icon, for example. But if you look closely, you can see the
subtle alterations to the shading and the shadow illusion around the
icons in the Windows 95 version. As you can imagine, a lot of debate
and painstaking effort went into the revision of the appearance of Win­
dows 95. Later in the book, we'll examine these changes in detail.

The New Shell
Much more than just a pretty new face, the Windows 95 shell is a major
functional step forward. Asking a Windows 3.1 user to identify "the shell"
elicits some interesting responses. Some people have no idea what the
shell is. Those who do have an idea will often identify the Program Man­
ager as the shell component. Further questioning about how the File
Manager, Print Manager, Task Manager, and Control Panel fit in with "the
shell" will usually leave even the most expert Windows user confused.

This confusion is not because the user doesn't understand the sys­
tem: Windows actually is rather confusing. For example, why do you
configure printers using the Control Panel, alter print characteristics
using the Print Setup option on the application's File menu, and then
control print spooling using the Print Manager? Most proficient Win­
dows users become accustomed to these procedures and forget about
the awkwardness, but trying to introduce a naive user to the system and
justifying, or even explaining, this scattered approach is difficult.

Fortunately, Microsoft itself recognized the problem a long time
ago, and the Windows 95 release represents a serious effort to unify
and improve the collection of system functions that form the shell. Of
course, there are some major new features beyond that:

Ill OLE 2 is the first step in Microsoft's initiative to move
toward a document-centric application architecture. The
Windows 95 shell supports OLE 2 functions and consistent
drag and drop capabilities.

Ebay Exhibit 1013, Page 71 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

0 N E: The Road to Chicago

• Electronic mail is almost a given in a networked environment.
The shell supports an electronic mail interface directly.

• Long filenames-at last you can name a file My chicken chili
redpe and not have to use CHCHRECP.DOC, ensuring that
a month later you won't have the vaguest idea what the file
contains.

• File viewers have become popular for allowing a user to
examine a formatted file without having to access the appli­
cation that created the file. Windows 95 incorporates a set
of viewers.

• Pen gestures that were originally defined for Microsoft Pen
Windows have been revised and incorporated directly into
Windows 95. As the base of pen systems expands, Windows 95
will support pen systems without having to add new operating
system components.

B MS-DOS applications will most likely live forever. Although
Windows 95 appears to hasten their demise by providing
a better Windows environment, the support for MS-DOS
applications is also improved in Windows 95. MS-DOS
window sizing, copy and paste operations, and the use of
TrueType fonts within an MS-DOS application are among
the improvements.

Complete Protected Mode Operating System
Later on in the book, we'll look at exactly what protected mode is and
at what it means to Windows. Suffice it to say at this point that use of the
protected mode removes memory limitations-that is, the 640K barrier
disappears-and provides a solid basis for ensuring system robustness.
The greater part of Windows 3.1 is a protected mode system. MS-DOS
itself, however, remains a real mode system. Consequently, a system
running Windows 3.1 continually switches back and forth between pro­
tected mode and real mode.15 The switching overhead detracts from
system performance.

The decision to implement Windows 95 as a complete system, no
longer reliant on MS-DOS, opened the door to dispensing with all the
remaining real mode components. In particular, the filesystem (handled
by MS-DOS when you run Windows 3.1) and the mouse driver could

15. Actually, virtual 8086 mode-it's not quite as bad as real mode.

23

Ebay Exhibit 1013, Page 72 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

now be rewritten as protected mode software. Given the protected
mode base and its enhanced capabilities, other improvements were
obvious. For example, the print spooler could become a true preemp­
tively scheduled background program. And some of the limitations of
the Wfadows device driver model (the so called VxDs) could be re­
moved, allowing VxDs to be dynamically loaded and unloaded rather
than reside permanently in memory as in Windows 3.1.

The other aspect of completeness that the development team
planned to tackle was filling in the gaps still present in Windows utility
functions. Windows 3.1 has no equivalent to the MS-DOS Chkdsk pro­
gram, for example. If you want to run the Chkdsk utility, you have to
exit Windows to do it. Getting rid of such inconveniences was all part of
the goal to provide a complete operating system.

Also on the list of operating system improvements was the re­
moval of redundant and conflicting functions. Windows 3.1 introduced
a very successful printing model that incorporated a single major mod­
ule supplemented by small, simple device-specific printer drivers. This
model had a number of positive effects, including the elimination of a
lot of duplicate code in the different printer drivers and the promotion
of the quick development of new drivers with fewer errors. Windows
NT made use of a similar concept to standardize disk device support.
Windows 95 would continue along the same path by using a similar
model for its hard disk, SCSI device, display, and communications
driver support.

32-Bit Application Support

24

Along with the growth in complexity of modern operating systems and
computer networks has come a growth in the depth and breadth of
single application programs. No longer does a word processor simply
allow you to put words on paper. Customers expect spelling and gram­
mar checking functions, a thesaurus, page layout facilities, and a host of
other features. The sheer scope of today's application programs calls for
the consumption oflarge amounts of memory, disk space, and processor
cycles. Despite the fact that Intel's first true 32-bit chip began to appear
in PCs in 1988, MS-DOS and Windows have never fully supported 32-bit
application programs. Rather inadequate solutions, such as the DPMI
standard incorporated into Windows 3.0, have been little more than
stopgaps to the developers who desperately needed 32 bits' worth of
memory addressing.

Ebay Exhibit 1013, Page 73 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

0 N E: The Road to Chicago

Windows NT was Microsoft's first operating system in the Windows
family to offer full 32-bit support. Windows 95 will join Windows NT in
supporting Microsoft's Win32 32-bit application programming inter­
face. From the application developer's point of view, 32-bit support
provides three major benefits:

• Access to essentially unlimited amounts of memory. A single
Win32 application program can access up to 2 GB of memory.

• A much easier to program memory model. Writing software
for a so called "flat," or linear, 32-bit address space provides
relief from the vagaries of the Intel processor family's seg­
mented architecture. A programmer can design data struc­
tures without having to worry about the boundaries and
limitations imposed by a 16-bit memory model.

II A consistent application programming interface. The Win­
dows API contains hundreds of functions that together
involve thousands of parameters. In Windows 3.1, some of the
parameters are 16 bits and some are 32 bits. It is a rare pro­
grammer who can remember which is which and never make
mistakes while writing code that calls these APis. Win32
functions consistently use 32-bit parameters with a consequent
reduction in programming errors.

Before the development of Windows 95, Microsoft defined a subset
API termed Win32s. Included within the Win32s definition were all the
APis that, if strictly adhered to, would allow an application developer to
produce software that would run on both 16-bit Windows 3.1 and 32-bit
Windows NT. Win32s was in fact a true subset of the Windows NT API
and was made available on Windows 3.1 through the use of a library
that converted the Win32s 32-bit API calls to the native 16-bit API calls
of Windows 3.1.

The Windows 95 team needed to improve on the original
Win32s API set and originally defined a Win32c API set that took
Win32s as its base and added a number of APis specific to Windows
95. For example, device-independent color capabilities (important in
most desktop publishing and drawing programs) will appear for the
first time in Windows 95. The term Win32c became quite confusing,
quite quickly, and many questions about the relationships among
Win32, Win32s, and Win32c convinced Microsoft that they needed a

25

Ebay Exhibit 1013, Page 74 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

26

simpler story. 16 After an interval, the Win32c term was dropped alto­
gether, and the Windows 95 Win32 API set became simply a subset of
the full Win32 API, defined (at that time) by Windows NT and slated
for expansion in the Cairo era.

The exact definition of the Win32 API set and the individual lev­
els of support in each operating system for the Win32 API can be found
only by consulting the appropriate documentation. Microsoft's inten­
tion is to allow an application program conforming to the Win32s API
to run on any Windows operating system (from Windows 3.1 onward).
Applications that use more advanced capabilities cannot necessarily be
supported on every version of Windows. For example, applications us­
ing the advanced security features available in the Win32 API will run
only on Windows NT and its direct successors.

The Jump to 32 Bits
Moving to the 32-bit API under Windows 95 introduces an interesting
discontinuity, and for once, discontinuity provides a useful break with
the fully compatible past. Since developers who decide to use Win32
must modify their application code, Microsoft reasoned that they could
impose a rule on developers requiring that every API in an application
be a Win32 APL Thus, not only do you modify your code to incorporate
the new 32-bit device-independent color APis, but you also modify all
the other Windows API calls to conform to the Win32 interface. This
includes the basic APis that deal with issues such as file management
and memory allocation.17

Given this new application model, and its associated rules, the
Windows 95 team could incorporate some significant new capabilities
into Windows 95. Since the system would know that it was dealing only
with applications that conform to the Win32 rules, it would know how
to manage the applications a lot more effectively than it could the
existing 16-bit applications. Under Windows 95, the benefits realized
by an application that bases itself on Win32 extend far beyond simply
having 32 bits' worth of memory-notably:

!I Preemption. A Win32 application is fully preemptible, mean­
ing that the operating system can suspend its execution at
any moment in order to switch to a higher-priority task. In

16. The first interesting marketing sleight of hand simply modified the inter­
pretation of the c in Win32c to say that it was for Win32 common, rather than Win32
Chicago. This didn't go far enough, however.

17. To their credit, Microsoft supplied a program analyzer that simplified a lot of
the grunt work needed to complete this type of conversion.

Ebay Exhibit 1013, Page 75 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

0 N E: The Road to Chicago

general, this means smoother response (an hourglass displayed
by one application no longer means that you can't switch to
another to do something useful), better system throughput,
and avoidance of the data loss that can come from an ap­
plication's having to wait too long for control of the processor.

• Separate address space. A Win32 application runs within its
own protected memory region. No other application can
scramble its code or data.

• Thread support. Often a single application would like to do
two things at once-perhaps writing a backup copy of the
current document to disk while still allowing the user to edit
the on-screen text. Under Windows 3.1, multitasking within a
simple application is an awkward and error-prone feature to
implement. An application's ability under Win32 to utilize
multiple threads of execution provides a structured way to
perform multitasking.

Networking and Mobile Computing
Microsoft originally introduced its peer-to-peer local area networking
extension for Windows in the fall of 1992. Windows 95 essentially incor­
porates the Windows for Workgroups local area network functionality
and thus mirrors the model that Windows NT established. Microsoft
has long espoused the belief that networking capability is a fundamen­
tal part of the operating system. Separating networking and operating
system products into different categories, or using special purpose op­
erating systems for network servers, really isn't the way to go. However,
Windows 95 enters a world in which Novell servers make up the major
part of the installed base. For Windows 95 to become popular in a
Novell-dominated network environment, it needs to offer much more
than its own brand of local area network support.18 Thus, Windows 95
includes software that ensures its host system will be fully equipped as a
NetWare client machine.

Beyond its support of local area network facilities, Windows 95
has many oth~er features that involve communications. From simple
telephone line dial-up facilities to support for the latest generation of

18. Whether peer networking will literally be given away in the Windows 95 box is a
packaging issue that probably won't be decided until shortly before Windows 95 ships.
It may be packaged as a separately priced add-on.

27

Ebay Exhibit 1013, Page 76 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

mobile, handheld devices, Windows 95 aims to be about as good a cli­
ent machine operating system as it can be, including

• Client support for all popular networks: Novell's, Banyan's,
Microsoft's, and others.

• Multiple client support, allowing a client machine to connect
simultaneously to different networks-perhaps to a Novell
local area network and to a TCP /IP-based wide area network.

• A peer server capability that matches the original capability
provided by the Windows for Workgroups product. Work­
groups or smaller businesses can thus avoid the need to
dedicate a machine to server functions.

• Electronic mail support based on the message application
programming interface (MAPI) and extending to facsimile
devices as well as popular electronic mail networks.

• Remote connectivity and administration features that provide
efficient access to and management of a local area network
over a low-bandwidth connection. Windows 95 acknowledges
the "traveling PC" phenomenon in its support for file synchro­
nization capabilities and effective data transfer over a low­
speed connection. Thus, you can dial back to home base and
download a copy of a document at a decent speed. When you
revise the document and take it back to the office, Windows
95 helps you figure out how to synchronize your hotel room
edits with the local master copy.

• Pen support. The pen-based computer revolution was pre­
dicted, and then it never really happened. Even so, there is a
steady growth in the use of pen computing devices. Windows
95 incorporates support for pen-based machines. As and when
the revolution occurs, your .Windows 95 software will be ready.

Bringing Windows 95 to Market

28

Describing what the Windows 95 development team set out to accom­
plish begs the question of whether the product will be successful. The
mission of making a Microsoft product a success involves many other
Microsoft groups. Some of these groups, such as the product support
division, aren't fully engaged in seeing to the success of the product

Ebay Exhibit 1013, Page 77 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

0 N E: The Road to Chicago

until it ships to customers. Everyone involved faces a considerable chal­
lenge. Success for Windows 95 means selling tens of millions of copies.
Sales of only a few million copies (usually an indication of a runaway
software bestseller) will be a commercial disaster.

Outside Microsoft, the most important group influencing the suc­
cess of Windows 95 will be the independent software vendors (ISVs)
courted by the company's developer relations group (DRG). If the ISVs
devote their resources to writing applications for Windows 95, compet­
ing operating systems such as IBM OS/2 and Novell NetWare will suf­
fer by comparison·. Windows 95 presents an unusual selling job for
Microsoft in that they must persuade the application developers to
take presumably perfectly fine Windows applications and modify them.
The DRG spent much of 1993 evangelizing for Microsoft's OLE technol­
ogy and the 32-bit API of Windows NT that would appear in Windows 95
in 1994. Whether the benefits of OLE and the 32-bit capabilities of
these operating systems are compelling enough to warrant major in­
vestment by the ISVs remains to be seen.

Microsoft provided the ISVs with a lot of early information about
Windows 95 in a series of design reviews held in Redmond during the
summer and fall of 1993. The audience for these events was usually
fairly small (the largest made up of perhaps 100 people), and Microsoft
always prefaced such an event with a warning that many product fea­
tures were expected to change. The participants also had an opportu­
nity to influence the· Windows 95 design team. The team often asked
for comments on possible solutions to issues that had not been entirely
decided. Early on, the possibilities for change were quite numerous,
but as the planned shipment date drew closer, these opportunities to
influence the Windo~s 95 team naturally diminished.

As Windows 95 gathered marketing momentum, the product
team's goals were translated into the market message behind the
product. Customers are most influenced by the perceived benefits of
any product, and Microsoft used the Windows 95 project goals as the
basis for their initial customer presentations. In the early fall of 1993,
Microsoft's first closed door product briefings identified three main
benefits of Windows 95:

• Easy to use-based on the Plug and Play capability, the new
shell, and the extensive use of Microsoft's OLE 2 technology.

• Powerful 32-bit multitasking system-based on the new
operating system kernel, the new filesystem, and the improve­
ments in device support.

29

Ebay Exhibit 1013, Page 78 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

• Great connectivity-based on the new networking compo­
nents and the mobile computing enhancements.

The first of the more public product briefings was given to a
group of industry journalists on May 12 and 13, 1994, in Redmond.
The press rollout was scheduled to take place shortly before the Beta-1
release, which was actually supposed to be ready to hand out at the
briefing and to coincide with the launch of the marketing campaign
that precedes every Microsoft operating system product release.

At that rollout, the product goals were restated in short form­
"easy," "more powerful," and "more connected." The marketing mes­
sage has retained a degree of consistency throughout the project.

Whether these benefits are enough to sell Windows 95 to the end
user is a subject for the future and for a different forum. Certainly
Microsoft has every chance of success with the product. Their early
1994 estimates indicated that about 50 million copies of Windows
would be in use by mid-1994, with perhaps 60 to 70 percent of all new·
machines shipping with Windows already installed. The principal tar­
get market for upgrading existing Windows 3.1 users will be about 60
percent of the installed base.19

For Microsoft-The Bottom Line

30

Altruism is rarely a consideration in Microsoft's business thinking. Yes,
some product characteristics, such as compatibility and ease of use, are
deeply ingrained in the thinking of every person in the product devel­
opment groups. The Windows 95 team tried as hard as anyone to meet
the ease-of-use goal, and indeed, their motivation did extend far be­
yond the simple desire for commercial success. However, the team also
wanted to sell one heck of a lot of software. Work out the numbers and
you'll see that selling a Windows 95 upgrade to every existing Windows
user would translate into a billion dollars of revenue. The team knew
that if Windows 95 really could achieve the "make it easy" goal, the
door to more new users and more software sales would be unlocked.
Building a great product was definitely the number one goal. Selling
lots of copies came in a close second.

19. Microsoft classifies these users as "active" users; that is, they are people who
periodically upgrade some part of their computer systems, be it hardware or software.
The rest simply don't upgrade anything (and probably drive a 10-year-old car quite
happily as well).

Ebay Exhibit 1013, Page 79 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

0 N E: The Road to Chicago

Conclusion
In this chapter, we've looked at the underlying goals and philosophy
behind the Windows 95 development project and at a synopsis of the
major new features. Entering a mature market, the product has to meet
some stringent compatibility and performance goals as well as intro­
duce new features that will motivate Windows users to upgrade and will
attract new users to the Windows platform. Windows 95 is also an im­
portant component in Microsoft's systems software plans. Married to
the strengths of Windows NT, it becomes part of an enterprise-wide
computing system and introduces some of the Cairo product concepts
for the first time. As our review of the development team's self-imposed
ten commandments suggests, Windows 95 is also an ambitious project.
How Microsoft plans to meet the target it has set for itself is what most
of the rest of this book is about.

Windows 95 is an Intel processor-based operating system. The Intel family of
processors has had a significant influence on both MS-DOS and Windows over
their lifetimes. In return, Windows has influenced Intel's processor designs. In
the next chapter, we'll look at the Intel processors and highlight the features that
have an impact on the design and operation of Windows itself.

31

Ebay Exhibit 1013, Page 80 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Ebay Exhibit 1013, Page 81 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

C H A P T E R T W 0

INTEL PROCESSOR
ARCHITECTURE

Inside every fine operating system beats the heart of a good processor.
In our case, it's very definitely Intel inside. Windows 95 has been
designed and developed for Intel processor-based systems only.
Microsoft's high-end operating system, Windows NT, broke with the
Intel tradition in order to allow vendors to choose from a variety of pro­
cessor types as the base for a system, and Microsoft and its develop­
ment partners have introduced versions of Windows NT for the MIPS
R4000, the DEC Alpha, the PowerPC, and other advanced processors.
None of these chips is compatible with the Intel processor family, so the
only way to get existing applications for Windows or MS-DOS to run on
one of these processors is to include some form oflntel processor emula- 0

tion with the Windows NT version for the processor. For a Windows NT
user, the performance overhead of the emulator isn't a real problem.
After all, that user bought Windows NT principally to use on a network
server or to run a new native 32-bit application. Any slowdown in such a
user's occasional use of an existing 16-bit Windows application isn't re­
ally an issue. There are also some thorny problems associated with run­
ning MS-DOS applications on Windows NT. The preservation of the
Windows NT security model prevents a lot of older MS-DOS applications
from running, for example. But running MS-DOS programs just isn't
the role a Windows NT machine is meant to fill, so Microsoft decided
that putting restrictions on Win9ows NT's 16-bit application environ­
ment was acceptable.

For a Windows 95 user, Microsoft felt that any similar restrictions
or performance overhead for running 16-bit applications would be

33

Ebay Exhibit 1013, Page 82 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

completely unacceptable. After all, most Windows 95 users would
already be using Windows on their desktop or laptop machines. Their
main initial reason for installing Windows 95 would probably be to
have their existing applications run faster or better. Any compatibility
or performance problems for 16-bit applications would be a major
barrier to the mass acceptance of Windows 95.

Thus, the Windows 95 team had to provide 100 percent compat­
ibility and zero performance overhead to the Windows 3.1 user. Tough
goals. Fortunately, Microsoft's experience with early versions of Win­
dows, OS/2, and Windows NT had equipped them with the expertise
they needed to meet these goals. Microsoft's experience also told them
that the compatibility and performance goals could not be met for
Windows 95 running on a non-Intel processor. Any dreams of a por­
table version of Windows were laid aside early on. Windows 95, and any
direct successors, will forever run on Intel processor systems only.

Intel Inside

34

One could write a book devoted to the low-level details of Windows 95
and its interaction with the Intel processor and the system that contains
it, but that is not the purpose of this chapter. We'll look at some aspects
of the hardware that have to be understood in order to make sense of
some of the Windows 95 features we'll look at in detail in later
chapters-particularly Windows 95 memory management, its support
for MS-DOS applications, and the new Plug and Play services. However,
this chapter is certainly not intended to be an exhaustive treatment of
the subject.1 Most of the information in this chapter will relate to the
80386, 80486, and Pentium processors that Windows 95 runs on. A lot
of the less relevant details have been left out or simplified. You may
already know more about the Intel processor family than you care to re­
member. If you do, I suggest that you go straight to the next chapter. If
you don't care to know a lot about the In_tel processor family, don't
worry: the rest of the chapter deals only with the details of the hard­
ware you need to know about. We'll get back to the Windows 95 soft­
ware very soon.

1. Of the many books that do provide an exhaustive treatment of hardware issues,
a good one is Ross Nelson's Microsoft's 80386/80486 Programming Guide (Microsoft
Pre~s, 1991).

Ebay Exhibit 1013, Page 83 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

T W 0: Intel Processor Architecture

Here's what we'll look at in this chapter:

• The Intel processor family-the continuing influence of
the original 16-bit Intel processor, the 8086, on all versions
of Windows because of the MS-DOS software compatibility
requirement

• Processor architecture and modes-the basic design of the
Intel chip family and how the processor can be made to run
the different application types (MS-DOS, 16-bit Windows,
32-bit Windows)

• Memory management-the different methods for handling
memory allocation on the Intel 80386 processor

• Protection-how the 80386 processor allows the operating
system to protect itself and to protect applications and de­
vices from one another

The Intel Processor Family
Intel introduced its first 16-bit microprocessor, the 8086, in 1978. IBM
ensured the role of Intel processors in subsequent computing history
by adopting the Intel 8088 (a slightly slower version of the 8086) for
the IBM Personal Computer in 1981. Microsoft (figuratively, at least)
took its place on the podium with MS-DOS, the operating system it
implemented for the IBM PC. Successive models of the PC, from IBM
and its competitors, have continued to use Intel processor chips and
copies of MS-DOS in vast numbers. Somewhere, someone is buying a
PC right now. It probably has an Intel processor inside, and it probably
comes with a copy of MS-DOS. This buying process is repeated tens of
millions of times a year, and many fortunes, Intel's and Microsoft's
included, have been made as a result.

From the software point of view, the Intel processor family has
gone through two major architectural changes since 1978. These
changes appeared with the 80286 and 80386 processors. From the
hardware designer's point of view, there have been other major design
changes, such as the integration of the processor and floating point pro­
_cessor capabilities on the single 80486 chip. These hardware changes,
together with many other feature and performance improvements, are
often denoted by product name suffixes such as SX and SL. Each
change almost always meant more speed and rarely required any major

35

Ebay Exhibit 1013, Page 84 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

modification on the part of the operating system software designer.
That was not true in the case of the major architectural revisions intro­
duced with the 80286 and 80386 processors. At the risk of offending
some hardware designers, we'll look primarily at the processor design
revisions that enabled significant new software capabilities.

Backward Compatibility

36

The single most important aspect of the Intel processor design has
been the backward software compatibility of the different chips. And
successive versions of MS-DOS have ensured that this compatibility fea­
ture has been readily available to both programmers and users. Every
MS-DOS program ever written for an Intel 8086 will run unchanged on
a Pentium processor. This compatibility has allowed users to buy newer
and better hardware with every change in processor generation and
carry with them the applications they know and use every day. I'd be
willing to bet that many copies of version 1.0 of Lotus 1-2-3 are still in
use. Amazingly, the very first release of Microsoft Windows (1985) would
actually run on a floppy disk-based PC with an 8088 processor (1981).
That same software will still run on a Pentium-based system today.

Software compatibility has been the key to the success of the Intel
processor family and, to a large extent, the key to the success of the
whole personal computer industry. When Intel released the 80286 pro­
cessor in 1982, the announcement lauded, in addition to compatibility,
its higher speed and new "protected mode." Unfortunately, the pro­
tected mode wasn't compatible with the 8086. In 1984, IBM introduced
its first 286-based system, the IBM PC AT. Microsoft didn't try to exploit
the protected mode with the MS-DOS release (version 3.0) for the PC
AT. MS-DOS used the 286 simply as a faster 8086. However, Micro­
soft did release XENIX, its UNIX-derivative operating system, for the
PC AT. XENIX was the first operating system that tried to exploit the
286's protected mode of operation. But XENIX didn't try to provide
MS-DOS software compatibility. A few years later, the designers of OS/2
made valiant attempts to exploit the 286's protected mode while retain­
ing that all-important property, MS-DOS software compatibility. There
were many shortcomings.

If all of this sounds confused, it was. In truth, Intel's implementa­
tion of 8086 compatibility alongside the 286 protected mode feature
was poorly designed. For example, once an operating system had
switched the processor into protected mode operation, there was no
way of switching back to real mode other than by simulating a complete

Ebay Exhibit 1013, Page 85 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

T W 0: Intel Processor Architecture

reboot of the machine! This and other deficiencies meant that the 286
processor was rarely used as anything other than a faster 8086. How­
ever, the mistakes with the 286 design and the early experience from
operating system projects such as OS/2 ensured that the next proces­
sor in the family-the 80386-came out right. The 386 offered 8086
compatibility, 286 compatibility (which ultimately might not have been
worth the microcode), a new 32-bit mode (386 native mode), and an
unusual new mode of operation called virtual 8086 mode. This last fea­
ture enabled the implementation of an operating system that could
run not just one, but many MS-DOS programs compatibly and simulta­
neously. Microsoft helped Intel design virtual 8086 mode and har­
nessed that mode initially with the release of Windows/386 in 1987.
Other operating systems-Quarterdeck's DESQview, IBM's OS/2 version
2.0, and many versions of UNIX-also used the virtual 8086 feature to
good effect. The successor processors in the Intel family, the 80486 and
the Pentium, preserved the virtual 8086 mode feature, and today most
operating systems, including Windows 95, continue to exploit it.

The most recent releases of Windows have been designed only for
the 80386, the 80486, and recently, the Pentium processors. Essentially,
Windows has treated each of these processor types as a 386. A number
of low-level processor features have to be managed differently, but
none of this low-level management is visible to an application program
or indeed to most of the Windows operating system itself. Thus, we
won't get into the intricate details of, for example, how Windows 95
manages floating point operations on the different processor types. In
the rest of this book, you'll see references to only the 386 processor.
Read this to mean "386, 486, or Pentium." The keys to understanding
how Windows exploits the Intel 386 processor architecture are in its
management of memory, its processor modes, and its protection
scheme. That's what we'll look at next.

Processor Architecture
The Intel 8086 introduced a microprocessor memory architecture re­
ferred to as segmented addressing. Similar schemes had appeared in the
design of other, generally much larger, computers, but the 8086 was the
first major microprocessor to employ the technique. Since all MS-DOS
programs throughout the 1980s were written for compatibility with the
8086 (and Windows 95 still has to be able to run those programs), it's
important to understand the 8086 memory architecture.

37

Ebay Exhibit 1013, Page 86 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

The 8080 and 8086 Processors

38

The 8-bit predecessor of the 8086-the Intel 8080-allowed a program
to address a total of 64 kilobytes. Each addressing register of the 8080
was 16 bits. Sixteen bits gave you 65,536 total addresses and thus 64K of
address space. Intel tried pretty hard to make the 8086 compatible with
the 8080 and did preserve the 16-bit address registers. Intel's goals for
the 8086 were much loftier, however, and they added four segment regis­
ters to the 8086, allowing a program to address up to 1 megabyte of
memory. Essentially, a segment register points directly to the first byte
of a memory segment. A segment can begin at any 16-byte chunk of
memory (what Intel called a paragraph). Adding 1 to a segment address
points you to a memory address 16 bytes higher in memory. Using this
segment address as a base address (that is, as address zero for this seg­
ment), the programmer can then use another processor register to ref­
erence any byte within the subsequent 64K. The processor simply
combines the contents of the segment register and an address register
to form a unique 20-bit address. Twenty bits gives you 1,048,576 total
addresses and thus 1 MB of address space. Figure 2-1 shows how the
8086 performs the address arithmetic. Note that the operation of com­
bining the contents of the segment register and the address register to
obtain the final memory address is carried out by the processor itself.
No direct action is required on the part of the programmer.

The segment registers on the 8086 have to be manipulated by the
programmer. When the operating system loads an application, it ini­
tializes the segment registers before running the application. After
that, the application code manipulates the segment registers as it needs
to. Most early MS-DOS programmers and compiler writers learned
many tricks for efficiently using the 8086 segment registers.

This segmented memory architecture has been both a boon and a
pain for software writers. On the plus side, the segmentation allowed
the use of techniques such as expanded memory-with a combination
of software and hardware tricks, segments of 8086 memory could be
temporarily replaced, effectively increasing the total memory available
to a program. On the minus side, segment management was a chore for
anyone developing large (that is, larger than two 64K segments) appli­
cations.2 Scanning through a 100,000-element array of 2-byte integers,

2. During the development of the first version of Windows, signs proclaiming
SS!= DS were popular in many programmers' offices. The signs were intended to be a
constant reminder to the developers. They hoped the signs would lead to fewer bugs.

Ebay Exhibit 1013, Page 87 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

16-bit segment base
address

Figure 2-1.
Intel 8086 address calculation.

T W 0: Intel Processor Architecture

16-bit address offset

20-bit physical memory
address

for example, meant reloading the appropriate segment register at least
three times during the scan. Programmers used to larger machines, or
to microprocessors such as Motorola's 68000, were more accustomed to
a linear address scheme. With a linear addressing architecture, the pro­
grammer would simply increment a single (usually 24- or 32-bit) address
in order to scan the entire physical memory present on the system.

The 640K Barrier
The I-megabyte memory limit of the 8086 architecture never received
wide public attention. Instead, the infamous 640K limit in DOS was the
popular target for much ire and ill-informed criticism. So where did the
640K limit come from? The designers of the original IBM PC decided
to reserve 384K of the 8086's enormous I-megabyte address space (re­
member, this was I98I) for hardware and system software purposes.
The remaining 640K was free for use by DOS and application pro­
grams. Within the upper 384K were the BIOS code, screen memory,
and other system elements. Figure 2-2 on the next page is a reproduc­
tion of the first published memory layout of the original IBM PC.3

3. IBM Technical Reference #6025005. The first edition was published in August 1981.

39

Ebay Exhibit 1013, Page 88 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

40

System Memory Map

X'OOOOO'
16TO 64KB
ON SYSTEM
BOARD

l/OCHANNEL
ADDEDMEM
MAX 192KB

384KMEMORY
FUTURE
EXPANSION

128KB

EXPANSION
MEMORY
216KB .

40KB
BASE SYSTEM
ROM

X'FFFFF'

Figure 2-2.

256KB R/W MEMORY
PRESENT
SYSTEM
MAX MEMORY

FUTURE
EXPANSION

128KB RESERVED
GRAPHIC/DISPLAY
Bl)FFER

Figure 11. SYSTEM MEMORY MAP

The first published memory map for the origi,nal IBM PC.

3/4MEG
MEMORY
ADDRESS
SPACE

256KB ROM
ADDRESS
SPACE

DOS really had little part in determining the 640K limit, and the
layout for the first megabyte of memory on a PC still has an impact on
the design of operating systems today. If you want to build an operating
system that runs MS-DOS programs, many of which expect to find cer­
tain resources at the specific addresses chosen in 1981, you have to
develop some method for supporting this memory layout.

Ebay Exhibit 1013, Page 89 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

T W 0: Intel Processor Architecture

The 80286 Processor
Enter the 80286 and protected mode operation. Once again, software
compatibility was a key goal in the design of the processor, so the 286
designers retained the basic instruction set and addressing method of
the 8086. Indeed, at power on, the 286 operates in real mode (a term
coined at that time to designate operation in 8086 mode) and behaves
for all intents and purposes just as an 8086 does. But Intel added the
new protected mode of operation to significantly increase the processor's
capabilities. An operating system can programmatically switch the 286
from real to protected mode, and in protected mode, the processor's
segment registers are used very differently.

In protected mode, the processor uses the contents of a segment
register to access an 8-byte area of memory called a descriptor. Within
the descriptor is the information that determines the actual physical
address of the memory location the program is trying to reference. Fig­
ure 2-3 on the next page shows how the 286 combines the segment reg­
ister, descriptor information, and address register to produce a 24-bit
physical memory address. It's like having a key to a numbered safety
deposit box that contains the real address of the location for a rendez­
vous. The segment register actually contains an index into a table of
descriptors. Each descriptor can be set up to address a different area of
physical memory. (Note that in descriptions of protected mode opera­
tions, the term selector is customary for describing the contents of the
segment register. Since the value in the register isn't actually a memory
address, there is some justification for yet another term.)

A descriptor contains a lot more information, related primarily to
memory protection issues. The operating system sets up all the descrip­
tors for a particular program within a contiguous area of memory
called a kJcal descriptor table, or WT. Each program running on the 286
has its own LDT. The operating system also sets up a global descriptor
table, or GDT. The operating system uses the GDT to allocate memory
for itself and, for example, to allow several programs to access the same
area of physical memory. The operating system can place the GDT and
each application's LDT anywhere in memory. Two special hardware
registers, the GDTR and the LDTR, are set up to contain the base
addresses of the tables for the currently executing program. When the
operating system switches tasks, it will typically change the base address
in the LDTR. Usually, the GDTR remains unchanged while the system
is running. Reloading the GDTR and LDTR registers is a privileged op­
eration performed only by the operating system. The system does not
allow application programs to modify the contents of these registers.

41

Ebay Exhibit 1013, Page 90 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

42

16-bit segment register
containing 13-bit selector

8-byte descriptor

Figure 2-3.

24-bit physical memory
address

16-bit address offset

Memory access on the 80286 processor in protected mode.

Two aspects of the new protected mode architecture are impor­
tant to note.

M Protected mode introduced the notion of memory protection.
Unless a program's LDT contains a descriptor for a particular
area of memory, there is no way for the program to access
that part of memory. Thus, an operating system can set up
an environment in which several programs run concurrently,
each in its own protected memory area. The 286 actually
has protection capabilities beyond this, and we'll look at all
the details when we examine the 80386 processor. Typically,
the OS uses the GDT descriptors to allow different programs
to access the same area of physical memory.

M The architecture's provision for indirect access to memory
via the LDT or GDT allows the operating system to use any

Ebay Exhibit 1013, Page 91 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

T W O: Intel Processor Architecture

suitable area of physical memory as a segment. The segments
of one program need not be contiguous and can even be
different sizes. As far as the program is concerned, it has
access to all the memory described by its LDT. The program
doesn't know, or care, exactly where in physical memory the
segments exist. Figure 2-4 shows how such an allocation of
memory might appear within a system running two programs
that share access to one particular memory segment.

Addresses generated
by program A

Figure 2·4.

Descriptor table
for program A Physical memory

Hypothetical memory allocation for two programs running on an
80286 processor in protected mode.

The 80386 Processor
Note that the 80286 retained the 8086's awkward segmented address­
ing scheme. A programmer, or a compiler and linker, still had to be

43

Ebay Exhibit 1013, Page 92 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95.

44

sure to set up segment registers with the correct selector, and the code
that could scan through that ubiquitous 100,000-integer array still was
not pretty.4 This deficiency alone made Motorola's 32-bit microproces­
sor family the almost unanimous choice for manufacturers designing
UNIX workstations. Intel had to respond to this market pressure, and
they did, introducing the 32-bit 80386 processor in 1987.

Microsoft worked closely with Intel during the 80386 design
phase and strongly influenced the capabilities of the new virtual 8086
mode supported by the 386.5 Microsoft's interest in the project was to
make sure that. the 386 included all the capabilities necessary to allow
new operating systems to run existing MS-DOS programs. Microsoft
had a lot of battlefield experience from meeting this requirement over
the course of several operating systems and versions of operating sys­
tems, and the work they'd put into OS/2, MS-DOS 95, and Windows,
all for the 286 processor, had persuaded them that there had to be an
easier way. Sometimes silicon chips don't turn out quite the way the
designers intended, but in the case of the 80386, Intel got it right. The
new 32-bit capabilities and the virtual 8086 mode feature worked well
from the time of the first production samples of the 386, and apart
from changes to internal details, those features remain the same in the
80486 and Pentium processors.

Windows 95 is a 386 operating system, so we need to take a close
look at the features of the 386 (and by extension of the 486 and the
Pentium) that are important to Windows 95's operation. Software com­
patibility for the now enormous installed base of MS-DOS software
remained an overriding consideration, so PC manufacturers6 first re­
leased systems that used the 386 as a yet faster 8086--turn on the power
and the 386 runs in real II).Ode, precisely emulating the 8086. However,
the 386 evolved from the 286 in a number of distinct ways, all of which
called for a new operating system to make the new features of the 386
available to application programs:

II Internally, everything grew from 16 bits to 32 bits-all the
registers, the memory addresses, and so on.

4. If you're interested in the more amusing aspects of microprocessor history, you
might like to revisit Intel's 286 sales campaign of the time. Their explanation of why a
segmented architecture beats a linear architecture is a triumph of marketing over
science.

5. In fact, the I/0 permission bitmap, so important to virtual mode operation, was
present in the 386 largely because of Microsoft's lobbying.

6. Compaq was the first company to introduce a PC that u·sed a 386 processor, and
this was the first time that one of the so-called "clone" manufacturers broke ranks.
Compaq's low-risk bet helped push IBM out of its industry leadership position.

Ebay Exhibit 1013, Page 93 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

T W 0: Intel Processor Architecture

• Although the 386 preserved the notion of segments, a single
segment could now be 4 gigabytes in size as opposed to a
mere 1 megabyte. For all intents and purposes, the program­
mer could now treat the 386 as though it had a linear address
space. Intel finally had a real 32-bit microprocessor.

• The 386 improved the memory protection scheme further. An
operating system designer could now implement a full virtual
memory scheme on the 386. (Note that virtual memory and virtual
8086 mode really aren't related, terminology notwithstanding.)

• An operating system could switch the 386 processor at will
among its different operating modes. The properly equipped
386 system could run 8086, 286, and new 32-bit 386 programs
simultaneously.

• The virtual 8086 mode and the associated I/O permission
mtmap allowed the implementation of complete MS-DOS
software compatibility within a protected multitasking system.

80386 Memory Addressing
The 80386's software compatibility features ensure that in real mode it
operates just as an 8086 does. Address construction is the same as for
the 8086, and all extraneous information (notably the high-order 16
bits of each register) is simply ignored during execution. In protected
mode, the operating system that controls program loading and execu­
tion must set up a program's descriptor table in such a way that the pro­
cessor knows how to interpret the memory address information. The
protected mode process for calculating a physical address on the 386 is
similar to that of the 286: the processor uses the contents of a segment
register as an index into a descriptor table, and the descriptor table en­
try contains nearly all the remaining necessary information-"nearly"
all because the 386 allows an operating system to implement a complete
paged virtual memory scheme. When the operating system enables.
paging, the address information extracted from the descriptor table
must go through a further level of interpretation before it is used as an
actual memory address.

80386 Descriptor Format
Figure 2-5 on the next page illustrates the layout of a single descriptor
table entry on the 386. Let's look at each field in a little more detail.

45

Ebay Exhibit 1013, Page 94 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

46

Figure 2·5.
80386 descriptor table entry format.

Base Address The processor forms a 32-bit address from the four
base address fields. Once assembled, the address specifies the first
memory location of the memory segment the program wants to refer­
ence. Adding the 32-bit offset address generated by the program com­
pletes the address of the memory reference. For a 286 program, byte 7
of the descriptor (bits 24 through 31 of the base address) is always 0,
since the 286 can deal only with 24-bit base addresses.

This arrangement is the basis of the addressing mechanism for
32-bit programs. Each program has to deal only with a consistent 32-bit
linear address. The operating system sets up the base register to point
to the first byte of the program's code or data segment, and no further
segment manipulation is necessary. Since a 32-bit quantity provides
such an enormous address space, only a tiny number of programs will
ever need to indulge in segment register trickery.

This absence of the need for segment register manipulation is
an important performance benefit. On the 286 running in protected
mode, every time the contents of a segment register change, the pro­
cessor must check to see that the new selector is a valid one-that is,
that the new segment register contents address a memory segment allo­
cated to the program. If the selector is not valid, the processor generates
a general protection, or GP, fault. This selector validation process consumes
many processor cycles, and when segment registers are frequently
changed, as they must be on the 286 running in protected mode, overall
program performance degrades. On the 386, most programs will never
reload the segment registers and consequently never suffer the perfor­
mance hit.

Limit Two fields form the 20-bit limit quantity, which specifies the up­
per limit of the memory segment addressed by the descriptor. Twenty
bits, as a byte address, is only I megabyte. But didn't we just say that seg­
ments could be 4 GB in size, rather than just I MB? Read on.

Ebay Exhibit 1013, Page 95 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

T W 0: Intel Processor Architecture

G Bit The single granularity bit specifies whether the processor inter­
prets the limit field value as byte granular or page granular. Byte granular­
ity means that the processor interprets the limit value in terms of bytes.
This setting (0) assists in running 286 programs correctly. Page granu­
larity means that the processor interprets the limit value in terms of
pages. Memory pages on the 386 are 4Kin size, and 20 bits' worth of 4K
pages equals, lo and behold, 4 GB of memory.

D or B Bit This bit is the D bit if the memory segment contains pro­
gram code. The value 1 means that the segment contains native, that is,
386, instructions. The value 0 means that the segment contains 286
code. This bit is the B bit ifthe segment contains data. In this case, the
value 1 means that the segment is larger than 64K.

P Bit The present bit denotes whether the memory segment is present
in physical memory. This information is an important aspect of the vir­
tual memory scheme implemented by Windows 95 since it allows the
operating system to differentiate between an invalid memory refer­
ence-one in which the program tries to access memory it doesn't
own-and a reference to a memory segment that has been temporarily
swapped out to the hard disk.

DPL The 2-bit descriptor privilege level field specifies the privilege level
for the segment-zero through three. The contents of the DPL field,
together with the privilege level of the currently running program, play
an important role in the Windows 95 protection system. Code running
at ring zero, as the terminology goes, has the privilege of executing cer­
tain instructions that ring three code does not. Code at ring three, for
example, can't turn interrupts on and off. Windows uses only two privi­
lege levels-zero and three-despite the fact that the processor also
supports privilege levels one and two. Someday there may be a good
reason to use the extra privilege levels, but it hasn't come along yet.

S Bit The segment bit is always set to 1 for a memory segment. The
value 0 means that the descriptor references something other than
memory. The "something other" can be one of several special data
structures used by a 386 operating system to control aspects of device
interrupt handling and memory protection.

Type Field The 3-bit type field specifies the memory segment type-for
example, an execute-only code segment or a read-only data segment. The

47

Ebay Exhibit 1013, Page 96 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

contents of the type field help the operating system maintain memory
protection. An attempt to modify the contents of a read-only data seg­
ment would obviously be an error, for example.

A Bit The accessed bit indicates whether any program has referenced
the memory segment. Any reference to the segment causes the ac­
cessed bit to be set to 1. The Windows 95 memory manager uses the
accessed bit in its virtual memory scheme. If a memory segment has
never been accessed while in physical memory, the physical memory it
occupies becomes an excellent candidate for the operating system to
reclaim it and allocate it to another program when the need comes up.
And if there has been no access to the segment, it obviously has never
been modified, so Windows can reclaim the memory for another use
without having to write the segment out to disk.

The Descriptor in Summary
As you can see, the layout of a 386 memory descriptor is hardly the
most elegant data structure ever devised. The layout is really an artifact
of the earlier processors with which the 386 has to remain compatible.
However, the descriptor does contain the information necessary to
implement a fully protected multitasking system with virtual memory
support. Windows 95 implements exactly that, and apart from the first
hardware initialization sequence after power on, Windows 95 always
runs in 32-bit protected mode with virtual memory enabled.

Virtual Memory

48

Simply put, virtual memory is a method for allowing several concur­
rently running programs to share the physical memory of the com­
puter. (Note again that virtual memory and virtual mode, or virtual 8086
mode, are very different. The phrase virtual mode refers to the operation of
the 386 processor in virtual 8086 mode. The context will determine the
meaning of any other use of the word virtual.) The techniques for imple­
menting and managing virtual memory date from many years before the
introduction of the 386.7 In fact, the early research on virtual memory
was so good that the most effective techniques for handling virtual
memory have changed very little since its earliest implementations. The

7. Over the years, many manufacturers and research institutes have laid claim to
the "first" distinction. The earliest implementation of virtual memory was probably the
one by the Atlas research group at the University of Manchester, England, during the
late 1950s and early 1960s.

Ebay Exhibit 1013, Page 97 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

T W 0: Intel Processor Architecture

management of virtual memory is entirely under the control of the op­
erating system. As far as any individual program is aware, it has access
to all the memory it needs all the time. A simple example should illus­
trate how Windows 95 manages virtual memory.

Let's say that we have a Windows 95 system with 4 MB of memory
and a hard disk with plenty of free space. Windows 95 itself, with the
Shell, the Print Manager, and so on, might take up a megabyte of the
available memory. On the disk is a word processing program we decide
to run. Once loaded, this program occupies 2 megabytes, and we load
in a large document that includes several different fonts. Altogether,
this document consumes 400K of the remaining megabyte of memory.
Now we decide that we need to incorporate a table of numbers in the
document. The numbers reside in a spreadsheet, so we have to run the
spreadsheet application to cut and paste a copy into our document. Win­
dows 95 obligingly loads the spreadsheet application and its data into the
remaining 624K of memory. Well, maybe-if we still used VisiCalc it
could. Obviously, this software and data won't all fit into memory at the
same time. But from our user point of view, things do work exactly as de­
scribed. The system and both applications are running, so to us it seems
that everything must be in memory. Everything is actually held, not in the
available 4 MB of physical memory, but in virtual memory.

Virtual Memory Management
The system's virtual memory is made up of the RAM in the computer
and the Windows swap file on the hard disk. The operating system
manages this total available memory by swapping program and data
segments back and forth between RAM and the swap file. For example,
if the instructions in a particular code segment are to be executed, the
segment must be loaded into RAM. Other code segments can stay on
disk in the swap file until they're needed. A disk data buffer area within
a data segment has to be in RAM if the disk transfer is to succeed.
Whenever a segment is not held in RAM, the operating system can
mark its absence by clearing the present bit in the appropriate segment
descriptor. Then, if an access to that segment is attempted, the 386 will
generate a not present interrupt that notifies the operating system of the
problem. The system will arrange to load the missing segment into an
available area of RAM and then restart the program that caused the in­
terrupt. All of this swapping and notification is transparent to the appli­
cation program. It's up to the operating system to carry out these
housekeeping activities.

49

Ebay Exhibit 1013, Page 98 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

50

Good Virtual Memory Management
Of course, the art of designing a good virtual memory system revolves
around issues such as how much of a program to keep in RAM at any
one time and which segments to move from RAM to disk when RAM is
full and the system needs space for a new segment. A poor virtual
memory manager can slow the system down considerably. Since copy­
ing from the disk and copying to the disk are relatively slow operations,
the goal of good virtual memory management is to minimize the total
number of swap operations. After all, if the operating system is busy
swapping, programs aren't running and no useful work is getting done.

The 386 helps things a lot by allowing the implementation of a
paged virtual memory scheme that allows the operating system to carry
out all memory allocation, de-allocation, and swapping operations in
units of pages. On the 386, a memory page is 4K and each memory seg­
ment is made up of one or more 4K pages. (Small page sizes are gener­
ally more efficient because many programs exhibit a trait called locality
of reference. For example, a program might repeatedly execute only a few
instructions to scan through a text file searching for a particular string
of characters. Allocating a single page for the program's code and a
single page for a data buffer could satisfy this program's memory re­
quirements for several seconds, even though the program is, in total,
much larger.) Windows 95 implements such a paged virtual memory
system. You'll often run across the words pagi,ng, page file, and page fault
in descriptions of memory management operations. These terms are
essentially identical to the swapping, swap file, and not present interrupt
terms used in the earlier description of virtual memory management.

As you can see if you study the 386 segment descriptor format in
Figure 2-5, there appears to be no way to allocate memory in units as
small as a 4K page without wasting a lot of the memory. The trick is in
the interpretation of the address once the operating system enables
paging. During initialization, the operating system will first switch the
processor into protected mode and then enable paging operation.
Once enabled, paging stays on until the system shuts down. With paging
enabled, the 386 alters the interpretation of the 32-bit address first ob­
tained by adding the base address from the descriptor to the offset gen­
erated by the program. Figure 2-6 illustrates the splitting of this
32-l;>it quantity into three parts. The top 10 bits (31 .. 22) are an index into
a page table directory. Part of each 32-bit quantity in a page table di­
rectory points to a page table. The next 10 bits of the original address (21
.. 12) are an index into the particular page table. Part of each page table

Ebay Exhibit 1013, Page 99 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

32-bit linear address

Figure 2-6.

Page table
directory

T W 0: Intel Processor Architecture

--------------' '

Page tables ·--,
: _ -:

' ·-------------·

+

32-bit physical address

80386 paged virtual memory address decoding.

entry points (finally) to a page of physical memory, and the remaining
12 bits of the original address (11 .. 0) make up an offset within this
page of memory. The operating system anchors the entire structure by
storing the address (for once, a physical address) of the page table di­
rectory for the current program in a special processor register called
CR3. Each time the operating system switches tasks, it can reload CR3
to point to the page directory for the new program. Although it sounds
laborious, the whole address decoding process takes place at lightning
speed within the chip itself. Memory caching techniques ensure that

51

Ebay Exhibit 1013, Page 100 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

52

frequently used page table entries are available with no additional
memory references. 8

To fully support the virtual memory scheme, page table entries
contain more than just the address of where to find the next link in the
chain. Figure 2-7 shows the contents of a single 32-bit word in both the
page table directory and page table entry structures. The page table
directory and each page table consume one 4K memory page (1024
entries in each). If you care to do the math, you'll see that this allows
the entire 4 GB of a program's address space to be properly addressed.
However, look at the numbers: a page table directory that points to
1024 page tables could mean that the system has to use 4 MB of
memory (1024 page tables, each 4K in size) simply to store the page
tables. Fortunately, the flag bits in the page table directory allow the sys­
tem to store the page tables themselves on disk in the paging file. Thus,
if you run a very large program (for example, a I-GB program, which
will need 256 page table pages), the system will swap page tables as well
as program code and data pages in and out of memory.

Page table directory entry

Page table entry

Figure 2-7.
80386 page table directory entry and page table entry formats.

To fully support the virtual memory operations and the 386
memory protection system, the page directory and page table entries
include a number of flag bits. The processor itself modifies some of
these flags directly. The operating system manages others. Let's look at
a few of these fields in detail.

8. Intel's experiments indicate that the required page table entry is found in the
cache more than 98 percent of the time.

Ebay Exhibit 1013, Page 101 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

T W 0: Intel Processor Architecture

D Bit Whenever a program modifies the contents of a memory page,
the processor sets the corresponding page table dirty bit. This tells the
operating system that if it wants to remove the page from memory to
free up space, then it must first write the page out to disk to preserve
the modifications.

A Bit Any reference-read, write, or execute-to a page causes the
processor to set the accessed bit in the corresponding page table entry.
The virtual memory manager can use this flag to figure out whether it's
wise to remove a particular page from memory. A page with the access
bit clear for the last 10 seconds, for example, has never been accessed.
Removing that page from memory is probably a better choice than re­
moving a page that was definitely in use during the same time period.
Windows 95 uses a standard algorithm known as least recently used (LRU)
to determine which page to remove from memory. The more recently
used a page, the less likely it is to be re-allocated.

P Bit The present bit is set to 1 only when the page table or memory
page addressed by the table entry is actually present in memory. If a
program tries to reference a page or page table that is not present, the
processor generates a not-present interrupt and the operating system
must arrange to load the page into memory and restart the program
that needed the page.

U/S Bit The user/supervisor bit is part of the 386's overall protection
system. If the U /S bit is set to 0, the memory page is a supervisor
page-that is, it is part of the memory of the operating system itself­
and no user-level programs can access the page. Any attempted access
causes an interrupt that the operating system must deal with. In Win­
dows 95, as in earlier versions of Windows, this illegal memory refer­
ence might lead to one of the now infamous General Protection Fault
messages. Since any such access attempt is the direct result of a bug
in the application program, it's hard to know what else to do with the
offending program.

R/W Bit The read/write bit determines whether a program that is
granted access to the corresponding memory page can modify the con­
tents of the page. A value of 1 allows page content modification. A value
of 0 prevents any program from modifying the data in the page. Nor­
mally, pages containing program code are set up as read-only pages.

53

Ebay Exhibit 1013, Page 102 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

Mixing 286 and 386 Programs
As we have seen, the 286 and 386 processors interpret the contents of
their internal registers and the resultant memory addresses in very dif­
ferent ways. Nearly every Windows application program to date has
been written and compiled as a 16-bit program-meaning that it uses
the instructions and memory addressing operations of the 286 proces­
sor. One of the major improvements in Windows 95 is its support for
32-bit programs that use the instructions and memory addressing op­
erations of the 386 processor. Windows 95 itself is a mixture of 16-bit
and 32-bit code. Mixing the two programming models efficiently is a
major development challenge.

The major problem is allowing 32-bit code to make calls to 16-bit
code and vice versa. Since the memory address formats are completely
different-32-bit base address and 32-bit offset vs.16-bit segment regis­
ter and 16-bit offset-simply jumping between 32-bit and 16-bit code is
insufficient: the memory address format must also be changed.

To mediate between the two models, Microsoft developed a tech­
nique it calls thunking. A thunk is a short sequence of instructions re­
sponsible for converting the memory addresses from one format to the
other. For example, when a 32-bit application makes a call to a Win­
dows User function, the Windows kernel accepts the call and its 32-bit
parameters and then calls a thunk. The thunk translates the param­
eters and addresses to 16-bit equivalents and then calls the 16-bit User
routine.9

The efficient operation of the thunk layer, as it's called, is critical to
the performance of Windows 95. In Chapter 4, we'll look at exactly how
Windows 95 uses its thunk layer.

The Protection System

54

Any modern operating system must offer protection capabilities: pro­
tection of the user's data, protectiqn of one program from others run­
ning concurrently in the system, and protection of physical devices
from unauthorized access. Windows 95 harnesses all of the 386's pro­
tection facilities to deliver these capabilities.

9. User is one of the Windows 95 components still implemented as 16-bit code.
Compatibility issues coupled with the project schedule were the principal reasons that
User didn't get translated to 32-bit code.

Ebay Exhibit 1013, Page 103 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

T W 0: Intel Processor Architecture

Memory Protection
We've already seen some aspects of the 386 protection mechanism that
relate specifically to memory protection:

1111 The provision for the operating system to set up page tables
that describe exactly the areas of physical memory a program
can access

II The read/write page table entry flag that prevents a program
from modifying the contents of a read-only page or a program
code page

ii The user I supervisor flag that allows the operating system to
protect all of its own memory from any access by an application

Whenever an application tries to access a memory location that is
not within its current memory map, the 386 processor generates an in­
terrupt and hands the operating system a collection of information
about the problem. In a couple of cases, the memory reference will ac­
tually be quite legal and the operating system must arrange to add the
appropriate memory page to the application's memory map. For ex­
ample, a function call within the application can push onto the program
stack parameters whose requirements exceed the memory currently al­
located to the application. The operating system responds by arranging
to add pages to the application's stack space and then restarts the appli­
cation as if nothing had happened. With applications for Windows,
there are also cases in which the operating system would like to allocate
more memory to an application but has simply run out. 10 Sometimes
the user sees a dialog box that says system resources are too low to con­
tinue, and sometimes the application simply fails. Windows 95 reduces
the likelihood of this type of problem by greatly expanding the number
of available operating system resources. Essentially all system resource
requests are now satisfied by the operating system's allocating memory
from a 32-bit protected mode memory pool.

In still other cases, an invalid memory reference message might
indicate some sort of software problem-an application's incorrectly
trying to access memory past the end of one of its data structures, for
instance-and the system would have no choice but to terminate the

10. The most common case of this, under Windows 3.0 and 3.1, is exhaustion of
the 64K GDI heap space.

55

Ebay Exhibit 1013, Page 104 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

offending program. Those of you who have used earlier versions of
Windows will, no doubt, have seen enough Unrecoverabk Application
Error and General Protection Fault dialogs to be familiar with the han­
dling of such a situation.11 Fortunately, the quality of Windows develop­
ment tools and application testing has now reached a level that makes
this type of error rare.

Operating System Protection

56

There is more to protection than memory management. There has to
be a way to prevent applications from maliciously or inadvertently cor­
rupting the operation of the system. The several special 386 instruc­
tions that deal specifically with task switching, interrupt handling, and
other system management issues are cases in point. Clearly, the Win­
dows 95 kernel has to be the only software able to perform these opera­
tions. If an application could interfere with these delicate operations,
mayhem would be bound to ensue. The 386 provides for this protec­
tion requirement by maintaining as many as four processor privilege levels.

Software running with privilege level zero can do anything it
wants to: change page tables, switch processor modes, turn paging on
and off, halt the processor, and so on. The Windows 95 operating sys­
tem executes with privilege levels zero and three. Applications run only
with privilege level three and are subject to its several restrictions. A
program with privilege level three that tries to execute any of the privi­
leged instructions-specifically the task switching, interrupt handling,
and system management instructions mentioned earlier-will cause
the processor to generate an interrupt. The operating system will re­
trieve the interrupt information and will, most likely, terminate the of­
fending program.

The 386 has some complex mechanisms for managing software
running at any of the four privilege levels. You'll hear the phrase "run­
ning at ring three," for example, meaning that the processor privilege
level is set to three for the program in question. The more privileged

11. In fact, most UAEs under Windows 3.0 came from an application's making
Windows function calls using incorrect parameters. By the time the system would
figure this out, it would have no choice but to terminate the offending program.
Windows 3.1 added parameter validation. An application's passing illegal parameters
to the system resulted in an immediate return of an error to the application. Some
applications couldn't handle the error return and failed in strange ways.

Ebay Exhibit 1013, Page 105 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

T W 0: Intel Processor Architecture

the software is (that is, the lower its privilege level), the more it can do
to affect the operation of the system or of other programs running un­
der the system.

There has to be some controlled way for the processor to switch
between privilege levels-when an application program calls an operat­
ing system service, for example, or when a hardware interrupt causes a
device driver to execute. The 386 provides for this switching by means
of a gate, a specialized descriptor table entry that allows control trans­
fers to occur between rings. There are actually four different types of
gate: call, interrupt, task, and trap. A call to the operating system, a hard­
ware interrupt, or an error condition such as a protection fault causes
an entry to ring zero code via a gate. As processing is en route to a more
privileged execution level, a new instruction pointer and stack pointer
come into use and some sensitive data is stored in a protected area of
memory. The corresponding return to a less privileged level restores
the context of the less privileged code. Since it is the operating system
that sets up the gates originally, the operating system remains in con­
trol of what happens during these transitions-ensuring that system in­
tegrity isn't compromised.

Device Protection
The device protection issue revolves around correctly sharing a re­
source, such as the hard disk, or preventing two programs from both
trying to use a nonshareable device, such as a COM port, at the same
time. Windows 95 handles a lot of the device management issues itself,
but the 386 also has a significant part to play.

Low-Level Device Access
At the basic hardware level, a program controls all input/output opera­
tions by manipulating the processor's 1/0 ports and interrupt requests
(usually referred to as IRQs). You've probably installed in your PC
adapters whose documentation refers to their use of specific I/O ad­
dresses and IRQs. Adding a third serial port (the COM3 device) to a
system usually involves much frustrating effort to prevent conflicts be­
tween the third COM port and the existing COM ports. The conflicts in
question are those between the I/O addresses and the IRQ. Unless you
set up the third COM device with a unique I/O address and IRQ, the
controlling software can't determine which device it needs to take care
of when an I/O request is made.

57

Ebay Exhibit 1013, Page 106 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

58

From the inside looking out, the 1/0 ports appear to be similar to
a memory address. There are a total of65,536 (64K) possible 1/0 ports
on the 386, though the majority of them are never used. Programs con­
trol devices by reading from and writing to the appropriate 1/0 ports
by means of special instructions. In the case of a COM device, placing a
byte of data in the appropriate I/O port will cause the data to be sent
down the attached wire. An interrupt manifests itself as a temporary
pause in the processor's current activity, coupled with the execution of
a piece of software that has been specifically set up to be responsible
for dealing with the interrupt. When a hardware interrupt occurs, the
386 arranges an orderly suspension of the current program and then
begins execution of some other code from within the operating system.
A device generally initiates an interrupt whenever it needs attention­
when a data transfer has been completed, for example. The processor
and associated hardware take care of generating interrupt signals and
moving bytes in and out of the 1/0 ports. The operating system is re­
sponsible for installing and configuring the various routines that man­
age the data transfer process and other housekeeping activities.

High-Level Device Access
Windows 95 and most other operating systems control peripherals by
means of device drivers. These software modules control all aspects of a
device's operation-moving data to and from memory buffers, han­
dling interrupt requests, and so on. An application requests access to a
device by making a device open call to the operating system. If the call
is successful, the application can then read and write data with a fur­
ther series of system calls and, finally, close the device. This holds true
whether the device is a single resource such as a COM port or a shared
resource such as the hard disk. In the case of the hard disk; the open
request is obviously for a file on the disk rather than for the disk itself.
In this ordered world, device management is relatively easy and the sys­
tem concerns itself most with the efficiency of the I/O operations. All
these application requests are defined as part of the Windows APL The
operating system validates the API calls, hands them to the appropriate
device driver, and assists in error management and task scheduling.

Unfortunately, it isn't that easy when you want to run MS-DOS ap­
plications concurrently with Windows applications. In particular, many
MS-DOS applications believe that they are in total control of the sys­
tem. They don't try to account for other applications that might be run­
ning simultaneously with them, and they may try to access device

Ebay Exhibit 1013, Page 107 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

T. W 0: Intel Processor Architecture

hardware directly. For example, most terminal emulation programs
will manipulate the COM port 1/0 addresses without making any oper­
ating system requests. This direct access leads to a number of problems
on a Windows 95 system when you want to allow simultaneous execu­
tion of more than one MS-DOS application:

• Two applications could try to access the same device at the
same time. There has to be some way to prevent this conflict.

Ill Typically, a 386 program that controls a device directly is
running at ring zero. If Windows 95 allowed an application to
do this, that application would have access to other privileged
system resources. To protect other programs, such privileged
execution must be avoided.

II A program that believes it is in sole control of the system
might sit forever in a loop waiting for something to happen­
a key depression or a character from a COM port, for ex­
ample. If no other program can run at the same time, the
performance of the whole system sinks to nothing. This kind
of dominance has to be prevented.

Using the 80386 Device Protection CaJ)abilities
Windows 95 uses a whole range of tricks to avoid these device access
problems while still allowing older MS-DOS programs to run without
modification. And the 386 provides one hardware feature crucial to the
successful implementation of this MS-DOS program support: the 1/0
permission bitmap, a hardware mechanism that allows Windows 95 to
manage device access for every program running on the system.

Whenever Windows 95 starts a new application, it determines
whether the application is a Windows application or an MS-DOS appli­
cation. Windows applications all use operating system APis to access
files and devices, so each Windows application runs at ring three and
has no permission to access any device directly. A Windows application
will request access to all devices by means of API calls. If the Windows
application does try to access a device I/ 0 port, the 386 will signal a
protection fault to the operating system and Windows 95 will terminate
the offending application. Each time the user starts an MS-DOS appli­
cation from the Windows 95 shell, the application will be set up to run
in virtual 8086 mode in a new virtual machine (VM). Windows 95 must
account for the possibility that the MS-DOS application might try to

59

Ebay Exhibit 1013, Page 108 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

directly access any of the hardware devices attached to the system. To
accommodate that possibility, Windows 95 sets up an 1/0 permission
bitmap for each VM. The bitmap is an array of flags, one flag for each
of the 386' s I/ 0 ports, that specifies whether the application can access
the 1/0 port directly. If no access is granted-the normal case-the
386 signals a general protection fault whenever the application refers
directly to the 1/0 port. For an MS-DOS application, a direct access at­
tempt is not necessarily a program error, as it is for a Windows applica­
tion. For example, a communications application will access the I/O
ports for the COM device directly. For the application to run correctly,
Windows 95 must allow this 1/0 port access to happen-assuming that
some other program is not already in control of the same COM port.
This whole treatment of virtual machine management and direct de­
vice control-referred to as device virtualization-is a key element of
Windows 95. The most important aspect of device virtualization to note
here is that the 386 provides the hardware facility for selectively pro­
tecting the I/O ports on an individual, program-by-program basis and
informing the operating system each time a direct access occurs.

Virtual 8086 Mode

60

Without the virtual 8086 feature (most often called simply virtual mode),
running MS-DOS applications under Windows 95 would be as difficult
and error-prone as running them under OS/2 or Windows on the 286
processor. If you used earlier versions of either OS/2 or Windows on
286 systems, you'll remember both the errors and the major limitation:
only one MS-DOS program could run at any one time. Clearly, 1/0 per­
mission handling is a key requirement of the 386's virtual 8086 mode. A
few other issues are important in Windows 95 running in virtual mode.

Virtual 8086 mode is an inherent part of the protected mode ar­
chitecture of the 386. Programs running in virtual 8086 mode are run­
ning in protected mode. On the 286, MS-DOS programs didn't have a
virtual mode (protected mode) to run under. To run an MS-DOS pro­
gram on the 286, there was no choice but to run the processor in real
mode. Real mode provided absolutely no memory and device protec­
tion, and what's more, the MS-DOS program had to occupy the first
megabyte of the system's address space. The 386 solved all of these
problems:

Ebay Exhibit 1013, Page 109 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

T W 0: Intel Processor Architecture

• Virtual 8086 mode execution remains subject to all the 386
memory and device protection rules. The operating system
has control over the resources it allocates to the virtual mode
program. The 386 reports to the operating system any at­
tempted access to resources outside the allocated set.

• The operating system can load virtual mode programs any­
where in memory. The 386 translates virtual mode addresses
using the 386 protected mode rules. All of the 386's paging
capabilities are in play in virtual mode, so virtual mode
programs running on the 386 can be swapped just as other
protected mode programs can be.

II Unlike running an MS-DOS program on the 286 by means of
a switch to real mode, running a virtual mode program on
the 386 doesn't require a lengthy mode switch operation. Task
switching between a Windows application and an MS-DOS
application on the 386 is much faster than it was on the 286.

Setting up a virtual mode program on the 386 is straightforward.
Once the program is loaded, the operating system simply identifies it as
a virtual mode program by setting a single flag in one of the 386's
control registers. The 386 then imposes the rules of 8086 program exe­
cution on the virtual mode program. Specifically, registers are 16 bits
only (not 32 bits) and addresses are 20-bit values generated exactly as
they would be on an 8086. Of course, this is only half the story. Emulat­
ing an 8086 processor is one thing. Emulating an entire PC, including
MS-DOS, is entirely another. That problem has been passed along to
Windows 95 to solve.

Conclusion
The Intel microprocessor has accumulated enormous capability since
its simple beginnings with the introduction of the 8080 in 1974. In a
scant twenty years, the microprocessor has matched or surpassed the
capabilities of any mainframe processor costing thousands of times
more. Along the way, the designers at Intel have had the good fortune to
be able to learn from one failed experiment in protected mode-the
80286-and get it right the next time. The 80386 architecture, particularly
its support of virtual 8086 mode within a paged virtual memory

61

Ebay Exhibit 1013, Page 110 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

62

scheme, has proved to be the right platform for building today's
advanced 32-bit operating systems. The successor processors, the 80486
and the Pentium, have adopted the same basic architecture without
change, and it's a sure bet that successors to the Pentium will do
the same.

Windows 95 takes full advantage of all of the 386's capabilities.
There's a lot going on under the hood when you run applications on
Windows 95. Fortunately, neither the user nor the application pro­
grammer has to pay much attention to Windows 95's system and
program management activities. This is as it should be.

That was the basics of how the hardware woiks. Now for the software. It's time to
look at Windows itself.

Ebay Exhibit 1013, Page 111 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

C H A P T E R T H R E E

A TOUR OF CHICAGO

In this chapter, we're going to take a tour through Windows 95-look­
ing briefly at the structure of the system and the associated terminol­
ogy. You may know Windows intimately already, in which case there'll
be sections of this chapter that you'll skip through quickly. Chapter
Four is where the detailed examination of Windows 95 begins. The
goal for this chapter is to give you a sufficient grounding in the Win­
dows system so that you can approach the new material in Chapter
Four with ease. Although a lot of the information in this chapter is
common to both Windows 3.1 and Windows 95, it will be Windows 95
that we dissect. Even if you've spent the last few years disassembling the
several versions of Windows, you may want to flip through this chapter
to make sure that my terminology matches yours and to get a quick over­
view of the structure of Windows 95.

Here's what we're going to look at in this chapter:

Ill The structure of the Windows system, including the graphical
components of Windows and the system's support for Win­
dows applications and MS-DOS virtual machines

Ill The Windows multitasking model

Ill The elements of the Windows user interface

Ill Some aspects of Windows application programs

System Overview
Over the course of successive version releases, Windows has grown from
its original role as a graphical extension to MS-DOS to encompass many
of the functions of a full operating system. From its very first release, Win­
dows handled program loading functions. With Windows 95, the trans­
formation is complete. Windows is now a complete operating system

63

Ebay Exhibit 1013, Page 112 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

64

with MS-DOS compatibility built in. The Windows 95 "single applica­
tion mode" allows you to run MS-DOS as a fallback operating system if
you want to run an application that can't function under Windows.

Figure 3-1 shows a block diagram view of the major components
of Windows 95. Let's look at these components in a little more detail.

Figure 3-1.
Windows 95 system architecture.

Ebay Exhibit 1013, Page 113 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

TH R E E: A Tour of Chicago

The System Virtual Machine (or simply System VM) is the name
given to the environment in Windows 95 that supports all the
Windows applications and the Windows subsystem components
such as the Graphics Device Interface (GDI).

32-bit Windows applications are the new Windows applications
that use the 32-bit memory model of the 80386 processor and a
subset of Microsoft's Win32 application programming interface
(API). In Windows 95, each of these so called Win32 applications
has a private address space that's inaccessible to other applica­
tions. 32-bit applications can be preemptively scheduled by
Windows 95.

The Shell is a 32-bit Windows application that provides the essential
user interface to the system. The Shell in Windows 95 consoli­
dates the functions of the Windows 3.1 Program Manager, File
Manager, and Task Manager utilities into a single application.

16-bit Windows applications are the "older" Windows applications,
the ones you use on Windows 3.1 today. These applications use
the segmented memory model of the Intel processor family­
really an 80286 memory model. As in Windows 3.1, the 16-bit
applications running under Windows 95 share a single address
space and can't be scheduled preemptively. You'll hear Microsoft
refer to these applications as Wini 6 applications.

The application programming interface layer in Windows 95 pro­
vides full compatibility with the existing Windows 3.1 API as
well as support for the new 32-bit API accessible only to 32-bit
Windows applications. The 32-bit API is a subset of Microsoft's
full Win32 API first seen in Windows NT and in the Win32s add­
on for Windows 3.1.

The Windows Kernel supports the lower-level services required by
Windows applications, such as dynamic memory allocation. For
Windows 95, the Kernel provides these services to both 16-bit
and 32-bit applications.

GDI is the core of Windows' graphical capabilities, supporting
the fonts, drawing primitives, and color management for both
display and printer devices. Although GDI in Windows 95
continues to support existing 16-bit applications, it includes
significant new features available only to 32-bit programs.

65

Ebay Exhibit 1013, Page 114 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

User is the window manager-the Windows 95 component that
manages the creation and manipulation of on-screen windows,
dialogs, buttons, and other elements of the Windows interface.

MS-DOS Vlrtual Machines support the execution of MS-DOS
applications under Windows. As in Windows 3.1, the user can
run multiple MS-DOS VMs concurrently. Windows 95 includes
several new features designed to improve the user's management
of these VMs, but the basic design for MS-DOS VM support
hasn't changed a great deal.

The Base System

66

The remaining modules implement various aspects of the underlying
operating system in Windows 95. The collection of these components is
usually referred to as the base system.

File management has changed dramatically in Windows 95. In Win­
dows 3.1, it's MS-DOS that controls the local hard disk filesystem.
This MS-DOS control impaired the performance of Windows,
and the opportunity to improve filesystem support didn't really
exist while MS-DOS remained in control. Under Windows 95, the
situation is entirely different. Notably, MS-DOS is no longer used
for the management of files on local disks.1 The new file man­
agement subsystem provides a series of interfaces that allows all
local disk filesystems (including the CD ROM filesystem) and
multiple network filesystems to coexist.

The network subsystem is the latest incarnation of Microsoft's
peer-to-peer network first seen in the Windows for Workgroups
product in 1992 and later seen in Windows NT. 2 The network
subsystem uses the new file management subsystem to coordi­
nate its access to remote files. Other network suppliers can
also plug their products into the new file management services,
allowing a user to simultaneously access more than one type of
host network. Windows provides built-in support for SMB,
Novell, and TCP /IP protocols.

1. As we noted in Chapter 1, there may yet be a version of MS-DOS that also in­
cludes the new filesystem capabilities. But it won't be the MS-DOS we're familiar with.

2. As of July 1994, it isn't clear how Microsoft will package the Windows 95
networking features. They might all be in the same box as Windows 95, or
they might not.

Ebay Exhibit 1013, Page 115 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

TH R EE: A Tour of Chicago

Operating system services in Windows 95 include major components
such as the Plug and Play hardware configuration subsystem as
well as a miscellaneous collection of functions such as those that
fulfill date and time of day requests.

The Virtual Machine Manager is the heart of the Windows 95 operat­
ing system. It includes software to implement all the basic system
primitives for task scheduling, virtual memory operations, pro­
gram loading and termination, and intertask communication.

Device drivers in Windows 95 can come in a number of different
forms-real mode drivers and so called virtual drivers, or VxDs,
among others. Some systems may still require the use of older
real mode MS-DOS device drivers to support particular hard­
ware devices, but one of the development gocils for Windows 95
has been to develop protected mode drivers for as many popular
devices as possible, including new protected mode drivers for
the mouse, CD ROM devices, and many hard disk devices.

Virtual device drivers, or VxDs, take on the role of sharing a single
hardware device among several applications. For example,
running two MS-DOS applications in separate screen windows
requires the system to create two MS-DOS VMs each of which
wants access to the single physical screen. The screen driver VxD
has to support this sharing requirement. ''VxD" is also used as a
general descriptor for other 32-bit operating system modules. 3

Windows and Modes
You may never have run Windows on anything other than a 386-based sys­
tem with a decent amount of memory-in which case, you've probably
only ever used Windows in its enhanced mode. Operationally speaking, this
meant that Windows used all the capabilities of your 386 processor, in­
cluding demand paging and virtual 8086 mode. If your history with Win­
dows goes back further, to 286- and even 8088-based systems, you will have
heard the terms real mode and standard mode applied to Windows. If you
knew those terms then, forget them now. Windows 95 operates only in
enhanced mode. In fact, there is no longer a term "mode" for Windows.4

3. "VxD" actually stands for "Virtual anything Driver."

4. With Windows 95, support for the EGA as a display adapter also disappears.
A Windows capable machine now requires at least a 386SX processor, 4 MB of memory,
and a VGA.

67

Ebay Exhibit 1013, Page 116 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

Virtual Machines

68

The word "virtual" appears everywhere as a qualifier for terms in Win­
dows 95. 5 Indeed, the provision of a virtualized environment for the ex­
ecution of application programs is a key to many of the capabilities of
Windows 95. The most important of the ''virtual" features is undoubt­
edly the support for the virtual machines that host the running pro­
grams, so it's important to understand both the associated terminology
and the technical basis for Windows virtual machines.

It's easy to get confused about virtual machines. Intel uses the
term virtual 8086 machine to describe the use of the virtual 8086 proces­
sor mode to emulate an Intel 8086 processor on the 80386. This virtual
8086 machine includes the I-megabyte address space, the CPU regis­
ters, and the 1/0 ports. A Windows virtual machine (usually called simply
a Windows VM) refers to a context for the execution of an application
program. A VM context includes the application's map of addressable
memory and the contents of the hardware registers as well as the Win­
dows resources allocated to the application. Because under Windows
3.1 every Windows VM runs at least part of the time in the hardware vir­
tual 8086 mode (which is still a protected mode), there are abundant
possibilities for misunderstanding. Many books and articles about Win­
dows fail to distinguish among the many possibilities when they use the
term ''virtual." A Windows VM is not the same as an Intel virtual 8086
machine. Here's what's important about Windows VMs:

1111 Windows VMs are either MS-DOS VMs, each of which runs a
single MS-DOS session, or a System VM that provides the
execution context for all Windows applications.

1111 The System VM runs in protected mode all the time.
Under Windows 3.1, there comes a point at which the
System VM switches from protected mode to virtual 8086
mode so that MS-DOS code can run. This very rarely
happens in Windows 95.

II Windows uses virtual 8086 mode to run MS-DOS applications.
The system uses the processor's virtual 8086 mode to erect
a controllable shield around code that would otherwise need
to execute in real mode.

5. The marketing slogan chosen for the original introduction of Windows/386 was
"Virtually Everything." It's a tagline that still seems to be appropriate.

Ebay Exhibit 1013, Page 117 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

TH R E E: A Tour of Chicago

• Windows applications on Windows 95 never use virtual 8086
mode. They execute in protected mode all the way down to
the bare hardware.6

• An MS-DOS VM is a Windows VM running an MS-DOS
application in virtual 8086 mode.

• Notwithstanding their association with virtual 8086 mode,
MS-DOS VMs can run in 32-bit protected mode under Win­
dows with the mediation of a DOS extender that conforms to
the DPMI interface. When an MS-DOS VM switches to pro­
tected mode, it's no longer running in the processor's virtual
8086 mode, but Windows still considers it to be an MS-DOS
VM. (This is a subtlety that's rarely recognized.)

To make things potentially more confusing, the word ''virtual" is
also used in talk about memory addresses. In Chapter Two, we ~ooked
at the details of how the 386 translates virtual addresses, generated by
an individual program, to physical addresses that reference actual
memory locations. Software running in any Windows VM always gener­
ates virtual addresses. The system itself uses virtual addresses. The only
time that physical addresses come into play is when the memory man­
agement subsystem sets up the processor's page tables to provide the
mapping between virtual and physical addresses.

• At least in this book, "address" and "virtual address" are sy­
nonymous. The term "physical address" will mean exactly that.

• An MS-DOS VM usually has an address space covering ad­
dresses from 0 to I megabyte. This is a virtual address space.
The system maps this virtual address to its chosen set of
physical addresses using the 386's virtual memory capabilities.
The pages of the virtual address space could be widely scat­
tered in physical memory.

• The System VM can have a much larger virtual address space
than an MS-DOS VM running in virtual 8086 mode. Appli­
cations running in the System VM run in protected mode and
can make use of'this large virtual address space.

6. This isn't strictly true since Windows 95 still runs MS-DOS device drivers in
virtual 8086 mode if there's no protected mode driver available. But real mode drivers
are an endangered species.

69

Ebay Exhibit 1013, Page 118 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

Windows Virtual Machines

70

Regardless of whether it's an MS-DOS VM or the System VM that con­
tains all the Windows applications, you define the capabilities and cur­
rent context of a virtual machine by looking at the resources allocated
to it. Each VM has to include the following:

II A memory map that defines the virtual memory accessible to
the currently executing code within the virtual machine.

II An execution context, defined by the state of the VM's regis­
ters (the directly accessible CPU registers as well as other
controlling factors such as the CPU privilege level).

II A set of resources accessible to the application running with­
in the VM. Within the System VM, every Windows applica­
tion accesses resources using the Windows APL In an MS-DOS
VM, an application uses the MS-DOS software interrupt (INT)
interface and may also try to access the hardware directly.

The virtual machine environment of Windows 95 remains heavily
reliant on the underlying capabilities of the 386. The 386 dependence
offers advantages:

II The virtual memory allocated to each VM is separated from
the virtual memory allocated to other VMs. Each MS-DOS
VM runs in a private address space, unable to interfere
with applications running in other MS-DOS VMs or in the
SystemVM.

II The memory and 1/0 port protection capabilities of the 386
allow every device on the system to be completely protected.
Any MS-DOS application can run, convinced that it has
the whole machine to itself and ignorant of the fact that it
might actually be sharing the host system with other MS-DOS
VMs or Windows applications.

Initialization
During initialization, the operating system sets up the System VM and
prepares the global context for all MS-DOS VMs. Under Windows 3.1,
this is essentially a snapshot of MS-DOS just at the point at which the
user types the win command. Subsequently, whenever the system creates
a new MS-DOS VM, this global context is used as the basis for the new

Ebay Exhibit 1013, Page 119 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

TH R E E: A Tour of Chicago

VM's context. The snapshot includes all TSRs, environment variables,
and so on. Windows 95 is subtly different from Windows 3.1 during this
initialization phase. With Windows 3.1, it's up to the user to enter the
win command and start the initialization of the Windows system. Win­
dows 95 immediately gains control and switches to protected mode to
complete the initialization process after loading-no win command is
needed. In either case, when Windows switches to protected mode, it
pushes the real mode code aside and takes control of the machine. Win­
dows 95 still processes the CONFIG.SYS and AUTOEXEC.BAT files if
they exist, so the user can still customize the global MS-DOS context by
including commands in these two files.

The System Virtual Machine
The context for the System VM is a protected mode environment in
which all the Windows applications run, together with the major com­
ponents of the Windows graphical subsystem. The interface between
any application and Windows is by means of one of hundreds of applica­
tion programming interface (AP!) functions. 7 This type of interface allows
applications to request system services using named function calls
rather than the numbered software interrupt scheme used in MS-DOS
applications. The linkage between a Windows application and the func­
tions in the Windows subsystem is made at program load time by means
of a technique called dynamic linking.

Windows 95 introduces support for a new class of applications:
the 32-bit applications that use the Windows 95 subset of Microsoft's
Win32 APL These 32-bit applications run within the System VM con­
text, but each has a private protected address space that prevents other
applications from accessing its private memory.

Windows 3.1 relies upon cooperative multitasking as the basis for
its task scheduling. Under Windows 95, cooperative multitasking is still
the basis of task scheduling for the older 16-bit applications. However,
the system schedules Win32 applications using a preemptive schedul­
ing algorithm. For the user of a system that runs Win32 applications
only, the preemptive scheduling means faster and smoother response
when several applications run concurrently.

A Windows program relies on the system to deliver a stream of
messages to it to inform it of new events-mouse dicks in one of the

7. As of early 1994, one rough count had the number of Windows 95 APis,
messages, and macros totaling well over 2000.

71

Ebay Exhibit 1013, Page 120 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

72

application's windows, new programs starting up, and so forth. Under
Windows 3.1, the system uses a single queue to hold all the messages
that originate within the system. As a result, it's possible for one errant
application to choke the flow of messages to all the applications. Win­
dows 95 provides for the system to put messages destined for. Win32
applications into private message queues, reducing the possibility of
the system's grinding to a halt when one application fails to service the
message queue.

Windows 3.1 relies upon MS-DOS for filesystem access. Although
this is about the only significant reliance on MS-DOS within Windows
3.1, it is a weak point of the system. This remaining dependence on MS­
DOS for filing support creates a whole catalog of problems that the
Windows designers have grappled with over the course of several re­
leases. They finally fix the problems in Windows 95 by replacing the
MS-DOS filesystem services with a new protected mode subsystem.

All MS-DOS filesystem services are accessed by means of the INT
21H software interrupt. Within the System VM itself, the execution of
the INT 21H instruction causes a general protection fault that the op­
erating system catches and handles. Windows 3.1 deals with this fault by
arranging for the System VM to switch temporarily to virtual 8086
mode so that the MS-DOS INT 21H code can execute correctly. Once
the file operation is completed, the System VM returns to protected
mode and the Windows application code continues to execute.

Windows 95 catches the same fault and simply hands it to the pro­
tected mode filesystem manager for processing. No switch from protected
mode to virtual 8086 mode occurs, and providing there is a protected
mode device driver in use for the target device, the System VM context
remains a protected mode context throughout the entire operation.

MS-DOS Virtual Machines
An MS-DOS VM is a faithful replication of a PC running MS-DOS. As
far as the application is concerned, the VM has a megabyte of memory
with a memory map corresponding to the hardware memory map. For
example, the directly addressable video display memory is at memory
address B8000H. The context for the MS-DOS VM is usually, though
not always, a virtual 8086 mode environment with a copy of MS-DOS
mapped into the virtual address space of the VM.

Applications in an MS-DOS VM will use the software interrupt ser­
vices of MS-DOS (predominantly the INT 21H services) to make system

Ebay Exhibit 1013, Page 121 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

TH R E E: A Tour of Chicago

requests. Under Windows 95, these requests ultimately pass to the pro­
tected mode code that implements the system services. In the case of
filesystem requests, the INT 21H call will be passed to the new
filesystem manager to be handled together with other concurrent re­
quests from applications running in the System VM.

MS-DOS VMs are set up using a VM that you never see-unless
you start poking around with a debugger-and it's a VM that never con­
tains an application that actually runs. This is the VM that is set up with
the initial state of the MS-DOS environment once system booting and
the processing of CONFIG.SYS and AUTOEXEC.BAT are complete.
Within this hidden VM is everything that is global to the MS-DOS envi­
ronment. For example, if your AUTO EXEC.BAT runs a TSR program
before it starts Windows, that TSR program will be loaded and will be­
come part of the global MS-DOS environment. Even under Windows
95, where there's less reliance on MS-DOS, you can still use
CONFIG.SYS to load device drivers and AUTO EXEC.BAT to load TSRs
as parts of the global MS-DOS environment.

Once this global initialization is complete, Windows needs some­
where to save a snapshot of the MS-DOS environment. It sets up the
hidden VM context to be used as the initial state of every MS-DOS VM
that's subsequently started. The saved hidden VM itself never runs.
Later on, when you start an MS-DOS application from within Windows,
the system creates a new MS-DOS VM-meaning that it allocates some
memory and the appropriate control blocks within the system-and
then copies into the new VM the entire global environment from the
hidden VM. This copying means that the initial state of the new MS­
DOS VM is exactly the state you'd achieve if you had just turned the
machine on and run through the startup procedure again. This copy­
ing from the hidden VM also explains why changes that you make in
one MS-DOS VM don't affect any of the others-either those already
running or new VMs that you run later. To verify this inviolability of the
MS-DOS VMS, simply run a few MS-DOS VMs and change the com­
mand prompt in each-local changes won't affect the saved global VM
context that governs the initial states of all the VMs.

Protected Mode MS-DOS Applications
One complexity that the Windows designers have had to deal with is
the fact that MS-DOS applications are not simply real mode applica­
tions anymore-they can also run in protected mode. You can trace

73

Ebay Exhibit 1013, Page 122 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

74

this wrinkle back to a few years ago when the hunt for more than 640K
of memory began in earnest. Expanded memory, extended memory,
high memory, and the products that exploited them-such as
Quarterdeck's QEMM-became popular resources. For a while, the
whole situation was a mess, with various designs jockeying for position
as the standard.

One group of vendors sought order by agreeing to the VCPI (Vir­
tual Control Programming Interface) specification. VCPI was pretty
good except that it didn't fully support Windows. So after a briefface­
off with Microsoft, vendors came up with the DPMI (DOS Protected
Mode Interface) specification. Programs that conform to the DPMI
specification can run under MS-DOS and Windows and can exploit
protected mode on both 286 and 386 systems.

DPMI
The DPMI specification lays out the definition of an MS-DOS software
interface that ultimately allows MS-DOS applications to exploit the 32-
bit protected mode while running under Windows. DPMI actually al­
lows low-level software components called DOS extenders to coexist with
Windows. A DOS extender supports the execution of protected mode
programs that want to call on MS-DOS for file I/ 0 and other services.
The need for the DPMI specification became apparent during the de­
velopment of Windows 3.0, when Microsoft and other companies em­
barked on parallel efforts to provide support for 32-bit protected mode
program execution. Microsoft's interest was in Windows, since Win­
dows is itself a DOS extender. It was clear that there would be a number
of DOS extenders on the market, so vendors developed DPMI as a way
of allowing them to coexist. Today you can find DOS extenders in use
in several kinds of popular applications that need more than 640K of
MS-DOS memory: compilers, database programs, and others. The in­
terfaces to the various DOS extenders are not standardized-the DPMI
interface that allows the DOS extenders to coexist with Windows is.

The DPMI-DOS extender exploitation of protected mode is es­
sentially the best way to allow an MS-DOS program to get at more
memory and to use 32-bit addressing (as opposed to struggling on with
segmented addressing). Windows 3.1 implements DPMI and DOS ex­
tender functionality within a single module, so as far as a Windows
programmer is concerned, the DPMI and extender services are indivis­
ible. This architecture does allow a user to start MS-DOS VMs that run

Ebay Exhibit 1013, Page 123 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

THREE: A Tour of Chicago

applications that make use of alternative DOS extenders rather than
Windows itself as a DOS extender. In that scenario, Windows provides
only the DPMI services.

The DPMI specification defines two software components needed
to provide a full implementation. The DPMI Host, or DPMI Server, is the
lowest-level software component responsible for administering the
DPMI services. All the DPMI functions are available by means of a call
to INT 31H with a function number that identifies the particular DPMI
service that's required. These services really are very low level-the al­
location of descriptors within the LDT or GDT and the reading and
writing of MS-DOS interrupt vectors, for example.

The DPMI Client is any program requesting DPMI services, usually
the DOS extender. Although it's possible, the DPMI interface is not in­
tended for direct use by application programs. It's up to the client to
check for the presence of a DPMI server before any attempt to call the
server is made. Most DOS extenders define a private API that allows a
modified MS-DOS application to call the extender for protected mode
services and to provide MS-DOS services to the application while it exe­
cutes in protected mode.

Multitasking and Scheduling
One of the more complex Windows activities is its allocation of the pro­
cessor to multiple programs. For a program to do anything, it has to exe­
cute instructions. Since Windows allows you to run several programs at
once, there has to be a way of sharing the processor among these pro­
grams. Enter multitasking-and with it a great deal of terminology and
debate.

Since so much terminology is associated with the subject of
multitasking, we'll need to define a few terms in this chapter. Some of
the terms are frequently used in both a generic context and a very par­
ticularized context. The word task, as we'll see, is a classic example. Win­
dows is, generically speaking, a multitasking system, and a Windows 3.1
task is a very precise concept, represented by specific data structures and
operational rules.

In the next chapter, we'll look at the details of the Windows 95
multitasking model. In this section, we'll give the subject a general review
with a Windows bias.

75

Ebay Exhibit 1013, Page 124 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

Multitasking Models

76

The generic term multitasking refers simply to an operating system's
ability to share the CPU among several programs. Most operating sys­
tem designers refer to a program in its running state as a task, so you
can think of a task as a program loaded into memory and actually do­
ing something. The Windows NT and UNIX worlds both use the term
process to mean the same thing. Windows 3.1 says task and, occasionally,
process. And lo and behold, the word process is the term in favor for Win­
dows 95. The term task has been officially removed from the Windows
language. The term process is therefore what we'll use. Really, you can
think of task and process as synonyms.8

As soon as you run Windows 3.1, you're multitasking since you're
running the Program Manager and a number of other tasks that are ac­
tually part of the system itself rather than programs with visible win­
dows on your screen. Windows 95 is no different in this respect. A few
years ago, when observers first began to discuss multitasking operating
systems for PCs, you often heard comments to the effect of "I don't need
multitasking. I do only one thing at a time anyway." Unfortunately,
people rarely understood that a multitasking system could offer features
such as background print spooling and network connectivity even ifthe
user only ran Lotus 1-2-3 all day. Nowadays good multitasking is consid­
ered to be essential to providing an effective environment for the PC
user. Even if you only run Lotus 1-2-3/W all day long, Windows
multitasking enables you to manage your network connection, the
Print Manager, and your communications session at the same time.

The operating system component that manages the multitasking
in both Windows 3.1 and Windows 95 is the scheduler. The scheduler
deals principally with time and events. A Windows 95 process gets a time
slice that determines how long it can use the CPU. At the end of the
process's time slice, the scheduler decides whether to let a different
process use the CPU.9 Events influence the scheduler's decisions. To
the scheduler, a mouse click is an event that may mean handing the CPU
to the process that owns the window in which the mouse click occurred.

8. At this point you probably think this discussion is becoming very arcane.
Unfortunately, process has a precise meaning in Windows and the lack of rigor with
respect to such a term in most Windows documentation can generate considerable
misunderstanding.

9. Unlike Windows NT, Windows 95 doesn't (and won't) support multiprocessor
systems, in which the scheduler has more than one processor to allocate to processes.

Ebay Exhibit 1013, Page 125 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

TH R E E: A Tour of Chicago

Or the scheduler may consider the simultaneous completion of a net­
work data transfer to be an event worthy of more attention than the
mouse click. In that case, the process managing the network would get
the CPU, and the other process would have to wait.

You'll hear Windows 3.1 described as a cooperative multitasking sys­
tem and Windows NT described as a preemptive multitasking system.
Cooperation and preemption are process scheduling techniques, and
Windows 95 uses both of them, so we have to understand them. Pre­
emptive scheduling puts the operating system in complete control over
which process runs next and for how long. At any time, the scheduler
can take the CPU away from the current process and hand it to another
one. Typically, such a preemptive act will occur in direct response to an
event that demands swift attention. The scheduler associates a priority
with each running process. If an event occurs that is of interest to a
high-priority process, the scheduler will preempt the current process
and run the high-priority process. The scheduler gets control of the sys­
tem either when a process surrenders the CPU (it reaches a point at
which it's waiting for the user, for example) or when there's a clock in­
terrupt. Most systems will program the clock to tick between 20 and 50
times a second, and the final tick is when the scheduler gains control
and can preempt a running process.

Process priorities are recalculated frequently. For example, if the
system has to choose between just two processes-one with a low prior­
ity and one with a higher priority-the low-priority process will never
be able to run if the scheduler doesn't dynamically adjust the priorities.
The duration of the time slice plays into the calculation of priorities as
well. It makes no sense to continually give the CPU to a process and
then preempt the process after it has executed only a few instructions.
All that will ever get run is operating system code, not your spreadsheet
or compiler.

Cooperative multitasking relies upon application programmers
to help keep the system running smoothly. In the cooperative tech­
nique, the scheduler can switch processes only when the currently run­
ning process surrenders the CPU. If the current process decides to
recalculate 1T to 5000 decimal places, there's nothing the scheduler can
do about it. Good programming practice for cooperative multitasking
systems dictates that applications should regularly hand the CPU back
to the operating system-a technique called yielding. An application's
yielding allows the scheduler to run a higher-priority process if one is
ready. In Windows 3.1, cooperative multitasking is why no amount of

77

Ebay Exhibit 1013, Page 126 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

78

mouse clicking will help you when the current application has the hour­
glass cursor up on screen. The system duly registers all the mouse click
events and adds them to the application's message queue, but until the
current process surrenders the CPU, the scheduler can't switch away
from it and allow another process to handle the new events.

Windows 3.1 is as insistent as it can be about getting applications
to yield control of the processor. Essentially, every time an application
calls the system, asking to deal with the next event, the system suspends
the process and allows the scheduler to reevaluate process priorities.
The lack of preemption doesn't make this way of handling the coopera­
tive multitasking problem foolproof, however.

The absence of preemption in Windows 3.1 does make a number
of design decisions easier for both operating system developers and
application programmers. Neither has to worry about the operating
system code's being reentrant, for instance. The system design doesn't
have to account for the possibility of process preemption while system
code is executing. Suppose, for example, that you run two Windows ap­
plications, both of which occasionally use a COM port to dial out and
retrieve data from an information service. If one application could be
preempted in favor of the other partway through the opening of the
COM port, the OS would have to protect itself from the possibility that
the second application would also start an open request. With no pre­
emption, the OS doesn't have to worry: the first open request will al­
ways run to completion before the other application can run.

Ultimately, though, the lack of preemptive scheduling leads to
problems. High-priority events can't be handled rapidly because an appli­
cation won't relinquish the processor in time, for example; or an
application that crashes will lock up the whole system because the
operating system will be unable to deliver messages to other applica­
tions. MS-DOS itself has to have a non preemptive scheduling environ­
ment. MS-DOS knew nothing of multiple processes when it was
designed, and despite the herculean efforts of many software develop­
ers to build multitasking systems on top of MS-DOS, there have always
been shortcomings in the resultant products. Windows has been no ex­
ception to this non preemptive rule. Preempting MS-DOS at the wrong
time can lead to disaster, so over the years the Windows designers have
had to put up with building most of an operating system on top of a
very unsuitable foundation. Windows 95 changes that.

Ebay Exhibit 1013, Page 127 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

TH R EE: A Tour of Chicago

Critical Sections
You'll hear programmers use the term critical section when they talk
about developing software for any preemptive multitasking system. A
critical section is a sequence of instructions executed by more than one
process that for one reason or another must not be preempted before
it completes execution. An obvious example of a critical section occurs
during memory allocation.

Windows, along with most other operating systems, uses deriva­
tives of thirty-year-old algorithms for keeping track of blocks of avail­
able memory. (It's not that the algorithms are outdated. It's just that
they're as good as they ever need to be.) One particular algorithm in
question maintains available memory blocks as a linked list, with a de­
scriptor for each block that identifies its size and location. When Win­
dows tries to satisfy an application's request for memory, it has to
unlink the block from the list of available blocks.

At some point during the unlinking procedure, the list data struc­
ture is in a mess, with invalid pointers or erroneous flag bits set. If the
system were to reschedule right at that point, a different process might
initiate a new memory allocation request. Since the first process would
not yet be complete, the new process would eventually stumble while
trying to manipulate the invalid list data structure and probably crash
the whole system. To guard against such a situation, the code manipu­
lating the list maintains a critical section between the entry and exit
points of the sensitive instruction sequence. Once the process enters
the critical section, the system guarantees that the process will exit the
critical section before any other process can enter it. This isn't to say
that the system necessarily ignores other processes while a critical sec­
tion is executing. For example, ignoring hardware interrupts during
the execution of a lengthy critical section would be indicative of bad
system design. Critical section management does guarantee, though,
that once a process has entered a critical section, the system will sus­
pend any other process trying to enter the same section.

The technique of allowing only one process at a time to execute a
critical section is sometimes referred to as mutual exclusion, and the un­
desirable situation in which several processes fight to get at a protected
resource such as memory by entering the critical section is called con­
tention. The Windows Virtual Machine Manager has long supported
critical section management for device drivers. Preemptive scheduling

79

Ebay Exhibit 1013, Page 128 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

means that Windows 95 has to support similar critical section manage­
ment functions at the API level. The newly improved nature of multi­
tasking and preemption in Windows 95 means that you'll hear more
frequently about objects called mutexes, or semaphores, that are used to
control process entry and exit of critical sections.

Processes in Windows

Modules

80

So, amidst a collection of virtual machines and in a system that sup­
ports cooperative multitasking, what exactly is a process in Windows
95? It is one of two objects:

• Windows considers each MS-DOS VM to be a single process.
Regardless of what's going on inside that VM, to Windows
it is only one process.

• Each executing Windows application is also a process. Re­
member that every Windows application runs within the
System VM, so this view of the System VM as containing mul­
tiple processes points up another difference between the
System VM and an MS-DOS VM.

Under Windows 3.1, all of these processes are described within a
system data structure called the Task Database, or IDB for short. Win­
dows 3.1 actually identifies an MS-DOS VM process by marking the ap­
propriate TDB entry as being the WinOldAp application.10

Under Windows 95, the tasking model is considerably more com­
plex. The most important change from the application developer's
point of view is the addition of threads to the system. Under Windows
95, threads rather than processes are the objects managed by the sys­
tem scheduler. A thread defines an execution path within a process,
and any process can create many threads, each of which shares the
memory allocated to the original process. Multiple threads allow a
single application to easily manage its own background activities and to
offer a highly responsive interface to the user.

In Windows, the term module describes a related collection of code, data,
and other resources (such as bitmaps) present in memory. Typically,

10. WinOldAp is the name given to the entity that controls a single MS-DOS VM.
You'll see the name in various Windows status displays and documentation items.

Ebay Exhibit 1013, Page 129 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

TH R EE: A Tour of Chicago

such a collection will form either a single application program or a dy­
namic link library. Windows maintains a data structure, known as the mod­
ule database, that identifies all the modules currently active in the system.
The module database describes an essentially static collection of objects
rather than the dynamic collection referenced by the task database.

Keeping a record of currently loaded modules is important be­
cause such a record is the basis for the resource sharing supported by
Windows. The second time you run the WordPad (nee Notepad) appli­
cation, for example, Windows can see that the code segments and the
bitmap that forms the icon are already in use. Rather than loading a
second copy and consuming more memory, Windows simply creates ad­
ditional references to the resources already in use.

During the life of the system, Windows maintains a usage count
for each resource. As applications make use of a resource, the system
increments the reference count. When the application terminates, the
system reduces the reference count. A reference count of 0 is the indi­
cation that the resource is no longer in use and that the system can re­
move the resource and reclaim the memory it occupied.

APISupport
The Windows 95 API coverage is, to say the least, extensive. The Win­
dows 95 API includes a subset of Microsoft's Win32 API and provides
compatibility by including support for 16-bit Windows applications and
MS-DOS applications. Microsoft recommends that 16-bit Windows ap­
plication development cease with the introduction of Windows 95 and,
to encourage developers to make that choice, makes the new capabili­
ties of the Windows 95 system accessible only to 32-bit applications.
The mere opportunity to finally abandon the Intel architecture's
segmented memory model is likely to be enough reason for most devel­
opers to switch. Add in the enhancements available to Win32 applica­
tions, and switching becomes a pretty attractive option.

Windows supports its APis by means of three major components:
Kernel, User, and GDI. Kernel incorporates the most operating-system­
like functions-memory allocation, process management, and the like.
The User module focuses on the window management issues that come
up throughout Windows operation: window creation and movement,
message handling, dialog box execution, and a myriad of related func­
tions. GDI is the Windows graphics engine, supporting all the line
drawing, font scaling, color management, and printing capabilities of
the system.

81

Ebay Exhibit 1013, Page 130 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

Every Windows application shares the code in these three mod­
ules. In Windows 95, Kernel, User, and GDI have each a 16-bit and a
32-bit implementation resident in the system. And a lot of code is
shared between, for example, the 16-bit and the 32-bit implementa­
tions of GDI. Applications don't have to take any special note of this
dual existence, though. The system connects the application with the
appropriately sized subsystem.

Each Windows API function is accessible by means of a name-in
contrast to the MS-DOS API scheme of numbered interrupts. To get an
application to call on one of the services in a Windows subsystem, the
programmer simply uses the target function name in the application
source code and compiles and links with the appropriate libraries, and
the application is ready to run. This sounds normal so far, but if you ex­
amine the compiled program, you won't find any code that actually
implements a Windows API function. If you're a C programmer, you'll
have used the printf() function frequently. Poke through the compiled
program, and sure enough, you'll find a stream of code and data that
implements printf(), and the same is true for many other functions.

What you will find if you care to dissect a compiled Windows
program is a collection of references to the Windows API functions­
references that are necessary if Windows is to be able to load the appli­
cation correctly. And think about that printf() example again-every
program has its own copy of the code for printf() linked in, whereas the
Windows program that calls GetMessage() calls the single copy of this
function that resides in the User module. So does every other Windows
program. In fact, the Kernel, User, and GDI modules are all examples
of Windows dynamic link liwaries (DILs for short). Windows uses DLLs
extensively, and the technique that allows an application to call a DLL
is dynamic linking.

Dynamic Linking

82

Nowadays it's customary to rely upon the dynamic linking capabilities
of the target operating system when preparing an application for exe­
cution. Windows and Windows NT have the capabilities, OS/2 has
them, and so does UNIX. A compilation and link procedure used to
involve the linker in scanning object code libraries and copying large
amounts of code and data into the application's executable file. No
more. In a dynamic linking environment, the traditional role of the
linker is now split between the link step and the program loading step
undertaken by the operating system.

Ebay Exhibit 1013, Page 131 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

TH R E E: A Tour of Chicago

The linker still scans a set of libraries. Some of the libraries in­
clude runtime support code that ends up in the executable file; others
simply contain references to functions that won't be fully resolved until
the operating system loads the program. In Windows, such libraries are
called import lilYraries, and together they contain a defining reference
for each and every Windows API function. The linker scans the import
library and embeds in the executable file a target module name and a
numeric entry point. If an application calls the Windows MessageBox()
function, for example, the executable program file will include a refer­
ence to the User module entry point number 1. The application's call­
ing the GDI LineTo() function will embed a reference to the GDI
module entry point number 19. At program load time, it's the operat­
ing system's responsibility to replace these references with addresses
that are valid for use in function calls. Any module that satisfies these
references via dynamic linking is called a dynamic link library. Every
DLL declares a set of entry points called exports that satisfies the exter­
nal references.

Much of Windows itself is a collection of DLLs, and the system
makes heavy use of the runtime name resolution capabilities to inter­
connect its various components. For example, printer device drivers
support a standard set of entry points. When the GDI module calls a
printer driver, it references a function that will be resolved via a runtime
dynamic link. Regardless of what type of printer is involved, each
printer driver supports the same set of entry points. Rather than
relinking the operating system when you install a new printer, you sim­
ply replace the file containing the device driver code, and the new
driver satisfies the same set of dynamic links. Figure 3-2 shows the first
few entries for the dynamic links exported from the Windows 3.1
Hewlett-Packard PCL and PostScript printer drivers.

Figure 3-2.
Dynamic link entry points in printer drivers.

(continued)

83

Ebay Exhibit 1013, Page 132 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

Figure 3-2. continued

Notice that in each printer driver the names refer to functions
within the driver. They could be any valid name. The external refer­
ence uses only the module name and the numeric identifier to resolve
the dynamic link.

The Windows resource sharing technique also applies to DLLs. It
has to-after all, DLLs are built for sharing. Loading unique copies not
only is wasteful but also defeats the whole purpose of a DLL.

Support from the Base System

84

Ultimately, the Windows subsystem has to call on the services of the
base system. This might be an explicit request-for example, to open a
file. Or it might be an implicit one-for example, there's a page fault
and the base system has to set about loading the missing pages from
disk. In the case of an MS-DOS VM, the assistance of the base system is
needed once the MS-DOS software interrupt executes.

A transition to the operating system code in the base system in­
volves a transition between processor privilege levels. The Windows
VMs usually run at ring three; the base system-the most privileged
code in Windows-runs at ring zero. Chapter Four looks at the details
of the transition to the base system code. The various ways in which it
happens all amount to presenting the Virtual Machine Manager with
an opportunity to gain control over the transition so that order can be
maintained.

The base system code comprises a number of Windows VxDs. Al­
though the name VxD and the term virtual device driver are used inter­
changeably, a VxD need have nothing to do with any hardware device.
A VxD is simply a 32-bit protected mode module running at the
processor's most privileged level of execution. Some VxDs do deal with
hardware devices, and others supply operating system functionality that
doesn't have anything directly to do with devices. The VxD architecture

Ebay Exhibit 1013, Page 133 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

TH R E E: A Tour of Chicago

was originally designed as a standardized format for 32-bit protected
mode code modules. There is an API, internal to the base system, that
VxDs can use.11 Obviously, the scope of these functions is at a much lower
level than the scope of the services called on directly by applications.

Memory Management
Memory management in Windows takes place at two different levels: a
level seen by the application programmer and an entirely different view
seen by the operating system. Over the course of different releases of
Windows, the application programmer has seen little change in the avail­
able memory management APls. Within the system, however, the
memory management changes have been dramatic. Originally, Win­
dows was severely constrained by real mode and 1 megabyte of
memory. Then expanded memory provided a little breathing room,
and currently the use of enhanced mode and extended memory re­
lieves many of the original constraints. Windows 95 goes further yet
and essentially removes all the remaining memory constraints.

Windows 95 continues to support all the API functions present in
Windows 3.1, and you can still build and run applications that use the
segmented addressing scheme of the 286 processor. However, if you
look at the detailed documentation for the Windows 95 memory man­
agement API, you'll see that all of the API functions originally designed
to allow careful management of a segmented address space are now
marked "obsolete." The "obsolete" list includes, for example, all the
functions related to selector management. The reason, of course, is the
Windows 95 support for 32-bit linear memory and the planned obsoles­
cence of the segmented memory functions-yet another unsubtle hint
that the Win32 API is the API you should be using to write Windows ap­
plications.

Although use of the 32-bit flat memory model simplifies a lot of
Windows programming issues, it would be misleading to say that Win­
dows memory management has suddenly gotten easy.12 Windows 95
actually has a number of new application-level memory management

11. The Windows Device Driver Kit is the best reference for detailed information
on VxDs and the associated API functions.

'12. The Windows 95 documentation lists 45 API functions under the heading
"Memory Management." The "obsolete" list numbers 28 API functions.

85

Ebay Exhibit 1013, Page 134 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

capabilities. All of the functions relate to the management of memory
within the application's address space, the private virtual memory allocated
to the process. The systemwide management of memory is the responsi­
bility of the base system, and the Windows API aims to hide many of the
details of the system's lower-level functions.

Application Virtual Memory

86

Figure 3-3 illustrates the basic layout of a Win32 application's virtual
memory. Every Win32 application has a similar memory map, and each
such address space is unique. However, it is still not fully protected: the
private memory allocated to one Win32 application can be addressed
by another application. The Win32 application's private address space
is also the region in which the system allocates memory to satisfy appli­
cation requests at runtime.

The system address space is used to map the system DLLs into the
application's address space. Calls to the system DLLs become calls into
this region. Applications can also request the dynamic allocation of
memory by means of virtual addresses mapped to the shared region.,
Having virtual addresses mapped to the shared address space caters to
the need for controlled sharing of memory with other applications.

4GB

3GB

2GB

Figure 3-3.
Application virtual memory map.

Requests for memory at runtime fall into one of two categories:
the application can make an explicit request for extra memory, or the
system can respond to an implicit request for memory-that is, allocate
memory to an application as a side effect of allocating some other re­
source. An implicit request occurs, for example, when an application

Ebay Exhibit 1013, Page 135 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

TH R E E: A Tour of Chicago

creates a new window on screen: the system must allocate memory for the
data structures used to manage the window. Windows 95 claims memory
for resource allocation from a large 32-bit linear region rather than from
the restrictive 64K segment used in previous versions of Windows. An on­
going problem in versions through Windows 3.1, running out of memory
during resource allocation, has been largely eradicated in Windows 95.

Heap Allocation
In Windows parlance, the term heap describes the region of memory
used to satisfy application memory allocation requests. In Windows 3.1,
the system maintains both a local heap and a global heap. The local heap
is a memory region within the application's address space, and the glo­
bal heap is a memory region belonging to the system. As an application
makes requests for local memory, its address space is adjusted to en­
compass the newly allocated memory. The system resolves requests for
global memory from the same system memory pool used for all applica­
tions. It's possible to run out of either or both resources, although the
use of a 2-GB address space makes this highly unlikely. Exhaustion of
the local heap affects only a single application. Exhaustion of the glo­
bal heap has systemwide repercussions.

Windows 3.1 programmers have to consider a variety of factors as
they decide how to satisfy an application's runtime memory require­
ments. Windows 3.1 also has a range of API functions for manipulating
dynamically allocated segments, and the manipulation of these shifting
regions is further complicated by the underlying segmented memory
model. It isn't just a chunk of memory that must be allocated. The ap­
plication also needs a selector so that it can address the memory cor­
rectly. Under Windows 95, the Win32 application model does away with
all these considerations. Selectors are n:o longer required-it's simply a
32-bit address that identifies the new memory-and the local and glob­
al heaps are merged into a single heap. The API functions that deal
with selectors and the manipulation of memory regions in a segmented
model all become obsoJete.

Windows 95 Application Memory Management
For a Windows programmer, the Win32 API greatly simplifies the most
common dynamic memory allocation chores. Furthermore, the in­
creased capability of the underlying 32-bit architecture allowed the
Windows designers to add a number of new functions for application
memory management.

87

Ebay Exhibit 1013, Page 136 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

ill Windows 95 provides functions that support private
heaps whereby an application can reserve a part of mem­
ory within its own address space. The application can create
and use as many private heaps as it wishes and can direct
the system to satisfy subsequent memory allocation calls
from a specific private heap. An application might use the
local heap functions to create several different memory
pools that each contain data structures of the same type
and size.

II Windows 95 provides functions that allow an application
to reserve a specific region of its own virtual address space
that once reserved won't be used to satisfy any other dynamic
memory allocation requests. In a multithreaded application,
the 32-bit pointer to this reserved region is a simple way to
provide each thread with access to the same memory.

Iii Memory mapped files allow different applications to share
data. An application can open a named file and map a region
of the file into its virtual address space. The data in the file is
then directly addressable by means of a single 32-bit memory
address. Other applications can open the same file, map it
into their private address spaces, and reference the same data
by means of a single pointer.

System Memory Management

88

Regardless of changes in the details of application memory manage­
ment, the Windows programming model has remained pretty consis­
tent through the different product releases. Allocating blocks of
memory at runtime, using a reference to a block to manipulate it, and
ultimately returning the block to the system for re-use is the way in
which Windows programmers have always dealt with dynamic memory
requirements. Windows 95 is no different. What has changed, however,
is the way in which the system realizes the application's requests for dy­
namic memory.

Starting with the Windows 3.0 enhanced mode and continuing
with the Windows 95 Win32 application model, the Windows API ma­
nipulates only the application's virtual address space. This means that
an application request for a block of memory will adjust the
application's virtual address map but might do absolutely nothing to
the system's physical memory. Remember that the 386 deals with physical

Ebay Exhibit 1013, Page 137 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

TH R E E: A Tour of Chicago

memory in pages each 4K in size. This page size is reflected in the vir­
tual address space map of every Windows application. If an application
requests lOOK of memory, for example, its virtual address space will
have 25 pages of memory added to it. The system will also adjust the
data in its own control structures to reflect the application's new
memory map.

However, at the time of allocation, Windows won't do anything to
the physical memory in the system. It's only when the application starts
to use the memory that the underlying system memory management
kicks in and allocates physical memory pages to match the virtual
memory references the application makes. If the application allocates
but never references a region of its virtual memory space, the system
might never allocate any physical memory to match the virtual
memory. The ability of the 386 to allow physical memory pages to be
used at different times within different virtual address spaces is the ba­
sis for the operating system's virtual memory capabilities.

Deep within the system are a range of memory management
primitives available to device drivers and other system components that
sometimes deal with virtual memory and sometimes force the system to
commit actual physical memory pages. But these primitives are specific
to the base operating system. Neither applications nor the Windows
subsystem knows or cares about physical memory. Applications can
force the system to allocate physical memory only by actually using the
memory: namely, by reading from and writing to locations within a
page. The separation of Windows memory management into the vir­
tual and physical levels is a key aspect of the system. Applications and
the Windows subsystems deal with defined APis and virtual address
spaces. The base system deals with physical memory as well as virtual
address spaces.

Although physical memory is transparent to an application, its be­
havior can radically affect the performance of the system. For example,
scanning through a two dimensional array of data row by row using C as
the programming language will cause memory to be accessed from low
to high virtual addresses because C stores two dimensional array data
structures in row major order. As the memory sweep proceeds, the system
will allocate physical memory pages to match the virtual memory ac­
cesses. Byte-at-a-time access will cause the system to allocate a new physi­
cal page every 4096 references. Other languages-FORTRAN, for
example-store two dimensional arrays in column major order. Referencing
the data row by row will generate memory references to widely scattered

89

Ebay Exhibit 1013, Page 138 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

memory locations, forcing a much higher frequency of physical page
allocation and much-reduced application performance. So, although
the programmer doesn't have to worry about matching virtual memory
to physical memory, it is a good idea for the programmer to know
something about how the underlying system primitives and hardware
support the application.

Windows Device Support
The most important aspect of the Windows device driver architecture is
its ability to virtualize devices. (Yes, it's that word again.) The greatest
difference between the device drivers of Windows 95 and Windows 3.1
is the extensive use of protected mode drivers in Windows 95-in fact,
it will be unusual if your system uses any real mode drivers at all after
you install Windows 95. The use of protected mode for the drivers pays
off in terms of both system performance and robustness. The manufac­
turers of disk devices can adopt a new driver architecture-borrowed
from Windows NT-that almost guarantees the availability of a pro­
tected mode driver for every hard disk. In addition, new protected
mode drivers for CD ROM devices, serial ports, and the mouse make
the possibility of needing to support a device with a real mode driver
quite remote.

Device Virtualization

90

The device virtualization capability allows Windows 95 to use the
memory and I/O port protection capabilities of the 386 processor
to share devices among the different virtual machines. Every MS­
DOS VM believes it has full control over its host PC and is unaware
of the fact that it might be sharing the screen with other MS-DOS
VMs or with the Windows applications running in the System VM.
For MS-DOS applications, the display drivers must reside in the low­
est level of the operating system. Many MS-DOS applications, par­
ticularly those that use the display in a graphics mode or use serial
ports, will address the hardware directly. Windows has to intercept
all such direct access in order to bring order to a potentially chaotic
situation. The MS-DOS application knows nothing of the need to
cooperate with other applications and certainly doesn't depend on
a system device driver to get the job done. With Windows applica­
tions, the system has a slightly easier task since device access is always

Ebay Exhibit 1013, Page 139 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

TH R EE: A Tour of Chicago

the result of a Windows API call. Thus, the operating system has
control of the entire transaction, and the system components can
collaborate as necessary.

You'll sometimes hear Windows device drivers referred to as
virtual device drivers or even VDDs. But most of the time, a Windows
device driver is classified as a VxD along with all the other VxDs that
perform low-level system functions. Device drivers are written and
built just as any other VxD is-usually in assembly language and al­
ways with the freedom to access any system data structure or memory
location.

Minidrivers
The Windows device driver model has undergone some changes for
Windows 95. The minidriver architecture first used for Windows 3.1
printer drivers and more recently for Windows NT disk drivers has found
its way into the display and disk driver designs for Windows 95. 13 The
principal idea of the minidriver design is to provide a single hardware­
independent VxD that fulfills most of the necessary driver functions.
This VxD interfaces closely with a minidriver whose role is to perform
the hardware-dependent functions. Each minidriver consists of a set of
the hardware-dependent functions called by the controlling VxD. Win­
dows calls the central VxD, and when necessary, the VxD calls the
mini driver.

This design offers a lot of advantages. The basic design tenet is
that most drivers for a particular type of device contain roughly the
same code. Re-implementing the same code for every slightly different
type of device doesn't make a lot of sense-despite the fact that just
about every operating system has done just that for years. Reducing the
implementation task for a new device to simply developing a new
minidriver helps everyone. The device manufacturer doesn't have to
invest in writing code that already exists. The user can look forward to
much higher quality drivers that are readily available when a new de­
vice first appears. Microsoft benefits since they can justify the invest­
ment of a lot more effort in the central screen VxD, for example, rather
than have the dilution of the effort among drivers for dozens of slightly
different VGA devices.

13. In Windows NT, disk drivers are actually called port drivers.

91

Ebay Exhibit 1013, Page 140 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

In the past, a counterargument always insisted that the minidriver
model would degrade performance. This argument didn't work when
it was applied to printers since the nature of the device makes it very
slow in comparison to the processor anyway. Even the worst printer
minidriver is probably fast enough to keep a printer fully occupied.
Disk device minidrivers do require more attention to performance is­
sues. However, a disk minidriver is a simple piece of code that shouldn't
have a negative impact on performance if it's correctly written.
Microsoft can provide lots of good examples to device manufacturers
to make sure that disk minidrivers come out right. Screen devices are
quite a different issue since performance under Windows is so critical.
The importance of performance makes the adoption of a minidriver
model for screen drivers an interesting design choice. Microsoft's con­
fidence in its new display driver model comes from investing a lot of
very talented effort in the central VxD.14 Of course, it's still possible for
a manufacturer to ignore the minidriver architecture and implement a
device driver that bypasses the minidriver architecture. The manufac­
turer still has this option for supporting unusual devices or squeezing
the last cycle of performance out of the device.

The Windows Interface
Let's review the major elements of the Windows user interface in
preparation for an introduction in Chapter Five to the rather dramatic
changes to be seen in Windows 95. If you're a Windows programmer,
you're already intimately familiar with the user interface terms and the
various user interface components. If you use Windows extensively,
you've seen and used all of the major interface elements. However,
while clicking your way quite happily through a complex dialog box,
you may not have thought too hard about all the different elements
that make up the dialog box.

What Is a Window?

92

Take a look at the Windows 3.1 screen shot in Figure 3-4. It's one of the
more commonly used dialog boxes in Microsoft Word for Windows.
You see it every time you print a document.

14. "World's fastest flat frame buffer device driver" is one claim. We'll see.

Ebay Exhibit 1013, Page 141 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

TH R EE: A Tour of Chicago

components of a Windows program interface. Of course, the specific text that appears on a button,

Figure 3-4.
Windows, windows, windows ...

This dialog box actually contains several of the most common items used
in dialog boxes-specifically:

Drop-down list box. The box to the right of Print:. Clicking on the
arrow causes a list of items to appear from which the user can
make a single choice.

Spin box. The box to the right of Copies:. Clicking the up and down
arrows changes the numeric value in the box.

Radio buttons. The round buttons inside the Range box. The user
can select just one of the All, Current Page, and Pages buttons.
Clicking one of them causes the others to clear.

Checkbox. The two boxes at the bottom of the dialog box. The Print
to File and Collate Copies boxes can be set on or off.

Button. The rectangular buttons at the right of the dialog box.
The ubiquitous OK and Cancel buttons appear in almost every
dialog box.

93

Ebay Exhibit 1013, Page 142 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

94

You'll hear designers refer to each of these interface items as vi­
sual elements; programmers call them controls. These and several other
common elements are the building blocks from which a Windows ap­
plication developer will assemble the various dialog boxes and other
standard components of a Windows program interface. Of course, the
specific text that appears on a button, or the size of a box (for ex­
ample) will change according to the context. Windows is responsible
for drawing these standard controls on the screen. The programmer
simply describes the layout and dimensions of the visual elements, and
Windows does the rest. 15

The screen shot in Figure 3-4- also shows other, more sophisti­
cated, visual elements: the scroll bars to the right and at the bottom of
the document window, the toolbars containing the rows of buttons with
a pictorial indication of the function of each, and the status line at the
bottom of the screen. Add to these the standard menu bar and the ap­
plication title bar, and you have examples of most of the visual ele­
ments in a Windows 3.1 program.

From the operating system's point of view, every single one of the
interface's visual elements is a window. Not just the larger areas sur­
rounded by the framing borders as in Figure 3-4, but virtually every
visual element of the Windows interface, is a separately identified win­
dow. The operating system keeps track of all of the windows, and user
actions performed in one window-for example, a mouse click on a
checkbox-ultimately result in the system's sending a message to the
application that owns the window. The message to the application takes
the form of data that informs the application in which window the ac­
tion took place and what happened in the window. Very often the appli­
cation relies upon the system's default processing to take care of any
action required in response to the message. For example, Windows it­
self will draw or remove the mark in a checkbox if the user clicks on the
checkbox. Thus, a large amount of the code in Windows is devoted to
handling all of these default actions, and individual application pro­
grams don't have to include equivalent functions. One of Microsoft's
guiding principles in the design of Windows has been to include within
the operating system functions that a majority of users or applications

15. Because Windows is responsible for drawing the controls, your Windows 3.1
applications will have the Windows 95 visual appearance when you run them under
Windows 95. Since it is the system that displays the standard visual elements, a 3.1
application will take on the new look without any modifications.

Ebay Exhibit 1013, Page 143 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

T H R E E: A Tour of Chicago

will need. It's no surprise then when new visual elements such as an ap­
plication toolbar-and the associated default processing-eventually
appear in an operating system release. That's exactly what happens
with Windows 95.16

The concept of window ownership is another notion central to the
Windows system. Windows implements a strict hierarchy of windows. Ev­
ery window must have a parent window, and any application may create,
perhaps many, child windows. A child inherits many aspects of the parent,
such as its default behavior. The hierarchical relationship also defines
how window messages pass through the system: the youngest child win­
dow gets the first chance to process a message aimed at the window, and
if it ignores the message, its immediate parent inherits the message. Ulti­
mately the message may pass all the way to the top of the hierarchy so
that the system itself can respond with the default message handlers.

The windows within our dialog box example are all child windows
of the dialog box window. When the parent window disappears, so
do all the child windows. When an application terminates, all of the
descendant windows created by the application disappear (are
"destroyed," in application programmer's parlance).

The programmer's term control actually refers to standard ele­
ments in the Windows interface that populate components such as dia­
log boxes and message boxes. Typically a control has some changeable
data associated with it and will constrain what the user can do to the
data. A checkbox, for example, allows only an on or an off condition,
and a list box may allow the user to select only from a predetermined
list of entries. The concept of a control is a little broader than this
simple description indicates, but most applications use these kinds of
controls. For application programmers, Windows makes the use of con­
trols very easy by providing all the software to create, manage, and
modify them and, subsequently, to determine user input.

Windows 95 User Interface Design
When contemplating changes to the appearance of Windows, the de­
signer faces more considerations than the visual appearance of a par­
ticular element, considerations such as those itemized on the next page.

16. In accord with the same principle, network support and disk compression
support have ultimately been incorporated into operating systems. Support for
spreadsheet operations hasn't been and most likely never will be.

95

Ebay Exhibit 1013, Page 144 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

• What is the default behavior for a new window? Is it similar
enough to an existing window type that applications can take
advantage of common processing by the system?

• What behavior does a new window's appearance imply? A
checkbox-like window that requires the user to enter a single
letter or number will probably confuse most users, for instance.

• Is the new element useful for many applications and not
simply for a single special case?

• Does the proposed new element or new appearance or
behavior of an existing element actually help the user? That
is, does the new or changed element provide an easier or
more obvious way to do something?

Add these considerations to the more practical ones of large scale
software development-how much memory is needed, how fast it will
run, whether it can be finished in time-and you can see that changing
the appearance of Windows 3.1 was more than just a facelift operation.
The changes in the interface from Windows 3.1 to Windows 95 do aim
to correct a number of flaws. But more impressive, a number of new
user interface concepts make their first appearance with Windows 95.
These ideas form the basis for the design of many of the new visual ele­
ments and for the design of the Windows 95 shell itself. In Chapter
Five, we'll identify the problems in Windows 3.1 that Windows 95 aims
to correct and look at the conceptual basis for the new appearance.

Windows Programming Basics
This book isn't about to try to teach you how to program for Windows.
That subject has been explored comprehensively in hundreds of books
and magazine articles over the last few years.17 However, just to make
sure that we embark on this voyage of discovery on an equal footing,
let's review some basic information.

Event Driven Programming

96

Windows uses an event driven programming model that's almost more
commonplace now than the procedural model everyone learned in

17. As ever, Charles Petzold's book Programming Windows, 3d ed. (Microsoft Press,
1992), remains the best introductory text.

Ebay Exhibit 1013, Page 145 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

T H R E E: A Tour of Chicago

school. First popularized by the Apple Macintosh operating system,
event driven programming relies on external events to stimulate re­
sponses from an application. Mouse clicks and key depressions are the
two most common external stimuli for a Windows application, al­
though it's possible to translate any change in the application's envi­
ronment into an event suitable for consumption by an application.

Windows feeds an event to an application in the form of a message
that describes the change in the application's environment. Some mes­
sages are universal, such as those informing an application that the user
has clicked on an application menu item. Other messages-for example,
those indicating movement of the mouse cursor within an application
window-are often of interest only to a particular type of application. Ev­
ery message is associated with a specific application window, and each
window has a window procedure associated with it. A Windows application
receives messages by means of the GetMessage() API function, and calls
Windows by means of the DispatchMessage() API function. Then Windows
itself calls the appropriate window procedure, passing it the message to
be processed. All messages are processed from within a queue that's
maintained by the system and that preserves the order of the messages. If
mouse click and keyboard entry messages, for example, weren't received
and processed in the same order as the user entered them, the system
would be out of control.

Message Handling
It used to be that every Windows application included the code frag­
ments shown in Figure 3-5 on the next page-although you should no­
tice one innovation in the code shown there. If you've written Windows
programs, you probably have something very similar in your earlier pro­
grams. Windows applications rely upon the system to provide significant
amounts of default processing. If an application isn't interested in a par­
ticular message, it simply ignores it and allows the system to apply its de­
fault response behavior to the message. Often the default processing
means discarding the message altogether, and often it means that the
window procedure for a particular message is simply not part of the ap­
plication. For example, it is quite rare for an application to register a
window procedure to handle messages sent to controls-the system's de­
fault handling of such messages is usually adequate.

97

Ebay Exhibit 1013, Page 146 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

Figure 3-5. (continued)

Fragments of the Windows message loop.

98

Ebay Exhibit 1013, Page 147 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

TH R E E: A Tour of Chicago

Figure 3·5. continued

Program Resources
Another common aspect of Windows programs is their use of identifi­
ers called handles to reference every object within their environments:
windows, memory blocks, files, communications devices, cursors, bit­
maps, and so on. Handles are simply convenient numeric identifiers
for resources that the system has allocated to a Windows program. Al­
most every Windows API function deals with a handle in one way or
another. Sometimes a handle can be translated into a more direct ref­
erence-a memory address, for example. However, it's bad practice to
do that, and under Windows 95 the unwritten rules for such transla­
tions have changed anyway.

Windows 95 Programming
Under Windows 95, the fundamentals of Windows programming
haven't changed. The event driven model is still the basis for how you
write a Windows program. However, there are some evolutionary
changes in writing a program for Windows 95:

B Microsoft is all but forcing developers to move to Win32
as the preferred Windows APL There are a lot of good tech­
nical reasons to go to 32-bit programs anyway, but the fact that

. the new capabilities of Windows 95 are accessible only to
Win32 applications tends to predetermine the result.

99

Ebay Exhibit 1013, Page 148 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

100

II The programmer's access to the new capabilities of Windows
95, notably 32-bit programs and preemptive scheduling, will
introduce new twists in the already complex Windows pro­
gramming model. If you don't already know how to develop
applications for a preemptive multitasking system, Windows
95 forces you to learn. There are also some subtle changes
that the 32-bit API engenders in application code-if you
looked at the code in Figure 3-5, you saw one example.

II Microsoft's Object Linking and Embedding (OLE) technol­
ogy represents a massive investment in a new programming
methodology that may well transform Windows program­
ming and the nature of Windows applications. OLE has been
available in advance of the Windows 95 release, but its pres­
ence as a standard component of the Windows 95 product is
likely to ensure that a lot of programmers will spend a lot of
time learning it.

II The programming tools now available for Windows stress
more and more the object-oriented programming model
evident in languages such as C++. Windows is by its nature an
object-oriented environment, although purists can point to
areas in which Windows deviates from a pure object-oriented
model. The new tools for Windows programming tend to
hide these minor deviations, and with the emphasis that
Microsoft now places on OLE and the future promise of Cairo,
object-oriented programming is likely to be the discipline in
vogue for the next few years.

Although everything you worked hard to learn about Windows pro­
gramming is still valid, there are some new aspects that Windows 95 will
tend to bring into focus. OLE is not the least of these and is by some esti­
mates as complex as the entire Windows 2.0 product ever was. However, if
you're comfortable with the basic concepts of events, messages, message
queues, window procedures, handles, and windows, you shouldn't find
anything in the following chapters to be incomprehensible.

Ebay Exhibit 1013, Page 149 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

T H R E E: A Tour of Chicago

Conclusion
In this chapter, we took a tour through a lot of the basic terminology
and some of the inner workings of Windows. If you knew most of this
Windows lore already, you're ready for the new acronyms and some of
the architectural changes introduced with Windows 95. If you didn't
know your way around Windows, I hope you're ready for a second
heavy dose.

We looked at several of the new features of Windows 95 in this chapter lntt ig­
nored a lot of the detail. Chapter Four is where we 're cleared for the approach to
Chicago.

References
Duncan, Ray, et al. Extending DOS. 2d ed. Reading, Mass.: Addison-Wesley,

1991. A collection of lengthy papers about different aspects of squeezing
more memory and more function from MS-DOS. The book includes a
good discussion of DOS extenders and the DPMI specification.

Intel Corporation. MS-DOS Protected Mode Interface Specification. The definitive
specification for version 0.9 of DPMI. There's also a version 1.0, but since
Windows itself supports only version 0.9, this is the de facto standard. To
get a free paper copy, call Intel at 1-800-548-4725.

Petzold, Charles. Programming Windows 3.1. 3d ed. Redmond, Wash.:
Microsoft Press, 1992. A classic in its own way. The best introduction to
Windows programming there is. If we're lucky, Charles is hard at work on
the Windows 95 version.

101

Ebay Exhibit 1013, Page 150 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Ebay Exhibit 1013, Page 151 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

C .H A P T E A F 0 U A

THE BASE SYSTEM

In this chapter and the next, we'll examine the two features of Win­
dows 95 that most differentiate it from its predecessors. Of all the new
features in Windows 95, the most prominent to the user will be the new
appearance and the new system shell-the most obvious changes from
Windows 3.1-and that's what we'll look at in Chapter Five. For the
programmer, the support for a native 32-bit API will probably be the
most closely studied new feature in Windows 95. But the 32-bit API is
merely the best-documented manifestation of the changes in the un­
derlying operating system. In Windows 95, Windows finally becomes a
complete operating system. No longer is it simply a "graphical DOS ex­
tender," some critics' characterization of the earlier versions of Win­
dows. In Windows 95, many new or revised components now make full
use of the 32-bit protected mode of the 386 processor. The operating
system within Windows 95 is the subject of this chapter.

Simply looking at the feature highlight list for the base operating
system gives you an indication of how much is new and how much work
has gone into this part of Windows 95:

II For all intents and purposes, real mode MS-DOS is gone.
Finally Windows is a complete operating system with no
reliance on MS-DOS and its real mode architecture and
limitations.

II A new filesystem architecture and 32-bit protected mode
implementation of the FAT filesystem eliminate the last major
dependency of Windows on MS-DOS. The new filesystem also
.provides significant system performance improvements.

103

Ebay Exhibit 1013, Page 152 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

• Windows 95 provides full support for 32-bit applications,
including a 32-bit Windows API and protected, private
address spaces.

• Windows 95 provides for the preemptive sc:heduling of
Windows applicatioq.s.

• Windows 95 provides architected support for multiple
simultaneous network connections.

Naturally, whatever changed in Windows 95 had nevertheless to re­
main compatible with Windows 3.1 and MS-DOS. The developers had
the ever present specter of compatibility looking over their shoulders.

And the designers of Windows 95 had to recognize Windows NT
as a preexisting operating system in much of their work. Sometimes the
obligation to Windows NT helped. Windows 95 picked up components
of the disk device driver architecture used in Windows NT, for example.
And sometimes deference to the earlier Windows NT created quanda­
ries: which subset of the Windows NT API set Windows 95 should fully
support, for instance. As we examine the system's features, we'll draw a
number of comparisons between Windows 95 and Windows NT.

What we'll concentrate on in this chapter are the underlying archi­
tecture and the major functional components of the operating system.
While the project was under development, the Windows 95 team pub­
licly referred to this collection of software as the base system, or simply the
base OS.1 Throughout the project, there was a lot of internal and exter­
nal discussion and speculation about a protected mode MS-DOS version
7.0 that would provide the operating system functionality required by
Windows 95. By and large, this version of MS-DOS (if it appears) will be
the operating system components of Windows 95 in a different package.
Since we're concerned with Windows only, we won't go into what might
or might not appear in MS-DOS version 7.0.

Windows 95 Diagrammed

104

Software designers often discuss an operating system as if it were a liv­
ing, breathing entity. Reducing such an organism to simple diagrams
can't provide a complete picture of either its complexity or the subtle
interactions among its different components. But given our medium,

1. Microsoft code-named the OS components Jaguar and Cougar. There were also
dragons stalking the halls. Interesting place to work.

Ebay Exhibit 1013, Page 153 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

F 0 U R: The Base System

diagrams are what we have. 2 Figure 4-1, a variation on Figure 3-1, provides
just such an inadequate view of the system's most important components.

System Virtual Machine

Ring 3 components

Ring O components

File Management subsystem

Figure 4-1.
Windows 95 system archi~ecture.

MS-DOS Virtual Machines

Virtual Machine Manager
subsystem

2. One Microsoft designer maintains that drawing a block diagram of Windows NT
gives you a neat, concise presentation showing how the system really does work. For
Windows 95, a similar representation is a little more chaotic, but the diagrammatic
oddities usually point to important concerns:_namely, compatibility and performance.

105

Ebay Exhibit 1013, Page 154 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

It would be difficult to point to a single box as the base operating
system since aspects of the low-level design permeate Windows 95. In
this chapter, we'll concentrate on the functions provided by the Virtual
Machine Manager and on sor(ie details of the System Virtual Machine
architecture:

• Scheduling and memory management services

• The management of Windows-based applications within the
System Virtual Machine

• The management of the MS-DOS virtual machines

• The foundation for the Windows API layer

We won't get into all of the extremely low level details of how
these pieces work. We'll look at the architecture and at some of the
more interesting implementation details.3 Needless to say, you should
be familiar with the material presented in Chapters Two and Three be­
fore diving into this chapter.

Windows 95 Surveyed.

106

Let's first take another brief tour through the system and review the im­
portant components. Many aspects of the Windows 95 design are simi­
lar to aspects of the design of Windows 3.1 that you already know
about. In particular:

System Virtual Machine. Windows applications all run within the con­
text of the system VM. The 16-bit applications (the "old" Windows
applications) share a single address space. The new 32-bit support
provides each new application with a private address space.

MS-DOS Virtual Machines. Windows 95 supports the execution of
multiple MS-DOS programs running in either virtual 8086 mode
or protected mode.

Virtual Machine Manager. The VMM is the real heart of the operating
system. It provides low-level memory management and schedul­
ing services as well as services for the virtual device drivers.

3. No doubt there will be other books that do take on the Herculean task of
looking at all of the details. The "References" section at the end of this chapter lists a
few of the books.that covered the details for Windows 3.1.

Ebay Exhibit 1013, Page 155 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

F 0 U R: The Base System

The major new component of Windows 95 is the File Manage­
ment System. It's a completely redesigned subsystem that supports mul­
tiple concurrently accessible filesystems. Barring any old MS-DOS device
drivers that might be present to support a particular device, the entire
File Management System is protected mode 32-bit code. Its design sup­
ports local disks and CD ROM devices as well as one or more network
interfaces by means of an installabl,e fiksystem interface (IFS for short). If
you're really well connected, you can hook up and use your hard disks,
your floppy disks, your CD ROM, your Bernoulli box, your Windows NT
server, and your NetWare network and never leave protected mode the
whole day. In Windows 3.1, it was MS-DOS that provided the filesystem
support for local disks. Support for CD ROM devices and network
filesystems was, at the very least, confused and confusing. 4

The system services called upon by Windows applications-for
graphics, window management, and the like-are all still there, and
they retain the Kernel, User, and GDI names they had in previous ver­
sions of Windows. The major change in the system services subsystem is
its support for 32-bit applications. Apart from their different memory
management requirements, 32-bit applications use a full 32-bit Windows
API and call upon services that are now implemented using 32-bit
code. Making the mixture of 16-bit and 32-bit components cooperate
effectively and with good performance was one of the major design and
implementation challenges the Windows 95 team faced.

Protection Rings in Windows 95
Windows 95 exploits the Intel 386 processor's ability to support mul­
tiple privilege levels. Since the handling of these rings of protection
tends to affect several aspects of system design, it's worth reviewing
their use up front. Windows 95 runs the processor using privilege levels
zero and three. The ring zero components are what you norm~ly think
of as the operating system proper, including, for example, the lowest lev­
els of memory management support. Ring zero software has omnipotent
power over the system: all the processor instructions are valid, and the
software has access to critical data structures such as the page tables.
Clearly, it behooved the system designers to ensure that the software
running at ring zero would have a very good reason to be there and
be completely reliable. For the most part, Windows 95 ensures these

4. The first release of Windows for Workgroups improved this situation some, and
version 3.11 made it better yet. The protected mode FAT filesystem made its debut
in the 3.11 release of Windows.

107

Ebay Exhibit 1013, Page 156 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

conditions. The lapse is in the facility that allows the user to install one
or more new virtual device drivers to support an add-on hardware de­
vice or provide some systemwide software. service. VxDs always run at
ring zero, and if one of them fails, it can cripple the entire system. Un­
fortunately, the performance overhead that would have been incurred
by putting each VxD in a private address space so that failed drivers
could be isolated and halted was deemed unacceptable. 5

Windows applications and MS-DOS applications always run at
ring three,. so their privileges are significantly restricted. Also running
at ring three are the central components of the Windows graphical en­
vironment: Kernel, User, and GDI. The term Kernel has been so preva­
lent in descriptions of how earlier versions of Windows operate that
we'll keep its sense in that context rather than adopt the more classic
use of the word to describe the ring zero components of Windows 95.

Some operating systems try to use the other privilege levels of­
fered by the Intel 386 processor. Windows 95 isn't one of them. The
two-ring model (sometimes called "kernel and user modes") works
pretty well for most needs. The Windows 95 designers could have come
up with ways of using the other rings-running user installed VxDs at
ring one to reduce the system integrity problem, for instance. But this
line of thinking leads rapidly to a consideration of the various trade­
offs, notably implementation effort and system performance vs. real
user benefit. A ring transition on the Intel 386-a change of control
from one processor privilege level to a different one-is expensive in
terms of execution time.6 A lot of processor controlled validation and
register reloading occurs whenever there's an alteration in processor
privilege level-that is, a jump between rings-so minimizing such
transitions represents a big benefit to system performance. This is also
why most of the code for the WiNdows graphical system runs at ring
three. Incurring a ring transition for every Windows API call would
likely result in system performance reminiscent of Windows 1.01 run­
ning on an IBM PC XT.

Windows 95 Memory Map

108

The 386 provides a 4-GB virtual address space, and Windows 95 uses it
all. Within this virtual address space, the different system components

5. The problem did get quite a bit of attention. The Windows 95 development
tools do include new VxD debugging and parameter validation capabilities.

6. A direct subroutine call to code in another segment takes 20 clock cycles on the
486. If a ring transition is involved, you need to budget 69 clock cycles. And that's one
way only. The return path is expensive too.

Ebay Exhibit 1013, Page 157 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

F 0 U R: The Base System

and applications occupy regions with fixed boundaries. Figure 4-2
shows the basic memory map for the system. One duty of the Virtual
Machine Manager (VMM) is to map this 4-GB virtual address space
into the available physical memory. 7

Address·
(32-bit hexadecimal)

Figure 4-2.

FFFFFFFF ;,

BFFFFFFF

07FFFFFF

003FFFFF

000FFFFF
00000000

Windows 95 system memory map.

Address

4GB

3GB

2GB

4MB

1 MB

0

7. The Windows 95 base operating system uses two selectors-28 and 30-for code
and data. The base and limit for the associated descriptors are set at 0 and 4 GB,
effectively providing access to the entire virtual address space.

109

Ebay Exhibit 1013, Page 158 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

In the system memory map, the lowest 1 MB of the virtual address
space is used for the currently executing MS-DOS VM. Each VM also
has a valid memory map within the 2-GB to 3-GB region.8 This map­
ping allows the system itself to address the memory of a VM regardless
of whether it is active. But when an MS-DOSVM runs, it's also mapped
to the bottom 1 MB.

Within the virtual address space of a 32-bit Windows application,
the standard development tools use 4 MB as the default load address.
You can choose a lower address, but you'll incur a lot of overhead with
all the fixups the system will have to carry out when it loads the applica­
tion. Loading into the 4-MB to 2-GB region is immediate. The 4-MB
application load address matches the address Windows NT used for
loading 32-bit applications in its first production release, so it's a sensible
choice. The lowest 16K of each 32-bit application's address space (that is,
virtual addresses 0 through 3FFF) is invalid. This deliberate design deci­
sion aims to trap program errors. One of the most common program­
ming errors is the erroneous use of a null program pointer. Under
Windows 95, the 0 address will generate a memory fault, an error likely
to be caught by the developer and not get as far as the user.

Tasks and Processes

110

One significant change in Windows 95 that needs to be appreciated at
the outset is the change in terminology from task to process. Windows 3.1
documentation usually used the word task to describe the running in­
stance of a program. Windows 95 aligns itself with Windows NT in using
the word process to describe the same thing. A lot of the Windows 3.1
documentation wa.sn't particularly rigorous in using the word task, so
you can actually find both words used. In Windows 95, the word process
refers, at least in the case of 16-bit Windows applications and MS-DOS
applications, to the "task" you already know about.

If you study the documentation for Windows 95, you'll see that
API calls such as GetCurrentTask() are marked "deleted" or "obsolete,"
and you're referred to the new APL (Yes, you'll find GetCurrentProcess()
instead.) Of course, the compatibility constraints that govern Windows
95 .mean that the system must still support the older task API calls, so
they aren't really "deleted" in the true sense of the word. Even though

8. The 2-GB low address boundary of the shared memory region moved from
1 GB to 2 GB in successive test releases of Windows 95. (Although such a move wasn't
contemplated, it may even have moved again by the time you read this.) It isn't an
address you should depend on for any reason.

Ebay Exhibit 1013, Page 159 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

F 0 U R: The Base System

Microsoft doesn't expect anyone to develop new 16-bit applications,
you could still do that, and the task APis would be available to you.
Once you enter the 32-bit world, though, a "process" is what you have
and the process APis are what you use.

Virtual Machine Management
The virtual machine concept that was so important in the very first imple­
mentation of Windows on the Intel 386 is alive and well in Windows 95.
The Virtual Machine Manager is truly the heart of the Windows 95 base
system. The efficiency of the VMM has a major impact on the perfor­
mance of the whole system, and some of the most complex compo­
nents of the OS live there. The code for the VMM consumed some of
the best efforts of the development team, and they've added a lot of
new functionality:

11111 32-bit Windows applications are preemptively scheduled
within per-process private address spaces.

II Many new system primitives related to the preemptive sched­
uling environment are available to VxDs.

II VxDs can be dynamically loaded and paged, which reduces
the working set for the system.

Also, within the Windows User module, each 32-bit application
obtains a private message queue-eliminating the possibility of a
single application's locking up the entire system, which can happen in
Windows 3.1.

Windows 95 uses the same two basic types of virtual machine that
Windows 3.1 did:

Real MS-DOS

II The system VM, in which the Windows Kernel, User, and GDI
components as well as all the Windows applications run

II The MS-DOS VMs that run a single MS-DOS session each,
with applications running in either virtual 8086 mode or
protected mode

Despite earlier statements to the contrary, MS-DOS is still alive and well
in Windows 95. (You didn't really think it had gone away, did you?) The

111

Ebay Exhibit 1013, Page 160 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

code and data for the current release of MS-DOS (version 6.22) will be
present on the Windows 95 disks at shipment, although it's not clear ex­
actly how the packaging and pricing issues will be resolved. Here's why
MS-DOS is still around:

!Iii Windows 95 supports a single MS-DOS-based application mode­
to give it its official title. This mode is for MS-DOS applica­
tions that can't run under Windows-typically, game programs
that have stringent timer control requirements.

Ii The software in the "hidden" VM, where Windows sets up the
global MS-DOS context for all other VMs, has to come from
somewhere. MS-DOS itself is the obvious candidate for ·
providing the MS-DOS context.

Earlier in the development of Windows 95, the intention was to use
MS-DOS as the bootstrap loader for the system. Rather than reinvent
the code that brings the system to life, processes the CONFIG.SYS and
AUTOEXEC.BAT files, and then runs Windows proper, Microsoft
planned simply to use MS-DOS. Eventually, the boot process was put
into the WINBOOT.SYS module. The module contains a lot of MS-DOS
code, but it's tailored to the job of getting Windows 95 into memory and
starting it.

The big difference in Windows 95's relationship with MS-DOS is
that if you run only Windows applications, you'll never execute any
MS-DOS code. As successive versions of Windows have appeared, each
has supported more and more of the MS-DOS INT-based software ser-

. vices, and Windows applications have had an ever decreasing need to
switch in and out of virtual 8086 mode to execute MS-DOS code. The
big exception to this (up to Windows for Workgroups version 3~ 11) has
been support for the filesystem services. Windows 95 finally breaks all
ties with the real mode MS-DOS code, and with few exceptions even
the existing 16-bit Windows applications follow a protected mode path
through the new File Management System to the disk and back.

Virtual Machine Scheduling

112

Process scheduling in Windows 95 is so closely tied to the management of
virtual machines that it's appropriate to examine scheduling as part of
the VMM discussion. The Windows 95 scheduling algorithms deal with

Ebay Exhibit 1013, Page 161 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

F 0 U R: The Base System

virtual machines, processes, timeslices, and priorities similarly to the way
Windows 3.1 did. Windows 95 also introduces threads, the principal ob­
jects that the system scheduler deals with. The thread is now the basic
unit of scheduling in Windows 95. If you're familiar with Windows NT or
OS/2, you're accustomed to dealing with threads. A thread

1111 Is an execution path within a process.

Iii Can be created by any 32-bit Windows application or VxD
running on Windows 95.

Ill Has its own private stack storage and execution context
(notably processor registers).

Ill Shares the memory allocated to the parent process.

Ill Can be one of many concurrent threads created by a
single process.

Threads are sometimes called "lightweight processes" because cre­
ating and managing them are relatively simple operations. In particular,
the fact that threads share all the code and global data of the parent pro­
cess means that setting up a new thread involves only minimal amounts
of memory allocation. When Windows 95 loads an application and cre­
ates the associated process data structures, the system sets up the process
as a single thread. Many applications will use only a single thread
throughout their execution lifetimes. But an application can (and many
do) use another thread to carry out some short term background opera­
tion. Under Windows 3.1, waiting for a word processor to load a large
document can be tedious. If you change your mind halfway through,
you still have to sit and watch the hourglass cursor for a while before
you can do anything else. Under Windows 95, the application can cre­
ate one thread to load the document and another to manage a dialog
with a Cancel button. Any time you want to, you can interrupt the docu­
ment loading operation with a single click.

Thread services are available only to 32-bit applications and VxDs
under Windows 95. MS-DOS VMs and the older 16-bit Windows appli­
cations can't call the thread APis. An MS-DOS VM represents a single
thread: in simple terms, an MS-DOS VM is a process is a thread. Every
16-bit Windows application uses a single thread of execution, and the
cooperative multitasking model for older Windows applications is pre­
served. Any 32-bit Windows application or VxD can create additional

113

Ebay Exhibit 1013, Page 162 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

114

threads, and Windows 95 can schedule all these threads preemp­
tively-adding a whole new facet to Windows multitasking.9

The Windows 95 Schedulers
There are two schedulers within the Windows 95 VMM: the primary
scheduler, which is responsible for calculating thread priorities, and the
timeslice scheduler, which is responsible for calculating the allocation of
timeslices. Ultimately, the timeslice scheduler decides what percentage
of the available processor time to allocate to different threads. !fa thread
doesn't receive execution time, it's suspended and can't run until the
schedulers reevaluate the situation.

Here's how the scheduling process works:

1. The primary scheduler examines every thread in the system
and calculates an execution priority value for the thread, an
integer between 0 and 31.10

2. The primary scheduler suspends any thread with an exe­
cution priority value lower than the highest value. (The
highest value doesn't necessarily mean the value 31. If two
threads have the execution priority value .20 and every other
thread has a priority value lower than 20, then 20 is the
highest value until the next priority recalculation.) Once a
thread is suspended, the primary scheduler pays no further
attention to the thread as far as priority calculation during
this timeslice is concerned.

3. The timeslice scheduler then calculates the percentage of the
timeslice to allocate to each thread using these priority values
and knowledge of the VM's current status.

4. The threads run. By default, the primary scheduler will re­
evaluate the priorities every 20 milliseconds.

In the example in Figure 4-3, two of the five active threads (B and
D) have execution priority values of 20 and the other three threads

9. Although these threads can correspond to radically different program types,
the system represents each thread using the same data structure. Thus, the scheduler,
along with other 32-bit system code that uses these internal data structures, could be
implemented without the team's having to worry about 16-bit to 32-bit translation
idiosyncrasies.

10. That this is the same priority model as Windows NT's reflects a design guide­
line for Windows 95: "where it makes sense to, be the same as Windows NT."

Ebay Exhibit 1013, Page 163 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

F 0 U R: The Base System

have lower priorities. The timeslice scheduler will therefore divide the
next timeslice between threads B and D.

Three control flags maintained for each VM also play into this
process. VMStat_Exclusive tells the scheduler that the VM in question
must receive 100 percent of the next timeslice; neither of the remain­
ing two flags is set. One of the remaining two flags-VMStat_Background
and VMStat_High_Pri_Background-must be set if the scheduler is to

System VM

MS-DOSVM

Thread B Thread D MS-DOSVM

Figure 4-3.
Windows 95 thread scheduling.

115

Ebay Exhibit 1013, Page 164 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

116

grant a background VM any allocation of the next timeslice; otherwise,
· the foreground VM gets the entire allocation.

Scheduling Within the System Virtual Machine
All the Windows application threads run within the System VM context.
The System VM is the only VM that supports multiple threads: one for
each 16-bit application and at least one for each 32-bit Windows appli­
cation. As you can see from the discussion of the scheduling algorithm,
it's possible (in fact probable) that the System VM will frequently con­
tain multiple nonidle threads with equal high priorities.

To handle this situation, the timeslice. scheduler adopts a round
robin scheduling policy to ensure a fair allocation of execution time
among threads of equal priority. Once a thread within the System VM
consumes its allocated execution time, the scheduler puts it at the end
of a queue of threads with equal priority. This classic technique ensures
that each thread at the highest priority level has an equal opportunity
to consume processor time. If the chosen thread fails to consume all of
its allocated processor time, the scheduier hands the processor to the
next thread of equal priority in the System VM and allows it to use the
remainder of the timeslice.

Controlling ·the Scheduler
Two different influences control the scheduler. One is its own internal
algorithms that try to provide a smooth multitasking environment with
each thread receiving an equitable share of processor time. "Smooth" in
this context is really a user perception-the goal is to provide a thread
with enough processor time to get work done but not so much time that
other threads are locked out for long periods. Erring on the side of pro­
viding too much processor time to a thread will give the user an impres­
sion of slow response as he or she waits until the system switches to the
new thread. Providing too little processor time to threads will give the
user an impression of jerky response as the system switches among
threads. The other influence on the scheduler is the direct calls on sys­
tem services that VxDs might make.

Internally, the scheduler uses three techniques to help it meet its
goal of equitable distribution of processor time for an impression of
speedy and smooth response:

Dynamic priority boosting allows the primary scheduler to briefly
raise or lower the priority of a thread. For example, a keystro~e
or a mouse click indicates that the receiving thread's priority
should be boosted.

Ebay Exhibit 1013, Page 165 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

F 0 U R: The Base System

Timed decay causes the boosted priority of a thread to gradually
return to its usual value.

Priority inheritance rapidly turns a low-priority thread into a higher­
priority thread. Typically, a thread's priority is inverted to allow a
low-priority thread to rapidly complete its use of an exclusive
resource that high-priority threads are waiting for. 11

The VMM includes a large number of services available to VxDs.
The operating system uses these services extensively to control multi­
tasking operations. For software authors brave enough to dive in, the
multitasking services are all available from within user installable VxDs.
These services allow a VxD to inquire about current scheduling condi­
tions-priorities, timeslices, VM focus, and other parameters-and to
adjust those conditions.

Threads and UAEs
Ontt of the problems facing the Windows designers has always been
how best to deal with applications that fail during execution. Whether
you call such a crash a UAE or a general protection fault, it comes from
a bug-probably in the application itself, although the user tends to
blame Windows. It's unlikely that any generation of Windows applica­
tion designers will deliver totally bug-free software, so Windows itself
has to be able to deal with application crashes. This involves two things:

Ill Handling the program failure gracefully-meaning allowing
the user to close the application with a minimum of fuss
and no lost data.

Ill Cleaning up afterwards. Apart from open files, the application
undoubtedly owns handles to system resources such as
memory segments, pens, and brushes. If the system can't free
up the memory these resources occupy, the available free
resources are reduced.

The most common application program error resulting in a crash is
an addressing error. Typically, the bug causes the program to try to use an
invalid pointer to some object. A 0 address is the most common case,
which is why address 0 is always an invalid address for every Windows

11. Windows 95 immediately adjusts the inherited priority back to its normal value
once the contention condition is past.

117

Ebay Exhibit 1013, Page 166 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

118

95 application. Such an addressing error causes a general protection fault
on the 386, and eventually the user sees a dialog box that provides the
name of the program module that caused the fault and the option to
close the erring application. Of course, this information and the op­
tion to close the application don't help the user very much, and often
the system behaves very strangely even after the user closes the applica­
tion and dismisses the dialog box.

Windows 95 addresses this problem in two ways. First, the general
protection fault handler runs as a separate thread within the system.
Thus, rather than having the fault and the closing of the application
handled from within the application context, which may by now be in a
hopelessly messed-up state, Windows 95 has the fault dialog and pro­
gram termination managed by a thread in a known (good) state.

The system has already tagged every allocated resource with a
thread identifier, so if a thread terminates abnormally, the system can
search its tables for any resources the thread owned and return them to
an unused state. All global memory, window resource.s, logical brushes,
device contexts, and other resources are available for reuse after this
postmortem cleanup. The cleanup goes into immediate effect if a 32-bit
thread fails. Amazingly, one of the "techniques" used by some existing
Windows applications relies on allocated resources remaining available
even after the application quits. For this reason, the resource cleanup
can't take place until the system notices that there are no 16-bit applica­
tions running. Then any remaining allocated resources can be returned
to the free pool.12

Threads and Idle Time
Another use of the thread mechanism is to schedule background ac­
tivities that can run when the system is quiescent. 13 Waiting until the
system is quiescent ensures that the maximum number of processor
cycles remains available to applications.

12. This technique works also when an application simply "forgets" to release a
resource, such as a display context, b_efore exit.

13. In Windows 3.1, there was a background VxD that wrote modified memory
pages out to the swap file. When no applications were running, this process woke up
and ensured that the swap file images matched the memory images of the currently
executing programs. Experiments showed that this really wasn't a big performance
win, and the technique was dropped in Windows 95.

Ebay Exhibit 1013, Page 167 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

F 0 U R: The Base System

Application Message Queues
The event driven nature of all Windows applications calls for the system
to provide an effective means of delivering messages to every applica­
tion. A message is sent at the behest of a device driver (representing
the occurrence of some e:xoternal event such as a mouse click), by an­
other Windows application, or by the system itself (for example, the sys­
tem will notify other processes when a new application starts). The
system puts all the hardware-initiated messages into a data structure
called the raw input queue.

A classic problem with Windows 3.1 is that every Windows applica­
tion draws messages from a single systemwide message queue. This mes­
sage queue contains a processed form of the raw input messages suitable
for application consumption as well as all the other messages that flow
through the system. Whenever a process asks for a message (usually with
a GetMessage() call), the system simply delivers the message at the head of
the queue. Until the process yields control of the CPU, the system
doesn't try to deliver any more messages. Since there is no preemption
in Windows 3.1, if an application fails, the flow of messages-and conse­
quently the system-comes to a halt. No doubt you've seen this phenome­
non when an application puts up the hourglass cursor and goes to
sleep-sometimes forever. Clicking the mouse on other windows doesn't
help the situation in the least.

Unfortunately, even if Windows 3.1 were to provide a preemptive
multitasking environment, a single message queue would still cause the
same problem. For example, suppose that two messages (A and B) des­
tined for the same process were at the head of the queue and that the
process accepted message A and then failed, looping endlessly. The
timeslice would expire, and the system would reschedule and grind to a
halt-unable to deliver message B to the recalcitrant process.

To prevent this kind of situation, Windows 95 supports multiple
message queues, a design improvement it shares with Windows NT.
Since the efficient flow of messages is vital to good response times and
smooth multitasking, this design technique is key. It ensures that a
single errant application can't lock up the entire system.14 The multiple
queue technique is called· input desynchronization, and Figure 4-4 on the
next page shows how it works.

14. For the most part. There's still a design problem associated with the 16-bit
application subsystem that we'll look at later in this chapter.

119

Ebay Exhibit 1013, Page 168 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

120

Hard disk
Keyboard

r
Messages from devices

~~i/~
Raw input queue

Applications

System
messages

Messages
from devices

Application
messages

l ___ ,J

i
32-bit application

Thread message Thread message
queue queue

Figure 4-4.

32-bit application
message queue
(primary thread)

Multiple queue message delivery under Windows 95.

11

Application message
queue for all 16-bit
applications

Under Windows 95, new messages are put into the raw input queue
only briefly. An execution thread within the system regularly empties this
queue and moves the messages to one of these queues:

Ebay Exhibit 1013, Page 169 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

F 0 U R: The Base System

• A single queue for all 16-bit applications-meaning that the
behavior for these applications is exactly as it was under
Windows 3.1

R A private per-thread queue for 32-bit applications

Messages generated by the system itself or by other processes
move straight to the private queues. There's a small amount of internal
buffering if the system is extremely busy, but most of the time that isn't
necessary. When a 32-bit process first runs, it has a single message
queue associated with its primary thread. If the process creates another
thread, the system doesn't immediately create another message queue,
though. The system creates another message queue only when the sec­
ond thread makes its first message queue-related call. If a thread
doesn't need a message queue, the system doesn't waste any resources
building one.

Physical Memory ·Management
Underlying the virtual machines and the virtual address space sup­
ported by Windows 95 are the confines of the physical memory present
on the host system. Managing physical memory is the process of choos­
ing which pages within the system's 4-GB virtual address space to map
to physical memory at any instant in time. The system swaps the re­
maining active pages in the virtual address space to and from the hard
disk, reassigning physical memory pages as it needs to. Many physical
pages-for example, those occupied by the memory resident compo­
nents of the kernel-have their use determined during system startup.
These pages never change roles and don't figure in the memory man­
agement process. On a system with 4 MB of RAM and a small (probably
very small) disk cache, you can expect roughly 1 MB of memory to be
locked down this way. Several software components contend for the re­
mainip.g physical memory: dynamically loaded system components, ap­
plication code and data, and dynamically allocated regions such as
DMA buffers and cache regions for the filesystem.

The Windows 95 physical memory manager is brand-new code. The
main reason for rewriting the existing memory manager was the prolifera­
tion of memory types that Windows 95 has to deal with. Along with all the
memory page types that Windows 3.1 has to manage, Windows 95

121

Ebay Exhibit 1013, Page 170 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

122

memory page types include 32-bit application code and data, dynami­
cally loadable VxDs, memory mapped files, and a dynamic filesystem
cache. 15 This increase in complexity was enough to dictate a rewrite.

Unlike the design of a multiuser system, in which the operating
system has to worry about equitable sharing of the precious memory
resource, the Windows 95 design allows you to fill your memory as you
wish. All available physical memory pages are created equal, and both
the system's dynamically loaded components and running application
programs compete for available memory pages. You want an applica­
tion to run as fast as possible, so the application is allowed to fill as
much physical memory as can be made available. Over an extended
period, machines with 8 MB or less of memory are likely to gradually
fill all the available memory and have to start paging.16 Note that the
system imposes a restriction on the total amount of memory an applica­
tion can lock-if this weren't controlled, it would be possible to reach a
deadlock situation. Once physical memory is full, the next page alloca­
tion request starts the paging process. An interesting side effect of this
design is that there is no reliable way for an application to determine
how much memory is available in the system. The GlobalMemoryStatus()
API reports various statistics about the system's memory, but the report
is a snapshot of current conditions, and calling the API again will prob­
ably yield different results.

The paging algorithm in Windows 95 is a standard wast recently
used (LRU) technique that re-allocates the oldest resident pages when
new requests must be satisfied. 17 Pages come and go from different
places: most pages are either directly allocated in memory (as a result
ofa request for new data pages) or loaded initially from an application's
.EXE file. Subsequently, these pages travel back and forth between
physical memory and the swap file. The system always loads pure code

15. The VCache filesystem caching VxD.interacts with the physical memory
manager, claiming and releasing chunks of memory that can then be allocated to the
individual filesystem drivers for cache usage.

16. Windows 95 remembers what it loaded, and even after an application exits, its
code pages may remain in memory for some time. If the pages aren't taken for some
other purpose and the user happens to run the same application again, the pages are
still there and can be reused.

17. Early test releases of Windows 95 used a simple page-at-a-time paging algo­
rithm. Late in 1993, the developers began experimenting with clumping pages
together and paging a block of pages in each operation. At the time of this writing,
page out operations were being done in groups, and page in. operations were being
done one page at a time.

Ebay Exhibit 1013, Page 171 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

F 0 U R: The Base System

pages for Win32 applications and DLLs from their original executable
files. This setup doesn't entirely rule out the possibility of using self­
modifying code: if a code page is modified (usually by a debugger), the
page becomes part of the process's swappable private memory-so it
isn't subsequently reloaded from the .EXE. WriteProcessMemory() is the
API that debuggers can use to modify an application's memory image.
Applications can use this API themselves and achieve the same effect.

To assist in the management of all the different types of memory,
every active page-that is, every page that is part of an executing system
module or application-has a handle to a pager descriptor (PD) stored
with it. A PD holds the addresses of the routines used to move a page
back and forth between physical memory and the disk. Regardless of
the type of memory the page contains, to get the page into or out of
memory the physical memory manager simply calls the appropriate
function as defined by the page's PD. Figure 4-5 shows the structure of
a PD. A page is defined as a ''virgin" page ifit has never been written to
during its lifetime. (Win32 application code pages are usually virgin
pages, for example.) A page is "tainted" ifit has been written to at least
once since it was originally allocated, and a tainted page is either
"dirty" or "clean" depending on whether it has been written to since it
was last swapped into physical memory-in which case its contents
must be written out to the swap file before the physical memory page
can be re-allocated.

Figure 4-5.
Pager descriptor structure.

123

Ebay Exhibit 1013, Page 172 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

124

For a Win32 code page, only the pd_virgi,nin routine is needed-all
others are null operations. For a Win32 data page, the PD functions
would be set up this way (a null entry denotes, esssentially, a no-op):

pd_virgjnin

pd_taintedin

pd_cleanout

pd_dirtyout

pd_virgjnfree

pd_taintedfree

Load the page from the .EXE file.

Load the page from the swap file.

Null.

Write the page to the swap file.

Null.

De-allocate the page's space in the swap file.

The functions for an initialized swappable data page would be the
same as this except that the pd_virgi,nin routine would point to a rou­
tine that zero fills the page.

In Windows 3.1, the system allocates the swap file during system
setup. This allocation involves the user in responding to a few rather
obscure questions, and once it is created, the swap file occupies a siz­
able chunk of the hard disk. Regardless of what the system actually
ends up using, the swap file stays the same size, and Windows 3.1
doesn't offer the user much help in tuning its size to the minimum nec­
essary amount of memory. Windows 95 fixes these deficiencies by using
a normal disk file (not hidden, not contiguous) that expands and con­
tracts to the required size during system operation. The swap file gets
only as large as it has to, and the user is never involved in either setting
it up or adjusting its size.

The bad news about this technique is that under certain condi­
tions the swap file can become much larger than it has to be. For ex­
ample, if you run one application, get a lot of its data pages dirty, and
then run a second application, the first application's data pages will
swap to the front of the swap file. Now, if you dirty up plenty of data
pages in the second application, switch back to the first application
(forcing those data pages out to the end of the swap file), and quit the
first application, there will be an unused hole at the front of the swap
file. 18 One feature of the Windows 95 design that helps reduce this frag­
mentation problem is that a physical memory page doesn't always

18. AILhough it wasn't implemented in the test releases, Microsoft planned to
incorporate a background swap file compaction process to prevent the swap file from
growing too large.

Ebay Exhibit 1013, Page 173 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

F 0 U R: The Base System

occupy the same page in the swap file. Unlike in Windows 3.1, ifa dirty
page has to be swapped out in Windows 95, it's swapped to the first
available page in the swap file. This tends to push pages toward the
front of the file.

Virtual Memory Management
Virtual memory management m Windows 95 did get considerably
more complex. Windows 95 puts several new demands on the virtual
memory manager:

11\1 The new Win32 application type with many new API functions
that support a number of different shared and dynamically
allocated application memory types

II Dynamically loadable system components

All of these demands require changes to the 32-bit protected
mode virtual memory manager, although no changes are required to
support the older Winl6 applications. First, let's examine the new virtual
memory types that Windows 95 must support for Win32 applications.
As you can see in Figure 4-6 on the next page, Windows 95 allows a
Win32 application to consume an enormous virtual address space­
and there are plenty of new features available to Win32 programs to
encourage the consumption of all that space, including true shared
memory and a number of new dynamic memory allocation capabilities.
The base OS allocates all Win32 application private virtual memory re­
gions within the lower 2 GB of the virtual address space. All shared
memory objects-for example, shared memory regions created by the
application-reside within the 2-GB to 3-GB region. Originally, the de­
sign had the Windows subsystem DLLs living within this shared memory
region. A later change moved these DLLs above the 3-GB boundary,
mapping them into the System VM's address space as necessary. Notice
that a Win32 application has a true 4-GB address space. Calls to system
DLLs are direct calls with no ring transition and no context switch. The
advantage of this approach is its speed-there's no overhead beyond the
overhead of the function call itself. The disadvantage is that an applica­
tion can obtain a pointer into the system address space and start poking
around-possibly to no good effect. Under Windows NT, the system ad­
dress space is truly protected and no application can obtain a pointer
into it. In this particular instance, the Windows 95 designers went for
performance over security.

125

Ebay Exhibit 1013, Page 174 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

126

Address
(32-bit hexadecimal)

Figure 4-6.

FFFFFFFF

BFFFFFFF

07FFFFFF

003FFFFF

00003FFF
00000000

Win32 application virtual memory map.

Address

4GB

3GB

2GB

4MB

16K

0

Within the shared memoryregion, the different objects will ap­
pear in the address space of every Win32 process. This means that
whenever the system allocates a shared object, that piece of the address
space is reserved in the memory map of every Win32 process-regard­
less of whether the process cares about the particular shared object.
Suppose, for example, that you have two processes A and B that need to
communicate with each other by means of a 64K shared memory region.

Ebay Exhibit 1013, Page 175 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

F 0 U R: The Base System

Process A allocates the shared region, and process B attaches to it. The
system determines where in the shared region the memory actually ex­
ists. Let's say that the system allocates address Ox8000000 to Ox800ffff.
Now suppose that processes C and D run and do some similar alloca­
tion and sharing. C and D don't care, or even know, about A and Band
their shared memory area. This time the system will allocate a shared
region for C and D between Ox8010000 and Ox80 lffff. The first 64K has
already been reserved across all memory maps, so it's unavailable to C
and D. You might object that the disadvantage here is the possibility
of filling up the shared region. But seriously? One gigabyte of shared
memory? The huge advantage is the performance benefits gained by
mapping a shared region to the same address in every process that uses
it. A process can access the region by simply using the 32-bit pointer the
system hands back-there's not even any system call overhead. 19

The memory management services within the base OS must sup­
port the creation of many different memory object types within the
application's virtual address space. Managing their allocation and de­
allocation efficiently is a key aspect of the system's memory manage­
ment capabilities. Many virtual memory management functions
require that the system back up the virtual memory by allocating physi­
cal memory at some point (although there are functions that simply
reserve never-to-be-used regions of virtual address space). However, ac­
tual physical memory allocation (that is, RAM allocation) may not oc­
cur immediately since there's no need to back up the virtual memory
until the application touches the memory page. But the system does
have to take steps to make sure space is available in the swap file.

Memory Mapped Files
Perhaps the most important new memory management feature for a
Windows programmer is the support of shared memory operations
through memory mapped files. In fact, this is the recommended way of
allocating and using shared memory regions. Typically, applications
will use this facility to enable access to large memory resident data
structures. To access a memory mapped file, an application must ob­
tain a handle to a file mapping object using the CreateFileMapping() API
function. Once the application has a handle to the file mapping object,
it can use the MapViewOJFi/,e() API shown in Figure 4-7 on the next page
to obtain a memory address for the memory region. Other applications

19. Again, this approach differs from Windows NT's, in which a shared region can
appear at different virtual addresses within the memory maps of the processes that use it.

127

Ebay Exhibit 1013, Page 176 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

128

Figure 4-7.
Mapping a file into memory.

can access the same file mapping object using the OpenFileMapping()
and Map ViewOJFile() APis.

The pointer returned by MapViewOJFile() is a virtual address some­
where within the 2-GB to 3-GB region. As you'd expect, there's no pre­
dicting where the memory object will be within this region, but the
shared memory region will appear at the same virtual address within
different processes.

The MapViewOJFileEx() API, also shown in Figure 4-7, is usable in
Windows 95. This API tries to force the system to allocate a shared re­
gion at a particular address (and it will fail if some part of that address
space is already in use). Under Windows NT, this explicit request is nec­
essary since the system won't guarantee the same virtual address for the
shared region in each process. Under Windows 95, MapViewOJFileEx()
is redundant.

Reserving Virtual Address Space
A.n application can reserve a region within its virtual address space using
the VirtualAlloc() API (Figure 4-8). The address the application passes
as a parameter may be a specific address, or the application may simply
request a region of a certain size at any available address. The applica­
tion can simply reserve the virtual address space-meaning that no
physical memory is ever allocated to back up the virtual memory. The
application can also set certain conditions on the region, such as read­
only protection.

Ebay Exhibit 1013, Page 177 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

F 0 U R: The Base System

Figure 4-8.
Reserving a virtual address region.

Private Heaps
An application can take advantage of the existing memory allocation
capabilities of the system by creating private heap space using the
HeapCreate() API (Figure 4-9). Once the application has a handle to the
heap area, it can allocate memory from the private heap in the same
way it allocates memory from the Windows global heap. The system re­
serves the memory for the heap within the private virtual address region
of the application and won't allocate physical memory to back up the vir-
tual memory until it's needed. ·

Figure 4-9.
Private heap allocation.

Virtual Machine Manager Services
The Virtual Machine Manager is the single most important operating
system component in Windows 95. As distributed, the VMM is actually a
VxD that lives in the DOS386.EXE file together with a number of other
VxDs, such as the Plug and Play subsystem and the filesystem drivers.
This combination of VxDs forms the base operating system for Win­
dows 95. Once it is loaded during system initialization, the VMM is per­
manently resident. Although the VMM uses the binary format of a VxD,
it certainly isn't a virtual device driver in the sense in which you nor­
mally regard VxDs.

129

Ebay Exhibit 1013, Page 178 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

130

Every VxD can define a service tab"le to identify entry points to func­
tions within the VxD that provide a service to other VxDs or applications.
You can think of the services provided by a VxD as an API that's inter­
nal to the operating system. Since you can add VxDs to a system and
write applications that call on VxD services, for some purposes you can
consider these services as an extension to the Windows APL No, that
doesn't mean that the Windows 95 API suddenly grew by several hun­
dred functions. The services are for use by other VxDs when they're
running at ring zero. Calling them indiscriminately from an application
guarantees a system crash. VxDs don't have to provide any services,
though, and there are standard system VxDs that don't. However, Win­
dows 95 does include a documented interface that allows applications to
call VxD services, and therein lies the major difference from Windows
3.1, which included only an undocumented and non portable interface.

The VMM actually provides a central core of services callable by
any VxD and doesn't deal specifically with any device. Windows 95 con­
tains over 700 services within the base OS. The fact that the VMM pro­
vides close to half of these is an indication of the relative importance of
the VMM.20 Normally, the use ofVMM services is the domain of device
drivers, debuggers, and other system-level extensions to the base OS,
and the scope of VMM services covers the lowest level of OS require­
ments, such as

II Memory management-meeting the physical and virtual
memory allocation requirement details

II Scheduling-dynamic priority management and timeslice
administration

II Interrupt handling-hardware device and fault management

II Event coordination-notification and thread supervision

As its name suggests, the VMM controls Windows' virtual ma­
chines. It keeps track of each VM using a v.M control block and a 32-bit
handle that identifies the specific VM. (The handle is actually the vir­
tual address of the VM control block.) The VM control block contains
information about the current state of the VM, including the VM's exe­
cution status (idle or suspended, for example), the VM's scheduling

20. A normal Windows 3.1 system includes a total of about 400 services, and the
Windows 3.1 VMM offers 242 services.

Ebay Exhibit 1013, Page 179 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

F 0 U R: The Base System

priority, and copies of the VM's registers. Discussions ofVMM services
refer to VMs as clients of the VMM, and you'll often see references to
"client" data structures such as the Client_&g_Struc area used to save
the VM's registers.

Calling Virtual Machine Manager Services
Before looking at how VxDs and applications interact with the VMM,
we should look at how the OS supports the various code paths in the
system, noting at the same time several new features of Windows 95. De­
veloping a VxD is not a trivial task. The VMM and every other VxD is
always 32-bit protected mode software running at ring zero, and you
have to use assembly language to call upon VMM services. The Microsoft
Windows Device Driver Kit tells you why you might want to do this and
how to go about it.

Figure 4-10 shows an example call to the VMM's Call_Global_Event
service. As you can see, the VMMcall macro masks the true nature of the
call to the VMM service. A VxDcallmacro is used in a similar way. In fact,
both macros generate the same sequence of instructions, so the differ­
ence in name is more for documentation than for any other reason.

Figure 4-10.
Calling a VMM service from a VxD.

VMM Callbacks
One of the important techniques used by the VMM and other VxDs is
a callback mechanism that allows a VxD to register the address of a pro­
cedure for the VMM to call when certain conditions hold. The tech­
nique is similar to the way an application registers window procedures
that the Windows subsystem calls for message processing. The VMM
uses callbacks extensively to notify VxDs of system events such as hard­
ware interrupts and general protection faults and for scheduling re­
lated events. Usually, every VMM service that allows the registration of
a callback is matched by another service allowing the caller to cancel
the callback.

131

Ebay Exhibit 1013, Page 180 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

132

The Call_Global_Event service illustrated in Figure 4-10 is one of
the services that use a callback procedure. When the VxD makes the
call to this service, the VMM will make arrangements to call the proce­
dure whose address is supplied to the VMM service (CallbackProcin the
example) and pass it the other parameter (CallbackData) supplied in
the original request to Call_Global_Event. In this particular example,
the callback from the VMM may happen immediately, or if the VMM is
busy with.a hardware interrupt, it will defer the callback until the inter­
rupt processing is complete. Thus, when the VMM calls the VxD's call­
back procedure, the VxD knows the current status of the system and
has a reference to some data that identifies the purpose of the call.

An important point to note about the VMM in general and the call­
back mechanism in particular is that many VxDs can call the same ser­
vice. If the VMM registers more than one callback for a particular service,
it simply works its way through a list, making each callback in turn. If you
need exclusivity, you have to arrange to get it some other way.

Another example of a callback is the VMM's Call_When_Jd/,e service.
When the system is completely idle-that is, when there is no Windows
action and no VMs are running-the VMM will call every VxD that reg­
isters itself with the Call_When_ldle service. Idle time is a good time to
consume processor cycles for housekeeping chores. Windows 3.1 used it
for writing modified memory pages out to the paging file. Windows 95
uses it for swap file compaction. Other VxDs could register a callback for
their own idle purposes. But on a busy system there are only small
amounts of idle time and no guarantee ofwhen they'll occur or which
other VxDs they may have to be shared with. This indeterminapce is an
aspect of many callback services-so design accordingly.

Loading VxDs
Windows 3.1 loads VxDs at only one time: during system initialization.
There's no provision for loading VxDs while the system is running, as
there is for loading application DLLs. Even if a VxD provides only in­
frequently used services, it must be loaded at startup and remain resi­
dent while Windows runs. Since Windows 3.1 uses the SYSTEM.IN! file
to specify the VxDs to load, installing a new VxD requires the addition
of an entry to SYSTEM.IN!. Another shortcoming of using VxDs in ear­
lier versions of Windows was the identifying mechanism used by the sys­
tem. Every VxD had to have a unique identifier, and VxD developers
had to apply to Microsoft for this magic number.21 The developer then

21. Internet e-mail to vxdid@microsoft.com will get you the information you need.
One ID actually gives you the ability to create up to 16 unique VxDs.

Ebay Exhibit 1013, Page 181 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

F 0 U R: The Base System

embedded the so called VxD ID within the VxD, and the system used
this number at runtime to connect VxD service callers to the correct
VxD. There's nothing sinister about having to apply for an identifier;
it's simply an artifact of a rather primitive method for guaranteeing
uniqueness.

Windows 95 solves most of these problems. VxDs are dynamically
loadable and unloadable, and for most VxDs a new naming convention
does away with the need to acquire a private identifier. Microsoft's short­
hand for dynamically loadable VxDs is "dynaload VxDs," or simply "DL
VxDs." For brevity, we'll call them "DL VxDs." The operating system
loads DL VxDs into the system's private virtual address space (above
the 3-GB boundary), and the DL VxD author can identify the regions
of the VxD's code and data that are pageable. This identification of
pageable regions allows the developer to optimize the DL VxD's work­
ing set. Also, in Windows 95, applications can cause the system to load
DL VxDs by name, which eliminates the need to edit the system's con­
figuration files. You need a unique VxD ID from Microsoft only if the
VxD offers VxD services or other API functions. If your VxD doesn't do
this, you can simply use the constant Undefined_Device_JD as its identi­
fier. Windows 95 will happily load multiple VxDs with this identifier.

For compatibility, you can still load VxDs during system startup. In
fact, that's what happens with the VMM and most of the base system
VxDs. If you write a VxD for disk device support, for example, you'll
probably want it to be loaded during system boot. If the presence of
your VxD is required only occasionally, the dynamic loading technique
is the one to use. Network support is a good occasion for the use ofDL
VxDs, notably for the large components such as network transports.
The Windows 95 Plug and Play and installable filesystem components
are themselves dependent on DL VxDs. The dynamic loading ofVxDs
is the domain of the VXDLDR module-itself a (static) VxD. VXDLDR
offers six services callable by other VxDs or indirectly by application
programs.

The general rules for a VxD in earlier versions of Windows specify
both its executable format and a number of interfaces it must sup­
port.22 The system uses the mandatory interfaces to allow VxD initial­
ization and to call the VxD with certain systemwide events the VxD
must respond to. There are several events associated with system initial­
ization and shutdown, for example, that each VxD is asked to process.

22. The only substantive change to the executable format ofVxD in Windows 95 is
that you can now define both memory resident and pageable code and data sections.

133

Ebay Exhibit 1013, Page 182 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

134

The rules for DL VxDs don't change very much in Windows 95. The
format is a little different, and there are some restrictions on what a DL
VxD can do. Only one restriction is significant: if a DL VxD offers any
VxD services, it can't be dynamically unloaded. One reason for this re­
striction is the difficulty of notifying other VxDs or applications that a
service they're using is about to disappear. Consider the problem asso­
ciated with removing a DL VxD that provides a callback service that
other modules might yet try to use.23

The Shell VxD
The final piece in the VMM puzzle is the module called the Shell VxD,
or sometimes the shell device. Note first that the Shell VxD has absolutely
nothing to do with the user shell, the application that manages the
desktop. Once again, overloaded terminology can lead to confusion.
The Shell VxD is the last component of the base system that gets
loaded, and it's responsible for loading the Windows subsystem (Ker­
nel, User, and GDI). As the user shell is to the user, so the Shell VxD is
to the ring three software.

There's a Shell VxD in earlier versions of Windows as well. One of
its main functions was the display of dialog boxes on behalf of a VxD. It's
the Shell VxD that generated the System has become unstable dialog that
came up frequently in Windows 3.0 and only occasionally-rarely­
in Windows 3.1. Windows 95 expands the Shell VxD services consider­
ably, adding functions in two areas that are relevant to this discussion.

The Shell VxD manages to do its dialog box work by running
briefly within the context of an application. Its memory mapping and
resources are those of the System VM, and in some senses the Shell
VxD masquerades as a Windows application to display a dialog. Win­
dows 95 generalizes this facility and adds Shell VxD services that allow a
VxD to run at application time. A VxD entered at application time can
do anything an application can: open files, load DLLs, and send mes­
sages, for example. VxDs achieve application time execution by sched­
uling an event using the Shell VxD's _SHELL_CallAtAppyTime service.24

Windows 95 implements application time by providing an application
thread that the VxD runs on during the callback. Application time isn't

23. No doubt those who probe around in the depths of Windows will soon come up
with ways to overcome this restriction.

24. The service mnemonic gives away the name genealogy. Its originator called this
context "appy time"-a play on "application" and "happy." Unfortunately, Windows
isn't allowed to be whimsical, so "application time" is what the name became.

Ebay Exhibit 1013, Page 183 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

F 0 U R: The Base System

always available: during system initialization and shutdown, for ex­
ample, the system is in a state in which it can't support application time
processing. One use of application time is to post a graphical Windows
dialog informing a user of the options when he or she has pressed

· Ctrl+Alt+Del to close a nonresponding application. In Windows 3.1,
the system could only display a character mode blue screen.

Right about now you're probably beginning to see the expanded
possibilities in Windows 95 for applications to interact with the base OS.
It gets better yet. The Windows 95 Shell VxD also offers three new ser­
vices that deal directly with Windows messages:

_SHELL_PostMessage posts a message to a specified window.

_SHELL_BroadcastSystemMessage sends a message to a specified
list of windows and VxDs. This service is the same as the Windows
95 BroadcastSystemMessage() API.

_SHELL_HookSystemBroadcast allows a VxD to monitor calls to the
_SHELL_BroadcastSystemMessage service, so that even if a particu­
lar VxD is not a target of the broadcast, it can still observe the
message.

The windows and messages involved in these new services are ex-.
actlywhat you'd expect: application window handles (the hWnds in an
application) and the message identifier and message parameter (the
wParam and lParam in an application message loop). Because the Shell
VxD doesn't constrain the message parameters in any way, you can use
the _SHELL_PostMessage service to set up private transactions between
a VxD and an application. It's essentially a clean way for system compo­
nents to send messages to applications.

Getting Around in Ring Zero
OK, enough discussion of the superstructure. It's time to see how all
these pieces collaborate. Of the more interesting paths in the Windows
code, the hyperspace jumps between ring three and ring zero and
some of the trails within ring zero are among the most revealing. Fig­
ure 4-11 on the next page illustrates the variety of different call and re­
turn transitions. All are code paths executed as a result of a function
call-either a Windows or an MS-DOS API or a call to a base system ser­
vice. Other paths, taken as the result of hardware interrupts or page
faults, aren't illustrated in Figure 4-11.

135

Ebay Exhibit 1013, Page 184 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

136

API Layer t t 1

Ring3

Ringo

Figure 4-11.

l INT 2F function 1684h
(BX == VxD id)/

CALURET Call via INT 30
CALURET._~~--;~,_..~---_-:::::~~~...,_--~---.

lCALURET
CreateFile()/DeviceloControl() (via call gate)

CALURET

Calls and returns among applications and VxDs in Windows 95.

In Windows 3.1, both MS-DOS applications and the Windows
DLLs issued INT 21 software interrupts to call on system services as a
result of API calls from applications. Ultimately, these INT instructions
caused a general protection fault that the Windows 3.1 VMM picked up
in ring zero. In the case of the system virtual machine, the base OS
would then switch the VM to virtual 8086 mode and-for all VMs-the
MS-DOS operating system code would run to process the API call.

Ebay Exhibit 1013, Page 185 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

F OU R: The Base System

Also illustrated in Figure 4-11 is the INT 2F interface supported by
Windows 3.1. For compatibility's sake, the INT 2F interface still works
under Windows 95. But that isn't the way you should do it anymore. The
Windows 3.1 INT 2F function 1684h interrupt allows an application to
retrieve an entry point address for a VxD service. The additional parame­
ters in the call have to specify the VxD identifier. The INT 2F call results
in a fault that the VMM intercepts. Using the VxD identifier, the VMM
searches for a matching VxD .and if successful returns an address that
allows the application to directly call the VxD, requesting one of its ser­
vices. Windows 3.1 actually implements this call by giving the application
the address of an INT 30 instruction within a memory segment full of
INT 30s. When the application calls the INT 30, there's a fault. The
VMM picks up the fault, recognizes it as an INT 30 request, figures out
the offset of the particular INT 30 within the segment, and, lo and be­
hold, there's the index to the requested VxD service. Barring some
trickiness in returning to the application, this interface works the same
for both Windows and MS-DOS applications.

Calling Windows 95 Base OS Services
Obviously; Windows can't do anything about the fact that MS-DOS ap­
plications use INT 21 to call system services. File 1/0-related calls now
get handed directly to the protected mode filesystem INT 21 handler,
and the entire filesystem transaction executes in protected mode. The
Windows subsystem no longer issues software interrupts to initiate the
trap from ring three to ring zero-the subsystem now uses a 386 call
gate, passing parameters that identify the required ring zero service.
This is a faster operation than trapping and unraveling a GP fault and
results in a small performance gain. The return from ring zero to ring
three is similarly elegant, simply using a return via the call gate. In the
case of the System VM, there is no excursion into virtual 8086 mode­
the processor remains in 32-bit protected mode throughout.

Although Windows 95 still supports the INT 2F interface for
compatibility's sake, the recommended interface now uses the Win32
API functions CreateFik() and DeviceloControl(). If you're familiar with
Windows NT, you may already have seen these APis. DevieeloControl() in
particular is intended for use as a general purpose interface that allows
private communication between an application and a device driver.
Windows 95 uses the interface both for device control and for commu­
nication between applications and VxDs.

137

Ebay Exhibit 1013, Page 186 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

138

To initiate communication between an application and a VxD, the
application must obtain a handle to the VxD. You use the CreateFile()
API function to do this (Figure 4-12). The naming syntax for the VxD is
a little unusual. To get a handle to the Shell VxD, for example, you use
the string "\\.\SHELL" as the filename in the Createffle() call. This nam­
ing syntax works for any VxD registered with the system.

Figure 4-12.
The CreateFile() AP/function.

Figure 4-13 shows the API definition for the DeviceloControl() func­
tion. In its normal mode, the API uses the device control code to initiate
a device-specific operation-formatting a floppy disk, for example.
When the function is used for communication with VxDs, the device
control code and the contents of the input data buffer and the output
buffer are entirely application defined. To fully support a VxD interface
for general application use, the VxD developer will have to publish the
supported control codes and the other'details of the data exchange pro­
tocol. But if you write both the application and the VxD, you can use
DeviceloControl() as a private interface for communication between ring
three and ring zero software.25 Within the system, the VMM System Con­
trol service, which is called with a W32_DEVICEIOCONTROL message,
dispatches the DeviceloControl() call to the target VxD.

Calling from One VxD to Another
The last interaction we'll look at is the call and return mechanism be­
tween VxDs that's used within the base operating system. The method

25. The DeviceloControl() interface also has the advantage that, for published
functions, it's portable between Windows and Windows NT. An INT 2F inter­
face definitely isn't.

Ebay Exhibit 1013, Page 187 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

F 0 U R: The Base System

Figure 4-13.
The DeviceioControl() AP/function.

relies on the system's ability to create a unique 32-bit number formed
from the VxD identifier and the VxD's service number. In Windows 3.1,
the VxD identifier had to be assigned before link time. In Windows 95,
the dynamic VxD loading mechanism allows the VxD identifier to be de­
termined at runtime. Both the VMMcall and VxDcall macros generate
code that contains an INT 20H instruction followed by the 32-bit number
identifying the required VxD and service. At runtime, the INT instruc­
tion causes a fault that's picked up by the VMM. The VMM examines the
VxD service identifier embedded in the code and replaces it with a di­
rect CALL to the VxD service entry point. Subsequent calls to the VxD
then go directly rather than cause a fault.

Dynaload VxDs use a similar mechanism in Windows 95, but there
are some subtle differences:

• At compile time, the VMMcall macro generates a CALL in­
struction. The target of the call is an external symbol in the
target VxD indexed by the service identifier.

• At load time, VXDLDR replaces this call with an INT 20
instruction followed by a 32-bit word containing the module
identifier and VxD service number. VXDLDR also sets the
high bit in the 32-bit word to denote that this is a call from
a dynaload VxD.

• At runtime, the VMM patches the INT instruction, using the
32-bit word in the code to map the module identifier to a VxD
identifier.

139

Ebay Exhibit 1013, Page 188 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

You can see ·another reason for the no-services restriction on
dynaload VxDs. Since the VMM patches the calls to VxD services to ac­
tual CALL instructions, if a target VxD were unloaded the VMM would
have to go around changing all the CALLs back to INTs.

VMM Service Groups

140

The VMM is by far the dominant provider of base operating system ser­
vices, and many of the services are either new or improved for Windows
95. Base OS support for the new threaded architecture for Win32 appli­
cations called for many changes and additions to the services, including
thread management, scheduling, and mutual exclusion primitives. The
largest single category of VMM services (about 20 percent of the ser­
vices) deals with memory management. Other services are split among
several different categories. In this section, we'll look briefly at the vari­
ous service groups. All of these services are offered by the VMM.

Event services allow the caller to register callback procedures for
global events or events for specific virtual machines. Windows 95
adds support for thread events-allowing a VxD to signal an
event for a specific thread.

Memory management services include many different memory
allocation and de-allocation functions for both physical and
virtual memory. Other services that provide information about
memory conditions support the memory management functions.
Windows 95 adds services that support the creation and man­
agement of memory for Win32 applications.

Nested execution and protected mode execution services provide
the ability for a VxD to call software within a specific virtual
machine that's running in either virtual 8086 mode or protected
mode. The system may need to call an MS-DOS real mode device
driver or TSR, for example-both of which are always executed
in virtual 8086 mode.

Registry services are new for Windows 95. They allow VxDs to
interrogate the contents of the on-disk registry. The VMM
registry services are similar to those available to applications via
Windows API functions.

Ebay Exhibit 1013, Page 189 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

F 0 U R: The Base System

Scheduler services let a VxD influence the operation of both the
primary scheduler and the timeslice scheduler. The VxD's
influence can include creation and destruction of individual
threads and VMs and adjustments of the current scheduling
priorities and timeslice parameters.

Synchronization services offer a range of functions for managing
semaphores and mutual exclusion objects (mutexes). The VMM also
offers a number of associated services related to critical section
management. Mutex object management, thread-specific ser­
vices, and several of the critical-section services are all new in
Windows 95.

Debug services have been improved in Windows 95, toward the goal
of providing better base OS support for system-level de bugging tools.

1/0 trapping services provide a way for VxDs to collaborate with the
VMM to manage the processor's I/O ports. Using these VMM
services, a VxD can control access to individual I/O ports.

Processor fault and interrupt services allow VxDs to involve them­
selves in the system's handling of specific global conditions such
as page not present faults and NMI interrupts.

VM interrupt and callback services interface a VxD to the software
and hardware interrupt status of an individual VM. For example,
a VxD can acquire and modify current interrupt vector settings
within a specified VM.

Configuration manager services interface a VxD to the Plug and
Play subsystem incorporated in Windows 95.

Miscellaneous services cover a host of other functions used to
support VxD execution, including queries about system initial­
ization, error handling, linked list manipulation, time-outs, and
even internal versions of the faithful printf() function.

Application Support
Although the details of an operating system can be a fascinating study
in and of themselves, the OS must ultimately be judged on how well it
runs application programs and the associated subsystems. In Chapter

141

Ebay Exhibit 1013, Page 190 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

Six, we'll look at the details of the subsystem that supports the graphi­
cal enVironment for Windows applications. Here we'll examine the un­
derpinnings for this support. Earlier we looked at the various code
paths between the ring zero and ring three components of Windows 95
and at how an application calls directly on the services of a VxD. Win­
dows 95 introduces support for 32-bit Windows applications using
Microsoft's Win32 API while it continues support for existing 16-bit ap­
plications (nowadays referred to as "Winl6" applications).

Unlike Windows NT, which began life as a 32-bit operating system,
Windows has evolved slowly toward full 32-bitness. Ever since the release
of Windows/386 in 1988, Windows has included 32-bit code that ex­
ploited the 386. Initially, this code was confined to the ring zero system
components. Then, in the era of DOS extenders, we saw the first 32-bit
applications. Third party VxDs followed. The Win32 API is the next step
toward full 32-bit operation for Windows. Win32 is Microsoft's strategic
system interface. Its first appearances were with Windows NT and in the
subset Win32s API introduced for Windows 3.1. In Windows 95, we see
the implementation of this 32-bit API for a product that will most likely
sell millions of copies-so, yes, it's pretty important to learn about it.
But Windows 95 doesn't support a 32-bit API exclusively. Microsoft
hopes that every new Windows application will be a 32-bit application.
However, given the sheer number of Windows applications now avail­
able, even the most optimistic marketeer has to acknowledge that 16-
bit application support is going to be a feature of Windows for some
time to come.

The API Layer

142

The code path from a Windows 95 application to the supporting system
code and back is very similar to the one traveled by an application run­
ning on Windows 3.1. The system makes extensive use of dynamic link
libraries to provide the necessary code paths between the application
and the Windows subsystem. Earlier the interface between Windows
applications and the Windows subsystem was characterized as a simple
call and return interface (Figure 4-7). It might be simple if every sys­
tem module and application were 32-bit code, but it's actually a lot
more complex.

If you think about the Intel processor architecture for a moment,
you'll realize that the internal code structure of 32-bit Windows applica­
tions and the system code to support them has to be fundamentally

Ebay Exhibit 1013, Page 191 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

F 0 U R: The Base System

different from the existing 16-bit environment. In particular, the varia­
tion in addressing modes means that you can't easily mix 16-bit and 32-
bit code. For Windows 95 applications, this means new compilers,
assemblers, and linkers to enable 32-bit development. The system itself
must at least provide co-resident 32-bit versions of the Windows sub­
systems (Kernel, User, and GDI) to support the new 32-bit API-along­
side the 16-bit API for the older applications. And of course all the code
must be small, fast, well tested, and well documented. No problem? Let's
see about that.

Mixing 16-bit and 32-bit Code
The problem of mixing 16-bit and 32-bit code has occupied many de­
velopers at Microsoft. They have tried various implementation tech­
niques in various forms in earlier versions of Windows and OS/2 and in
Windows NT. The Windows 95 implementation certainly represents
the state of the art. Whether it's the final word on the subject is a differ­
ent matter. Here are the problems: 26

II 32-bit code deals in 32-bit linear addresses (usually called
0:32 addressing). 16-bit code uses a 16-bit segment selector and
a 16-bit offset (known as 16:16 addressing). There has to be a
translation between the two address formats so that the 16-bit
code receives valid pointers originally passed as 0:32 parame­
ters-for example, an address parameter that points to a
C structure. The solution to this problem involves a technique
called tiling, in which the system allocates a new 16-bit seg­
ment descriptor to describe memory that overlies the memory
containing the parameter. (Think of tiles on your roof, and
you'll get the idea.)

Ill In C, the language of choice for Windows, an int data type is
32 bits wide in a Win32 application and only 16 bits wide in a
Winl6 application. When a 32-bit function calls 16-bit code,
the 32-bit int parameters must be narrowed to 16 bits and
then widened on return; this is a relatively easy operation if
the parameters are in registers, but many Windows function
calls will also push parameters onto the stack.

26. Omitted from this list are some tricky problems associated with the different
executable file formats that Windows 95 supports. Essentially, these problems involve
the different relocation information contained within the files. There are people who
live and breathe object file format issues. We're not going to join them in this chapter.

143

Ebay Exhibit 1013, Page 192 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

144

II 16-bit code will return a 32-bit value (for example, a pointer)
in the DX:AX register pair. 32-bit code expects this value to
be in the EAX register.

!fl 32-bit code uses the 386 SS:ESP register pair for stack
addressing. 16-bit code uses the SS:SP registers. There has
to be a stack switch back and forth and possibly some parame­
ter copying.

An implementation device called a thunk is central to the ability to
mix 16-bit and 32-bit code effectively.27 Every call and return from 32-
bit code to 16-bit code, or the reverse, requires a thunk. Whenever an
API call has to use a thunk, the execution time for the thunk code is
pure overhead. If the thunks are slow, application performance suffers.
The implementation challenge is therefore to make the thunks con­
sume the smallest amount of memory (remember, there are hundreds
of APis) and the shortest possible execution time. Thunks are always
written in assembly language. Figure 4-14 illustrates the different API
execution paths in Windows 95 and shows the position of the thunk
layer relative to the better-known subsystems.

The system handles the stack management issues by building a
new stack frame during the transition between the different code types.
A call from one code segment type to another will translate parameter
formats as the parameter values are pushed on top of the existing stack
frame. The addressing of this new frame will then be set up to conform
to the rules of the target code type.

Some of Microsoft's previous effortS at thunk design have been
documented as parts of various product releases. Windows NT uses a
"generic thunk" method whose details you can find in the Win32 Soft­
ware Development Kit. The Win32s subsystem for Windows 3.1 uses a
"universal thunk" mechanism that is an integral part of the subsystem.
The Windows 95 thunk method is another iteration and incorporates
further execution speed improvements.28 Some of the speed improve­
ments result from using as much 32-bit code as possible within the

27. The term thunk came to Microsoft with one of the original designers of Win­
dows 1.0, courtesy of his college research. It's been around ever since and is now in
use as noun, verb, adjective, and insult. Those who were there way back when remem­
ber its original definition as "a piece of code that gets you from one place to another."

28. During the development project, the Windows 95 method was sometimes
referred to as the "extensible thunk" mechanism, although it may end up with a
different final name.

Ebay Exhibit 1013, Page 193 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

F 0 U R: The Base System

Shared address space

Thunk layer

Figure 4-14.
32-bit AP! support using thunks.

thunk layer. (Microsoft calls this the "flat thunk" mode.) Other speed
improvements come from very careful coding of the thunk handler­
in particular, minimizing the number of selector loads. (Remember
that selector load operations are expensive on the Intel processors
since the hardware must validate the new selector against the pro­
gram's current privileges and memory map.) Late in 1993, the Win­
dows 95 team had a thunk transition down to just seven selector loads
and they were still thunking-er, thinking.

Generating large numbers of thunks by hand is a waste of effort,
so Microsoft developed some tools to help automate the process.29 This

29. The thunk compiler toolset became part of the Windows 95 SDK in early 1994.

145

Ebay Exhibit 1013, Page 194 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

146

automation requires the programmer to prepare a description of the
source and target APis in a language that's very close to C, and the re­
sult is a sequence of assembly language instructions that form the
thunk for the particular APL Figures 4-15 and 4-16 illustrate the input
and output for the thunk compiler using the GDI LineTo() API function
as an example.

Figure 4-15.
Example thunk description input.

Figure 4-16. (continued)

Example thunk output.

Ebay Exhibit 1013, Page 195 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

F 0 U R: The Base System

Figure 4-16. continued

Note that although Microsoft made the thunk compiler tools avail­
able, this technique for mixing 16-bit and 32-bit code is not recom­
mended as a long-term solution. For one thing, the code isn't compatible
with Windows NT. If you do choose to use thunks as an interim solution,
make sure that the associated code is isolated and easy to replace.

The Win32 Subsystem
You can find the code for Win32 application support in four files in the
\WINDOWS\SYSTEM directory:

GDl32.DLL contains the API entry points and support code for the
32-bit graphics engine functions.

USER32.DLL contains the API entry points and support code for the
32-bit window management functions.

KERNEL32.DLL contains the API entry points and support code for
the 32-bit Windows Kernel functions.

VWIN32.386 contains a VxD that's responsible for loading the other
32-bit DLLs.

Within these modules lies the complete Win32 subsystem. To get it run­
ning, the 16-bit Windows Kernel module will load the VWIN32 VxD the
first time there's a call to any 32-bitAPI. VWIN32 loads the three DLLs
and returns to the 16-bit Kernel, which then calls the KERNEL32 DLL
initialization function. Once this call is complete, the Win32 subsystem
is ready for use.30

30. Given that the Windows 95 shell is a 32-bit application, the loading and
initialization of the Win32 subsystem will actually occur during the system startup
phase.

147

Ebay Exhibit 1013, Page 196 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

148

Most of the code in the 32-bit User DLL is little more than a layer
that accepts 32-bit API calls and hands' them to its 16-bit counterpart
for processing.31 Although that sounds simple, it's where all the thunk
trickery comes in. It's also a sensible way of using tried and trusted
code-after all, the 16-bit API implementations have to be there for
compatibility reasons. The 32-bit GDI DLL contains a lot of new code
and embodies some significant performance improvements. Conse­
quently, the 32-bit GDI handles a lot of API calls directly. The Kernel32
module is completely independent of its 16-bit ally. There is some com­
munication from the 16-bit side to the 32-bit side, but the 32-bit Kernel
never calls across to the 16-bit side. This is as you'd expect since most of
the code-memory allocation and thread management, for example­
is quite different.

Since the call and return between the 32-bit and 16-bit code is a
relatively expensive fonction call, the designers had to look carefully at
each API before committing it to the thunk technique. The design
guideline was that if the time to execute a 32-bit to 16-bit call and re­
turn was a significant proportion of the total execution time for the
API call, the API should be replicated in 32-bit code. Examples of these
replicated functions are the Get functions in GDI such as GetBrush() and
GetStockObject(). These functions simply collect some data and return it
to the calling application. Very few instructions are necessary within
the API routine. Of course, code replication is out of the question if the
API might need to modify a global data structure since the system has
to guard against reentrancy problems.

The development team's emphasis on putting their efforts into
the new 32-bit code meant that 16-bit applications could pick up many
of the benefits. But there had to be a way to get from the 16-bit side to
the 32-bit side, so the thunk mechanism also supports calls in this direc­
tion. The 32-bit GDI code is in some cases so much better than the 16-
bit code that the 16-bit application still runs faster despite the thunk
overhead. An example of this benefit is the more efficient 32-bit
TrueType rasterizer. Also, to ensure memory all~cation consistency, the
16-bit User code calls its 32-bit counterpart to allocate heap storage for
16-bit applications. All the dynamic memory allocation is thus effi­
ciently satisfied from a single 32-bit region.32

31. There are actually about 25 User APis that also exist as 32-bit code. Again, this
is for performance reasons.

32. This memory allocation technique supersedes the use that Windows 3.1 made
of DPMI in order to get 32-bit memory chunks.

Ebay Exhibit 1013, Page 197 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

F 0 U R: The Base System

The team was also conscious of the debate that would arise when
observers began to analyze the mixture of 32-bit and 16-bit code, so
high performance was a priority. The lowest thunk overhead for a
Win32 application runs to just over 60 clock cycles, with the average
overhead at about 90 clock cycles. For a very expensive API function
such as CreateWindow(), which has 11 parameters, the overhead is about
100 clock cycles. Windows NT, with its security requirements that call
for a ring transition and careful validation of all parameters, imposes a
much larger overhead even in a pure 32-bit system call.

Internal Synchronization
One of the biggest design debates inside the Windows 95 development
team was over how to deal with system reentrancy. 33 The 16-bit Win­
dows subsystem wasn't originally designed to deal with the possibility of
process preemption. Consequently, there are many places in the 16-bit
GDI, User, and Kernel modules where the system will fail if one thread
is allowed to execute reentrant code concurrently with another. Every
operating system has to deal with this problem. Windows NT handles it
by blocking threads that try to access the same object at critical times.
UNIX and OS/2 contain sections of code that block every thread but
one for the duration of a critical section. Windows 95 absolutely re­
quired support for the preemptive multitasking of Win32 applications,
and since many 32-bitAPis call 16-bit code, the development team had to
address the preemption issue. To solve the problem, the team looked at
a number of possibilities:

ill Develop a new subsystem to support the existing 16-bit
applications.

ill Use the new Windows subsystem (particularly the GDI mod­
ule) that the Windows NT team had developed.

ill Adopt an approach similar to that of OS/2 2.0, in which each
16-bit Windows application runs as a separate VM-somewhat
as the MS-DOS VM support works.

11111 Use one or more system semaphores to ensure that no more
than one thread at a time can run within the 16-bit subsystem.

33. Not only within the development team. During late 1993, this topic became by
far the most popular topic of debate in the Windows 95 CompuServe forums and at
the various developer events organized by Microsoft.

149

Ebay Exhibit 1013, Page 198 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

150

.
ii Revise the old code to enforce mutual exclusion on system

resources within the appropriate critical sections of the 16-bit
subsystem (a design technique referred to as "serializing the
kernel").

As you can probably imagine, the debate over reentrancy swirled
around issues of compatibility, performance, timescale, implementa­
tion effort, and long-term value. The different approaches to the
reentrancy problem broke down to a question of new code, new archi­
tecture, or protection of old code. Let's look at just a few of the specific
trade-offs the development team had to take into account as it consid­
ered adopting one of the new approaches:

II The nonpreemptive nature of Windows 3.1 and its predeces­
sors has meant that some Windows applications could depend
on the ordering and timing of certain system messages. Pre­
empting one of these applications at the wrong time would
cause such a program to fail. Breaking this compatibility
constraint was simply not an option.

ii Application-registered callbacks are another difficult com­
patibility issue. If the team used a semaphore approach, the
procedure for correctly setting the appropriate flags during a
callback to a 16-bit application would be a tough one to de­
velop and test; this is a soluble problem, but the solution
would have involved huge amounts of testing.

II Rewriting the entire Kernel, User, and GDI subsystems as
32-bit code would have dramatically increased the memory
required for the system's working set. The User and GDI
modules alone require a working set of about SOOK. 34 Mea­
surements indicated that a conversion to 32-bit code would
have increased the memory requirement by close to 40
percent, which would have raised the working set require­
ments for User and GDI to well over a megabyte. Given the
goal of running Windows 95 well on a 4-MB system, this
increase in memory consumption wasn't acceptable.

34. Out of a planned total working set of around 3 MB for the product-similar to
that of Windows 3.1.

Ebay Exhibit 1013, Page 199 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

F 0 U R: The Base System

• Using the Windows NT subsystem looked attractive but would
have required extensive adaptation work for the Windows 95
architecture and a lot more memory to run in. (The Windows
NT code is written predominantly in C++, whereas Windows
95 is written in C and assembler.)

11111 A similar problem would have arisen from adopting the
multiple VM solution used by OS/2-more memory would
have been needed on the host system. And the OS/2 solution
fails to address some critical compatibility issues that the
Windows team weren't prepared to ignore.

With radically new approaches disqualified, it came down to figur­
ing out how to introduce protection (by way of mutual exclusion) into
the Winl6 subsystem. The new 32-bit code designed for the Win32 sub­
system simply didn't have this problem: from the outset it was designed
to support a multithreaded environment. Each of the potential solu­
tions for the protection of old code traded implementation time off
against overall impact:

Ill A single semaphore guarding the Winl6 subsystem against
reentrancy would have been the simplest solution. It would
have been quick to implement and easy to test, and it would
have had no associated compatibility problems. However,
under certain conditions it could have had a big effect on the
system's multitasking performance.

Ill Multiple semaphores guarding related groups ofWinl6
functions would have reduced the adverse effects of a single
semaphore on multitasking performance; but when the bene­
fits were weighed against the implementation and testing
effort it would require, this design didn't seem to be a compel­
ling solution. Using multiple semaphores to reduce the granu­
larity of a critical section would have imposed a performance
overhead. In one measurement, the execution time for a
single API increased by 10 percent. Providing the user with a
new system that was slower than Windows 3.1 was, again, an
unacceptable trade-off.

Ill The team also looked at a solution somewhere between the
single semaphore approach and the multiple semaphores

151

Ebay Exhibit 1013, Page 200 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

152

approach. In this solution, two semaphores would have been
used: one for Winl6 applications and the other for the 16-bit
User and GDI modules. This arrangement would have allowed
calls from 32-bit code into the 16-bit User and GDI whenever
a Winl6 application was doing something else. Unfortunately,
this solution would have involved modifying over 1000 entry
points within Windows, as well as required modifications to
system DLLs and many third party device drivers. Compatibil­
ity constraints disqualified this solution too.

II Serializing the Winl6 subsystem would have been the most
effective solution. Shared resources would have been locked
only briefly-minimizing the impact on the system's multi­
tasking performance. Unfortunately, the estimates for imple­
menting this solution indicated that it would have taken a
significant amount of time to complete the development work
and would have added a massive testing burden to the project.
The team realized that the serializing approach would have
involved them in one of those software tasks that's virtually
impossible to accurately estimate the timescale for until a lot
of work has already been completed. Certainly, they knew,
months of elapsed time would be involved-enough time to
push the product release beyond acceptable limits.

Microsoft decided to adopt the single semaphore solution for
Windows 95. Figure 4-17 shows a revised version of the diagram in
Figure 4-13, one that depicts what really goes on when l6cbit and 32-bit
applications run concurrently. The semaphore that guards the Winl6
subsystem against reentrancy is called Wini 6Mutex35 • This semaphore is
set whenever the scheduler hands the processor to any 16-bit Windows
thread. The setting of the semaphore has several implications:

II Win32 application threads set and clear the semaphore as
they pass through the thunk layer. A concurrent Win32 thread
blocks on this semaphore while another thread is executing
Winl6 code.

35. The awesome power of marketing. Winl6Mutex used to be Winl 6Lock. After the
early technical debates about Windows 95 multitasking effectiveness, the marketing
group decided that Winl 6Mutex had fewer negative connotations than Winl 6Lock, and
the name was changed.

Ebay Exhibit 1013, Page 201 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

F 0 U R: The Base System

• A Win32 thread that does not thunk to the Win16 subsystem
never blocks on Winl 6Mutex.

II Whenever the scheduler hands control to a Win16 thread, it
sets the semaphore. Winl 6Mutex remains set until the Winl6
thread yields control.

Ill The behavior of a 16-bit Windows application will be exactly
the same as under Windows 3.1: no preemption and no
changes in message ordering, timing, or any other system­
dependent operation.

Shared address space

Thunk layer

Figure 4-17.
Serializing execution of the Win16 subsystem.

153

Ebay Exhibit 1013, Page 202 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

154

The Wini 6Mutex operations warrant more explanation since they
are also the drawback to this solution. Setting Wini6Mutex prevents
a Win32 thread from entering the Winl6 subsystem whenever a Winl6
thread is active. Wini6Mutex has to be ·set because there are non­
reentrant Winl6 components, such as the common dialog library, that
a Winl6 application calls directly rather than via an entry to the Winl6
subsystem. Setting and clearing Wini6Mutex as a Winl6 thread enters
the system won't account for this case, so the semaphore has to remain
set whenever a Winl6 thread is active. Under normal operation with
well-behaved 16-bit applications (that is, with applications that regu­
larly yield control as they should), the effects on the system's multi­
tasking are minimal. At worst, there might be a brief delay in a window
repaint for a Win32 application. (And "brief' here is on the order of
microseconds.) If a 16-bit application actually hangs up, the system will
gradually come to a halt as the Win32 threads block on Wini 6Mutex.
When the user hits Ctrl+Alt+Del to get rid of the offending application,
the system will reset Wini 6Mutex as part of its cleanup procedure-and
everything will proceed normally. If a 16-bit application actually
crashes-with a GP fault, for example-then again Wini6Mutexwill be
cleared during cleanup. The Wini6Mute~semaphore is a less than per­
fect solution-no question. And no doubt critics searching for flaws
will pounce on this shortcoming. It is the best solution Microsoft could
come up with to the most obvious problem brought about by the com­
patibility constraints placed on Windows 95. Having examined the
trade-offs inherent in each possible solution, I'll happily argue that the
Windows 95 designers made the right choice. Ignoring compatibility
constraints would have been the worst decision the design team could
have made, and the additional constraints of performance, memory
occupancy, and project timescale make the single semaphore solution
the best one. Windows 95 offers a scheduling mechanism that's mark­
edly better than the one in Windows 3.1 today. Your existing 16-bit ap­
plications will run as well as or better than they ever have, you'll get
full preemption with new Win32 applications, and in everyday use
the combination of the two really won't have a detrimental impact on
performance:

Ill The 32-bit and 16-bit kernel components are independent,
so a Win32 thread requesting a potentially lengthy operation,
such as file I/O, won't have to call into the 16-bit code.

Ebay Exhibit 1013, Page 203 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

F 0 U R: The Base System

• The User and GDI calls that do have to grab the Win16Mutex
semaphore are predominantly ones that have very short
execution times, so Win32 threads will need to own the
semaphore only briefly. This means that separate Win32
threads will rarely compete for the semaphore.

• Both the shell and the print spooler are 32-bit applications,
so the most commonly used components will avoid the prob­

lem altogether.

The possible drawbacks to this solution when the user runs a mix
of 16-bit and 32-bit applications are another incentive for application
developers to concentrate their efforts on Win32 applications. And
don't forget: if you truly, absolutely, require a system that provides guar­
anteed preemption of both 32-bit and 16-bit applications, Windows NT
is the product for you.

Conclusion
For students of operating system design, Windows 95 is interesting for
its practical implementation of some modern techniques, such as
threads. And the base system now fully exploits the 386 processor archi­
tecture, with its core components retaining no dependence on 16-bit
code or 16-bit processor modes. The ugly practicality of running appli­
cations designed for the world's most popular piece of software has
meant that some design compromises had to be made. For the purist,
the compromises may detract from the major improvements imple­
mented within the base operating system introduced with this version
of Windows. For the user and for the developer who's in the business of
selling software, the compromises mean compatibility-to this day the
only feature guaranteed to increase the popularity of an operating system.

Windows 95 provides the application programmer with some major new oppor­
tunities, including the prospect of developing with a full 3 2-bit AP! and memory
model and the ability to exploit preemptive scheduling. The user will benefiJ from
3 2-bit applications in terms of performance, robustness, and increased function­
ality. Those enhancements won't be the user's first impression, however. That will
be provided l7y the major changes in the appearance of Windows 95, and they 're
our next topic.

155

Ebay Exhibit 1013, Page 204 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

156

References
Microsoft Corporation. Win32 Software Development Kit. Redmond, Wash.:

Microsoft, 1993.

Microsoft Corporation. Win32s Programmer's Reference Manual. Redmond,
Wash.: Microsoft, 1992.

Microsoft Corporation. Windows 95 Device Driver Kit. Redmond, Wash.:
Microsoft, 1994. If you really want to grope around inside Windows, you
must have this product. Simply studying the header files reveals a lot of
information about the internals of Windows. There are also reams of
sample VxD source code if you want to get very serious.

Nu-Mega Technologies, Inc. Soft-Ice/W Reference Manual. Nashua, N.H.:
Nu-Mega, 1993. If you program seriously for Windows and you don't use
this debugger, stop everything and go buy it. Clearly, Microsoft itself was
impressed-a preliminary version of Soft-Ice/W for Windows 95 came
with the very first external test release. Apart from being a great tool,
Soft-lce/W offers a lot of interesting information about Windows in its
product manual.

Oney, Walter. "Mix 16-Bit and 32-Bit Code in Your Applications with the
Win32s Universal Thunk." Microsoft Systems journal, November 1993:
39-59. A useful discussion of some of the issues surrounding mixed
memory models and thunking techniques.

Pietrek, Matt. Windows Internals. Reading, Mass.: Addison Wesley, 1993.
If you really want to know how Windows 3.1 does its work, this is a
book you have to read. I imagine Matt as he wrote this book as a lone
spelunker, flaming torch held high as he crawled through the world's
latest and largest heretofore undiscovered system of caves. I hope that
Matt is already at work on the version for Windows 95.

Ebay Exhibit 1013, Page 205 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

C H A P T E R F I V E

THE USER INTERFACE
AND THE SHELL

Microsoft's introduction of Windows 3.0 in New York on May 22,
1990, was the cornerstone upon which the Windows product line has
built an ever increasing market share over the last few years. Although
there were many notable new features in the Windows 3.0 release, the
product introduction and a large proportion of the product's reviews
focused on the improved visual appeal of the Windows interface. Many
small, simple improvements to the interface, such as buttons that ap­
peared to move when the user clicked them with the mouse, enhanced
the product's immediate appeal-perhaps out of all proportion to
their actual importance. The product's eventual success was a function
of the other major new ~eatures of Windows 3.0 plus Microsoft's in­
tense marketing campaign and the availability of some important new
Windows application products. But in the first flush of the product's
success, its visual appeal counted for a great deal.

Windows 95 looks as dramatically different from Windows 3.0
(and 3.1) as Windows 3.0 did from its predecessors. From the moment
you start Windows 95, you can see that the appearance of Windows has
been completely altered. Figures 5-1and5-2 on the next page illustrate
the difference. Each shows one of the first screens a user sees after ini­
tial installation.

So why change a winning formula so completely? Aren't there some
major business risks associated with asking a loyal base of users to accept
change one more time? Of course there are some risks, apd the recep­
tion of Windows 95 will determine whether Microsoft's gamble pays off.1

In this chapter, we'll look at all the new elements of the Windows interface

1. Late in the project Microsoft decided to retain versions of the Windows 3.1
Program Manager and File Manager as desktop accessories for Windows 95-no doubt
to lessen the initial shock for experienced Windows 3.1 users.

157

Ebay Exhibit 1013, Page 206 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

158

and in particular at the new Windows 95 shell-itself significantly differ­
ent from the Windows 3.1 Program Manager.

I • • 111 & Control Panel Print Manager CliJilook
Viewe1

• ,. • • Windows PIF Edior Mail Schedule+
Setup

rfi11 rfi11 . -
·Startup Applictitions

Figure 5-1.
The initial default user screen for Windows 3.1.

Figure 5-2.
The initial default user screen for Windows 95.

Ebay Exhibit 1013, Page 207 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

FI V E: The User Interface and the Shell

If you're familiar with the UNIX or the OS/2 operating system or
with any one of the many products available for MS-DOS or Windows,
the term shell is no doubt also familiar to you. Generally speaking, the
shell is a program that provides the user with a means of control over
the system. The shell is the program the user generally considers to be
"the system." In MS-DOS, both COMMAND.COM and the MS-DOS
Shell provide user control and the system interface. In Windows 3.1,
it's hard to point to "the shell." The Program Manager fulfills some of
the shell function and the File Manager some more. Neither provides
all of the functions that the sophisticated user has come to expect of a
good shell program. The new shell is the component that realizes a lot
of the user interface improvements in Windows 95. The success of the
shell, as the average user's means of controlling the system, will by and
large indicate the success of the user interface improvements in Win­
dows 95.

Given that Microsoft rarely alters a successful product simply for
the sake of change, you can conclude that there were good reasons for the
extensive revision of the interface in Windows 95. One was the desire to
take a step toward a fully document-centric interface, one in which users
concern themselves only with their documents and not with files, pro­
grams, directories, disk volumes, and the other odd paraphernalia of
operating systems. Microsoft's work on OLE technology laid the foun­
dation for a lot of the thinking that went into Windows 95 and also into
Cairo. Windows 95 doesn't quite reach the goal of being a completely
document-centric system, but it is a major step forward. It's up to the
Cairo team to pull off the final jump.

The other major reason for revising the Windows 3.0 and 3.1 in­
terface was to fix some of its problems-problems either that Microsoft
knew about from the beginning or that had become apparent as more
and more people began to use Windows. The goal of making Windows
95 easy for users and the desire to attract more new users to the Win­
dows platform warranted a major effort to eliminate these problems.

We'll return to document-centric thinking a little later. Let's take
a look at the perceived problems in Windows 3.0 and 3.1 first.

Improving on Windows 3.0 and 3.1
Criticism of Windows became a popular sport shortly after the success
of Windows 3.0 began to pick up speed. The continued success of Win­
dows has muted many of the more strident critics, but some critics

159

Ebay Exhibit 1013, Page 208 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

made valid points that Microsoft paid close attention to. Within the com­
pany, the· extensive degree to which Windows served as an application
platform created a lot of requests for modification or enhancement of
the product. As most reviewers are quick to point out, Microsoft's first
release of a product is rarely perfect. But Microsoft does strive to get
things right, and most of its products improve dramatically from one re­
lease to the next. Windows is no exception, and regardless of whether
you consider Windows 95 to be the third or the eighth release of Win­
dows, it does include some major improvements to the user interface.

Windows 95 benefits from the effort invested in the following:

II More unified configuration and control of the system. The
plethora of manager programs and other control functions is
reduced.

l!i Improved consistency of the user interface. Similar functions
look and feel the same.

II Improved visual details.

System Configuration and Control

160

Of all the criticisms of Windows 3.0 and 3.1, the most frequent one con­
cerns the confusing variety of managers and control functions.

Program Manager, File Manager, Task Manager
The Windows Program Manager plays a notoriously inconsistent role
as a tool for controlling the system. Windows 3.0 and 3.1 include both a
Program Manager and a File Manager. The fact that the two different
managers allow the manipulation of, in some cases, the same items
compounds the confusion ma11y users experience over the relationship
between the items displayed in one and in the other. A novice user
finds it difficult to grasp the concept of an application program and its
separation from data. Even the expert user, for whom the distinction
between application programs and files is a known, gets frustrated with
the primitive methods Windows 3.0 and 3.1 provide to form an associa­
tion between applications and documents.2 Here are a few instances of
the shortcomings and inconsistencies in the standard Windows 3.1
managers:

2. Several Program Manager replacement products, such as Symantec's Norton
Desktop for Windows, have been very successful by virtue of carefully papering over
some of these cracks in the Windows veneer.

Ebay Exhibit 1013, Page 209 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

FI V E: The User Interface and the Shell

• Double-clicking on a filename in the File Manager will start
the associated application only if the user (or an installa­
tion program) has specifically listed an association between
a filename extension and a particular application. If no assoc­
iation has been defined, getting at your data means first run­
ning an application and then loading the appropriate data
file. This involves a number of steps and a number of names
to know or locate.

II The initial Windows desktop shown in Figure 5-1 offers the
user no clue as to how to begin working. It displays a con­
fusing collection of icons and names and offers the naive user
very little help.

Ill Application icons can appear on the desktop (the background
screen) only when they're running. Otherwise, the icons must
reside in one of the Program Manager windows.

Ill Using the Program Manager to delete the icon that refers
to an application or a file is a traumatic experience for many
users. The fact that only the icon and the reference to the file
get removed is not well understood.

Ill Similarly, the true meaning of Move and Copy operations for
program icons is obscure.

Ill Filenames composed of 8.3 character strings, with some char­
acters having assigned meanings, are completely inadequate
for virtually all users.

The other major deficiency of the Windows 3.1 Program Manager
is that it really isn't even a complete program manager. The Task Man­
ager provides some control over running programs. Unfortunately, the
Task Manager is confusingly implemented and provides the user with
very little actual control over the system. See how many Windows users
you know who routinely double-dick on their desktop wallpaper to
bring up the Task Manager and its list of running applications.

Although it may not happen to you, most Windows users routinely
lose windows on their desktops. Because application windows obscure
others, a user tends to start the same application twice-thinking that the
first instance somehow failed or stopped running. Or the user may believe

161

Ebay Exhibit 1013, Page 210 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

that his or her document is completely and irretrievably lost. The Pro­
gram Manager itself can disappear, causing further consternation. The
obscure nature of the Task Manager and of the method for switching
between full screen windows compounds the inadequacy of the Pro­
gram Manager as a mechanism for fully managing every program re­
gardless of its current state.

Control Functions
Although the Control Panel program incorporates most of the compo­
nents used to effect setup, configuration, and control of a particular
Windows system, several other system control functions are hidden
away in other corners. Perhaps the best-known example is printer con­
trol. Windows 3.1 includes a printer control function in the Control
Panel program and an entirely separate Print Manager program. And
most applications include a printer setup function accessible from
their menu bars. Exactly when to use which control function, and what
the results will be, remains something of a mystery even to experienced
Windows users. Windows 95 tries to reduce the proliferation of control
functions, locating all of them in only two places: one for printer con­
trol functions and the other for all other control functions.

Consistency

162

Another aspect of Windows 3.1 that is treated inconsistently is the par­
ticular properties of a control or configuration object. The definitions of
how particular items are set up or of how they will respond in certain situ­
ations are inconsistent. For example, Windows 3.1 allows you to get to
the printer setup option either by choosing Printer Setup in the Print
Manager Options menu (see Figure 5-3) or by choosing the Printers icon
in the Control Panel (see Figure 5-4).

Both routes lead to the same dialog (see Figure 5-5 on page 164),
but neither could be described as a swift or direct route to the most per­
tinent information. Windows 95 introduces the concept of property
sheet~a feature aimed at resolving this problem. We'll look at property
sheets in some detail later in this chapter.

Ebay Exhibit 1013, Page 211 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

FIVE: The User Interface and the Shell

Qptlons Help
,/!oolbar
,/ltatus Bar

font ...

\t I NEC Silenll'«ier2 00 on LPT2 (Set .!;olumn Widths

llackground Printing ..•
Ss:parator Pages ...

frlnter Setup •..

Figure 5-3.
Getting to Printer Setup via the Print Manager in Windows 3.1.

Figure 5-4.
Getting to Printer Setup via the Control Panel in Windows 3.1.

163

Ebay Exhibit 1013, Page 212 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

Visuals

164

- Printers

Default Printer-----------,
HP LaserJet Series II on LPTl:

Installed erinters:
HP LaserJet Series II on LPTl:
NEC Silentwriter2 90 on LPT2:

Figure 5-5.
Windows 3.1 printer setup dialog box.

The appearance issues the Windows 95 team addressed are minor
when you take them up individually. But by carefully eliminating all of
the perceived problems and improving the visuals, the team improved
the look and feel of Windows dramatically. Essentially, each change
amounts to a great deal of attention devoted to every visual detail of the
interface. In particular, the team took care to improve the consistency
of the screen display and to reduce visual clutter. Take a look at the dia­
log box from Windows 3.1 in Figure 5-6. Notice that the different con­
trols and buttons are all different sizes and differently aligned. Look at
the Screen Saver and Wallpaper groups of controls. In one, the drop-·
down list box has the arrow button firmly attached to the text box. In
the other, the arrow button stands alone. Does this difference have any
significance? Actually it does, but this particular visual cue doesn't re­
ally help the user at all. The Windows 95 designers were intent on re­
moving such small discrepancies.

Scalability
One other visual design issue also received attention: allowing the user
interface to scale better on different display hardware. If you've ever
seen Windows 3.1 on a large, high-resolution monitor, you'll have seen
that a number of the visual elements don't scale up very well. The system
font is one example. With higher-resolution displays becoming more
commonplace on popular systems, Windows 95 had to do a better job.

Ebay Exhibit 1013, Page 213 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Screen Saver------===->

Npie:IM.1111iy •

ll.alllJ': ~Minutes
D P1111-d protected

Wallpopor---~

file: I dolphin.bmp I •
®t.•nter Op.
Sizing Grid

§.ra,..larily: @::=:I
lorderWidlh: 0

Figure 5-6.
Windows 3.1 desktop control dialog box.

F I V E: The User Interface and the Shell

Concepts Guiding the New User Interface
Many of the new user interface ideas for Windows 95 came from the vi­
sual design group at Microsoft. These are the people who define, refine,
and improve the user interface for all of Microsoft's products. Over the
last few years, Microsoft has used more and more visual design expertise
on its projects, and Windows 95 is perhaps the first product in which the
efforts of the visual design group have had a high level of impact on the
appearance and operation of the product. Involved in more than pure
visual design, the group works with the development team to define how
a product is to respond to user actions. Their goal is to get all of Micro­
soft's products appearing and behaving in similar, obvious ways. If you
know how to use one product, your learning time for another should be
greatly reduced. Among other influences, the visual design group uses
real people to test hypotheses about interface design-the input often
coming from controlled usability testing. Does the user actually respond
the way you think he or she should? If not, why not? One team goal for
the revised interface in Windows 95 was to reduce the level of knowl­
edge a novice needed in order to begin using the system. The usability
tests helped validate whether the design innovations really did accom­
plish that goal.

165

Ebay Exhibit 1013, Page 214 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

In Chapter One, we looked briefly at Microsoft's other major op­
erating system effort-the Cairo project. The initial design for the Win­
dows 95 shell and for many of its interface elements was done by the
Cairo group. Throughout the Windows 95 development project, there
was a lot of interaction between the Windows 95 and Cairo groups to
ensure the consistency of Windows 95 with the evolving Cairo design. 3

The other major influence on Microsoft's operating system design
efforts during 1992 and 1993 was OLE technology. OLE was originally
developed by Microsoft's Applications Division as a way of providing a
consistent basis for complex data interchange and other application in­
teraction features. OLE rapidly became a more and more important
component of Microsoft's evolving software architecture, and in the late
fall of 1993, the OLE group moved from the Applications Division to the
Systems Division-a move that confirmed OLE's central role in
Microsoft's plans. In many ways, OLE can be viewed as the first imple­
mentation of Cairo's design concepts. The Windows 95 shell and user
interface would be the next major step. Central to all of this work was
the evolution of the user interface to a document-centric model, replac­
ing the application-centric view implemented in Windows 3.1.

The Document-Centric Interface

166

The document-centric interface is the main theme of much of the con­
ceptual work for OLE, Windows 95, and in the future, Cairo. The
document-centric approach is derived from the object-oriented con­
cepts that are now increasingly popular in the software industry. Unfor­
tunately, object orientation has become an overused marketing term.
There are real examples of its use, as in Next's NextStep system, but the
proponents of many a system claim that theirs is an object-oriented ap­
proach without really implementing one. OLE and Windows 95 are ma­
jor steps toward a full object-oriented system, although neither of them
is complete in that regard. Microsoft intends that Cairo will be.

A document-centric approach means that the users concern them­
selves only with documents and not with programs and files. The system
itself is responsible for maintaining the relationship between data of a
particular format and the application that can manipulate the data. Put­
ting the responsibility on the system ties in with the usability information

3. And, of course, one thing the Cairo group did not want was for Windows 95 to
appear with features that Cairo would not or could not be compatible with.

Ebay Exhibit 1013, Page 215 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

F I V E: The User Interface and the Shell

that Microsoft has gathered from users of Windows. Many users, particu­
larly those introduced to the PC via Windows, not MS-DOS, find it diffi­
cult to separate the concepts of programs and of files. To these users,
the item of concern is the document they work on-whether it be a let­
ter composed with a word processing application, or a chart of recent
sales results prepared with a spreadsheet application. For many people,
the application program and the file containing the specific data are
conceptually indivisible.

The document-centric approach contrasts with the approach imple­
mented in most systems today, including Windows 3.1. Today you use an
application-centric model. To carry out some operation-for example,
redrawing a sales graph in light of the latest month's results-you must
first run the appropriate application, then load the data file, then
change the numbers, and then redraw the chart. If you want to include
the chart in a report, you also have to know how to run the application
that handles your report and then cut and paste the chart from its native
application into the report file.

OLE introduced the concept of a compound document. With OLE,
many different types of data can be held and edited Within a single docu­
ment. Editing one element of the document involves simply double­
clicking on the object. The application appropriate for manipulating
that type of data is loaded without any further action from the user. You
see and work with only a single document but possibly several different
application programs. ·

The Windows 95 shell provides a document-centric approach to
the system. Everything that can be conceptualized as a document has
been. Collections of documents formfol,ders Gust like file folders), and
you can organize folders and documents just as you would organize
them in a real filing cabinet.

Look and Feel
The designers and developers of any graphical user interface, such as
the Windows GUI, speak of the look and feel of the interface. This term
refers to two aspects of the interface: the visual appearance of the inter­
face and the behavior of the interface in response to a user action such
as a mouse click or a keypress. The appearance and the behavior of the
interface are closely intertwined. Many user actions are the direct result
of a visual cue. A user who is unfamiliar with the details of a particular
operation will seek visual guidance while navigating through a sequence
of actions aimed at producing the desired result. Windows, and other

167

Ebay Exhibit 1013, Page 216 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

168

graphical interface products, tend to reduce the learning task associ­
ated with a new application by presenting access to many standard op­
erations in the same way. For example, opening a data file within a
Windows application always requires clicking on the File menu and
then on the Open option on that menu.

Designers of these graphical interfaces worry constantly about a
few very important characteristics, asking themselves whether the inter­
face can be described in these ways:

Consistent. Does the user always do the same thing in the same way?
Does the user gain access to similar operations using the same
keyboard or mouse inputs, guided by similar visual cues?

Usable. Does the interface allow the user to do simple things simply
and complex things within a reasonable number of operations?
Forcing the user to go through awkward or obscure input
sequences leads to frustration and ineffective use of the system.

Learnable. Is every operatio~ simple enough to be remembered
easily? What the user learns by mastering one operation should
be transferable to other operations.

Intuitive. Is the interface so obvious that no training or documenta­
tion is necessary for the user to make full use of it? This aspect of
a GUI is the holy grail for interface designers.

Extensible. As hardware gets better or faster-for example, as
common screen displays achieve higher resolution or new
pointing devices appear-can the interface grow to accommo­
date them? Similarly, as new application categories become
popular, does the user interface remain valid?

Attractive. Does the screen look good? An ugly or overpopulated
screen will deter the user and reduce the overall effectiveness of
the interface.4

In Windows 95, Microsoft addresses many of the issues involved
in ensuring compliance with the guidelines set down in The Windows

4. Judging by the sales of screen saver software and the semi underground prolifera­
tion of Windows wallpaper and icons, we might conclude that the average computer user
is fairly keen on the entertainment value of the interface as well. Designers might not
admit to spending a lot of time on this aspect of the interface, but Microsoft introduced
a plan to include animated desktops in Windows 95 quite late in the project. Obviously,
the Windows 95 designers believed in the value of entertainment.

Ebay Exhibit 1013, Page 217 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

F I V E: The User Interface and the Shell

Interface: An Application Desig;n Guide (Microsoft Press, 1992). This book
describes how the appearance and behavior of a Windows application
ought to leverage the user's earlier learning. Microsoft is always at
pains to point out that the book provides guidelines, not absolute
rules. If someone comes up with a better or simpler way to provide a
feature, as far as Microsoft is concerned it's fine to go ahead and use it. 5

The Windows 95 Shell
A lot of design and development effort has gone into the new shell for
Windows. During development, one of the major shell functions was
referred to by the name Explorer. Whether this name will be used in
any form when Windows 95 ships is unknown, but as of mid-1994, the
term Explore still appeared on the shell's Start menu. The name does
embody one important aspect of the shell's function. The Windows 95
shell is intended to be the program you'll use to explore the system­
not just your own desktop system, but also the network system you're
connected to. The Windows 95 shell replaces the Windows 3.1 manager
programs such as the Program Manager, the File Manager, the Task
Manager, and the Print Manager. The Windows 95 shell consolidates the
manager functions into. a single program that is always accessible and, at
least by intent, will be the means by which most users will view and use a
Windows 95 system.

One of the more popular terms in Microsoft's Windows group in
recent times has been lnvwsing. Sometimes it sounded as though all
anyone ever wanted to be able to do was to browse around a network,
locating files, programs, printers, and whatever. It began to seem as
though actually doing something with one of these resources was inci­
dental. That's stretching the truth a little, but Microsoft does intend
the Windows 95 shell to make browsing (and thus resource locating)
an easy and natural operation.6 If you study your own work patterns,
you'll see that you do spend a significant amount of time locating ob­
jects: finding old documents in a word processor directory, for example,
or removing old unwanted files to free up disk space. Both of these tasks

5. One new standardized element of Windows 95 is the application tool bar, an
interface element used by several early application developers and subsequently
copied very widely. The tool bar is a good idea that has become popular with users, so
Microsoft decided to include it as a standard element of the Windows 95 interface.

6. Cairo will take this capability much further by providing a powerful query
mechanism that will allow the user to rapidly locate any object, anywhere on the
network.

169

Ebay Exhibit 1013, Page 218 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

170

involve browsing operations, and improving the efficiency of browsing
is a definite positive.

Folders and Shortcuts in the Windows 95 Shell
The Windows 95 shell implements two new concepts that need immedi­
ate introduction: folders and shortcuts.7 Folders are a foundation of the
shell design, and as you use Windows 95, you'll quickly find that short­
cuts are a valuable enhancement. A lot of the examples in the upcoming
pages will display the use of folders and shortcuts to one degree or an­
other. We'll take a look at shortcuts in the next section.

Folders A number of folders and their contents are shown in Figure
5-7. A folder is a logical container that allows you to group any collection
of items you choose-a set of documents produced with your word pro­
cessor, for example. The items, or objects, a folder can hold include

5.25 Floppy 3.5 FlopPJ> (B:) Ardlos_c (C:)
IA:l . - . Beto1_rc1 ID:) (I:) Control Panel

II
-Folder

Figure 5-7.
Folders in the Windows 95 shell.

Spe
llliilTemp
llliilTmp
llliilusr
llliilWroug
llliilWmows o-ec.bok
l!IAutoe.ec

AutoeKeC.dos
c=!Command
D Command de•

~D~:i:dc• Sotuplog.old
Sotuplog
Systemdat

Curved arrow (fA) in lower left
corner of icon denotes a shortcut

7. Microsoft originally used the name "link" to refer to this feature. As expected, it
did change before product release. Among other candidate names, "nickname,"
"remote control,• "jump,• and "post it" were under consideration. The term "shortcut"
was chosen in early 1994. Whether it will be the final term remains to be seen.

Ebay Exhibit 1013, Page 219 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

F I V E: The User Interface and the Shell

individual files, other folders, or shortcuts. (Notice the curved arrow
mark used to visually denote a shortcut.)

The shell provides a view of both the local and the network system
that is an exact replica of the filesystem-that is, an object shown in
one of the shell's windows is actually a file or a directory residing on a
disk somewhere. Folders are directories, and even shortcuts are stored
as files. This design is different from that of other implementations in
which some objects really are files and others exist in another universe.
In Windows 3.1, for example, the icons in the Program Manager
groups exist physically either as individual files or as resources within
executable files; entries in a .GRP file in the \WINDOWS directory link
the icons to the program groups. When you try to track down the icons
outside the Program Manager, you need special knowledge to do so.
Windows 95 makes everything a file or a directory, so most special files
(such as the .GRP files) disappear. If you know how your desktop looks,
you know how your files are organized, and vice versa.

The generalized folder mechanism, with its ability to contain any
other object, is a big step on the way to a completely document-centric
system. Operations such as printing, copying, and searching through a
document require no knowledge of the particular program used to
implement the operation. Any operation is available in a completely
general way for any document. And one of the most important design
goals for the shell is to provide a fully consistent environment. An op­
eration on one kind of object achieves predictable results based on
what you know about the behavior of the same operation with a differ­
ent kind of object. The use of the folder concept is key to achieving this
consistency.

Shortcuts The Windows 95 shortcut concept is a very powerful one. It
allows you to create a reference to an object without having to make a
copy of the object. For example, you might create a folder containing sev­
eral word processing documents together with a shortcut to the printer
you use for output. Figure 5-8 on the next page is an example of how this
folder might appear. To print a document, you'd simply open up the
folder, click on a document icon, drag the icon to the printer icon, and
drop it. Access to the appropriate printer would be immediate, and the
document would be printed without your needing to specifically run the
application you used to create the document. The shell would take care
of loading the appropriate application and informing it of the operation
(printing) and the chosen document.

171

Ebay Exhibit 1013, Page 220 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

172

~ ~
Shortcut to HP Word

LaserJet

Figure 5-8.
Shortcuts in the Windows 95 shell.

Windows 95 uses shortcuts extensively, and you'll see several other
examples of their power in this chapter.8 Although Windows 95 contin­
ues the use of a hierarchically organized filesystem, the availability of
the shortcut mechanism makes it possible for you to organize your
documents the way you want them, without having to make multiple
copies of particular files or programs. For example, if you keep several
folders of documents that require the use of a calculator while you're
working on them, you can store a shortcut to the calculator in each
folder. The calculator is then immediately accessible, and you don't
have to make multiple copies of the calculator program. Although pur­
ists might frown at the ability of shortcuts to muddle a pure hierarchi­
cal filesystem structure, usability tests have shown that very few people
are comfortable with the constraints of a strict hierarchy. People don't
work hierarchically, and they dislike the hierarchical filesystem for forc­
ing them to try to.

Windows 95 implements shortcuts in the shell by recording their
existence in a .LNK file. Each shell folder that contains shortcuts, and
thus each disk directory associated with a folder, contains a .LNK file
for each shortcut.9

Desktop Folders
Desktop folders in Windows 95 are very dynamic, and thus the contents
of the associated disk directories change frequently. A \DESKTOP di­
rectory on the system's boot drive contains all the items that define

8. Something akin to links is in use in the Windows 3.1 Program Manager: icons in
program groups are links to the executable program. Other desktop utilities extend
the capability. However, Windows 3.1 neither formalized nor generalized the link
concept.

9. Originally shortcut information was stored in a DESKTOP.IN! file that also held
window placement information for shell folders. DESKTOP.IN! eventually disappeared
in favor of directories collected under the Windows \DESKTOP directory.

Ebay Exhibit 1013, Page 221 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

F I V E: The User Interface and the Shell

the initial layout of the user's desktop. As items are moved on and off
the desktop, the physical contents of the \DESKTOP directory change.
Figure 5-9 shows a desktop layout and a listing of the associated disk
files that track this configuration. Notice the default SHORTCUT.LNK
files that contain the shortcuts to the printer object.

Figure 5-9.
Desktop folders in the Windows 95 shell.

System Setup

The default
SHORTCUT.LNK file

System setup in Windows 95 is considerably improved over Windows 3.1
setup. As part of the overall goal to make the system easy to use, system
setup makes it simple for the new Windows user to install the system and
get it running for the first time. If you know what you're doing, you can
still customize your system as you install it. But if Windows is a new ad­
venture for you, the answers to a few simple questions are sufficient to
get you going. Microsoft's Plug and Play technology is central to the im­
proved setup process.

Microsoft's usability tests uncovered the difficulty new Windows us­
ers had with getting the system to do something-anything-the very first
time they tried to use it. In retrospect, it's perhaps easy to see why. Look at

173

Ebay Exhibit 1013, Page 222 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

174

the Windows 3.1 screen display in Figure 5-1 back on page 158. Nothing
on the screen provides a hint about how to start-and the StartUp icon
can even mislead. There's a lot of information, but no discernible first ac­
tion. The problem is compounded by the physical difficulty many begin­
ning users have with the mouse double-click action. In Windows 3.1,
unless you can double-click after installation, it's very hard to get the sys­
tem to do anything for you. This isn't a problem limited to Windows.
Most graphical systems today still require users to possess quite a lot of
information and skills before they can start to use the system.

Microsoft addresses these problems early on in Windows 95. The
single "Start" button on the screen (see Figure 5-2 back on page 158) is a
good hint. To make sure that the user doesn't miss the Start button, the
status message alongside bounces against the button when the user first
starts the system-like a finger pointing to the correct path. As the user
continues to work with the system, other helpful hints appear as status
messages.

The Initial Desktop
With the initial default desktop in Windows 95 (see Figure 5-2), there is
but a single obvious point of access to the system-the "Start" button in
the lower left corner. The area at the bottom of the screen is called the
system taskbar. 10 In the initial configuration, the empty desktop and the
message on the taskbar telling you exactly what to do leave you with
only one real choice. In fact, double-clicking on the desktop computer
icons also gets the user going. Clicking on the "Start" button will get
the user to the screen shown in Figure 5-10. Selecting any items with
continuation menus offers yet more possibilities. Figure 5-11 shows one
of these possibilities.

To get this far, the user must at least have mastered the single-click
operation with the mouse. Simply moving the mouse to one of the
items shown on the menu in Figure 5-10 means that you're almost
home. One more click, and you're running an application. Microsoft
believes that this simplified setup and first time operation of the system
will quickly get users to the point at which they're doing real work,
rather than fooling around with the system. It's hard to come up with a

10. Another term that may yet change. "Tray" was the term used for a long time.

Ebay Exhibit 1013, Page 223 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Figure 5-1 O.
The default Start menu.

Figure 5-11.
Continuation menus.

FI VE: The User Interface and the Shell

Continuation
menus

175

Ebay Exhibit 1013, Page 224 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

176

general purpose scheme that's faster than two prompted mouse clicks
from startup to application, so the expectation appears to be justified.11

The only other access points on the initial desktop are "My Com­
puter" (which the user will promptly rename) and "Network Neighbor­
hood" (which appears only if Setup detected a network connection).
Figure 5-12 shows these folders after double-clicking has opened them.
The user can explore the local system further by double-clicking on the
disk icons and can explore the network by double-clicking on the other
systems that are active.12

5.25 Floppy 3.5 Floppy (8:) A1diles_c (C:)
[A:)

(I:) Control Panel

Figure 5-12.
Other access points on the initial desktop.

11. If you think this is an at all unreasonable amount of effort to get users to the
point of running an application, Microsoft's usability testers have some videotapes for
you. The tapes show novice users taking several minutes (and in some cases giving up
the attempt) to locate and run Notepad under Windows 3.1. In the same test under
Windows 95, the time was reduced substantially.

12. Early versions of the shell allowed access to the entire network from this point.
On a large network (such as the Chicago development group's), accessing the entire
network produced a lengthy and nonuseful list of network resources. The neighbor­
hood concept allows you to constrain the network resources you view to the resources
you're interested in.

Ebay Exhibit 1013, Page 225 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

FI V E: The User Interface and the Shell

The Desktop
In Windows 95, a number of new design ideas underlie the new look
and behavior of the desktop. In Windows 3.1, the user's conceptual
desktop consisted of the Program Manager and its program groups
and to some extent the background. Beyond holding minimized win­
dows and providing a display area for the user's favorite screen wall­
paper, the background didn't do much. Windows 95 changes that
significantly. The Program Manager is gone, and the background be­
comes an important part of the overall shell design.

On the.desktop, Windows 95 implements a look and feel that is
consistent across all objects. Drag and drop operations are supported
everywhere. You can move folders by means of drag and drop opera­
tions, and as we've already noted, you can print documents by dragging
them to the printer and dropping them. The screen background itself
becomes an integrated part of the desktop. You can drop objects on the
desktop for storage. You can create storage objects and put them on
the desktop for safekeeping. Conceptually, the Windows 95 desktop
is intended to serve just as your own real desk in your own real office
does-even to the extent of allowing you to put pictures of the family
dog on it.

As you gain experience, your desktop will probably look some­
thing like those shown in Figures 5-13 and 5-14 on the next page after
you've been using Windows 95 for a while. The desktop itself acts as a
storage medium for any objects you put there: folders, shortcuts to ob­
jects, and additional access points to the system such as the local system
and the network. Some of the icons will probably appear on every desk­
top because they represent specific points of access to the system.
Other objects on the desktop will reflect the user's personal customi­
zation of his or her working environment.

The computer icon provides access to your local disk storage.
Your opening this object is intended to convey an impression of your
"opening" your computer to inspect the information it contains. Ear­
lier on, we looked at some of the system folders and at some aspects of
the shell's facilities for browsing as you deal with folders. The network
neighborhood is the point of access to the systems you have connec­
tions to. Figure 5-15 on page 179 shows an example of the hierarchy of
folders opened across the network as the user looks for a particular file.

177

Ebay Exhibit 1013, Page 226 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

Figure 5-13.
A user's desktop in Windows 95.

Figure 5-14.
Another user's desktop in Windows 95.

178

Ebay Exhibit 1013, Page 227 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

FI V E: The User Interface and the Shell

The system taskbar at the base of the screen represents a perma­
nently available "home base," or anchor point, for the user. By default,
the system taskbar is always visible and accessible. The Windows 95 de­
signers intend the system taskbar to keep the novice user from losing
his or her place in the system. Even when an application maximizes its
window, the taskbar is still visible and the user can access it.

Figure 5-15.
Browsing the network from the desktop.

The Taskbar
Losing windows on the desktop has been an all too common problem
with Windows 3.1, notably when minimized windows got hidden be­
hind other windows. To solve this problem, Windows 95 introduces the
taskbar-a user interface element that serves as a common storage
point for several different types of objects. As you'll have noticed from
the earlier figures in this chapter, you'll see the taskbar on the screen
nearly all the time. The default taskbar behavior is to always be visible.
Windows 95 applications must content themselves with the physical
screen dimensions that are left. A maximized window occupies the en­
tire physical display except for the area used by the taskbar. If you turn
off the always on top property for the taskbar, a maximized window can
obscure the taskbar. This is not quite the same behavior as that of con­
tending windows under Windows 3.1. The always on top attribute in

179

Ebay Exhibit 1013, Page 228 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

180

Windows 3.1 would cause a window to obscure some of the maximized
window underneath. The apparent screen· dimensions did not change
as they do in Windows 95. Microsoft has added an Auto hide option for
the taskbar. Setting this option will cause the taskbar to appear only
when you move the mouse cursor to the edge of the screen at which the
taskbar rests. The taskbar will disappear when the cursor moves away
from that edge of the screen.

In the taskbar, you'll see the following:

Ill The single button that provides immediate access to some
common system functions: help or system shutdown, for
example.

II A resting place for active windows. The system will put a but­
ton representing each active window into the taskbar. This
refuge solves the Windows 3.1 problem in which minimized­
window icons disappeared when they were hidden behind
other windows.

The user can configure the location and size of the task bar. Figure
5-16 shows an alternative layout. This particular layout makes it easy to
demonstrate the various uses for the taskbar, but it probably isn't one
you'd choose because it significantly reduces the screen space left for
applications. And the shell does limit the configuration possibilities.
You can adjust the size of one dimension of the taskbar, but the taskbar
must rest against one physical screen boundary, and its larger dimen­
sion is always the same as that of the chosen edge.

One major function of the taskbar is to provide a consistent
"home position," or anchor point, for the user. If you accept the
taskbar's default behavior, the taskbar is always visible. Then, if you get
confused or the desktop gets thoroughly messed up, the taskbar is al­
ways there as a place to return to for help or other system functions and
to reorient yourself.

Application compatibility issues in relation to the system taskbar
are quite interesting. Ultimately, the designers decided to treat the
area occupied by the taskbar as if it were off the edge of the screen.
Thus, Windows 95 clips the window in Figure 5-16 much as ifthe user
had moved it past the right-hand physical edge of the screen. In Fig­
ure 5-17, the application believes it is running in a maximized window
and occupying the whole screen. Windows has actually reported the
screen dimensions to the application so that it excludes the area used
by the taskbar.

Ebay Exhibit 1013, Page 229 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

F I V E: The User Interface and the Shell

Figure 5-16.
The system taskbar in an alternative layout.

you've ever worked on a software development project, you probably recogniz

goals. And you know that every project has to reduce those nebulous aims to s

With Windows 4.0 it was no different.

The Mission For Windows 4.0

Although it's expressed in different ways and set in different contexts, one phr

the mission of the Windows 4.0 development team: make it easy. The mission

aspect of the PC running Windows 4.0 easier for users, support staf£ har

and software developers consistently reasserts itself. The project mantra often

qualifying phrase: make it easy, not just easier. Throughout the design and de

each aspect of Windows 4.0 had to pass scrutiny within the 'make it easy' con

Figure 5-17.
The taskbar and a maximized application window.

181

Ebay Exhibit 1013, Page 230 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

On-Screen Appearance

182

In the example screens we've already looked at, you've no doubt no­
ticed many of the innovations in the on-screen appearance of Windows
95. A lot of effort went into refining the overall appearance of the prod­
uct. Some changes, such as the introduction of the system taskbar, are
obvious, but there. are many subtle design changes throughout the
product as well. And many specific visual elements have changed in
Windows 95. You may have noticed already the changes in the mini­
mize and maximize icons on the application title bar. We'll look at sev­
eral other changes later in this chapter.

The example screen detail in Figure 5-18 shows some of the subtle
aspects of changes in the Windows visual elements. This part of a
screen shows a Windows 3.1 application alongside the Windows 95 sys­
tem taskbar. If you examine the application buttons closely, you can see
that the alterations are very slight: in the system taskbar, some of the
black outline disappears, and the shading details change. As you look
at an individual element, the change doesn't seem very significant.
However, when replicated in every element of the Windows 95 interface,
this level of detailed change does produce a much softer, more visually
pleasing, and consistent appearance. You can see this attention to visual
detail throughout Windows 95-a case of the whole amounting to more
thanjust the sum of the parts.

urse. develop it q

Jbal.:ly recog:llze

bulO'JS aims to sp

Figure 5-18.
Windows 95 screen detail.

Ebay Exhibit 1013, Page 231 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

F I V E: The User Interface and the Shell

Figure 5-18 also highlights an interesting side effect of the redesign.
The buttons on the application's menu bar show the new-style minimize,
maximize/restore, and close icons, and their appearance follows the
Windows 95 conventions. The application's button bar, on the other
hand, retains its "older" style. The button bar wasn't a standard control in
Windows 3.1, so the application has to draw its own buttons. Under Win­
dows 95, an unmodified application will continue to do that, whereas the
standard controls are drawn by the system itself, so they adopt the new
style and appearance.

Another theme in the redesign for Windows 95 is the provision of
visual cues to the user as often as possible. In earlier examples, you may
have noticed that the minimize and maximize buttons convey the ap­
pearance of minimized and maximized windows and that specific appli­
cation icons are embedded within document and folder icons. Figure
5-19 shows screen detail from a more obvious example, in which the
user is examining a disk drive. The type of the drive (the hard disk
graphic), the space used in comparison to the available free space (the
pie), and the fact that it's a network drive (the connecting cable) are all
shown pictorially.

Hard
disk

Connecting
cable

Space
used

Available
free space

Figure 5-19.
Visual cues in Windows 95.

183

Ebay Exhibit 1013, Page 232 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

184

Light Source
Another theme of the design for all the visual elements of Windows 95
was the adoption of a consistent light source. The imaginary source
"shines" from high and wide over your left shoulder as you look at the
screen. All the shading for the three-dimensional effects uses the same
light source. The screen detail shown in Figure 5-20 demonstrates this
consistency. The sunken field containing the LPTl: string, for example,
is shaded on the left and upper edges, and the raised New ... button is
darker on the bottom and right edges. In Windows 3.1, the light source
isn't entirely consistent, and you can find examples in which the light
"shines" from different places. Again, this is an apparently trivial atten­
tion to detail taken in isolation, but it does add a lot of polish and coher­
ence to the product as a whole.

Sunken fields

Raised button

Figure 5-20.
The Windows 95 light source made consistent.

Ebay Exhibit 1013, Page 233 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

F I V E: The User Interface and the Shell

Property Sheets
Windows 95 attempts to introduce a much higher level of consistency for
access to object properties by making use of the secondary, or right,
mouse button (yes, finally a use for the other button!). Clicking the right
mouse button on any object will produce a popup menu that includes a
Properties item. Selecting the Properties item leads to a new control
called a property sheet. A property sheet is similar to a dialog box in many
respects and can include checkboxes, buttons, and editable fields-in
fact, any kind of control. Within the property sheet lies all the informa­
tion about the configuration of the selected object. Figure 5-21 on the
next page, for example, shows the property sheet for the desktop. Note a
few points about objects and property sheets:

II The popup menu for the object appears when you right­
click on the object itself.

II An object's property sheet can have multiple pages marked
by tabs-much as a book might have its sections separated by
tabbed dividers. This provision for multiple pages allows a
single property sheet to include a lot of information that
doesn't have to be jammed into one enormous dialog box.

II You make page selections in a property sheet by simply click­
ing on the appropriate tab.

Ill Consistent with the Windows 95 theme of providing visual
cues, the property sheet that controls the monitor configura­
tion provides a representation of the display and its screen
appearance, the property sheet for printer configuration
provides a representation of a printer, and so on.

The obvious intent is to persuade all application developers to
adopt the same conventions with respect to use of the right mouse but­
ton and the property sheet control. If that happens, object property in­
spection and modification will be completely consistent under Windows
95. Windows 3.1 applications won't respond to the right mouse button
click or display property sheets since an application must be modified
to do so.

185

Ebay Exhibit 1013, Page 234 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

Figure 5-21.
Desktop property sheet in Windows 95.

Tabs·

Representation of
current property
settings

Properties

Online Help

186

If you've ever tried to find your way to some deep, dark Windows secret,
chances are that you found the online help system rather tedious and
frustrating to use. You probably found that there was a lot of informa­
tion to browse through, and you probably had to do a lot of backtrack­
ing before you finally unveiled the secret. You weren't the only one.
Microsoft's usability studies showed that this was a common problem.
Windows 95 adopts a much more direct approach to online help pre­
sentation. The help text is shorter, more explicit, and more context
sensitive. Microsoft is encouraging application developers to adopt
similar guidelines for revisions to online help in application products.
The Windows 95 help system is unlikely to be perfect, though. There
always has to be a compromise between simple, direct instructions that
satisfy 90 percent of the user's needs and lengthier treatments of the
more obscure details. No doubt we'll see more improvements in future
releases of Windows.

Ebay Exhibit 1013, Page 235 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

F I V E: The User Interface and the Shell

Here are some of the changes to the Windows 95 online help:

• Keeping a persistent access point available to the user. The
"Help Topics" item on the Start menu is always available.13

• Taking a task-oriented approach to the online help text. The
text describes explicitly the steps the user must take to accom­
plish his or her goal instead of providing a general descrip­
tion of the topic. Figure 5-22, below, and Figure 5-23 on the
next page include examples of this new format.

• Making sure the help window remains visible throughout.
There's no need to click back and forth between the window
you're trying to work with and the obscured help window that
describes what you're supposed to do. As you can see in Fig­
ure 5-22, the active window is the Find File window but the
help window is still visible.14

Figure 5-22.
A Windows 95 help window.

13. For a long time, the shell included a help button on the taskbar.

14. This example also points up one of the problems in keeping the help screen
visible. The help window obscures the Start button in the Find File window.

187

Active
window

Help
window

Ebay Exhibit 1013, Page 236 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

Ill Reducing the help verbiage and the steps you have to take
to complete an operation for which you need help. The text
is simpler and more direct, and the help windows include
shortcut buttons that take you directly to the system function
that will complete the operation. Figure 5-23 shows an ex­
ample. Clicking on the button will immediately display the
desktop properties screen saver sheet.

Help shortcut button

Figure 5-23.
A help shortcut in Windows 95.

Ill Heightening context sensitivity. The help for an individual
field within a dialog box is for that field, for example, and not
simply a link to the help text for the entire dialog.

Implementation

188

Apart from enabling the shell as an OLE client, the Windows 95 team in­
troduced three other features of the shell implementation worth noting:

Ill 32-bit code. The shell is a 32-bit application that makes full
use of the Win32 API.

II Multithreaded processing. The shell takes advantage of the
threading capabilities of the system. Each window opened by
the shell runs as a separately scheduled thread. You'll see this
innovation in action if you move the hourglass mouse cursor
outside a window boundary. The cursor will change back to

Ebay Exhibit 1013, Page 237 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

FI V E: The User Interface and the Shell

the normal arrow pointer, and, yes, you can actually continue
working, moving to another task.

• Shell extensions. Acknowledging its competitors' desire to
extend and improve the Windows interface, Microsoft has
included a lower-level interface that allows other vendors to
integrate extensions of the basic Windows shell.

Design Retrospective
We've now looked at each of the major new concepts introduced with
the Windows 95 shell. Of course, some of the concepts come from
much earlier work on user interface design outside Microsoft, and
many have evolved from earlier versions of Windows and Microsoft ap­
plication products. The Microsoft designers didn't simply sit down one
day and draw up the design for the Windows 95 shell. During the
course of development (and indeed, during the preparation of this
book), the design of the shell has changed quite a lot. It's worth look­
ing at how and why these changes came about.

The Outside Influences
Throughout the history of Windows, Microsoft has taken vociferous
criticism of the user interface. Some of the criticism is attributable to the
product's success, some of it to the detailed legal scrutiny the interface
underwent during the long-running dispute with Apple Computer, and
a great deal of it to the simple fact that people tend to be opinionated
about interface issues. Very few people care a lot about the names of
Windows API calls or about the order of parameters passed to a func­
tion. But everyone has an opinion about the user interface. So whether
they wanted to be or not, the Windows 95 designers were the focus of a
lot of attention when they began to show prototypes of the shell.

By the time of Microsoft's first major Windows 95 design review­
a meeting in Redmond in July 1993 that hosted about 25 people from
the leading PC software development companies-most of the shell's
features were in place, ready for the product's first external release.
Much animated discussion at this meeting, and much more on the pri­
vate CompuServe forum that hosted the early testers of Windows 95,
helped shape the thinking behind the next release.

Although Microsoft sought and received a lot of expert opinion on
the shell's design, one principal influence was the series of usability tests

189

Ebay Exhibit 1013, Page 238 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

it conducted throughout 1993 and 1994. In some 30 separate tests in­
volving as many as 12 people at a time, Microsoft observed a mix of users
trying to complete tasks using the new shell. The users included people
who had never used Windows (although they had used MS-DOS) as well
as Windows 3.1 and Macintosh users. Microsoft augmented these tests by
interviewing people who trained Windows users.

Among the user difficulties identified by the usability tests, these
seemed to consume most of the design thinking during the development
of the Windows 95 shell and user interface:

Ii Window management-dragging windows and sizing them,
and the implicit ordering of the windows on the desktop.

Ii The difference between the windows supported by multiple
document interface (MDI) applications and single document
interface (SDI) applications. (Try to explain to a novice why
the Windows 3.1 Program Manager apparently clips some
windows and not others, and you'll see the problem.) 15

Ill The concept of hierarchical containment. Experienced
computer users have learned to live with hierarchy, but
putting a folder in a folder inside another folder is certainly
not the way most people organize a filing cabinet.

11111 The mouse double-click action. If you are innocent of experi­
ence and receive no instruction, it's almost impossible to
guess that you need to double-click.

The Development of the Shell

190

The design work for the shell really began back in 1990, although at the
time the effort wasn't even thought of as Windows 95 interface design.
Later a lot of the Windows 95 shell design work was done in conjunction
with the Cairo team's work to ensure long-term consistency between the
two products.

These days Microsoft uses Visual Basic to prototype almost every
screen display. The shell has been no exception. In addition to the ob­
vious advantage that people can see and show each other what they're

15. MDI vs. SDI was a hot topic during Windows 95 design reviews. Ultimately, the
team decided that Windows 95 would be an SDI system because they believed SDI to
be easier for users. But since many software developers had invested in it, MDI support
would still be there.

Ebay Exhibit 1013, Page 239 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

F I V E: The User Interface and the Shell

talking about, VB prototyping makes it possible to develop an early
working model of the design. Although most operations won't have any
effect yet, you can put together a prototype sufficiently rich that you
can get real users to come and try it out. This kind of prototype is what
was used most often in Microsoft's usability tests.

Microsoft released the first external test version of Windows 95 in
August 1993. This so called M4 release was a major milestone for the
development group since it represented the beginning of the end of
the project. The subsequent M5 release was scheduled for the huge
Win32 software developers conference Microsoft hosted in Anaheim in
December 1993. In between M4 and M5, the shell development team
concentrated on transforming the shell from its 16-bit state into a true
32-bit application. The design team in the meantime went back to think­
ing and usability testing.

Immediately after the M4 release, Microsoft undertook a six-week
design project that put members of the Windows 95 and Cairo teams
together to refine the shell design in light of current knowledge. This
design effort focused largely on

Ill Learnability-how to get people doing productive work in the
shortest possible time

II Usability-how the observed tests should guide refinement of
the shell to make common tasks easier than in Windows 3.1

Ill Safety-how to achieve an environment in which no user
should ever have to worry that his or her actions might
destroy data

II Appeal-how to get people to like the Windows 95 shell; how
to harness the naturally polarized opinions of the users to
foster an emotional attachment to the shell

The result was a new prototype presented in an internal design re­
view meeting with Bill Gates in late September 1993.16 In this meeting,
the team introduced the changes to the shell's folder mechanism, a
new design involving novice and expert modes of the shell, and ani­
mated desktops. As they came out of that meeting, the shell design

16. Such meetings are a standard ingredient of Microsoft's development process.·
Always approached with much energy and not a little trepidation, a "BillG review"
continues to have a significant influence on every Microsoft product.

191

Ebay Exhibit 1013, Page 240 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

team believed that pending a final decision on the transfer model
(which we'll look at a little later in this chapter) and a host of small de­
tails, they were close to a final design. All they had to do, they thought,
was wait for the programmers to finish the 32-bit conversion for the M5
release, and they could have the user interface they really wanted. This
didn't turn out to be true since the novice and expert modes were later
dropped and the detailed operation of the system taskbar underwent
further changes.

Changes in the Shell

192

The biggest change in perspective that took place during the course of
the shell development project was seeing that the novice user and the
experienced user should be treated differently. Figure 5-24 shows the
default startup screen used in the M4 and M5 releases of Windows 95.

Figure 5-24.
Prototype default startup screen for Windows 95 M4 and M5 releases.

Contrast this prototype with the eventual design we've seen in Fig­
ure 5-2 back on page 158, and you can see some big changes:

II The default startup screen in the prototype shown in Figure
5-24 offers several points of access to the system. The taskbar,

Ebay Exhibit 1013, Page 241 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

FI V E: The User Interface and the Shell

for instance, includes three buttons rather than one, and
the Network icon, the Programs folder, and the File Cabinet
icons on the desktop seem to suggest even more avenues of
approach.

1111 There's no hint to the user about how to begin.

After the M5 release, the design introduced the explicit notion ofa
novice mode and an expert mode. Users who acknowledged themselves
to be novices would see a shell configuration that painstakingly guided
them through the system.

Figure 5-25 shows an example of the novice interface. Eventually
this separation of users was dropped, and it never was a feature in any of
Microsoft's external test releases. 17

Figure 5-25.
The prototype for the novice shell.

With the final design, you end up with a personal desktop that looks
a lot like the older default desktop. The changes to achieve the final de­
fault desktop guide the novice into being able to use the system quickly.

17. As of the Beta-I release, some form of graphical buttons for augmenting the
Start menu was still under consideration.

193

Ebay Exhibit 1013, Page 242 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

194

The Taskbar
A number of issues shaped the final design for the taskbar. The main
issue was the behavior of minimized windows. The original design,
shown in Figure 5-26, had windows shrinking and parking themselves
on top of the default taskbar area-although it was still possible to
move a minimized window to a different location on the desktop. Then
the taskbar buttons became directly related to minimized windows.
The final design, shown in Figure 5-27, provides for the creation of a
button in the taskbar that corresponds to any window. (Ingeniously, the
shell gradually shrinks the buttons as you add more and more of them
to the taskbar-the change is almost imperceptible.)

Figure 5-26.
Minimized windows on top of the taskbar area in the early shell.

This final design addresses the user's problems: losing minimized
windows and having trouble differentiating among minimized win­
dows, executing applications that simply have very small main windows,
and other desktop objects. The user can always go to the taskbar to find
an application that is running.

Ebay Exhibit 1013, Page 243 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

F I V E: The User Interface and the Shell

5.25 Floppjl 3.5 FloPPll (B:) Aidies_c (C:) Boto1_rc1 (D:)
!'I:)

!!!.

Figure 5-27.

- • II
0:1 Contlol Panel Pri'lters Folder

Button for
inactive window

Button for
minimized window

Buttons on the taskbar correspond to all open windows in the final
version of the shell.

Folders and Browsing

Button
for active
window

As you can see in Figures 5-24 and 5-26, the old desktop design in the M4
and MS releases incorporated a File Cabinet icon intended to be the
point of access to local file storage. Not surprisingly, experienced Win­
dows 3.1 users assumed that this was the familiar File Manager applica­
tion. It wasn't. Under Windows 95, it's the shell that allows you to open
folders on the desktop, and the folders can contain any kind of object­
not just files. The Windows 3.1 notion of a separate application-the
File Manager-that you must run in order to inspect files doesn't really
exist in Windows 95.

This subtlety proved difficult for many Windows 3.1 users to grasp,
so the designers simplified the shell by altering the file cabinet icon so
that it looks like the computer icon you see in Figure 5-27, thus breaking
the association with the old File Manager.

195

Ebay Exhibit 1013, Page 244 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

196

The default behavior of the shell resulted in folders opening on
top of other folders. Quite soon the desktop would get pretty full, as in
Figure 5-7 back on page 170. The modified shell behavior in the final
release introduces the explicit Explorer program y6u see in Figure 5-
28). The default Explorer behavior displays a two-pane window. Mov­
ing through the hierarchy causes the contents of the right-hand pane
to be replaced with the contents of the next folder window you open.
So more often than not, you'll have just one open folder window on the
desktop.

When you browse directly using the shell,):here's also an option
that allows you to choose either to have a new window for each folder or
to replace the current window contents with the new folder. The level of
desktop clutter is thus controllable.

Desktop
Jil···& My Comptier
i $-& 5.25 Floppy IA:I
. $··9 3.5 Fk>ppy (8:)
Iii·&­$-· Beta1_rc1 (D:)
$··!ii!! Con o;vers' (E:J
$··ell:l
!-··iii Con~ol Panel

i L..111 Priiters Folder $1 Network Neighborhood
·- Book

Figure 5-28.
Exploring the system.

Animation

Autoexec.bak
C!!Aulo.,.,c
D AutoeKec.dos

~!:I ~~=~~dos Conlig.dos
Detlog
Setuplo~old

Setupk>g
System.dat

The use of animation in Windows 95 isn't purely frivolqus-though it
may appear so at first. On the desktop background, the animation effects
are there purely for user appeal, it's true. The device was introduced dur­
ing one of the usability tests, and a lot of people liked it. The popularity
of animated screen savers and animated desktop wallpaper seems to
lead naturally to animated desktops. (Of course, a whole new third
party industry segment will debut, providing replacement desktops for
Windows 95.)

Ebay Exhibit 1013, Page 245 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

F I V E: The User Interface and the Shell

The more serious use of animation in Windows 95 is as an indica­
tor of the relationships among objects: a window that shrinks to a mini­
mized state gives the user a pointer that indicates where the application
went. A folder that expands into a window showing a list of objects pro­
vides a hint that the different objects share something in common.
This use of animation is actually quite important to the shell's "ex­
plorer" mode. One problem identified in Microsoft's usability tests was
the difficulty people had in relating the contents of the left and right
panes of a folder view-the tree and the individual folder. Animation
helps users relate the contents of the two different panes.

The Transfer Model
Transfer model is the term applied to the user's conceptual view of what's
involved in moving information from one place to another. If you know
Windows, you'll usually think of information transfers as the Cut/Copy
and Paste options found on an application's Edit menu. It's rare to find a
document-oriented application for Windows that doesn't support cut
and paste operations. Over successive Windows releases, system support
for cut and paste operations has been improved both for Windows appli­
cations (with the Clipbook introduced with Windows for Workgroups)
and for MS-DOS applications in the Windows environment.

Unfortunately, many novice Windows users have difficulty grasping
the cut and paste metaphor. A strange hidden application called "Clip­
board" is involved, and the user must understand the notion of different
data formats to use cut and paste proficiently. With OLE-enabled appli­
cations starting to appear, the user's reliance on cut and paste ought to
shrink, but there will still be a need to support cut and paste operations
for a long time to come.

Microsoft's designers wrestled with introducing a different transfer
metaphor, one involving the verbs move, copy, link, and put here. As you
can probably guess, the move, copy, and put here operations would have ef­
fects similar to those of Cut/Copy and Paste, whereas the link operation
would exploit the new OLE-based ability to support dynamic connec­
tions between objects. In fact, OLE uses the new link term together with
the older cut and paste terms. During the July 1993 design review, these
ideas sparked some of the most heated discussions.

Ultimately, the shell designers came to view the problem of rede­
signing the transfer model as insoluble. Some believed that the new
metaphor was q:mceptually easier for users to deal with, but they also

197

Ebay Exhibit 1013, Page 246 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

acknowledged the investment to date in code, documentation, and
training that existed for the cut and paste school of thought. The Sep­
tember 1993 internal design review resolved to let Bill Gates decide,
with most people leaning toward retaining the cut and paste model.

Other Changes
The most notable change in the shell was the elimination of the
''Wastebasket"/"Recycle Bin" featu,re present in the early test releases.
For a number of reasons, this feature was, unfortunately, dropped. Per­
haps next time.18

The New Appearance
We've already looked at the design concepts that underlie the new look
of Windows 95, and you've seen many of the individual elements in the
examples. The new look has four main components:

II A more thoroughgoing use of three-dimensional effects.
Windows 3.1 does include some 3-D effects on buttons, but
Windows 95 uses the 3-D look extensively.

II New system colors and fonts.

1111 New controls. Windows 95 features several new controls, and
these are all available to application programs as well.

Ill New system dialog boxes. Several of the common dialogs,
such as File Open, have been revised.

We're going to take a brief look at all of these items, concentrat­
ing on their use in the system. As it did for earlier versions of Windows,
Microsoft will publish an Application Design Guide book that describes
more precisely when, where, and how tb use the new visual elements in
applications. Many of the new guidelines are manifest in the system it­
self, and you can find lots of examples in the system of dialogs that have
been simplified and generally cleaned up.

Screen Appearance

198

From the screen shots all through this chapter, you can see that many ele­
ments of ti'i.e Windows 95 interface adopt a 3-D appearance. In Windows

18. Stop press: it's back in, together with a comprehensive Undo feature for all
shell operations.

Ebay Exhibit 1013, Page 247 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

FI V E: The User Interface and the Shell

3.1, use of the 3-D effect was limited: most buttons got the treatment,
but that was about all. In Windows 95, the 3-D effect is used just about
everywhere: for menus, buttons, dialog fields, and more. Of course,
this is a 3-D effect, not a magical new screen display technology. The
main contributor to the effect is the use of different colors around the
edges ofa screen element.19

Figure 5-29 shows how Windows 95 uses outer and inner border
color pairs-light gray with black, and white with dark gray-to pro­
duce 3-D effects in keeping with the idea of a consistent light source.
When a button is not pressed, the top and left edges of its outer and
inner borders are in lighter colors than the bottom and right edges of
its outer and inner borders. When a button is pressed-as depicted by
the outer and inner borders shown in Figure 5-29 at right, by the but­
ton shown in Figure 5-30 on the next page, and by the top button
shown in Figure 5-31-the top and left edges of its outer and inner bor­
ders are in darker colors than the bottom and right edges of its outer
and inner borders, and the color pairing of the outer border becomes
the color pairing of the inner border and vice versa.

The system augments the basic effects by sometimes reversing the
color pairs-pairing black with white, and dark gray with light gray. The
outer and inner borders of the pressed button shown in Figure 5-30 are
composed of such reversed color pairs. Or the system might pair black

Raised
outer border:

light gray
and black

Figure 5-29.

Raised
inner border:

white and
dark gray

Sunken
outer border:

dark gray
and white

Sunken
inner border:

black and
light gray

Using the outer and inner borders to create unpressed and pressed
buttons in the default color pairs.

19. Exactly why the human eye accepts this simple device as three dimensional is
way, way beyond the scope of this book.

199

Ebay Exhibit 1013, Page 248 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

200

with dark gray, and light gray with white. In all, the four colors in three
different pairings, combining to show both pressed and unpressed but­
tons, produce six variations.

Figure 5-31 shows an example ofa pressed button as it appears on
the screen in the company of unpressed buttons. The user can change
the default gray color of the button and the default shading color. If the
user changes the default colors, the system supplies the colors it needs
to complete the 3-D effect.

Figure 5-30.

Button pressed:
Sunken outer (top and left edges in darker color)
Sunken inner (top and left edges in darker color)
Colors of outer and inner borders exchanged
Color pairings reversed

Using reversed color pairs and creating a pressed button effect.

Figure 5-31.
A pressed button.

The other major contributors to the new screen appearance are
the different system color scheme and the new treatment of system
fonts. Everything is more subtle: gray is often chosen over the stark black
and white of Windows 3.1, and fonts are no longer bold.20 The menus
shown in Figure 5-32 exhibit the way in which a Windows 3.1 application
automatically inherits these system improvements when it runs under
Windows 95. And the new color scheme all actually works on gray scale
displays-you don't have to have a 256-color SVGA adapter to realize the.
benefits of the new look.

20. Microsoft's early test releases of Windows 95 used Arial 8-point regular for the
system font.

Ebay Exhibit 1013, Page 249 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

FIVE: The User Interface and the Shell

fage Layout

Qraft

Theb
.IIoolbar
,/ Ri!lbon

such ,/ f!,uler pea:

apart Header/footer ... and

thath footnotes Wi
................... Annotations

CHea
(tc .. ·.~

field .C.odes
bilit

Zoom ...
Nnnlnrl

Figure 5-32.
Changes in system fonts betweer: Windows 3.1 and Windows 95.

Visual Elements
The basic elements of the Windows 95 screen are those you're already
familiar with from using Windows and applications for Windows. Some
of them, such as the tool bar control, appear as standard Windows com­
ponents for the first time. But you won't find, apart from the property
sheet and the new controls it uses, any elements that haven't appeared
before, either in Windows or in popular applications for Windows.

Scalability
As part of the overall revision of the Windows screen appearance, the
Windows 95 designers did pay a lot of attention to the issue of how to
scale the Windows interface. As very high resolution screen displays
and adapters have come down in price, their use has grown. Unfortu­
nately, Windows 3.1 doesn't handle this hardware particularly well.
Your work might occasionally demand that you use 1280 by 1024 pixel
resolution on a 14-inch monitor, for example-at which point, in Win­
dows 3.1, the system font becomes so tiny as to be unreadable and grab­
bing a window border with the mouse becomes an exercise in patience
and dexterity. Similarly, running Windows 3.1 on a very large display
tends to result in unnecessarily large amounts of screen real estate de­
voted to scroll bars and the like. And, of course, the issue of personal
preference can't be ignored.

201

Ebay Exhibit 1013, Page 250 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

202

Included in Windows 95 is a control panel for window metrics. You
can change the size of every element of a window-even to the extent of
making the window's appearance a little ridiculous, as in Figure 5-33.

Figure 5·33.
New window metrics in place.

System

'

256color
Acces•
Acce"40

..;!Accstat
QtMn.,cfg iA<tiank.pwl

Aicade
Arcsrv32
Aigyle

i=!Aip
.Bozior
[lBilpwl

The user can make these changes dynamically: there's no need to
restart Windows to have them take effect. One issue application devel­
opers have to deal with is the possibility that such changes will occur
while an application runs. This problem is similar to that of the user's
resizing the system taskbar or to that of dealing with hardware that allows
the user to rotate the monitor between portrait and landscape orienta­
tion. The video device drivers in Windows 95 also allow screen resolution
changes on the fly.

Menus
In addition to the refinements to their colors and fonts, menus have
changed in a few subtle ways and a couple of obvious ways. There is also
one new menu type: the popup menu. The user accesses a popup menu
by using the right mouse button (or, more correctly, mouse button
two) as he or she selects an object. The popup menu appears next to
the object, and the design guidelines recommend that the menu be
context sensitive so that it can change according to the current state of
the object. Figure 5-34 illustrates the popup menu for a printer that is
in the midst of a print operation.

Ebay Exhibit 1013, Page 251 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

F I V E: The User Interface and the Shell

Figure 5-34.
A popup menu 'IYrought up by a press of the right mouse button
(mouse button two).

The window menu is the new name for what you used to call the
system menu. The design guidelines add a standard ''View" menu that
affects the displayed view in the window. Figure 5-35 on the next page
shows an example in which the status bar and the tool bar have been
turned on using the View menu options.

Of the more subtle changes to menus, the most noticeable is
their behavior. once you have a menu displayed on screen. Simply
moving the mouse along the menu bar will cause other menus to drop
down from the menu bar or cascaded menus to unfold from within
the current menu. You don't need to click or hold down the mouse
button after the first click. This behavior contrasts with that of Win­
dows 3.1, where access to any other menu required at least one more
mouse click. 21

21. Sometimes called a "hot mouse," this behavior has been incorporated into
other graphical systems. (It was considered for OS/2 back in 1987 but never imple­
mented.) Most implementations of a hot mouse don't even require the first mouse
click-simply passing the mouse cursor over the menu bar makes the menu appear.
Some people find this behavior irritating, and others love it.

203

Ebay Exhibit 1013, Page 252 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

204

El·B Ardiles c [C: I
• i ·iliiil Bo~k

IB'lilllllll
;• Dos
i··-.-iii Dostools

BJ··iliiil Doublecd
fil .. iJd Msoffice
iiJ ..• Msvc20
tBiliiil Sdk
iiJ.iliiil Spe
L.iliiil Temp
Liliiil Tmp

8Jiliiil Usr

iii Sysbckup
iliiil System
~256color
6,.Access
[!)Access40
,.;!Accstat
QfAdminclg
0Ad1iank.pwl I Arcade

Arcsiv32
Argyle

i:IArp

Proportionally sized scroll boxes

Figure 5-35.

~-- Minimize button
Maximize/Restore button
Close button

Toolbar

Sizing handle

~-- Status bar

The window display with Tool Bar and Status Bar options.

Window Buttons
The Minimize, Maximize, and Restore buttons located on the upper
right of a window's title bar have also changed. The icons depicting the
three operations are different. See Figure 5-35 for an example. And a
third icon has been added. Clicking this button is the same as doing a
Close operation on the Window menu. 22

Icons
The visual designers have applied the same principles to icon design
that they have applied to the rest of the system. The apparent light
soun;e for an icon is now the same as for all other controls, and the sub­
tler shading and outlining techniques are used for icons too.

/Applications now have to provide two icons: a 32 by 32 pixel icon
and a new 16 by 16 pixel size. Windows 95 uses the larger icon to repre­
sent the application itself-for desktop shortcuts, for example. The
smaller icon appears as a visual aid that can be embedded within a
document icon, within a folder's small-icon view (see Figure 5-35),

22. Personally, I disagree with the design decision to place the Qtose button
where Maximize used to be. After you've run a few applications tha~j;tart with a
nonrriaximized window, you'll see what I mean.

Ebay Exhibit 1013, Page 253 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

F I V E: The User Interface and the Shell

and within a window's title bar. If the application doesn't provide the
smaller icon explicitly, the system will try to create one by scaling down
the application icon. Depending on the complexity of the original
icon, this may or may not result in a recognizable image.

Proportional Scroll Box and Sizing Handle
To see more or different information in a window, you can do one of
two things: scroll the window or resize it so that it has a larger client
area. The information Windows 95 displays to help you do this includes
a proportionally sized scroll box within the standard scroll bar control
and a new sizing handle in the bottom right corner of the window. You
can see an example of each of these in Figure 5-35. The position of the
box within the scroll bar still provides an indication of your current
position in the document. The size of the scroll box shows you how
much of the total document is shown in the window. A scroll box that
fills the entire scroll bar would tell you that you were looking at the
whole document.

The sizing handle is simply a visual cue. Window sizing behavior is
the same under Windows 95 as itwas under Windows 3.1. If there's no
sizing handle, the window is a fixed size.

New Controls

The new Windows 95 controls are available only to 32-bit Windows ap­
plications. A 16-bit application can't call the common control DLL that
implements the new controls. Many of the new controls are simply
standardized system implementations of elements you've seen before
in applications for Windows.

Tool Bar Control
With the tool bar control, Windows 95 implements perhaps the most
popular visual device seen in applications for Windows 3.1. Somewhat as
in the garish early days of desktop publishing, applications, including
Microsoft's, have sprouted strips of buttons and edit controls that pur­
port to provide a shortcut to every function in an application. Like them
or loathe them, they're here to stay. If the Windows 95 tool bar control
becomes the preferred method of deploying this shortcut feature, at
least we'll have a degree of consistency among different applications.23

23. Microsoft's long-term stated direction is to merge the menu bar with a system
tool bar. I hope we'll all have 35-inch monitors and excellent pattern recognition
capabilities by then.

205

Ebay Exhibit 1013, Page 254 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

206

The tool bar control assists in the management of the buttons on
the control. The edit fields, if any, are separate windows. The program­
mer can add, delete, move, raise, and lbwer buttons within a tool bar
control. The control also supports a customization feature, allowing
the user to add his or her favorite buttons to the tool bar. The system
arranges for the tool bar control to be automatically resized when the
window size changes. Figure 5-36 shows the details of an example tool
bar. Figure 5-35 back on page 204 shows an example of how the Win­
dows 95 shell uses the control.

Figure 5-36.
Example tool bar control.

Button List Box Control
The button list box control shares some of the tool bar's properties. It al­
lows the programmer to create a horizontal or vertical row of buttons
that display application-specific bitmaps. The button list box control
might be used to create the floating palettes of buttons popular in
some existing applications.

Status Window Control
The status window control implements another very popular Windows
application and tools user interface component.24 Figure 5-37 shows an
example of a status bar at the bottom of the folder view window.
Microsoft Word for Windows used the status bar concept in a very early
revision. The status window control allows the programmer to divide a
screen area into multiple windows and display text in each of them.
Usually, the status bar appears at the bottom of the window, although
early API definitions also allowed it to appear at the top of the window.
Typically, the text provides helpful information about the current
document-the present cursor position, for example. Another com­
mon use of a status window control is for a brief prompt to indicate the
likely outcome of choosing the current menu item.

24. The Microsoft Foundation Classes for Visual C++ actually included an imple­
mentation of the status window control under Windows 3.1.

Ebay Exhibit 1013, Page 255 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Figure 5-37.
Example status bar.

Column Heading Control

Sysbckup
Iii! System
il.!t256color
i!.,.Access
I!} Access40
4Accstat
QI' Admincfg
D Adriank.pw1

I Arcade
Arcs1v32

11.!tArgyle
!:JArp

FI V E: The User Interface and the Shell

The column heading control implements a horizontal window that can
include column titles. The programmer positions the column heading
window above columns of related information. The user can grab the
column dividers within the header window control and drag them to
adjust the widths of individual columns. The Windows 95 shell uses the
column heading control extensively. Figure 5-38 shows an example of
the column heading control's use while the contents of a folder are dis­
played-the user has substantially increased the default column width
for filenames by dragging the column delimiter to the right.

Figure 5-38.
Example column heading control and status window control.

,Column
heading
control

207

Ebay Exhibit 1013, Page 256 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

208

Progress Indicator Control
The progress indicator control (sometimes called simply a progress bar)
standardizes a visual device already used in many applications. It pro­
vides the user with an indication of how far a lengthy process is from
completion. The application programmer can set the range of the con­
trol and the rate of the advance of the current position indicator. If a
label for the control is present, it will either show the percentage of the
process that is complete or otherwise indicate the current position. Fig­
ure 5-39 shows a progress indicator control. You can see an example of
its use as Windows 95 scans the disk when you open a new folder.

Figure 5-39.
A progress indicator control (progress bar).

Slider Control
The slider control is now the preferred control for setting values within
a continuous range (as opposed to a series of discrete values). Many ap­
plications have used scroll bars for this purpose, but that use was a little
misleading since there is no information to scroll through.

The programmer can set the minimum and maximum positions
for the control, the tick marks, and the position of the slider. Figure 5-40
illustrates the basic design of the slider control.

Figure 5-40.
A slider control.

Spin Box Control
The spin box control (Figure 5-41) implements a common input device
often called a spin button or a spin control. Clicking on the arrows in the
control will alter the value displayed in the associated edit field. As the
designers originally defined it, the new control was termed an up-down
control, and the application programmer had to associate the control
with a particular edit control (its "buddy window"). Later discussion
seemed to indicate that this division of controls wouldn't come about
and that the edit control and up-down controls would be combined into
the single spin box control.

Ebay Exhibit 1013, Page 257 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

FI V E: The User Interface and the Shell

Figure 5-41.
A spin box control.

Rich Text Control
The rich text control implements an oft-requested feature: an edit con­
trol that allows for the input of multiple lines of text with word wrap and
other formatting features. 25

Tab Control
The tab control implements a device that allows the user to navigate
among logical "pages" of information. Figure 5-42 shows an example
tab control for three pages of information. The most common use for a
tab control is within the property sheet control we saw in Figure 5-21
back on page 186. The tab control is meant to suggest to the user a peer
relationship among the different pages. If the information is really hier­
archical, the dialog organization should reflect that.

Figure 5-42.
An example tab control.

Property Sheet Control
The property sheet control implements the mechanism the shell uses to
display object properties. Providing the property sheet as a basic con­
trol within the system makes it readily available for applications to use.
Figure 5-43 on the next page shows a page of the property sheet for
an MS-DOS virtual machine control. You can think of each page in
the property sheet as if it were a separate dialog box. The buttons at
the bottom of the page are global-they relate to the property sheet as
a whole, not to a specific page. Every property sheet includes an Apply
Now button. Clicking on the Apply Now button will alter the properties
to match their new settings but will not dismiss the property sheet
(as would happen if you clicked on the OK button). The absence of
a strict hierarchy is the major difference between a property sheet and

25. This innovation single-handedly reduces much of the implementation of the
Wordpad accessory to the creation and management of a solitary rich text control.

209

Ebay Exhibit 1013, Page 258 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

a cascading series of dialog boxes. In a property sheet, you can flip
back and forth between pages and leave the property sheet from within
any page.

Figure 5-43.
Example property sheet for the MS-DOS virtual machine control,
open to the Tasking properties page.

List View and Tree View Controls
The list view and tree view controls provide the ability to display a collec­
tion of items to the user. The shell uses these controls when it displays
folders. Figure 5-28 back on page 196 shows examples of both a tree
view control and a list view control.

The tree view control provides hierarchical information about
items and allows the programmer to expand or collapse parts of the
tree. The list view control supports a single-level list of various types:
large and small icons and a details view.

New Dialog Boxes

210

When Microsoft introduced the notion of common dialog boxes for
standard operations such as File Open, their actual implementation re­
quired the application vendor to ship the DLL t..liat supported the famc­
tions. In fact, every Windows application you've installed in recent years

Ebay Exhibit 1013, Page 259 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

FI V E: The User Interface and the Shell

probably came with a copy of the COMMDLG.DLL file. Using the com­
mon dialogs meant consistency for the user and less effort for the appli­
cation developer.26 These common dialogs gradually became a part of
the Windows product. Windows 95 introduces some improvements and
some new dialogs.27

A few of the common dialogs haven't changed beyond adopting
the Windows 95 visual style: the Find and Replace dialog and the Fonts
dialog are essentially the same as in Windows 3.1. At least initially,
Microsoft planned to make only minor revisions to the Print and Print
Setup dialogs. At Microsoft's early user interface design review meet­
ings, however, the audience greeted this plan with something less than
tacit agreement. The Windows 95 product release may well include
larger scale changes to the print dialogs.

Windows 95 does revise the file management and color dialogs,
adds a page setup dialog, and includes all of the OLE dialogs as stan­
dard components. Naturally, all of these dialogs exhibit the new visual
style, and Microsoft's application design guidelines encourage develop­
ers to always use the common dialogs. The Windows 95 common dia­
logs also use the standard controls (including the new ones we've
looked at). Earlier versions of the common dialogs were often built
separately instead of making use of the standard controls, and they in­
cluded some subtle incompatibilities as a result.

File Open Dialog
You'd think that the amount of time and brainpower that have been ap­
plied to the apparently simple task of opening a file would long ago
have produced the ultimate File Open dialog. Not so. The Windows 95
File Open dialog adds a number of new features to the state of the art:

1111111 The dialog looks very much like a shell folder window,
displaying a tree view and a small icon list view of the files
and directories.

11111 You can browse the network directly. You no longer need to
understand the concept of network drives to cruise for a file.

26. For a long time, one of Bill Gates's better known complaints was "Why on earth
does everyone have to write file open code?" He would usually put it a little more
strongly than that.

27. Early examples of most of these dialogs are shown in this section. Some, such
as the OLE dialogs, weren't available in time to be included here.

211

Ebay Exhibit 1013, Page 260 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

212

ii The dialog includes a document preview window that provides
an indication of the file's contents.28

!II Links and long filenames are understood and handled cor­
rectly.

!II The dialog provides direct access to an object's popup
menus.

Figure 5-44 shows the design for the Windows 95 File Open dialog,
which was presented in the first design review meeting. You can see the
tree and list views of the folders and documents, the long filenames, and
the document previewwindow.29

Figure 5-44.

li'l 8 ook Cover

li'l 8 oak Cover

~ Data Analysis

li'l Fox and Sox

~'"'td'llN
li'l Looking for 8 ob

Ii'! Looking for Bob

Ii'! Looking for 8 ob

~Lost and Found

~Lunar Studies

li'l Lute Diagrams

~ Movie Reviews

~ My Reading List

~ My Reading List

One design for the new File Open dialog box.

28. The intention is to provide a preview window for a very wide range of file types.
This goal implies a large number of specialized file viewers and a lot of work-not all
of which might get done for the Windows 95 release. One easy file type to display is an
OLE compound file, in which the dialog can use the embedded thumbnails directly.

29. The first test release of Windows 95, in August 1993, did not include this
dialog.

Ebay Exhibit 1013, Page 261 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

F I V E: The User Interface and the Shell

Page Setup Dialog
Page Setup is a function you see in many applications for Windows. It's
not used as frequently as a simple file open operation, but in Windows
95, it makes the cut and becomes one of the common dialogs. Figure
5-45 shows the original design for this dialog. It includes paper orienta­
tion and margin setting features, as well as paper handling facilities
that used to be part of the Printer Setup dialog.

Figure 5-45.
The new Page Setup dialog box.

Long Filenames
In Chapter Seven, we'll look in detail at the new filesystem for Windows
95. The filesystem's biggest impact on the user interface is its support
for long filenames. It took a lot of development work to get the shell and
other visual elements to fully support this new capability. And if some­
one chooses to call a file My letter to Aunt Winnie about the dahlias, dis­
playing the name and allowing it to be easily edited becomes a nontrivial
task. One new feature of the shell allows document renaming in situ.
Figure 5-46 on the next page illustrates the creation of the new filename.

213

Ebay Exhibit 1013, Page 262 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

214

Figure 5-46.
Long filename creation.

Windows 95 and any application written for it will handle the long
name quite happily. This is not the case for Windows 3.1 and MS-DOS
applications, and Figure 5-47 illustrates how the long filename will ap­
pear in Windows 95. The system creates a short name (using the old 8.3
naming convention) that references the same file. If you know the alter­
native name, you can get at the file. The Windows 95 implementation of
COMMAND.COM helps out by listing both the short name and the long
name. Figure 5-48 shows the short version of the long filename as it will
appear in an earlier Windows application running under Windows 95.

Figure 5-47.
COMMAND. COM in Windows 95 provides a directory listing that
shows both the 8.3 version and the long version of a filename.

Ebay Exhibit 1013, Page 263 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

F I V E: The User Interface and the Shell

Figure 5-48.
The directory listing in an earlier Windows application running
under Windows 95 shows a shortened version of the long filename.

Obviously, with every user's initial mixture of old and new Win­
dows applications, there are going to be some user interface difficul­
ties. This is an unavoidable price that has to be paid if we are (finally)
to get the extra functionality of long filenames.

Windows 95 Support for MS-DOS Applications
As one well-known advertising slogan put it, "He's back~" or in this case,
they're still here. Around th.e world, beloved MS-DOS applications con­
tinue to take up a lot of disk space and CPU time. Acknowledging the
obvious, Windows 95 includes some significant improvements to Win­
dows support for MS-DOS sessions-notably:

II COMMAND.COM supports long filenames (as shown in
Figure 5-4 7) . 30

30. Windows 95 also includes new INT 21 API calls that allow the use of long
filenames in MS-DOS applications. It will be very interesting to see how many develop­
ers revise their applications to support these functions.

215

Ebay Exhibit 1013, Page 264 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

216

Ill The MS-DOS window is sizeable-just as most other applica­
tion windows are.

Ill You can choose the font size for the MS-DOS window. Win­
dows adjusts the font size automatically when you resize the
window.

Ill Windows supports cut and paste operations for any rectangular
area within the MS-DOS window.

Ill The MS-DOS session supports a tool bar control that provides
quick access to most of the window functions just described.

Figure 5-43 back on page 210 illustrated part of the MS-DOS VM
property sheet you can use to control the behavior of the session. All of
the many configurable options are there, along with several new ones.
In Figure 5-49, an MS-DOS session window shows part of the tool bar
control and one use for the automatic font sizing capability. The font
has shrunk so small it's unreadable, but if you're interested only in be­
ing able to see when a long series of commands have finished execut­
ing (during program compilation, for example), it's sufficient. (After
all, you've probably watched that same sequence of commands often
enough that you could recite it v;erbatim.)

Figure 5-49.
MS-DOS application support in Windows 95.

Ebay Exhibit 1013, Page 265 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

F I V E: The User Interface and the Shell

Application Guidelines for Windows 95
Given all the revisions to the Windows 95 user interface, it's not immedi­
ately obvious to an application designer what the most important as­
pects of the new interface are. And for users, there are a lot of new
features that require exploring and learning. The success of the product
alone will tell whether Microsoft has met its goal of providing a solid
transition path for existing Windows users. For the application
implementer, Windows 95 includes plenty of new technology to exploit:
the 32-bitAPI and Plug and Play support, for example.

Microsoft recognized the potential bewilderment of the applica­
tion interface designer and early on in the Windows 95 preview process
began to provide design guidelines.31 The guidelines fell into two cate­
gories:

11111 The user interface style guidelines that had appeared in book
form for previous versions of Windows were updated continu­
ally throughout the Windows 95 project. The guidelines
present a detailed series of recommendations on when and
how to use various interface elements: dialog boxes vs. prop­
erty sheets, for example.

II Guidelines were made available for exploiting the Windows 95
interface to the extent that an application can truly showcase
the capabilities of the system.

In each case, there's an interesting question of the lines you have
to draw between what you, as an application designer, ought to do or
could do as opposed to what Microsoft really wants you to do. Using the
common File Open dialog that the user is familiar with is something you
ought to do. It makes sense from both a consistency and a cost view­
point, and the user is likely to consider your application a little strange if
you don't use it. Adding support for long filenames is probably a good
idea. It costs you implementation dollars, but it's a great feature that
enhances any application. OLE support is a feature Microsoft defi­
nitely wants to see you add to your application. And it does add an im­
pressive set of features. Unfortunately, it's an expensive addition, and

31. Actually a presentation entitled "How to Be a Great App in the Chicago Shell,"
which remained fairly consistent throughout 1993.

217

Ebay Exhibit 1013, Page 266 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

whether OLE is the way the world will use objects isn't entirely clear yet.
Enough speculation-let's take a look at what Microsoft recommends
to Windows 95 application designers.32

Follow the Style Guidelines
It goes almost without saying that presenting a consistent, predictable
environment helps enormously in the user's learning and using appli­
cations. It's really what Windows is all about. As we noted earlier in this
chapter, Microsoft always points out that their recommendations are
just recommendations and not rules. However, many of the guidelines
are entirely noncontroversial and make the application design process
a lot simpler.

Support Long Filenames
Long filenames are probably destined to be the most immediately
popular feature of Windows 95. Given that the system provides much
of the basic support for this capability, it looks like a great thing to sup­
port in your applications.

Support UNC Pathnames
The number of PCs attached to networks continues to grow at an im­
pressive rate, and Windows 95 is inherently a networked system. Both
of these points argue for making applications fully network capable.
Support for the Universal Naming Convention (UNC) style for filenames
is built into Windows 95, and the shell depends on it also for network
browsing. Microsoft recommends the support of UNC-style names
rather than the drive letter convention. For example, a file open of
\\DocsMss\Book\Chapter 5 is preferable to G:\Book\Chapter 5. The
preferred title bar caption is Chapter 5 On Docs rather than simply the
UNC pathname.

Register Document and Data Types, and Support Drag and Drop
The Windows 95 shell can do a lot without any assistance from the ap­
plication, provided the application makes the correct resources avail­
able, usually by adding information to the Windows registry so that the
shell can get at it. In particular, the application helps by

218

32. In July 1994 Microsoft began to disclose the requirement that an application
support many of these features in order to qualify to display the Windows logo. Be
warned.

Ebay Exhibit 1013, Page 267 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

FI V E: The User Interface and the Shell

• Incorporating and registering icons for document types to
allow the shell to display them correctly when the user opens
a folder

• Registering data-specific commands to allow the shell to
display the commands in popup menus

• Supporting drag and drop print capability

Use Common Dialogs
The intent of the common dialogs is to provide consistency across ap­
plications for frequent operations. The user expects to see the same in­
terface when carrying out one of these operations in any application.
The Windows 95 common dialogs also add a lot of features, such as
network browsing, that are "free" to applications that use them.

Reduce Multiple Instances of an Application
The perennial lost window problem is exacerbated when an applica­
tion allows the user to start multiple instances of it rather than simply
becoming the foreground application and opening successive docu­
ment windows.

Be Consistent with the Shell
The Windows 95 shell shows off many of the new Windows features:
property sheets, the new controls, popup menus, and so forth. The
user will spend a lot of ti;ine with the new shell and will come to expect
applications to have features similar to the shell's. Providing such fea­
tures for an application will provide consistency for the user.

Revise Online Help
The style for help in Windows 95 is quite different from the Windows
3.1 help style. Revising the help text for an application so that it will
conform to the Windows 95 model is a nontrivial task-a task that may
take some time to complete. As part of the revision of online help,
Microsoft strongly advocates the incorporation of much more context
sensitivity-help popups available in dialogs and help on menu items,
for example. As far as the overall revision of help systems is concerned,
the general philosophy of Windows 95 help is for task orientation and
brevity. So don't use a request for fonts help to embark on a discussion
of scaling technologies; tell the user how to choose a font.

219

Ebay Exhibit 1013, Page 268 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

Support OLE Functionality
The move to objects is on, and Microsoft wants you to view the object­
oriented world through the capabilities of OLE. Although OLE is not
without its competitors, the support for it from Microsoft's (extremely
successful) operating system platforms gives it a definite edge. In par­
ticular, Microsoft has based a number of concepts for the Cairo system
on work originally done by the OLE group.

Several applications have already incorporated OLE technology,
and the resultant functionality is impressive. Right now, adding full
OLE support to an application is an extremely complex engineering
project. New development tools and methods will no doubt reduce the
cost of OLE implementation. If you do use OLE within an application
in combination with Windows 95, you'll get these features:

II The OLE compound file as the application data type allows
the shell to display the document properties such as the
thumbnail view. This compound file format will be the native
format for Cairo, so there's another incentive to support
OLE now.

11111 OLE drag and drop will allow users to move and hold docu­
ments anywhere in the shell's workspace-the desktop will be
the most common place in which to hold them.

1111 The OLE in-place editing capabilities preview the move to
component software and the document-centric interface that
Windows 95 promotes.

OLE is leading edge technology. Using it now is expensive but could
also give you a competitive edge in the Windows 95 applications market.

Conclusion

220

In this chapter, we've taken a lengthy tour through the most visible part
of the system. As the Windows 95 visual designers are wont to remind
people: details count. Many details of the interface have changed, and
several new or improved concepts make their debuts in Windows 95.
The biggest change from Windows 3.1 is evident in the shell itself.
Given Microsoft's intention to provide Cairo with the same user inter­
face, it will be interesting to see whether the new shell achieves the dual
goals of making the system easier for novices to use and providing a
natural transition for experienced Windows users.

Ebay Exhibit 1013, Page 269 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

F I V E: The User Interface and the Shell

We haven't looked at some components of the shell in this chapter­
the desktop accessories, for example. And you'll have to take your own
tour of Windows 95 to see a lot of the more detailed revisions to specific
dialog boxes and utility programs. But we did look at all the important
new pieces with the exception of the pen interface. Windows 95 includes
support for pen computers within the basic system-pen support no
longer comes from an add-on module as it did for Windows 3.1.

Now we have to dive a little deeper into the system. In Chapter Six, we'll look at
the details of the graphical environment supported by Windows-at how appli­
cations harness the graphical environment and how devices are commanded to
display it.

Reference
Microsoft. The Windows Interface-An Application Design Guide. Redmond,

Wash.: Microsoft Press, 1993. This book appeared as part of the Windows
Software Development Kit and as a separately published volume. It's the
final word on how a Windows 3.1 application should look and contains a
lot of useful insight into user interface design. The Windows 95 team
produced an updated version of this book under a new name, User
Interface Design Guide, for the Beta-1 release and planned to update it for
the Beta-2 release. Microsoft Press will publish a final version titled The
New Windows Interface.

221

Ebay Exhibit 1013, Page 270 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Ebay Exhibit 1013, Page 271 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

C H A P T E R S I X

APPLICATIONS
AND DEVICES

In Chapters Four and Five, we looked in detail at two of the major
Microsoft Windows enhancements that appear in Windows 95: the 32-
bit protected mode base operating system and the new user interface
exemplified by the shell. The improvements in the base OS help sup­
port many collateral enhancement details in the Windows subsystem,
and the shell with its new features is but one manifestation of the new
capabilities you'll see in Windows 95 applications. To realize these en­
hancements, applications call on the Windows API, and when the user
interacts with an application, a requested service is translated into some
device-specific operation, such as the manipulation of visible objects on
the display screen or the reading of information from a disk file.

Many different software modules are involved in the translation
of user and application actions to specific hardware operations. In this
chapter, we'll look at some of the most important components: at the
Windows 95 API and its implementation in the Windows User and GDI
modules and at a few of the device drivers and subsystems associated
with the User and GDI modules. If you need a primer on the basics of
how Windows implements its graphical environment, see Chapter
Three. Our concentration in this chapter will be very much on the new
and different features of Windows 95:

Ill The Win32 API implementation in Windows 95

Ill Enhancements in User, the window management subsystem

II Improvements in GDI and the associated graphical device
subsystems that control the display and the printer

223

Ebay Exhibit 1013, Page 272 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

In later chapters, we'll look at the major product enhancements
for local and network filesystem support. This chapter is biased in the
direction of what Windows is best known for: its graphical application
environment.

The Win32 API

224

During 1993 and 1994, Microsoft invested enormous amounts of its de­
veloper relations time and effort in promoting two specific elements of
its operating system products: the Win32 API and OLE. If you left any
of the company's systems software presentations with any doubt about
what Microsoft wanted you, as an application developer, to develop for,
the incessant Win32/0LE chant must have put you to sleep. Naturally,
business reasons were at the base of this promotion: if most of the
industry's applications are written for your operating system interface,
you get to sell the most operating systems. The history of MS-DOS and
Windows bears this out. But as the histories of UNIX, OS/2, and in­
deed early versions of Windows attest, convincing developers to invest
resources in a new API is extremely difficult. So Microsoft put every­
thing it could in gear to sell the Win32 API, starting with Windows NT
and now with Windows 95.

The Win32 API has one big advantage in its favor: it is by and
large compatible with today's most popular API, the Windows 3.1 APL
The Win32 API is also extensive. With well over 2000 functions and
macros and having undergone a few years of field trials, Win32 offers a
wealth of features.

Microsoft's first implementation ofWin32 was released in 1992 as
the Win32s add-on for Windows 3.1. Recognizing that the rate of adop­
tion for Windows NT would be governed largely by the availability of
true 32-bit applications, Microsoft released the Win32s subset to give
developers an early opportunity to begin porting their code to the
Win32 APL With the release of Windows NT in mid-1993 the first full
implementation of Win32 came to market. During the rest of 1993
things got a little more confusing. Later in that year Microsoft began to
talk about Win32c-that "c" initially meaning "Chicago" and later spun
to "compatible." Eventually the "c" was dropped and Microsoft began
to talk simply of different implementations of the Win32 API-each
particular to the underlying operating system.

As a practical matter, the Windows 95 implementation of Win32
will probably come to be seen as the "standard" implementation-if

Ebay Exhibit 1013, Page 273 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

SIX: Applications and Devices

only because of the size of the Windows 95 market. As a numerical mat­
ter, the Win32 APis implemented in Windows 95 account for 95 per­
cent of the total defined Win32 interface. The APis missing in the
Windows 95 implementation are specific to capabilities that Windows
NT has and Windows 95 does not-the rigorous security features in
Windows NT, for example. But the Windows 95 implementation intro­
duces features that the Windows NT version 3.1 implementation
doesn't include-for example, the new device-independent color capa­
bilities. No, this doesn't mean another round of subset and superset
confusion. Microsoft plans to promptly update Windows NT so that it
will retain its position as the provider of the full Win32 API.1

In addition to the API compatibility issue is the issue of binary
compatibility: the different operating system products must be able to
load and run the various flavors of Win32 application. Both Windows
95 and Windows NT will load Intel format Win32 binaries and run
them as full 32-bit applications. Windows 95 will never have a non-Intel
processor implementation of Win32. Only Windows NT will run appli­
cations compiled for other processors.

What's a developer to do? If you believe in the continued success
of Windows, you have to develop for that platform. With Windows 95
we'll see the arrival of full 32-bit support for a mainstream operating
system, so if you're starting from scratch, Win32 is the way to go. Since
the new features of Windows 95 are available only to Win32 applica­
tions, porting your 16-bit Windows code to the Win32 API is an obvious
first step. Fortunately, the tools Microsoft provides to assist in the port­
ing task make it less than onerous. Beyond that, the OLE mountain
looms-although improved versions of Microsoft's Visual C++ (among
other language products) are making that assault a little easier.

All of this begs the question of whether Windows really is the right
platform to develop for. It's hard to argue against the current commer­
cial success of Windows, and all of the pieces are falling into place to
ensure a continuation of that success. No doubt the debate will con­
tinue in many quarters, however. In the meantime let's take a look at
what Microsoft is trying to achieve with the Win32 APL

1. Some of the new color facilities will appear in the next release of Windows NT­
the so called "Daytona" product. Others will appear as add-on libraries when Windows
95 ships.

225

Ebay Exhibit 1013, Page 274 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

Goals for Win32

226

Microsoft's overriding desire is to concentrate both its own efforts and
those of other developers on a single, long-lived APL As candidates for
the base API, the existing APis for both MS-DOS and Windows 3.1 fell
short in several ways: they weren't portable, they weren't 32-bit, and
they were functionally deficient. At one time the OS/2 API was sup­
posed to be "the API for the future," but for many reasons that predic­
tion didn't work out too well.

A single API does accelerate the market. More people write more
software, resulting in more users finding satisfactory solutions to buy.
This is one of the reasons MS-DOS was so successful. The PC world had
gotten very complex since the first release of MS-DOS, though, and
Microsoft decided it was time to try to re-introduce a little more order.
Enter Win32-an API aimed at meeting the following goals:

1111 Broad support. Meeting this goal entails developing plenty
of developer momentum and getting lots of applications
released in as short a time frame as possible. The best way to
do this is to make Win32 as closely compatible with Winl6 as
possible.2 Porting applications from Win16 to Win32 will thus
be simplified, and momentum will quickly build.

II Portability. Windows NT was designed as a portable operating
system-specifically to allow it to run on RISC processors.
The debate over whether and when the Intel processor archi­
tecture will finally be outperformed by RISC technology
continues. Irrespective of the outcome in the hardware battle,
Microsoft aims to establish Win32 as the preferred APL

Ill Room for growth. As PC technology continues to improve, the
operating system must be able to offer access to the improve­
ments. Whether the technology be high-speed video on de­
mand or radio-based networking, Microsoft wants an API that
can be extended to support the new technologies without
modifications to the existing interfaces.

2. The fact that the OS/2 Presentation Manager API differed so widely from the
Windows API (both conceptually and syntactically) was a major factor in the slow
adoption of OS/2, The Win32 developers, many of whom were involved in the PM
effort, were careful not to make the same mistake twice.

Ebay Exhibit 1013, Page 275 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

S I X: Applications and Devices

• Scalability. Windows NT supported multiprocessor machines
in its first release. There's already news of processors that
operate with a native word size of 64 bits. The era of the PDA
has begun. Developing software for all of these hardware
platforms would be impossible if the software platform were
different for each. One API suitable for supersetting and
subsetting for different hardware platforms will help a lot.

Components of the Win32 API
Before we examine the details of the Win32 API, it should be worth­
while to look at a few of the statistics and then to group the functions.
Bear in mind that the statistics deal with a prerelease of the product
some months before its expected release. The absolute numbers will
probably change, but the proportions should stay roughly the same.

As of this writing the total number of Win32 APis, macros, mes­
sages, and defined constants is 2246. Of these members, 1350 were in­
cluded in the Win32s subset and only 114 are not in the Win32 API set
supported by Windows 95. Of the 114 members supported only by Win­
dows NT, almost all relate to the security features or the service control
and event logging subsystems available under Windows NT. Of the
2246 total, 546 of the interfaces are macros, messages, and predefined
constants, so the API total drops to a very manageable 1700 interfaces!

The major components of Windows 95 remain the Kernel, User,
and GDI modules that provide the interface to the base OS, window
and application management, and the graphics facilities, respectively.
Each of these modules supports about 300 APis.3 In Windows 95, these
APis are the major extensions to the three basic modules:

1111! OLE. The OLE APis, numbering only(!) 66. They are perhaps
the most complex and, for Microsoft at least, the most impor­
tant extension of the core Windows system.

Ill Controls. The support for the standard user interface elements
described in Chapter Five.

II Common dialogs. Dialogs such as "File Open" that are shared
by applications.

3. To be precise, in the M5 version it was 346 in Kernel, 262 in User, and 300
in GDI.

227

Ebay Exhibit 1013, Page 276 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

228

II Decompression. File decompression capabilities commonly
used during installation.

II DDE. The Dynamic Data Exchange facility. DDE was Windows'
first popular application information interchange capability.
Over the course of time OLE is expected to replace the use of
DDE.

II RPC. The support for remote procedure calls relied on for
distributed application development.

II Sockets. The so called "WinSock" interface. Sockets has grown
in importance for Windows networking. Originally developed
simply for TCP /IP network support, Sockets is now seen as
the best way to develop non-RPC network applications for
Windows.

1111 Networking. Network-specific APis outside the RPC and
socket interfaces. Of course, many of the Kernel APis ulti­
mately find their way to the network subsystem for file input/
output and other operations.

II Communications. A set of APis designed to support reliable
wide area communications applications such as electronic
mail and remote network access.

B Shell. A set of APis supported by the shell itself that enables
the extension of the shell's capabilities through installable
libraries.

II Multimedia. Extensions to the core system for audio and
video management. The multimedia extensions number close
to 200 APis-interestingly the largest single set of extensions.

II Pen. Extensions to the core system that support the specific
needs of pen-based applications.

As mentioned earlier, that won't be the end of the Win32 API
story. Already, Microsoft has begun to describe its plans to implement
the OpenGL 3-D graphics library for Windows NT-a component that
will add another 300 or so APis to Win32. But for the purposes of this
chapter's discussion we'll concentrate on the core components that we
.haven't yet examined: User and GD!.

Ebay Exhibit 1013, Page 277 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

S I X: Applications and Devices

The Win32 API on Windows 95
Developing a Win32 application for both Windows 95 and Windows NT
requires that you recognize two basic kinds of issues: those inherent in
porting existing 16-bit code to the 32-bit interface, and the Win32 APis
that aren't supported on Windows 95. In addition you can observe
some general programming guidelines that help prepare an applica­
tion for future improvements-after all, someday you may actually
have to worry about 64-bit interfaces.

Porting to the Win32 API
You'll find extensive documentation describing the details of the 16- to
32-bit porting process in the Windows SDK products, so there's little
value in a regurgitation of all of it here. A few of the more important
aspects are worth reviewing, however: notably,

II The mechanics of the porting process

II API syntax changes

II Memory management

Iii Version checking

Note too that if you're tempted to try to mix 16-bit and 32-bit
code (using the Microsoft thunk compiler tools) to help speed up the
porting process, you'll end up with an executable program that will run
only on Windows 95 and that won't even load on Windows NT. You'll
also create the potential for many bugs because of the different sizes of
integers (and thus of many Windows data types). Microsoft's recom­
mendation is simply don't mix 16-bit and 32-bit code segments. If you
have to mix them, make sure that the 16-bit code is carefully isolated
and plan to replace it as soon as you can.

Porting Tools
If you're starting with a 16-bit Windows application, there's some me­
chanical help at your disposal. Included in the Windows SDK is a
source code analyzer called PORTTOOL.EXE that will examine each
and every Windows interface and suggest changes you may need to
make. This porting tool isn't foolproof, but it's a good way to start the
process. Another mechanical aid is to define the STRICT constant

229

Ebay Exhibit 1013, Page 278 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

230

when you compile your code. Then the strictest level of type checking
will be applied to Windows functions. Your fixing the ensuing stream of
warning messages can often remove subtle bugs before they have a
chance to bite.

The WINDOWSX.H header file included in the SDK also con­
tains many macros that cloak API calls in a single portable interface. If
you have to maintain both 16-bit and 32-bit versions of an application,
that's some help.

API Changes
As successive versions of Windows have appeared, more and more pa­
rameterized types have appeared in the declarations of Windows inter­
faces. Most programmers are familiar with declaring device context
handles as HDC, for example, but the "before" and "after" declarations
of the main window procedure shown in Figure 6-1 illustrate just how
pervasive the technique has become with Win32. Admittedly, the per­
son who wrote the "before" declaration must not have touched the
code in a very long time, but the new types in the up-to-date version af­
fect every part of the declaration.

Figure 6-1.
Using predefined types in Win32.

Modifying the code this way assists in compiler type checking and
also masks the actual word size of the underlying system. Unsigned in­
tegers that were 16-bit quantities are now 32-bit values-and can be­
come 64-bit values with no further code modification. This widening of
many 16-bit values can be seen in a lot of the Win32 APis. It's really an
artifact of the extensive use ofC integers: they were 16 bits on Windows
3.1, and they become 32 bits on Win32. But the changes aren't purely
syntactic. There are some semantic issues as well.4 Figure 6-2 illustrates

4. There's also the subtle issue of alignment: structure fields that lined up neatly
on 16-bit boundaries may not do the same when integers widen to 32 bits. On the 386
this results in only a slight performance overhead, but on some RISC processors it
causes a hardware fault.

Ebay Exhibit 1013, Page 279 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

S I X: Applications and Devices

one of the porting problems engendered by the Win32 API that can't
be fixed simply by careful use of the predefined types.5 Here the data
supplied with the WM_COMMAND message has been packed into the
wParam and lParam parameters differently, necessitating code that dif­
ferentiates between API versions. This sort of change between Win­
dows 3.1 and Win32 is not uncommon. The porting tool helps you find
the occurrences, but even so this is one area in which careful checking
is necessary.

Figure 6-2.
Message parameter passing in Win32.

You'll also see many Win32 APis with names similar to those of
Windows 3.1 APis but with an Ex suffix. Microsoft has used this conven­
tion to signal that it's extending the functionality of an existing Win­
dows 3.1 API in some minor way.6 The recommendation for porting
code to Win32 is to use only the APis with the Ex suffix. You'll find the
superseded function marked "deleted" or "obsolete" in the Win32 docu­
mentation. Figure 6-3 on the next page shows one example, the GDI
function for setting a window origin. The old version has been modified
to return the coordinates of the previous window origin differently.

5. #ifdef'd code never was the best way to handle this sort of problem. You can
write portable code to handle either situation. The #ifdefmethod makes for a better
illustration, though.

6. Unfortunately, neither the extent of the extending nor the name signal are
entirely consistent. A few of the extended functions incorporate major additional
functionality. And some extended functions have Ext as the prefix, not a suffix, for the
old name. The Windows API naming story continues.

231

Ebay Exhibit 1013, Page 280 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

232

Figure 6-3.
Similar function changes in Win32.

Most of the extended APis are GDI functions, and the Ex form of
the API was actually included in Windows 3.1. The difference is that the
older form of the function call is unavailable in Win32. Windows 3.1
actually supported both. The GDI functions also mask one important
difference between Windows NT and Windows 95: the difference in
their graphics coordinate systems. On Windows NT you identify a point
using 32-bit coordinates. Windows 95 retains the older 16-bit coordi­
nate system. For graphics-intensive applications this is an important dif­
ference that is syntactically manageable by means of the predefined
types (predominantly POINT and SIZE structures). But the associated
semantics are a different matter, with no easy solution for developers
who would like to exploit the capabilities of the 32-bit coordinate sys­
tem on both Windows 95 and Windows NT.

Memory Management
We looked at many of the new aspects of Windows 95 memory manage­
ment in Chapter Four. Apart from the new features, from the applica­
tion programmer's viewpoint, the Win32 API makes things a whole lot
easier. Segments are now a relic, so it's good-bye to far pointers, and
any other vestiges of Windows' 16-bit past, such as having to lock and
unlock memory objects, can be dispensed with. 7

The fact that the system is now entirely virtual memory based
means that the absolute addresses or contiguous locations of certain
segments are no longer the same under Windows 95. The addresses
and locations were never published and ought not to have been as­
sumed, and under either Windows 95 or Windows NT, the rules
change. You absolutely must use the defined memory management
APis if your code is to work correctly.

7. If you did atrocious things with direct segment arithmetic, it's payback time.

Ebay Exhibit 1013, Page 281 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

SIX: Applications and Devices

Version Checking
Microsoft chose to handle the Win32 API subset issue on Windows 95
by actually implementing the full set of Win32 APis and then returning
an error if a call is made to an API not supported by Windows 95. This
strategy allows a Win32 application to always load under either Win- .
dows NT or Windows 95-references to missing DLL entry points don't
stand in the way. But if you call an API that exists only in the full Win32
set on Windows NT, you must be prepared to deal with an error return
on Windows 95.

Calling the GetLastErrorQ API in response to the error return indi­
cating a failure and getting the ERROR_CALL_NOT _IMPLEMENTED
error code will tell you that you've called an unsupported APL A
GetVersionO API enables you to identify the particular version of Win-
dows that you're running on. ·

In a very few cases, an API that isn't really supported by Windows
95 will run without the return of an error. One example of such an API
is the GetThreadDesktop() API that under Windows NT will return a
handle to the desktop window associated with a particular thread. Win­
dows 95 has only one desktop, so it's always the same handle that gets
returned. Since no undesirable side effects of using this API on Win­
dows 95 are possible, it's easier to allow the call to succeed than to insist
that the application handle an error return.

Nonportable APls
Although some of the older Windows APis have vanished, the presence
of their direct descendants in Windows 95 ensures that porting existing
16-bit Windows code will be a manageable chore. The only snag comes
from the use of MS-DOS functions within Windows-based applica­
tions-by means of the provided DosJCallO API of Windows 3.1 or by
means of embedded assembly language code that calls MS-DOS di­
rectly. Win32 doesn't support a direct MS-DOS interface, and it never
will. Even if translating 32-bit parameters to 16-bit equivalents weren't
an issue, the fact that the base operating system in Windows 95 is en­
tirely call based and makes no use of the Intel software interrupt
mechanism other than for compatibility when Windows 95 is running
older MS-DOS applications means that Win32 applications that issue
MS-DOS software interrupts will fail. If you have code that calls MS­
DOS directly-for file I/0, for example-you have to replace the call
with the appropriate Win32 APL

233

Ebay Exhibit 1013, Page 282 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

Win32 on Windows 95

234

We'll look at some details of the API changes and enhancements a little
later, when we take a closer look at the User and GDI modules. First
let's see what Windows 95 doesn't implement that Windows NT does
implement. Remember, it's all Win32. As the design of Windows 95
progressed, the Win32 specification changed to accommodate new fea­
tures that would come to market for the first time with Windows 95.
Whether the Windows NT API comes to be regarded as a superset of
the Windows 95 API, or the Windows 95 a subset of the Windows NT
remains to be seen.

Faced with the prospect of turning all of the new ideas and the
enhancement requests into specific Win32 APls, Microsoft had to con­
sider a couple of factors over and above the basic design and imple­
mentation challenge. Was the underlying operating system capable of
fully supporting a proposed feature? Was the feature appropriate for
the intended market? By and large, you can see these criteria reflected
in the eventual choice of APis that would not be fully supported by
Windows95.

Security APls
The collection of Win32 APis that deals with system security issues is
merely the most visible aspect of the security capabilities embodied in
Windows NT. The system implements stringent authentication and
privilege checking features that allow it to be used for secure applica­
tions: in a network server role or as a C2-compliant desktop system.8

For the system to be fully secure, you must use the NTFS filesystem with
Windows NT-since the FAT filesystem is provably insecure.

The Windows NT internal system architecture is dramatically dif­
ferent from the Windows 95 architecture in order to meet the secure
system goal. This difference translates into a need for more system
memory and more processor horsepower-more than the average tar­
get Windows 95 machine would have. Since the underlying operating
system can't fully support them, Windows 95 does not implement the
Win32 security APis. Microsoft's reasoning: why try to provide two
products to meet the same need? If you really need the security capa­
bilities, you'll know it-and you'll use Windows NT.

8. Windows NT on its own cannot be C2 certified. The certification process
requires a complete system-the hardware, the operating system, and applications­
to undergo verification.

Ebay Exhibit 1013, Page 283 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

SI X: Applications and Devices

Console APls
The Win32 console APis provide an environment for applications that
require character mode I/0 facilities. For applications with simple user
interface requirements-a compiler, for example-the console APis
offer an easy way to run using Win32.

Windows 95 supports the console APis but provides support for
only a single console subsystem. Whereas Windows NT allows the man­
agement of multiple console sessions by means of the AllocConsole() and
FreeConsole() APis, Windows 95 supports only a single console session.

32-Bit Coordinate System
There is no world transform coordinate transformation capability in
Windows 95, and neither the associated SetWorldTransform() and Get­
WorldTransform() APis nor the XFORM data structure is supported in
Windows 95.9 Their absence is tied to the decision to retain a 16-bit
coordinate system in GDI. Implementing 32-bit coordinates really re­
quires a full 32-bit GDI, which, partly for memory consumption reasons
and partly for timescale reasons, Microsoft chose not to implement for
Windows 95.

Unicode APls
The first release of Windows NT was unusual in that it supported the
Unicode character set specification not only for applications but also as
its own internal character set representation. Every Unicode character
requires 16 bits for storage-which expands the system's memory re­
quirements-and in addition many compatibility considerations are
associated with existing character strings: filenames on disk, and 16-bit
Windows application resources, to name just two.

Supporting Unicode would have been a big leap of faith for the
Windows 95 team to take. They chose not to, so the system retains its
ANSI character set roots and doesn't support the Win32 Unicode APis.
However, some new aspects of the Windows 95 system do use Unicode
internally: its long filename support in the filesystem and its 32-bit OLE
subsystem, for example. And Windows 95 has far more extensive sup­
port for international versions of applications than any of the earlier
Microsoft operating system products.

9. If you use world transforms, be sure to read up in the Win32 documentation on
how the SetGraphicsMode() API works under Windows 95.

235

Ebay Exhibit 1013, Page 284 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

236

Server APls
The Windows NT role as a highly capable network server means that
there are groups ofWin32 APis supporting server operations: notably,
server-side named pipes and RPC facilities and tape backup APis. The
server-side named pipes allow a server process to create a pipe that mul­
tiple client processes can connect to. The RPC facilities you won't find
in Windows 95 include the locator and endpoint mapper features. 10

These features relate to the name service facilities provided by the full
Win32 APL (Windows NT supports an endpoint mapping service,
RPCSS, and a locator service that don't exist on Windows 95.)

Printer Support
Windows 95 doesn't include the entire gamut of print APis defined for
Win32. There is no forms support (all the APis with Form in their
names), and the Addjob() and Schedulejob() APis available on Windows
NT aren't supported either.

Service Control Manager APls
Windows NT supports a service control manager facility that allows a sub­
system, such as a network server, to register itself as a service. Once the
subsystem is registered, the system itself takes care of starting the ser­
vice and maintaining information about currently running services.
Under Windows NT, the service control manager is actually accessible
across the network by means of RPC, so it's possible to manage net­
workwide services from a single machine.

In an oversimplification, you could say that the Windows NT ser­
vice control manager is a highly structured form of the capabilities
inherent in the startup files you're familiar with, such as AUTO­
EXEC.BAT and WlN.INI. The general philosophy of the service con­
trol manager doesn't really fit a personal system such as Windows 95,
so the service control subsystem and the associated Win32 APis aren't
supported. 11

Event Logging
Associated with the service controi manager are the event logging fa­
cilities. Under Windows NT, these facilities allow subsystems to record

10. The full Win32 RPC also includes some Unicode and security reiated APis. As
you'd expect, these aren't supported on Windows 95.

11. Service control APls are generally recognizable by virtue of the Service or SC in
their names. For once there's some orderly naming going on.

Ebay Exhibit 1013, Page 285 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

S I X: Applications and Devices

information about interesting occurrences: unexpected errors, con­
figuration changes, and the like. The Windows NT administrator can
inspect the event log when trying to diagnose problems or simply to
verify the health of the system. Windows 95 doesn't support the Win32
event logging APis.

Detailed Differences
Within the Win32 API a number of details have been changed or en­
hanced and that will affect some applications. Later we'll look at some
of the brand-new Win32 features and at Microsoft's recommendations
for application developers. Here are just a few of the lower level modifi­
cations:12

111111 Most application resource limits have been substantially
raised: memory, handles, and other resources are all plentiful
under Windows 95. There are 32, 767 window handles, for
example, compared to only 200 in Windows 3.1. Similar
improvements have been made for COM and LPT devices,
with Windows 95 providing many more logical ports than
physical ports. Total available memory rather than individual
resources now becomes the limiting factor.

II Windows 95 tags every application resource with the thread
identifier of its owner. When an application quits, the system
automatically frees all resources that have been allocated to
the application. Some Windows 3.1 applications assume the
continued allocation of a resource even after an application
terminates. Such an assumption is not valid with Win32
applications.

II Windows 95 includes yet more parameter validation. Whereas
Windows 3.1 concentrated on validating the parameters sup­
plied to the published APis, Windows 95 also validates the so
called "undocumented" interfaces that have been discussed in
various books and journals. If you use undocumented inter­
faces, beware.

12. Naturally, the detailed information about these changes tends to be spread
around in the documentation. One way of pointing yourself in the right direction is
to look for the string #if (WINVER >= Ox400) in the Windows SDK header files. The
Windows developers have used this string to bracket all the new definitions.

237

Ebay Exhibit 1013, Page 286 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

11111 There are several new Windows messages, ranging from
generalized application notification for the Plug and Play
subsystem (WM_DEVICEBROADCAST) to the support for
multiple keyboard layouts (WM_KBDLAYOUTCHANGE)
required by fully international applications.

11111 Windows 95 presses into service some previously unused
parts of existing data structures. New capabilities, such as
automatic centering ofa dialog box (the new DS_CENTER
style bit), are supported. If your code "borrows" reserved or
previously unused regions of Windows data structures, you
may need to make some changes.13

Programming for Windows 95
Now that we've looked at some of the things you can't do on Windows
95, let's turn our attention to a more interesting topic: the new capa­
bilities you can exploit as you create your next million-copy seller. The
new features are accessible only by 32-bit applications, 14 so the first task
is to port existing code to Win32. Together with all the new possibilities
for Win32 applications come new rules and considerations. We'll look
at those as we examine the new features.

There are many small enhancements to the Windows API, and we
won't look at them all in any detail here. Reference works that analyze
the new features will probably address this extensive topic. Checking
the specification for all the APis with the Ex suffix is one way to begin
an investigation.15

Multitasking

238

As you saw in Chapter Four, the Windows 95 multitasking environment
is dramatically different from the Windows 3.1 environment. If you've

13. To preserve compatibility, Windows 95 includes several internal version checks
to preclude any attempt to interpret "old" data structures with new semantics. An
executable with a version number of 3.1 or lower won't see any of this new behavior.

14. The DPMI challenge was met by a band of developers determined to prove that
real mode code could use protected mode facilities. It'll be interesting to see whether
someone comes up with a trapdoor for 16-bit Windows applications. But don't try this
at hon1e.

15. For example, there's even an ExitWindowsEx() APL Though you're unlikely to
use it, on machines that support the feature, you can close down Windows and turn off
the power.

Ebay Exhibit 1013, Page 287 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

SIX: Applications and Devices

programmed for other multitasking systems-Windows NT, UNIX, or
OS/2-you're already familiar with some of the issues you'll have to
deal with in the Windows 95 environment:

• Synchronization and sharing. You can never be sure that the
operating system isn't going to preempt your· application and
take the processor away from you, so any use of shared ob­
jects, such as memory mapped files, must be synchronized
with other applications' use. Assumptions about the timing of
arriving window messages are also invalid for Win32 applica­
tions under Windows 95.

• Multithreading. Using additional execution threads to man­
age different windows or background operations such as file
searching adds complexity to an application's code. But users
will quickly come to expect such capabilities. The Windows 95
shell, for example, uses a separate thread for each visible
window. If your application simply puts up the hourglass
cursor during a lengthy operation and refuses to respond
quickly to mouse clicks, it will suffer in comparison with
applications that do allow the user to interrupt the operation
or get on with something else.

A plethora of Win32 APis are available to assist in thread synchro­
nization. Many of them look similar to one another, but study of the
details will reveal subtle but significant differences. Windows 95 sup­
ports all of the Win32 synchronization APis. One group-made up of
the InterlockedlncrementO, InterlockedDecrementO, and lnterlockedExchangeO
APis that allow manipulation of a single 32-bit word-was originally
designed to help support Windows NT multiprocessor operations.
Even though you'll never see Windows 95 controlling a multiprocessor
system, the APis are still valid on Windows 95.

Win32 synchronization primitives deal with critical sections, events,
mutexes, and semaphores. Here's what's important about each:

A critical section is used by threads belonging to the same process.
One thread declares a CRITICAL_SECTION variable and
initializes it using the InitializeCriticalSectionO API. Thereafter,
any thread can call EnterCriticalSectionO and LeaveCriticalSectionO
to protect code sequences in which it must be the only thread
of the parent process allowed to run.

239

Ebay Exhibit 1013, Page 288 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

240

Any thread can create a named event object and obtain a handle to it
using CreateEvent(). Other threads belonging to any process can
obtain a handle to the same event by specifying the same event
name. Any thread with a valid handle can then use the SetEvent(),
ResetEvent(), or PulseEvent() API to signal an occurrence of the
event. Threads waiting for the event are then free to continue
execution, and multiple threads may become eligible to run
when the event is signaled. These event APis send a "one to
many" signal, unlike the other synchronization APis.

A mutex is a named object that you acquire a handle to by means of
CreateMutex() or GpenMutex(). Again, any thread in any process
can obtain a handle to the mutex ifit knows its name.16 Only a
single thread can gain control of the mutex object-so this
implements critical sections for cooperating processes. The
ReleaseMutex() API relinquishes control of the object.

A semaphore object is controlled in a way similar to control of a
mutex object by means of CreateSemaphore() and OpenSemaphore().
The difference between the two is that the semaphore can have
a value. For example, if you have an application controlling an
eight-line telephone dialer, you can set up a semaphore with a
value of 8 to help manage line allocation. The first eight threads
that ask for a line get one, and the next thread blocks, awaiting a
line release by another thread, which uses the ReleaseSemaphore()
API to increment the count.

All of the interprocess synchronization APis use handles to iden­
tify the object in use, be it an event, a mutex, or a semaphore. When a
thread wants to synchronize with another thread, it uses an API that al­
lows it to wait for a single object (WaitForSingleObject() and WaitForSingle­
ObjectEx()), or for one of possibly many objects (WaitForMultipleObjects()
and WaitForMultipleObjectsEx()). The two multiple objects APis can use
an array of object handles supplied by the caller-plus a time-out-to
simplify the synchronization procedure. The MsgWaitForMultipleObjects()
API allows you to synchronize with any of these objects, or with a time­
out, or with a Windows message arriving in the thread's input queue.

16. The DuplicateHandle() API allows you to pass the handle to another process.
The receiving process doesn't have to know the name of the mutex object. This works
with all the handle-based Win32 synchronization APis.

Ebay Exhibit 1013, Page 289 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

SIX: Applications and Devices

Memory Management
In Chapter Four, we looked at the Win32 memory management APis
and at some aspects of their implementation. Remember:

• The need to lock resources and memory objects is gone. All
objects exist within a huge 32-bit flat virtual address space.
Assumptions about actual addresses of objects are probably
wrong, and they're definitely nonportable. You have to ad­
dress objects using only system-supplied handles or pointers.

II The system protects the private address space of each Win32
application. You can't get a valid pointer into some other
Win32 application's address space.17 To exchange informa­
tion, cooperating applications must use the defined inter­
process communication methods and synchronization APls.
The WriteProcessMemory() API is the only controlled way of
modifying somebody else's address space, and this API is
really meant only for use by debugging tools.

lllil You can't pass handles back and forth between Win32 applica­
tions except by using the DuplicateHandle() API.Just as actual
memory pointers aren't valid in different processes, neither
are handles. You have to use the DuplicateHandle() API to get a
valid handle to pass to another process.

II Of the various shared memory allocation methods, using the
CreateFile() and Map ViewOJFile() APis is the recommended
method for sharing. The performance with this method is
good, and the method is fully portable to Windows NT.

Plug and Play Support
Chapter Eight deals with the Plug and Play subsystem in detail. Much of
the Windows 95 Plug and Play support involves device drivers, not appli­
cations, but there is one new Windows message specifically associated
with Plug and Play operations. The WM_DEVICEBROADCAST message
informs an application of changes to the system's hardware con­
figuration. If your application or device driver is the con trolling party,
you can use the BroadcastSystemMessage() API to send this message.

17. But you can get a pointer into the shared region used by all of the Winl6
applications and the 16-bit subsystem DLLs. Again, this is an artifact of the strict
compatibility requirements for Windows 95.

241

Ebay Exhibit 1013, Page 290 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

Perhaps unusually, this particular message is important to both
applications and system components, although the information the
message sends is often of interest only to device drivers. At the applica­
tion level, the device event code the message sends can provide, for ex­
ample, information about the addition and removal of logical disk
drives.18 This would allow an application to respond sensibly to docking
and undocking operations, for instance.

The Registry

242

The registry in Windows is a structured file that stores indexed infor­
mation describing the host system's hardware, user preferences, and
other configuration data. In Windows 3.1, the registry is used by appli­
cations to specify a limited amount of information, such as OLE docu­
ment types.19 In Windows NT, everything goes in the registry. Use of the
registry in Windows 95 falls somewhere between these minimalist and
all-embracing approaches.

The purpose of the registry is to reduce the proliferation of con­
figuration files that can plague a Windows machine. In Windows 3.1,
the CONFIG.SYS, AUTOEXEC.BAT, WIN.INI, and SYSTEM.IN! files
all contain information related to the system configuration. Some of
the information is vital to the system's operation-specifying device
drivers to load, for instance-and most of the remaining information
describes other important aspects of the system's configuration. Add to
these files the private .INI files set up by applications and the .GRP files
used by the Program Manager, and it gets harder and harder to know
where to look when diagnosing a problem or searching for a configura­
tion setting.

Apart from the proliferation of these files in Windows 3.1, their
integrity is a problem. Since the files contain plain text, the user can
edit them directly, perhaps messing them up, and Windows has no way
to figure out what might have happened. Incorporating all the configu­
ration information into a registration database file and providing con­
trolled access to it would preclude many of these potential problems.

18. This much was true in July 1994. It's clear that the device broadcast message
could be extended to cover many different occurrences.

19. To be precise, Windows 3.1 supports a registration database, which the purist will
argue is different from the Windows NT registry. It's a rather academic point.

Ebay Exhibit 1013, Page 291 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

S I X: Applications and Devices

Windows NT does away with all of the plain text files that Windows 3.1
uses and, in addition to the system's own use of the registry, allows ap­
plications to use the registry for storing private configuration data.

Windows 95 continues to process the configuration files you're
familiar with-AUTOEXEC.BAT for example. Windows 95 also sup­
ports the registry. The principal user of the registry in Windows 95 is
the Plug and Play subsystem, and all device-related information moves
to the registry. Although this might seem to simply expand the file pro­
liferation problem, you can use your own Windows 3.1 system as an ex­
ample to measure the effect of putting this information in the registry.
Count the numberoflines inCONFIG.SYS, AUTOEXEC.BAT, WIN.IN!,
and SYSTEM.IN!, subtract the lines that relate to hardware configura­
tion, subtract other lines such as "BUFFERS=" that have no relevance
under Windows 95, and you'll see that a lot of data disappears.20 Al­
though the development team would have preferred to adopt the regis­
try mechanism in its entirety, the compatibility issues associated with
upgrading the installed base of Windows 3.1 systems and their 16-bit
applications were too great. The old style configuration files thus sur­
vive, but no doubt more and more use of the registry will be made in
the future.

Figure 6-4 on the next page shows the arrangement of the registry
database with its principal keys. Notice that the keys are hierarchically
related, meaning that entire subtrees can be isolated and indexed with
sub keys.

A particular software vendor might use the registry database
to store application configuration information under the key
HKEY_LOCAL_MACHINE\SOFTWARE\VENDOR\APPLICATION.
In Figure 6-4, information about Exotic's spreadsheet application is
registered this way. Typically the HKEY_LOCAL_MACHINE branch of
the hierarchy describes non-user-specific information about the host
system. The HARDWARE branch of this subtree is where the Windows
95 Plug and Play subsystem stores all of the system's hardware configu­
ration information.

As you might expect, the registry APis supported by Windows 95
don't include the security-related interfaces. Windows 95 does support

20. On my machine, CONFIG.SYS and SYSTEM.IN! disappear altogether, and
AUTOEXEC.BAT and WIN.IN! shrink substantially.

243

Ebay Exhibit 1013, Page 292 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

244

Figure 6-4.
Registry hierarchy in Windows 95, showing the principal keys.

a number of interfaces for VxDs that allow access to the registry, how­
ever. A subset of these interfaces is available for read-only access during
the system's real mode initialization procedure.

Ebay Exhibit 1013, Page 293 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

S I X: Applications and Devices

The User Interface

OLE

In Chapter Five, we looked at the new visual elements of the Windows
95 user interface and at some of the Microsoft guidelines for making
Win32 applications consistent with the shell and its behavior. Underly­
ing the new appearance are many new and enhanced APis. Two aspects
of the new interface have an impact on existing applications:

• The minimum hardware supported by Windows 95 is a VGA
display with 16 colors. The system itself operates internally
with a palette of 256 colors, mapping the 256 to 16 if the
hardware has only 16. The new 3-D appearance and the
improved use of color mean that you should avoid hard
coding colors, particularly for owner drawn items such as
buttons. The GetSysColor() API helps you use the currently
selected color palette within an application.

• The ability for the user to resize every visual element-scroll
bar widths, caption bars, and the like-means that your code
must not make assumptions about the size of standard items.
User resizing coupled with the system's ability to change
display resolution on the fly21 plus the overall Plug and Play
environment means that an application that truly exploits the
Windows 95 capabilities must be able to react well to dynamic
configuration changes.

The enhancements to the APis you're familiar with cover many
areas: menus, keyboard accelerators, icon management, and new capa­
bilities that allow you to exploit the new visual appearance just as the
shell does. Since this isn't an attempt to teach Windows 95 program­
ming, we won't look at the details here. Suffice it to say that if Windows
95 is successful, its users will rapidly come to expect updated applica­
tions that exploit its new appearance and interface capabilities.

OLE has been the most widely promoted aspect of Microsoft's system
software products over the last couple of years. Viewed initially as
simply a "better DDE," OLE has evolved to become the cornerstone of

21. You'll receive a WM_DISPLAYCHANGED message both before and after this
happens.

245

Ebay Exhibit 1013, Page 294 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

246

Microsoft's object-oriented system efforts. Windows 95 is the first oper­
ating system release that incorporates OLE as a standard function, al­
though add-on libraries for Windows 3.1 have been available for
developers to ship with their applications for some time. OLE's impor­
tance to developers is underlined by Microsoft's plans for the Cairo op­
erating system to provide support for distributed object-based systems
and an object-oriented filesystem-both of which are derived from the
current OLE object model and compound file format. OLE today is a
complex subsystem, but support for it within C++ class libraries contin­
ues to grow, somewhat simplifying the developer's task.

OLE has been dealt with extensively in other books. And doing
justice to OLE would merit at least an entire chapter in this book. Nev­
ertheless, it's important to at least look at some of the fundamental fea­
tures of the technology.

OLE deals with collections of objects that make up compound docu­
ments. A compound document is a grouping of data prepared by several
different applications. A letter prepared by a word processor, for ex­
ample, might include a numeric table generated by a spreadsheet pro­
gram. The Windows DDE capability offered limited facilities for using
multiple applications to prepare and maintain such compound docu­
ments, but more often than not, the act of preparation involved simply
copying a final version of the spreadsheet table, pasting it into the let­
ter, and printing it. OLE aims to provide the framework wherein the
user can prepare and maintain compound documents without losing
any of the attributes of the data objects or precluding the possibility of
manipulating the data objects in their original forms. This capability
involves either maintaining a link in the compound document to the
object in the original application, or embedding the data object directly
within the document. In either case, when the user selects the data ob­
ject, the originating application runs and provides the user with all of
its data manipulation capabilities. The user can not only resize the
spreadsheet as it sits in the document but also change the numbers and
recalculate the contents.

An application that supports this architecture is called an 01.E
server, and an 01.E client is any application that allows the inclusion of
OLE objects within its supported document formats. Selecting an em­
bedded object may cause the server to use an in-place activation tech­
nique whereby the server takes control of the client application's
menus and of the redrawing of the screen area occupied by the data

Ebay Exhibit 1013, Page 295 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

S I X: Applications and Devices

object. There's no apparent switching to another application such as
we're used to. The user just has a different set of operations available
for that particular data object.

OLE-enabled applications support drag and drop operations, in
which the user can select a graphical representation of a data object
and deposit it on some other object, whereupon the target object does
something useful with the data. The Windows 95 shell, for example,
allows the user to drag an object onto the desktop and leave it there or
to drag a document to a printer and have it be printed with no further
interaction.

Since the client application in the printing drag and drop ex­
ample would know nothing about how to print the document, it would
rely on the programmability of the server application. Simply put, this
means that the client can determine which application created the
document and send the server application a print command together
with the document data. The server will expose possibly many inter­
faces to its functions, and any client can call the server functions at will.
A page layout program, for example, could call on the text justification
function available in a word processor. No user actions would be re­
quired to make this happen-it's the OLE subsystem that initiates and
controls the interactions among all of the components.

Microsoft calls the core of the OLE design the component object
model, and under this broad heading lists all the programming inter­
faces, data structures, and protocols that control OLE operations. OLE
relies completely on object-oriented programming techniques and in
particular on C++. The written OLE specification is based entirely on
C++ conventions. The implementation of OLE on Windows 95 requires
the presence of several DLLs in the Windows directory.

The OLE compound file format specifies a storage mechanism for
OLE objects and their associated data. Within one compound file, it's.
possible to create multiple streams-each of which can contain collec­
tions oflogically separated objects. A compound file allows its contents
to be indexed efficiently, and the index is permanently retained-just
as a database index is. Windows 95 implements an OLE compound file
by storing the streams and the index in a single disk file. To the operat­
ing system, the file is just a collection of bits. Only the OLE subsystem
knows how to interpret the index and the data streams. All of that will
change with Cairo, and the interfaces offered today by the OLE librar­
ies will become part of the operating system proper. With Cairo,

247

Ebay Exhibit 1013, Page 296 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

Microsoft plans to offer a new object filesystem as the native storage
format. Multiple stream support, indexing, and object storage and re­
trieval functions will be an inherent feature of this filesystem. Whereas
today we have APis that simply read and write data, Cairo will provide
APis to load and store entire compound documents.

Of course, Microsoft faces healthy competition from various quar­
ters in its bid to establish OLE as the preferred object model for PC­
based applications. But OLE is gradually establishing itself, and its
ready availability in Windows 95 and Windows NT is a good way to ap­
proach the contest.

International Support

248

Over the years Microsoft has invested an enormous amount of effort in
the process of translating its products for use in overseas markets. It
isn't just a matter of translating program text and documentation. Is­
sues of local currency and date formats and other cultural consider­
ations abound. For the Far East and Middle East markets, the complex
character sets and right to left parsing issues further increase the work
required to make a software product truly international.

Windows 95 will represent Microsoft's largest investment yet in
the internationalization of a product. The plan calls for Windows 95 to
be released simultaneously in seven languages (English, French, Ger­
man, Italian, Swedish, Spanish, and Dutch) and for many other lan­
guage versions to follow in the subsequent six months. To achieve these
goals, Microsoft has restructured its development methods. Whereas
Windows 3.1 had been localized by having a variety of small teams
modify the source code and carry out the language translation, the rule
for Windows 95 has been no source modifications for localization pur­
poses. Whatever changes were necessary for localization were done just
once, in Redmond, and then the individual translation groups worked
with binary resources only.

Apart from the effort it has invested in the localization project it­
self, Microsoft has also enhanced Windows 95 considerably for foreign
language support. Among the design decisions that the team had to
make, determining whether to use the Unicode character set, as Win­
dows NT does, was one of the major ones. For compatibility and size
reasons, Windows 95 is not a Unicode system, although a number of
its components, such as OLE, use Unicode as their internal character

Ebay Exhibit 1013, Page 297 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

S I X: Applications and Devices

representation.22 A range of Windows 95 features are aimed at simplify­
ing the challenge of producing software that deals with many foreign
languages:

• Support for multiple keyboard layouts, allowing dynamic
switching between character sets. This means, for example,
that more than one foreign language can be used and dis­
played within a single document.

• The so called locale APis that handle issues such as string
sorting, code page management, and localized date and time
formats. A locale implies both a language dialect and a loca­
tion. 23 So, for example, the issues associated with software for
a multilingual country such as Switzerland can be correctly
handled. Windows 95 allows you to control some 110 different
locale items.

1111 Extensions to existing APis, such as MessageBoxExO, that allow
an application to specify the language resources to be used for
display of the text in buttons.

Structured Exception Handling
Although not specific to Windows, structured exception handling is a
feature that Windows 95 supports. Together with operating system sup­
port, you have to have a compiler that supports the capability. One
without the other won't do it. Windows NT with the Microsoft 32-bit C
compiler was the first Microsoft environment to support structured ex-
ception handling, and now it's in Windows 95. ·

Structured exception handling allows the programmer to bring
order and simplicity to the usually onerous chore of error handling. A
condition such as an error code returned by a system API, or a memory
fault caused by an invalid pointer, can be handled in one place rather
than with code scattered throughout an application. Figure 6-5 shows

22. The principal problems were the growth in the size of the system's working set
(remember that 4-MB requirement) if Unicode were to be used and tbe compatibility
testing issues associated with modifying close to 500 individual APis for Unicode
support.

23. Even to the extent that American English can now be properly viewed as a
dialect of the Queen's English!

249

Ebay Exhibit 1013, Page 298 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

250

an example of how you might handle errors the "old" way (including
an "old" bug), and Figure 6-6 is the same code modified to use struc­
tured exception handling. Some of the obvious declarations have been
omitted for brevity, and the code is a little artificial-but it serves i:.o il­
lustrate the technique.

This code fragment opens a file, reads the first word of the file to
determine the size of the subsequent data record, allocates memory for

Figure 6-5.
Handling errors the old way, without structured exception handling.

Ebay Exhibit 1013, Page 299 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

S I X: Applications and Devices

the data, and reads the data in. Errors can occur while the code tries
to open the file, while it reads the file, while it tries to allocate the
memory buffer, or when it searches the buffer for a given value-when
the pointer steps past the end of the buffer. The code shown in Figure
6-5 laboriously tests for error conditions. The code in Figure 6-6 han­
dles all possible errors by embracing the code in a single try block, de­
fining an except block that will be called if any errors occur, and then
cleaning everything up in a finally block that executes regardless of
success or failure. Note that the except block in Figure 6-6will execute in

Figure 6-6.
Using structured exception handling.

251

Ebay Exhibit 1013, Page 300 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

the event of a memory access fault when the code scans past the end of
the allocated memory buffer (with the pattern not found). Neither ex­
ample tests for this condition, and in the first case you'd get a program
failure with little useful qualifying information.

Exception handlers are frame based, meaning that their scopes
nest just as declaration scopes do, so it's possible to handle errors on
either a global or a local basis. There are also facilities for specifying
the context in which the exception is handled.24 The structured excep­
tion handling feature also allows a program to initiate an exception
(the RaiseException() API) and specifies the protocol for interacting
with a debugging tool if one is in use. Within an except block, you can
determine the cause of an exception so that you can carry out appro­
priate error recovery. You shouldn't replace every error test in your
code with an exception sequence, but it is a great way to manage a mul­
titude of possible error conditions diligently and efficiently. After all,
how many times do you test for every possible error in your code?

The Graphics Device Interface

252

GDI is the heart of the Windows graphics capabilities. All of the draw­
ing functions for lines and shapes are in GDI as well as the color man­
agement and font handling functions. Many aspects of Windows
performance are tied closely to GDI performance, and a lot of the GDI
code is handcrafted 386 assembly language. At the application level,
Windows provides logical objects known as device contexts (DCs) that de­
scribe the current state of a particular GDI drawing target. A DC can
describe any output device or representation of a device. An applica­
tion will obtain a DC for printer output or for completely memory­
based operations, for example. Applications manage DCs by means of
Win32 APls only. The actual DC data structure is always hidden from
the application. At any instant a DC contains information about objects
such as the current pen (for drawing lines), the current brush (for fill­
ing regions), the color selection, and the location and dimensions of
the logical drawing target.

The key to the use of Windows and Windows applications on a
widely disparate range of target hardware is the device independence

24. Reminiscent of, but much better than, the C language setjmp()/ longjmp()
facility.

Ebay Exhibit 1013, Page 301 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

S I X: Applications and Devices

embodied in the Windows APL An application uses DCs and other logi­
cal objects when calling GDI functions. It never writes data directly to
an output device. GDI itself manages the process of transforming the
data into a format suitable for use by a particular device driver, and the
driver handles the task of placing a representation of the request on
the output device. For example, an application may call the system ask­
ing for its main window to be repainted. During the repainting opera­
tion, among many other requests, GDI may tell the driver "on the
screen draw a one-pixel-wide black line from position (0, 48) to posi­
tion (639, 48)." If the device-a dot matrix printer, say-can't perform
operations such as line drawing, GDI will break the request down into
simpler operations. The device driver will receive a series of calls telling
it to draw individual dots, for example. This architecture frees applica­
tions from ;device-dependent problems and allows Windows to make
use of even the simplest hardware as an output device.

With this device-independent capability come several problems.
In addition to simply choosing and managing an appropriate device­
independent representation of all the graphics objects, you need to
have a plethora of device drivers available to interface GDI to the target
hardware. Issues such as handling complex fonts through a range of
point sizes and then being able to draw the font legibly on both a 1024
by 768 pixel display screen and a simple dot matrix printer involve
many complex algorithms and a lot of very clever code.

Over successive releases of Windows, the capabilities of GDI have
improved considerably, and the underlying structure of the system has
adapted to the experience gained from earlier versions and to the pre­
vailing market forces. The vast majority of Windows users nowadays
tend to have fairly capable hardware: VGA displays and laser or high­
resolution dot matrix printers. The hardware will probably get even
more powerful, with higher resolution and color-capable devices
abounding. It's therefore important to get the best possible perfor­
mance out of a few core components rather than expend effort on
hundreds of device drivers, each with a limited installed base. It has
also been important .to look ahead at the likely effects of hardware
trends. Two of the major changes in the Windows 95 GDI subsystem
reflect hardware trends: the device-independent bitmap (DIB) engine and
the image color matching (ICM) subsystem.

Windows 3.1 successfully introduced the concept of the universal
printer driver-a device driver that does much of the work for all the
other system printer drivers. The so called printer mini-drivers support

253

Ebay Exhibit 1013, Page 302 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

254

only the hardware-specific operations of a printer and rely on the uni­
versal driver for most printing-related functions. This allocation of re­
sponsibility allowed Microsoft to invest heavily in a high-performance,
high-quality universal printer driver and in some good example mini­
drivers for devices such as the Hewlett-Packard LaserJet. From the
printer manufacturer's perspective, Windows printer driver develop­
ment became a much simpler and much less error prone project.

Windows 95 takes up this design concept by incorporating the
DIB engine and a display mini-driver capability. If the display hardware
matches what the DIB engine can do, what was once a very complex,
performance-sensitive development effort is considerably simplified.25

Write a display mini-driver, and rely on the DIB engine as (in
Microsoft's phrase) "the world's fastest flat frame buffer" display driver.
The DIB engine design also recognizes the level of effort that hardware
manufacturers now put into hardware assists for Windows-based sys­
tems. If you have hardware acceleration or other capabilities, the dis­
play mini-driver can use these instead of calling the DIB engine.

Image color matching is a new capability that addresses device­
independence issues for applications that deal with color, such as
photo retouching applications. Although color has always been part of
Windows, earlier releases didn't have to worry too much about the is­
sue since color-capable peripherals were relatively rare. But now that
the price of good color scanners and color printers has fallen to the
$1,000 range, Windows has to take careful note of color management.

Here are the other improvements to GDI in Windows 95:

Ill Performance. A lot of code has been tuned, and some impor­
tant components have been converted to 32-bit code.

Ill Relaxation of resource limitations. In parallel with what's
been done to the User subsystem, many ofGDI's resource
limits have been raised significantly.

II Win32 support. Windows 95 fully supports many graphics APis
~mavailable in Windows 3.1.

Ill TrueType enhancements.

25. One simple code count shows the VGA display driver in Windows 3.1 to be over
41,000 lines of assembler (for a 16-color-only display). In Windows 95, it's only about
5000 lines for the full 256-color driver.

Ebay Exhibit 1013, Page 303 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

S I X: Applications and Devices

• Metafile support enhancements compatible with Windows
NT's metafile support.

• Printing subsystem enhancements, including bi-directional
printer support and a new 32-bit print spooler.

GDI Architecture
Figure 6-7 illustrates the major components of the GDI subsystem. It
also shows the breakdown between 16-bit and 32-bit code modules­
with one caveat: the DIB engine is actually 32-bit code running with a
16-bit (segmented) view of system memory-so the code makes use of
the fast 386 instructions for memory move operations, for example.
There's considerable trickery involved in efficient address manipula­
tion, but it means that existing 16-bit applications can realize the per­
formance improvements of the new DIB engine and that the engine
itself can call into the 16-bit GDI code with no additional overhead. If
the DIB engine were placed on the 32-bit side of the fence, either the

16-bitAPI 32-bitAPI

....
Figure 6-7.
The components of GD! in Windows 95.

255

Ebay Exhibit 1013, Page 304 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

256

32-bit GDI module would have to replicate much of the GDI function­
ality, or the DIB engine would incur lots of thunk overhead calling back
to the 16-bit side.

Before looking in detail at the new DIB engine and the ICM sub­
system, let's review the smaller improvements in the Windows 95 GDI.

Performance Improvements
The performance of the GDI subsystem is critical to the performance
of Windows. Many benchmarks of Windows 3.1 tend to focus attention
on video performance. Although video performance is only one ele­
ment of the overall performance of the system, it's certainly a huge fac­
tor in perceived performance.

The Windows GDI code has been worked on for a sufficiently
long time that there really aren't any huge undiscovered performance
gains to be made. But Windows 95 includes quite a few incremental
improvements:

• The new DIB engine is handcrafted assembler. The effort
invested in this will improve the performance of many video
display drivers as well as the print subsystem.

• The TrueType rasterizer is the component responsible for
turning a description of a font into the actual image you see
on the screen or on the printed page. The Windows 95
rasterizer is new 32-bit code.

• The print subsystem spools print metafiles, reducing the
amount of data movement and hence speeding up the print
process. The print spooler itself is new 32-bit code that can
run as a true background process.

• A lot of new 32-bit code in key components makes use of the
improved instructions available on the 386 processor. Also the
duplication of some GDI components in 16-bit and 32-bit
code avoids thunk overhead.

Limit Expansion
Along with the move partway to a 32-bit subsystem comes access to the
32-bit memory pools used by Windows 95. Under Windows 3.1, the GDI
subsystem allocated all resources from a single 64K heap-which
limited the total number of available resources significantly on systems
that were capable of running several applications at once.

Ebay Exhibit 1013, Page 305 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

SIX: Applications and Devices

In Windows 95, GDI still keeps many logical objects in a heap lim­
ited to 64K. The data structures that describe brushes, pens, and
bitmap headers, for example, stay in this smaller heap. Display context
structures also remain in this pool. However, GDI now allocates the ob­
jects that can really eat up space from a separate, 32-bit memory pool.
GDI regions, font management structures, and physical objects all
move to this pool, which considerably reduces the pressure on the 64K
heap. For example, the collection of rectangles used to describe an el­
liptical region can consume up to 45K. Decisions over which objects to
move out of the 64K heap were also influenced by performance consid­
erations. Since both 16-bit and 32-bit code has to manipulate the struc­
tures, the designers had to be careful not to incur too many selector
loads when switching between the different heap areas.

New Graphics Features
Windows 95 incorporates almost all of the more advanced graphics
APis defined by Win32. Their inclusion increases the suitability of Win­
dows for use as an application platform by graphics-intensive applica­
tions. The new APis encompass

Ill Support for paths, allowing an application to describe a
complex arrangement of geometric shapes that GDI will
outline and fill with a single function call

ill Bizier curve drawing, in which an application describes a curve
using a series of discrete points and GDI figures out how to
draw the curve

Applications such as high-end drawing packages and CAD prod­
ucts have to concern themselves with the very accurate representation
of geometric objects. One of the differences between Windows 95 and
Windows NT is in the drawing algorithms that define the pixels used
when an application draws lines or fills shapes. Internally, an applica­
tion can draw anywhere within the 16-bit coordinate space (-32,767 to
+32, 767 in both the x and y directions). GDI may have to scale this im­
age dramatically to allow its display on a 640 by 480 pixel screen and,
regardless of scaling issues, drawing a diagonal line on a video screen is
always problematic. Essentially, GDI and the display driver have to fig­
ure out between them which pixels become black and which stay white.
For most of us (and most applications), the differences between lines

257

Ebay Exhibit 1013, Page 306 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

258

drawn according to the two algorithms won't be discernible. There are
similar subtle differences between the ways the two GDI subsystems fill
shapes on the screen. The algorithms differ as they determine which
pixels to include or exclude around the edge of the shape.

True Type
The new TrueType rasterizer is implemented in C. It's an adaptation
of the C++ module developed for Windows NT.26 The new code also
implements an improved mathematical representation of a font, using
32-bit fixed point arithmetic with a 26-bit fractional part. Windows
3.1usesa16-bit representation with a 10-bit fraction. This led to some
rounding error problems (leading to reduced fidelity on high resolu­
tion devices) and difficulties in handling complex characters such as
those in the Chinese language (the Han characters).

The rasterizer now uses memory mapped files to access font de­
scription files (all those .TTF files in your Windows system directory),
and the associated .FOT files are gone. During the system boot process
a private record of an installed font is written to disk and used during
the next boot. This improves the speed of system startup considerably if
you have a lot of fonts installed.

Metafile Support
Metafiles contain sequences of graphics operations written in a device­
independent format. An application can obtain a device context to a
metafile and draw a picture using the DC. GDI generates the metafile
records that correspond to the GDI function calls made by the applica­
tion. Metafiles can be reprocessed with the drawing output directed to­
ward any capable device. The recorded picture will appear with the
original sizing, proportions, and colors intact.

Windows 95 adds support for the enhanced metafiles defined for
Win32, including limited support for world transforms (scaling opera­
tions only). There are some Win32-generated metafile records that
Windows 95 won't understand, so it skips them when reading the
metafile. This means that a metafile generated on a Windows NT sys­
tem using the full range of graphics capabilities can't be completely re­
produced on a Windows 95 system.

26. The Windows NT operating system code uses C++ extensively. There's none in
the Windows 95 operating system.

Ebay Exhibit 1013, Page 307 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

S I X: Applications and Devices

Image Color Matching
The problem of producing a completely device-independent color ca­
pability for Windows remains an intractable one. There doesn't yet ex­
ist a recognized solution to the problem-for any general purpose
computer system. Accurate color reproduction is the subject of many
research projects, and a number of international standards try to solve
subsets of the problem. Interestingly, all color standards in use today
are derived from a 1931 definition known as the crnxyz standard.
Apart from the fact that color reproduction involves issues of human
perception, the basic problem is that even if you can define a com­
pletely adequate internal color representation system, no two devices
will reproduce a given color identically. Thus, a "red" on the printed
page will look .different on the screen, and many colors that you can
choose for your latest Van Gogh knockoff on screen can't be accurately
matched by the colors your printer can produce. Given the inability of
a device to produce a particular color, what do you do? Adjust that
color to the nearest one available on the output device? Or adjust every
color in the image in an attempt to maintain the original contrast? It
doesn't seem likely that anyone will ever solve the problem to the com-
plete satisfaction of every expert. -

Color management systems that do exist today are built around
specific hardware, so the controlling software knows what colors are
available and what transformations it must use to render accurate color
output. This of course runs counter to the Windows philosophy of al­
ways maintaining device independence. Yet the need for a good color
management system is apparent. For a few thousand dollars, you can
set yourself up with a. very high quality color production system, and
the prices will no doubt fall further. Thus, the Windows designers were
faced with the challenge of integrating a color management system
that meets the nonexpert needs (and budgets) of most of us while still
supporting the stringent requirements posed by professionals in maga­
zine publishing and photographic reproduction.

Image color matching (ICM) is Microsoft's name for the solution
incorporated into Windows 95:

II ICM defines a logi,cal color space for Windows that is defined in
terms of the RGB (red, green, blue) triplets already used in
Windows 3.1. The use of the existing RGB mechanism is really

259

Ebay Exhibit 1013, Page 308 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSID.E WINDOWS 95

260

a convenient implementation detail. The logical color space is
actually calibrated with reference to the crnxyz standard.

II ICM uses a color profile that defines the color capabilities of a
particular device. Manufacturers of color output peripherals
can ship a color profile with their devices, much as they might
ship a Windows device driver today. If a device has no associ­
ated color profile, the system chooses a sensible default
profile.

II The color profile allows the ICM to build a color transform that
defines how to map colors from the logical color space to the
colors reproducible on the output device. For an input device
such as a scanner, ICM uses the profile to transform the
device colors to the logical color space.

11111 ICM thus allows device drivers and the system itself to per­
form color matching and color transformation operations in
support of scanning or reproducing .images involving a speci­
fic device. ICM aims to be consistent-giving you predictable
results each time you scan, display, or print an image.

II ICM is implemented as a replaceable DLL, and it's possible
to load more than one ICM at a time.27 This means that for
environments with different color management needs the
system's default processing can be replaced or circumvented.

II Windows 95 adds support for the CMYK color standard that's
widely used in applications that produce color separations for
printing and publishing. If an application chooses CMYK as
its color space, Windows stays out of the way and the applica­
tion can pass color coordinates to the device driver without
further transformation by the ICM.

Microsoft also realized early on that there were people who knew
a lot more about color management than they did. The specification
and development of the Windows 95 ICM was done in conjunction with
Eastman Kodak, a company that does indeed know quite a lot about
color. The default ICM DLL planned for inclusion with Windows 95
was written largely by Kodak.

27. Loading a new ICM is under application control. Two new APis­
LoadlmageColorMatcher() and FreelmageColorMatcher()-manage the procedure.

Ebay Exhibit 1013, Page 309 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

SI X: Applications and Devices

Color Profiles
Microsoft will publish the format of a color profile in the Windows 95
SDK and DDK products. The definition will describe both the file and
in-memory formats for color profiles. No doubt some standard profiles
will be included with Windows 95 when it ships-just as you get most of
your printer drivers "in the box" today. The contents of a color profile
have been determined by efforts involving several different companies,
and it's freely acknowledged that there are application areas that will
need further extensions of the information embodied in a color pro­
file. But for most applications, these color profiles are sufficient.28

As you'd expect, color profiles will be available for scanner de­
vices, display screens, and color printers. The profile definition also
enables the specification of profiles that describe abstract devices (al­
lowing color effects) and color space conversion (from the internal
logical color space to a different standard) and the specification of de­
vice link profiles. A device link profile caters to a system with a fixed
configuration, allowing the color transformations to be fine tuned so
that, for example, the particular "red" generated by your Hewlett­
Packard Scan Jet becomes exactly this "red" on your HP Deskjet printer.

Don't imagine that you'll be generating color profiles the same
way you change your desktop colors with the Windows Control Panel,
though. Color profiles are real science and may involve device calibra­
tion, temperature correction, and the handling of different paper and
ink types, among other complexities.

Communicating Color Information
Figure 6-8 on the next page illustrates the flow of color information
among the various components in the system. The color information
communicated among the components is always expressed in either
RGB or CMYK values, or in some transformation of these values ac­
cording to the way the application has defined its color space.

At the application level, GDI provides several new APis that allow
a specific color space to be defined and manipulated. 29 An application
uses a device-independent bitmap (DIB) to store an image, and the

28. If you don't already believe that color management is a tough problem, note
the way in which the ICM designers acknowledged the difficulty. They listed one of
their goals as specifying a system that's "simple enough to implement in our lifetimes."

29. If you're interested in the details, look for all the ICM-related APis-those that
have the string Color somewhere (!) in their names.

261

Ebay Exhibit 1013, Page 310 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

Win32API

•
Figure 6-8.
Color information handling within the system.

color matching APis operate directly on the bitmap. The DIB structure
itself has been extended to incorporate color information, and, as with
other device-related operations, color manipulation is specific to each
Windows device context.

The Display Subsystem

262

Although Windows allows only a single system display device to be ac­
tive, several different software components are involved in controlling
the display. Figure 6-9 illustrates most of these components, together
with the boundaries between them-the API layer and ring zero com­
ponents vs. ring three components. The example in Figure 6-9 assumes
a configuration that uses the new device-independent bitmap engine.
The DIB engine assumes a major role in the control of the video dis­
play under Windows 95. In a configuration that doesn't use the DIB
engine, the engine and the associated display mini-driver won't be
present, and the system components such as GDI interact with a single

Ebay Exhibit 1013, Page 311 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Ring 3

Ring 0

S I X: Applications and Devices

- I

t t
API

..... .,

Screen

Figure 6-9.
Display subsystem components in an example configuration.

display driver module. That's essentially how Windows 3.1 works today,
but in a very large percentage of Windows systems, the video hardware
will be appropriate for use of the new DIB engine and the display mini-

263

Ebay Exhibit 1013, Page 312 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

264

driver architecture introduced with Windows 95. For most purposes,
you can think of the DIB engine and the mini-driver as a single display
driver. Windows always assumes that the video display is directly addres­
sable as a memory region. Display adapters that don't allow this aren't
usable by Windows for graphics operations.

Video system performance is critical to Windows, so, in terms of
the length of instruction sequences, bringing the· video memory and
the video display adapter as close as possible to GDI is an overriding
consideration. The device-independent nature of GDI means that it
has to go through a device driver to get to the hardware and, in fact,
two device drivers are involved. One is the VxD responsible for vir­
tualizing the video hardware and controlling the switching of the
screen between different virtual machines. (This is the VDD in Figure
6-9.) The other driver is a ring three DLL that always runs in the con­
text of the system virtual machine. (This is the combination of the dis­
play mini-driver and the DIB engine in Figure 6-9.) So when the
Windows desktop is on the screen (meaning that any MS-DOS applica­
tions are either not running or running in the background), the path
from a Windows application to the screen is fairly efficient: a call to one
of the Windows system DLLs, which in tum calls the display driver. No
ring transition is involved, and the display driver has direct access to
the video memory.

If Windows needs to initiate a hardware control operation-for
example, to switch the screen resolution-it do~s rely on the display
driver VxD. Normally, the ring three display driver will use the INT 10
video services interrupt to do this. The INT causes a fault, which ini­
tiates a ring transition. The kernel unravels the cause of the fault and
hands control to the display driver VxD. Typically the display VxD will
be the only component that mucks with the display adapter hardware.

The grabbermodule in Windows 95 is the same as in Windows 3.1.
To support MS-DOS applications, the system's WINOLDAP module re­
lies on a screen grabber for the purpose of saving artd restoring the
state of the video hardware and the video memory. The grabber has to
match the display hardware type, so the grabber, the display VxD, and
the display mini-driver are developed in concert. The VxD services
used by the grabber include functions for copying data back and forth
between video memory and a memory buffer, and various synchroniza­
tion primitives that assist in critical section management and switching
between virtual machines.

Ebay Exhibit 1013, Page 313 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

SIX: Applications and Devices

The DIB Engine
In Windows, a bitmap is a memory-based representation of a completed
sequence ofGDI operations. The resulting object is suitable for immedi­
ate display on a compatible output device, and, in the case of a device­
independent bitmap, minimal additional processing will prepare the
object for output to a different device. Bitmaps appear in files (the desk­
top wallpaper, for example), as application resources (the pictures on
toolbar buttons, for example), and in main memory, where applica­
tions and device drivers can build and manipulate them directly. The
entire Windows desktop display is itself a large bitmap, and the code that
deals with updating the screen is critical to the system's performance.

The Windows 95 DIB engine recognizes the current state of dis­
play hardware by implementing a bitmap management capability that
deals very efficiently with color flat frame buffer devices. In hardware
terms, this would mean that the output device provides a large linear
memory space with each screen pixel directly addressable as a memory
location. Associated with each pixel is a color, represented by a number
of bits. The DIB engine handles 1, 4, 8, 16, or 24 bits per pixel color,
giving it a range from simple monochrome displays to high-end output
devices with the ability to display millions of colors.

The DIB engine architecture assumes that it can set a particular
pixel to a particular color by simply storing the appropriate number of
bits in the correct memory location in the device's frame buffer. If the
hardware doesn't have a frame buffer, the DIB engine is usable only for .
assistance in manipulating memory resident bitmaps: it doesn't try to
allocate some huge chunk of memory and pretend it's the display de­
vice. Although the principal use of the DIB engine is for managing the
video display, its bitmap manipulation capabilities lend themselves to
other operations as well. Printer drivers can call the DIB engine for as­
sistance when preparing a page, and GDI can use the DIB engine for
operations on memory resident bitmaps.

Associated with the DIB engine is a display mini-driver called by
GDI. This driver is still responsible for managing hardware-dependent
operations in collaboration with the display driver VxD. GDI never
calls the DIB engine directly, and, ordinarily, the DIB engine will rely
on the mini-driver for hardware-dependent operations.30 Also, if the

30. Among other enhancements such as color cursors and 32-bit color devices,
Microsoft is already thinking about extending the use of the DIB engine so that GDI
can indeed call it directly.

265

Ebay Exhibit 1013, Page 314 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

display adapter has additional capabilities, such as hardware accelera­
tion for text output, the mini-driver is responsible for directly using
these features and the DIB engine won't be called to perform that func­
tion. As part of its effort to get complementary hardware designed for
Windows, Microsoft has been lobbying display adapter manufacturers
to build devices with flat frame buffers, local bus video memory, and
hardware acceleration for text output and bit blt operations.

Both the display mini-driver and the DIB engine are dynamically
loadable libraries. Display drivers that rely on the DIB engine will cause
it to be loaded during initialization. If the display driver doesn't use the
DIB engine, it won't be loaded. The bitmap memory manipulated by
the DIB engine is shared with GDI. For performance reasons, there's
an attempt to minimize any back and forth copying of bitmaps. 31 The
design of the DIB engine also tries to recognize the needs of multime­
dia applications with very high speed video data transfer requirements.

The Display Mini-Driver

266

The display mini-driver uses two major data structures to interact with
the DIB engine and GDI. The GDIINFO structure is central to all of
·GD I's device-related operations. The structure defines, for example, the
capabilities of the device in terms of its ability to draw lines, circles, text,
and so forth. Many calls between GDI and its device drivers pass a
pointer to the appropriate GDIINFO structure as one of the parame­
ters. Information common to all devices is collected in the GDIINFO
structure.

The other data structure is the DIBENGINE shown in Figure 6-10.
Every GDIINFO structure specifies the size of the device descriptor
structure associated with the device. Usually referred to as the
PDEVICE structure, this data structure is entirely device dependent. Its
size and contents vary according to the type of the device. For a display
mini-driver, the PDEVICE structure is a DIBENGINE structure. Taken
together, the GDIINFO structure and the DIBENGINE structure de­
scribe everything GDI needs to know about a display device that uses
the DIB engine.

31. There's an analogous CreateDIBSection() API in Windows 95 that allows an
application to reserve a directly addressable memory region for a bitmap that it shares
with GDI. .

Ebay Exhibit 1013, Page 315 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

S I X: Applications and Devices

Figure 6-10.
The DIBENGINE data structure.

Bank-Switched Video Adapters
Another important component of the DIB engine architecture is a VxD
called VFLATD, the flat frame buffer VxD. This VxD caters to display
adapters that possess large amounts of video memory but have to use a
memory window to switch back and forth between different 64K blocks .
of it. 32 The VFLATD VxD will manage up to a 1-MB logical frame buffer.
The display mini-driver initially contains the code for switching the
physical frame buffer to a different region of the logical frame buffer.
When the mini-driver calls VFLATD to register this bank-switching
code, the VxD actually copies the code into its own memory. Whenever
the video memory window needs to be moved, VFLATD simply

32. If you remember expanded memory, that's exactly what this is like.

267

Ebay Exhibit 1013, Page 316 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

268

executes the switching code by running through it-not even a func­
tion call to get in its way as it comes steaming through!

Providing the bank-switching support as a standard part of the sys­
tem (and making sure it runs as fast as possible) makes the mini-driver
solution applicable to a much broader range of display adapters, so the
likelihood of your system's using the DIB engine is pretty high.

Interfacing with the DIB Engine
When Windows 95 first loads a display mini-driver and calls the driver's
DLL initialization routine, the driver simply collects information about
its own configuration from the SYSTEM.IN! file. Later on in the sys­
tem's initialization process, GDI calls the driver's Enable interface twice.
The first time through, the driver calls DIB_.Enable(). The DIB engine
hands back a pointer to an appropriate GDIINFO structure. The driver
fills in some of the device-dependent fields (for example, the number
of bits per pixel) and returns the GDIINFO structure pointer to GDI.
The second call to Enable is where the rest of the initialization work gets
done, including calling the display VxD to set the hardware into the
correct graphics mode (using an INT 10) and if necessary handing the
bank-switching code to the VFLATD VxD.

Once all the initialization is over, GDI, the mini-driver, the DIB
engine, VFLATD, and the display VxD are all hooked together and
ready to actually put something on the screen. The display mini-driver
provides a standard set of about 30 or so interfaces that allow GDI to
interact with the driver. Many of these functions are the same as those
defined for existing Windows 3.1 display drivers, such as those for man­
aging the cursor. All of them are exported entry points from the driver
DLL. Several functions simply accept the call from GDI and hand it di­
rectly to the DIB engine. For example, GDI will call the driver's
BitmapBits() function whenever an application creates or copies a
bitmap. The mini-driver can turn around and call the DIB engine's
DJB_BitmapBits() entry point with no transformation of parameters or,
indeed, any other processing.

Management of the cursor is handled largely by the mini-driver,
and, as with Windows 3.1 display drivers, the mini-driver must define
the set of standard cursor resources used by GDI. This includes objects
such as the standard arrow pointer, the I-beam cursor used in text
fields, and the cursor we al! hope we'll see a lot less of, t..lie hourglass.

Ebay Exhibit 1013, Page 317 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

S I X: Applications and Devices

The Printing Subsystem
Much of the Windows 95 printing subsystem architecture (and indeed
a lot of the code) is shared with Windows NT, so much of the new termi­
nology and the new components of the print subsystem will be familiar
to you if you've studied Windows NT. Apart from the new Image Color
Matching capability, Windows 95 doesn't introduce any dramatic
changes into this printing architecture, although across the board
there are a number of significant improvements over the printing sub­
system in Windows 3.1:

llli A new spooler, implemented as a fully preemptive Win32
application. Print spooling can thus be a true background
activity under Windows 95.

Ill Support for PostScript Level 2-the version applicable to .
color output devices.

Ill Bi-directional communication with the printer, which enables
good Plug and Play support and the possibility of other
enhancements. 33

Iii Use of the new device-independent bitmap engine for high-.
performance bitmap manipulation.

Iii A new "quality of service" mechanism that allows the system to
manage the simultaneous operation of more than one printer
driver for a particular device.

ii Improvements in the tools used for developing printer mini­
drivers.

The Windows 95 printing system also expands the use of the
printing APis in preference to the printer escape functions used in
Windows 3.0. An escape function (generated using the now-obsolete
Escape() API) allowed an application to make a direct request to the
printer driver. Windows 3.1 and Windows NT have replaced more and
more of these escapes with APis, and the recommendation now is to
always use the APl.34

33. A sample of these enhancements is already available in Microsoft's Windows
Printing System product for Hewlett-Packard LaserJet printers.

34. The documentation for the Escape() API describes .the details.

269

Ebay Exhibit 1013, Page 318 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

Printing Architecture
Three groups of components collaborate to print pages under Win­
dows 95:

a GDI and its supporting modules, such as the DIB engine and
the printer driver, which are responsible for translating
drawing primitives issued by applications into a data stream
suitable for the target printer.

li'illl The local print processors and the print spooler that accepts
the data stream and either writes it to a local disk file for
subsequent printing or hands it to a local printer monitor for
output to the physical printer.

Ii The despooler process and the print request router (PRR) that
takes a print job and dispatches it to the correct target printer.
This printer may be either a locally connected device or a
network-attached printer.

Figure 6-11 illustrates these components and their interaction. In
Chapter Nine, we'll look in more detail at the PRR and at the manage­
ment of network printing. Essentially the PRR determines where a
print job is headed and passes it to either the local printing system or
the appropriate network subsystem for printing on a remote machine.

The Printing Process

270

An application produces output for a printer as it does for any other
graphics device: it asks GDI for an appropriate device context and then
draws its output using the DC. Obtaining the DC is a little different
because the application must use the CreateDC() API, naming a target
printer rather than simply requesting one of the available display de­
vice contexts maintained by Windows. Once it has the DC, the appli­
cation uses the StartDoc() and EndDoc() APis to identify the beginning
and end of a discrete print job. Within a single job, the StartPage() and
EndPage() APis identify page breaks within the document.

Within the system, GDI, the printer driver, the DIB engine, and
the local spooler combine to generate a disk file containing the data
destined for the printer and an information file used to describe this
print job. Both 'A/indov1s 3.1 and \A/indo"\<vs NT use a series of jo-u-rnal
records as the basis for the print data file. The despooler is responsible

Ebay Exhibit 1013, Page 319 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

SI X: Applications and Devices

• . • API

Local printer

Figure 6-11.
Components of the Windows 95 printing architecture.

for subsequently handing the print job to the print request router for
actual printing.

If the print job is for a local printer, the local spooler hands the
data to a print processor that converts the journal records to a printer­
specific format. Ultimately, the data stream goes to a monitor, and it's the
monitor that actually controls the physical printer. Although it might

271

Ebay Exhibit 1013, Page 320 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

seem that the monitor is yet one more level of indirection in this pro­
cess, it enables much more intelligent handling of a printer device.
The monitor handles all bi-directional communication with the printer
so that conditions such as paper out can be reported to the local
spooler. This allows the user to see a useful error message, such as
paper out or cover open, rather than the generic printer not responding. The
monitor also implements the Plug and Play support for printers, en­
abling automatic identification of the printer, for example. The moni­
tor design also provides a general interface that allows devices such as
direct network-attached printers to function properly. As far as the
spooler is concerned, the monitor is dealing with a directly connected
printer. If the monitor chooses to talk NetBIOS commands to a laser
printer plugged in down the hallway, so be it-the spooler doesn't care.

Rather than· a print job, the application can choose to directly
produce a metafile by requesting a DC using the CreateEnhMetaFile()
APL GDI generates a metafile on disk that describes a reference devic~a
basis for the metafile contents-and a series ofmetafile records. Meta­
files remain device independent, and an application can replay their
content and direct the output to a specific device at some later time.

Microsoft plans to use enhanced metafiles as the basis for the con­
tents of the print job data file, so all print processors will convert
metafile records to device-dependent data during the despooling op­
eration. Windows 95 will implement this for only locally attached print­
ers, but in the future metafiles will be used for network printing. Apart
from the fact that much less data gets sent across the network, the
printing subsystem on the local machine is a lot simpler. It doesn't
need to know much about the target printer, and the printer driver and
print processor need only exist on the target machine.

Using the Universal Printer Driver

272

Windows 3.1 introduced a major enhancement into the printing sub­
system-the universal printer driver. Like the DIB engine-mini-driver
combination for display drivers in Windows 95, the universal printer
driver recognizes the fact that most printers work pretty much the same
way. Thus, the universal driver can encapsulate much of the printing
workload, leaving the printer manufacturer free to concentrate Qn de­
veloping a much simpler printer mini-driver to handle the hardware­
dependent interactions. Windows 95 shares the design of the printer
mini-drivers with Windows NT, and a particular mini-driver will work
on either system.

Ebay Exhibit 1013, Page 321 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

S I X: Applications and Devices

The universal printer driver approach has been extremely suc­
cessful, and Microsoft predicts that support for over 700 different print­
ers will be included with Windows 95 when it ships. The driver has been
enhanced for Windows 95 in a few small ways, including support for
600-dpi devices and the ability to download TrueType fonts to the tar­
get printer. The mini-driver design is largely unchanged, and the phi­
losophy remains to offload the majority of print output processing
to the universal driver with the mini-driver providing only device­
dependent functionality.

The world of printing is a highly complex one, and the quality of
font reproduction is one of the most carefully scrutinized aspects.
Adobe Systems has built a very successful business by evangelizing both
its fonts and its PostScript printing technology. For many years Adobe
fonts and PostScript output devices have set the standard for computer­
based printing and publishing. The majority of printers deal in data
streams interspersed with printer commands (the basis for the univer­
sal printer driver design), but PostScript is a page description lan­
guage. The PostScript printer driver generates the description of the
page to be printed with very little knowledge of the actual output de­
vice.35 This device independence has allowed PostScript to span the
range of printing devices, from $500 laser printers to high-end color
film production systems costing tens of thousands of dollars. A Post­
Script interpreter, which resides on the output device, translates the
PostScript data stream into actual hardware operations that place dots
on paper or film. The universal printer driver model doesn't suit the
needs of PostScript, so no use is made of the mini-driver architecture
for PostScript printers.

By far the most popular laser printers for Windows systems are
those in the Hewlett-Packard LaserJet series. Microsoft and Hewlett­
Packard have collaborated closely on Windows printing design for
several years, including the design of the TrueType font subsystem.
Hewlett-Packard also has its own printer language-PCL-that is com­
mon to all the LaserJet models. Many printers feature "LaserJet emula­
tion"-essentially meaning PCL emulation. PCL is closer to the model
of the world implemented by the Windows universal printer driver, so
this class of printer can use the mini-driver architecture.

35. Should you be so inclined, you can actually read the PostScript driver's output
by directing it into a file.

273

Ebay Exhibit 1013, Page 322 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

Conclusion

274

Windows 95 finally makes 32-bit Windows programming a mainstream
activity. In addition to improved ease of development and compatibility
with Windows NT, Windows 95 adds a number of new features to Win­
dows. Some, such as the color matching capability, are long-awaited re­
sponses to features previously available only in competing operating
systems. Other features, such as OLE and RPC, have existed before
Windows 95 but never as standard components of an operating system
that will be used on millions of PCs. Once again, we can all look for­
ward to the amazing inventiveness of the software industry as it har­
nesses these features in new application products.

Between the AP! layer and the device drivers that translate application requests
into operations on the bare metal, Windows 95 includes several radically new or
revised subsystems. The rest of this book isolates some of these subsystems and ex­
amines them in detail. The next chapter looks at one component that everyone
uses: the filesystem.

References
Microsoft Corporation. Windows 95 SDK documentation. Redmond, Wash.:

Microsoft, 1994. No doubt Microsoft's product documentation will be
augmented by dozens of new or warmed-over books that deal with the
details of the Windows API and Windows device drivers, but I haven't
seen any yet. If you program for Windows and you don't yet have a CD
ROM drive-invest now. The online help files in the SDK and the CD
distributed as part of the Microsoft Developer Network product are
about the only sane way to approach this volume of information.

Brockschmidt, Kraig. Inside OLE 2.0. Redmond, Wash.: Microsoft Press,
1994. This is an intimidating book, nearly 900 pages in length. It is,
however, the single most comprehensive treatment of OLE available.
If OLE development is in your future, this is a book you have to tackle.

Ebay Exhibit 1013, Page 323 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

C H A P T E R S E V E N

THE Fl LESYSTEM

Although the 32-bit API and the shell are likely to attract the highest
initial interest from programmers and users, the new filesystem archi­
tecture of Microsoft Windows 95 is the base operating system compo­
nent that has the most widespread impact on the system. Windows 95
continues to use the MS-DOS FAT filesystem as its default on-disk struc­
ture, but the code implementing the filesystem organization is com­
pletely new. In Windows 95, the FAT filesystem code-referred to as
VFAT-is merely one piece of an entirely fresh design. These new fea­
tures supported by the Windows 95 filesystem architecture affect both
end users and application developers:

II Support for long filenames finally addresses the number one
user complaint about earlier versions of MS-DOS and Win­
dows. The new API support for long filenames requires
developers to modify their applications, but there is an
immediate and significant payback for the effort invested.

Iii Network support relies on the new installable filesystem
architecture to allow the concurrent use of different network
systems. Support for multiple network connections means that
users can simultaneously access different networks without
suffering through a complex setup and configuration proce­
dure. Network software providers can develop Windows 95
network support using an interface designed to allow the
integration of multiple high-performance c6nnections.

II Users will see improved performance resulting from the
implementation of the standard FAT filesystem as
multithreaded 32-bit protected mode software.

275

Ebay Exhibit 1013, Page 324 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

276

Ill Developers specializing in the support of new hardware
devices will realize the benefit of the layered filesystem design
as the effort required to implement new disk device drivers is
significantly reduced.

These features reflect the goals of the filesystem effort-add long
filename support, improve performance, and dispense with the poorly
suited MS-DOS INT 21H mechanism in favor of a properly architected
interface that supports multiple filesystems. The reliance on MS-DOS
has been the major weakness in every release of Windows through ver­
sion 3.1. Apart from significant user frustration with the limited
filenaming capabilities, there have been a number of system-level prob­
lems stemming from continued reliance on MS-DOS:

11111 MS-DOS1 contains a lengthy critical section that prevents
efficient multitasking of applications-particularly during
heavy disk access. Retaining such a bottleneck is simply not
acceptable in an operating system intended to support
multithreaded applications.

!!I Every access to the filesystem from a Windows-based applica­
tion requires the System VM to switch between protected
mode and virtual 8086 mode in order to execute MS-DOS
code. This is another performance hit.

!!I MS-DOS network support requires the network software to
hook the INT 21H software interrupt and reroute the appro­
priate filesystem requests across the network. Every other disk­
related TSR program uses the same basic interrupt hooking
technique. The interface was never designed for overloading
this heavily. In the case of only one network connection, this
technique tends to destabilize the system, and trying to sup­
port multiple network connections is yet more problematic.

11111 Proprietary solutions have led to a profusion of filesystem
interfaces designed to support CD ROM devices, SCSI adapt­
ers, tape devices, and other devices. Even when a particular

1. Note that references to MS-DOS in this chapter mean MS-DOS releases up to
and including version 6.22. If there is an MS-DOS version 7.0, it will incorporate the
same filesystem architecture as Windows 95.

Ebay Exhibit 1013, Page 325 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

SEVEN: The Filesystem

interface proves to be popular under MS-DOS, supporting the
interface in Windows is by no means a straightforward task.

Elements of the new filesystem have been under development
since early 1991, and much of the new filesystem design appeared for
the first time with the November 1993 release of Microsoft Windows for
Workgroups version 3.11. This release of Windows included the pro­
tected mode implementation of the MS-DOS FAT filesystem and sup­
port for multiple network connections. However, the Windows for
Workgroups release did not include either the long filename capability
or the full features of the base OS to be introduced with Windows 95.

In this chapter, we'll examine the features that enable the co­
existence of multiple filesystems and the details of the support for what
Windows 95 calls block devices2-principally disk and tape ch:ives that are
local to the host system. Network support relies on the new filesystem
architecture also, with Windows 95 classifying the higher layer of any
network connection software (usually called the redirector) as a network
filesystem. In Chapter Nine, on Windows 95 networking, we'll revisit
this particular filesystem type in more detail.

Overview of the Architecture
There are many individual components of the new filesystem architec­
ture. In fact, to refer to it as "the filesystem" is to be rather inaccurate.
The design relies on a layered approach that places the installable
filesystem manager (IFS) at the highest level and a collection of port driv­
ers, or miniport drivers, at the lowest level, where they interface to in­
dividual hardware devices. Within the boundaries set by these
components, the system can support several different active filesystems.
Windows 95 supports some-such as the FAT filesystem-directly. Sup­
port for non-Microsoft filesystems comes from installable modules sup­
plied by other vendors. If you're familiar with the disk subsystem design
of Windows NT, you'll notice a lot of similarities to it in the Windows 95
design. Figure 7-1 on the next page illustrates the principal compo­
nents of the filesystem architecture.

2. Microsoft referred to the complete block device driver subsystem as "Dragon"
during development. This subsystem deals only with local block devices and not with
network support. ·

277

Ebay Exhibit 1013, Page 326 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

Adapter Adapter

Figure 7-1.
Windows 95 filesystem architecture layers.

278

Filesystem
layer

Ebay Exhibit 1013, Page 327 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

S EVE N: The Filesystem

The choice of a layered design controlled by the IFS aims to re­
solve the problems inherent in using the MS-DOS INT 21H interrupt
as the solitary interface to every filesystem function. Network systems
and other popular products such as caching software and disk com­
pression TSRs all hook INT 21H to inspect every file request for pos­
sible rerouting. Since there's no well-defined order for these TSRs, or
any published interface between them, the interactions can cause
problems. And conflicts among different vendors' products usually
highlight any review of an MS-DOS release. Even when various prod­
ucts can be made to work well together, the user might have had to
indulge in hand to hand combat with the CONFIG.SYS and
AUTOEXEC.BAT files first. The Windows 95 filesystem design fixes
this situation by providing many levels in which add-on components
can be installed. Each layer has defined interfaces with the layers above
and below, which enables each component to collaborate smoothly
with its neighbors. The new filesystem architecture relies on the dy­
namic VxD loading capability of Windows 95 to load many of its lower­
level components.

Figure 7-1 illustrates only a small number of the possible layers in
the filesystem-although these are the components you'd expect to
find in a "standard" system. The filesystem design supports as many as
32 layers from the I/O subsystem (IOS) down. Layer 0 is the layer adja­
cent to IOS, and layer 31 is closest to the hardware. On initialization, a
component registers itself with IOS and declares the layers at which it
wishes to operate. To operate at more than one level, a module has to
supply IOS with different entry points-one per required level. Above
IOS are the filesystems themselves and the installable filesystem manager
(IFS manager). Let's take a brieflook, from the top down, at the func­
tions of the common layers and at the components you'd expect to find
in them:

The IFS manager, at the highest layer, is a single VxD that provides
the interface between application requests and the specific
filesystem addressed by an application function. The IFS man­
ager accepts both dynamically linked API calls from Win32
applications and INT 21H calls generated by Win16 or MS-DOS
applications. The IFS manager transforms the API requests into
calls to the next layer, the filesystem layer.

The VFAT, in the filesystem layer, is the protected mode implementa­
tion of the FAT filesystem. VFAT is an example of a filesystem
driver, or FSD. Each FSD implements a particular filesystem

279

Ebay Exhibit 1013, Page 328 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

280

organization. An FSD executes requests made by the IFS man­
ager on behalf of an application. The IFS manager is the only
module that calls an FSD; applications never call an FSD directly.
VFAT itself is a 32-bit module written as reentrant code, allowing
multiple concurrent threads to execute filesystem code.

The CDFS, in the filesystem layer, is the protected mode implementa­
tion of an ISO 9660-compliant CD ROM filesystem. It's another
example of an FSD. Again, it's 32-bit protected mode, reentrant
code. In most cases, CDFS will replace the real mode MSCDEX
TSR that's currently used to support CD ROM devices, so there'll
also be a protected mode execution path all the way to the CD
ROM hardware.

The 1/0 subsystem, or IOS, is the highest layer of the block device
subsystem. The IOS component is permanently resident in
memory and provides a variety of services to the other filesystem
components, including request routing and time-out notification
services.

The volume tracking driver, or VTD, in the layer below the IOS layer,
is the component responsible for managing removable devices.
Typically, such a device is a floppy disk, but any device that
conforms to what Windows 95 calls "the removability rules" can
use the VTD services. The most important job of the VTD is to
make sure that the correct disk or device is in the drive. If you
exchange a floppy disk while an application still has a file open,
it's the VTD that initiates a complaint.

A type specific driver, or TSD, in the layer below the VTD layer,
manages all devices of a particular type-for example, hard disks
or tape devices. A TSD validates requests for the device type that
it controls and carries out the logical to physical conversion of
input parameters. Note that a TSD relates more to devices of a
specific logical type-for example, compressed volumes-than
to devices of a specific hardware type.

A vendor supplied driver, or VSD, is the layer in which another
vendor can supply software that intercepts every 1/0 request for
a particular block device. At this level, for example, you could
modify the behavior of an existing block device driver without

Ebay Exhibit 1013, Page 329 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

SEVEN: The Filesystem

having to supply a completely new driver. A data encryption
module is one example of a potential VSD.

A port driver, or PD, is a component that controls a specific adapter.
On an ISA bus personal computer, for example, there would
probably be an IDE port driver. A port driver manages the lowest
levels of device interaction, including adapter initialization and
device interrupts.

The SCSlizer translates 1/0 requests into SCSI format command
blocks. Usually these will be one SCSiizer module for each SCSI
device type-CD ROM, for example.

The SCSI manager is a component that allows the use of Windows
NT miniport drivers in Windows 95. Literally, you can use the
sanie binaries for both Windows NT and Windows 95. The SCSI
Manager provides a translation between the Windows NT
mini port driver and the upper layers of the filesystem.

A miniport driver is specific to a SCSI device. In conjunction with the
SCSI manager, it carries out the same function as a port driver,
but for a SCSI adapter. Miniport drivers for Windows 95 share
the design and implementation rules for Windows NT miniport
drivers.

The protected mode mapper is a module that enables the use of
existing MS-DOS drivers under Windows 95. For compatibility,
it's essential to allow existing drivers to run under Windows 95.
The protected mode mapper disguises real mode drivers for the
benefit of the new filesystem modules-so that they don't have
to take account of the different interface.

A real mode driver is an existing MS-DOS-style device driver that
must run in virtual 8086 mode.

Long Filename Support
The widespread ramifications of the new long filename support in Win­
dows 95 guarantee that every user and programmer will have to pay at­
tention to the feature. Microsoft has ~ncouraged (actually exhorted)
Windows application developers to incorporate support for this feature
as soon as possible. Microsoft's providing long filename support for

281

Ebay Exhibit 1013, Page 330 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

MS-DOS applications underscores this level of encouragement-if you
have a product that is available in both Windows and MS-DOS versions,
there's no barrier to upgrading both versions.

For users, long filenames are a real benefit. The need to learn
rules for filenaming essentially disappears, together with the frustrat­
ing inadequacy of the current MS-DOS 8.3 convention. Unfortunately,
it's impossible to simply throw a switch and have every application and
every existing disk in the world suddenly support long names. For some
period of time, applications that support only the old filename conven­
tions will live alongside those that offer access to the new naming
scheme. In Figure 7-2, you can see again Chapter Five's example of the
support that Windows 95 has to provide to applications in order to al­
low the parallel existence of short and long filenaming. In the first
screen, a file created with a long name is visible in both the Windows 95
shell and the Windows 95 version of COMMAND.COM. The second
screen shows the Open dialog for a Windows 3.1 application running
under Windows 95. The Windows 3.1 application doesn't handle long
filenames, so the system has to generate an equivalent short name that
allows the unmodified application to access the file.

This creation of short name equivalents is a fundamental feature
of the new filesystem architecture. It would be nice to assume that it's
going to be a short-lived feature, but it's probably around to stay. A
short filename is not simply a truncated or mutated version of the long
name-several rules govern both the format of the name and its behav­
ior in response to different filesystem operations. We'll look at those
details later in this chapter. First we'll look at the disk structure for stor­
ing the new long filename format. 3

Storing Long Filenames

282

The compatibility requirements Windows 95 has to meet meant that it
was impossible to simply change the existing FAT filesystem disk for­
mat. Although most applications deal with the disk by means of the de­
fined operating system interfaces, there are many popular utility
programs that directly inspect and modify the disk format. Virus scan­
ning programs, disk repair utilities, optimizers, and many other pro­
grams depend on the on-disk structure of the FAT filesystem.

3. Late in the project Microsoft began to refer to the long filename as the "primary
file name" and to the short name as the "alias" or "alternate name." For clarity's sake,
I'll continue to use "long" and "short" in this chapter.

Ebay Exhibit 1013, Page 331 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Windows 95 COMMAND.COM
view of the 8.3 short filename

Shortened version of the long filename in a
Windows 3.1 application running under Windows 95

Figure 7-2.
A long filename and the short version.

S E V E N: The Filesystem

Windows95
COMMAND.COM
view of the
long filename

Windows95
shell view of
the long filename

283

Ebay Exhibit 1013, Page 332 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

284

Modifications to that structure would have caused all of these programs
to fail. In some cases, the failure could well have resulted in loss of the
user's data-a risk that was obviously unacceptable. The technique for
implementing long filename support relies on a little design trickery
and a great deal of careful implementation and compatibility testing.4

Figure 7-3 shows the format of a FAT filesystem directory entry for
a short name (that is, for a filename conforming to the existing 8.3
naming conventions). The new VFAT filesystem supports both long
and short names and, apart from its not using the "last date accessed"
field, the 32-byte short name directory entry is identical in format to
the format supported by previous versions of MS-DOS, Short names in
both the FAT and VFAT filesystems have the following rules associated
with them:

II The name can consist of as many as eight characters with an
optional three character extension.

II Valid characters in the name are letters, digits, the space
character, any character with a character value greater than
7FH, and any of the following:

$
%
'and'

@

(and)

{and}

&

dollar sign

percent symbol

open and end single quotation marks

foot mark (apostrophe)

hyphen

underscore

at sign

tilde

grave accent

exclamation mark

left and right parentheses

left arid right braces

pound sign

ampersand

4. The implementation trick prompted Microsoft to pursue a patent application
for the underlying technique. Pursuit of the patent was abandoned, however.

Ebay Exhibit 1013, Page 333 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

S EVE N: The Filesystem

• The full path for a file with a short name can be as many as 67
charncters, not including a trailing null character.

• The FAT and VFAT filesystems always convert shortened
names that include lowercase letters to uppercase only. This
avoids potential problems with matching filenames. For
example, the filename Afile.txt is converted to AFILE.TXT
and will match the strings afile.txt, afile.TXT, AFILE.txt, and
any other possible combination of uppercase and lowercase
letters.

Figure 7·3.
Short name directory entry format for the FAT filesystem.

The implementation technique for long filenames relies on the
·use of the short name directory entry attribute byte. Setting the least
significant 4 bits of this byte (that is, the value OFH) gives the directory
entry the attributes read only, hidden, system file, and volume. Adding the
volume attribute produces an "impossible" combination. Amazingly,
Microsoft's testing showed that this combination didn't disturb any ex­
isting disk utilities. Unlike other ~nvalid combinations, which cause
disk utilities to try to "fix" the problem and thus destroy the data, the
OFH attribute value protects the directory entry from modification.

Despite the encouraging test results, Microsoft knew there was a
possibility that some untested disk utility could destroy data. To avoid
such a potential catastrophe, the team came up with an "exclusive vol­
ume lock" API that an application must call before Windows 95 will al­
low direct disk writes (MS-DOS INT 13H and INT 26H).

285

Ebay Exhibit 1013, Page 334 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

286

The "exclusive volume lock" API is accessible either as a new MS­
DOS interrupt (INT 21, function 440D, major code 08) or by means of
the Win32 DeviceloControl() API. If an application has not been granted
exclusive volume access before it tries a direct disk write, the attempted
write operation will fail.

To avoid forcing users to get updates to their existing disk utilities,
Microsoft planned to include a command-level interface to allow a user
to run an older disk utility within a ·~apper" function that obtained
and released the volume lock on behalf of the application.

Windows 95 uses multiple consecutive short name entries for a
single long name-protecting each of the 32-byte entries by using the
OFH attribute. The rules for long filenames are different from those for
short names:

a Every long name must have a short name associated with it.
The file is accessible by means of either name.

a A long filename can contain as many as 255 characters, not
including a trailing null character.

a Valid filename characters include all the characters usable in
short names plus any of the following:

+

=
[and]

plus sign

comma

semicolon

equals sign

left and right square brackets

a Leading and trailing space characters within a name are
ignored.

a The fulf path for a file with a long name can be as many as
260 characters, not including a trailing null character.

a The system preserves lowercase characters used in long
filenames.

Within a single directory cluster, a long filename directory entry is
laid out according to the format shown in Figure 7-4. A long filename
component cannot exist without the associated short name entry. If it
does, that's an indication that the disk is corrupt.

Ebay Exhibit 1013, Page 335 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

SEVEN: The Filesystem

Figure 7-4.
Directory cluster format for a long filename.

Each 32-byte component of the long name entry contains a se­
quence number, the protective attribute byte, a type value, and a checksum.
The sequence number helps Windows 95 recognize any inconsistent
modifications to the directory structure. The type field identifies the
component as either LONG_NAME_COMP (a component of the long
name) or LONG_CLASS (a 32-byte entry that contains class informa..:
tion for the file). If the component is part of the name, most of the 32-
byte entry is used to store filename characters. If it's the single class
component for that file, the entry holds the class information. Notice
that the system stores long filenames using the Unicode character set­
meaning that each filena,me character requires 16 bits.5 The checksum
field in each component entry is formed from the short name associ­
ated with the file. If the short name is ever changed outside the Win­
dows 95 environment (for example, the file is renamed on a floppy disk
using MS-DOS version 5.0), Windows 95 can recognize the long name
components as no longer valid. Figures 7-5 and 7-6 on the next page
show the name and class component formats for these entries.

5. Unlike Windows NT, Windows 95 did not switch entirely to using the Unicode
character set for its internal representation. This is one instance in which the change
was made.

287

Ebay Exhibit 1013, Page 336 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

Figure 7-5.
Long filename directory entry format.

Figure 7-6.
Long filename class information directory entry format.

Generating Short Filenames

288

A whole series of rules defines how to generate a short filename .to asso­
ciate with a long filename-and we're not going to examine every last
nuance of the algorithms. The principal problem is to generate a
unique short filename that doesn't conflict with an existing short
name. Similarly, if an older application creates a new file with a short
name, that name can't clash with an existing short name associated
with a long filename. Fortunately, these issues aren't really visible to

Ebay Exhibit 1013, Page 337 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

SEVEN: The Filesystem

application programs-employees of companies that produce disk
utilities are the only people who will have to delve into the intricacies of
the naming system.6 Here's a summary of most of the important rules
used in filename creation:

• Creating a file by using a short name API (that is, by means of
the older INT 21H interface) results in a long name that's
identical to its associated short name. If a matching long
name already exists, the create operation fails-the same
behavior you'd see if you tried to create a file with a
nonunique short name.

Ill Creating a file by using a long name API always results in the
creation of the associated short name at the same time.

Ill If the long name is to be a valid short name, it must be
unique. For example, if a short name AFILE.TXT already
exists, an attempt to create the long name AFile.Txt will
fail-this test is always case insensitive.

ill If the long name is not a valid short name, the system carries
out a series of name truncation and translation operations in
an attempt to arrive at a valid short name. Note to Kathleen
(Review Comments) .Document, for example, would succes­
sively translate to7

NotetoKathleen_ReviewComments_. Document
NOTETOKA.DOC
NOTET0-1. DOC

II The system would then modify the -1 suffix to -2, -3, and
so on until it came up with a unique short name. If a -9
suffix didn't work, NOTET0-9.DOC would become
NOTET-10.DOC, NOTET-11.DOC, and so on.

MS-DOS Support for Long Filenames
To help promote the use of long filenames across all application types,
Windows 95 extends the MS-DOS INT 21H interface to allow the use
of long names. This extension involves adding new functions that are

6. This assumption begs the question of whether application developers will invent
schemes to assist users in the translation between long and short names.

7. This is not a description of how the algorithm actually proceeds; it simply serves
to illustrate the steps involved.

289

Ebay Exhibit 1013, Page 338 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

290

directly equivalent to Win32 API functions and modifying existing MS­
DOS functions that deal with filenames. The calls to the new and modi­
fied INT 21H functions continue to use the standard MS-DOS calling
conventions with parameters passed and returned in registers. And the
functions are still 16-bit code; the fact that the functions are equivalent
to Win32 APis doesn't change the memory mode. Here's a summary of
the new functions-all numbers are hexadecimal values:

MS-DOS Function

INT 21 function 4302

INT 21 function 57

INT 21 function 6C

INT 21 function 7139

INT 21 function 713A

INT 21 function 713B

INT 21 function 7141

INT 21 function 7143

INT 21 function 7147

INT 21 function 714E

INT 21 function 714F

INT 21 function 7156

INT 21 function 716C

INT 21 function 72

Equivalent Win32 Function

GetVolumelnformation()

GetFileTime(), SetFileTime()

CreateFile(), OpenFile()

CreateDirectory()

RemoveDirectory()

SetCurrentDirectory()

DeleteFile()

GetFileAttributes(), SetFileAttributes()

GetCurrentDirectory()

FindFirstFile()

FindNextFile()

MoveFile()

CreateFile(), OpenFile()

Find Close()

Notice that in most cases the functions use new function codes­
the other parameters are identical. The new function codes are neces­
sary because the system needs to know whether the application is
dealing with short names only or with the extended namespace. For
example, an application using INT 21H function 41H to delete a file
could pass the filename ABIGBADNAME.TXT as the filename parame­
ter. The filename is illegal under the "old" semantics, although it is a
perfectly valid long name. If the INT 21H function 41H call were sim­
ply overloaded to allow the use of long names, this semantic error
would go undetected. Thus, the new INT 21H function 7141H is the
only way to delete a file with a long name, and the same rules apply to
the other new name-related functions.

Ebay Exhibit 1013, Page 339 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

S E V E N: The Filesystem

Long Filenames on Other Systems
A file's short name is used by applications that haven't been modified
to handle long names, but reading long filenames isn'tjust an applica­
tion issue. Long names also disappear on other, otherwise compatible,
systems such as Windows NT (versions 3.0 and 3.1), OS/2, and earlier
versions of MS-DOS (versions 6.22 and earlier). In most cases, the op­
erating system can't handle the new form of directory entry. In the case
of OS/2, the implementation of long filenames is different and incom­
patible.8

The restriction also applies to Windows 95 when the user is in
single MS-DOS application mode: the long names are invisible. Access
to any file can always be accomplished by using the short name, how­
ever-regardless of the host operating system.

Installable Filesystem Manager
The IFS manager in Windows 95 provides features similar to those in
other implementations of this type of filesystem design. The develop­
ment team actually looked very hard at the Windows NT IFS implemen­
tation to see whether the code could be adapted for use in Windows 95,
but the internal differences between the two operating systems meant
that a new implementation was required for Windows 95. Where it
made sense to, though, the Windows 95 team used the design of the
Windows NT IFS, and they retained the same names for entry points
and the like.

The basic role of the IFS manager is to accept all filesystem API
calls, convert each to the appropriate IFS interface call, and then pass
the request to the target filesystem driver. The target FSD is responsible
for interpreting the function call according to its private semantics; the
IFS manager simply gets the information to the FSD. The IFS manager
is the common target for both Win32 API calls and MS-DOS INT 21H
filesystem functions. Once the IFS manager is in control, the execution
path for the filesystem call remains a 32-bit protected mode path all the
way to the hardware and back, with two possible exceptions.

8. Windows NT does support long filenames within the NTFS filesystem, but
versions 3.5 and earlier don't support long filenames within a FAT filesystem. The
Windows NT and Windows 95 long name schemes are not compatible.

291

Ebay Exhibit 1013, Page 340 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

292

II The filesystem code has to use a real mode device driver to
interface with the hardware.

II The filesystem code has to call a real mode TSR that has
hooked the MS-DOS INT 21H interrupt.

In either case, the filesystem code calls the real mode component
(using virtual 8086 mode) within the context of the VM initiating the
filesystem request.

The IFS manager loads during system initialization. It is always in
memory, and it must be present before any individual FSD can load.
The IFS manager allows several FSDs to execute concurrently.9 Each
FSD registers itself with the IFS manager during its own initialization,
passing the IFS manager a table of entry points that will be used in
subsequent filesystem calls. Once active, the IFS manager chooses
which FSD to call to resolve a particular filesystem request in one of
three ways:

II If the API provides a path as a parameter, the IFS manager
uses either the embedded drive letter or the whole name to
determine the target FSD. For example, a file open call
specifying C:V\UTOEXEC.BAT will be passed to the local
VFATFSD.

II If the API passes a file handle obtained, for example, as the
result of a previous file open call, the IFS manager uses the
handle as an index into a system file handle structure. The entry
in this structure identifies the target FSD and the FSD-specific
handle for the IFS manager to use when it routes the request
to the FSD.

ii In the event that the IFS manager can't identify the target
FSD, it will call each FSD in turn until one of them agrees to
accept the request. When the user inserts a new floppy disk,
for example, the IFS manager calls each FSD, asking it to
mount the new volume. To mount the volume, the FSD must
recognize the media format; if it doesn't, the IFS manager
passes the mount request to the next FSD.

9. The initial design allowed as many as 10 local filesystem drivers and 10 remote
filesystem drivers to execute at the same time.

i,j
" ,,
,1

1!

Ebay Exhibit 1013, Page 341 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

S EVE N: The Filesystem

Calling a Filesystem Driver
The interface between the IFS manager and an FSD relies on the use of
a single data structure called an IOREQ. This structure is a large data
object (approximately 100 bytes) containing many individual fields­
only some of which are used in each call between the IFS manager and
an FSD. Each call to the filesystem code from an application causes the
IFS manager to fill in an IOREQstructure and pass it to the target FSD.
For performance reasons, the IFS manager passes a pointer to an
IOREQ structure rather than the entire data object. The FSD directly
modifies fields in the IOREQ structure to return results to the IFS man­
ager. Before returning to the application, the IFS manager examines
the IOREQ structure and extracts both the information that it retains
internally and the relevant return parameters for the application. Fig­
ure 7-7 shows the format of the IOREQstructure.

Figure 7-7.
The IOREQ data structure.

293

Ebay Exhibit 1013, Page 342 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

To ease the implementation burden for developers, Microsoft
used C language calling conventions to define the interface between
the IFS manager and an FSD. So, if you want to get into the business of
developing new filesystems for Windows 95, at least you don't have to
write them in assembly language. The IFS manager also provides a set
of services, callable by FSDs, that fulfill common requirements such as
heap memory management, debugging, event signaling, and filename
string manipulation.

If the IFS manager is to recognize and use an FSD, the FSD must
first register itself using an IFS manager service. The two principal ser­
vices are IFSMg;r_RegisterMount() and IFSMg;r_RegisterNet(), which an­
nounce, respectively, the presence of an FSD capable of managing local
filesystems or one devoted to the management of a network resource.
No meaningful interaction can occur between the IFS manager and an
FSD until the FSD has declared its presence using one of the IFS regis­
tration services. In each call, the FSD passes a single entry point ad­
dress to the IFS manager. The entry point address identifies the
function called by the IFS manager the first time the manager calls out
to the FSD.

Filesystem Drivers

294

Each Windows 95 FSD is a single VxD responsible for implementing
the particular semantics of its native file system. Knowledge of a particu­
lar filesystem layout exists entirely within the code of an FSD. The IFS
manager deals only in handles, and the lower layers of the filesystem
deal mostly in byte offsets and counts. Only the FSD knows how to get
from an application-supplied name to particular data on a filesystem
volume. FSDs can control either local or remote filesystems. Depend­
ing on how the FSD registers itself with the IFS manager (local or re­
mote), the FSD must provide a number of individual entry points for
use by the IFS manager. Not every FSD must support every function
defined as part of the IFS interface-the mandatory entry points de­
pend largely on whether the filesystem type is local or remote. In addi­
tion to the two major filesystem types, Windows 95 recognizes a mailslot
filesystem type that can be used to provide inter-application messaging
services.

The single entry point provided by the FSD when it registers with
the IFS manager identifies either the FS_MountVolume() function (for
local filesystems) or the FS_ConnectNetResource() function (for remote

Ebay Exhibit 1013, Page 343 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

S EVEN: The Filesystem

filesystems). These functions are among the set of standard entry
points defined for the IFS manager interface. When the IFS manager
calls the single entry point, the FSD will return a pointer to a table of
additional entry points. Subsequent calls from the IFS manager to an
FSD go directly to the specific function using one of these new entry
points. A called function may return yet more entry point addresses.
It's all like peeling away the layers of an onion. The FSD returns these
function pointers to the IFS manager on what you can think of as an as
needed basis, and gradually the IFS manager learns how to call every
entry point in a particular FSD. (Until a file is open, for example, the
FSD won't provide the IFS manager with a way to call either the file
positioning function or the file locking function.)

The IFS manager calls the initial FS_MountVolume() entry point
for local filesystems as the result of either the first access to a device or
a change to the media. The call asks the FSD to try to mount the vol­
ume (the VOL_MOUNT operation). It's up to the FSD to determine
whether it recognizes the device media format. If it does, it returns a
volume handle and a pointer to the initial table offunctions to the IFS
manager. The handle is used to identify the volume in subsequent calls
to the FSD. For disks, the volume handle will identify either a hard disk
partition or a specific floppy disk. The IFS manager initiates the re­
moval of all access to a volume by calling the F8-MountVolume() entry
point, specifying an unmount (the VOL_UNMOUNT operation).

For network filesystems, the IFS manager calls the function
FS_ConnectNetR.esource() with a network path for the target resource. As
with local filesystem access, the FSD must determine whether it should

· be responsible for managing the particular resource. If it is, it returns a
handle and a function table to the IFS manager. If it isn't, the FSD re­
turns an error and the IFS manager must carry on, looking for the cor­
rect FSD to match to the network resource.

FSD Entry Points
The next page contains a summary of all the defined entry points for a
filesystem driver. 10

10. There's also a set of entry points used specifically to implement named
pipes - Microsoft's preferred network-based, high-level inter-application com­
munication mechanism. Local FSDs don't have to implement these services.

295

Ebay Exhibit 1013, Page 344 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

FSD Entry Point Name

F8-CloseFile()

F8-CommitFile()

F8-ConnectNetResource()

FSJ)eleteFile()

FSJ)ir()

FS_DisconnectNetResource()

FSJi'ileAttributes()

FS'....FileDateTime()

FSJi'ileSeek()

FS'....FindClose()

FSJi'indFirstFile()

FS'....FindNextFile()

FSJi'lush Volume()

F8-GetDisklnfo()

F8-GetDiskParms()

FS_loctll 6Drive()

FS_LockFile()

F8-MountVolume()

ps_ DpenFile()

. F8-ReadFile()
FS_RenameFile()

FS_SearchFile()

F8-WriteFile()

Purpose

Close an open file

Flush any cached data for a particular file

Call initial remote filesystem entry point

Erase a named file

Call directory operations (such as create
and remove)

Remove a network connection

Set and retrieve file and filesystem
information

Perform date and time management on
a file

Perform file positioning operations

Close an FS'....FindFirstFile()-initiated
sequence

Initiate a filename search sequence

Continue an FSJi'indFirstFile() sequence

Flush all cached data for the volume

Get information about disk format and
free space

Call the older MS-DOS DPB function
(INT 21H function 32H)

Call the older MS-DOS I/0 control
operations (INT 21H function 44H)

Call record-locking functions

Call initial entry point for local filesystems

Call file open and create functions

Call input operations

Call file rename operation

Implement MS-DOS find first and find
next operations (INT 21H functions llH,
12H, 4EH, and 4FH)

Call file output operations

1/0 Subsystem

296

IOS is the Windows 95 system component responsible for loading, ini­
tializing, and managing all of the lower-level filesystem modules. (Typi­
cally, these modules are port drivers directly concerned with the

Ebay Exhibit 1013, Page 345 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

S EVE N: The Filesystem

underlying hardware.) JOS also provides services to FSDs to allow them
to initiate device-specific requests. JOS must be permanently resident
in memory. It's loaded from the IOS.386 file early in the system initial­
ization process.

The IOS and device driver layers rely on the use ofa large number
of interlinked control blocks11 coupled with the standard VxD service
interface and an implementation technique referred to as a cal/down
chain. An FSD will prepare a request for a device by initializing a con­
trol block and passing it to the IOS_SendCommand() service. The con­
trol block used in such a request is called an J/O packet, or !OP. IOS uses
the IOP to control the passage of the device request down and back up
the driver hierarchy. Most other control blocks used by IOS are hidden
from the higher layers, and an FSD doesn't have to worry about the al­
location or management of device-specific control blocks. We'll look at
the role of several other control blocks within the filesystem architec­
ture as we examine the components of the IOS and its lower-level
driver modules.

IOS itself operates in one of two roles-as the managing entity
when specific device requests are in progress, or as the provider of a
number of centralized services that any device driver can call. Here are
the three basic VxD services offered by IOS:

IOS_Register() The service used by device drivers to register
their presence in the system. Without the
driver's prior registration, IOS can't interact
with the driver.

IOS_SendCommand() The service used to initiate specific device
actions such as data transfers and disk
ejection.

IOS_Requestor_Service() The service that provides a small number of
individual functions such as the functions
that obtain information about a disk drive's
characteristics.

In addition, a wide range of services (called !OS service requests) are
used by drivers to control their interaction with JOS. Calling these
services first requires the device driver to register itself with JOS.

11. Over 10 different data structures are defined for the I/0 subsystem. Many of
these data structures appear in multiple interlinked lists.

297

Ebay Exhibit 1013, Page 346 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

During registration, IOS provides the driver with the addresses of the
entry points to call when making subsequent service requests.

Device Driver Initialization

298

IOS takes on the job of loading all the device drivers and requesting
their initialization. IOS loads a driver in response to a request from the
configuration manager (part of the Plug and Play subsystem) or be­
cause of the presence of the driver in the SYSTEM\IOSUBSYS direc­
tory. Configuration manager-initiated loading occurs when the Plug
and Play subsystem detects the presence of a particular device. IOS
force loads the remaining drivers in the IOSUBSYS directory. At the
completion of the entire boot process, IOS will send every driver a
"boot complete" message. If a loaded driver failed to recognize any
hardware it can support, it can unload itself from memory at this point.
There are provisions for the system to load older (non-IOS-compliant)
drivers by simply including them in the SYSTEM.IN! file, as Windows
3.1 does today. Drivers that conform to the new design are all dynami­
cally loadable VxDs and must cooperate with IOS in building the layers
of the device control subsystem.

Once IOS has loaded all the necessary device driver modules, the
initialization process begins. The initialization of a specific driver mod­
ule occurs when IOS sends to the driver module's control procedure
the VxD message SYS_DYNAMIC_DEVICE_INIT. The driver must reg­
ister itself with IOS by calling the IOS_Register() service with the address
of a driver registration packet, or DRP. The DRP is a data block containing
information such as the driver name and the driver's particular charac­
teristics. One of the implementation rules for device drivers is that the
address of the driver's DRP structure must appear in the VxD header
for the driver module. The appearance of the address in the VxD
header allows IOS to examine the DRP structure before it sends the
initialization message. Three fields in a DRP are vital to the initializa­
tion process:

DRP_ilb

DRP_LGM

Contains the address of an !OS linkage block,
or ILB. IOS fills the ILB structure with the
addresses of several IOS entry points used in
subsequent calls to IOS.

Contains the load group mask, or LCM, used
during the device initialization process.

Ebay Exhibit 1013, Page 347 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

DRP_aer

S EVE N: The Filesystem

Contains the address of the driver's asynchro­
nous event routine, or AER This asynchronous
event function is called by IOS to notify the
driver of any asynchronous event-for
example, the completion of a time-out.

The load group mask is a 32-bit quantity defining the levels at
which a driver module wants to operate. IOS sends the initialization
message to the driver once for each level at which the driver module
wants to register-proceeding from level 31 (the lowest) up to level 0.
Since IOS can examine every driver's DRP_LGM field before any initial­
ization, it's able to figure out the order in which to carry out the initial­
ization process. IOS completes the initialization for every driver at one
level before it moves upward to the next layer. So the initialization of all
layer 31 drivers occurs first, followed by all layer 30 drivers, and so on.
Several standard levels are defined, so almost every driver will simply
use one of these level numbers as the value of its load group mask field.

IOS uses the driver's asynchronous event entry point during ini­
tialization to allow the driver to carry out private setup operations, so
the driver receives control back from IOS at well-defined points during
the initialization process. Among other activities, the driver creates de­
vice data blocks (DDBs) that hold control information about the device
and may add itself to the device calldown chain. The driver can also
specify its requirements for private workspace within an IOP during ini­
tialization. Once the initialization is complete, IOS calculates the final
size of an IOP for a particular device: the size of a fixed header plus the
size of an 1/0 request (!OR) structure, plus the sum of the sizes of all pri­
vate workspace areas. Whenever an FSD subsequently requests the allo­
cation of an IOP, the IOP size is known from this initial calculation.
Also, as an individual 1/0 request proceeds, driver modules at different
levels will have access to the necessary private workspaces at known off­
sets within their IOPs.

Controlling an 1/0 Request
As we saw earlier, the local block device subsystem deals in terms of vol­
umes-a hard disk partition or a floppy disk, for example. For each ac­
tive volume, IOS maintains a data structure called a volume request
packet, or VRP. Calling IOS's IOS_Requestor_Service() and specifying the
IRS_ GET_ VRP() function will return the address of the VRP for a par­
ticular volume. Within the VRP are the address of the entry point

299

Ebay Exhibit 1013, Page 348 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

300

within IOS that an FSD must use when it initiates I/0 requests, and the
size of the IOP necessary for requests to this volume.

An FSD initiates an I/O request by allocating an IOP of the cor­
rect type and size (this allocation is another IOS service), filling in the
IOR structure (contained within the IOP), and passing the IOP to IOS.

IOS itself uses a structure called a device control block, or DCB, to
manage much of its interaction with a particular device. A DCB is a
large (256-byte) data structure that contains information about the de­
vice, such as the total number of sectors and the number of sectors per
track for a disk drive. Whereas an application I/0 request initially re­
sults in the creation of an IOP that provides a logical description of the
request, the DCB holds information about many of the physical aspects
of the device that must satisfy the application I/O request. Applications
and, indeed, FSDs never deal with the internals of a DCB; it's a data
structure used only by IOS and the lower-level device control software.

One of the fields in a DCB is the address of the call down chain for
the device. IOS's successive passing of pointers to the appropriate DCB
and IOP to each entry in the device calldown chain defines the path of
execution within IOS and its lower-level driver modules.

Calldown Chains
The multiple layers of the filesystem architecture offer a great deal of
flexibility to device driver writers. Essentially, you can get control at any
point in the path between an application's issuing a file-related API and
the lowest-level device driver's poking the controller registers. This
flexibility is a far cry from the single INT 21H hooking technique prac­
ticed by existing MS-DOS filesystem and device control software.

The calldown chain technique is what Windows 95 uses to imple­
ment the multilayer mechanism. During initialization, a device driver
module can add itself to the calldown chain for a particular device,
specifying the level for the subsequent call. (This is similar to the tech­
nique for specifying the initialization level for the device driver mod­
ule.) IOS inserts the address of the target function into the calldown
chain for the device-using the specified level to order the chain cor­
rectly. As an I/O request proceeds fr?m IOS down to the hardware, IOS
arranges to call each function in the calldown chain for the device.

A driver routine inserted in a calldown chain may elect to pass the
request on-either unmodified or not-to the next lower layer, or if

Ebay Exhibit 1013, Page 349 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

S EVE N: The Filesystem

able, the routine may simply complete the request and never pass it on
down the chain. A driver can also arrange a callback on completion of
a device request by the next lower layer. This amounts to a feature
equivalent to the calldown chain, but the call occurs after the device
operation rather than before.

Asynchronous Driver Events
Asynchronous events notification allows IOS to interact with device
driver modules outside the flow of normal I/O requests up and down
the driver hierarchy. In some cases, the driver itself asks IOS to signal
an asynchronous event at some later time. In other cases, IOS initiates
the request.

IOS signals an asynchronous event by calling the driver's asyn­
chronous event entry point, passing it an asynchronous event packet, or
AEP. An AEP has a standard header that specifies the asynchronous
function and the associated device data block (DDB). The AEP also has
a field the driver uses as a completion code. Beyond the header, the
structure of the data block differs according to the type of event and
contains additional event-specific parameters. Here's a summary of the
function of each asynchronous event that IOS can signal:

AEP_INJTIALIZE Initialize the driver. Sent when a driver is
first loaded.

AEP_BOOT_COMPLETE System boot is complete. The driver can
switch to its runtime configuration.

AEP_CONFJG_DCB Configure the physical device and
associated DCB.

AEP_JOP_TIMEOVT Time-out counter within an IOP has
reached 0.

AEP_CONFIG_LOGICAL Configure the logical device.

AEP_DEVICE_INQUIRY Retrieve device identification information.

AEP_RESET_COUNTERS Reset performance counters.

AEP_REGISTER_DONE Registration processing is complete.

AEP_HAU_SEC Half a second has elapsed.

AEP_l_SEC One second has elapsed.

AEP_2_SECS Two seconds have elapsed.

AEP_ 4_SECS Four seconds have elapsed.

AEP_DBG_DOT_ CMD Pass debug parameters to the driver.

301

Ebay Exhibit 1013, Page 350 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

Interfacing to the Hardware

302

Port drivers are the most common manifestations of the hardware con­
trol level in the filesystem software hierarchy. Port drivers that control
ISA or EISA configuration adapters interface directly to the hardware.
In the absence of another intermediate layer, such as a volume tracking
driver layer or a protected mode BIOS layer, the type specific driver
(TSD) provides the only other software layer between IOS and the
hardware. The port driver is, therefore, what you would typically think
of as the "device driver" for the filesystem.

The port driver is hardware specific, and although layers such as
the TSD's reduce the driver's workload, the port driver still has the job
of translating I/O requests into hardware commands. As with the devel­
opment of most drivers for devices with similar characteristics, develop­
ing a new port driver will typically involve the modification of an
existing example rather than the creation of entirely new code. A port
driver is a dynamically loaded VxD that provides no VxD services. Fig­
ure 7-8 illustrates the declaration of a port driver together with the
driver registration packet (DRP_Port) used by IOS during the driver's
initialization phase. Notice the inclusion of the pointers to the port
driver asynchronous event routine (PORT_Async) and to the ILB struc­
ture (PORT_ilb) that IOS needs to complete the initialization process.

Figure 7-8.
Port driver and DRP declaration.

We've already looked from the IOS perspective at what happens
within the filesystem hierarchy. Turning this around, let's look at a sum­
mary of an individual port driver's responsibilities during different exe­
cution phases.

Initialization
IOS first sends a SYS_DYNAMIC_DEVICE_INIT message to call the
port driver. The port driver uses the IOS_Register() service to register

Ebay Exhibit 1013, Page 351 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

S EVE N: The Filesystem

itself. During registration, the port driver has to respond to callbacks to
its asynchronous event routine:

AEP _INITIALIZE requires allocation of a DDB, retrieval of configura­
tion information, initialization of the hardware, and definition
of the device's interrupt handler.

AEP _OEVICE_INQUIRY messages are sent for each possible drive
attached to the adapter. (The design accommodates drive
numbers 0 through 127.) The port driver must respond with an
indication of the presence or absence of a particular drive. 12

AEP _CONFIG_DCB allows the driver to add its normal I/O request
entry point to the calldown chain.

AEP _BOOT _COMPLETE allows the port driver to confirm or deny
that it has detected hardware it can control. IOS will remove the
driver from memory if no applicable hardware is present in the
system.

Execution
Normal execution for the port driver involves processing and queuing
IOPs passed to the driver via its normal I/O request function. For ac­
tual device I/O operations, ifthe device isn't busy, the port driver starts
the operation. The port driver must also respond to time-out events
(AEP_IOP_TIMEOUT) signaled by IOS.

Interrupt
If the device interrupts as the result of its completing an I/O operation,
the port driver finishes processing the associated IOP. If there are other
IOPs queued for the device, the driver starts the next I/O operation.

Other Layers in the Filesystem Hierarchy
Of the other available levels within the IOS managed hierarchy, a few
are used by components that are standard modules within the Windows
95 filesystem architecture. In general, the modules installed at these
intermediate levels are designed to provide services commonly re­
quired by port drivers. The installation of these modules relieves a

12. The port driver can also respond with an indication of no more devices present to
avoid processing 128 separate inquiries.

303

Ebay Exhibit 1013, Page 352 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

driver developer from having to re-implement private versions of func­
tions needed by every driver. The type specific driver (TSD) for disks,
for example, will perform some error checking and logical to physical
parameter translation, relieving the individual port drivers of this
chore. Supplying standardized components such as these is also a
means for Microsoft to avoid problems with device driver bugs. The
more complex a single device driver, the more likely it is to contain
bugs and the more likely it is that Microsoft's technical support group
will get a phone call. A user will regard the problem as a bug in Win­
dows-rare is the user who would call Exotic Disk Drive, Inc., if
Windows crashed because of a bug in the device driver that came with
the drive.

The most highly developed use of the IOS layering capabilities is
for the support of SCSI devices. Microsoft Windows NT placed a lot of
emphasis on the support of SCSI peripherals-partly because the mar­
ket for these devices was growing rapidly during the development of
Windows NT and partly because SCSI peripherals were a good match
for the Windows NT performance and automatic configuration goals.
The SCSI design also standardizes many device interface issues, mak­
ing SCSI devices a perfect match for the layered device architecture.

Windows 95 standardizes other existing features of block device
drivers by including modules that manage the issues associated with
exchangeable media and by providing a generalized interface to data
caching. New in Windows 95 are the support for Plug and Play capabili­
ties and the continued support of real mode device drivers within a
fully protected mode operating system.13

Volume Tracking Drivers

304

The volume tracking driver, or VTD, is at the top of the calldown chain
for a device. Its role is to ensure that the medium in a particular drive
(usually a floppy disk or a tape) is the medium that the I/O request actu­
ally refers to. Obviously, in the case of a read operation, a medium that
doesn't match what the application previously referred to will probably
be only confusing to the user; in the worst case, though, the mismatch
could cause an application to fail. In the case of an output operation, the
effect of writing on the wrong medium could be disastrous.

13. Windows NT ducked this particular challenge by not providing MS-DOS device
driver support. Given its compatibility requirements, this was not an option for
Windows 95.

Ebay Exhibit 1013, Page 353 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

S E V E N: The Filesystem

The VTD maintains its knowledge of the current medium by
matching a volume handle retained in the current DCB for the device
with the volume handle contained in any IOP passed down by the
filesystem driver. A mismatch means that the medium present in the
device is not the medium previously referred to by the FSD. This may
result in the user's being asked to insert the correct medium.14

Knowledge of the current volume is maintained by the !OS's ask­
ing an FSD to read a volume label each time the medium changes (an
event that the device driver will notice) or, in the case of hardware that
can't report a medium change directly, whenever the medium may
have changed. It is up to the FSD to read volume labels because the
other components of the filesystem have no knowledge of how to do
this. The FSD retains information about a volume label from the time
the medium is first mounted.

Type Specific Drivers
In Windows 95, a type specific driver (TSD) currently exists for a disk
device in order to provide a mapping from logical to physical device
parameters. Using handles and offsets, an FSD will typically translate
application requests to requests for logical block numbers within a logi­
cal drive-for example, read block 93 of drive C: (where a numeric
handle would represent C:). The TSD will translate such requests for
logical block numbers into physical block numbers. This translation
may involve a mapping oflogical blocks into physical blocks (where the
device's sector size doesn't match the filesystem's block size) or the
translation from a logical drive to a specific physical disk partition. The
TSD checks every request it processes, ensuring that the lower-level
drivers don't have to perform any validation.

During initialization, the TSD is responsible for allocating and
building a device control block for each logical device present on a
physical device (for each hard disk partition, for instance). The TSD
adds each logical DCB to a list that is associated with the DCB previ­
ously allocated to describe the physical device. Within the logical DCB
is all the information describing the geometry of the drive device-sec­
tors per track and bytes per sector, for instance.

14. Volume tracking requirements may change according to the environment. If a
file is left open with data still to write out, a different medium is usually an error. For a
multivolume backup operation, though, it's an expected condition. -

305

Ebay Exhibit 1013, Page 354 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

One valuable contribution to flexibility this architecture affords is
the ability it gives the system to adapt to the different geometry on
high-capacity exchangeable media. Several manufacturers now offer
drives with removable media that can store 100 megabytes of data or
more. Most of these drives can read older, compatible but less densely
packed media. The Windows 95 filesystem participation in the dynamic
reconfiguration of the device characteristics for specific partitions
helps to support these devices properly.

SCSI Manager

306

Windows 95 builds on the SCSI device architecture developed for Win­
dows NT by making use of the same low-level device drivers (the so
called miniport drivers). By providing a method for interfacing existing
Windows NT miniport drivers to the Windows 95 filesystem architec­
ture, Windows 95 gains immediate support for a wide range of SCSI
peripherals with almost no new code having to be developed. This
method for interfacing drivers between the two systems is another
manifestation of the Windows compatibility goal. For a device manu­
facturer, the fact that a single miniport driver will support two different
operating systems is a definite benefit.

The SCSI manager, or SCSI port driver, is the upper layer of this
support. The SCSI driver offers a range of functions common to any
SCSI device, including error logging, cache management, and logical
to physical address translation. Essentially, the SCSI manager and the
miniport drivers associated with it split the functions of a normal port
driver, with the hardware-specific aspects isolated in the miniport
driver. Three main data structures are used for communication be- ·
tween the SCSI manager and the miniport drivers:

SCSLREQUEST _BLOCK contains information describing an indi­
vidual SCSI device 1/0 request.

HW_INITIALIZATION_DATA contains the miniport device driver's
entry points called by the SCSI manager for a specific device.

PORT _CONFIGURATION_INFORMATION contains data that describes
the properties of an individual SCSI host adapter, including, for
example, its DMA capabilities. ,

The entry points provided by each miniport driver allow the SCSI man­
ager to call for hardware-specific operations during various phases of

Ebay Exhibit 1013, Page 355 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

SEVEN: The Filesystem

device control: initialization, I/O request initiation, and interrupt
processing.

For the ultimate efficiency in implementation, use of the existing
Windows NT miniport drivers would have been the optimal solution.
Unfortunately, the requirements ofreal mode compatibility made their
presence felt once again. The existing miniport drivers for Windows
NT have to undergo a few minor modifications for full compatibility
with Windows 95. The modifications have largely to do with the real
mode to protected mode transitions and with the fact that, in Windows
95, a real mode SCSI device driver can exist in conjunction with the
protected mode miniport driver. However, once the driver has been
modified to accommodate the need for real mode compatibility in
Windows 95, the new version will still run under Windows NT-the new
real mode support code will simply never be executed in the Windows
NT environment. Note too that as with support for any device under
Windows 95, SCSI drivers should participate in the Plug and Play envi­
ronment and that means other modifications to the miniport driver.

Real Mode Drivers
Continued support for existing MS-DOS real mode device drivers is
obviously critical to the success of Windows 95. Despite the advantages
of protected mode device drivers, the sheer number of drivers available
for MS-DOS means that it will be impossible to replace every real mode
driver when Windows 95 first ships. But replacement of the real mode
drivers for many widespread devices, such a.s IDE hard disk controllers
and NEC-compatible floppy disks, will happen immediately, so most
users will quickly see the performance benefits of the new protected
mode filesystem. ·

The filesystem design in Windows 95 allows a protected mode
port driver to take control of a real mode driver and bypass it while the
system is running in protected mode-Windows 95 can classify the real
mode driver as a "safe" driver, that is. Safe means, essentially, that the
protected mode driver can offer functionality identical to the real
mode driver's. In such a case, the protected mode driver will simply
carry out all the 1/0 operations and never call the real mode driver. In
a number of instances, the protected mode driver's taking over the
function of the real mode driver is considered unsafe. The real mode
driver may do data encryption, for example, or may interface with a
real mode system BIOS to do dynamic bad sector mapping for the hard

307

Ebay Exhibit 1013, Page 356 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

disk. The standard Windows 95 port driver for the disk adapter, though
able to control the hardware, can't replicate this extra functionality, so
it arranges to route I/O requests through the real mode driver-exe­
cuting the driver in virtual 8086 mode in order to do so.

To recognize a safe driver, Windows 95 maintains a list of such de­
vice drivers by means of the registry. If the system running in protected
mode detects the presence of a real mode driver, it consults the safe
driver list to determine whether the real mode driver functions can be
subsumed under the protected mode driver functions. The identifica­
tion for the real mode driver is its name as entered in CONFIG.SYS or
AUTOEXEC.BAT. If the driver name doesn't appear in the safe driver
list, Windows 95 will use the real mode driver.

Conclusion

308

From the discussion in this chapter, you've no doubt realized that the
new filesystem design for Windows 95 is a major revision to Windows.
Although the compatibility constraints imposed on Windows 95 allow a
device manufacturer to continue to support hardware using an older
real mode device driver, the advantages to be gained in terms of perfor­
mance, multitasking, and reduced memory requirements are compel­
ling reasons to provide a full Windows 95 protected mode driver. And,
of course, the addition of long filename support is a huge benefit to
the user.

The new Plug and Play subsystem augments many of the operations of the
filesystem components, and that's what we'll look at in the next chapter. The
installable filesystem capabilities also dramatically improve networking support
in Windows 95, and that will be the subject of Chapter Nine.

References
Microsoft Corporation. Windows 95 Device Driver Kit. Redmond, Wash.:

Microsoft, 1994.

Schulman, Andrew. Undocumented DOS. 2d ed. Reading, Mass.: Addison­
Wesley, 1993.

Ebay Exhibit 1013, Page 357 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

C H A P T E R E I G H T

PLUG AND PLAY

1you've ever had to suffer through the experience of opening up a PC
system unit to plug in a new device adapter card, you'll immediately
understand why Plug and Play is important. The combination of Win­
dows 95 and a PC that supports the Plug and Play specification will re­
duce your system setup and reconfiguration suffering to a minimum.
You'll still have to know how to use a screwdriver, but that's about the
only extra skill you'll need. Although the collaborators who developed
the Plug and Play specification deliberately avoided tying the standard
to a particular operating system or hardware type, Windows 95 has the
distinction of being the first system to provide full support for the Plug
and Play standard.

Typically, the process of adding a new device to a PC has involved
figuring out how to set all the switches and jumpers on the new card,
plugging the card in, installing software, ~ebooting the system, and
praying. The amount of time you could spend trying to resolve prob­
lems during the installation of a new device could be extensive. Every
PC has one or more lnts devices. Usually, several devices are trying to
share the system lnts, and those attempts to share often lead to conflict.
The bus design determines the electrical characteristics of many system
components as well as some aspects of the method that device driver
software must use to control an individual device on the bus. Most PC
buses conform to a specification referred to as industry standard architec­
ture, or ISA for short. The ISA specification is little more than the for­
mal description of the original IBM PC architecture that was written
down long after the PC first went on sale.

Most device adapter cards plug directly into the system bus. The
software that controls a device communicates with the adapter by writing
commands to the system 1/0 ports. The command information travels
along the system bus to the device adapter. Some devices (often called

309

Ebay Exhibit 1013, Page 358 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

memory mapped devices) also use a memory region in the 640K to I-MB
upper memory area. Both the device and the device driver software can
'·access the data in that memory area, allowing for the high-speed trans­
fer of large amounts of information between the device and the
system's memory. Non-memory-mapped devices transfer data by means
of the system bus, raising a hardware interrupt when they need atten­
tion from the device driver.

When you first plug a device adapter into the bus, it is normally
set up to communicate with the system by means of a default set of I/O
addresses, interrupt requests, and possibly a shared memory region or
a direct memory access (DMA) channel. If some other device on the
bus is already using one or more of these control signals or memory
areas, a conflict occurs. The system will usually react to the conflict by
refusing to boot properly, requiring you to open the box again and try
to resolve the conflict by selecting a different configuration. Or some­
times the system will boot but the device will appear not to work when
you try to access it, calling for more reconfiguration effort. Once you
have working hardware, you have to configure the associated software
to match. Over the history of the PC industry, this type of configuration
activity has probably consumed the lion's share of the effort put forth
by technical support groups all over the world.

What's the solution? Automatic management of the system's low­
level hardware resources-IRQs, I/0 ports, DMA channels, and
memory-seems to be the key. Plug and Play is Microsoft's attempt to
provide such an automatic system management capability. Full Plug
and Play support will appear for the first time in Windows 95 and,
Microsoft says, will appear over time in their other operating system
products. In Windows 95, the system setup process relies heavily on the
Plug and Play system management capabilities. And once the system is
up and running, the Plug and Play subsystem is responsible for manag­
ing all hardware configuration changes.

Why Do We Need Another Standard?

310

Naturally, there have been other attempts to solve system configuration
problems, but none of them has achieved the critical mass of support
that's necessary to truly eradicate the configuration conflict problem.
The two best-known solutions each involved the introduction of a new
system bus design: IBM's MicroChannel bus, used only in IBM's PS/2
series, and the EISA (Extended Industry Standard Architecture) bus.

Ebay Exhibit 1013, Page 359 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

E I G H T: Plug and Play

The designers of the MicroChannel bus came up with a new bus design
that allowed any card plugged into the bus to identify itself to the oper­
ating system. After plugging the card into the bus and installing the
device software, you could configure the adapter card using a standard
configuration program. Unfortunately, the Micro Channel design suf­
fered from a number of problems. First, the MicroChannel bus was in­
compatible with the existing ISA bus. You couldn't take your old
network adapter, for example, and simply plug it into a MicroChannel
bus. Since the PS/2 series never came to dominate the market, the
MicroChannel never won wholehearted support from other device
manufacturers. The other problem with the MicroChannel bus was
that every adapter needed a unique identifying number, issued by IBM,
that was hardwired into the adapter. This requirement reduced con­
figuration flexibility somewhat, and the user still had to work his or her
way through the device configuration program in the event of a system
conflict.

The EISA bus designers adopted some of the better ideas in the
MicroChannel design but based their design on the ISA bus. The big
advantage of an EISA bus was that you could use any existing ISA
adapter in an EISA machine, although the smarter configuration facili­
ties were available only for new EISA adapters. Several PC companies
ship EISA systems, and the EISA bus has gathered a reasonable amount
of support from device manufacturers, but EISA is by no means a domi­
nant architecture either.

Other, perhaps less ambitious, attempts to reduce hardware con­
figuration problems include the efforts of suppliers who preconfigure
systems with network cards, pointing devices, and the appropriate soft­
ware already set up. Microsoft's Windows "Ready To Run" campaign
was based on the expectation that PC vendors would ship preconfig­
ured machines with Windows 3.1 already installed. Some device manu­
facturers allow devices to be reconfigured without anyone's having to
open up the machine and reset hardware jumpers and switches. Intel's
EtherExpress network adapter is a good example of this type of rela­
tively easy to configure device. You plug in the adapter, and if the de­
fault adapter configuration doesn't work, a software setup program
allows you to change the hardware configuration with commands from
the keyboard.

All of these solutions share some of the shortcomings itemized on
the next page.

311

Ebay Exhibit 1013, Page 360 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

II There is still no single, generally accepted standard for device
installation and configuration. In particular, there is no stan­
dard for the market's leading hardware architecture: the ISA
bus. A single standard would help by encouraging every manu­
facturer to adopt the same solution to the problem. A standard
that catered to the ISA bus as well could greatly reduce the
problems of hardware setup for the majority of users.

Ill Whereas a PC used to have just one bus, recent technology
improvements have led to PCs that incorporate multiple
buses: SCSI, PCMCIA, and various types of local video buses,
for example. None of the existing configuration methodolo­
gies allows for this mixture of bus types.

Ill There's a growing need for a dynamic configuration method.
Consider the situation in which you might have a modem on
a PCMCIA card plugged into your laptop as COMl and you
connect the laptop to its docking station, which has a more
conventional serial COMl device. Or consider the dynamic
reconfiguration requirements of a wireless-based network that
supports mobile workstations. None of the existing solutions
is flexible enough to handle this kind of situation.

The Plug and Play standard tries to address all of these issues, and Win­
dows 95 intends to be the first major operating system to provide full
support for the Plug and Play standard.1

History of the Plug and Play Project

312

The Plug and Play standard has its beginnings in the several different
attempts to address the problem of hardware configuration-with
IBM's Micro Channel and the Extended Industry Standard Architec­
ture (EISA) effort initiated by Compaq among the most well known.
Microsoft's Plug and Play effort began in 1991, and the first public
specifications appeared during 1993. 2 At first, Microsoft worked on the

1. For information about the pieces of the Plug and Play specification, see the
"References" section at the end of this chapter.

2. Folklore has it that the initial impetus for the project was provided by the PC
configuration problems experienced by the mother of the vice president of Microsoft's
Personal Systems Group. Another story cites Microsoft's irritation at the advertising
campaign run by Apple Computer-the one that portrayed Windows as hard to set up
and use.

Ebay Exhibit 1013, Page 361 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

E I G H T: Plug and Play

specification alone, seeking an ordered solution to an apparently in­
tractable problem. Early discussions with Intel and Compaq helped to
steer the design effort, although these companies did not formally
agree to support the Plug and Play standard until the spring of 1993.

The deciding factor in wider industry support was the develop­
ment of the Plug and Play ISA specification-a document that defined
a modified hardware design for adapter cards that could be used on ex­
isting ISA bus PCs. Also included in the Plug and Play ISA specification
was a software-only solution that could be applied to the installed base
of "legacy adapter cards" (a new term considered more polite than "old
adapters"). These accommodations of the installed base are where the
Plug and Play effort differentiated itself from earlier initiatives. Both
the MicroChannel and the EISA bus designs did little to help the users
of the installed base of PCs. The attention it paid to the predominant
ISA bus design moved the Plug and Play effort from a somewhat aca­
demic realm into the entirely practical world. And the fact that a Plug
and Play compliant adapter card could be produced for only a tiny
amount more than it cost to produce existing adapters made the Plug
and Play specification immediately attractive to a broad range of manu­
facturers. (Microsoft had started with a cost target of a few dollars and
realized early on that this would be too expensive. Current estimates
pin the hardware cost of adding Plug and Play at around 25 cents.)
Once the Plug and Play ISA specification was out, support for the stan­
dard gained momentum during 1993, with Intel supplying early devel­
oper kits, Phoenix Technologies joining the core group to help define
a new BIOS for Plug and Play systems, 3Com providing extensive tech­
nical input, and companies such as Future Domain releasing early
ASIC implementations of the Plug and Play hardware interface.

By the end of 1993, variants of the Plug and Play specification had
been produced for several different bus types, including the ISA,
PCMCIA, PCI, and SCSI types.3 The Plug and Play effort began to have
other influence as well. Inside Microsoft, the design of the Windows
NT registry underwent modification to incorporate Plug and Play capa­
bilities before the shipment of Windows NT. Outside Microsoft, design
efforts such as the IEEE's serial SCSI specification began to take Plug
and Play requirements into account.

3. This effort continued, and specifications for every major bus type (except EISA)
and for several specific devices (such as the parallel port) had been produced by
mid-1994.

313

Ebay Exhibit 1013, Page 362 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

At the time of this writing, the Plug and Play effort has a long way
to go before a complete implementation will be in the hands of a large
number of users. Microsoft gained early experience with some of the
device detection and configuration techniques they deployed in prod­
ucts such as Windows for Workgroups and Windows NT. These systems
try to automatically sense the configurations of their host machines. In
the case of Windows for Workgroups, it's the video adapter, mouse, key­
board, and network adapter types that the operating system tries to fig­
ure out. Windows NT goes much further, sensing SCSI devices and
other installed hardware. The benefits during installation are obvious.
Windows 95 goes further still, implementing almost automatic installa­
tion and dynamic reconfiguration. Regardless of the success of Win­
dows 95 itself, the Plug and Play specification certainly seems to have
enough momentum to gain real acceptance in the marketplace.

Goals for Plug and Play

314

The Plug and Play project identified a number of goals that the specifi­
cation, and any of its implementations, needed to meet. The overrid­
ing goal, though, was simply to make it easier to add new hardware to
or change the configuration of an existing system-actually, not just
easier, but very, very easy. This ease helps everyone. Users waste less
time and get less frustrated when they try to change their hardware.
There's less burden on any support groups that users might call. The
device manufacturers have a well-specified standard to develop to
rather than the prospect of trying to solve all the potential installation
and configuration issues themselves. With new hardware developed to
the Plug and Play standard, the goal of requiring absolutely no effort
beyond plugging in the device and copying the software to the hard
disk can be realized. With existing hardware, it's difficult to reach that
level of simplicity because the hardware itself doesn't conform to the
Plug and Play standard. However, a lot can be done in software alone,
and the Plug and Play standard calls for upgrades to existing device
driver software. Upgraded device driver software will allow current ISA
hardware to be well managed within a Plug and Play environment.

The Plug and Play specification lists five formal goals:

II Easy installation and configuration of new devices

II Seamless dynamic configuration changes

Ebay Exhibit 1013, Page 363 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

E I G H T: Plug and Play

• Compatibility with the installed base and old peripherals

• Operating system and hardware independence

• Reduced complexity and increased flexibility of hardware

Plug and Play is of course the core of one of the major goals for
the Windows 95 project: great setup and easy configuration. And the
specification's attention to the existing ISA hardware base is a neces­
sary aspect of the compatibility goal set for the Windows 95 product.

Let's look briefly at each of the major Plug and Play goals.

Easy Installation and Configuration of New Devices
With new-that is, full Plug and Play specification-hardware, the in­
stallation and configuration process is reduced to plugging in the de­
vice and running a simple installation program. Some assembly is
required, but the installation program does little more than copy the
device support software to the Windows directory. During the boot pro­
cess, the system can identify the device and locate the appropriate de­
vice driver software and load it. The responsibility for identifying the
hardware devices and configuring them correctly belongs to the oper­
ating system, not the user.

For the reasons we've already reviewed, the Plug and Play stan­
dard provides a potential for tremendous savings of time and effort.
The drawback is that for the full Plug and Play benefits to be realized,
you need a full Plug and Play machine and full Plug and Play device
adapters.

Support for a New Hardware Standard
The Plug and Play specification does not define yet-another way of
building a PC. What it does specify is what PC hardware must be able to
do if it is to support full Plug and Play capabilities. "PC hardware" means
the system motherboard, the BIOS, and the plug-in adapter cards. If
each of these components complies with the specification, the operating
system vendor can implement Plug and Play. To date, draft or final speci­
fications have been completed for the Plug and Play BIOS and for the
ISA, SCSI, PCMCIA, and PCI buses. By the time you read this, there will
be many other specifications for Plug and Play compliant hardware.

Some current bus designs lend themselves to a very simple imple­
mentation of Plug and Play support; the required information and ca­
pabilities already exist. All that's needed is the appropriate layer of

315

Ebay Exhibit 1013, Page 364 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

316

software to provide the information in Plug and Play format. For the
existing ISA bus, implementation of Plug and Play support is a lot
harder. However, the low-level operations that the bus and associated
devices must support are somewhat similar in every case:

Isolating a device. There has to be a way for the operating
system to interact with one, and only one, device at a time
during the system boot process. If two devices respond to the
same operating system inquiry, the process breaks down.

II Reading information from the device. The Plug and Play
subsystem needs to collect information from the device. For a
Plug and Play device, a defined interface allows the device to
provide specific information in a standard format. In the case
of a legacy adapter with no provision for Plug and Play sup­
port, the software has to collect whatever information it can
and then play the software equivalent of a word guessing
game during the identification step.

II Identifying the device. Whatever information the device
provides must be sufficient for the Plug and Play subsystem
to correctly identify the device. Identifying a 3Com network
adapter as a Hewlett-Packard scanner will obviously lead to
problems.

II Configuring the device. Plug and Play devices expect to be
told which resources they can use: which IRQ, which I/O
ports, which DMA channel, and which memory region. This
provision is a key aspect of the Plug and Play specification
design. No longer will you enter a deadlock situation in which
two different devices absolutely require use of the same IRQ.
Non-Plug and Play devices don't have a reconfiguration
capability, so the resources these cards consume are reserved
first and made unavailable to other devices.

II Locating and loading a device driver for the device. Once the
device driver is loaded, it takes over the control of the device,
using the allocated resources.

Devices that conform to the full Plug and Play specification make the
operations in this process quite straightforward. The various specifica­
tion documents for Plug and Play hardware describe the requirements

Ebay Exhibit 1013, Page 365 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

E I G H T: Plug and Play

and implementation methods in great detail. The more difficult job is
making the legacy cards appear to behave like Plug and Play devices.

New ISA Board Standard
Since ISA systems are what most of us own, it's interesting to take a
brief look at how the Plug and Play specification augments the ISA
adapter design so that ISA systems can support full Plug and Play opera­
tions. The Plug and Play specification describes all the hardware and
software components in elaborate detail. Essentially, a Plug and Play
ISA card must include a small amount of additional hardware logic that
implements the following sequence of behavior:

1. At power on, the device remains quiescent until it senses a
specific pattern of commands written to a predefined 1/0
port-the so called initiation key.

2. The device then enters a state in which it waits for a "wake"
command written to an I/O port. In response to a wake
command, the controlling software can either wake up a
specific card, if it already has a unique identifier for the card,
or move all the cards to the "isolation" state.

3. The Plug and Play software communicates with one and only
one card in the isolation state. The device responds to com­
mands sent via the 1/0 ports by sending data bytes back to
the Plug and Play software. The data the device sends back
includes a unique identifier that allows the software to iden­
tify the device-the identifier includes fields such as a manu­
facturer ID to ensure unique identification.

4. Once the device has been uniquely identified, the software
and the device can exchange information. In this exchange,
resource requirements are identified and allocated.

For the cost of redesign and a small increment in manufacturing
overhead, an existing ISA card can become a Plug and Play device. Pref­
erably, the host system will have a new Plug and Play BIOS and of
course a Plug and Play capable operating system such as Windows 95. 4

4. The Plug and Play BIOS ensures that a system with multiple boot devices will in
fact boot. However, if a Plug and Play BIOS is not present, the operating system takes
over all the device configuration chores.

317

Ebay Exhibit 1013, Page 366 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

Seamless Dynamic Configuration Changes

318

With this rather grandiose phrase, the Plug and Play standard ad­
dresses the increasingly common situation in which a system's hard­
ware configuration changes while the system is running. No, you won't
be opening up your desktop machine and plugging new cards in while
your C compiler runs, but there are already a lot of systems available
that do allow hardware configuration changes while the system contin­
ues to run. The currently popular example of this capability is a laptop
system that supports the PCMCIA peripheral standard. Other ex­
amples include infrared printer connections and wireless-based net­
works. The hardware specification for PCM CIA cards took quite a while
to develop to everyone's satisfaction, but now a wide variety of
PCMCIA-standard peripheral devices is available. In addition to the at­
tractions of their small physical dimensions and light weights, these
cards allow you to alter a system's configuration by simply removing
one card and plugging in another. You might use an Ethernet card con­
nected to the office network, for example, and exchange it for a fax/
modem card while you're traveling. During 1993, many more of the
manufacturers began to offer systems with PCMCIA slots, including
PCs that use nothing but PCMCIA card slots, such as Hewlett-Packard's
OmniBook.

Obviously, the convenience of PCMCIA, or other dynamically
reconfigurable systems, is lost if users have to go through an extended
software reconfiguration process and reboot whenever they change pe­
ripheral cards. The Plug and Play standard addresses this sticking point
by defining how a system should allow for hardware resources to be
both removed and added while the system is operational. Managing
the removal process is easily as important as dealing with the addition
of new devices. You certainly don't want the user pulling a disk drive
out of the system before all the files on the drive have been correctly
updated and closed. Windows 95 takes this aspect of Plug and Play to its
logical conclusion by having a notification system inform applications
of configuration changes. Every significant configuration change
causes a message broadcast that applications can either process or ig­
nore. A facsimile application, for instance, can process a message in­
forming it that the user has tried to eject the fax/modem card. The
application's response to the message might be putting up a dialog in­
dicating that there are fax messages still to be sent.

Ebay Exhibit 1013, Page 367 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

E I G H T: Plug and Play

Compatibility with the Installed Base and Old Peripherals
Perhaps the most difficult goal for the Plug and Play consortium to re­
alize was the incorporation of support for the billions of dollars' worth
of hardware already in use. Previous attempts at improving configura­
tion flexibility had largely ignored this issue. Not even the combined
might of Intel, Microsoft, and the other Plug and Play partners could
wave a hardware wand and suddenly make the old systems fully Plug
and Play. It was up to the software developers in the consortium to cre­
ate that magic. The partners realized that achieving the compatibility
goal would probably make or break the success of the entire Plug and
Play effort.

A number of software components of the Plug and Play imple­
mentation contribute to its support for current hardware. Each compo­
nent makes the configuration process a little easier for the end user.
Naturally, some situations will require the user's assistance. For ex­
ample, if an adapter can be hardware configured only-by moving
jumpers and switches on the card, that is-or if the device driver soft­
ware can't report the adapter's configuration, Windows 95 will have to
ask the user for help.

Over the last few years, Microsoft has built a veritable library of
techniques for isolating and identifying different ISA devices, and the
great majority of popular devices can now be supported by the Plug
and Play subsystem. Inevitably, there will be exceptions. If you happen
to be the proud owner of one of the only three Flash bang 9000 network
adapters ever made, you're almost out of luck. Almost, but not quite.
The Plug and Play specification recognizes the need for a fallback posi­
tion: ask the user for device configuration information. In Windows 95
this might happen during system setup, or during some future recon­
figuration exercise called for when the user has added a new adapter
that the Plug and Play subsystem simply cannot recognize. A series of
dialogs will lead the user through the process of specifying the device
and the resources it requires. Once the device is identified, Plug and
Play will store the information in the registry and re-use it the next time
the system is turned on.

The Plug and Play implementation tries to minimize such appeals
to the user for information by both supporting extensions to the device
driver software-so that some reporting is available-and recording
the current hardware configuration on disk. If you think of the number
of times you've lost the scrap of paper on which you'd written the IRQ

319

Ebay Exhibit 1013, Page 368 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

you assigned to the network card when you plugged it in, you'll surely
appreciate Windows 95 when the time to add another adapter to the
system comes around. In the case of device driver software, a manufac­
turer can provide some Plug and Play support by simply updating the
driver. No hardware changes are needed. Given the fairly efficient
driver distribution mechanisms in place-the Windows 95 product it­
self, the device driver library disk, and bulletin boards-it's reasonable
to expect that a lot of manufacturers will try to add basic Plug and Play
support to current hardware. And you don't have to have updated de­
vice drivers. Even with no changes to the driver, Windows 95 will sup­
port the device and do its level best to detect the device and its
configuration during installation. All of this will go a long way in mak­
ing Plug and Play attractive to the installed base.

Operating System and Hardware Independence
Given the collaborative nature of the Plug and Play specification effort,
you'd expect the standard to address any hardware or operating system
environment. And in spite of competitive issues, the Plug and Play
specification does acknowledge the importance of providing a suitable
base for future development. After all, the introduction of PCMCIA
and local bus systems gathered momentum only recently. And efforts
such as the IEEE serial SCSI specification have not yet left the commit­
tee room. Few people would be willing to bet that there will be no other
fundamental industry developments in hardware interfaces. Given the
intensity of competition, we can expect major improvements in operat­
ing system technology over the next few years.

All of this demands that the Plug and Play specification be inde­
pendent of the underlying hardware and software. The basic data struc­
tures, naming conventions, and user interface aspects of Plug and Play
are defined only to a level that allows a consistent implementation of
the specification across different platforms. Specific implementation
details are left to the operating system developer.

Reduced Complexity and Increased Flexibility of Hardware

320

We've looked at a number of the complexities surrounding hardware
configuration. As we noted earlier, making hardware configuration
easy was the prime goal for the Pfog and Play standard. The specifica­
tion also lists the goal of making hardware "flexible." Meaning what
exactly? Flexibility goes back to the goal of reducing complexity. One

Ebay Exhibit 1013, Page 369 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

E I G H T: Plug and Play

of the most frustrating problems with current hardware is resolving
conflicts between devices. As we've already noted, for example in Chap­
ter Two's history of the Intel processor, two adapters can't share an IRQ
or a set of 1/0 ports. Yet it's asking a lot to expect users to understand
this and be diligent enough to check for conflicts as they add new
adapters to their systems. Diagnosing conflicts is also difficult: some­
times the system appears to work fine-until it crashes with no warning
and no useful diagnostics.

The goal of increased flexibility really amounts to directing manu­
facturers to produce hardware that can use a range of different device
settings and allow the settings to be chosen by the operating system­
not by hardwired jumper and switch settings. In practice, this means
that an adapter whose default configuration calls for it to use, say, IRQ
3 can be told by the operating system to use IRQ 10 instead. The user
will have provided no input to initiate this change and, in fact, will be
unaware of it. Such a requirement for flexibility extends to the dynamic
reconfiguration of a system, where the system can instruct a device us­
ing a particular configuration to change its configuration in situ. Taken
to its logical extreme, this flexibility means that any fully Plug and Play
compliant adapter could be plugged into any Plug and Play system and
be guaranteed to work. No longer will a user need to dismember a sys­
tem to disable an existing COM port before installing a new fax card.

Although a lot of the burden for implementing this flexibility falls
on the hardware manufacturers, it is also good news for them. Hardware
that easily adapts itself to any host configuration is likely to massively re­
duce the technical support a manufacturer will need to provide. Plug it
in and it works-with no series of frustrated phone calls to a support
technician who must try to figure out how the user can make the device
work alongside the other adapters he or she has already installed. Simi­
larly, the documentation for the product will be simpler, and the installa­
tion program for the device driver will be trivial.

The Components of Plug and Play
As we've seen, the goals for Plug and Play are ambitious: easy installa­
tion, easy reconfiguration, and on-the-fly configuration changes.
What's more, achieving the goals involves a number of different
people: the operating system supplier, the system manufacturer, the
BIOS developer, and the device vendor. Of course, there needs to be a
well-defined set of interfaces and clear divisions of responsibility if the

321

Ebay Exhibit 1013, Page 370 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

322

goals are to be met. The Plug and Play specification approaches the
problem of dividing and coordinating the labor by defining a layered
architecture for implementation and carefully separating functions
into different components. To fully understand how Windows 95
implements the Plug and Play standard, we need to look at the major
elements of the subsystem. Figure 8-1 is a representation of relation­
ships among the various components. The description of the compo­
nents here is, not surprisingly, for the Windows 95 implementation of
Plug and Play. Many elements would be the same for a Plug and Play
subsystem supported by another operating system. 5

A number of components, not all of which are shown in Figure
8-1, collaborate in the Plug and Play subsystem. Here's a summary of
the role of each:

• Hardware tree. The database of information describing the
current system configuration. The hardware tree is built by
the configuration manager and kept in memory. Every node
on the hardware tree is termed a device node and contains the
logical description of either an actual device or a bus device.

• .INF files. A collection of disk files containing information
about particular types of devices. SCSI.INF, for example, holds
information about every known SCSI device. During the
installation of a new Plug and Play device, a new .INF file
specific to that device will be used to help complete the
software installation. Usually the .INF file will be on the
installation diskette that comes with the device.

• Registry. The Windows 95 registry containing as a subtree the
hardware tree describing the hardware.

• Events. A set of APis used to signal changes in the system's
current configuration. In Windows 95, the message system is
used to signal events. In other implementations, an operating
system component could be used to signal events.

• Configuration manager. The component responsible for
building the database of information describing the
machine's configuration (in the registry) and notifying the

5. Windows 95 also uses the Plug and Play subsystem extensively during system
setup and subsequent device installation. Other Plug and Play-supportive operating
systems may do things differently.

Ebay Exhibit 1013, Page 371 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

E I G H T: Plug and Play

App II cations

---Operating system

Configuration
manager

•
.INF
files

Hardware
tree

----------~----------BIOSand
device
drivers

Bus

Devices

Figure 8-1.
The Plug and Play components.

323

Ebay Exhibit 1013, Page 372 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

IN S I D E W I N D 0 W S 9 5

324

device drivers of their assigned resources. The configuration
manager is the central component of the Plug and Play
subsystem when the system is running.

• Enumerator. A new piece of driver software that collaborates
with the device driver and the configuration manager. An
enumerator is specific to any device (typically to a bus) to
which other devices can be attached. 6 Every bus device in the
hardware tree always has an enumerator associated with it. A
special enumerator, called the root enumerator, is part of the
configuration manager. The root enumerator assists in setting
up non-Plug and Play devices.

• Resource arbitrator. A function responsible for presiding over
the allocation of specific resources and for helping to resolve
conflicts.

Ill Plug and Play BIOS. A new system BIOS that supports Plug
and Play operations. A device (a video controller, for ex­
ample) may also have a device-specific BIOS that conforms to
the Plug and Play rules. The Plug and Play BIOS is also the
enumerator for the motherboard devices and in this guise
plays a critical role in managing the docking and undocking
operations of portable systems .

. 111 The Plug and Play device drivers. Protected mode drivers
responsible for device control as well as participation in the
Plug and Play subsystem.

Ill User interface. A collection of standard dialogs used to solicit
information when the Plug and Play system needs to get the
user involved in configuration information gathering. The
user can also examine the system configuration built by the
Plug and Play subsystem.

Ill Application. In the Plug and Play context, a program modi­
fied for improved operation under Windows 95 that can
accept and process system configuration change messages.

6. Early designs of the Plug and Play subsystem also used the term bus driver.
Differentiating the roles of enumerators and bus drivers became sufficiently hard
that the functions were finally combined.

Ebay Exhibit 1013, Page 373 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

E I G H T: Plug and Play

Remember that the entire Plug and Play subsystem is mainly con­
cerned with the management of four different resource types on behalf
of the various devices:

Memory. The physical memory requirements of the device-for
example, how many pages of memory the device needs and any
alignment constraints.

110. The 1/0 ports the device will respond to. The device configura­
tion information includes a specification of each of the alterna­
tive sets of ports that the device can use (if any).

OMA. Any DMA channels the device requires and any alternative
channels it can use.

IRQ. The device's IRQrequirements, alternative IRQs, and whether
the device can share an IRQ.

How the Subsystem Fits Together
As you can probably guess, the entire Plug and Play subsystem is a lot of
C and assembly language code. Fortunately, very little of the code is
memory resident and the system will load most components dynami­
cally. Before we look at the detailed operations of a few components,
let's take a step-by-step look at how the whole subsystem hangs to­
gether. Central to the entire Plug and Play subsystem is the hardware tree
data structure that describes the current system hardware configura­
tion. We'll look at the hardware tree's components in more detail in
the next section. 7 Figure 8-2 on the next page shows the hardware tree
structure that corresponds to a typical Plug and Play system.

Although in this example we're fortunate enough to own a real
Plug and Play system, we have held onto our legacy network adapter.
Although t~e network adapter is physically plugged into the ISA
bus, as a non-Plug and Play device the adapter is logically attached to
the root of the hardware tree during system configuration. More on
this in a moment. We haven't made any system configuration changes
since the last time we used the system. Let's turn our system on and see
what happens.

7. This simple logical representation of the hardware appeared very early in the
software design process and has survived every challenge and attempt at improvement.

325

Ebay Exhibit 1013, Page 374 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

326

Figure 8-2.
Hardware tree for a typical Plug and Play system.

1. The system BIOS reads nonvolatile memory to determine
the machine configuration. The BIOS configures any adapter
for which it finds configuration information, notably the
motherboard devices. The BIOS disables any adapter for
which there is no configuration information.

2. The boot process begins. The system is still in real mode. The
configuration manager's root enumerator uses the hardware
subtree in the Windows registry as its reference for what the
system configuration ought to be.

3. The root enumerator scans the registry subtree looking for all
the non-Plug and Play devices. When it finds one, it con­
structs a device node and adds it to the root of the memory
resident hardware tree. This is where you can see the device

Ebay Exhibit 1013, Page 375 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

E I G H T: Plug and Play

node for the legacy network adapter in Figure 8-2's example.
The root enumerator also configures the device if the BIOS
has not already done so.

4. The real mode boot process continues. The system loader
processes SYSTEM.IN!, loading the static VxDs that it specifies.

5. Now the next enumerators get loaded. The BIOS has regis­
tered the fact that, for example, the system includes an ISA
bus. The registry shows which enumerator to load for the
particular bus device.

6. The enumerator examines the devices attached to the bus and
loads either a static VxD (if one is required) or another
enumerator to examine a descendant bus. In the example
configuration shown in Figure 8~2, the ISA enumerator would
load the PCMCIA enumerator.

7. All the real mode drivers and static VxDs are now in memory.
The operating system kernel completes its initialization and
switches to protected mode.

8. Now the configuration manager runs. Some of the system's
devices are fully initialized, and their drivers are loaded.
Other devices simply have their presence on the system
recorded with no device driver yet loaded.

9. The configuration manager loads the appropriate remaining
enumerators. These enumerators in turn examine the at­
tached devices, build device nodes, and add them to the
hardware tree. When this process is complete, the configura­
tion manager will load the device drivers that correspond to
the newly created device modes. (During the process, any
configuration conflicts will arise and present themselves for
solution.)

10. If an unknown non-Plug and Play device is left over, Windows
starts the device install process, which asks the user for help in
resolving the configuration. Otherwise, the system is now up
and running.

Time passes

327

Ebay Exhibit 1013, Page 376 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

After a System Configuration Change
Suppose you automatically load a fax application whenever you start
this system. The application uses the fax/modem card on the PCMCIA
bus. At some point, you decide you want to transfer the card to another
machine, so you press the card eject button. ·

1. The PCM CIA enumerator receives notice of the button press.
It informs the configuration manager. The configuration
manager broadcasts the hardware change notification message.

2. Each enumerator sees the change notification message and
queries its associated device drivers as to whether they care
about your ejecting the card.

3. Eventually, the configuration manager broadcasts a message
indicating that the fax card is about to be ejected.

4. The fax application sees the message from the configuration
manager and puts up a dialog asking whether you really want
to eject the card. You respond Yes. The fax application checks
to see whether there are any fax transmissions in progress or
pending. If there are no transmissions in progress or pending,
the fax application tells the system that the eject operation is
OK and returns to a dormant state.

As you can see from this sampling, a lot of interaction goes on
among the different Plug and Play components. Much more detail
about these interactions would probably overwhelm you. We'll look at a
few more implementation details in this chapter, but if you really want
every last detail, you need to make the Plug and Play specification itself
your favorite bedtime reading.

Hardware Tree

328

Windows 95 builds the hardware tree during the system boot process,
and any subsequent configuration change modifies the tree. The tree
is a logical representation of the system hardware configuration. The
tree exists as a data structure held in memory while Windows 95 is run­
ning. The registry contains a record of every different hardware con­
figuration in the system's lifetime. The memory resident tree is more
dynamic, changing as the user adds and removes devices. If you don't
change the configuration of your machine from one day to the next,
the registry and the memory tree will contain the same (unchanging)
information.

Ebay Exhibit 1013, Page 377 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

E I G H T: Plug and Play

Device Nodes
Each node of the hardware tree is called a device node. The specification
also refers to a node as a Plug and Play object, although Plug and Play is
not strictly an object-oriented subsystem. The leaf nodes of the tree
represent individual devices present in the system-keyboard, monitor,
tape, modem, for example. Parent nodes represent lnts devices--devices
that each play a role in the control of at least one other device.

The bus device is fundamental to the design of the Plug and Play
subsystem. Plug and Play defines a bus device to be "any device that
provides resources." A Plug and Play bus device is also the most com­
mon type of parent node for any device node in the hardware tree. In
most cases, you can think of the logical Plug and Play bus as the hard­
ware bus in the system. For example, a bus in an ISA system provides in­
terrupt resources (the different IRQs) and I/O port resources. It is also
the parent device in the sense that you plug devices into it. In the par­
ticular configuration shown in Figure 8-2 on page 326, every node in
the tree diagram is a device node, and the SCSI lnts, ISA lnts, and
PCM CIA !ms nodes are bus devices. Take a look at Figure 8-2 again, and
note that since the Keyboard controller node is also a parent node in the
hardware tree, it too is considered a Plug and Play bus device.8 Every
Plug and Play bus device has an enumerator associated with it.

Every Plug and Play device node-whether for a device or for a
bus device-always contains the following information:

II A unique device identifier-actually a string, not just a
number

II A list of resources required by the device node

II A list of resources actually allocated to the device node

Ill If the device node represents a bus device, a pointer to the
descendant device nodes in the tree

Access to the device node data structure is always via a set of sys­
tem APis. Device drivers, and other. modules, never manipulate the
device node data structure directly. Also, it's only the device drivers,
enumerators, and other Plug and Play-related modules that use the de­
fined APis. Application programs never use the APis.

8 .. This is where the mind's eye representation of a Plug and Play bus as a hardware
bus breaks down. Thinking of a Plug and Play bus device as· any piece of hardware that
you can plug something into is perhaps a better visualization.

329

Ebay Exhibit 1013, Page 378 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

330

Figure 8-3 is a more detailed representation of a Network adapter

and a SCSI bus device node data structure. The configuration example
shown in Figure 8-3 is similar to the example shown in Figure 8-2 ex­
cept that the network adapter is a Plug and Play adapter.

8 All required resources have been allocated to the Network

adapter node.

8 The resources required by the SCSI bus child nodes (Tape and
CD ROM) have been allocated.

Figure 8-3.
Development of the Network adapter and SCSI bus nodes of the
logfral hardware tree representation.

Ebay Exhibit 1013, Page 379 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

E I G H T: Plug and Play

Notice that the Network adapter device node depicted in Figure 8-3
has more than one entry in its list for each of the required resources.
This provision allows the Plug and Play configuration manager to try to
allocate alternative resources when an attempt to allocate an entry in
the first set runs into a conflict. For example, if the default IRQ is al­
ready in use by another device, the configuration manager will try to
use an alternative IRQ. In our example, the registry would have had to
contain the information that describes the configuration possibilities
for the network adapter.

Device Identifiers
A naming scheme that allows every device on a Plug and Play system to
be uniquely identified is a critical requirement for Windows 95. Sensi­
bly, the Plug and Play specification incorporates whatever assistance it
can get from currently specified information such as the PCMCIA
manufacturer number or the PCI identifier. However, ISA devices have
never had a standardized identifying nomenclature, so a new scheme
was needed. Rather than trying to evolve an identifier system within the
constraints of a 32-bit or 64-bit number, the Plug and Play design uses
character strings-sometimes very long character strings. Yes, you can
read them, but don't expect to make much sense out of them if you do.

The generation of the device identifier strings is one of the func­
tions of the device enumerator software. The function has to be part of
the enumerator since it is this driver alone that is supposed to under­
stand the intimate details of the bus and its attached hardware. Unlike
in a static EISA device identifier scheme, the ISA enumerator driver
generates the device identifiers dynamically. The algorithm varies from
type to type and may involve techniques such as copying company
name strings from device ROMs to help. On similarly configured Plug
and Play systems with attached ISA devices, the enumerator-generated
device name will be the same from one system to the next.

The device identifier for an ISA bus begins with the string
ISAENM\. This beginning at least identifies the enumerator that gener­
ated the identifier (and that therefore has control of the device). In
our example PC, the modem attached to the PCMCIA bus might end
up with a device identifier like ISAENM\PCMCIAENM\0020071001-
with the trailing digit string's having been generated by the
enumerator's reading the manufacturer's ID and part number from
the device itself. The enumerator might use just about any naming

331

Ebay Exhibit 1013, Page 380 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

scheme that ensures uniqueness. If a system had two identical network
cards plugged in, for example, the name string might end with ... \0300
and ... \0320 denoting the particular I/0 addresses that the cards re­
spond to.9

Within the system itself, the device identifiers are very important.
Each device node in the memory resident hardware tree contains the
device identifier, and the same identifier acts as the registry key the op­
erating system uses to access device-specific information.

Hardware Information Databases

332

Windows 95 uses four sources of information to determine or record
the details of every device on the system:

II The configuration files (.INF) held on disk and containing a
permanent record of every device ever known. These files
arrive already installed on your system.

II The .INF file supplied with each new device (presumably on
the installation diskette).

II The user, who has to intercede to solve otherwise unresolvable
conflicts or to provide information absent from the databases.

II The Windows 95 registry hardware archive subtree that
contains information about the current system configuration.
The Windows 95 setup program builds the initial hardware
archive in the registry. The registry includes Plug and Play
information under three keys:

HKEY_LOCAL_MACHINE The global settings for the system

HKEY_CURRENT_USER The current user's personal
preferences

HKEY_CURRENT_CONFIG The current machine configura­
tion-alterable by, for example,
whether the system is docked or not

The Plug and Play subsystem draws its information primarily from
the hardware archive and the current machine configuration. The user
becomes involved only if Windows 95 can't figure out some aspect of

9. Note that the I/0 port address is only for identifying purposes. Nothing actually
parses the string trying to find the I/0 address.

Ebay Exhibit 1013, Page 381 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

E I G H T: Plug and Play

the hardware configuration. Such intervention should come into play
only for the older ISA devices that don't conform to the Plug and Play
specification.

From all this information, the memory resident hardware tree is
built and maintained. Windows 95 updates the hardware tree as the sys­
tem configuration changes. If you change the configuration before
turning the machine on again (switch PCMCIA cards, for example, or
replace a defective adapter), the detection process has to refresh the
hardware tree with the new configuration.

Note that there is a preferred method of hardware installation for
manually configured devices-where you must manually change a
jumper setting, for instance. You install the software first, and then you
turn the machine off to install the hardware. When you switch the sys­
tem back on, its configuration will be correctly determined.

Plug and Play Events
Early on in the design of the Plug and Play subsystem, there was a dis­
tinct software component called the event manager. Later revisions of
the design simplified this notion so that Plug and Play events exist as a
set of APis that use the standard Windows messaging system to allow
the broadcasting of messages that describe Plug and Play events. Mes­
sages describe events such as requests to remove a device from the sys­
tem and the addition of new logical volumes to the network. The
message from a device driver or enumerator is sent to the configura­
tion manager, which may propagate it on through the system-perhaps
in a different form. A device level event in particular could be trans­
lated and sent to applications as a window message. Any device driver
or VxD can call the event API, specifying the event and providing the
associated event data. Applications and drivers with an interest in the
particular event will receive and process the message in the normal way.

Configuration Manager
The configuration manager is the principal software component of the
Plug and Play subsystem. It's responsible for controlling the hardware
tree database and linking the other components of the Plug and Play
subsystem together. During the system boot process, the configuration
manager is the ultimate authority for ensuring that the hardware tree is
fully populated and that its information is correct. The configuration
manager is also involved, somewhere along the line, whenever a Plug

333

Ebay Exhibit 1013, Page 382 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

and Play event occurs. If a system configuration change occurs, for ex­
ample, the configuration manager will control the process through
which the various bus and device drivers interact, Plug and Play event
messages are sent and processed, and modifications to the hardware
tree take place.

Here's an example of what happens ifa user runs a word process­
ing application, loads a document from a PCMCIA hard disk card, and
then presses the card eject button before closing the document file:

1. The PCMCIA disk driver recognizes the card eject button
press and notifies the configuration manager.

2. The configuration manager broadcasts the hardware change
notification message, which asks whether the card removal
operation is allowable.

3. Each device driver responds, indicating that it's OK

4. The configuration manager broadcasts a message describing
the physical device-the hard disk.

5. The I/O subsystem recognizes that the hard disk card con­
tains an active logical drive and broadcasts an application­
level message describing the logical device.

6. The word processing application receives the message, pro­
cesses it, and recognizes that there is a document file open on
the affected drive. It displays a dialog for the user that might
present two options: save the document and allow the card to
be removed, or cancel the card removal and continue.

7. The user's response filters back to the configuration manager
in the form of responses to the various messages. In the case
of the user's choosing to save the document and thus allow
the card to be removed, the configuration manager will
ultimately inform the disk driver that the eject operation can
proceed. If the user chooses to cancel the card removal, the
disk driver will ignore the button press.

Enumerators

334

An enumerator is a new type of device driver associated specifically
with any device that controls another device. Usually, such a device is
really a bus, although a device such as the keyboard controller may also

Ebay Exhibit 1013, Page 383 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

E I G H T: Plug and Play

have an associated enumerator. "Enumerator" is an elaborate term for
referring to its most common function: walking through each attached
device node in its branch of the hardware tree, repeating a particular
action. For example, during system startup the enumerator accesses
each device on the attached bus, initializing the device and ensuring
that the information in the particular device node is complete. The
configuration manager calls each enumerator to carry out operations
on its attached devices. Using the enumerator this way ensures that the
details of the physical bus and the attached devices are hidden from
the configuration manager. The enumerator and the associated device
drivers deal with the hardware specifics of the device, and the configu­
ration manager deals with device nodes.

The code for a particular enumerator could be implemented by a
manufacturer as part of a device adapter BIOS-this is likely, for ex­
ample, if the system has a proprietary local bus design-or as a pro­
tected mode driver that is part of the Windows kernel. For standard
hardware, such as the ISA bus, the enumerator is a standard compo­
nent of Windows 95.

Resource Arbitrators
The other software component that understands the intimate details of
a particular hardware device is the resource arbitrator. This kind of
function understands the specific hardware resource requirements of a
device-for example, the fact that a standard ISA COM device must use
either IRQ 3 or IRQ 4. The configuration manager calls an arbitrator
function for a device, providing it with the list of required resources
from the device node. It is up to the arbitrator to allocate the resources
that will satisfy the device's requirements. The configuration manager
may also call the arbitrator to inform it that it must relinquish a re­
source that it is using. Usually, the arbitrator function exists as code
within the Windows device driver.

During an attempt to satisfy a hardware resource allocation re­
quest, the arbitrator may well come to a dead end. It will need a par­
ticular hardware resource, but that resource will already belong to
some other device. The arbitrator won't try to resolve the conflict. It
will report the error back to the configuration manager and try to pro­
vide information that will help the configuration manager resolve the
conflict. It's left up to the configuration manager to oversee the pro­
cess of reallocating resources in an attempt to resolve the conflict.

335

Ebay Exhibit 1013, Page 384 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

lhlSIDE WINDOWS 95

During this conflict resolution process, arbitrators may be asked to sur­
render resources they already control. The reallocation process might
occur during system startup-the configuration manager reaches a
dead end and has to back up-or during a configuration change when a
new device requests resources that are already allocated somewhere else.

Plug and Play BIOS

336

The Plug and Play BIOS is an enhancement of the BIOS that comes in
the ROM of every PC. There is a companion document to the Plug and
Play specification that describes the details of a Plug and Play BIOS.
Every complete BIOS implementation must include both the BIOS
functions in use in current machines and the functions that support
Plug and Play operation. The design of the Plug and Play BIOS allows
both real mode software and 16-bit protected mode software to call
BIOS functions. There is no provision for direct calls to the BIOS from
a 32-bit protected mode program.

The Plug and Play BIOS extends normal BIOS functionality by

ii Maintaining a description of the devices attached to the
system board using a data structure very similar to the device
node structure used throughout the Plug and Play subsystem

111111 Supporting a small number of functions that allow an operat-
ing system to retrieve and update information about the
attached devices

II Providing an event notification mechanism that interfaces
with the system configuration manager-this mechanism
allowing the operating system to retrieve event information
associated with devices that are under BIOS control

II Supporting docking operations on portable systems

The issue of where the BIOS stores the device information is left
open to the system and BIOS suppliers. Most systems are likely to use
the CMOS memory that the system battery keeps alive. Current PCs al­
ready use this memory for storing configuration information, so it's the
obvious repository for the Plug and Play information as well. The Plug
and Play BIOS specification describes the expected format of the de­
vice information that the BIOS must return to the caller. When you
make a call to the BIOS function to get device information, the caller

Ebay Exhibit 1013, Page 385 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

E I G H T: Plug and Play

provides a buffer for the BIOS to store the information in. Similarly,
when updating the device information for a BIOS controlled device,
the operating system calls the BIOS with a modified device node. The
Plug and Play specification doesn't allow for direct access to the device
information, so exactly where and how the BIOS. stores the data is left
up to the system manufacturer.

The Plug and Play specification also allows for the BIOS event
mechanism to be implemented in two different ways. The BIOS can ei­
ther simply set a flag in a specific memory location whenever an event
occurs or allow the operating system to install an interrupt handler that
the BIOS will call to notify the operating system of the occurrence of an
event. In the first case, the operating system simply checks the memory
location regularly to see whether the event flag is set. Either way, the
system must then call the BIOS to retrieve information about the spe­
cific event.

Plug and Play Device Drivers
One of the issues facing the Windows 95 team was how to build mo­
mentum behind the Plug and Play standard. Although Plug and Play
has a broader scope, the fact that Windows 95 would be the first major
operating system to support it needed thinking about. Apart from sim­
ply convincing all the hardware manufacturers that Plug and Play was
indeed a really good idea, the team thought that making it easy to con­
form to the Plug and Play standard would help a lot. One simple way to
make life easy for the manufacturers was to limit the software changes
necessary to support Plug and Play. Since Windows 95 can use existing
Windows device drivers, you don't absolutely need to develop a new
driver to support a Plug and Play system. But this is rather passive sup­
port for Plug and Play. To actively support Plug and Play, an existing
Windows driver needs to incorporate several modifications and exten­
sions. Here's what such a driver needs to do:

II Be dynamically loadable and unloadable. Thus, a Plug and
Play driver becomes a dynamically loadable VxD.

II Use the Windows 95 registry for nonvolatile parameter
storage. Windows 95 frowns upon system components that
store parameter information in private files or other storage
areas. Everything should be in the registry. Information stored
under the registry key HKEy_cuRRENT_CONFIG also

337

Ebay Exhibit 1013, Page 386 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

defines the current machine state-docked or undocked, for
example.

II Register with the configuration manager at load time and
accept the hardware resources allocated by the configuration
manager, and then configure the device according to the
configuration manager's allocations rather than according to
any existing default.

II Support the release of resources on request.

1111 Support the new Plug and Play APis, including the events
notified by the event APis.

The major manifestation of a philosophical change in a Windows
95 device driver is its acceptance of the configuration manager as the
controlling entity for resource allocation. Rather than simply initializ­
ing a device to a known configuration, the driver must obey the con­
figuration instructions passed to it by the configuration manager. The
driver must also respond to event notification if it is to be a good citizen
within the overall event system.

Windows 95 device drivers must support several new APis if they
are to operate within the Plug and Play environment. For example, the
configuration manager uses specific APis to either demand or request
that the driver release an already allocated resource. Another API tells
the driver to configure the hardware according to the resource alloca­
tion specified in the device node parameter. The configuration man­
ager may make this call several times while it attempts to adjust the
system configuration to avoid allocation conflicts.

Applications in a Plug and Play System

338

Any application can involve itself in Plug and Play issues by responding
to the events that Windows 95 defines. A lot of applications won't care
that the system is Plug and Play. After all, a Plug and Play system with no
removable devices probably won't change its configuration from power
on to power off. However, for many of the latest generation of portable
PCs, there are a number of instances in which applications ought to be
aware of dynamic configuration changes. Here are a few examples:

Ebay Exhibit 1013, Page 387 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

E I G H T: Plug and Play

• Applications running on portable systems that use PCMCIA
cards for disk storage need to take account of the possibility
that the user will try to eject a card when there are files open
on that disk.

• User alteration of connectivity options-for example, ex­
changing a network card for a modem card-is likely to be of
interest to both the network subsystem and any communica­
tions application. The application ought to try to adapt itself
to the new speed of the connection, for example.

• Applications ought to adapt smoothly to changes in display
resolution initiated by the user.

• The "disappearance" of network volumes when the user walks
out of range of his or her wireless network should not result
in inelegant or misleading error messages.

In general, applications need to be event aware, and certainly more
hardware aware than they have been. Both the new event system and
the use of the Windows 95 registry are key to the implementation of
standout Windows 95 applications.

Conclusion
In this chapter, we've looked at the Plug and Play specification from the
viewpoint of the general goals and architecture of the Plug and Play
subsystem. The details we've gone into are specific to the Windows 95
implementation of the Plug and Play.specification, but implementa­
tions for other operating system environments will share many similari­
ties with the Windows 95 version. If Plug and Play hardware becomes
ubiquitous, it's almost certain that other operating systems will support
the Plug and Play specification.

Plug and Play represents a major step forward in the ease of use of
personal computers. An Apple Macintosh user might assert that they've
always had it that good, but then they've also had a much narrower
range of third party hardware to choose from. If you remember· the
theme of Apple's recent anti-Windows television advertising campaign,
you'll appreciate how long overdue an enhancement to the PC envi­
ronment Plug and Play is. Although it will take time for the industry to

339

Ebay Exhibit 1013, Page 388 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

340

catch up and start providing full Plug and Play compliant systems and
components, the benefits to users and overwrought support personnel
make the effort's wisdom seem compelling.

So far, we've looked at a Windows 95 system from the perspective of a single user.
Now that we have Plug and Play, we can fearlessly connect our system to just
about anything. The corporate network is probably what occurs first to most of us,
so in the next chapter we'll look at the networking capabilities of Windows 95.

References
To receive a copy of the Plug and Play Device Driver Kit (DDK), send elec­
tronic mail to plugp!,ay@intel.com or fax a request to Intel at (503) 696-1307.

To receive information about future developments at Microsoft on
Plug and Play topics, send electronic mail with complete contact information
(your name, mailing address, phone number, fax number, and e-mail
address) to p!,aylist@microsoft.com.

Copies of the various Plug and Play specifications are available for
downloading from the Plug and Play forum on CompuServe. Type go
plugplay at any command prompt. The following specifications are currently
available, but others may be added:

The Plug and P/,ay ISA specification

The Plug and Play BIOS specification

The Plug and Play SCSI specification

The Plug and P/,ay PCMCIA specification

The Plug and Play PC/ specification

The Plug and P/,ay Advanced Power Management specification

Ebay Exhibit 1013, Page 389 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

C H A P T E R N I N E

NETWORKING

Early presentations of the Windows 95 networking strategy character­
ized Microsoft's goal as "providing the best desktop operating system
for networked personal computers." To this end, Windows 95 incorpo­
rates full peer-ta-peer networking capabilities, allowing you to configure
self-contained Windows 95 networks with each machine acting as a net­
work server. In addition, Windows 95 aims to provide connectivity to
every leading network architecture through a single user interface and
a common set of APis for network applications. Networking under
Windows 95 relies on features we've already looked at-most notably
on the installable filesystem mechanism discussed in Chapter Seven. In
Chapter Ten, we'll look more closely at how Windows 95 handles re­
mote communications; in this chapter, we'll concentrate on Windows
95 support for local area net:Working.

Although whether or not you'll get networking for free probably
won't be clear until the day the product is officially announced, Win­
dows 95 certainly emphasizes networking by incorporating peer-to­
peer support, local area network connectivity, and remote connectivity.
Windows 95 needed to do a great job of supporting client connections
to other networks, and the market positioning for Windows 95 tends to
emphasize this connectivity over the peer-to-peer facilities. In fact,
most of the newly designed features for Windows networking are more
important to client connectivity than to peer-to-peer operation.
Microsoft's emphasis on client support is reflected in its development
of Novell NetWare support for Windows 95 and its more recent charac­
terization of Windows 95 as "the well-connected client."

Of course, Novell remains the industry's dominant supplier of
network products and, at least at the time of this writing, a staunch

341

Ebay Exhibit 1013, Page 390 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

advocate of the client-server architecture.1 The Windows 95 team had
to be pragmatic about this situation: their goal that Windows 95 be the
perfect client operating system meant addressing the NetWare issue as
well as client operation on a Microsoft network. As in the recent release
of Windows for Workgroups 3.11, Windows 95 incorporates support for
a full Novell client. Buy Windows 95, and you can plug straight in to a
NetWare network without buying any other software.2

Both Windows for Workgroups version 3.11 and Windows 95 go a
lot further than just offering Novell NetWare support alongside sup­
port for a Microsoft network. In both products, the system provides for
the use of multiple simultaneous network interfaces by using the
installable filesystem capability to support remote filesystems. Many us­
ers question when on earth they'd ever need to take advantage of this
feature. But desktop configurations with, for example, a local link to a
NetWare server, a wide area link using a TCP /IP protocol stack,3 and a
dial-up terminal connection to some other network are actually com­
monplace nowadays. Windows 95 allows these three kinds of network
connections to be cleanly integrated-a far cry from the earlier trials
and tribulations of networking under Windows 3.0.

Windows Networking History

342

Before we dive into the technology, let's review some of the history of
Windows networking. Microsoft has been an active participant in the
network market since 1984, when MS-DOS version 3.1 and MS Net were
released. For some years, MS Net was outsold by Novell NetWare, and
until the release of Microsoft LAN Manager in 1988, Microsoft really
didn't have an industrial strength network operating system. During the
same period, network support in Windows was weak-a situation that
has changed dramatically as Windows has built its market share over
the last three years, since the release of Windows 3.0.

1. Novell's acquisition of UNIX System Laboratories and its UNIX technology at
least raises the question of whether Novell will ultimately provide a mainstream peer­
to-peer network product.

2. Since packaging issues hadn't been decided, in this chapter I've treated
"Windows 95" as the networkable version of the product. Maybe the product will be in
a single package-maybe not.

3. Basic TCP /IP connectivity was another feature under development for Windows
95 that may or may not be "in the box" for free come product release time.

Ebay Exhibit 1013, Page 391 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

N I N E: Networking

Peer-to-peer networking has leaped to prominence only in rela­
tively recent times. The release of Microsoft's Windows for Workgroups
has sparked a heightened interest in what had been, until late 1992,
something of an underground movement in the personal computer
industry. When Microsoft announced Windows for Workgroups just be­
fore the 1992 COMDEX/Fall trade show, peer-to-peer networking
joined the technology mainstream. Despite the apparent youth of the
technology, peer-to-peer networks had actually been in wide use since
the introduction of the Apple Macintosh in 1985. Apple included the
AppleTalk networking capability with each and every Macintosh they
shipped. Most early users of the Macintosh were unaware of the fact
that they were using peer-to-peer networking whenever they printed a
document on the Apple LaserWriter. Apple based the design of the
AppleTalk networking protocol on the peer-to-peer principle, and
AppleTalk continues to be widely used on Macintosh networks today.4

In the PC market, products such as IBM's PC Network and Novell
NetWare debuted and began building an installed base. Principally
because of the overwhelming success of Novell NetWare, client-server
networking became known as the way to set about connecting multiple
IBM-compatible PCs. Microsoft's early network products, MS Net and
Microsoft LAN Manager, reinforced the notion that it was a client­
server world. In fact, until the release of Windows for Workgroups,
Microsoft really didn't acknowledge the existence of the alternative
model for networking.

There were companies that had built a business espousing the
peer-to-peer model. Products such as lONet, TOPS, and LANtastic built
a solid market base and had many loyal and enthusia~tic customers. But
it was tough going. On the one hand, they had Apple giving away free
networking with every Macintosh, and on the other, they had industry
heavyweights such as Novell, IBM, and Microsoft advocating a client­
server approach. The companies in the peer-to-peer business found
that their products were perceived as suitable only for small networks

4. In keeping with their habit of promoting benefits rather than technology, Apple
never pronounced themselves a leader in peer-to-peer networking; nor did they try to
promote their technology as the best way to network personal computers. Many users
from the IBM-compatible side of the PC universe as a consequence express surprise
when they're exposed to the networking capabilities of the Macintosh.

343

Ebay Exhibit 1013, Page 392 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

344

or for small businesses who employed no PC professionals. Although
this positioning belied the capabilities of a peer-to-peer network, this
type of environment was where the leading peer-to-peer product com­
panies found their easiest sales and their most enthusiastic customers.
Competitive pressures have taken their toll on the peer-to-peer net­
work companies, and today only Artisoft's LANtastic has significant
market share. Other early products, such as lONet, have changed own­
ership a number of times, and although the other peer-to-peer prod­
ucts still exist, they have fairly small installed bases and the future of the
various vendors is uncertain. This sad history doesn't sound like much
of an advertisement for peer-to-peer networking, but the lack of success
so far comes more from the market issues than from any deficiencies in
the capabilities of the underlying technology.

Until late 1991, Novell, IBM, and Microsoft continued to espouse
the benefits of client-server networking and either ignore or dismiss
peer-to-peer solutions. This market situation was an artificial one, cre­
ated more by marketing dollars than by technology, but it did make
good business sense:

• Server software, for use on a more limited number of ma­
chines, allowed the supplier to charge a higher price.

• Server-based application software could similarly command a
premium price.

• The buyer was often a DP professional, familiar with the
client-server model that had been established by the main­
frame and minicomputer network manufacturers.

• Network administration tools were often quite poor, even on a
server. A peer-to-peer network could compound the problem
by putting poor tools in the hands of an unsophisticated user.

• The technology associated with ensuring the security of a
peer-to-peer network was still more a research topic than an
off-the-shelf product. In contrast, client-server networks
provided more reliable security.

Perhaps ironically, the most popular UNIX-based network solu­
tions had also adopted a peer-to-peer model, but IBM-compatible PCs
and mainframes remained the stronghold of client-server networking.
The situation began to change when Novell introduced its peer-to-peer

Ebay Exhibit 1013, Page 393 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

N I N E: Networking

product, NetWare Lite, in late 1991. Positioned as a direct competitor
to the increasingly popular LANtastic network from Artisoft, NetWare
Lite experienced less than spectacular success. NetWare Lite was not a
very good product. Novell had tried to ensure that it would not impact
upon the continued success ofNetWare proper and as a result had in­
troduced a product that was not competitive in its own sphere. The
NetWare Lite introduction did put the peer-to-peer concept on many
people's radar screens for the first time, however.

In 1992, Microsoft's position on peer-to-peer networking also be­
gan to change, as the company began the marketing campaign for its
next major operating system product: Windows NT. After years of pro­
motion and successive product releases, Microsoft Windows had be­
come a runaway hit, OS/2 was still selling poorly, and Microsoft had
reshaped its plans to promote a Windows operating system product
family. At the outset, Microsoft put little emphasis on the networking
capabilities of Windows NT. (Remember, Microsoft LAN Manager on
OS/2 was the then current solution.) But as more information about
the product became available, people began to realize that Windows
NT incorporated peer-to-peer networking facilities within the basic
operating system. Together with the Windows NT networking news,
information about a p.ew version of Windows, called Windows for
Workgroups, began to appear. Released for the first time in October
1992, Windows for Workgroups turned out to be a full peer-to-peer net­
work product. During most of 1993, Windows for Workgroups was
regarded as a somewhat unsuccessful product, with its critics complain­
ing about slow sales and lackluster features.5 The "slow sales" charge
was unfair; Windows for Workgroups racked up more than a million
units in shipments during its first year. And in the fall of 1993,
Microsoft released Windows for Workgroups version 3.11-a product
that included the debut of a number of features important to Windows
95, such as the protected mode FAT filesystem. Clearly, Microsoft didn't
think that peer-to-peer networking wasn't worth further investment. In
the summer of 1993, Microsoft had delivered the first production re­
lease of Windows NT, with built-in peer-to-peer capabilities, and of
course the Windows NT Advanced Serve:r-a product that more
closely resembled the client-server architecture of earlier Microsoft
LAN Manager releases.

5. Even inside Microsoft, the belief that sales were slow prompted company
humorists to call the product ''Windows for Warehouses."

345

Ebay Exhibit 1013, Page 394 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

This is really where our historical diversion began. Although it has
taken Microsoft a while to join the advocates of peer-to-peer network­
ing, it appears that the peer-to-peer model provides the direction for
the company's own networking products in the foreseeable future-a
direction reinforced by the release of Windows 95.

Microsoft's move to a reliance on peer-to-peer networking is­
hardly unique. Recent developments in distributed systems technology
have begun to find their way into commercially available products, with
remote procedure call capabilities and distributed object management
features6 moving from the realm of computer science research to pro­
duction systems. Distributed systems tend to rely on the availability of
an underlying peer-to-peer network architecture, and despite what
Novell might say, client-server networking seems destined to become
not much more than a network configuration issue over the near term.

Of course, the major improvements in Windows networking also
allow Microsoft to prevent Novell from establishing any market share
in desktop systems. Sure, you may continue to buy Novell servers, but
the capabilities of Windows 95 make Microsoft your most likely desk­
top operating system supplier.

Networking Goals

346

Microsoft emphasizes the support for multiple network connections
over the other goals for networking in Windows 95. You'll hear the
term "universal client" used to characterize this particular goal. Here's
what the term actually means:

II A set of architected interfaces that enable a network vendor
to incorporate proprietary network client support into
Windows95. ·

II System support for simultaneous operation of a single Win­
dows 95 system on several networks.

1111 A common user interface for network browsing, resource
connection, and printing-regardless of the underlying
physical network type.

6. Capabilities that Microsoft has already announced as an important part of its
Cairo development project. ·

Ebay Exhibit 1013, Page 395 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

NINE: Networking

• Support for network operations from within the system shell.
No longer is networking an "add on" component; it's a
fundamental part of the system.

Acknowledging the entrenched position of both Novell NetWare
and the UNIX-dominated TCP /IP networks, Microsoft has developed
Windows 95 client support for both. Of course, Microsoft would like its
own network solutions to become as popular as those of Novell, so Win­
dows 95 has to be a good family member and support connections to
Windows NT systems as well as existing Windows for Workgroups net­
works. Incorporating a peer server with good file and printer sharing
capabilities allows Windows 95 to act as a capable, self-contained net­
working product.

Microsoft chose to develop its own client services for NetWare for
Windows 95. This decision was largely a response to Novell's poor track
record when it came to providing timely, high-performance client soft­
ware for Microsoft operating systems. Early tests of Microsoft's client
services for NetWare (reported in May 1994) showed some impressive
results, with two to three times the performance of the Novell solution
for Windows 3.11.

The other major goal for Windows 95 networking was to develop
new 32-bit protected mode software for all the network components.
Networking is a big winner when it escapes the limitations of real
mode, the advanta'.ges corresponding to those that were gained by the
introduction of a 32-bit protected mode filesystem. Overall perfor­
mance improves, large software components such as network trans­
ports disappear from low memory, and the use of Windows 95's
multithreaded architecture gives improved response and network
throughput. Naturally, the network team had to obey the laws of com­
patibility, and Windows 95 still allows the use of older MS-DOS and
Windows 3.1 network drivers.

Network Software Architecture
Like the new filesystem architecture, network support in Windows 95
relies on a layered design that separates functionality into several dis­
tinct modules. Early formalized approaches to network software design
were among the first instances of this technique, and proponents of

347

Ebay Exhibit 1013, Page 396 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

.. INSIDE WINDOWS 95

WOSA

348

existing network architectures, such as the OSI model, tend to be quite
doctrinaire about the layered approach. As with most aspects of Win­
dows design, though, implementation performance and memory re­
quirements are paramount considerations. Although the designers of
Windows 95 networking adopted a layered approach, practical consid­
erations dictated a few design impurities. Figure 9-1 shows the overall
network software configuration in a "typical" Windows 95 system that
provides access to two networks through a single network adapter.

Many of the component names in Figure 9-1 are probably already
familiar to you. We'll look at each of them as we analyze the architec­
ture. Windows 95 networking is one of the best examples of the use of
Microsoft's Windows open Services Architecture (WOSA), and coming to
grips with the networking subsystem is easier if you understand WOSA
to begin with.

Microsoft came up with the unwieldy WOSA name as an umbrella for a
set of software components that, although originating in different
projects, exhibited many similar characteristics. Much of the design
impetus for WOSA came from the need for applications to interface to
different networkS, although WOSA can be applied to non-networked
f"nvironm.f"nts ::is wf"lL F.ssf"nti::11lv WOSA f"nromn:::issf"s :::i st>rif"s ofintf"r----·-- ----------- --- .. ---· ------------;} .. - --- ----,...---r------ -- ------ -- ------

faces designed to allow multiple software components with similar
functionality to co-exist in the operating system. The user's interaction
with an application ultimately results in the application;s using the
system's defined APis to manipulate data. WOSA introduces the service
provider interface, or SP!, that allows the OS to call system components
(called service providers) to complete the processing of the data.
Whereas the API is independent of the underlying hardware or service,
the SPI remains hardware independent but is usually service depen­
dent, and the service provider component itself is intimately connected
to its target environment. As far as the user or an application is con­
cerned, a service provider is simply part of the operating system. Figure
9-2 on page 350 illustrates the common components you'll find when­
ever WOSA is used as the system model. The standard configuration in­
cludes the API layer, the routing module, the SPI layer, and the
underlying service providers. To get its work done, a service provider
may call on any operating system functions ot use other, lower-level,
service providers (again by means of a defined SPI).

Ebay Exhibit 1013, Page 397 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

API

SPI

Transport
APVSPI

NDIS

Figure 9-1.

' Network
adapter driver

'

Networking software components in Windows 95.

N I N E: Networking

One good example of the use of WOSA is in an electronic mail
application. Most heavy e-mail users today still have to learn at least a
couple of different message editors, different mail addressing schemes,

349

Ebay Exhibit 1013, Page 398 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

350

API

SPI

Figure 9-2.
Components in a standard WOSA configuration.

and idiosyncrasies of the underlying mail system. The desirable situa­
tion would be to prepare messages using a single application and have
the underlying software figure out how to deliver the message-regard­
less of whether it's to someone in your office, to a CompuServe sub­
scriber, or to a user out on the Internet. There are applications that try
to do this, but from the point of view of the application developer, it's a
daunting prospect to have to write a single application that knows
everything about every electronic mail system. If you write the world's
best message editor, you'd like to be able to hand a completed message
to the world's best Internet mail delivery program, or to the world's
best CompuServe mail delivery program, and so forth. Lower down in
the system, the mail delivery programs themselves should have the
option of using one of many different network transports to complete
the physical transmission of data-and writing network transports is
not what an electronic mail application vendor wants to spend re­
sources on.

WOSA is the basis for providing this functional separation within
Windows. In an extension of the example we've been considering, a
mail message editor would use the Windows API. A mail service pro­
vider would implement the appropriate SPI (in this case, Microsoft's

Ebay Exhibit 1013, Page 399 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

N I N E: Networking

MAPI), and Windows itselfwould link the components using the rout­
ing module. A similar arrangement would exist for other services. Sev­
eral examples of the WOSA model already exist: the TAPI interface for
telephone equipment manufacturers, the WinSock interface that stan­
dardizes the TCP /IP socket interface under Windows, ODBC for data­
base access, and others. 7

Network Layers
Looking back at Figure 9-1 on page 349, you can see the influence
WOSA has on the Windows 95 networking subsystem. Networking sup­
port in Windows 3.1 was restricted to a single network. Windows for
Workgroups expanded this to provide support for its native peer net­
working plus one other network. Windows 95 makes use of WOSA
design techniques to allow you to install support for as many concur­
rent network connections as you want.8 The multiple provider router
(MPR) shown in Figure 9-1 is the routing component for Windows 95
networking. Both the network provider modules and the network transports
conform to SPI rules, and at the lowest level, the popular NDIS (Network
Driver Interface Specification) interface provides further support for
shared device access and abstraction of the network hardware.

Here's a summary of the functions of each of the components il­
lustrated in Figure 9-1:

API. The API layer is the standard Win32 APL Apart from file-based
operations such as file open that happen to address remote
filesystems, the Win32 API provides specific network-oriented
APis. These functions allow for such operations as remote
resource interrogation and remote printer management. The
WNetGetUser() API, for example, allows an application to deter­
mine the user name associated with a particular network connec­
tion. All Win32 network APis have the WNet prefix.

Multiple Provider Router. The MPR is the routing component for
Windows 95 network operations. The MPR also implements
network operations common to all network types. The MPR

7. Each of these interfaces is a service provider. As you can see, marketing
requirements dictate that an SPI must also have its own acronym.

8. An arbitrary implementation limit of ten networks was used in early releases of
Windows 95. We'll have to wait and see whether ten equals infinity.

351

Ebay Exhibit 1013, Page 400 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

352

handles all Win32 network APis, some of which may be routed
to the appropriate network provider module. The MPR and the
network provider modules are 32-bit protected mode DLLs.

Network provider. The NP implements the defined network service
provider interface, encompassing such operations as making
and breaking network connections and returning network status
information. Only the MPR calls the network provider; an
application never directly calls an NP.

IFS Manager. The IFS Manager fulfills its normal role of routing
file system requests to the appropriate file system driver (FSD).
The MPR won't see pathname-based or handle-based application
calls; it's up to the IFS manager to route such calls to the net­
work FSD. Network providers can call the IFS manager directly
to perform file operations.

Network Filesystem Driver. Each network FSD is responsible for
implementing the semantics of a particular remote filesystem.
The FSD may be called by the IFS manager with requests of the
same type as for local filesystems (for example, file open or file
read), or the NP may call the network FSD directly. Obviously, a
network vendor has to develop the NP and the network FSD
toge.ther since each understands something of the semantics of
the underlying filesystem, so these modules aren't interchange­
able with others at the same level. Each network FSD is a 32-bit
protected mode VxD. (This alone guarantees a substantial
performance boost for Windows 95 networking.)

Network transport. The network transport VxD implements the
device-specific network transport protocol. Windows 95 allows
multiple transports to be in use simultaneously. The network
FSD calls upon the transport for the actual delivery and receipt
of network data. Given the likely network configurations of
Windows 95 systems, each network FSD will probably use a par­
ticular transport. However, the separation of functions means
that it's perfectly feasible for more than one FSD to use the same
transport. Microsoft's NetBEUI and Novell's IPX/SPX are exam­
ples of network transports due to be delivered with Windows 95.

NDIS. The Network Driver Interface Specification is a vendor­
independent software specification that defines the interaction

Ebay Exhibit 1013, Page 401 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

N I N E: Networking

between any network transport and the underlying device driver.
NDIS was originally developed to allow more than one transport
to use the same physical network adapter and its associated
device driver. NDIS has been revised over time, and Windows 95
networking supports NDIS version 3.0, although Windows 95
also contains provisions for using older 16-bit drivers conform­
ing to either the ODI (Novell's Open Datalink Interface) model or
earlier versions of NDIS. Both Windows NT and Windows 95
support the NDIS 3.0 interface, which means that network
device driver developers only need to follow the appropriate
rules to produce a single driver that works under either operat­
ing system.

Network adapter driver. The network adapter driver VxD controls the
physical network hardware. The NDIS interface allows the driver
to remain unconcerned about most network protocol issues­
the driver simply works in concert with the network transports to
send and receive data packets. Drivers designed for Microsoft's
networking products are called media access control, or simply
A:IAC, drivers. The driver does have to incorporate support for
the Plug and Play subsystem in order to participate fully in the
Windows 95 environment.9

Network Operations
Before we delve into the details of some of the Windows 95 networking
software components, let's look at a few of the basic network operations
Windows 95 supports and at some of the terminology that pervades
Windows 95 networking. The screen in Figure 9-3 on page 355 shows
a typical networking action-using the shell to wander around the net­
work looking for something. Such wandering is called browsing, and the
objects of the user's attention are various types of network resources.
Here are the terms you'll see as you deal with this type of user action or
in descriptions of the software that implements such an action:

A resource is a network object available for shared access-usually a
printer, a collection of files grouped in a disk directory, or a
communications device such as a fax or a modem.

9. The network adapter driver supports Plug and Play in concert with the NDIS.386
VxD, which is a standard component of Windows 95.

353

Ebay Exhibit 1013, Page 402 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

354

To browse is to wander the network looking for resources. The
Windows 95 shell's manifestation of browsing is a series of
windows that open to display successive levels of network re­
sources.

To enumerate is to list or examine a set of related objects. A server
may be sent a command requesting it to enumerate all of its
resources, for example. The local shell would then display this
list to the user during a browse operation.

A connection is a logical link between a local name, such as COMI:,
and a network resource. Establishing and maintaining network
connections is a principal function of the higher layers of the
network subsystem.

A domain in Microsoft's networking architecture is a collection of
servers and resources. Such a logical grouping allows for easier
administration since a user's access privileges to the domain
define the user's access to each server. A friendlier grouping
concept, the Network Neighborhood, was introduced into
Windows 95 early in 1994. Whereas a domain has a formal
specification, the neighborhood is simply the network resources
you choose to include there.

A container is an object that holds other objects. A domain, for
example, acts as a container for network servers. Using container
objects when browsing a large network is easier for the user, who
will at first see a probably small list of container objects rather
than a very long list of individual servers.

A share point is a disk resource that a remote user can connect to. All
directories and files in the share point's subtree become part of
the connected network resource.

The connection is particularly significant in Windows 95 networking. A
network connection is essentially the ability to have references to the
local LPTI: device be replaced with operations on a network printer
\\Serverl\Laserjetlll or a network file \\Server2\letters\letter.doc take
the place of an apparently local file H:LETTER.DOC. Windows 95 for­
malizes the notion of a persistent connection, a network connection that
has a lifetime beyond a single session or working day. You'll see persis­
tent connections in use whenever you log in to the network. The shell
remembers the connections that were in place the last time you logged

Ebay Exhibit 1013, Page 403 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

N I N E: Networking

Figure 9-3.
Browsing the network with the Windows 95 shell.

in and restores them. If you use the same network printers and the
same network mailbox each day, as most people do, you don't need to
explicitly restore the connections every day. Windows 95 networking
allows an application to identify a connection to a network resource as
a persistent connection, and thereafter the shell will take care of restor­
ing the connection-neither the application nor the network provider
needs to worry further about having to set up the connection for each
new session.

The Multiple Provider Router
Windows 95 provides the multiple provider router as a standard DLL.
Functions within the MPR relieve each network vendor of the need to
implement a large amount of common code. Equally as important, the
fact that each NP relies on the same code in the MPR means that there
will be a consistent treatment of many network issues. The MPR recog­
nizes the fact, for example, that the names LPTI and LPTI: refer to the
same local device. Leaving such details up to each NP would almost
guarantee some set of minor differences that would have the potential
to confuse the user.

355

Ebay Exhibit 1013, Page 404 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

356

An application (including the system shell) is the principal cause
of most MPR service calls. The MPR DLL resolves all the networking
APis defined for the Win32 interface. Microsoft refers to this subset of
the Win32 APis as "WinNet" or "WNet" functions, and every API in the
subset uses VViVet as a name prefix. To avoid any confusion, the func­
tions provided by each network provider use NP as a name prefix. Ap­
plication calls to WinNet functions may well result in the MPR's calling
NP services, but applications never call the network providers directly.

The 32-bit WNet API functions are another example of the Win­
dows 95 teani's efforts to take advantage of the switch to 32-bit inter­
faces to improve on the API design. Apart from improvements in the
network subsystem proper, enhancements in the Windows 95 base op­
erating system add a lot to the Windows networking capabilities.
Changes in the API reflect these improvements in Windows 95:

Ill Plug and Play technology is a major aid in reducing the
complexity of setting up a network. The original release of
Windows for Workgroups actually pioneered several aspects
of the hardware recognition and configuration capabilities
now incorporated in the Plug and Play subsystem.

Ill Support in the base system for long filenames was previously
part of the network subsystem to allow interoperation with
Windows NT and OS/2 LAN Manager servers, both of which
support long filenames on certain filesystem types.

Ill Multiple concurrent network support obviates the need for
someAPis.

Ill Common interfaces with Windows NT reduce both the
application developer's and the device driver developer's
workloads as they try to support both operating systems.

A number of Windows 3.1 APis, though still supported for 16-bit
application compatibility, have disappeared from the Win32 API set
and have been declared "obsolete" by Microsoft. All the IFN prefix
APis that dealt explicitly with long filenames, for instance, are "obsolete."

Reducing the number of explicit network APis obviously benefits
the application developer, who now has less to learn when incorporat­
ing networking capabilities. The API reduction doesn't mean less func­
tionality, however, since improvements in the base operating system
also boost the networking capabilities of the average application. For

Ebay Exhibit 1013, Page 405 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

N I N E: Networking

example, using UNC pathnames that reference network locations such
as \\Server\Resource\DocumenLFile is now recommended practice for
every application. The filesystem supports this naming convention di­
rectly (through the CreateFile() API), and using full network pathnames
is now just plain good programming practice rather than a convention
limited to network-aware applications. The new filesystem architecture
results in an API call that needs network services being routed to the ap­
propriate network component. The application doesn't need to worry
about calling a network-specific APL

32-Bit Networking APls
Before we look at the services that must be supplied by a network pro­
vider, let's look at the APis that are specific to a network environment.
The Win32 network APis fall into two main sets: the set of functions
that deal with network connections, and a set of miscellaneous services
that support other network features. Apart from applications' calling
these APis directly, network providers also call these APis to take advan­
tage of the common code implemented in the MPR.

Network Resources
Several of the WNet APis use a data structure identified as a
NETRESOURCE. This object is central to the interaction of the appli­
cation and the underlying system and describes the type of the re­
source in addition to linking the resource to the underlying network
provider that supports it. Figure 9-4 shows the NETRESOURCE data
structure. Specific API calls may not use all of the fields in the struc­
ture, and in some cases, there is a don't care or all value for a field.

Figure 9-4.
The NETRESOURCE data structure.

357

Ebay Exhibit 1013, Page 406 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

358

If you examine the purposes of the fields in the NETRESOURCE
data structure, you can begin to see the relationship between the ap­
plication (particularly the shell) and the underlying network subsystem:

The dwScope field, when used in an enumeration function, specifies
the scope of the enumeration. The scope can be all resources
on the network, currently connected resources, or persistent
connections.

The dwType field determines whether the resource type is a disk, a
printer, or another type.

The dwDisplayType field identifies the resource as a network domain,
a network server, or a share point for purposes of graphically
displaying the network resource.

The dwUsage field denotes the resource as one that you can directly
connect to or as a container resource.

The lpLocalNamefield points to a string that names the local device.

The lpRemoteNamefield points to a string that names the network
resource.

The lpComment field points to a string that contains a comment
supplied by the associated network provider.

The lpProviderfield points to a string that contains the name
of the network provider associated with the resource. (A
NULL value indicates that the name of the provider is un­
known.)

Connection APls
The connection APis allow applications to create and break access to
explicit network resources. The connection APis appeared in earlier
versions of Windows networking, but the latest form of these APis al­
ters the format of the call parameters slightly, and although older APis
such as WNetAddConnection() are still supported, the recommendation
is to use the most recent form (in this case, WNetAddConnection2()).
Here's a summary of the connection APis:

Ebay Exhibit 1013, Page 407 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

N I N E: Networking

API Name Function

WNetAddConnection() Connect to a network resource using
a local device name. Replaced by
WNetAddConnection2().

WNetAddConnection2() Connect to a network resource using a
local device name. ·

WNetCancelConnection() Break an existing network connection.
Replaced by WNetCancelConnection2().

WNetCancelConnection2() Break an existing network connection.

WNetGetConnection() Retrieve the network resource name
associated with a local device name.

WNetNotifyReg;ister() Register a connection notification
function.

WNetConnectionDialog() Start a network connection dialog box.

WNetDisconnectDialog() Start a network disconnection dialog box.

The connection APis generally de~ with NETRESOURCE struc­
tures-passing a structure with the fields necessary to complete the op­
eration filled in. An application can call the WNetConnectionDialog()
and WNetDisconnectDialog() functions directly to allow the user to make
or break a network connection. These two functions are the same ones
used by the shell for network browsing.

The services of a network provider are called on to help complete
the connect or disconnect operation, but the NP doesn't need to be
directly involved in the details of network browsing, resource selection,
and persistent connections. However, the WNetNotiJYRegi,ster() API does
allow the NP to watch network connections ifit wishes. Using this API,
an NP can register a callback that occurs before and after each network
resource connect and disconnect operation initiated by the MPR.
Within the callback, an NP can affect the operation in progress. For
example, if a connect operation fails, the NP can use the notification
callback to instruct the MPR to retry the connection attempt.

Enumeration APls
The three enumeration APis-WNetopenEnum(), WNetEnumResource(),
and WNetCloseEnum()-allow a caller to examine the details of the avail­
able network resources. You use these APis much as you might use an
MS-DOS FindFirst/FindN ext sequence to search for a file on a disk. The
WNetopenEnum() API allows the caller to describe the set of target net­
work resources, and successive calls to the WNetEnumResource() API will

359

Ebay Exhibit 1013, Page 408 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

360

return NETRESOURCE structures filled in with the details of the match­
ing available network resources. The MPR will involve the NPs in com­
pleting the enumeration process, but the Win32 APls cloak the details of
a particular NP's enumeration functions. The user sees the result of a
network enumeration as a series of open windows displaying the succes­
sive layers of the enumeration, as in Figure 9-3 back on page 355.

Error Reporting APls
The WNetSetLastError() and WNetGetLastError() APis are equivalent to
the Win32 SetLastError() and GetLastError() functions normally used by
DLLs. These functions allow a caller to set a specific error code that will
be returned to another caller or to retrieve an extended error code.
The network versions of the functions are provided for use by a net­
work provider only and not as a general application interface.

Local Device Name APls
The local device name APis help an NP to manipulate device names
consistently. Again, these APis are intended for use by NPs only and are
not for general application use. The WNetDeviceGetNumber() API will ac­
cept a device name string and return a local device number-the MPR
carries out all the necessary name validation and matching during the
call. The WNetDeviceGetString() function reverses the procedure, return­
ing a name for a given device number. The WNetGetFreeDevice() function
simply returns a currently unused local device number.

UNCAPls
The UNC APis are designed to provide a service to the network provid­
ers that allows consistent treatment of UNC pathnames. For example,
MS-DOS naming conventions call for the \ character as a pathname
component separator, whereas a UNIX system uses the I character.
UNC naming support is available for both environments, however. The
WNetUNCValidate() API function checks a complete pathname, and the
WNetUNCGetltem() API returns successive components of the name to
the caller.

Password Cache API
Windows 95 networking implements a local password cache scheme
that encrypts passwords and stores them locally. The administrator can
disable this scheme (for extra security), and an NP can prevent its pass­
words from being retained in persistent storage. WNetCachePassword() is
the API that provides access.to the password cache services.

Ebay Exhibit 1013, Page 409 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

N I N E: Networking

Authentication Dialog API
The WNetAuthenticationDialog() API provides a service that allows an NP
to request authentication information-particularly a user name and
password-from the user. Again, the intent is to present a consistent
network access interface to the user, regardless of the underlying net­
work type.

Interfacing to the Network Provider
The MPR is responsible for loading each NP in turn. The settings in the
Windows SYSTEM.IN! file determine the total network configuration
for a particular machine. Figure 9-5 shows a section of a SYSTEM.IN!
file that describes a three-network configuration-Windows for
Workgroups, NetWare, and the revolutionary NewNet product.10 The
loading and initialization order for network providers will be the order
in which they're specified in the SYSTEM.IN! file. Each NP can store
additional initialization information within its private section of the
SYSTEM.IN! file, but values for the NPID, NPName, NPDescription, and
NPProvider fields are required, and Microsoft has reserved all strings
with the NPprefix for its own use. The WNetGetSectionName() API allows
an NP to find its private section within the SYSTEM.IN! file.

Figure 9-5.
SYSTEM.IN! entries for multiple (three) networks.

10. The latter product is unlikely ever to see the light of day but is useful for
illustrative purposes.

361

Ebay Exhibit 1013, Page 410 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

The NPProvider field identifies the DLL that implements the net­
work provider interface. The NPID field identifies the type of the
network. Figure 9-6 shows a partial list of the network products identi­
fied for support-which says something for how serious Microsoft is
in its intention to allow a Windows 95 system to connect to just about
anything you can put on the other end of the wire. Simply adding the
name of an existing network driver to the SYSTEM.IN! list doesn't magi­
cally get you network support, though: the DLL that provides the net­
work interface must be a full Windows 95-compatible network provider,
and it's up to the various vendors to produce this software themselves. 11

Mnemonic Identifier

WNNC_NET_MSNET

WNNC_NET_LANMAN

WNNC_NET_NET"'7ARE

WNNC_NET_VINES

WNNC_NET_IONET

WNNC_NET_SUN_PC_NFS

WNNC_NET _LANTASTIC

WNNC_NELAS400

WNNC_NET _FTP _NFS

WNNC_NET_PATHWORKS

WNNC_NET_POWERLAN

Figure 9-6.

Supported Network Type

Microsoft MS Net

Microsoft LAN Manager

Novell NetWare

Banyan VINES

TCS lONet

Sun Microsystems PC NFS

Artisoft LANtastic

IBM AS/400 Network

FTP Software NFS

DEC Pathworks

Performance Technology
Power LAN

Some of the network types supported in Windows 95.

The Network Provider

362

A single network provider implements the service provider interface
for a particular network as a Windows DLL. The NP doesn't have to
worry about multiple network issues or about most aspects of interfac­
ing to the user. The MPR and the support that comes from the underly­
ing filesystem architecture take care of all this. In fact, Microsoft's
design recommendations for network vendors specifically deter the

11. By shipment time, this list may well have changed-not least because some
network vendors may no longer exist.

Ebay Exhibit 1013, Page 411 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

N I N E: Networking

implementer from using private user interface dialogs. This isn't to say
that the characteristics of a particular network are totally hidden from
the user. In several instances, the NP can register functions that the
MPR will call-to extend its default handling of network browsing op­
erations, for example.

The MPR will load the NP if its associated network is listed in the
SYSTEM.IN! file as active. Since the NP is a Windows DLL, the system
will call its standard initialization entry point once the NP is loaded.
This allows the NP to carry out any private initialization it needs to.
Thereafter, the NP responds to the MPR by means of the defined net­
work provider interface. Many of the defined NP functions are op­
tional-the NP supports them only if it has something, to add to the
default actions of the MPR. For example, the NP doesn't need to imple­
ment the group of functions responsible for enhancing the graphical
display of network resources unless it wants to alter the shell's represen­
tation of the resources. The MPR also has to determine what the NP
can support-for example, whether the NP is able to handle UNC
pathnames completely.

To figure out exactly what the behavior of a particular NP is going
to be, the MPR calls the NPGetCaps() interface. The parameter to this
call is a query about a particular NP capability or about an NP charac­
teristic (the supported network type, for example). In the case of a
query about a capability, the response from the NP determines whether
the MPR will subsequently call the specific interfaces that implement
the feature or rely on its own default handling. NPs don't need to
implement stub routines or return errors for unsupported interfaces­
once the MPR recognizes that an NP doesn't support a particular capa­
bility, it won't try to call any of the related interfaces.

There are also times when the MPR calls each NP in turn, trying
to find an NP that recognizes a particular resource. An error return
from one NP causes the MPR to move to the next, finally returning an
error to the caller if no NP responds successfully.

Network Provider Services
Let's take a look at the details of the service provider interface for an
NP. Apart from the NPGetCaps() interface just described, there are six
groups of functions:

User Identification. The single NPGetUser() interface that allows the
caller to determine the current username associated with a
particular network resource.

363

Ebay Exhibit 1013, Page 412 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

364

Device redirection. The interfaces that make, break, and manipulate
network connections.

Shell interface. Functions that augment the native display behavior of
the shell during browsing and other operations.

Enumeration. Functions that an NP must support if it supports
· browsing operations.

Authentication. Functions that support the network-specific security
features.

Configuration. Two optional interfaces: NPEndSession(), to notify the
NP that Windows is closing down, and NPDeviceMode(), to allow
network-specific configuration actions, such as choosing a
network adapter from among those available.

All of the functions share similar calling and error return conventions.

Device Redirection SPI
The device redirection set of NP interfaces is the eventual target of the
WNet connection APis that form the associations between drive letters
(A: through Z:) or device names (LPTI: and so on) and network re­
sources. Some networks don't need local devices for network connec­
tions-a characteristic that a network reports through the NPGetCaps()
interface. The optional NPValidLocaTDevice() interface allows an NP to
restrict the set of local devices that the MPR can use to make connec­
tions through the NP. For example, the NP may support only LPTI:
and LPT2:, whereas Windows 95 supports additional LPT devices. If
the NP doesn't export the NPValidLocaTDevice() function, that's an indi­
cation that the NP can handle any local device name.

NPNotifyAddConnection() is the callback function an NP can use to
involve itself more directly with the network connection process.
Here's the set of functions it belongs to:

NPAddConnection()

NPCancelConnection()

NPGetConnection()

NPNotifyAddConnection()

NPValidLoca/Device()

Make a network connection.

Break a network connection.

Obtain information about a connection.

Arrange a callback during network
resource connection and disconnection.

Indicate whether a local device is valid for
use as a network connection (optional).

Ebay Exhibit 1013, Page 413 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

N I N E: Networking

Shell SPI
The shell interface functions assist the shell in displaying the network
layout and the attached resources for the user. Several of these func­
tions are optional. If an NP is happy with the default displays generated
by the shell, it doesn't have to support the possible extensions. Here's a
summary of the shell NP functions:

NPGetDirectory Type()

NPSearchDialog()

NPFormatNetworkName()

NPGetDisplayLayout()

NPDisplayCallback()

NPGetEnumText()

NPGetNetworkFileProperties()

NPDirectoryNotify()

Provide information about a network
directory.
Assist in network browsing.
Change the display appearance of a
network pathname.
Customize the appearance of the
network layout.
Call back during network display.
Return additional text information
during display.
Display file properties.
Notify of directory creation, deletion,
and movement.

The NPSearchDialog() function extends the standard shell brows­
ing mechanism, allowing an NP to display its own view of the associated
network. If an NP supports this extension, the shell enables a Search
button in its connection dialog. If the NP doesn't support the enumera­
tion interfaces, the shell will use its private search facility exclusively for
browsing.

Enumeration SPI
The enumeration functions are an all or nothing subset-if the NP re­
sponds to a query from the MPR by indicating that it supports enu­
meration, it must support all four functions. If an NP doesn't support
network browsing, it doesn't need to implement the enumeration func­
tions. Within an NP that supports them, the open, enumerate, and
close functions are the eventual target of the corresponding WNet enu­
meration APis. The NPGetR.esourceParent() SPI assists the shell in browse
operations by providing a means of moving back up a hierarchy. The
enumeration functions are shown on the next page.

365

Ebay Exhibit 1013, Page 414 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

NPOpenEnum()

NPEnumResource()

NPCloseEnum()

NPGetResourceParent()

Authentication SPI

Begin enumeration.

Enumerate network resources.

End enumeration.

Return the parent of a specified network
resource.

The authentication functions allow the NP to participate in the net­
work logon and logoffprocedures controlled by the MPR. During the
logon process (see Figure 9-7), the NP has the opportunity to carry out
additional user authentication and to provide the MPR with the name
of an executable file it can use as a logon script. The shell will restore
the user's persistent connections for the network during the logon.
Here are the authentication functions:

NPLogon()

NPLogoff()

NPGetHomeDirectory()

NPChangePassword()

Figure 9-7.

Log on to the network.

Log off the network.

Return the user's personal network
directory.

Notify of a successful change of the user's
password.

Standard network logon dialog box.

Network Transports

366

Windows 95 has not revolutionized the world of network transports.
Network transports still play .the same role: they provide reliable, se­
quenced, error-free connections among the upper-level network soft­
ware modules. Windows 95 also has to live within the constraints of

Ebay Exhibit 1013, Page 415 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

N I N E: Networking

compatibility-particularly for existing real mode network device driv­
ers-and the networking subsystem incorporates features that allow
the continued use of these drivers by the transports.

The network transport has to play two basic roles within the sys­
tem: it must act as a communications medium for the network FSDs as
they provide support for the file and print services, and as an API us­
able directly by network applications. In both cases, it's the published
transport protocol interface that comes into play. Windows 95 supports
both NetBIOS (via Microsoft's NetBEUI transport) and Novell's IPX/
SPX protocols. The transports for both protocols are full 32-bit pro­
tected mode modules supporting 32-bit and 16-bit application inter­
faces. These days, network applications such as client-server databases
and network management systems tend to make use of higher-level
network protocols (named pipes or Microsoft's ODBC, for example)
rather than deal directly with the transport interface. But there are
plenty of important applications still written to both the NetBIOS and
the IPX/SPX interfaces.

In the medium term, Microsoft has begun to recommend use of
the Windows Sockets interface for network applications. The project to
define the so called WinSock interface was a multicompany attempt to
rationalize all of the different versions of the TCP /IP12 protocol-based
socket interface that various vendors had ported to the Windows envi­
ronment. Originally introduced as a networked interprocess communi­
cations mechanism with version 4.2 of the Berkeley UNIX system, the
socket interface has become a popular APL Although the sockets line­
age goes back to the TCP /IP world, sockets can be implemented on top
of other transport protocols. The Windows Sockets project was so suc­
cessful that, in addition to using Windows Sockets as an interface to the
TCP /IP world, Microsoft developed a Windows Sockets module that
uses NetBEUI as its underlying transport. 13

In the longer term, the need for fully distributed applications will
make an RPG-based method the preferred network application inter­
face. Windows NT has already begun to emphasize the use of RPC in­
terfaces, and Microsoft's Cairo system will underline their long-term

12. TCP /IP is now officially called the Internet Protocol Suite.

13. Windows 95 will include a TCP /IP transport and several related utilities such as
FTP, Telnet, and Internet access programs.

367

Ebay Exhibit 1013, Page 416 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

importance. However, the migration from a simple client-server appli­
cation model to a fully distributed one is not yet upon us, so the simpler
network programming interfaces supported by Windows 95 will remain
important for some time to come.

Network Device Drivers

368

Microsoft defines a media access control, or .MAC, device driver model. A
MAC driver is the lowest-level software in the networking subsystem
and deals directly with the network adapter. A MAC driver conforms to
the Network Driver Interface Specification (NDIS). So called clients of the
MAC driver-the transport protocol modules-access the MAC driver
functions via the NDIS interface (a process termed binding). The NDIS
specification was originally developed for Microsoft's OS/2 LAN Man­
ager product and has become fairly widely used on network systems
that don't use a Microsoft OS. NDIS is now at version 3.0. The develop­
ment of this most recent version of the specification was done largely
by the Windows NT group.14

NDIS aims to provide solutions to a number of problems inherent
in a complex network environment:

• Hardware independence. The interface between the transport
protocol and the MAC driver ought to allow at least source
code portability for the transport software.

Ill Transport protocol independence. The MAC driver has to be
hardware dependent, but the NDIS interface ought to allow
the use of the driver by any network transport.

• Multiple transport protocols. The interface to the driver
needs to allow more than one protocol to share a single
network adapter (and a single Ethernet cable).

Ill Multiple network adapters. NDIS has to allow the simulta­
neous use of more than one network adapter in the same host
machine (possibly using a single MAC driver).

14. Along with other general improvements to the specification, Windows NT
required that NDIS 3.0-compliant software be usable in a multiprocessor environ­
ment. The Windows 95 team didn't have to worry about this particular requirement.

Ebay Exhibit 1013, Page 417 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

NINE: Networking

• Performance. Network vendors strive continually to win
benchmark competitions: if using NDIS implies poor perfor­
mance, it's unlikely to be a very popular interface. 15

You can think of NDIS as an interface that allows multiple trans­
port protocols to talk tb multiple network adapters, possibly on a multi­
processor machine. Despite their graduated degrees of freedom, NDIS­
compliant drivers are not that difficult to develop, and any network
adapter you buy will probably come with an NDIS driver. Of course, the
adapter may not yet come with a protected mode NDIS version 3.0
driver-and that's a problem the Windows 95 networking team had to
address directly.

Although the NDIS model has achieved wide acceptance, there's
another company in the networking business that has a different way of
doing things. Novell's open Datalink Interface (OD/) specification mir­
rors Microsoft's NDIS in aiming to define a protocol-independent de­
vice interface. And there are a lot of ODI drivers available too. In
addition to needing to provide compatibility for older NDIS drivers,
Windows 95 had to support ODI drivers.

Network Driver Compatibility
To solve the problem of supporting non-NDIS 3.0 network device
drivers-specifically NDIS 2.0 and ODI drivers-Microsoft has
evolved a series of low-level modules, sometimes called helper mod­
ules, that act as "glue" between the various interfaces. This allows the
Windows 95 protected mode NetBEUI transport to use an NDIS
version 2.0-compliant real mode adapter driver, for example, or a
real mode IPX/SPX transport and associated ODI driver to operate
alongside a NetBEUI configuration.

Essentially, the helper modules present an upper-level interface
that complies with the caller's requirements, and they translate the
calls to a lower-level interface that matches the capabilities of the avail­
able device driver. In some cases, the helper module may simply man­
age the transition between protected mode and real mode (actually
virtual 8086 mode). You can recognize the type of the helper module as

15. NDIS is specified as a C language interface, and for performance reasons many
of the NDIS function calls are implemented as inline code using macros.

369

Ebay Exhibit 1013, Page 418 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

either a protected mode VxD (with a .386 filename suffix) or an MS­
DOS TSR (with a .SYS filename suffix). The PROTOCOL.IN! file is set
up to contain the description of how all the pieces fit together in a run­
ning system.

Network Configurations

370

Putting together the jigsaw of network transports, drivers, and compat­
ibility helper modules yields some interesting configuration possibili­
ties. Figure 9-8 illustrates the simplest case-a single network adapter
with a protected mode NDIS 3.0-compliant driver. The additional
module illustrated-the VNETBIOS component-virtualizes the ac­
cess to the transport for the concurrently running virtual machines.

.

• Ethernet

Figure 9-8.

NetBIOS virtualizer

NetBEUI transport

NDIS 3.0 support layer

NDIS 3.0 driver
(3Com Etherlink II)

A simple NDIS 3.0 network config;uration.

Figure 9-9 illustrates a configuration that supports the NDIS
3.0-compliant NetBEUI transport running together with a real mode
NetBEUI transport. At the lowest level, the network adapter driver is an
NDIS 2.0 real mode driver (UBNEl.DOS in the example). The helper

Ebay Exhibit 1013, Page 419 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

NI N E: Networking

modules NDIS2SUP.386 (a protected mode VxD) and NDISHLP.SYS (a
real mode MS-DOS TSR) merge these different interfaces into a work­
able configuration.

NetBIOS virtualizer

NetBEUI transport

NDIS 3.0 support layer

NDIS 2.0 support layer

.

• Ethernet

Figure 9-9.
Mixing NDIS 2. 0 and NDIS 3. 0 in a single network configuration.

Although it seems highly unlikely that the configuration illus­
trated in Figure 9-10 on the next page would have a life outside
Microsoft's test labs, it does serve to show the extent of the compatibil­
ity provided under Windows 95. This configuration shows four separate
transport protocols in use-Novell's IPX/SPX, the purely illustrative
ABC protocol, and NetBEUI and TCP/IP cloaked by the Windows
Sockets interface. The lower layers again use a combination of pro­
tected mode and real mode helper modules to form the paths to and
from the network adapters. ·

371

Ebay Exhibit 1013, Page 420 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

• I ., I • • t • I ... •••••
Ethernet

Figure 9-1 o.
A complex network configuration-multiple protocols and multiple
adapters.

The Network Server

372

The peer-to-peer capability of Windows 95 networking means that
there has to be a server available for use on the local machine. Al­
though the Windows 95 networking group is not trying to compete
with the high performance and industrial strength of Microsoft's own
Windows NT Advanced Server product, they have produced a highly
capable server with performance exceeding the levels reached in Win­
dows for Workgroups version 3.11. As in previous versions, the server
supports file and printer sharing features, giving you the option to pro­
vide other network users with access to files, directories, and printers

Ebay Exhibit 1013, Page 421 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

N I N E: Networking

local to your machine. In response to many customers who want to pre­
vent their users from running desktop systems as network servers, Win­
dows 95 can be configured to run as a client machine only. Figure 9-11
on the next page shows how the Windows 95 server software interfaces
with the other network components.

Server Components
The major server component is a ring zero VxD named VSERVER that
provides the bulk of the local file and printer access capability. The
server utilizes the defined installable filesystem interfaces for access to
the real data on local hard disks and CD ROM devices and interacts
with the print spooler to support the printer sharing feature. Here's a
summary of what each component is responsible for:

Spooler. The print spooler exists at the application level (in ring
three) and also as a system component (a VxD running at ring
zero). There's a shared memory interface for communication
between the ring zero and ring three components, and a ring
zero API that allows the server to submit a print job to the ring
zero spooler.

MSSHRUI. The Microsoft share point user interface component is
a ring three DLL that the shell uses as it satisfies user-initiated
operations such as adding new share points to the local machine.

VSERVER. The main server software component itself is multi­
threaded, maintaining a pool of threads that it allocates among
the different network requests. The server accesses the network
directly using the transport level interface and accesses the local
file systems through the IFS Manager.

Access Control. The Access Control VxD controls individual file
access requests, using the provided username and filename to
verify the rights of the particular user to access a shared
resource.

Security Provider. The Security Provider component takes responsi­
bility for authentication of network access requests. It uses the
combination of the user's login name and supplied password to
verify the legality of any access request.

373

Ebay Exhibit 1013, Page 422 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

Ring3

API
Ring 0

Transport
APl/SPI

NDIS

Figure 9-11.

Network
adapter driver

Windows 95 Network Server architecture.

374

Local
filesystem

devices

Ebay Exhibit 1013, Page 423 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

N I N E: Networking

Network Printing
Of all the features of Windows, printing is perhaps the most commonly
used and the most difficult for an average user to come to grips with.
The complexity inherent in supporting hundreds of different types of
printers-each with many configuration possibilities-and the layers of
obfuscation added by a network can make printing under Windows 3.1
a painful experience. Even Microsoft's own Windows Printing System
product fails to solve the network printing problem, although it does a
good job of supporting a locally attached printer. Windows 95 aims to
solve these problems with a new printing architecture whose design was
borrowed from Windows NT and then adapted. Figure 9-12 on the
next page illustrates the major components of the printing subsystem.

in common with the network file access capabilities, the printing
system uses a routing component (the Print Request R.outer, or PRR) that
accepts Win32 API calls and directs them to a print provider (PP). A
single system may host several print providers if there are connections
to multiple printers. The PP translates the information in the API call
to a form suitable for the underlying network-for example, the
printer might be attached to a NetWare server-and passes it on. The
PP will convert the returned information to the correct Win32 format
and pass it back to the application. The application itself doesn't need
to know anything about the printer's capabilities or any network con­
nection details. Although it will include several print providers as stan­
dard components; Microsoft's intent is that the printer manufacturers
themselves will produce their own print providers. The printing archi­
tecture allows for multiple PPs related to a single printer to install
themselves. So, for example, the generic PP for an HP LaserJet might
be overridden by the better "quality of service" offered by a Hewlett­
Packard-produced PP.

Locally attached printers participate in this printing architecture,
with the local print proVider interfacing to the resident printer driver
and the spooling system. The printing architecture also allows for the
inclusion of a monitor within the chain of modules that collaborate dur­
ing the printing process. A monitor takes responsibility for low-level
interaction with the printer. In the case of a printer attached to a bi­
directional port, the monitor enables intelligent error handling and

375

Ebay Exhibit 1013, Page 424 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

376

API

Transport
APl/SPI

NDIS

Figure 9-12.
Windows 95 Network printing architecture.

Local printer

'

Ebay Exhibit 1013, Page 425 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

N I N E: Networking

printer management.16 More recent product innovations, such as print­
ers with built-in network adapters that attach directly to the network,
can also be handled by means of the monitor mechanism. The monitor
simply talks to the printer via the network transport interface. The up­
per layers of software don't know and don't care about the specifics of
the printer's connection.

One of the design goals of the Windows 95 team was encapsulated
in the phrase "point and print," which was used during many early
product presentations. What it meant was the ability of the user to print
by simply dragging a document icon to a printer icon on the shell desk­
top and dropping it. Windows then figures out how to print the docu­
ment, restoring a network connection if necessary and even loading
the appropriate printer software dynamically. No longer does the user
need to know a printer's exact model number designation and the
amount of memory in the printer, which might be fifty yards away-let
alone need to have a copy of the right Windows installation diskette
handy. The point and print capability is supported by several new APis
that enable the shell to determine the available printers and associated
drivers and then to dynamically load a printer driver. 17

Network Security
Microsoft's emphasis in the design of Windows 95 networking security
was on providing good security for the Windows 95 system itself and
enabling a Windows 95 machine to participate in the security system

· implemented in a more complex scheme. The design of the FAT
filesystem alone means that a Windows 95 machine is probably inse­
cure-at least not up to the level of security required by the stringent
government specifications that Windows NT complies with. In fact,
presentations of the Windows 95 network security feature usually in­
clude some form of this statement: "if you want something that's small,
fast, and easy to use, we have it; if you want something that's bulletproof,

16. Microsoft's Windows Printing System was the first product to make use of this
bi-directional capability within Windows. Although the Windows Printing System was a
great product for locally attached printers, it didn't support network printing. The
Windows 95 printing architecture fixes that problem.

17. If you're searching for details, the EnumPrinters(), GetPrinter(), GetPrinterDriver(),
GetPrinterDriverDirectory(), GetPrintProcessorDirectory(), and LoadLibrary() functions are
those most intimately involved with the point and print capability.

377

Ebay Exhibit 1013, Page 426 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

use Windows NT." In the business world, most network administrators
have to worry about some level of security protection and only a few
have to concern themselves with protection against sophisticated
break-ins. Windows 95 aims to meet the majority's need, and Windows
NT is there for those who need a higher level of security.

Windows 95 provides two types of security:

II Share-level security similar to the security scheme in Windows
for Workgroups. An administrator configures each network
share point with a particular set of access rights.

II User-level security. A user's network name implicitly grants the
user a defined set of access rights to each network resource.

Earlier designs for the system allowed for an additional security type­
one that made use of a technique called pass through authentication. This
technique would have allowed Windows 95 to pass a supplied login
name and password to another system so that the other system could
validate the user's security credentials and return access rights for the
user to the Windows 95 host. The feature wasn't greeted with much
enthusiasm, and it was dropped from the product. In the current de­
sign, a single system can operate under either share-level or user-level
security-you can't mix the two types of security on one system. Most
likely, every system in an organization will be set up with the same type
of security. ,

Access Controls

378

A user's access to network resources is determined by what Microsoft
calls access controls, also referred to simply as ACLs-for "access control
lists." The AGL is the system data structure that describes access rights.
In Windows 95, access controls can be applied to files, printers and a
remote administration capability. Microsoft planned to incorporate se­
curity and other administrative functions together in a System Policy Edi­
tor-a utility aimed at supporting all of the network security and
management features. 18

18. This utility had appeared in various incarnations in Microsoft LAN Manager,
Windows NT, and Windows for Workgroups. It was a late arrival in Windows 95. It
wasn't folded into the product until after the Beta-I release in June 1994.

Ebay Exhibit 1013, Page 427 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

N I N E: Networking

Share-Level Security
Share-level security applies a set of permissions to an individual re­
source-regardless of which user is trying to gain access to the resource.
The resource can be either a file (typically a subtree within the
filesystem) or a printer. The administrator can protect a resource with a
password that allows either full (read and write) access or read-only ac­
cess. If a user knows the password, he or she has access to the resource.

User-Level Security
User-level security allows you to specify the names of individual users
who have access to shared resources. For convenience, you can collect
users into groups and give access permissions to an entire group-im­
plying that every user belonging to the group gets the same access per­
mission. To gain access to a resource, the user must belong to the set of
users granted the appropriate permissions.

Conclusion
Windows networking has evolved from support for a single network
with primitive setup facilities to a complete architecture supporting
multiple network connections. The structure of Windows 95 network­
ing relies heavily on Microsoft's WOSA design, and with support from
the new installable filesystem interface, the networking architecture
ought to be able to stand unchanged for several releases. As we'll see in
the next chapter, the implementation of remote communications fea­
tures is greatly simplified by the underlying support of Windows 95 for
network components.

We haven't looked at a couple of features of Windows 95: the remote
procedure call (RPC) capability and the collection of administrative fea­
tures bundled together under the heading "systems management." The
RPC facilities in Windows 95 are essentially identical to those avail­
able in Windows NT, and although Windows 95 itself doesn't make
use of the RPC capability as extensively as Windows NT does, certain
Windows 95 components, such as the network printing subsystem, do
use RPC. The systems management features of Windows 95 incorpo­
rate all the administrative capabilities common to networked sys­
tems-assigning users to named groups, granting a user certain
administrative privileges, and so on.

379

Ebay Exhibit 1013, Page 428 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

380

The new networking design allows any vendor to provide network
access for Windows 95, although it's hard to see why a product that
provides out of the box support for Microsoft, Novell, and TCP /IP net­
works would need to be augmented. Now that the operating system
underlying the networking architecture is much more sophisticated,
the peer-to-peer capability and overall performance ought to provide
competition for the smaller networking companies. Although its secu­
rity features don't match the rigorous approach taken by Windows NT,
for many small to medium-size networks, Windows 95 will probably
provide all the networking facilities that are needed. It will be interest­
ing to observe the impact of Windows 95 on the local area networking
market.

Sophisticated local area networks are at the upper end of the market Windows 95
addresses. The Windows 95 team also had a mandate to provide very good sup­
port for the other end of the market-for the ever-shrinking portab/,e computer
now used in a variety of "on the road" situations and for the burgeoning con­
sumer market for multimedia applications. Those markets and Windows 95 sup­
port for them are the subjects of the next chapter.

Reference
Tanenbaum, Andrew. Computer Networks. 2d ed. Englewood Cliffs, NJ.:

Prentice Hall, 1989. The standard tome on networking. If it isn't in
this book, either it's not worth worrying about or it's fresh out of the
research lab.

Ebay Exhibit 1013, Page 429 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

C H A P T E R T E N

MOBILE COMPUTING

Many of the new features of Windows 95-the 32-bit operating system
and 32-bit applications, the new rich visuals of the shell, and the built­
in local area networking capabilities-call for the use of a fairly high
powered desktop system. But the Windows 95 development team also
had to address the needs of a large class of users who don't have con­
tinuous access to a powerful desktop computer. These users are loosely
classified as "mobile," meaning that they use computers in various
physical locations at various times. Some users are truly mobile-using
only laptop computers and traveling frequently, retaining contact with
their home bases or their customers via electronic mail, phone, and fax.
Other users may move between only two locations-their offices and
their homes-each location having a desktop system with somewhat dif­
ferent capabilities from the other's but the work at hand traveling back
and forth and the work task remaining fundamentally the same.

Add to this already established need for mobility the recent mar­
ket data that shows sales of portable computers growing more rapidly
than sales of any other machine type, and sales of modems exceeding
even wild expectations-and it's clear that Windows 95 needs to be a
good product for smaller machines and for communications. Of course,
the much vaunted era of the personal digital assistant (PDA) is now offi­
cially upon us too. Although from a practical standpoint the use of gen­
eral purpose PDAs remains limited and frustration prone, Microsoft has
invested considerable effort in the development of handwriting recogni­
tion technology and an integrated application, WinPad, targeted at
PDAs.

In this chapter, we'll look at a collection of Windows 95 capabili­
ties loosely grouped under the heading "mobile computing": commu­
nications support, electronic mail and fax support, and portable system

381

Ebay Exhibit 1013, Page 430 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

support. A lot of the communications support relies on features of Win­
dows 95 that we've already examined: the layered network architecture
and the WOSA service provider capabilities. And there are aspects of
other features, such as Plug and Play, that take on even greater impor­
tance when smaller portable systems are involved. But to meet Microsoft's
goals of great connectivity and what it sometimes refers to as "here,
there, and everywhere computing," Windows 95 includes several new
software components with important roles.

Remote Communications Support

382

The design of the communications subsystem in Windows 95 is derived
largely from the design of the local area networking subsystem we
looked at in Chapter Nine. An important aspect of the Windows 95 net­
work software design is its ability to support many simultaneous con­
nections via different network protocols and network transports. One
or more of those connections can go from the user's machine via the
communications subsystem to a remote network or to another commu­
nications provider such as a bulletin board system or an electronic mail
gateway. From the user's perspective, the Windows 95 shell integrates
access to remote systems with local area network access, and at least for
file sharing and printer sharing purposes, remote communications
looks and acts the same as any other network connection.

This consistency is maintained in applications written to make use
of remote services: the Win32 API provides a consistent interface regard­
less of whether the needed resource is a file on the network server down
the hallway or a file back at your main office thousands of miles away and
accessible only by modem. Applications don't have to take special ac­
count of these different physical connectivity characteristics (although
some optimization is possible if they do). Windows 95 provides all the
glue necessary for the various system components to make each type of
connection. And, naturally, for applications that will exploit characteris­
tics of the remote connectivity features, many specific Win32 APis offer
that .capability.

New in Windows 95 is the Windows Telephony API-TAPI for
short. This new set of Win32 interfaces integrates many of the func­
tions associated with controlling telephone style devices, including fax,
answering devices, and the like. Previous versions of Windows didn't
have a standard API set to support operations such as dialing and auto­
matic answering, so application developers had to invent their own.

Ebay Exhibit 1013, Page 431 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

T E N: Mobile Computing

TAPI addresses this problem with the consequent benefits of standard­
ization and the ability to share devices between active applications.

Underlying many of the features that fall into the communica­
tions category is the basic device support offered in Windows 95.
Whether you 're the owner of a venerable 1200-bps modem or the latest
cellular fax device, the communications driver-usually referred to
simply as VCOMM-is a critical software component of any connection
via these devices. The communications (serial port) driver in Windows
3.1 has been much maligned-especially from the point of view of its
inability to handle higher-speed connections. As a result, the develop­
ers of many communications applications such as fax packages or ter­
minal programs have replaced the Windows driver with their own. This
scattered development has often led to conflicts and bugs that a user of
two of the applications has been left unable to resolve. For Windows 95,
Microsoft has concentrated a great deal of effort on providing a com­
munications driver that will reliably handle extremely high line
speeds.1 The communications subsystem also benefits substantially
from the improvements in the Windows 95 operating system kernel­
from preemptive scheduling and dynamic VxD loading in particular.

The design of the VCOMM module follows what has become a
popular design technique for Windows components-VCOMM itself is
shared among individual ports with hardware dependent operations
managed by individual communications port drivers. Each of the stan­
dard serial and pa,rallel ports of an ISA machine, for example, would
have its own port driver and share the functions provided in the single
VCOMM module.

Figure 10-1 on the next page illustrates the main software compo­
nents that would be present in a Windows 95 system configured for re­
mote communications. Some of the components in the illustration are
optional or redundant, and others go by yet more acronymic names.
Here's a summary of their functions.

RNA. Remote Network Access is the subsystem that allows a user to
dial out from his or her local system and log on to a remote
network. The connection is set up so that the network appears
to the user just as if he or she had logged on from a directly con­
nected network workstation. RNA includes both a client and a
server component.

1. The stated goal is to be able to handle serial line speeds in excess of 38.4 Kbps.

383

Ebay Exhibit 1013, Page 432 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

384

API

'II{ •

Rlng3

Ringo

NDIS interface

Port drivers

Figure 10-1.
Communications architecture in a Windows 95 system confilfUred
for remote communications.

Ebay Exhibit 1013, Page 433 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

T E N: Mobile Computing

TAPI. The DLL that implements the Telephony API incorporates the
new Win32 functions for telephone line management.

Unimodem. The Unimodem service provider is Microsoft's attempt to
simplify and unify support for modem devices under Windows.
Rather than have each and every communications application
developer produce and test its own modem interface, Microsoft
has Unimodem use a collection of modem description files to
enable every related application to determine a modem's con­
figuration and the appropriate modem control sequences where
necessary. In many cases, the application simply uses open and
close type API calls and the Unimodem port driver accesses the
modem information file.

PPP. The point to point protocol driver is for a simple protocol that has
been widely adopted. PPP is used for single-session communi­
cations over relatively low speed lines (typically telephone lines).
The PPP module handles the blocking and deblocking of data
packets and simple error correction.

VCOMM. The new communications driver for Windows 95 includes
a set of functions intended to be used by the port drivers and
other VxD-level clients. The closest equivalent to VCOMM
in Windows 3.1 is the serial port driver, butVCOMM addresses
additional communication link device types, including infrared
and wireless radio connections.

Port Drivers. The port driver components contain the hardware­
specific code peculiar to an individual device, such as the
serial port, or an infrared connection. Windows 95 will come
with standard port drivers for serial and parallel devices. Other
port drivers will be supplied by the device manufacturers.

Remote Network Access
RNA refers to the ability of a Windows 95 system to gain access to a re­
motely located network. The typical scenario features a business trav­
eler equipped with a portable system dialing out from a hotel room to
collect electronic mail and other documents from the home office.
Many products currently on the market offer this capability. They come
in three flavors:

m Dial-in terminal access programs that offer simple point to
point connections. On the server side, the software might offer

385

Ebay Exhibit 1013, Page 434 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

386

access to a bulletin board system with file transfer capability or
to electronic mail. Commercial networks such as CompuServe
and MCI Mail offer this type of service.

• True network access for which the software on the server
acts as a gateway to the local network. The remote user can
access network resources as if he or she were locally con­
nected. Remote access to network resources is subject to the
same security constraints as for a local connection. Microsoft
Windows NT offers this feature as part of its Remote Access
Services (RAS).

• Remote control software that allows the user to "take over"
the remote machine to which he or she connects. The remote
user can make use of the capabilities of the machine he or she
connects to and transfer files back and forth between the two
machines. Products such as Carbon Copy and PC Anywhere
implement this capability.

Windows 95 RNA implements the first two of these flavors. An up­
graded Terminal application uses the lower levels of the communica­
tions subsystem to provide dial-up access.2 The full RNA subsystem
provides network access for remote users using either a Windows NT or
a Windows 95 system that has a local network connection. Figure 10-2
illustrates the various network access configurations RNA makes possible.

On the server side, the Windows 95 RNA subsystem supports a
single connection, so the most obvious use of this feature will be for a
user at a remote location to dial in to his or her own system back at the
office or perhaps call back home from the office. In this case, a network
might not be involved and the RNA server might simply provide access
to the resources of the machine it's running on.

Types of Remote Access
Windows 95 provides three different ways to go about establishing a
connection to a remote network:

• Making an explicit connection, in which the user selects a
remote system and establishes a session.

2. The new version of Terminal was developed for Windows 95 under contract to
Microsoft by Hilgraeve, the developers of the popular DynaComm product.

Ebay Exhibit 1013, Page 435 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

·-· -·d
'=.. Modem ~ndows 95

portable system

•
·~

server

Figure 10·2.
Remote Network Access config;urations.

T E N: Mobile Computing

Windows95
portable system

~I,, IN,,,~ ..
portable system

lllll!'!odem

I

1

Ill Making an implicit connection, in which the user tries to access
a file or a printer located on a remote system. The Windows 95
shell takes care of establishing the connection with the remote
system. Obviously, the local system has to be configured cor­
rectly, and the likely delay in getting the connection set up will
leave the user in no doubt about what's going on.

387

Ebay Exhibit 1013, Page 436 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

388

Ill Using the RNA Session API, a set ofWin32 interfaces for
applications that will set up and manage remote con­
nections directly. 3

Figure 10-3 is an example of the shell's screen in the case in which
the user has elected to make an explicit connection by double-clicking
on the Home System icon in the network Remote Access folder. This
particular remote system has already been set up with the appropriate
telephone number and device to connect through. Once the user has
clicked on OK in the login dialog box, RNA takes care of dialing and
completing the connection. At the receiver's end, the called system
must be running the Remote Access Server (or an equivalent) and be
listening for the incoming call.

Figure 10-3.
Connecting to a remote network.

Implicit network connections are generally handled by the shell.
When the user tries to access a remote resource, the shell initiates the
connection attempt with minimal further user input.

The Win32 API associated with RNA provides several functions
that allow an application to set up and manage a remote connection:

3. All of the functions in the RNA Session API are identifiable by the Ras prefix in
their names. There are no equivalent Winl6 APis in Windows 95.

Ebay Exhibit 1013, Page 437 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

RasDial()

RasHangup()

RasEnumConnections()

RasGetConnectStatus()

The Telephony API

T E N: Mobile Computing

Handles the process of making a remote
connection.
Terminates an active connection.

Returns information about the currently
active connections.

Returns information about the current
status of the connection initiated by a call
to RasDial().

The development of the Windows Telephony API (TAP!) began as part
of Microsoft's At Work office automation initiative. The intent of the At
Work initiative is to integrate common office equipment, such as fac­
simile machines and photocopiers, with the desktop PC. A PC user could
send, receive, and print documents in a common digital format under
the umbrella of devices supported by the At Work operating system. The
most common device in the office is the telephone, and the At Work
effort included the specification of an API that allows Windows applica­
tion developers to control suitable telephone handsets and conforming
exchange equipment. The emphasis for Windows 95 is on what Microsoft
refers to as personal telephony applications-essentially applications
that assume the use of a single PC and a single telephone handset.

Today most telephone equipment that can be connected to a PC
offers the application developer a bewildering variety of (often proprie­
tary) interfaces, and most of the available application solutions tend to
be either highly specialized or specific to a narrow range of devices.
TAPI is Microsoft's attempt to standardize an interface and, in addition
to meeting the challenge of developing a suitable API, Microsoft must
convince the telephone equipment manufacturers to support the as­
sociated service provider interface (SPI) in the WOSA framework.4 The
use of WOSA allows TAPI to remain independent of the specifics of any
hardware device. In the Windows 95 product, the philosophy of multiple
providers is retained: for example, a service provider can offer access to a
shared network device concurrently with a locally attached device.

For the application developer, the success of TAPI would mean
that a single Windows application could be developed to control a wide
range of telephone hardware. For the user, the incorporation of TAPI

4. A full discussion ofWOSA and the service provider interface (SPI) appears in
Chapter Nine.

389

Ebay Exhibit 1013, Page 438 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

390

into the core Windows 95 product ought to mean that there will be a
wide range of telephony-related applications available-either special­
ized applications (call screening, for instance) or applications that are
extensions of the functionality available in mainstream desktop appli­
cations (the integration of voice mail messaging within an electronic
mail package, for instance). RNA itself uses TAPI when it initiates and
controls remote connections made over telephone lines.

Telephony Applications
TAPI identifies two separate connection types: a phone-centric connec­
tion type, ill which the telephone handset is directly connected to the
telephone network and then to the PC via a serial interface, and a PC­
centric connection type, in which an adapter card in the host PC con­
nects to both the telephone network and the telephone handset. In the
phone-centric case, the application controls the telephone network by
sending commands to the handset for forwarding. In the PC-centric
case, the combination of the hardware in the PC and the TAPI applica­
tion software emulates a phone handset to the network and involves
the real handset only when necessary.

In the development of telephony applications, these hardware
arrangements manifest themselves as a line device class and a phone
device class. A line device is the connection from the desktop to the
telephone network. The line device responds to data objects such as
an address (the telephone number) and to state changes such as ac­
tive and inactive. The phone device is the handset component and
provides logical access to components such as the ringer and any but­
tons or indicators on the handset.

One of the important concepts underlying MiCrosoft's view of tele­
phony applications is the idea that a single desktop machine might run
several concurrent applications that have an interest in the single tele­
phone line. An incoming call might be a facsimile transmission, for ex­
ample, a voice call, or a connection request from a remote modem. An
application that conforms to the TAPI interface has to be prepared to
examine an incoming call and, if the call is of no interest to it, hand the
call off to the next potentially interested application. Similarly, once
the telephone line is active, an application that tries to use the line has
to be prepared to gracefully handle the error condition resulting from
the line's busy status.

Ebay Exhibit 1013, Page 439 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

TEN: Mobile Computing

Modem Support
First there was a universal printer driver, and now with Windows 95
come a universal display driver and a universal modem driver. Once
again, the intent is to provide a common set of well-tested functions
that can control a broad range of similar devices. The Unimodem
name is given both to a TAPI service provider and to a low-level driver
(implemented as a VxD) that works together with a port driver to di­
rectly control an attached modem.

There have been other attempts to standardize a modem con­
trol interface-notably on UNIX systems. To some degree, the prob­
lem is a more tractable one than it used to be since virtually every
modem manufacturer uses the Hayes-defined command strings for
direct modem control. In fact, the Unimodem driver assumes the
standard Hayes command set as a base and then defines exceptions
to the command set for specific modems. The description of a modem
appears in a text file that might be supplied by the hardware vendor.
Windows 95 comes with a large database of known modems-their de­
scriptions are in the MODEMS.INF file, which is a standard compo­
nent of Windows 95.

When you set up a modem using the Control Panel, the appropri­
ate command strings are copied from either MODEMS.INF or the
manufacturer-supplied .INF file into the registry.5 Once the command
strings are installed, the universal modem driver (UNIMODEM.386)
can directly access the command strings. An application never sees the
command strings used at the lower levels. It merely issues requests such
as open and close. This arrangement hides the peculiarities of any par­
ticular modem from the application. Figure 10-4 on the next page illus­
trates the interactions between the various components when a modem
attached to a serial port is in use.

Notice that the upper level of the universal modem driver is a
TAPI service provider and that it can co-exist with other service provid­
ers. At the lower level, the communications driver (VCOMM) routes
modem-related calls to the modem driver, which, alone, deals with the
registry. For actual control of the attached modem, the modem driver
calls back into VCOMM, which in turn calls the associated port driver
(the serial port driver SERIAL.386 in this example).

5. You may see references to modem mini-drivers .. These are simply the text files
that encapsulate the modem commands.

391

Ebay Exhibit 1013, Page 440 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

Ring3

Ringo

Figure 10-4.
Modem interface.

Application

Telephony API

UNIMODEM.386
(universal modem driver)

The Communications Driver

392

In Windows 3.1, the communications port driver suffered from perfor­
mance problems engendered by mode-switching back and forth be­
tween protected and real modes and by the absence of preemptive
multitasking capabilities in the operating system. The VCOMM driver
in Windows 95 helps to solve the performance problem by providing a
protected mode code path from the application all the way to the hard­
ware. And the improvements in the OS itself assist in meeting the goal
of re.Hable, high-speed communications device support~

Figure 10-5 illustrates the way in which VCOMM interacts with
other system components. Notice that the COMM.DRV module is

Ebay Exhibit 1013, Page 441 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

T E N: Mobile Computing

there to provide compatibility for existing Win 16 applications. It is sim­
ply a thunk layer that translates 16-bit API calls to the Win32 interface.
It is not an updated version of the Windows 3.1 communications driver.

Win16 COMM API

' COMM.ORV

Ring3

Ringo

Figure 10-5.
Communications driver components.

Win32 COMM API

}1;~~:~~~;]

* Hardware ports

VCOMM is a static VxD that is always loaded during the Windows
95 boot process. VCOMM participates in the Plug and Play subsystem by
loading the appropriate enumerator and subsequently loading the indi­
vidual port drivers (which are dynamically loaded VxDs) as ports are
first opened. VCOMM is multithreaded, and its code is shared among all
of the lower-level port drivers that interact directly with the hardware.
The VCOMM services are available to other VxDs, but they are never
called directly by an application, only via the defined Win32 APis. 6

6. All of the VCOMM services can be identified by means of the prefix _vcoMM_.

393

Ebay Exhibit 1013, Page 442 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

Windows 95 provides port drivers for both serial (SERIAL.386) and
parallel (LPT.386) ports. When VCOMM first loads a port driver, the
driver registers its presence using the _VCOMM_Register_Port_Driver
service and provides the address of a DriverControl() function in the port
driver. VCOMM uses the DriverControl() entry point to instruct the driver
to carry out the function of initializing a hardware port. Once a port is
recognized and registered, VCOMM will open it using a PortOpen() func­
tion in the driver. Subsequent calls from VCOMM into the driver go via a
table of functions whose address is returned to VCOMM as a result of a
successful PortDpen() call.

The Info Center

394

Quite late in the development of Windows 95 Microsoft decided to
group the various information access components under the collective
name of Info Center. Although the name has little more significance
than to be a simple way to refer to the collection of information access
modules, it's an umbrella for a useful grouping. The structure of the
Info Center suggests that its capabilities can be broadened significantly
in the future. Thus, the early establishment of a "brand name" for these
Windows 95 functions seems to have been a good idea. Competitive is­
sues are at work here too. One of the major challenges to Microsoft's
dominance of the office software market has been the Lotus Notes
product. Positioning the Windows 95 Info Center as a key component
of a workgroup application strategy allows Microsoft to begin reclaim­
ing some of the ground it has lost to Notes. Synonymous with the Info
Center is what Microsoft calls "messaging," and you'll hear talk of "mes­
saging APis" and "messaging services." The messaging APis and ser­
vices are at the heart of the Info Center.

The Windows 95 Info Center serves as a common access point for
the applications and services that deal with office information-elec­
tronic mail messages, voice mail messages, facsimile documents, stan­
dard forms, and other types of typically textual, loosely structured data.
For the user, Windows 95 provides a Microsoft Mail client and the
Internet access tools that rely on the WinSock API and the TCP /IP proto­
col stack.7 For the application developer, the underlying services provide
a standard interface to various messaging systems. The structure of the

7. The latest versions of Windows 95 actually have an Info Center icon on the default
shell desktop-similar to the local computer and network neighborhood icons. The
similarity suggests that the Info Center will be a commonly used information access tool.

Ebay Exhibit 1013, Page 443 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

T E N: Mobile Computing

Info Center allows applications and service provider modules to be
added very easily. Figure 10-6 illustrates the components that Windows 95
grou'ps under the Info Center heading.

API

Service Provider Interface

Figure 10-6.
Info Center architecture.

The Info Center breaks into three layers of software: the applica­
tion level visible to end users, which includes an electronic mail appli­
cation, for example, and two lower layers. The first of the two lower layers

395

Ebay Exhibit 1013, Page 444 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

is a collection of Windows DLLs that implement the messaging APis, and
the other of the two lower layers is a service provider layer offering ac­
cess to different message-related services. Once again, the structure
conforms to Microsoft's WOSA model. Below the service provider layer
can be any network protocol and transport or, in the case of voice mail
handling, for example, some other subsystem such as TAPI.

Info Center Applications
The Info Center viewer is a Microsoft Mail client integrated with the
Windows 95 shell. Any time you're using Windows 95 you can send a
message-there's no need to start up a separate e-mail application.
Microsoft has also announced that Windows 95 will include an inter­
face to the Internet, although by mid-1994 the final form of this appli­
cation hadn't been determined.8

If you're in an organization that has standardized on a non­
Microsoft electronic mail package such as ccMail, the inclusion of the
Microsoft client application won't really help you. But, as you'd expect,
the messaging API is available to all applications, so Windows 95 will no
doubt have a variety of electronic mail packages available for it.

Although other kinds of applications don't strictly come under
the Info Center umbrella, the inclusion of the messaging API as a
standard component of Windows 95 means that other applications­
word processors, for example-can make use of the messaging ser­
vices. An application that deals with documents can add a Send
Document option to its standard menu and enable direct document
transmission using the messaging APis. Microsoft refers to this type of
application as "messaging aware." This isn't new. Many applications
have offered this feature under Windows 3.1. The difference is that
the messaging APis are now a standard part of Windows 95, and any
application can rely on their presence.

Messaging APls

396

The messaging APis in Windows 95 are incorporated into three separate
modules, two of which implement Microsoft's core messaging effort­
the Messaging Application Programming Interface (MAPI). Although
Microsoft has gathered support from other companies for MAPI, the

8. Including this feature was a late decision, spurred by the growing public interest
in the so called information highway.

Ebay Exhibit 1013, Page 445 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

TE N: Mobile Computing

design and development of MAPI are very much under the control of
Microsoft. These are the three components of the messaging API:

Simple MAPI. The basic send and receive functions of MAPI.

Extended MAPI. A superset of Simple MAPI that incorporates mes-
sage storage, retrieval, and searching capabilities.

CMC. The Common Messaging Calls, a Windows 95 implementation
of the functions defined by the X.400 API Association, of which
Microsoft is an active member.

Both MAPI and CMC allow an application to use a standard set of
functions for messaging. The application developer doesn't have to
worry about the details of the underlying message system. The essential
difference between MAPI and CMC is that MAPI is defined for Win­
dows systems only-Microsoft hasn't made any attempt to adapt it to
other operating systems. CMC on the other hand is defi!1ed as OS inde­
pendent, and if you're planning a messaging application for a variety of
different hardware and software environments, CMC is, preferable to
MAPI. In terms of their basic functions, CMC and Simple MAPI are
very similar.

Simple MAPI contains only 12 messaging functions, and it's in­
tended primarily for use in messaging aware applications rather than for
the implementation of a full blown messaging application-an elec­
tronic mail package, for example. The Simple MAPI functions allow an
application to send and receive messages and to manipulate message
address information. Simple MAPI also allows files to be attached to
messages and OLE objects to be incorporated in messages (hence the
Windows dependency).

Extended MAPI is intended for major messaging applications­
electronic mail systems, workflow applications, and forms management
packages, for example. Functions in Extended MAPI allow the applica­
tion to access and manipulate the message store and the address books
supported by the service providers and to incorporate forms manage­
ment capabilities.

Messaging Service Providers
Underlying the messaging API is the set of service providers that under­
stand the details of the messaging system they manage. All of the pro­
viders support the same service provider interface, but each service

397

Ebay Exhibit 1013, Page 446 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

provider is written to interface to a particular messaging system. So, for
example, one service provider will support Microsoft Mail on the local
network whereas another could support dial-in access to MCI Mail.

Common to the design of each MAPI service provider are the no­
tions of a store pravider (wherein information can be stored and re­
trieved), an address book provider (offering some means of translating a
name into an address), and a transport provider (which takes informa­
tion and actually transmits it to the intended recipient via some physi­
cal means, such as facsimile transmission or simple file copying). This
separation of duties is masked by the messaging API, and, in fact, the
underlying service provider can be implemented as a single module.

Microsoft plans to include a personal address book provider and
transports for the At Work FAX interface and for Microsoft Mail. The
local address book in a Windows 95 system is the single place where
user names and associated information are collected. The networking
system, for example, uses MAPI as the means for acquiring user infor­
mation and translating login names.

Portable System Support
Microsoft's standard gee whiz demonstration of Windows 95 portable
computer support comes in a segment in which Plug and Play gets the
spotlight. The scenario involves an imaginary user removing his laptop
system from its desktop docking station and rushing off to another lo­
cation. This user doesn't bother to turn the laptop machine off, and
while he heads out to the waiting taxi, the Plug and Play subsystem dy­
namically reconfigures Windows 95 so that the user can return to his
word processing session as soon as he takes his seat. Do you know any­
one who might do this? Neither do I. Nevertheless, as a technology
demonstration, it's gripping stuff. Cynicism aside, Windows 95 does in­
clude a number of features specifically intended to improve the use of
portable systems. Most of these features rely on aspects of the Plug and
Play subsystem, and generally the user doesn't have to worry about
what's going on-it just works.

Power Management

398

One of the well-researched technologies in the last few years has been the
power supply for portable systems. Low-power chips and displays and im-

Ebay Exhibit 1013, Page 447 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

TEN: Mobile Computing

provements in battery technology have combined to make battery­
powered machines feasible for even long trips by air. These hardware im­
provements must work hand in hand with software enhancements that
allow the user to control the system, and many portables come equipped
with a utility for customizing power consumption. Nowadays, it's the user
who controls the length of the interval before the screen blanks or the
hard disk spins down to an idle state. In the Plug and Play subsystem,
these functions are subsumed under its power management activities.9

Docking Station Support
Although portable systems with docking stations haven't sold in the
numbers that were first predicted, Windows 95 may be the catalyst to
change that. The situation that the Windows 95 Plug and Play subsystem
needed to handle is exactly the one described in the earlier example­
how do you go about dynamically reconfiguring a system when it moves
between a docked state (presumably with access to a network and with a
good, high-resolution display) and an undocked state (with a portable
display and perhaps a different pointing device) ?10

Plug and Play is key to solving this problem. The automatic
reconfiguration of the system involves unloading and loading the VxDs
that control the attached hardware. As a device disappears, Plug and
Play will unload the controlling device driver. If a device changes (an
external 1024 by 768 256-color display becomes a local 640 by 480 16-
level gray-scale LCD screen, for example), the system alters its configu­
ration to suit. The reconfiguration isn't just a system-level activity. Plug
and Play will broadcast messages informing running applications that
the configuration is about to change. The applications can respond by
closing files, blocking the system reconfiguration process, or simply ter­
minating. If the system's FAX card is about to disappear, for example,
the background FAX receiver application has no reason to continue to
run. For more subtle changes, such as the change of display described
above, the application will have to recognize the difference in capabil­
ity and react accordingly.

9. Details of the state of the art in power management are to be found in the
Advanced Power Management Specification Version 1.1, available from Microsoft.

10. Microsoft also intended to implement deferred printing in Windows 95-so
that even if your printer is not currently attached to your machine you can go ahead
and print. The physical output will appear when your machine is next connected to
the printer. As of the Beta-1 release, this feature hadn't been implemented.

399

Ebay Exhibit 1013, Page 448 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

The reconfiguration process is most likely to take place at power on.
You'll turn your machine off, pull it out of its docking station, head out of
the office, and power the machine on sometime later. The machine will
boot up in its new configuration. This won't be the case with PCMCIA
peripheral cards: one likely operation is to remove one card and re­
place it with another of a different type while the system is running.
Windows 95 will manage this reconfiguration process the same way it
does at power on, and, after a short delay, the system will be
reconfigured with no user interaction. You finally have a good reason
to fill your pockets with PCM CIA credit cards whenever you head out of
the office.

File Synchronization

400

One irritating problem that comes up when you're using two different
systems is needing to ensure that you're always using the most up-to­
date version of a file. If you have a single portable computer and dock­
ing stations wherever you go, you've solved the problem. But if, like most
people, you copy files from one machine onto a diskette and then copy
that diskette's contents onto another system, you're always running into
the problem of synchronizing the two different physical copies of the
file. Windows 95 has a "briefcase" that makes it easy to manage updated
copies of files.

The shell allows you to create a briefcase object and drop other
objects into it. When you leave the office, you simply copy the entire
briefcase to a diskette (or perhaps across the network to another hard
disk). You can work on the files in the briefcase and then get the shell's
assistance when it's time to return any updated copies to the original
system. Typically you'll create a briefcase on the desktop and leave it
there, although you can create many independent briefcases if you
want to. In the example shown in Figure 10-7, the file CHAPIO.ZIP has
been copied from the desktop to the briefcase. The original remains
in place.

Ebay Exhibit 1013, Page 449 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

T E N: Mobile Computing

Figure 10-7.
A briefcase on the desktop.

You copy the briefcase and its contents by simply dragging and
dropping the whole thing to its destination. In this example, the desti­
nation is a floppy disk. Examining the contents of the briefcase on the
disk would lead you to believe that only the files you copied to the brief­
case are present in the briefcase (see Figure 10-8). In fact, the shell adds
hidden files that describe the contents of the briefcase to assist the later
reconciliation of different versions of the files you've copied.

·a 5.25 Floppy (A:J
··a 15 Floppy [B:J

rB8111li@•
Ardiles_c [C:]

l··Jiil Book
~J-Jiil Chicago

Figure 10-8.
The contents of a briefcase.

401

Ebay Exhibit 1013, Page 450 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

402

When you return to the original system, you copy the briefcase
back to the desktop and then initiate an update operation on the con­
tents of the briefcase. The shell compares the versions of the files and
recommends the reconciliation action that seems to be appropriate. In
the example shown in Figure 10-9, the shell suggests that the updated
copy of the file contained in the briefcase ought to replace the original
file on the desktop.

D
Chap10.zip

In Briefcase
Modified
07 /11 /94 1 0: 37PM

Figure 10-9.

Replaces

In C:\C. .. \Desktop
Unmodified
07 /11 /94 1 0: 27PM

Replacing a file with an updated version from the briefcase.

Of course, if you are only one of a number of people working on a
shared document, it's possible that the original will also have been up­
dated in the meantime. In this situation, the shell won't know how to pro­
ceed, and you'll see a dialog similar to the one shown in Figure 10-10. At
this point the user has to guide the update process.

Although this is a simple scheme, in practice it works well, and
naturally there is more to it than simple file modification date and time
comparison.

Ebay Exhibit 1013, Page 451 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

T E N: Mobile Computing

D
Chap10.zip

In Briefcase
Modified
07111 /94 10:37PM

Figure 10-10.

?
Skip (both changed)

In C: \C ... \Desktop
Modified
07 /1 1 /94 1 0: 40PM

Reconciling a file when both the briefcase version and the original
have been modified.

The Briefcase API
Both briefcases and their contents are controlled by the AddObjectTo­

Briefcase() API. This API not only copies the physical data associated
with the document to the briefcase but also updates the control infor­
mation associated with the briefcase. Objects copied to the briefcase in
some other way won't have this control information incorporated and
thus can't be reconciled at a later time.

The ReconcileObject() API initiates the process of reconciling two
different copies of an object. The shell calls on the services of a reconcili­

ation handler to perform the actual updating process. In many cases this
will simply mean copying the newest version of the file over the older
one. But in cases in which a true merge of the file contents has to take
place, the reconciliation handler must understand the details of the file
format it's dealing with. Microsoft plans to provide a number of standard
reconciliation handlers for common file types.11 An application can also

11. Although this was announced, the exact plans were still vague as of July 1994.
Also, an earlier announcement that objects within OLE compound files could not be
individually reconciled appears not to be true, so expect this capability as part of the
Windows 95 product.

403

Ebay Exhibit 1013, Page 452 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

register its own reconciliation handler and thus be called on by
the shell to perform the reconciliation action for the associated
object type.

Conclusion

404

If Windows 95 meets Microsoft's dual goals of providing excellent com­
munications capabilities and providing good performance on existing
386 machines with only (sic) 4 megabytes of memory, it will be a strong
contender for adoption as the preferred OS for portable and home
computer use. 12 If the lower-level communication drivers live up to the
advance performance claims, there should be no barrier to developers
basing their communications software on Windows 95. With the lay­
ered network architecture and MAPI, Windows 95 should provide a
great platform for remote networking and applications that rely on
electronic mail and other connectivity options. Windows 95 also ad­
dresses a few of the real practical problems of mobile computing: the
synchronization of files, deferred printing, and (with Plug and Play)
the dynamic adjustment of system configuration.

At one time I planned to discuss the capabilities of Windows 95
with respect to handwriting recognition and the use of handwriting
recognition technology on the so called personal digital assistants
(PDAs). The early Chicago presentations gave significant airtime to the
handwriting technology planned for Windows 95, but the industry's
love affair with pen-based systems has cooled off in recent months.
Microsoft still plans to incorporate handwritten input recognition as a
standard part of Windows 95, and the WinPad application is intended
principally for use with a PDA. It doesn't seem likely that Windows 95
will usher PDAs into a new era of productive use-but we'll have the
basis for some exciting applications when and if handwritten input be­
comes practical.

12. Naturally the other part of the home equation is what Windows 95 will offer
game players and developers. Microsoft's announcement of the WinG graphics library
and its recent efforts to court MS-DOS game software developers ought to help meet
this particular need.

Ebay Exhibit 1013, Page 453 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

T E N: Mobile Computing

Although I've examined much of Windows 95 in a lot of detail, I've passed over
some features, and other features are still changi,ng as this book goes to the
printer. In a concluding interview, I had a chance to ask Microsoft's Paul
Maritz, Senior Vice President, Systems Software Division, and Brad Silverberg,
Vice President, Personal Systems Group, about late-breaking news and
Microsoft's goals and aspirations for the product during the latter part of 1994
and into 1995.

405

Ebay Exhibit 1013, Page 454 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Ebay Exhibit 1013, Page 455 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

EPILOGUE

LEAVING CHICAGO

By the time this book went to press, the Beta-1 release of Windows 95
(nee Chicago) had been distributed to about 15,000 developers and
users around the world. Early reviews and product evaluations had ap­
peared in industry magazines, and interest in the product had already
swelled beyond the dull roar level. The early sightings of the product
also raised a number of questions-about the positioning of Windows
95 vis-a-vis Windows NT, about the new user interface, and about the
likely level of success for Windows 95.

Right before this book went to press, I talked with Paul Maritz, se­
nior vice president of Microsoft's Systems Software Division, and Brad
Silverberg, vice president of Microsoft's Personal Operating Systems
Group-the group directly responsible for Windows 95. The interview
took place in Paul's office at Microsoft on July 22, 1994. I asked Paul
and Brad about their aspirations for Windows 95 and about some of the
product features already receiving critical review. Their answers were
candid and largely devoid of the marketing hype that Microsoft is so
justly famous for. Brad in particular is an irrepressible Windows 95 en­
thusiast. Clearly, neither man had any illusions about the amount of
work still left to do before Microsoft would be in a position to ship a
great product, but their demeanor suggested that the light they saw at
the end of the tunnel was not from an oncoming train. Here is the in­
terview. It's been edited for syntax, and the sounds oflunch have been
deleted, but the semantics remain untouched.

AK: Adrian King, Interviewer
PM: Paul Maritz, Senior Vice President, Microsoft Systems Software

Division
BS: Brad Silverberg, Vice President, Personal Operating Systems,

Microsoft

407

Ebay Exhibit 1013, Page 456 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

408

AK: My first question relates to the potential for confusion when Chicago ap­
pears in the market. You'll have a Windows 3.1 product that's been very popular,
Chicago, Windows NT, and Cairo coming up. As far as the evolution of the
desktop is concerned, over what time frame do you see which operating system
claiming the major share of the desktop market? And what should people be do­
ing when they upgrade or when they really need to move to the more powerful
product?

PM: There are basically two ways you can approach that question. One
is Chicago vs. Windows 3.1, and the other is Chicago vs. Windows NT. I'll
let Brad address the 3.1 part of it.

BS: Chicago is simply the next major version of our high-volume desk­
top Windows operating system. So it's the successor to, replacement ·
for, Windows 3.1 and Windows for Workgroups. Those products have
been phenomenally successful. We're selling over 2 million units of
those a month. We announced yesterday that we've shipped over 60
million copies of them. And Windows Chicago is just the next version.
Anybody who will be buying a new version of Windows after Chicago
comes out should be buying Chicago. Anybody who is running Win­
dows should be running Chicago. Just as today I don't know anybody
who is running Windows 3.0, I would expect in some period soon,
maybe a year after Chicago ships, that if you talk to people who are run­
ning Windows-they'll be running Chicago. It's a replacement. And it's
complementary with our version of Windows targeted for high-end
workstations, mission-critical applications, technical workstations, and
the most demanding corporate applications. That's Windows NT.
Daytona is simply the next version of Windows NT, and Cairo is the
next major version of that product line.

PM: I think there will come a day when we will shift more and more of
our corporate customers toward the NT platform. But with Windows
NT we deliberately bit off some very challenging things. Basically it's a
tremendous investment in raw software technology-writing a code
base that's truly portable across architectures, that's certifiably secure,
that's suitable for distributed computing, that's highly extensible, etc.
And all of those things come at a price. They require a lot of resources,
which means that as of today Cairo is really targeted at the higher end
of the line-to people for whom those features of security, extensibility,
and scalability are very important, and who are willing to pay for the
hardware resources necessary to allow them to have those features.

Ebay Exhibit 1013, Page 457 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

E P I L 0 G U E: Leaving Chicago

Over time, as the center of gravity in the hardware base shifts, par­
ticularly in the corporate environment, as people move toward
Pentium-class machines, with 16 or more megabytes of memory, we'll
be able to shift more of our corporate customers in the direction of the
Windows NT code base. But we see forever having to maintain at least
two implementations of Windows in order to be able to cover the broad
spectrum of people who use PCs.

BS: The products represent two natural design centers, and that will
continue. I mean the natural flow of technology is always-starts out at
the high end, a couple of years later it becomes mainstream, a couple
more years later it's obsolete. It's no different from what we see today.

PM: Today and in the future we see ourselves having a design center at
the high end, where we're trying to push technology as fast as we can,
realizing that we're probably using more resources than most people
have in order to do that. On the other hand, we need to remain really
focused on the broad market in two senses, making sure that we stay
within the resource constraints that not only new machines but the in~
stalled base of machines has and that we stay very focused on produc­
ing software for ordinary people who don't want to understand
anything complicated and just want to use their systems.

We see ourselves having to maintain these two design centers and
two teams focused on doing that. That's been our strategy for the last
three years, and I can see that as being our strategy in the future. What
you're seeing is simply the output of those two focuses coming into the
marketplace when we move from Windows 3.1 to Chicago, and there
will be successors to Chicago. Some of those successors to Chicago
might use a lot of the technology that you find only in Windows NT to­
day, but they'll still be, from a design point of view and a philosophy
point of view, targeted at a broad mass market. At the same time, we'll
be using new technology at the high end-what you think of as the
Windows NT line-where our focus is really on client-server comput­
ing, distributed computing, system administration, and a lot of other
aspects. We hope we can increasingly share technologies between those
two environments, but I think there's always going to be a difference
between them.

It is a more complicated strategy, both to explain and to execute.
It certainly does put some strains on us, but I think the result of it is that
we'll be able to serve a broader class of customers in the future and not

409

Ebay Exhibit 1013, Page 458 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

410

be forced to bifurcate the world and say that for corporate computing
you use only Windows, and for home computing you have to go and
buy some other random product that comes out of Nintendo-space or
whatever.

BS: That's like with Intel when the 386 first came out. It was high end;
you only ran the 386 for servers; and then it was on high-end desktops;
and now it's pretty ubiquitous. And now, at least from an accounting
standpoint at Microsoft, we've written off all our 386s. That's just a
natural flow of technology. But there's still that high-end space. Intel is
still producing very high end chips, and they are focused on the server
first, and then they come down to the desktop. The hardware technol­
ogy flows that way. You'll see the same thing in our operating systems.

PM: There are some things that flow the other way as well. Ease of use
factors in particular. And that's what you see being pioneered in the
Chicago area. Things like the new user interface and the Plug and Play
framework, which are absolutely vital for the broad market but which
you'd like to have in the business-oriented market and the high-end
market as well. And those things will flow into our high-end product
line and be used there. So Cairo has as one of its objectives to absorb
some of the features that are being introduced with Chicago.

AK: At !,east in the Windows NT product line, you've made a big investment in
the portability of the code for adaptation to RISC processors, which is not a con­
sideration for Chicago. Yet the· RISC-based machines have had a minimal
impact in the market so far. Do you see that changing? Or do you think Intel­
Intel-compatible chips-is going to hold sway forever?

PM: It's still hard to say. I mean, today, clearly Intel has been very suc­
cessful in bringing new parts into the marketplace and increasing their
price performance on a regular basis, which has meant that it's been
tough sledding for anyone else to make enough of an impact to get
some market share. But we still think we've done the right thing in
terms of slowly but surely investing in technology that says, whenever,
whatever happens down in the silicon, our customers are going to be
insulated from it; that we can take advantage of innovation wherever it
comes from; that it's not something that people need to be concerned

Ebay Exhibit 1013, Page 459 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

E P I L 0 G U E: Leaving Chicago

about. I think Intel is very focused on the challenge posed to them by
the Power PC chip. I think the huge investments that they're making in
future processors, the kinds of deals they're announcing with compa­
nies like Hewlett-Packard, mean that they have every intention of not
giving up their leadership.

AK: For each of these products, and here I mean Chicago, Daytona, and Cairo,
what's a good configuration for me to buy to run them?

BS: What applications do you want to run?

AK: Microsoft Office?

BS: The goal with Chicago, and one we've worked super hard as a
team to achieve, is that whatever you're running today, on Windows
3.1, if all you do is move from 3.1 to Chicago, you 'II be at least as happy
as you were before. So that the performance you saw before when you
ran those applications you'll see with Chicago.

PM: And on higher-end machines you'll be even happier.

BS: The Chicago performance curve is that the more memory you
add, the better we can really take advantage of it. And that is something
a little different from 3.1. In Windows 3~1, we weren't able to take ad­
vantage of higher amounts of memory the same way, and the perfor­
mance curve would flatten out. But with Chicago we have an integrated
cache management system for the filesystem, the network, and virtual
memory that allows us to dynamically balance the cache in real time to
really take advantage of additional amounts of memory. But if you're
running games or Microsoft Works or Microsoft Publisher, as with a lot
of these home machines, and you go to a mass merchant like Costco,
what you need and what they sell is a 4-MB machine. People take it
home and they're happy. How many? Seven million home machines
sold in the United States in 1994? People are buying 4-MB 486 systems
for their homes.

PM: If you run some of the application benchmark suites that use nor­
mal features like cut and paste, printing, and things like that, with Chi­
cago the knee of the performance curve is approximately 6 MB. For
that user scenario you won't get a lot of performance increase by going

411

Ebay Exhibit 1013, Page 460 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

412

above 6 MB. And on Daytona [Windows NT version 3.5-Ed.] the knee is
around 12 MB.

AK: Mat is it going to be with Cairo?

PM: You can't say at this point in time. Clearly the development team is
going to work hard to make it as good as it can be. Both our teams, the
Chicago team and the Windows NT team, have learned the religion of
"you'd better stay on top of size and performance." It's very hard to put
those things back into a product. You have to stay on top of them up
front. The Cairo team-they're going to be working really hard trying
to contain that. On the other hand, their goal is to be a very functional
platform, so they have to set the trade-off dial in terms of resources vs.
function. And it's set differently on that platform. And the kinds of cus­
tomers who will buy Cairo are not nearly as concerned about whether it
runs on a 4-MB machine.

BS: One of the missions of Chicago is to be able to upgrade the exist­
ing installed base. It's not just for new machines. That means ...

PM: You've got to be religious about it.

BS: ... you've got to be really hard core about making sure you run on
what people have today and not have to have them buy more memory.
And that means running well with whatever they're running today, and
running in the same amount of memory. At the same time, I'm sure as
people get into Chicago, as they want to start taking advantage of some
of the new capabilities, sure they'll need more memory. As you take
advantage of stuff you weren't using before, you might need additional
resources.

PM: I think the other thing to say is that usage patterns of applications
are changing as you go toward compound documents and things like
that. You really have to have a lot more memory than many people do
today. We're rapidly reaching the day when applications' usage of
memory is getting to dominate the operating systems' use of memory.
To really answer those "What configuration?" questions, you have to
ask, "What kind of applications? How many? How complex are your in­
teractions among them?"

Ebay Exhibit 1013, Page 461 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

E P I L O G U E: Leaving Chicago

AK: My follow-up question would be, gi,ven that there's this big emphasis on
OLE ...

PM: There's no question that if you want to get the full benefit out of
OLE you've got to have more memory. If you really wanted to use one
of the modern office suites, whether it be Microsoft Office or Lotus
Smart Suite, to its fullest capability, you'd be looking at an 8-MB mini­
mum machine.

BS: For that type of system. Some people are very content to run Works
or Publisher or run their games. There are millions and millions of
people like that.

PM: Or even within the suites, they may be using something but not us­
ing OLE. Perhaps just doing basic word processing, for example, so
they don't need all that extra memory.

AK: So if I walk into Computer City in a year's time to buy a new system . ..

PM: You personally? Oh, 32 MB easy ...

AK: No. I'm buying it for my mother or somebody. Is Computer City going to
have 8-MB machines as their standard boxes on the shelves?

PM: In a year's time? I think so.

BS: Probably that will be typical for Computer City. Costco might still
have quite a selection of 4-MB machines. Not as many as today. But Chi­
cago won't be a factor in that.

PM: Brad and I were talking about that this morning. PCs, I mean re­
ally well-equipped PCs, 486-class machines, are almost down into the
consumer appliance price band. And it's interesting to speculate about
what happens when a decently equipped multimedia machine gets be­
low $800. We might see a whole new segment of the market open up
there. Which is another reason we have to remain very, very focused on
assuring that we'll have software that continues to run on the 4-MB
level for some time to come.

413

Ebay Exhibit 1013, Page 462 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

414

AK: Talking about Chicago in particular, what I've noticed most as I've used it
during all the testing periods is the amount of effort that has been applied to
cleaning up everything in Windows that used to annoy you. I mean, every little
detail has been gone into. There is no stone unturned. That plus the new features
represents a huge amount of development and testing effort-in particular, com­
patimlity testing. Given that you 're now later than you would have liked to have
been, in terms of releasing Chicago, do you regret any of that investment?

BS: Oh no. No. That's Chicago's mission-first and foremost to make
PCs really easy to use, delivering on the promise of PCs as an appliance.
That's the number one thing we set out to do with Chicago.

There were really four things we set out to do in Chicago. One was
to make PCs easy to use. That involves a new shell, Plug and Play, and
this fit and finish polish you've just talked about. Number two is to have
a modern 32-bit operating system underneath with threads and 32 bits
and all that stuff. An aspect of that is to make Chicago a fully bootable,
complete operating system so that it's not limited by DOS, not crippled
by DOS, and has all the benefits of being a completely self-contained
graphical operating system. The third element· was connectivity­
whether in a LAN or a WAN or a mobile dial-up environment. And the
fourth is compatibility: being a no brainer upgrade.

Clearly number one was ease of use. And that was the thing that
drove a lot of the things in category number two-the powerful operat­
ing system. For example, we added long filenames. When we set out to
do Chicago, we didn't think we could figure out a way to do long
filenames, in the FAT filesystem, in a compatible way. For years, I mean
you know this, we've continued to look at this problem. The idea of
long filenames is not a new one. Eight-dot-three names is not some­
thing that people have always said, ''Wow, this is a really great thing.
Let's stick with it." It's really painful. But every time we've looked at it
and had good people look at it, they've failed to come back with solu­
tions that were workable. But this time, when they came back and said,
''We can't figure it out," we sent them back and said, ''We don't have a
product unless you fix that." I can't imagine coming out with the next
major version of Windows, whose mission is ease of use, and we're still
telling people they need to use eight-dot-three names. That's failure.
So we went back, and the team came up with a very, very clever solution
that allows us to have eight-dot-three names as well as long filenames in
a compatible high-performance way. I think it shows the commitment
to solving hard technical problems in the kernel that is one of the de-

Ebay Exhibit 1013, Page 463 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

E P I L 0 G U E: Leaving Chicago

fining characteristics of Chicago. So I don't regret those efforts for a
second. Chicago is going to last for a long time. The legacy of Chicago
is going to be with us for years. And cutting corners to release the prod­
uct a month or two earlier would have been a completely false
economy.

AK: Am there featums you wish you hadn't included? For whatever reason? You
don't like them. You don't think they 're applicable in the current market . ..

BS: I love the product. I'm so in love with this product. My history of
using the product is that I have two identical machines in my office.
Both 8-MB 386~ 33-MHz systems. One runs Windows for Workgroups
3.11 and the other has been running Chicago since M5 time frame [De­
cember 1993-Ed.]. I wanted to be like a user and use the product like a
user. So initially I spent most of my time, probably 80 percent of my
time, on the WFW machine, and then I would just go over to Chicago
and explore for a while and find some things I didn't like and send
some mail to see if we could get this or that fixed. And as the product
progressed, it got better and better and faster and easier and more ro­
bust-to the point now where 99 percent of my time is spent on the
Chicago machine. When I have to go back to the Windows for
Workgroups machine, it's like, 'This is the old stuff. How did I ever use
this? How did I ever like it?" And I think the shell team has done a phe­
nomenal job of really delivering on the promise of ease of use-it be­
comes addictive, so much so that you just don't want to use the old stuff
anymore. And Windows 3.1 really is, in comparison with Chicago, last
generation. So, I can't really point out anything I wish we would have
done differently. I wish, obviously we all wish, that the product was on
the market today and we were working on version 2. But we're commit­
ted to making sure the product is right before we ship it.

AK: Lets talk about the user interface some more. Already, in some of the re­
views of the first beta release, theres been criticism that the shell is too different or
simply a mix of lots of other things that have gone befom. Whats your msponse to
that, and what do you think am the really original features of the shell?

BS: I think the shell is tremendous. And the feedback I get from beta
testers, the vast majority of beta testers-and I'm very active on the
CompuServe beta test forum, I know these people, I've worked with
them for years, and they don't hold back-what do they think? They

415

Ebay Exhibit 1013, Page 464 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

416

love it. You know, the first day it feels like a new pair of shoes. It feels a
little bit uncomfortable. You're just not used to how it feels. The second
day it starts to get a little broken in. By the third day it feels like the
most comfortable pair of shoes you've ever owned and how did you
ever wear the old ones? Some of the people who are passing opinions
haven't even used it! There are other people, who for whatever rea­
sons, want to stick with the old user interface, for training or migration
reasons, maybe. That's fine. We're glad. We'll supply that feature and
we'll make it easy for people to use File Manager, Program Manager,
and so on. And they can migrate to the new user interface at the pace
they like.

I have heard some of the criticisms, that it's a collection of OS/2
and Motif features, and features from all these other things, and itjust
makes me laugh. We never even looked at Motif. I can't tell you what
Motiflooks like! I don't think Joe can either [Joe Belfiore, the lead shell de­
signer in the Chicago group-Ed.].

PM: There were people who looked at Motif. We didn't put our heads
in the sand and not look at what was going on around us. But what is
certainly the case is that this thing was not designed from "Oh yes, let's
take three features from there and three features from there." It was
designed to solve problems that had been identified in the existing
Windows 3.1 user interface.

BS: And problems in other graphical operating systems.

PM: We had guys go out and not only do the internal usability testing
you traditionally do, where you get a bunch of guys in and videotape
them as they try to do some tasks on a machine. We also went out and
spent time with real users, just sitting in and watching. And we learned
a lot of stuff there, like what nine-tenths of the world finds very diffi­
cult. It turns out that nine-tenths of the world can't find their windows,
nine-tenths of the world finds overlapping windows confusing. Most
people run with their windows maximized all the time ...

BS: ... or only run single applications. These are common problems
people have that we went out to solve, and one of the things we learned
as we worked on the Chicago user interface is that by having a really
good design you solve a lot of problems you never anticipated you were
setting out to solve. Good design really means that you have a small

Ebay Exhibit 1013, Page 465 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

E P I L 0 G U E: Leaving Chicago

number of really good principles that work together, that combine
freely and combine well. So that while we started out to make Chicago
easy for novices, we found that having a small number of really useful,
easy to combine principles means that we made the product a lot easier
and a lot more powerful for power users too. That's the benefit of good
design. I think we make quite a number of innovations and contribu­
tions in the Chicago user interface. I fully expect the developers of
other operating systems to follow suit with some variation of what we're
doing. Things like the taskbar. The taskbar is a breakthrough in how
you manage multiple applications. On whatever graphical operating
system, we've found that people can't do window management. They
lose track of things. They don't run multiple applications because they
just lose track of them. The taskbar makes it very easy for people to run
multiple applications and not have to worry about window manage­
ment. It's like Windows TV! You just click a button and you get the Ex­
cel channel or you get the Word channel or you get the Mail channel.
It's a metaphor that people are very used to. It gives you an anchor
point together with the Start button so that if you don't know how to
get something done, you're led to that one place that's really the
source of90 percent of what the system can do.

The Start button. Having a uniform namespace so that all system
objects are in a single namespace, so you don't have a Font Manager
and a Program Manager and a File Manager and all these other manag­
ers. If you want to look at your printers, you go to the Printers folder. If
you want to look at the attributes of your printer, you look at Properties
on your Printers. You don't have to say, "I want to add a printer. Do I go
to the Control Panel for Printers, do I want Setup or do I want some­
thing else ... "

PM: Going back to your original question. People who say that this
thing is like the Workplace shell, or Motif, or something else just really
haven't used either product, or they wouldn't be able to say that.

BS: So having properties on all objects in the system-that's uniform.
Anytime you see something, you know it has properties, and you can
right-dick and get to the properties. That eliminates the complexity
bomb that would otherwise be there. If you want to add more and more
capabilities to a system, unless you have this common framework that
allows you to add things in a uniform way, you're just adding idiosyncratic
feature after idiosyncratic feature. So the right-dick for properties, the

417

Ebay Exhibit 1013, Page 466 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

418

taskbar and the Start button, shortcuts or links-whatever we end up
calling them-I think will all be important. They change the way you
work. They absolutely change the way you use the system. You never
have to remember crazy pathnames all over the network anymore. You
just create a folder. Single-dick to close. Stupid little things, but once
you get used to it and then you go back to 3.1, you say, "This is really
awkward. How did we ever live with this?"

AK: So coming from that, name your three favorite Chicago features.

BS: The shell itself. For sure,just the whole look and feel and gestalt of
the shell. Second, I love shortcuts. I think shortcuts, particularly short­
cuts to network resources, change the way I use the product. They
make me more efficient on a day-to-day basis. The third feature I'd say
is the integration of the network. How the network is seamlessly inte­
grated into the system.

PM: I think a lot of the Plug and Play features are pretty nice. And not
just at the "stick the boards in and pull them out" level. It's the whole
way you can go in and reconfigure your desktop without rebooting
your system and having to clink around like that.

BS: Plug in a CD ROM and not have to spend the weekend doing it.

PM: I think a lot of the mobile features are pretty nice. It's a real nice
system to take on the road on your laptop. There was a bunch of stuff in
M5 [the release distributed at the December 1993 developer conference-Ed.]
that we got cleaned up in Beta-I, and more still needs to be done, but
you can see that it's going to be a lot better for mobile users. The Brief­
case and all those kinds of features that are really cool. Thirdly, there
are elements in the user interface that you think, Boy, how did we live
without these things? Like the Document list and the Start button. You
notice how much easier it is than if you have to open up the File Man­
ager, find the directory, scroll down the directory list, and find the
document and then open it. It cuts four or five clicks out of every op­
eration. You realize you're getting to stuff far more quickly than you
were before.

AK: Do you think Chicago is MS-DOS 7. O? Or is there going to be a different
animal called MS-DOS 7. 0?

Ebay Exhibit 1013, Page 467 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

E PI L 0 G U E: Leaving Chicago

PM: I think that for all intents and purposes Chicago is MS-DOS 7.0, if
by that you mean that MS-DOS 7.0 is the next version of the software
that every PC comes equipped with. Will there be a nongraphical prod­
uct that will have the familiar C:\ prompt as its fundamental interface?
And as such is it MS-DOS 7.0? It's an interesting question. You have to
ask yourself, "What is the market for the end product?" There would
have to be somebody who for some reason has a complete aversion to
graphical user interfaces and refuses to use one under any circum­
stances. On the other hand, we've always been surprised by the number
of people who want to buy an upgrade to MS-DOS.

AK: Have you identified the people who like the C:\ prompt, or are you just
guessing that they 're out there?

PM: That's why we haven't made a decision one way or the other
whether we want to do MS-DOS 7.0. It's hard for us to figure out how
many of these things we'd sell. Logic would say you're not going to sell
that many.

BS: Chicago would run the same MS-DOS apps that such a product
would. We put a lot of effort into our support for MS-DOS applications
so that we could run anything that's out there. It's not as if an MS-DOS
7.0 would run applications that Chicago wouldn't. It just wouldn't be
able to run Windows applications. We just don't know yet if there's suf­
ficient demand. If there's enough demand, we'll build it.

AK: When do you see the release of a fully Chicago compatib/,e version of Win­
dows NT happening? By that I mean a release with the new shell, Plug and
Play, and all the rest of it.

PM: That's the next release after Daytona, called Cairo. Our goal is to
get that out during 1995.

AK: Do you worry that peopl,e will simply dismiss Windows NT when Chicago
hits the streets with all the attendant publicity ? That they 'll just sort of forget
about it and assume that Microsoft has aced itself again?

PM: There's a very real reason they won't forget about NT. NT is our
offering, quite apart from any other issues, for the server market. So
we'll continue to sell NT very aggressively in the server market, where it

419

Ebay Exhibit 1013, Page 468 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

420

offers tremendous advantages-where it can handle multiprocessors
and offer security, reliability, and robustness-those sorts of things.
Those features are not just "nice"-they're absolutely necessary.

And there are significant customers who have already selected
Windows NT as their desktop operating system. They'll be buying Win­
dows NT in fairly large numbers during Y995. These are customers like
financial trading houses, who have long development and deployment
cycles because they're planning to run some very critical applications.
So there will be significant customers buying and deploying Windows
NT during 1995. And our focus will be on servicing those customers.
Windows NT is not an operating system that we have ever expected to
sell through the comer store. It was built expressly in order to solve
specific problems for people, and we'll concentrate our marketing ef­
forts on servicing those customers. And then, when we get to Cairo,
which does pick up the Chicago UI, that's when we'll expand our mar­
keting of the NT product to an even broader segment of the corporate
market.

AK: Do you lose any sleep over the people who are trying to compete with you fJy
attacking Windows? The WABI initiative, Taligent, OS/2, etc., etc.?

PM: Do we take competitors seriously? Yes. We have to because of the
very large sums of money that people are spending to compete with us.
And these are not incompetent people, not stupid people. These are
people who are very serious and have us steadily in their sights. We
can't afford to grow lax or to ignore them. On the other hand, I think if
we execute, if we deliver in a reasonable way, and above all, if we deliver
quality, we'll be OK. My biggest concern with Chicago is that because it
has to sell to so many people and be a successful upgrade for so many
satisfied users today, it has to be a very high quality product. So if we ex­
ecute well in a reasonably timely way and deliver a quality product, I
think it's going to be a tough job for our competitors to try and match
that.

AK: Do you think it's technically feasible for somebody to run a Chica~
compatible system hosted on top of another operating system?

BS: It's only software.

Ebay Exhibit 1013, Page 469 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

E P I L 0 G U E: Leaving Chicago

PM: It's a question of time ...

AK: Within our lifetime?

PM: ... and resources. You understand, we're not religious about this.
We have licensed the Windows source code including the Chicago
source code to people so that they can do precisely that-in the UNIX
environment, for instance.

BS: If IBM wants to license Chicago, we're glad to license it to them.
To us it's just a business decision. It's not a religious decision.

PM: Cloning these modern pieces of software is a tough challenge. I
don't know the exact line count of Chicago, but it's millions of lines of
code, and compatibility is just an incredible, incredible challenge. We
have full access to all the Windows 3.1 source code and our test suites,
and getting both Chicago and Windows NT to be compatible with Win­
dows 3.1 and run all those applications has got to be the largest part, by
far, of our expenditure of effort.

BS: All things said, I'd rather be playing our hand than their hand.
We've got a tough challenge, and if we execute, we're in good shape.
I'd rather be in our position than theirs.

AK: You 're re-emphasizing OLE with Chicago by including it as a standard
component. How do you feel OLE is doing in terms of both the number of ISVs
who are really adopting it and its position in competition with the other object
architectures?

PM: There's a tremendous amount of heat and light about "things ob­
ject" at the moment-most of which has nothing to do with the average
end user. This is truly an industry-induced storm here, where we're just
talking to each other. But OLE is the only thing (a) that an ISV can con­
cretely do something about and (b) that an end user can actually use to
get some benefits from component-oriented software. We have done a
lot of thinking about OLE, and a lot of design work has gone into it. A
lot of what you hear bandied about, that OLE isn't good with a distrib­
uted environment, or isn't able to handle nonrectangular Windows, is
all just nonsense. All that stuff has been thought about and provision
made for it and, in fact, if you take the distributed case, designed very

421

Ebay Exhibit 1013, Page 470 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

422

elegantly for in the sense that all of the components that are written
today will be able to play in a distributed environment with no change
whatsoever. This is not true of models like DSOM, where you have to
make source code changes to get your components to work in a distrib­
uted environment.

In terms of acceptance in the marketplace, the thing to do is to
watch people's feet, not their mouths. There isn't any major software
vendor who isn't making significant investments in OLE technology.
OLE is a very broad thing. It's really an umbrella for a series of technolo­
gies-application automation, compound document support, etc. Not
all ISVs are using all the options under that framework, but that's to be
expected. It's like an operating system: not all ISVs use all the APis in the
operating system. There are many people making their applications
OLE enabled. There isn't anybody of note at the moment who isn't.

AK: The recent Microsoft Developer Network News listed "the magnificent
seven" requirements for an ISV who wants to license the new Windows logo for
display on the product box. One of these was that you've got to support OLE.
That's a little bit aggressive, I would say. Why did you decide to do that?

BS: I think to build a quality Chicago application requires developing
Win32 OLE applications. That's part of what it means to build a great
Chicago application.

PM: People should have certain expectations of their applications
when they see that logo. What we're saying is that they should be able
to see that this application, by virtue of carrying the logo, is going to be
a first-class citizen in this environment. And, in our opinion, to be a
first-class citizen this is what you need to do.

BS: Win32, OLE, long filenames ...

PM: People don't have to use the logo. This is an issue of what you want
the end user to be able to expect when he sees an application that has
the Chicago logo on it.

AK: One of the things I didn't understand looking through that requirements
list was that a qualifying app must be able to run on Windows NT version 3.5.
Given that you don't have all the Chicago facilities in that rekase, how does an
ISV do that? On the one hand, you 're insisting on adoption of the new look and
feel, and on the other you 're insisting on being able to run on Windows NT.

Ebay Exhibit 1013, Page 471 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

E P I L 0 G U E: Leaving Chicago

PM: The answer is that we've made it very easy for people to produce a
high-quality, first-class-citizen Chicago application and also have that
application run on Windows NT 3.5. The controls that you'd use to get
that new look and feel will be available on the Daytona platform, so we
feel that that is actually a very modest requirement. And most ISVs plan
to meet it.

AK: So that will be a library that'.s going to ship with Daytona or a compiler or
something?

PM: Yes, with Daytona.

BS: The main thing that Daytona won't have will be integration with
the shell. But that's OK because the key message for ISVs is that they
just write to Windows./ And there are two different implementations of
Windows. There's the high-end NT implementation and there's the high­
volume Chicago implementation. But it's just like when you write an
Intel program: you don't write to a Pentium, you don't write to a 486,
you just write to the Intel instruction set and depend on Intel to get the
semantics of that instruction set uniform across the implementations.
The same is true with Windows. We just want ISVs to write to Windows
and leave it to Microsoft, with some testing by the ISVs, to make sure
that it will run.across the various implementations of Windows.

PM: And there are some rules you have to follow to do that, but by and
large we feel that those are fairly commonsensical and that they won't
be a big overhead.

AK: Can you give some idea of the scope of the project? Number of programmers,
testers, and those sorts of metrics.

BS: I can't tell you exactly how many people. Chicago is done by my
core team as well as by people both within Microsoft and outside
Microsoft working on some external components. The OLE code, for ·
instance, is done by a group in Daytona. Mail is done by a group in the
Business Systems Division. And some components came from outside
the company, like the file viewers, the terminal application, and the
backup application. And I have no idea how many people are working
on those components. If you eliminate those people, just within the

423

Ebay Exhibit 1013, Page 472 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

424

Chicago core group, it's approximately 350 people. That includes de­
velopers, program managers, testers, and marketing people. Of which,
say I 60 developers-I think there are I 60 developers in the Chicago
group. That's again just my team. That doesn't include Mail or OLE or
some of the external components. And approximately the same num­
bei of testers.

AK: Do you know the numbers of tests that have been done?

BS: I know that to this point, we've done over 400,000 hours of stress
tests. We've got about 20,000 beta sites. The product has been in a PDK
(Programmers Development Kit) release for almost a year now. The
first PDK was in August I 993. By the time we ship, it will be the most
stress-tested, most beta-tested, most analyzed, most speculated-on piece
of code ever delivered in the history of software. !think it's about 4 mil­
lion lines of code altogether.

AK: Do you think there are any features that you might yet drop?

BS: Oh yes. I don't really want to discuss what they might be. But we
have a list offeatures in the category "if we have a hard time with these,
we'll find a way to get them done," and we've got another list of fea­
tures in the category "if we have a hard time with these, they'll catch the
next train." But as you can see from Beta-I, the product is awfully com­
plete. In many ways, if we hadn't spent so much time talking about
some of the features yet to come, it'd be a fine product-even if we
didn't add anything that wasn't in Beta-I. We feel real good about the
content that's in the beta. And stuff that's not yet in the beta? We hope
to get most of it in, but if we don't, I'll still feel good.

AK: And you 'm planning two mom beta cycles be/om shipping?

BS: Yes.

AK: I think the first one went to about 20,000 people?

BS: Beta-I has gone out to about I5,000 now, and by the time we finish
rolling it out it will be up to about 20,000.

AK: Is that going to incmase?

Ebay Exhibit 1013, Page 473 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

E PI LOG U E: Leaving Chicago

BS: Oh yes, it'll only increase. And the last one will be truly massive. I
mean, some of the numbers we're talking about are 100,000, 200,000.
Because we want to make sure that the product really has those road
miles underneath it so that when it comes out, people are really com­
fortable that it's solid production quality and they can roll it out broadly.

AK: How many national languages are you going to ship in?

BS: Simultaneously we will have seven languages. We'll go up to some­
thing like twenty-six languages altogether. And they will all be done
within the first 180 days of shipment. The vast majority will come out
within the first 30 to 60 days. The first seven languages are English, Ger­
man, French, Italian, Swedish, Dutch, and Spanish.

Let me give you an example of just how broadly we're going to
localize Chicago. We're doing a Thai version. We just approved, this
week, a Slovenian version of Chicago. We're doing a Catalan version of
Chicago. We're doing a Basque version. So there's really nowhere in
the world you can go and not be able to get a localized version.

AK: .. . and not run into Chicago. And one final detail question. The Pen ex­
tensions were heavily emphasized early on in some of the product presentations,
and then discussion of them kind of disappeared. What happened there?

BS: They're in the product. We're definitely planning to include the
Pen extensions with Chicago. The level of visibility they get, I think, will
be commensurate with the level of visibility that pen-based machines
will have in the market. A couple of years ago, they were getting a lot
more visibility than they are now. Some pen-based products came out,
but they weren't particularly successful. We still think there's a place for
them, particularly in vertical markets. We're just building the Pen ex­
tensions in as part of the product. It's not worth calling out that much
attention to them, but if companies are building pen-based machines,
they'll know that the pen support will be there.

AK: Thanks for all the infovmation. Good luck with getting the product out
the door.

And there it is-Chicago circa July 22, 1994. No doubt the long road from
Redmond has a few twists and turns yet to be revealed. I'm sure we'll all be
watching with a great deal of interest.

425

Ebay Exhibit 1013, Page 474 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Ebay Exhibit 1013, Page 475 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

GLOSSARY

0:32 addressing Memory addressing that uses the least significant 32
bits of the full address.

16:16 addressing Memory addressing that uses a 16-bit selector and
a 16-bit address.

access control list (ACL) The data defining the access rights of net­
work users to a particular network resource.

account See user account.

address book A database used by the messagi,ng system to record
usernames and electronic address information.

address space See virtual address space.

AEP See asynchronous event packet.

alias At one time, a synonym for shortcut.

API See application programming interface.

application programming interface (API) The defined set of func­
tions provided by the operating system for use by an application.

appy time (application time) A Windows system condition in which it
is safe for a VxD to make fiksystem calls or request memory allocation
services much as if it were an application program.

asynchronous event packet (AEP) A data structure used in the
fiksystem software to notify the lower layers of the occurrence of an
event such as the completion of a data transfer.

427

Ebay Exhibit 1013, Page 476 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

428

asynchronous event routine A function that can be called by the oper­
ating system kernel upon the occurrence of a set of predefined events.

At Work Microsoft's office product automation initiative, designed to
allow common devices such as photocopiers, facsimile machines,
and personal computers to exchange information in a common digi­
tal format.

authentication Validation of a user's network logon information. See
also pass through authentication.

automation See OLE automation.

base system The operating system components of Windows 95,
comprising the memory management, task management, and inter­
rupt management functions of the operating system.

Bezier curve A mathematical technique for drawing a curved path
given a set of discrete points. Frequently used in computer-based
drawing systems.

BIOS (and Plug and Play BIOS) The Basic Input Output System of
the PC. The BIOS comprises the lowest-level interface to common
devices such as the system clock, the hard disk, and the display. A
Plug and Play BIOS supplements the BIOS functions with routines
that support Plug and Play operations such as device enumeration.

bit bit A bit block transfer, an operation that moves a collection of
bits from one place to another. The most common example is the
transfer of an in-memory image to a display device.

block devices Devices addressed in terms of blocks of bytes, such as
disks and tapes, as opposed to devices addressed in terms of single
characters or pixels, such as printers or displays.

boot loader The software responsible for starting the operating sys­
tem-typically after power on. In Windows 95, the boot loader is a
modified form of MS-DOS.

briefcase A specialized shell folder that allows the synchronization of
different versions of the same file.

Ebay Exhibit 1013, Page 477 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Glossary

browsing Looking around the network-locating files, programs,
printers, and so on. See also Explorer.

bus A device that plays a role in the control of at least one other de­
vice. In the hardware context, adapter cards plug into a bus. In the
Plug and Play context, any device that provides resources is a bus.

cache A transient storage area in main memory used for data that
might be needed again in a very short time frame-for example, the
directory information associated with a ftksystem. Intel processors
also implement a hardware cache to retain copies of frequently ac­
cessed memory locations. Windows 95 implements a shared cache
(under control of the VCACHE VxD) used for file and network access
and paging.

Cairo The codename for Microsoft's future release of the Windows NT
operating system. See also object fiksystem.

calldown chain An implementation technique (used in the ftksystem
architecture) that allows an arbitrary number of functions to be
chained together for execution.

call gate See gate.

CDFS The Windows 95 protected mode implementation of an ISO
966<H:ompliant CD ROM filesystem.

CISC processor A complex instruction set computer processor. A
CISC processor uses a large number of instructions containing mul­
tiple fields, addressing modes, and operands. Many CISC instruc­
tions take more than a single clock cycle to decode and execute.

client Usually a system attached to a network that accesses shared net­
work resources.

client application A program that makes requests of a server applica­
tion using a defined interface such as named pipes, RPC, or NetBIOS.

client-server networking· A network architecture in which shared re­
sources are concentrated on powerful server machines and the at­
tached desktap systems fulfill the role of clients, making requests
across the network for centralized information.

429

Ebay Exhibit 1013, Page 478 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

430

CMC See Common Messagi,ng Calls.

CMOS memory Memory kept alive by the system battery. PCs use
CMOS memory to store configuration information, and some Plug
and Play systems use CMOS memory to store device information.

color profile The definition of a devi§:e's color capabilities and cur­
rent calibration. Used by the image color matching system. See also im­
age color matching.

COM See Component Object Model.

Common Messaging Calls (CMC) The set of calls defined by the
X.400 API Association for use in messaging applications. Similar in
scope to Simple MAP!.

Component Object Model (COM) The architecture from which OLE
is derived. Microsoft is working to establish COM as an industrywide
standard for object-oriented systems.

compound document An OLE term that describes a single document
containing multiple data types and operated on by multiple OLE
server applications. See also container.

compound flle A file used by OLE. On Windows 95, a compound file
is a single disk file that contains multiple independent data streams
and indexing information.

configuration manager The component of the Plug and Play system
that's responsible for managing the software configuration associ­
ated with a system's current hardware configuration.

connection A logical link between a local name and a network resource.

container In OLE, an object that can hold other objects. See also com­
pound document.

contention A condition in which two or more active threads require
access to a single resource. The operating system resolves the conten­
tion problem by providing a means for one thread to gain control of

Ebay Exhibit 1013, Page 479 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Glossary

the resource and thereby block access to all other threads. See also
mutual exclusion service (mutex) and semaphore.

context menu See popup menu.

control A fundamental object in Windows that defines the appear­
ance and behavior of a particular visual element such as a menu or a
scroll bar.

cooperative multitasking An operating system scheduling technique
that relies on running applications to yiel.d control of the processor
to the operating system at regular intervals. See also preemptive
multitasking.

coordinate system The Windows GD! definition of the drawing
space available to an application. The coordinate system follows the
simple geometric model you learned in grade school.

critical section A sequence of instructions that must be guaranteed
to execute without yielding control of the processor to another
thread. A critical section is typically used to guarantee the integrity of
a change to an in-memory data structure.

DC See device context.

DCB See device control block.

DOE See dynamic data exchange.

demand paging A technique that brings the memory pages of an ap­
plication or operating system component into memory from disk
only at the time the pages are needed. This technique is opposed to
the one in which the entire memory image of an application is
loaded when the application first starts. Demand paging requires · ·.
support from the processor. Intel 386 and later processors provide
this support. The earlier processors do not.

descriptor On the Intel 386 series processors, an 8-byte area of
memory used to fully describe a region of memory. Descriptors are
grouped into either a local descriptor table (LDT) private to the pro­
cess, or a global descriptor table (GDT) shareable among processes.

431

Ebay Exhibit 1013, Page 480 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

432

Every address generated on the 386 includes a selector that identi­
fies which descriptor table to use and includes the index of the de­
scriptor in the table. The descriptor tables themselves are held in
memory with special purpose processor registers used to hold the
starting addresses of the tables.

descriptor table See descriptor.

desktop What you see on your Windows screen. Also the logical con­
tainer managed by the shell. See also Z order.

despooler The system component responsible for taking the data in
spool files and handing it to the software responsible for .writing it to
an output device.

device context (DC) A GD! data structure that describes the current
state of a device or drawing surface.

device control block (DCB) A data structure used in the !OS to retain
information about a particular hardware device.

device driver A generic term used to refer to the lowest-level software
in an operating system that deals directly with the hardware of a par­
ticular device.

device-Independent bitmap (DIB) An in-memory bitmap whose at­
tributes are independent of any particular hardware device.

device node The logical object in the Plug and Play subsystem's hard­
ware tree that is used to describe a specific device. Also called a Plug
and Play object.

device vlrtualization A technique used in Windows to replicate the
hardware characteristics of a device in a software interface. The
virtualization technique allows more than one application to manipu­
late a single hardware device at the same time. The technique relies
on hardware support from the Intel 386 processor. See also VxD.

dialog A visual element of Windows that groups one or more con­
trols. Usually employed to interact with the user.

Ebay Exhibit 1013, Page 481 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Glossary

DIB See device-independent bitmap.

display driver The Windows component responsible for manipulat­
ing the display hardware. See also mini-driver.

DLL See dynamic link library.

DL VxD See dynaload VxD.

OMA channel A hardware interface that allows a device to transfer
l

information to and from main memory without interrupting the
processor.

document-centric design A design technique that focuses the user
on documents and the information therein rather than on the appli­
cations generating the data that combine to form the document.

domain A collection of network servers and resources in a logical grouping.

DPMI The DOS Protected Mode Interface. An older technique for
allowing 32-bit protected mode programs to run under MS-DOS.

driver registration packet (DRP) An !OS data structure used to initial­
ize the logical connection between IOS and a particular device driver.

DRP See driver registration packet.

dynaload VxD (DL VxD) A dynamically loaded VxD-loaded as
needed by the operating system.

dynamic data exchange (DOE) An older form of data exchange be­
tween two or more cooperating application programs. Windows 95
aims to replace the use of DDE with OLE or RPG.

dynamic link library (DLL) A library of shared functions that applica­
tions link to at runtime as opposed to compile time. A single in­
memory copy of the DLL satisfies requests from all callers.

EGA The Enhanced Graphics Adapter. Under Windows 95, no longer
supported.

433

Ebay Exhibit 1013, Page 482 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

434

EISA The Extended Industry Standard Architecture. A bus design
that allows 32-bit adapters and some automatic device recognition
and configuration. EISA hasn't achieved the success expected for it ..
See also ISA.

embedding An OLE term for the inclusion of an objed within a con­
tainer. The data associated with the Qbjed actually resides in the con­
tainer. See also link.

enumerate To list a set of related objects--for instance, all of a server's
resources.

event The occurrence of a condition that's ofinterest to one or more
software components. The term is typically used to describe the in­
ternal manifestation of an action such as a mouse click.

event-driven program A programming technique in which the appli­
cation is driven by events rather than by data. The event-driven
model dominates modern personal computer operating systems.

exception An event that results from an error such as division by zero.
See also strudured exception handling.

Explorer The shell function that provides the user with the ability to
lnvwse files, folders, and other resources.

export table The definition of callable functions included in a DLL.
The linkage between an application and a DLL is formed by means
of the entries in the export table.

Extended MAPI The complete set of Microsoft's MAP! functions.
Extended MAPI enhances Simple MAP! by adding features such as
address book manipulation and message store querying. See also MAP!
and Simple MAPL

FAT The File Access Table. The default MS-DOS filesystem organization.

filesystem A logical structure of files and associated indexing infor­
mation, typically stored on a disk.

Ebay Exhibit 1013, Page 483 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Glossary

fllesystem driver (FSO) The component of !OS that implements the
interface to a particular type of.fiksystem. Windows 95 supports mul­

. tiple concurrent FSDs.

folder A logical container implemented by the shell that allows the
user to group any collection of items--a set of documents, for in­
stance. Folders are most usefully thought of as directories.

frame buffer The region of memory directly associated with a display.
Changes to the data in the frame buffer result in changes on the vis­
ible screen.

FSO See fiksystem driver.

gate A specialized descriptor tabl,e entry that allows control transfers
between protection rings on the Intel 386 processor.

GOI Graphics Device Interface. The component of Windows respon­
sible for implementing the graphical functions such as line drawing
and color management. GDI is a DLL that includes all of the graphi­
cal AP!s in Windows.

GOT See descriptor.

geometry (of a device) The organization of a device, such as the num­
ber of sectors per track and bytes per sector of a disk drive device.

global descriptor table (GOT) See descriptor.

grabber See screen grabber.

granularity (of allocation) The amount of the smallest storage incre­
ment that can be used to satisfy any request for additional storage.

handle A program data objectthat provides access ~o an allocated Win­
dows resource. Almost every item manipulated by a Windows applica­
tion is addressed by means of a handle. Individual windows, memory
regions, files, timers, and other objects have handles.

435

Ebay Exhibit 1013, Page 484 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

436

hardware tree The logical representation of a system's current hard­
ware configuration built and managed by the Plug and P/,ay subsystem.

heap A region of in-memory storage that can contain data items of
different sizes, types, and attributes.

ICM See image color matching.

IFS See instal/,abl,e .filesystem.

IFS manager See installabk .fiksystem manager.

image color matching (ICM) A new Windows 95 subsystem respon­
sible for the manipulation of color information in a way that is
device-independent.

import library A compile time library used to satisfy references to ex­
ternal functions that will ultimately be resolved at runtime by a DLL.

in-place activation In OI.E, a technique whereby a user can make use
of functions of a server application on a data object in situ within a docu­
ment. In-place activation supersedes the more common current tech­
nique, in which the user sees the screen display change focus to
another application.

in-place editing See in-place activation.

installable filesystem (IFS) A technique used by Windows 95 and
Windows NT in which more than one active .fil.esystem type is sup­
ported by the operating system. Windows 95 allows an IFS to be dy­
namically loaded. See also instal/,abl,e .filesystem manager.

installable filesystem manager (IFS manager) The component that
provides the interface between application requests and the specific
.fil.esystem addressed by an application function. The IFS manager
routes .fiksystem requests to the appropriate .fil.esystem driver (FSD).

interrupt A hardware signal that causes the processor to begin execu­
tion at a different address upon completion of the current instruc­
tion. A hardware device uses an interrupt to gain the attention of the
operating system. See also interrupt service routine.

Ebay Exhibit 1013, Page 485 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Glossary

interrupt service routine (ISR) A sequence of instructions executed
as a result of a hardware interrupt.

1/0 packet (IOP) An !OS data structure that describes a single data
transfer operation.

1/0 port An addressable location on the Intel 386 processor to and
from which hardware control information is read and written.

IOS See 1/0 supervisor.

1/0 supervisor (IOS) The Windows 95 subsystem responsible for con­
trol of the attached block devices.

IPX/SPX Novell's lower-level network protocol.

IRQ The interrupt request level. Each hardware device raises an inter­
rupt on a predetermined IRQ (numbered 0 through 15). The pro­
cessor associates specific interrupts with different interrupt seroi<:e routines.

ISA The Industry Standard Architecture. An acronym used to de­
scribe PCs compatible with IBM's original IBM PC AT design. See
alsoEISA.

ISR See interrupt service routine.

kernel The core component of an operating system. The kernel is
usually considered to include the lowest level of memory, interrupt,
and process management functions.

Kernel The Windows memory management, process management,
and file management functions.

LDT See descriptor.

least recently used (LRU) technique A memory management tech­
nique used to ensure that a page reclaimed for use is the "oldest"
(least recently accessed) page in memory.

legacy Older hardware and software still in use. In the Plug and Play
context, the installed base of device cards that don't conform to the
Plug and Play standard.

437

Ebay Exhibit 1013, Page 486 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

438

linear addressing A memory addressing scheme that organizes
memory so that incrementing an address pointer guarantees a valid
pointer to the next byte in memory. See also segmented addressing.

link An OLE term for a reference within a container to an object whose
data is maintained by another application. Also used in earlier ver­
sions of the shell for shortcut.

local descriptor table (LDT) See descriptor.

locale A Windows term that refers to the system's current interna­
tional configuration, including the national language and other
items such as date and time formats.

locality of reference A program pattern of behavior that results in
heavy access to closely grouped memory locations.

look and feel The appearance of a system and the response of the sys­
tem to user input.

LRU See kast recently used technique.

MAC driver See media access control driver.

MAPI The messaging AP! defined by Microsoft to allow applications
to use a consistent interface to message-related subsystems such as
those handling electronic mail messages, voice mail, and facsimile
data. MAPI comes in two forms: simple and extended. See also Ex­
tended MAP! and Simpk MAP!.

mapped file A file whose contents are directly addressable as part of
an application's address space.

MDI The multiple document interface. A user interface technique
that allows an application to support several active documents whose
windows are clipped to the application's parent window. Microsoft is
advising developers to discontinue use of MDI. See also SDI.

media access control driver (MAC driver) A device driver respon­
sible for the lowest level of network device control. A MAC driver
deals directly with the network adapter.

Ebay Exhibit 1013, Page 487 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Glossary

memory mapped device A device, such as a display, that can be ad­
dressed directly as part of the system's address space.

message In Windows, a message is a unit of data the operating sys­
tem hands to an application to inform it of an event. The word mes­
sage is also used as a generic term to describe the data manipulated
by MAP.I-based applications.

message loop The common Windows application program structure
in which a control loop repeatedly receives and processes messages.

message store The structured storage associated with messages
handled by MAP.I-based applications.

messaging The generic term applied to applications that manipu­
late communicated information such as that found in electronic
mail or voice mail messages, or facsimile documents.

metafile A file format that describes a series of graphical operations
in a high-level, device-independent data format.

Micro Channel IBM's PS/2 series hardware bus.

mini-driver The hardware-dependent component of a device driver
in which the driver is structured as a collection of shared functions
and a smaller hardware-dependent driver module. Mini-drivers
emerged first for printers and in Windows 95 are available for dis­
plays, modems, disks, and pointing devices. See also universal driver.

miniport driver In the Windows 95 filesystem architecture, a driver
specific to a particular SCSI device.

monitor A low-level device driver responsible for interfacing to a
printer, either directly or via the network. The monitor is specialized
in that it can receive input from a (usually) output only device and,
as a result, return status and error information to higher layers of
the operating system.

MPR See multiple provider router.

multiple provider router (MPR) The routing component for Win­
dows 95 network operations. The MPR, a 32-bit protected mode DLL,

439

Ebay Exhibit 1013, Page 488 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

440

implements network operations common to all network types. See
also print request router.

multitasking An operating system feature that allows several inde­
pendent programs to run concurrently.

mutex See mutual exclusion service.

mutual exclusion service (mutex) A software technique designed to
ensure that only one thread can execute a certain sequence of instruc­
tions or gain the ability to manipulate a particular data structure, at
one time. See also critical section and semaphore.

named pipe A high-level data exchange protocol used by client-server
applications on Microsoft networks.

native mode The 32-bit mode of the 80386 processor.

NDIS See Network Driver Interface Specification.

NetBEUI transport The NetBIOS Extended User Interface. A network
transport commonly used on Microsoft networks.

NetBIOS A high-level network interface that provides reliable, error­
free transmission of data between two cooperating applications on a
local area network.

Network Driver Interface S~clfication (NDIS) A software specifica­
tion that defines the interaction between a network transport and the
underlying device driver. The NDIS is vendor independent.

network filesystem driver A 32-bit protected mode VxD responsible
for implementing the semantics of a particular remote filesystem.

network provider (NP) An implementation of the network service
provider interface. Called by the multiple provider router (MPR) only,
never directly by an application, the NP encompasses operations
such as making and breaking network connections and returning
network status information.

Ebay Exhibit 1013, Page 489 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Glossary

network transport The lowest layer of the network subsystem, re­
sponsible for transmitting and receiving data packets via the under­
lying network device driver.

not-present interrupt A fault condition generated by the Intel 386 to
signify that a memory page is not currently present in main memory.
See also demand pagi,ng.

NP See network provider.

object In formal terms, an encapsulation of both data and access
methods, some or all of which may be usable by another application.
Object-oriented techniques allow an object's developer to expose
well-defined interfaces to the object's behavior and to hide the de­
tails of the object's implementation, which ought to allow the use of
the object by many unrelated applications. Although the term is
heavily used throughout Windows 95, in many cases it is simply a
more attractive way of saying "data" or "thing." O/Jject is also thy cur­
rent favorite for most overused term in the software industry. ·

object filesystem A filesystem designed by means of object-oriented
methods and suitable for use by object-oriented applications. Cairo is
reputed to have such a filesystem. OLE compound files are a prototype
for an object filesystem.

ODBC Open Database Connectivity. Microsoft's standard for allow­
ing applications to access different database systems by means of a
common APL

OLE Microsoft's implementation of its Component O/Jject Model (COM)
architecture on Windows systems.

OLE automation A technique that enables a client application to con­
trol an OLE server without direct input from the user. The automation
capability relies on an application's providing defined interfaces to its
functions for use by the client application.

Open Datalink Interface (ODI) Novell's network device driver inter­
face standard.

441

Ebay Exhibit 1013, Page 490 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

442

page On the Intel 386, a contiguous physical memory region of 4K.

paging See demand pagi,ng.

paragraph Originally a region of 16 bytes of memory on an Intel pro­
cessor. It's becoming an obsolete term now that 32-bit linear address­
ing is here.

pass through authentication An authentication technique that relies
on another system or software subsystem to perform validation. The
caller-supplied information is passed to the validating system, and
the results are passed back to the caller.

path In· GD!, a description of a series of points that GDI can connect
(the stroke) with a particular type of pen or brush. The characteris­
tics of the pen determine the pattern and colOr (fill) of the connect­
ing stroke. A path (or pathname) to a file or directory is a name that
describes the logical location of the file or directory.

pathname See path.

PCI bus A bus definition whose design was led by Intel. The design is
intended to support high-speed 32-bit data paths between devices,
memory, and the processor. Plug and Play fully supports the PCI bus.

PCMCIA A bus definition that defines a hardware interface suitable
for peripherals with a very small (credit card size) form factor. Such
peripherals are typically used on portable machines, for which
weight, size, and power consumption are important considerations.

peer-to-peer networking A network architecture in which each con­
nected system can act as both client and server.

persistent connection A network connection that has a lifetime be­
yond a single session or working day. The Windows 95 shell will return
persistent connections to their prior states when the user logs in to
the network.

physical address A memory address whose physical location
matches its address. See also virtual address.

Ebay Exhibit 1013, Page 491 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Glossary

pixel The smallest element of a display that can be modified under
software control. Pixels typically have color attributes individually
associated with them.

Plug and Play The specification for a hardware and software archi­
tecture that allows automatic device identification and configura­
tion. In Windows 95, the Plug and Play subsystem is responsible for
these functions on behalf of the operating system.

popup menu A menu that appears disconnected from other visual
elements (unlike the drop-down menus associated with most appli­
cation menu bars). Windows 95 frequently displays popup menus
when the user clicks the right (secondary) mouse button. Popup
menus are sometimes called shortcut menus or context menus.

port driver A component in the Windows 95 filesystem architecture that
controls a specific adapter. A port driver manages adapter initializa­
tion and device interrupts.

POSIX A definition of a standardized UNIX. The POSIX standard is
not supported by Windows 95.

PPP The point to point protocol. An industry standard protocol in­
tended for use over lower-speed, potentially unreliable connections
such as telephone lines.

preemptive multitasking An operating system scheduling technique
that allows the operating system to take control of the processor at
any instant regardless of the state of the currently running applica­
tion. Preemption guarantees better response to the user and higher
data throughput. See also scheduler.

print request router (PRR) The routing component for Windows 95
print requests. The application calls are directed to the appropriate
print subsystem via the PRR.

process A common term, used also by Windows 95, to describe the
running state of a program.

property An attribute of an olJject. The term is used widely throughout
Windows 95 to describe settings such as the color of a title bar or the

443

Ebay Exhibit 1013, Page 492 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

444

connected state of a modem. The guidelines for Windows 95 appli­
cations suggest that an object's properties should always be available
as the result of a right mouse click. See also property sheet.

property sheet A new Windows 95 dialog box intended to allow the
convenient grouping of an object's properties in a single place.

protected mode A mode of the Intel 386 processor in which the
hardware carries out numerous validation checks on memory refer­
ences, function calls, 1/0 port accesses, and other items. A protec­
tion failure allows the operating system to gain control and deal with
the condition. An application must run in protected mode if it is to
make use of the full address space and virtual memory capabilities of
the 386.

protected mode mapper In the Windows 95 .filesystem architecture, a
module that disguises real mode drivers so that new protected mode
.filesystem modules don't have to take account of the different inter­
face for existing MS-DOS drivers.

protection ring One component of the Intel 386 processor's protected
mode validation capabilities. Windows 95 uses protection ring three
for application-level software and ring zero for operating system
components. Software executing at ring three can be prevented
from executing privileged instructions or accessing defined memory
regions. Software executing at ring zero has no such restrictions
placed on it.

protocol The definition of an interaction between two software com­
ponents that ensures reliable, error-free communication between the
components. Typically used to refer to network-based exchanges.

protocol stack The collection of software modules that implement a
particular network protocol.

PRR See print request router.

RAS See remote access services.

rasterizer The software component that turns a description of a font
into a physical rendition of the characters suitable for use on a dis­
play or a printer device.

Ebay Exhibit 1013, Page 493 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Glossary

raw Input queue The data structure maintained by the operating sys­
tem into which all input events, such as mouse clicks and keystrokes,
are placed before they are distributed to the message queues associ­
ated with individual applications.

real mode The Intel 8086-compatible mode of the Intel 386 proces­
sor. Real mode allows no access to the 386's large virtual address space
or demand pagi,ng capabilities. Real mode does not enable the
processor's protection system.

real mode driver An existing MS-DOS device driver that Windows 95
will run in virtual 8086 mode.

redirector The client-side software that accepts file access requests
and transforms them into network requests.

registry . A database maintained by Windows 95 for storing hardware
and software configuration information. The registry is used heavily
by the Plug and Play subsystem.

remote access services (RAS) A Windows 95 subsystem that imple­
ments remote dial-in and connection functions. See also remote net­
work access.

remote network access (RNA) In Windows 95, the subsystem that al­
lows a remote user to log in to a network much as if he or she were
logging in locally. By means of RNA, network resources become acces­
sible to the remote user.

remote procedure call (RPC) A software technique that allows an ap­
plication to execute a function call in which the callee is executing
on another machine on a network.

resource A network of1ect such as a printer, or a collection of files
grouped in a directory, that is available for shared access.

resource arbitrator A component of the Plug and Play system that
understands the specific hardware resource requirements of a particu­
lar device and can resolve conflicts between devices that request the
same resource. The arbitrator allocates the resources that will satisfy
the device's requirements.

445

Ebay Exhibit 1013, Page 494 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

446

rich text Textual information that includes formatting information
such as font, layout, and other properties.

ring See protection ring.

RISC processor A reduced instruction set computer processor: A
RISC processor uses a small number of simple instructions. The
technique allows the processor chip to be smaller (it has fewer tran­
sistors) and thus faster (the paths between individual gates are
shorter), and cooler (so that it can run at higher clock speeds). Typi­
cally, every instruction on a RISC chip executes in a single clock cycle.
See also CISC processor.

RNA See remote network access.

RPC See .remote procedure call.

safe driver In Windows 95, a real mode driver whose functionality can
be offered by an equivalent protected mode driver. 'rhe protected
mode driver can thus take control of the real mode driver and safely
bypass it while the system is running in protected mode.

scheduler The operating system component responsible for allocat­
ing processor time to a thread for execution.

screen grabber The component of a Windows display driver that
saves and restores the screen state on behalf of an MS-DOS virtual
machine.

SCSI The Small Computer System Interface. An industry standard
hardware bus. SCSI devices respond to a defined set of commands
and can be addressed by means of a unit number.

SCSI manager The Windows 95 filesystem component that provides
the translation between a Windows NT miniport driver and Windows 95.

SDI The single document interface. SDI (in comparison to MDI) uses
one window per document. Users switch between full screen win­
dows (and thus documents) rather than switching between child
windows within an application's parent window.

Ebay Exhibit 1013, Page 495 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Glossary

segment On the Intel 386, a region of virtual memory specified by a
single descriptor.

segmented addressing An Intel processor memory addressing scheme
in which the address is specified as the combination of a segment and
an offset within a segment. This addressing technique (finally) goes
the way of the dodo in use of the Win32 AP/ on Windows 95. See also
linear addressing.

semaphore A software mechanism used to implement resource or criti­
cal section management. A semaphore differs from a mutex in that it
has a finite value that is usually greater than 1 initially. The control­
ling entity can thus allocate a predetermined number of copies of a
particular resource.

server The system on a network that owns the resources available to cli­
ents. Server resources can be files, printers, or server applications
(such as a multiuser database).

server application The software that controls access to a resourcevia a
programmatic interface. Client software typically connects to a server
application using one of the supported high-level protocols such as
named pipes or RPG.

service provider A component of WOSA that provides the lower-level
interface to a specific service, such as a messaging system, a database
system, or a mainframe communications system. The Service Provider
Interface (SPI) is defined for each service but never called directly
by an application.

service table The definition of functions supported by a VxD and
available to other VxDs. ·

shared memory A technique that allows a memory region to appear
in the virtual address space of more than one process. Windows 95 sup­
ports a variety of shared memory features.

share-level security A network security method that relies on the ad­
ministrator to associate access privileges with each network resource.
See also access control list.

447

Ebay Exhibit 1013, Page 496 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

448

share name The name given to a share point.

share point A file resource that a remote user can connect to. All of
the directories and files in the share point's subtree become part of
the connected network resource.

shell A program that provides the user with a means of control over
the system. In Wi~dows 95, the shell controls the desktop and much
of the interaction with the system's resources.

shell VxD The VxD responsible for loading the ring three compo­
nents of the system. The shell VxD also implements services that al­
low messages to be sent between applications and VxDs.

shortcut A shell technique that allows the use of an alternative name
to refer to an object. Many shortcuts can be defined for a single ob­
ject. Shortcuts were at one time or another. in the development of
Windows 95 called links or aliases.

Simple MAPI The basic message addressing, transmission, and recep­
tion features of Microsoft's messaging AP/ subsystem. See also MAP!
and Extended MAP!.

SMB protocol The Server Message Block network protocol. The de­
fault protocol for Microsoft networks.

sockets The application interface to a TCP /IP protocol stack.

SPI See service provider.

spooler The component that takes application generated output in­
tended for a printer and stores it temporarily on disk.

Start menu The name for the shell's most obvious access point to the
functions of Windows 95. The popup menu associated with the Start
button on the taskbar.

static VxD A VxD loaded during the system boot process and never
unloaded.

structured exception handling A software technique that enables
controlled recovery from unexpected error conditions.

Ebay Exhibit 1013, Page 497 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Glossary

swap file The disk file used by Windows 95 to hold the active system
and application memory pages that are not currently present in
main memory.

system tray The early name for the Windows 95 taskbar.

system VM The virtual machine context in which all Windows applica­
tions execute.

TAPI The Telephony APL Microsoft's API definition for the WOSA
telephony functions.

task Synonymous with process.

taskbar The final (?) name for the Windows 95 shell visual element
that gives the user access to the Start menu and to currently running
programs.

TCP/IP The Transmission Control Protocol/Internet Protocol. The
default wide area network protocol used by both Windows 95 and Win­
dows NT.

thread A single path of execution within a process. A single process
can initiate multiple threads. The threads in a process share the
code and global data of the parent.

thumbnail In OLE, the reduced image of a document stored within
an OLE compound fiJe. The shell can display OLE thumbnails to help
the user during file browsing operations.

thunk An implementation technique that, for example, allows 16--bit
code to call 32-bit code and vice versa. Originally defined simply as a
piece of code that gets you from one place to another.

timeslice The amount of processor time the scheduler allocates among
threads before its next evaluation of thread priorities.

transfer model The conceptual process of moving data from one
application location to another. Implemented under Windows 95
using the Cut, Copy, and Paste operations.

transport See network transport.

449

Ebay Exhibit 1013, Page 498 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

450

TSO See type specific driver.

type specific driver (TSO) A component of !OS that manages all
devices of a particular type.

UAE Unrecoverable Application Error. An error that would compro­
mise the integrity of the system if it were to be ignored. In reality, it's
a bug in the application program.

UNC See Universal Naming Convention.

Unicode A standard that defines an international character set en­
coding scheme.

Unimodem The Windows 95 name for the universal modem driver.
In reality, a driver-level component that uses modem description
files to control its interaction with the communications driver
VCOMM.

universal driver A shared set of hardware-independent functions
called on by the mini-drivers. Originally used by printer drivers, in Win­
dows 95 used by modem, display, disk, and pointing device drivers.

Universal Naming Convention (UNC) A file naming convention that
uses a \\NAME prefix to specify a network-unique path for a file or
directory.

UNIX An operating system with many features similar to those of Win­
dows NT, including multitasking and multithreading. Available on
many different hardware architectures, with versions from Sun
Microsystems, Novell, IBM, and others.

User The Windows 95 component that implements the window, dia­
log, and control manipulation capabilities of the system.

user account A database of information, accessed by means of the
user's network logon name, that defines the user's access rights to
network resources.

user level security A network security method that associates resource
access privileges with a particular network login name.

/

Ebay Exhibit 1013, Page 499 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Glossary

VCACHE The VxD that implements a common disk caching capabil­
ity used by all the filesystem drivers.

VCOMM The VxD that implements the common communications
port driver functions.

vendor supplied driver (VSD) A layer in !OS that allows a particular
vendor to extend !OS functionality.

VFAT The protected mode implementation of the FATfilesystem.

VFLATD The universal display driver VxD.

VGA Video Graphics Adapter. The default display type for Windows 95.

virtual 8086 mode The Intel 386 processor mode that allows an oper­
ating system to run software in an Intel 8086-compatible fashion
while retaining a degree of protection.

virtual address An address in a thread's virtual address space. The
physical memory corresponding to a particular virtual address may
or may not be present in main memory. See also demand pagi,ng,
physical address, and virtual address space.

virtual address space The collection of addresses that make up the
total virtual memory allocated to a particular thread.

virtual machine (VM) The Windows context for execution of an ap­
plication. The context includes a virtual address space, processor re­
gisters, and privileges.

virtual machine manager (VMM) The component of the Windows 95
base system that controls the initialization, resourm allocation, and
termination of individual virtual machines.

virtual memory Memory. allocated to the address space of a thread

but not necessarily present in main memory, or indeed not neces­
sarily backed up by physical memory.

visual cue A technique used by the Windows 95 shell to suggest the
purpose behind a particular visual element, or an association be­
tween different elements.

451

Ebay Exhibit 1013, Page 500 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

452

VM See virtual machine.

VMM See virtual machine manager.

volume tracking driver (VTD) The component of /OS responsible for
managing removable devices.

VTD See volume tracking driver.

VxD Literally, virtual anything driver. A low-level software component
that manages a single resour<:e, such as a display screen or a serial
port, on behalf of possibly many concurrent threads. This enables,
for example, applications running in separate MS-DOS VMs to use a
single screen. A VxD is always 32-bit protected mode code and is fre­
quently written in assembly language.

widening The expansion of a bit quantity to a larger number of bits.
Typically used to transform 16-bit integers into 32-bit integers of the
same value.

Win16 The 16-bit subsystem of Windows 95.

Win16Lock The old name for Win16Mutex.

Wln16Mutex The software semaphore that controls entry to .the non­
reentrant components of the 16-bit kernel. Called Winl 6Lock early on
in the Windows 95 project.

Win32 The 32-bit subsystem of Windows 95.

Wln32s The subset of the Win32 AP! implemented for Windows 3.1.

window menu What used to be called the system menu.

window procedure The function in a Windows application that is as­
sociated with a specific window.

Windows NT Microsoft's high-end 32-bit operating system.

Windows Open Services Architecture (WOSA) Microsoft's umbrella
term for its definition of application-specific services, such as MAP!
and ODBC, available under Windows.

Ebay Exhibit 1013, Page 501 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Glossary

Windows Sockets The Windows implementation of the TCP/IP socket
interface.

working set The collection of memory pages belonging to a particular
thread that must be present in main memory for the thread to execute.

WOSA See Windows Open Services Architecture.

yielding An application's handing control back to the operating sys­
tem. See also cooperative multitasking.

Z order The order in which windows appear on the desktop.

453

Ebay Exhibit 1013, Page 502 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Ebay Exhibit 1013, Page 503 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INDEX

Numbers
0:32 addressing, 143, 427
3Com, 313
3-D appearance, shell, 184, 198-200
8-bit processor, 38
lONet program, 343
16:16 addressing, 143, 427
16-bit vs. 32-bit code

calls and returns between, 144-47, 148, 149
mixing, 54, 107, 142-47, 148, 149
porting process, 229-33
and process preemption, 149-55

16-bit Windows applications
APis for, 110-11
further development status, 81
message queue for, 120, 121
running under Windows 95, 33-34, 64, 65, 81
running under Windows NT, 33
virtual address space, 25, 109

32-bit Windows applications. See also Win32 API
message queue for, 120, 121
and preemption, 26-27
support for applications developers, 5-6,

24-27,54
and System VM, 71-72
virtual address space, 25, 27, 85, 86-88, 109,

110, 125, 126
and Win32 API, 224-38
as Windows 95 component, 64, 65
Windows 95 shell as, 147, 188

286. See 80286 processor
386. See 80386 processor
386 native mode, 37
486. See 80486 processor
640K barrier, 23, 39-40
8080 processor, 38
8086 processor

I-megabyte memory limit, 38, 39
compatibility with 80286 processor, 36, 37, 41
compatibility with 80386 processor, 36, 37,

45,68
first introduced, 35
memory architecture, 37, 38
segmented addressing, 37, 38

8088 processor, 35
80286 processor

compatibility with 8086 processor, 36, 37, 41
deficiencies of, 36, 37, 43-44
as faster 8086, 36, 37
and IBM PC AT computers, 36
as major architectural revision, 35, 36
and MS-DOS 3.0, 36
overview, 41-43
in protected mode, 36, 41-43
in real mode, 41
segmented addressing, 41-43

80386 processor
16-bit applications for, 54
and 32-bit mode, 37, 44, 45
benefits of, for MS-DOS-based applications,

59,60-61
compatibility with 8086, 36, 37, 45, 68
compatibility with 80286, 36, 37, 41
descriptor format, 45-48
as major architectural revision, 35, 36, 44
and memory addressing, 45-54
Microsoft's role in developing, 44
and need for new operating system, 44-45
and operating modes, 45
overview, 43-45
privilege levels of, 56-57
in protected mode, 45
protection capabilities of, 54-60
in real mode, 45
and segment feature, 45, 46
and software compatibility, 45
successful follow-on to 286, 37, 44
system performance, 1
and virtual 8086 mode, 37, 44, 45, 68
and Windows, 1, 37, 44-45

80486 processor, 35, 37, 44

A
access control lists (ACLs), 373, 378, 427
access controls. See access control lists (ACLs)
accessed bit, 47, 53
active users, defined, 30
adapter cards, 20, 315, 317

455

Ebay Exhibit 1013, Page 504 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

Add]ob() API function, 236
AddObjectToBriefcase() API, 403
address book, defined, 427
addressing, 16-bit vs. 32-bit code, 25, 143
address registers, 38, 41, 42
address space. See virtual address space
Adobe Systems, 273
AEP. See asynchronous event packet
AEP_BOOT_COMPLETE message, 303
AEP _CONFIG_DCB message, 303
AEP _DEVICE_INQUIRY message, 303
AEP _INITIALIZE message, 303
AEP _IOP _TIMEOUT message, 303
alias, defined, 427
anchor point, taskbar as, 179, 180
animation, 196-97
ANSI character set, 235
appearance, screen. See also screen display

of dialog boxes, 94, 164, 165, 211-13
elements of, 198-213
new controls, 205-10
overall screen appearance, 22, 182-84,

198-201
screen elements, 201-13

API. See application programming interface;
Win32API

API functions
Add]ob(), 236
BroadcastSystemMessage(), 242
CreateDC(), 270
CreateDIBSection(), 266
CreateDirectory(), 290
CreateEnhMetaFile(), 272
CreateEvent(), 240
CreateFile(), 137, 138, 241, 290
CreateFileMapping(), 127
CreateMutex(), 240
CreateSemaphore(), 240
CreateWindow(), 149
DeleteFile(), 290
DeviceloControl(), 137, 138, 139, 286
DispatchMessage(), 97
Dos3Call(), 233
DuplicateHandle(), 240, 241
EndDoc(), 270
EndPage(), 270
EnterCriticalSection(), 239
Escape(), 269
FindClose(), 290

456

API functions, continued
FindFirst.File(), 290
FindNext.File(), 290
FreelmageColorMatcher(), 260
GetBrush(), 148
GetCurrentDirectory(), 290
GetCurrentProcess(), 110
GetCurrentTask(), 110
Get.FileAttributes(), 290
Get.FileTime(), 290
GetLastError(), 233
GetMessage(), 82, 97
GetStockObject(), 148
GetSysColor(), 245
GetThreadDesktofl(), 233
GetVersion(), 233
GetVolumelnformation(), 290
GlobalMemoryStatus(), 122
HeapCreate(), 129
InitializeCriticalSection(), 239
InterlockedDecrement(), 239
InterlockedExchange(), 239
Interlockedlncrement(), 239
LeaveCriticalSection(), 239
LoadlmageColorMatcher(), 260
MapViewOJFile(), 127, 128, 241
MapViewOJFileEx(), 127, 128
MessageBox(), 83
MessageBoxEx(), 249
MoveFile(), 290
MsgWait.ForMultipleObjects(), 240
openFile(), 290
openFileMapping(), 127
openMutex(), 240
openSemaphore(), 240
PulseEvent(), 240
RaiseException(), 252
RasDial(), 389
RasEnumConnections(), 389
RasGetConnectStatus(), 389
RasHangup(), 389
ReleaseMutex(), 240
ReleaseSemaphore(), 240
RemoveDirectory(), 290
ResetEvent(), 240
Schedulefob(), 236
SetCurrentDirectory(), 290
SetEvent(), 240
Set.FileAttributes(), 290

Ebay Exhibit 1013, Page 505 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

API functions, continued
SetFileTime(), 290
StartDoc(), 270
StartPage(), 270
VirlualAlloc(), 128-29
WaitForMultipleObjects(), 240
WaitForMultipleObjectsEx(), 240
WaitForSingleObject(), 240
WaitForSingleObjectEx(), 240
WNetAddConnection(), 358, 359
WNetAddConnection2(), 358, 359
WNetAuthenticationDialog(), 360
WNetCachePassword(), 360
WNetCancelConnection(), 359
WNetCancelConnection2(), 359
WNetCloseEnum(), 359
WNetConnectionDialog(), 359
WNetDeviceGetFreeDevice(), 360
WNetDeviceGetNumber(), 360
WNetDeviceGetString(), 360
WNetDisconnectDialog(), 359
WNetEnumResource(), 359
WNetGetConnection(), 359
WNetGetLastError(), 360
WNetGetSectionName(), 360
WNetNotifj&gister(), 359
WNetopenEnum(), 359
WNSetLastError(), 360
WNetUNCGetltem(), 360
WNetUNCValidate(), 360
WriteProcessMemory(), 123, 241

Apple Macintosh, 339, 343
AppleTalk, 343
application developers

32-bit applications support, 5-6, 24-27, 54
adding OLE capability, 100, 217-18, 220,

245-48
developer relations group (DRG), 29
guidelines for, 217-20
and international support, 248-49
marketing Windows 95 to, 29
and memory management, 241
and multitasking, 238-41
and online help system, 186, 219
and Plug and Play subsystem, 241-42
and the registry, 242-44
and user interface, 245
Windows programming basics, 96-100

application platforms, 2, 5-6

Index

application program errors, 2, 17, 56, 117-18
application programming interface (API),

142-55. See also Win32 API
and 32-bit support, 25
defined,64,65,351,427
functions, 71
Windows 95 Win32 API set, 26

applications. See also 16-bit Windows applica­
tions; 32-bit Windows applications;
MS-DOS-based applications

backward compatibility with Intel chips,
36-37

common dialog boxes, 210-13, 217, 219, 227
compatibility with taskbar, 180-81
icons for, 204-5
memory management, Windows 95, 87-88
messages to, 119-21
OLE client vs. OLE servers, 246, 247
in Plug and Play systems, 323, 338-39
and privilege levels, 56
and protection rings, 108
starting, from Windows 95, 59
and UAEs, 56
Windows 95 base system suppo.rt, 141-55

appy time (application time), defined, 427
architecture

of Intel processors, 37-45
of PCs, 4-5
segmented memory, 38-39, 41-43
Windows 95 filesystem, 277-81
Windows 95 GDI subsystem, 255-56
Windows 95 network subsystem, 347-55
Windows 95 printing subsystem, 269, 270, 272

Artisoft, 345
assembly language, thunks in, 144
asynchronous event packet (AEP), 301, 427
asynchronouseventroutine,defined,428
AtWork,defined,428
authentication,360,366,428
AUTOEXEC.BAT file, 21, 71, 73, 112, 242, 243

B
backward compatibility, 36-37
bank-switched video adapters, 267-68
Banyan networks, 27, 28
base address, descriptor table entry, 46
base system, Windows 95

application support, 141-55
components of, 66-67

457

Ebay Exhibit 1013, Page 506 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

base system, Windows 95, continued
defined,66,428
features of, 103-4
and privilege levels, 84
virtual device drivers (VxDs), 67, 84-85
Virtual Machine Manager (VMM), 67, 111-41

Beta-1 release, xxv, 30
Bezier curve drawing, 257, 428
BillG reviews, 191
BIOS, 4, 5

defined,428
Plug and Play standard, 315, 317, 324,

336-37, 428
bit blt, defined, 428
bitmaps. See device-independent bitmap (DIB)

engine; 1/0 permission bitmaps
block devices, 277, 428
bootloader,defined,428
bottom line, 30
briefcase object, 400-404, 428
BroadcastSystemMessage() API function, 242
browsing

defined, 354, 429
design evolution of, 195-96
using Windows 95 shell, 169...;.70, 177

bus architecture, Plug and Play standard, 20,
315-17

bus devices, 329, 429
button list box control, 206
buttons

control of, 183
dialog box, 93
on system taskbar, 194, 195
window, 183, 204

byte granularity, 47

c
C++,246,247
cache,defined,429
Cairo project

defined, 429
and document-centric interface, 159
as object-oriented system, 11, 166, 247
and OLE, 220, 246, 247-48
and RPC, 367-68
team involvement in Windows 95 shell

design, 190, 191
and visual design issues, 166
vs. Windows 95, 6-13
as Windows NT version, 10

458

calldown chains, 297, 300-301, 429
call gates, 57
Call_Global_Event service, 132
Call_ When_ldl,e service, 132
ccMail, 396
CDFS (CD ROM filesystem) driver, 280, 429
checkboxes, 93
Chicago project, xxv-xxvi, 1. See also Cairo

project; Windows 95
child windows, 95
Chkdsk program, 24
CIENZY standard, 259
CISC processor, defined, 429
C language, and 16-bit vs. 32-bit code, 143
client applications, defined, 429
client machines

defined,8,429
multiple, Windows 95 support for, 28
requirements for, 8
and Windows 95, 9, 11
Windows 95 support for, 28

client-server networking, 8-10, 28, 341-42, 343,
344,429

Clipbook, 197
Close button, 183, 204
CMC (Common Messaging Calls), 397, 430
CMOS memory, defined, 430
CMYK color standard, 260
color management systems, 259-62
color profiles, 260, 261, 430
color reproduction, 259-62
color scheme, changes in, 200 .
colorspace,259,261-62
column heading control, 207
COM (component object model), 247, 430
COMMAND.COM file, 159, 214, 282
COMMDLG.DLL file, 211
COMM.ORV module, 392
common dialogs

new visual style, 211-13
use of, 210-13, 217, 219
Win32 APis, 227

Common Messaging Calls (CMC), 397, 430
communications. See also portable computers

COM ports, controlling, 57-60
port drivers, 392-94
Win32 APls, 228
and Windows 95, 27-28, 60

Compaq, and Plug and Play standard, 4

Ebay Exhibit 1013, Page 507 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

compatibility
backward, 36-37
MS-DOS-based application issues, 4, 7, 44, 45
and NDIS (Network Driver Interface

Specification), 369-70
network transport issues, 366-68
Plug and Play issues, 319-20
as Windows 95 requirement, 4, 7, 14-15,

44,45
component object model (COM), 247, 430
COM ports, controlling, 57-60
compound documents, 167, 246, 247

defined, 246, 430
previewing, 212

compound files, 247, 430
CompuServe, 189
CONFIG.SYS file, 21, 71, 73, 112, 242, 243
configuration, hardware, and Plug and Play, 20,

315-17,318
configuration files, Windows 95, 243, 332
configuration manager

defined,322,324,430
role in Plug and Play, 141, 322, 323, 324,

333-34
console APis, Windows 95 vs. Windows NT, 235
containers

on networks, defined, 354
in OLE, defined, 430

contention, in multitasking, 79-80, 430-31
contex468,70-71, 72, 73
context menus. See popup menus
continuation menus, 174, 175
control blocks, VM, 130
control objects

button list box, 206
column heading, 207
defined,94,95,431
list view, 210
new, 205-10
progress indicator, 208
property sheet, 185-86, 209-10
rich text, 209
slider, 208
spin box, 208-9
status window, 206-7
tab, 209
tool bar, 205-6
tree view, 210
Win32 APis, 227

Index

Control Panel program, 22, 162
cooperative multitasking, 77-78, 431
coordinate systems

16-bit vs. 32-bit systems, 232, 235, 257
defined,431
Windows 95 vs. Windows NT, 232, 235, 257

Cougar project, 104
CreateDC() API function, 270
CreateDIBSection() API function, 266
CreateDirectory() API function, 290
CreateEnhMetaFile() API function, 272
CreateEvent() API function, 240
CreateFile() API function, 137, 138, 241, 290
CreateFileMapping() API function, 127
CreateMutex() API function, 240
CreateSemaphore() API function, 240
·Create Window() API function, 149
critical sections

defined,239,431
managing, 79-80
Win32 APls, 239

Ctrl+Alt+Del, 135, 154
cursor, 268
customer benefits of Windows 95, 29
cut and paste operations, 197-98

D
data structures, Windows 95 use of, 238
DCBs (device control blocks), 300, 432
DC (device context), defined, 432
DDE (dynamic data exchange), 228, 245, 433
debugVMM services, 141
DEC Alpha processor, 33
default startup screen. See also screen display

design evolution, 192-93
Windows 95 vs. Windows 3.1, 157, 158

DeleteFile() API function, 290
demand paging, defined, 431
descriptor privilege level (DPL), 47
descriptors, 41, 42, 109, 431~32
descriptor tables, 41, 42, 45-48
desktop, Windows 95

animation on, 196-97
defined,432
folders on, 172-73, 177
initial, 174-76
look and feel of, 177
overview, 174-79

Desktop dialog box (Windows 3.1), 164, 165

459

Ebay Exhibit 1013, Page 508 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

directory, 172
Desktop property sheet, 185, 186
despooler, 270, 432
DESQview, 37
developer relations groups (DRG), 29
developers. See application developers
device context (DC), defined, 432
device control blocks (DCBs), 300, 432
device data blocks (DDBs), 299
device drivers. See also mini-drivers

and asynchronous events, 301
controlling peripherals with, 4, 58-59
defined,432
and device-independent capability, 253-54
driver registration packets (DRPs), 298-99
initialization, 298-99
and IOS services, 298
and MS-DOS-based applications, 58-59, 90
and Plug and Play subsystem, 20, 324, 337-38
protected mode, 24, 67
real mode, 67, 69, 281, 307-8, 445
virtual, 67
virtualizing devices, 90-91

device identifiers, 331-32
device-independent bitmap (DIB) engine

and bank-switched video adapters, 267-68
defined,432
and display mini-driver, 254, 264, 265, 266,

268
in GDI architecture, 254, 255, 256, 262, 263
interfacing with, 268
overview, 253
and universal printer driver, 253-54, 272-73

DeviceloControl() API function, 137, 138, 139, 286
device nodes, 329-31, 432
devices. See hardware
device virtualization, 60, 90-91, 432
dialog boxes

appearance of, 94, 164-65, 211-13
common,210-13,217,219,227
controls in, 94, 95
defined, 432
elements in, 93-95

DIB engine. See device-independent bitmap
(DIB) engine

DIBENGINE data structure, 266, 267
directories, 171, 172-73. See also folders
dirty bit, 53
DispatchMessage() API function, 97

460

display drivers
defined,433
DIB engine/mini-driver combination, 254,

264,265,266,268
display screen. See screen display
display subsystem

and DIB engine, 265-66
and display mini-driver, 254, 264, 265, 266,

268
overview, 262-64

DLLs (dynamic link libraries), 82, 147, 433
DL VxDs, 133, 433
DMA channel, defined, 433
document-centric interface, 159, 166-67, 433
domains, network, defined, 354, 433
DOS386.EXE file, 129
Dos3Call() API function, 233
DOS extenders, 69, 74
DOS Protected Mode Interface (DPMI) specifi-

. cation,24,74-75,433
DPL (descriptor privilege level), 47
DPMI (DOS Protected Mode Interface) specifi-

cation, 24, 74-75,433
drag and drop operations, 24 7
driver registration packet (DRP), 298, 433
drivers. See device drivers; mini-drivers
drop-down list boxes, 93
DRP (driver registration packet), 298, 433
DuplicateHandl,e() API function, 240, 241
dynaload (DL) VxDs, 133, 433
dynamic data exchange (DDE)

defined,433
vs. OLE technology, 245
Win32 APis, 228

dynamic linking, 71, 82-84
dynamic link libraries (DLLs), 82, 147, 433

E
Eastman Kodak, 260
EGA (Enhanced Graphics Adapter), support for,

67,433
EISA (Extended Industry Standard Architecture)

bus, 310, 311, 434
electronic mail, 23, 28, 349-50, 394-98
embedding, 246, 434. See also OLE technology
EndDoc() API function, 270
EndPage() API function, 270
end users, and ease of use, 3, 19-22, 29
enhanced mode, 67, 85

Ebay Exhibit 1013, Page 509 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

EnterCriticalSection() API function, 239
enumerating, defined, 354, 434
enumerators, and Plug and Play, 324, 328, 334-35
error handling, 249-52. See also application

program errors
Escape() API function, 269
EtherExpress network adapter, 311
event driven programming, 96-97, 99-100, 434
event logging APis, Windows 95 vs. Windows NT,

236-37
events

defined,76-77,434
Plug and Play, 322, 333
VM:tdservicesfor, 140
Win32 APis, 240

exception handling, 249-52
exceptions,defined,434
execution priority, 114-15, 116, 117
expanded memory, 38, 74, 85
Explorer program, 169, 196, 434
export table, defined, 434
Extended MAPI, defined, 434
extended memory, 74, 85

F
FAT (File Access Table) filesystem

defined,434
vs. VFAT filesystem, 284-85
in Windows 95, 275, 282, 284

feature specification, Windows 95, 13-28
file decompression, Win32 APis, 228 .
file management subsystem. See filesystem
File Manager program, 22, 159, 160-61, 169, 195
file mapping objects, 127-28
filenames, long

application support, 214, 217, 218
overview,23,213-15,275,281-82
short equivalents, 282, 284-85, 286, 288-89
storing, 282-88
Windows 3.1 and MS-DOS applications, 161,

214,282,289-91
Windows 95 vs. Windows NT, 291

File Open dialog box, 210, 211-12
file preview windows, 212
files. See folders
file synchronization, 400-404
filesystem

defined,66,434
layered design, 277-81

filesystem, continued
long filename support, 23, 213-15, 275,

281-91
and MS-DOS, 112, 276-77, 279
network support, 275
new and improved features, 275-77
subsystem architecture, 277-81
Windows 3.1 vs. Windows 95, 66, 72, 107

filesystem drivers (FSDs)
calling, 293-94
defined,435
entry points, 295-96
network,352,440
overview, 294-96
VFAT example, 279-80

file viewers, 23
Find and Replace dialog box, 211
FindClose() API function, 290
FindFirstFile() API function, 290
FindNextFUe() API function, 290
folders

defined,435
design evolution of, 195-96
on desktop, 172-73, 177
overview, 167, 170-71

fonts, system, changes in, 200, 201
Fonts dialog box, 211
foreign languages, 248-49
.FOT files, 258
frame buffer, 267-68, 435
FreelmageColorMatcher() API function, 260
FS_ ConnectNetResource() function, 294, 295
FSDs. See filesystem drivers
FS_MountVolume() function, 294, 295
function calls, 71

G
gates, 57, 435
Gates, Bill, 18, 19, 191, 198, 211
GDI32.DLLfile, 147, 148
GDI (Graphics Device Interface)

API support, 81, 82
defined, 65, 435
device-independent capability, 253-54
as dynamic link library, 82

Index

image color matching capability, 254, 259-62 .
loading, 134
metafile support, 258
overview,64,65,252-55

461

Ebay Exhibit 1013, Page 510 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

GDI (Graphics Device Interface), continued
privilege level, 108
resource limit expansion, 254, 256-57
subsystem architecture, 255-56
Win32 APis, 227, 231-32
Windows 95 improvements to, 254-58

GDINFO data structure, 266, 268
GDT (global descriptor table), 41, 42
GDTR register, 41
general protection faults, 53, 56, 117-18
geometry (of a device), defined, 435
GetBrush() API function, 148
GetCurrentDirectory() API function, 290
GetCurrentProcess() API function, 110
GetCurrentTask() API function, 110
GetFileAttrilnttes() API function, 290
GetFileTime() API function, 290
GetLastError() API function, 233
GetMessage() API function, 82, 97
GetStockObject() API function, 148
GetSysColor() API function, 245
GetThreadDesktop() API function, 233
GetVersion() API function, 233
GetVolumelnformation() API function, 290
global context, 70-71, 73
global descriptor table (GDT), 41, 42
global heap, 87
GlobalMemoryStatus() API function, 122
grabber, 264, 446
granularity bit, 47, 435
graphical user interfaces (GUis), characteristics

of, 168-69
graphics coordinate systems. See coordinate

systems
Graphics Device Interface. See GDI
.GRP files, 171, 242
GUls (graphical user interfaces), characteristics

of, 168-69

H
handles, 99, 240, 292, 435. See afso sizing handle
hardware

device protection, 57-,60
dynamic configuration changes, 318
flexibility goal, 320-21
as hardware tree nodes, 329-31
information databases, 332-33
installation and configuration, 20, 315-17
interfacing to, 302-3

462

hardware, continued
platforms, 4-5
and Plug and Play, 315-17, 318, 322, 331-32

hardware tree
building during boot process, 328, 332-33
defined,322,436
device nodes, 329-31
Plug and Play example, 325-28
vs. registry, 328, 332

HeapCreate() API function, 129
heaps,87,88, 129,256-57,436
help system

and application developers, 186, 219
changes in Windows 95, 187-88
context sensitivity of, 188
task-oriented approach of, 187-88
visibility of, 187

Hewlett-Packard LaserJet printers, 273
hidden VM, 73, 112
home base, taskbar as, 179, 180
"hot mouse," 203
hourglass cursor, 27, 188

I
IBM MicroChannel bus, 310, 311, 439
IBM OS/2, 29, 37
IBM PC AT computers, 4-5, 36
IBM Personal Computer, 35, 39, 40
ICM (image color matching), 254, 259-62, 436
icons, 204-5
IEEE (Institute of Electrical and Electronics

Engineers), 313, 320
IFS (installable filesystem), 107, 436
IFSMgr_RegisterMount() service, 294
IFSMgr_RegisterNet() service, 294
image color matching (ICM), 254, 259-62, 436
import libraries, 83, 436
independent software vendors (ISVs), 29
.INF files, 322, 332
Info Center, Windows 95, 394-98
.INI files, 242
InitializeCriticalSection() API function, 239
in-place activation, 246, 436
input desynchronization, 119
installable filesystem (IFS), 107, 436
installable filesystem (IFS) manager, 277, 279,

291-94,352,436
Institute of Electrical and Electronics Engineers

(IEEE), 313, 320

Ebay Exhibit 1013, Page 511 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Intel Corporation. See also names of processors
EtherExpress network adapter, 311
and Plug and Play standard, 4, 313
processors, 33, 35-37, 38-54

interface. See user interface
lnterlockedDecrement() API function, 239
InterlockedExchange() API function, 239
Interlockedlncrement() API function, 239
international support, 248-49
interrupt requests (IRQs), 57, 437
interrupts, 57, 141, 290, 301, 436. See also

software interrupts
interrupt service routines (ISRs), defined, 437
1/0 operations, controlling, 57-60
1/0 packet (IOP), 297, 299, 437
1/0 permission bitmaps, 45, 59, 60
1/0 ports, defined, 437
IOREQ data structure, 293
IOS. See l/0 subsystem
/OS_&gister() service, 297, 298, 302
IOS_&questor_Service service, 297, 300
/OS_SendCommand() service, 297
1/0 subsystem (IOS)

defined,280,437
device driver initialization, 298-99
port driver example, 302-3
service requests, 297, 300-301
VxD services, 297

1/0 trapping VMM services, 141
IPX/SPX protocol, 367, 369, 371, 437
IRQs (interrupt requests), 57, 437
ISA (Industry Standard Architecture), 313, 317,

437
ISRs (interrupt service routines), defined, 437
ISVs (independent software vendors), 29

J, K
Jaguar project, 104
journal records, 270
Kernel

API support, 81, 82
defined,65,437
as dynamic link library, 82
loading, 134
privilege level, 108
Win32 APis, 227
as Windows 95 component, 64, 65

kernel, defined, 437
KERNEL32.DLL file, 147, 148
key depressions, as events, 97

Index

L
languages, foreign, 248-49
LAN Manager, 342, 343, 345, 368
LANs (local area networks), 8-10, 27, 28
LANtastic, 343, 344
laptop computers

docking station support, 399-400
and PCMCIA bus, 312, 313, 318, 320
power management, 398-99
Windows 95 support, 381, 398-400

layered filesystem design, 277-81
LDT (local descriptor table), 41, 42
LDTR register, 41
least recently used (LRU) technique, 122, 437
LeaveCriticalSection() API function, 239
legacy, defined, 437
light source, 184, 199
linear addressing, 25, 39, 85, 143, 438
LineTo() function, 83
linker, 82-83
links, 246, 438
list view control, 210
.LNK files, 1 71
load group mask (LGM), 299
LoadlmageColorMatcher() API function, 260
local area networks (LANs), 8-10, 27, 28
local buses, 312, 320
local descriptor table (LDT), 41, 42
locale, defined, 438
locale APis, 249
local heap, 87
locality of reference, 50, 438
logical color space, 259, 261-62
logical frame buffer, 267-68
long filenames

application support, 214, 217, 218
overview,23,213-15,275,281-82
short name equivalents, 282, 284-85, 286,

288-89
storing, 282-88
Windows 3.1 and MS-DOS applications, 161,

214,282,289-91
Windows 95 vs. Windows NT, 291

look and feel, 164, 167-69, 438
LRU. See least recently used (LRU) technique

M
MAC (media access control) driver, 353, 368,

438
mainframes, 8

463

Ebay Exhibit 1013, Page 512 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

MAPI (message application programming
interface), 28, 396-97, 438

mapped files, 127-28, 438
MapViewOJFile() API function, 127, 128, 241
MapViewOJFileEx() API function, 127, 128
marketing of Windows 95, 28-30
maximize/restore button, 182, 183, 204
MDI (multiple document interface), 190, 438
media access control (MAC) drivers, 353,

368,438
memory

640K barrier, 39-40
and 80286 protected mode, 41-43
addressing, 24-25, 45-54
descriptor format, 45-48
local vs. global, 87
protection, 45, 55-56
segmented architecture, 38-39, 41-43
segmented vs. linear, 25, 38-39, 85, 143
virtual vs. physical addresses, 69

memory management
application, 87-88
overview, 85-90
and programming, 241
system, 88-90
Virtual Memory Manager (VMM), 125-29
VMM services, 140
Win32 APis, 232, 241

memory mapped devices, defined, 439
memory mapped files, 88, 127-28, 258
memory maps

original IBM PC, 39, 40
Win32 applications, 125, 126
Windows 95, 108-10

menus
changes in, 202-4
continuation, 17 4, 175
popup, 185,202-3,443
Start menu, 169, 174, 175, 448

message application programming interface
(MAPI),28,396-97,438

MessageBox() API function, 83
MessageBoxEx() API function, 249
message loops, defined, 439
message queues, 97, 119-21
messages, 71, 94, 97, 439
message stores, defined, 439
messaging, 396-97, 398, 439
metafiles, 272, 439

464

MicroChannel bus, 310, 311, 439
Microsoft Corporation. See also Gates, Bill

developer relations groups (DRG), 29
and development of Plug and Play standard,

4, 312-14
family of Windows operating systems, 12-13
importance of OLE technology to, 166,

245-46
"Ready To Run" campaign, 311
Windows 95 shell design story, 189-98
Windows networking history, 342-46

Microsoft LAN Manager, 342, 343, 345, 368
Microsoft Mail, 394, 396
Microsoft OS/2, 2, 4, 6, 7, 36, 37, 44, 82. See also

IBMOS/2
Microsoft Pen Windows, 23
Microsoft Windows/386, 4, 37, 111
minicomputers, 8
mini-drivers

defined, 439
for display driver, 254, 264, 265, 266, 268
performance of, 92
for printer driver, 253-54, 272-73
and VxDs, 91-92
in Windows 95, 91-92
in Windows NT, 91

minimize button, 182, 183, 204
miniport drivers, 281, 439
MIPS 4000 processor, 33
modems, 391, 392
MODEMS.INF file, 391
modes, and Windows 95, 67. See also protected

mode; real mode
modules, defined, 80-81
monitor, 271-72, 375, 377, 439
Motorola processors, 39, 44
mouse

clicks as events, 97
double-clicking, 17 4, 190
"hot mouse," 203
right button, 185, 202

MoveFile() API function, 290
MPR (multiple provider router), 351-52, 355-62,

439
MS-DOS-based applications

and 32-bit addressing, 74
80386 support for, 44, 59, 60-61
benefits of virtual mode, 60-61
and BIOS, 5

Ebay Exhibit 1013, Page 513 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

MS-DOS-based applications, continued
calls to system services, 136-37
compatibility issues, 4, 7, 44, 45
decline of, 2
and device drivers, 58-59, 90
and DPMI standard, 74-75
future of, 23
and 1/0 permission bitmap, 45, 59, 60
long filenames support, 214, 282, 289-91
and multitasking, 78
in protected mode, 73-75
and real mode drivers, 67, 69, 281, 307-8, 445
running in single application mode, 15, 64,

111-12
running under Windows NT, 33
starting from Windows 95, 59, 60
as VMs, 59-60, 68, 69, 72-73
and Win32 API, 233
Windows 95 support for, 4, 7, 23, 215-16

MS-DOS operating system
and 640K memory limit, 39, 40
as fallback, 15, 64, 111-12
and filesystem, 276-77, 279
future of, 7, 104
and IBM Personal Computer, 35
INT-based software services, 112, 276
limitations of, 6
relationship to Windows 95, 4, 7, 59, 60,

63-64, 111-12
running in single application mode, 15, 64,

111-12
MS-DOS Shell, 159
MS-DOS virtual machines (VMs)

in 32-bit protected mode, 69
context for, 70-71, 72, 73
defined, 106, 111
and DOS extenders, 69
hidden VM, 73
overview,68,69,72-73
replicating PCs running MS-DOS, 72
as single processes, 80, 113
vs. System VM, 68, 69, 80
virtual address space, 109, 110
as Windows 95 component, 64, 66

MsgWaitForMultifleObjects() API function, 240
MS-Net, 342
MSSHRUI DLL, 373
multimedia, Win32 APis, 228
multiple document interface (MDI), 190, 438

multiple provider router (MPR), 351-52,
355-62,439

multitasking
cooperative vs. preemptive, 77-78
critical section management, 79-80
defined,76,440
managing, with the scheduler, 76-78
and MS-DOS-based applications, 78
network connectivity example, 76
overview, 76-78
print spooling example, 76
and programming, 238-41
use of term, 75
Win32 APis, 239-41

Index

multithreaded processing, 27, 116, 188-89
mutex (mutual exclusion), 79, 80, 151-52, 240
mutual exclusion (mutex), 79, 80, 151-52, 240
"My Computer," 176

N
named pipe protocol, defined, 440
native mode, 37, 440
NCP protocol, 347
NDIS (Network Driver Interface Specification)

compatibility issues, 369-70
configuration example, 370-72
defined,352-53,440
overview, 368-69

nested execution VMM services, 140
NetBEUI transport, 367, 369, 370, 440
NetBIOS protocol, 367, 440
NETRESOURCE data structure, 357-58
NetWare,29,342,343

Microsoft NetWare client for Windows 95, 27,
28,347

NetWare Lite, 345
network adapter driver VxD, 353
network connections

defined,354,430
multitasking example, 76
PC vs. phone-centric, 390
persistent, 354-55, 442
as Windows 95 benefit, 30, 341, 342, 346-47

Network Driver Interface Specification (NDIS).
See NDIS

network filesystem drivers (FSDs), 352, 440
networking

client-server, 8-10, 28, 341-42, 343-44, .429
configuring, 370-72

465

Ebay Exhibit 1013, Page 514 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

networking, continued
LANs,8-10, 27,28
peer-to-peer, 341, 342, 343, 344-46
printing, 272, 375-77
security issues, 377-79
subsystem architecture, 347-55, 373, 374
terminology, 353-55
Win32 APis, 228
Windows history, 342-46
and Windows NT, 345

"Network Neighborhood,".176
network providers (NPs)

authentication SPI, 366
defined, 352,440
device redirection SPI, 364
enumeration SPI, 365-66
interfacing to, 361-62
services of, 363-66
shell SPI, 365

network servers
access control, 373, 378
architecture, 373, 374
defined, 8,447
minimum configuration, 10
operating systems for, 5, 10, 372
overview, 8-10
for peer-to-peer networking, 372-74
print spooler, 373
requirements for, 8-9
security issues, 8, 373, 377-79
VSERVER software, 373
and Windows NT, 5, 10, 372

network subsystem, Windows 95, 66, 34 7-55
network transports, 352, 366-72, 441
not-present interrupt, defined, 441
Novell, 341-42, 343

NetWare Lite, 345
protocols, 66, 347, 367
Windows 95 network support, 27, 28, 347

NPCancelConnection() SPI, 364
NPChangePassword() SPI, 366
NPClosedEnum() SPI, 366
NPDeviceMode() SPI, 364
NPDirectoryNotifj() SPI, 365
NPDisplayCallback() SPI, 365
NPEndSession() SPI, 364
NPEnum&source() SPI, 366
NPFormatNetworkName() SPI, 365
NPGetCaps() SPI, 364

466

NPGetDirectoryType() SPI, 365
NPGetDisplayLayout() SPI, 365
NPGetEnumText() SPI, 365
NPGetHomeDirectory() SPI, 366
NPGetNetworkFileProperties() SPI, 365
NPGet&sourceParent() SPI, 365, 366
NPGetUser() SPI, 364
NPLogojJ() SPI, 366
NPLogon() SPI, 366
NPNotifjAddConnection() SPI, 364
NPOpenEnum() SPI, 366
NPs. See network providers ·
NPSearchDialog() SPI, 365
NP() SPI, 366
NPValidLocalDevice() SPI, 364

0
object filesystem, 24 7-48, 441
object linking and embedding. See OLE

technology
object orientation, 11, 100, 166, 247
objects. See also control objects; OLE technology

configuring, in property sheets, 185-86
defined,441
on desktop, 177
property sheets for, 185-86
referencing vs. copying, 171-72
on taskbar, 179

ODBC (Open Database Connectivity), defined,
441

offset address, 46
OLE automation, defined, 441
OLE clients, 167, 188, 246, 247
OLE servers, 246, 24 7
OLE technology

and application developers, 100, 217-18, 220,
245-48

and Cairo, 220, 246, 247-48
client vs. server applications, 246, 247
compound documents, 167, 212, 246, 247,

430
vs. DDE, 245
defined,441
and document-centric interface, 159, 166-67,

433
and drag and drop operations, 247
importance of, 166, 245-46
in-place activation, 246
marketing of, 29

Ebay Exhibit 1013, Page 515 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

OLE technology, continued
overview, 22, 245-48
Win32 APls, 227

online help
and application developers, 186, 219
changes in Windows 95, 187-88
context sensitivity of, 188
task-oriented approach of, 187-88
visibility of, 187

Open Database Connectivity (ODBC), defined,
441

Open Datalink Interface (ODI) specification,
369,441

Open dialog box, 210, 211-12
OpenFile() API function, 290
OpenFileMapping() API function, 127
OpenGL 3-D graphics library, 228
OpenMutex() API function, 240
OpenSemaphore() API function, 240
operating systems. See also base system,

Windows 95; MS-DOS operating system
choices in, 6-7
limitations of MS-DOS, 6
and processors, 33, 44-45
protected mode, 23-24
protection capabilities, 54-60
Windows 95 as, 7, 63-64, 66-67
Windows family of, 12-13

OS/2. See IBM OS/2; Microsoft OS/2
OS/2 LAN Manager, 368

p
page descriptors (PDs), 123
paged virtual memory, 45, 50-52
page granularity, 47
pages, 121, 123-24,442
Page Setup dialog box, 213
page tables, 50, 51, 52-53
paging, 45, 50, 122, 436. See also demand paging,

defined
paragraphs, memory, defined, 38, 442
parent windows, 95
pass through authentication, defined, 442
paths, 257, 442
PC-centric connections, 390
PCI bus, 313, 442
PCL language, 273
PCMCIA bus, 312, 313, 318, 320, 442
PC Network (IBM), 343

·Index

PCs, architecture of, 4-5
PDAs (personal digital assistants), 381
PDEVICE data structure, 266
peer-to-peer networking, 27, 66, 341, 342, 343,

344-46
defined,442
server machines for, 28, 372-74

pen-based applications, 23, 28, 228, 425
Pentium processor

as 386 processor, 37, 44
and backward software compatibility, 36
and virtual 8086 mode, 37
and Windows, 37

performance requirement, Windows 95, 16-17
persistent connections, 354-55, 442
personal digital assistants (PDAs), 381
Phoenix Technologies, and Plug and Play

standard, 4, 313
phone-centric connections, 390
physical frame buffer, 267-68
physical memory

and 80286 processor, 41, 42, 43
calculating addresses in protected mode, 45
defined,442
managing, 88-90, 121-25
vs. virtual memory, 69

pixels, defined, 443
platforms

for 32-bit programs, 5-6
MS-DOS vs. Windows vs. UNIX vs. OS/2, 2
for running Windows, 4-5

Plug and Play BIOS, 315, 317, 324, 336-37, 428
Plug and Play standard

and BIOS, 315, 317, 324, 336-37, 428
and bus design, 315-17
for bus types, 313
compatibility issues, 319-20
defined,20,443
goals for, 314-21
history of, 312-14
overview, 4, 309-10
and resource types, 325
why needed, 310-12

Plug and Play subsystem
and application developers, 241-42
components overview, 321-25
device drivers, 324, 337-38
and docking stations, 398-400
hardware tree, 325-32

467

Ebay Exhibit 1013, Page 516 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

Plug and Play subsystem, continued
printer support, 272
and system setup; 173
use of registry, 243
Win32 APls, 241-42

point to point protocol (PPP), 385, 443
popup menus, 185, 202-3, 443
portabiiity, of Windows NT, iO
portable computers

docking station support, 399-400
and PCMCIA bus, .312, 313, 318, 320
power management, 399
Windows 95 support, 381, 398-400

port drivers (PDs)
communications, 392-94
defined,281,385,443
execution, 303
initializing, 302-3
and interrupts, 303
overview, 277, 302

porting
16-bit code to Win32, 229-33
tools for, 229-30, 231

PORTIOOL.EXE file, 229
POSIX, defined, 443
PostScript printing, 273
PowerPC processor, 33
PPP (point to point protocol), 385, 443
preemptive multitasking

critical section management, 79-80
defined,77,443
problem of 16-bit code, 149-55
scheduling, 77, 78, 100
and Win32 applications, 26-27

present bit, 47, 53
preview windows, 212
primary scheduler, 114
primitives, system, 67, 89-90, 239-40
Print dialog box, 211
printer APis, Windows 95 vs. Windows NT, 236
printer drivers

DIB engine/mini-driver combination, 253-54,
272-73

dynamic links, 83-84
universal, 24, 253-54, 272-73

printers, configuring, 22, 24
Printer Setup dialog box, 213
printing

API functions for, 236, 269
and bi-directional communication, 272

468

printing, continued
on networks, 375-77
process of, 270-72
subsystem architecture, 269, 270, 272
using shortcut concept, 171
Windows 95 improvements, 269

Print Manager program, 22, 162, 169
print processor, 271
print provider (PP), 375
print request router (PRR), 375, 443
Print Setup dialog box, 211
print spooler, 76, 270, 271, 373, 448
priorities. See execution priority
private heaps, 88, 129
privilege levels. See also protection rings

for applications, 56
descriptor table entry, 47
for operating system protection, 56-57
switching between, 57, 84

processes
critical sections in, 79-80
defined,443
MS-DOS VMs as, 80
in System VM, 80
vs. tasks, 76, 110-11
vs.threads,80, 113
Windows applications as, 80

processor fault VMM services, 141
Program Manager program, 22, 159, 160-62,

169, 177
programming. See also application developers

eventdriven,95,96-97,99-100,434
and message handling, 97-99
object-oriented, 11, 100, 166, 247
and OLE, 100, 217-18, 220, 245-48
under Windows 95, 99-100
Windows basics, 96-100

progress indicator control, 208
properties,defined,443-44
Properties menu item, 185
property sheets, 185-86, 209-10, 444
protected mode

and 80286 processor, 36, 41-43
defined,444
descriptors in, 41, 42
device drivers, 67, 281
and indirect access to memory, 42-43
mapper, 281 ·
MS-DOS-based applications in, 73-75, 281
and operating systems, 23-24

Ebay Exhibit 1013, Page 517 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

protected mode, continued
selectors in, 41, 42
virtual mode as part of, 60
VMM services, 140

protection capabilities
of 80386 processor, 54-60
device protection, 57-60
memory protection, 55-56
operating system protection, 56-57

protection rings
and base system, 84
defined,444
overview, 107-8
ring zero, 56, 135-40

protocols, defined, 444
protocol stack, defined, 444
PRR (print request router), 375, 443
PulseEvent() API function, 240

Q,R
Quarterdeck, 37
radio buttons, 93
RaiseException() API function, 252
RAM allocation, 127. See also physical memory
RAM (random access memory), and virtual

memory management, 49-53
RAS (remote access services), defined, 445
RasDial() API function, 389
RasEnumConnections() API function, 389
RasGetConnectStatus() API function, 389
RasHangup() API function, 389
rasterizer, 256, 258, 444
rawinputqueue, 119, 120,445
read/write bit, 53
"Ready To Run" campaign, 311
realmode,41,45,60,67, 112,445
real mode drivers, 67, 69, 281, 307-8, 445
ReconcileObject API, 403
Recycle Bin feature, 198
redirector, defined, 445
reentrancy, and 16-bit vs. 32-bit code, 149-55
registers, segment. See segmented addressing
registration database, 242
registry

application use, 218-19
defined,445
organization of, 243-44, 332
in Plug and Play subsystem, 322
and programming, 242-44
Win32 APis, 21, 244

ReleaseMutex() API function, 240
ReleaseSemaphore() API function, 240
remote access services (RAS), defined, 445
remote communications, 28, 382-94

elements of, 383-85
types of access, 386-89

Index

remote network access (RNA), 383, 385-89, 445
remote procedure calls (RPCs), 228, 367, 445
RemoveDirectory() API function, 290
reserving virtual address space, 128-29
ResetEvent() API function, 240
resource arbitrators, 324, 335-36, 445
resources

availability, 55, 87, 237, 256-57
defined,445
network,defined,353
usage count, 81

resource sharing, 81, 84
rich text, 209, 446
right mouse button, 185, 202
ring zero, 56, 135-40. See also privilege levels;

protection rings
RISC processor, defined, 446
RNA (remote network access), 383, 385-89, 445
robustness requirement, 8, 17-18
RPCs (remote procedure calls), 228, 367, 445
runtime memory requirements, Windows 3.1 vs.

Windows 95, 87

s
safe driver, defined, 446
scalability, 164, 201-2, 227
Schedulefob() API function, 236
schedulers

controlling, 116-17
and cooperative multitasking, 77-78
defined, 76,446
and events, 76
importance of threads, 80, 113
and preemptive multitasking, 78
primary vs. timeslice, 114-16
and priorities, 77, 114-15, 116, 117
and time slices, 76, 77
and Virtual Machine Manager (VMM), 112-

21, 141
and VM control flags, 115-16

screen display
3-D appearance, 184, 198-201
controls, 205-10
default, 157, 158, 192-93

469

Ebay Exhibit 1013, Page 518 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

screen display, continued
design evolution, 189-98
dialog boxes, 210-13
elements of, 201-13
icons, 204-5
menus, 202-4
overall Windows 95 appearance, 22, 182-84,

198-201
scalability, 164, 201-2
scroll boxes, 204, 205
sizing handle, 204, 205
window buttons, 204

screen grabber, 264, 446
scroll bars, 94, 205
scroll boxes, 204, 205
SCSI_CONFIGURATION_INFORMATION data

structure, 306
SCSI device support, 201, 304, 306-7
SCSI_INITIALIZATION_DATA data structure,

306
SCSiizer, 281
SCSI manager, 281, 306-7, 446
SCSI_REQUEST_BLOCK data structure, 306
SCSI (Small Computer System Interface) bus,

312,313,320,446
SDI (single document interface), 190, 446
security APis, Windows 95 vs. Windows NT, 234
security of servers, 8, 373, 377-79
Security Provider, 373
segment bit, 47
segmented addressing

for 8086 processor, 37, 38
for 80286 processor, 41-43
architecture, 38-39, 41-43
defined,447
vs. linear addressing, 25, 38-39, 85, 143

segment registers. See segmented addressing
segments, 38-39, 41-43, 45, 46, 47-48, 447
selectors, 41, 42, 46, 87, 109
semaphores

defined,240,447
Win16mutex, 152-55
and Win16 subsystem, 151-52
Win32 APis for, 240

serial ports, adding, 57
server APis, Windows 95 vs. Windows NT, 236
server applications, defined, 447
servers. See network servers
service control manager APis, Windows 95 vs.

Windows NT, 236

470

service provider interface (SP!), 348, 447
service providers, 348, 44 7
service tables, VxD, 130, 447
SetCurrentDirectory() API function, 290
SetEvent() API function, 240
SetFileAttributes() API function, 290
SetFileTime() API function, 290
shading, 184, 199-200
shared memory, 86, 88, 127-28, 447
share-level security, 378, 379, 447
share name, defined, 448
share points, 354, 373, 448
shell

3-D appearance of, 184, 198-200
as 32-bit application, 147, 188
animation in, 196-97
briefcase object in, 400-404, 428
defined, 159,448
design retrospective, 189-98
development of, 190-92
elements of, 169-82
extensibility of, 189
need for application consistency with, 219
new features, 22-23
for novice vs. experienced users, 192, 193
as OLE client, 167, 188
outside influences on, 189-90
prototyping in Visual Basic, 190-92
system color scheme, 200
system fonts, 200, 201
threading capabilities of, 188-89
and transfer model, 191, 197-98
usability testing of, 189-90
Win32 APis, 228
as Windows 95 component, 64, 65

_SHELL_BroadcastSystemMessage service, 135
_SHELL_CallAppyTimeservice, 134
SHELL HookSystemBroadcast service, 135
_SHELL_PostMessage service, 135
Shell VxD, 134-35, 448
shortcuts, 170, 171-72, 448
Simple MAP!, defined, 448
single MS-DOS-based application mode, 15, 64,

112
sizing handle, 204, 205
sizing windows, 205
slider control, 208
SMB protocol, 66, 448
sockets, 228, 367, 371, 448
software. See applications

Ebay Exhibit 1013, Page 519 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

software interrupts, 72, 73, 136, 137
specification for Windows 95, 13-28
spin boxes, 93, 208-9
SPI (service provider interface), 348, 447
spooler, 76,270, 271,373,448
standard mode, 67
Start button, 174
StartDoc() API function, 270
Start menu, 169, 174, 175, 448
StartPage() API function, 270
startup screen. See also screen display

design evolution, 192-93
Windows 95 vs. Windows 3.1, 157, 158

static VxD, defined, 448
status window control, 206-7
streams, 247
structured exception handling, 249-52, 448
swap faults, 50
swap file, 50, 123, 124, 449
synchonization VMM services, 141
synchronization primitives, 239-40
system bus design, 310
system crashes, 17-18
system file handle structure, 292
system fonts, changes in, 200, 201
SYSTEM.IN! file, 21, 242, 243, 268, 298, 361, 362
system menu. See window menu
System Policy Editor utility, 378
system primitives, 67, 89-90, 239-40
system reentrancy, and 16-bit vs. 32-bit code,

149-55
system resources. See resources
system taskbar, 174, 179-81, 194-95
system tray, defined, 449
System Virtual Machine (VM)

T

context for, 71
defined,65, 106, 111,449
vs. MS-DOS VMs, 68, 69, 80
multiple processes in, 80
overview, 71-72
scheduling within, 116
and Win32 applications, 71-72
as Windows 95 component, 64, 65, 68, 69

tab control, 209
TAPI (Windows Telephony API), 382-83, 385,

389-90,449
task bar

as anchor point, 179, 180
and application compatibility, 180-81

taskbar, continued
buttons on, 194, 195
configuring, 180
default for, 179
defined, 174, 449
design evolution, 194-95
hiding/displaying, 179-80
overview, 179-81

Task Database (TDB), 80
Task Manager, 161-62, 169
tasks

defined,76,449
as gates, 57
vs. processes, 76, 110-11
use of term, 75

TCP/IP protocol, 66, 347, 371, 449
telephony applications. See TAPI (Windows

Telephony API)
third-party vendors, 189
threads

and application errors, 11 7-18
and background activities, 118

Index

as basic unit of scheduling, 80, 113, 114-15
defined,449
execution priority, 114-15, 116, 117
and general protection faults, 117-18
limits of, 113
MS-DOS VMs as, 113
multiple, 27, 116, 188-89
overview, 113
vs. processes, 80, 113
suspending, 114
synchronization primitives, 239-40
in System VM, 116
and UAEs, 117-18

thumbnails, defined, 449
thunk compiler, 145, 146-47
thunks

defined,54, 144,449
origin of term, 144
in Windows 3.1, 144-45
in Windows 95, 145-47, 148, 149

tiling, 143
timeslices, 76, 77, 449
timeslice scheduler, 114-15, 116
toolbar, 94, 95, 204, 205-6
TOPS networking program, 343
transfer model, 191, 197-98, 449
transports. See network transports
traps, as gates, 57
tree view control, 210

471

Ebay Exhibit 1013, Page 520 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

TrueType rasterizer, 256, 258, 444
TSD (type specific driver), 280, 304, 305-6, 450
TSR programs, 7
.TTF files, 258
type specific driver (TSD), 280, 304, 305-6, 450

u
U AEs (Unrecoverable Application Errors), 2, 1 7,

56, 117-18, 450
UNC (Universal Naming Convention), 218, 450
Unicode

vs. ANSI character set, 235
defined,450
and internationalization, 248
Windows NT vs. Windows 95 APis, 235

Unimodem, 385, 391, 450
UNIMODEM.386 driver, 391
universal client, defined, 346-47
universal drivers, defined, 450
Universal Naming Convention (UNC), 218, 450
universal printer driver, 24, 253-54, 272-73
UNIX, 2, 6, 37, 44, 82, 347, 450
Unrecoverable Application Error message, 2, 17, 56
usability tests, for Windows 95 shell, 189-90
User

API support, 81, 82
defined,66,450
as dynamic link library, 82
loading, 134
privilege level, 108
Win32 APis, 227
as Windows 95 component, 64, 66

USER32.DLL file, 147, 148
user accounts, defined, 450
user interface. See also shell

important characteristics, 168-69
improvements to, 159-65
look and feel issue, 167-69
for Plug and Play subsystem, 324
Win32 APis, 245
Windows 95 design, 95-96
Windows overview, 92-95

user-level security, 378, 379, 450
users, active, defined, 30
user/supervisor bit, 53
utility functions, 24

v
VCACHE, defined, 451
VCOMM VxD, 385, 391, 392-94, 451

472

VCPI (Virtual Control Programming Interface)
specification, 74

vendors. See independent software vendors
(ISVs)

vendor supplied driver (VSD), 280-81, 451
VFAT filesystem '

defined, 451
driver, 279-80
vs. FAT filesystem, 284-85

VFLATD VxD, 267-68, 451
VGA, defined, 451
video display, controlling with DIB engine, 262
video memory, 264, 267-68
View menu, 203, 204
virtual 8086 machine. See virtual 8086 mode
virtual 8086 mode. See also virtual mode

and 80386 processor, 37, 44, 45, 68
defined, 451
and virtual machines (VMs), 59, 68
vs. virtual memory, 48
vs. Windows VM, 68

virtual addresses
defined, 451
vs. physical addresses, 69

virtual address space
for 16-bit Windows applications, 109
for 32-bit Windows applications, 25, 27, 85,

86-88, 109, 110, 125, 126
defined,451
for MS-DOS VM, 109, 110
reserving, 128-29
shared vs. private, 86
system memory map, 108-10
system vs. application, 86

VirtualAlloc() API function, 128-29
Virtual Control Programming Interface (VCPI)

specification, 74
virtual device drivers (VDDs), 91-92, 108
virtual device drivers (VxDs), 67, 84-85

callback mechanism, 131-32
calling between, 136, 138-40
defined,67,452
defining service tables, 130
dynaload, 133, 433
loading dynamically, 133-34
loading in Windows 3.1, 132-33
loading in Windows 95, 133-34
mini-drivers as, 91-92
and protection rings, 108
Shell VxD, 134-35, 448
VNrM"servicesto, 117, 130, 133, 140-41

Ebay Exhibit 1013, Page 521 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Virtual Machine Manager (VMM)
callback mechanism, 131-32, 144
calling of services, 84, 131-35, 136
configuration manager services, 141
debug services, 141
defined,67, 106,451
event services, 140
I/O trapping services, 141
memory management services, 140
nested execution services, 140
new features in Windows 95, ll l, 125-29
overview, Ill, 125
processor fault services, 141
processor interrupt services, 14}
protected mode execution services, 140
registry services, 140
and scheduling, 112-21, 141
scope of services, 130
services of, 129-41
services to VxDs, 117, 130, 133, 140-41
synchonization services, 141
system mapping function, I 09
VM callback services, 141
VM interrupt services, 141
VMs as clients, 131
asVxD, 129

virtual machines (VMs). See also Windows virtual
machines

contextfor,68, 70-71, 72, 73
control blocks, 130
control flags, 115-16
defined,451
MS-DOS-based applications as, 59-60, 68,

69, 72-73
overview, 68-75

virtual memory
defined,48,451
managing, 49-53
paged,45,50-52
vs. virtual mode, 48
and Win32 applications, 86-88

virtual mode
benefits for MS-DOS-based applications,

60-61 '
defined,48
as part of protected mode, 60
vs. virtual memory, 48

Visual Basic, prototyping Windows 95 shell in,
190-92

visual cues, 183, 451
visual design issues, 164-69
VMM. See Virtual Machine Manager
VMMcall macro, 139

Index

VMs. See virtual machines (VMs)
VMStat_Background flag, 115
VMStat_Exclusive flag, ll5
VMStat_High_Pri_Background flag, 115
voice mail, and Windows 95 Info Center, 394-98
volume request packet (VRP), 299-300
volume tracking driver (VTD), 280, 304-5
VSERVER software, 373
VTD. See volume tracking driver
VxDcall macro, 139
VXDLDR module, 134
VxDs. See virtual device drivers (VxDs)

w
WaitForMultipleObjects() API function, 240
WaitForMultipleObjectsEx() API function, 240
WaitForSingleObject() API function, 240
WaitForSingleObjectEx() API function, 240
Wastebasket feature, 198
widening, defined, 452
Win16Lock, defined, 452
Win16Mutex

defined,452
drawbacks of, 154-55
as reentrancy safeguard, 152-53

Winl6 subsystem, defined, 452. See also 16-bit
Windows applications

WIN32.386 file, 147
Win32API

and 16-bit applications, 110, 111., 142
benefits of, 26-27
binaries issue, 225
common dialog functions, 227
communications functions, 228
compatibility issues, 110-11, 224-25
components of, 227-28
controls, 227
DDE functions, 228
and dynamic memory allocation, 87-88
extensibility of, 226
file decompression functions, 228
file location, 147-48
functions unsupported in Windows 95, 234-38
GDI functions, 227, 231-32
goals for, 226-27

473

Ebay Exhibit 1013, Page 522 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

Win32 API, continued
graphics APis, 257
Kernel functions, 227
locale functions, 249
and memory management, 85-90, 232, 241
messaging functions, 396, 397
multimedia functions, 228
muititasking functions, 239-4i
named functions, 82
names of functions, 231-32
networking functions, 228, 356-61
and nonportable functions, 233
OLE functions, 227
overview,25,65,81-85,224-25
pen functions, 228
portability of, 226
porting to, 229-33
preferred Windows API, 99
and registry, 244
RNA Session API, 388-89
RPC functions, 228
scalability of, 227
shell functions, 228
size of, 227
sockets functions, 228
as "standard," 224-25
support for, 226
Telephony API (TAPI), 382-83, 385, 389-90
User functions, 227
and user interface, 245
using, in Windows 95 programming, 238-52
version checking, 233
Win32c subset, 25, 224
Win32s subset, 25, 26, 224, 452
and Windows 3.1, 224
and Windows 95, 26, 81-85, 225, 229-38
Windows NT support, 25
Windows vs. MS-DOS, 82

Win32c API, 25, 224
Win32s API, 25, 26, 224, 452
Win32 Software Development Kit, 144
Win32 subsystem, 144, 147-49, 452. See also

32-bit Windows applications
WINBOOT.SYS file, 112
window menu, 203, 452
window procedures, defined, 452
windows

hierarchy of, 95
ownership of, 95

474

windows, continued
parent vs. child, 95
scaling, 164, 201-2
sizing, 205
User as manager for, 66

Windows 3.0, l, 2, 17
Windows 3.1

caiis to system services, 136-37, 139
as cooperative multitasking system, 77-78
files and directories, 167, 171
getting started, 173-74
improvements on, 159-65
installing Windows 95 on existing systems, 20
and Intel 3~6 chip, 1
physical memory manager, 124
printer control, 24,.162, 163-64
property information, 162
real vs. protected modes, 23
reason for introduction, 2
reliance on MS-DOS, 72
sales of, 2
system management inconsistencies, 160-62
Task Database (TDB), 80
and Win32 API, 224
Windows 95 API compatibility, 65

Windows 95
32-bit application support, 5-6, 24-27, 54
and 80386 processor, 44-45
APicoverage,81-85,234-38
application guidelines for, 217-20
areas for improvement, 19-28
Beta-I release, xxv-xxvi, 30
boot process, 112
character set, 235
and client-server systems, 9, 11, 346, 347
codename "Chicago," xxv-xxvi, 1
communications subsystem, 382-94
compatibility requirement, 4, 7, 14-15, 44, 45
as complete operating system, 4, 7, 63-64,

66-67
components of, 106-11
configuration files, 243, 332
coordinate system, 232, 235, 257
and ease of use, 3, 19-22, 29
feature specification for, 13-28
filesystem architecture, 277-81
GDI improvements, 254-58
general goals, 3
getting started, 173-76

Ebay Exhibit 1013, Page 523 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Windows 95, continued
initial desktop, 174-76
internationalization of, 248-49
marketing, 13, 28-30
Microsoft requirements for, 14-19
minimum hardware requirements for, 9, 16,

67,245,413
mission for, 3-6
an,d MS-DOS compatibility, 4, 7, 44, 45
naming of, xxvi
network architecture, 347-55, 373, 374
and network connectivity, 30, 341, 342,

346-47
networking security, 8, 373, 377-79
new screen display look, 198-213
and object-oriented programming, 100, 111,

166,247
OLE in, 100, 217-18, 220, 245-48
online help system, 186-88
part of Windows family of operating systems,

12-13
Plug and Play subsystem, 321-38
press rollout, 30
programming under, 99-100
.relationship with MS-DOS, 4, 7, 59, 60, 63-64,

111-12
release date, 18-19
resource availability, 55, 87, 237, 256-57
robustness requirement, 17-18
run "as well as Windows 3.1" requirement,

16-17
shell,169-82
similarity to Cairo, 11
system architecture, 64-66, 104-6
system overview, 63-67
system setup, 173-74
timely availability, 18-19

Windows/386, 4, 37, 111
Windows API functions, 82, 83
Windows-based applications. See 16-bit Windows

applications; 32-bit Windows applications
Windows device driver, 4, 91
Windows for Workgroups, 27, 28, 66, 107, 112,

197,342,343,345
Windows NT, 4, 5, 6

and 16-bit applications, 33
32-bit support, 25
Advanced Server version, 5, 372
and Cairo, 10

Index

Windows NT, continued
defined, 452
dynamic linking capability, 82
graphic coordinates system, 232
Intel processor emulation, 33
minimum hardware. requrements for, 9
and networking, 66, 345

. Plug and Play support, 313
portability of, 10
as preemptive multitasking system, 77
preexistence of, 104
running MS-DOS applications on, 33
as server machine, 10
variety of processor types for, 33
and Win32 API, 224, 225, 234-38

Windows Open Services Architecture (WOSA),
348-51,389,452

Windows Sockets, 228, 367, 371, 453
Windows subsystem. See GDI (Graphics Device

Interface); Kernel; User
Windows Telephony API (TAPI), 382-83, 385,

389-90
Windows user interface. See user interface
Windows virtual machines. See also MS-DOS

virtual machines (VMs); System Virtual
Machine (VM)

address space, 69
defined,68
importance of, 68-,-69
initialization, 70-71
vs. Intel virtual 8086 machines, 68
MS-DOS VMs, 68, 69, 72-73
overview, 70-73
System VM, 68, 69, 71-72

Windows VMs. See Windows virtual machines
WINDOWSX.H header file, 230
WIN.INI file, 21, 242, 243
WinNet functions, 356-61
WinSock interface, 228, 367
WM_DEVICEBROADCAST message, 238, 242
WM_DISPLAYCHANGED message, 245
WM_KBDLAYOUTCHANGE message, 238
WNetAddConnection() API function, 358, 359
WNetAddConnection2() API function, 358, 359
WNetAuthenticationDialog() API function, 360
WNetCachePassword() API function, 360
WNetCancelConnection() API function, 359
WNetCancelConnection2() API function, 359
WNetCloseEnum() API function, 359

475

Ebay Exhibit 1013, Page 524 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

INSIDE WINDOWS 95

WNetConnectionDialog() API function, 359
WNetDeviceGetFreeDevice() API function, 360
WNetDeviceGetNumber() API function, 360
WNetDeviceGetString() API function, 360
WNetDisconnectDialog() API function, 359
WNetEnumResource() API function, 359
"\VNetfunctions,356-61
WNetGetConnection() API function, 359
WNetGetLastError() API function, 360
WNetGetSectionName() API function, 360
WNetNotifyR.eg;ister() API function, 359
WNetDpenEnum() API function, 359

476

WNetSetLastError() API function, 360
WNetUNCGetltem() API function, 360
WNetUNCValidate() API function, 360
working set, defined, 453
WOSA (Windows Open Services Architecture),

348-51,389,452
WriteProcessMemoryO API function, 123, 241

X-Z
XENIX, 36
yielding, defined, 453
Z order, defined, 453

Ebay Exhibit 1013, Page 525 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Adrian King is a native of London and graduated in 1976 from the University
of Liverpool with a master's degree in computer science. That same year he
joined the European consulting firm Logica, working in its system software
division on real time control and communications projects. While at Logica,
he founded the Software Products Group, which became Microsoft's Euro­
pean XENIX partner in 1981. Adrian moved to the U.S. in 1984 to become
Microsoft's XENIX product manager.

At Microsoft, Adrian worked for Steve Ballmer as XENIX product manager
and later became director of operating systems products, assuming responsi­
bilities for MS-DOS and Microsoft OS/2. He later managed the group that
developed Windows/386, the product that pioneered the use of software vir­
tual machine technology in Microsoft operating systems.

In the late 1980s Adrian took over product responsibility for the SQL Server
and Communications Server products and later Microsoft LAN Manager. In
July 1991 he left Microsoft to become vice president of engineering at
Artisoft. While he was in charge of development at Artisoft, LANtastic­
Artisoft's local area network product-won PC Magazine's Editors Choice
award.

In 1992 Adrian founded Gravity Communications, a consulting firm special­
izing in the preparation of technical literature. He has written the book Run­
ning LANtastic (Bantam, 1991) and articles for Microsoft Systems Journal and
other computer magazines.

Adrian is an active general aviation pilot and participates enthusiastically in
soccer, skiing, golf, and other sports.

Ebay Exhibit 1013, Page 526 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

T he manuscript for this book
was prepared and submitted

to Microsoft Press in electronic
form. Text files were prepared using
Microsoft Word 2.0 for Windows.
Pages were composed by Microsoft
Press using Aldus PageMaker 5.0
for Windows, with text in New
Baskerville and display type in
Helvetica Bold. Composed pages
were delivered to the printer as
electronic prepress files.

Cover Designer
Clement Mok designs, Inc.

Interior Graphic Designer
Kim Eggleston

Interior Graphic Artists
David Holter, Sandi Lage,

Jim Kramer

Principal Typographer
Barb Runyan

Principal Proofreader/Copy Editor
Shawn Peck

Indexer
Julie Kawabata

Ebay Exhibit 1013, Page 527 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Programming Pracuces

DEBUGGING
THE
DEVELOPMENT
r_~t.s:s==

STf.VE MAGUIRE
o\lldiorof"""""Wd°'*

WRITlNG
SOLID
CODE

SHVE MAGUIRE

CODE
COMPLETE

STEVE McCONNELL

Debugging the Development Process
Practical Strategies/or Staying Focused, Hitting Ship Dates,
and Building Solid Teams
Steve Maguire
From the author of the award-winning Writing Solid Code comes a
compelling look at the people who develop the code and the group dynamics
behind the scenes of the software development process. Steve Maguire draws on
his real-world experiences at Microsoft for candid accounts of how he brought
together and maintained efffective teams for development of timely, high-quality
commercial applications. Find out what did and didn't work at Microsoft, and why.
216 pages, softcover $24.95 ($32.95 Canada) ISBN 1-55615-650-2

Writing Solid Code
Microso/13 Techniques/or Developing Bug-Free C Programs
Steve Maguire
Foreword by Dave Moore,
Director of Development, Microsoft Corporation
"I read it with great interest for hours at a stretch. It presents
detailed solutions to real problems." IEEE Micro

Written by a former Microsoft developer and troubleshooter, this book
is an insider's view of the most important aspect of the development process:
preventing and detecting bugs. Maguire identifies the places developers
typically make mistakes, offers practical advice for detecting costly errors,
and presents proven programming techniques for producing clean code.
288 pages, softcover $24.95 ($32.95 Canada) ISBN 1-55615-551-4

Code Complete
Steve McConnell
"We were impressed A pleasure to read, either straight through or as a
reference." PC Week

This practical handbook of software construction covers the art and
science of the entire development process, from design to testing. Examples
are provided in C, Pascal, Basic, FORTRAN, and Ada-but the focus is on pro­
gramming techniques. Topics include up-front planning, applying good design
techniques to construction, using data effectively, reviewing for errors, managing
construction activities, and relating personal character to superior software.
880 pages, softcover $35.00 ($44.95 Canada) ISBN 1-55615-484-4

Microsoft Press"' books are available wherever quality books are sold and through CompuServe's Electronic Mall-(}0 MSP.
Call 1-800-MSPRESS for direct ordering information or for placing credit card orders.*

Please refer to BBK when placing your order. Prices subject to change.
*In Canada, contact Macmillan Canada, Attn: Microsoft Press Dept., 164 Commander Blvd., Agincourt, Ontario, Canada MIS 3C7, or call 1-800-667-1115.

Outside the U.S. and Canada, write to International Sales, Microsoft Press, One Microsoft Way, Redmond, WA 98052-6399.

Ebay Exhibit 1013, Page 528 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

More Inside Information

BBVll J.
IRU&UN!KI •

1DE

2

Inside the Windows NT™ File System
Helen Custer
This detailed, infonnative monograph by critically acclaimed author
Helen Custer is an up-to-date adjunct to her bestselling Inside Windows NT.
In this special edition, Custer expands on her discussion of the robust new
Windows NT File System (NTFS) and documents its arduous design and
creation process. This book includes the first discussion of data compression in
Windows NT, describes the file system's internal structure, and explains in
detail how NTFS recovers a volume and reconstructs itself after a system failure.
104 pages, softcover $9.95 ($12.95 Canada) ISBN 1-55615~660-X

Inside Visual C++~M 2nd ed.
David J. Kruglinski
Now updated to cover Visual C++ version 1.5, this book discusses OLE,
ODBC enhancements, and Microsoft Foundation Class (MFC) Library version
2.5. This is the foundation book for Visual CH: developers programming in
Windows. Through lively examples, this book takes readers from the basics
through the advanced capabilities of this rich programming environment, while
explaining the methodologies and the tools. The CD-ROM includes all the
source code files necessary to create the sample programs in the book.
768 pages, softcover with one CD-ROM disk
$39.95 ($53.95 Canada) ISBN 1-55615-661-8

Inside OLE 2
Kraig Brockschmidt

... _ ·­----..,._

-

Here's the inside scoop on how to build powerful object-oriented applications
for Windows. Written by a leading OLE expert, this guide shows experienced
programmers how to take advantage of OLE to develop next-generation
applications that will take Windows to a new level. Brockschmidt explains how
to build OLE applications from scratch as well as how to c-0nvert existing
applications. The disks contain 44 source code examples that demonstrate how
to implement objects and how to integrate OLE features into your applications.
1008 pages, softcover with two 1.44-MB 3.5-inch disks

KilAJG BROCKSCHMJDT • $49.95 ($67.95 Canada) ISBN 1-55615-618-9

Microsoft Press® books are available wherever quality books are sold and through CompuServe's Electronic Mall--GO MSP.
Call 1-800-MSPRESS for direct ordering information or for placing credit card orders.*

Please refer to BBK when placi;;g your order. Prices subject to cl;ange.
*In Canada, contact Macmillan Canada, Attn: Microsoft Press Dept., 164 Commander Blvd., Agincourt, Ontario, Canada MIS 3C7, or call 1-800-667-1115.

Outside the U.S. and Canada, write to International Sales, Microsoft Press, One Microsoft Way, Redmond, WA 98052-6399.

Ebay Exhibit 1013, Page 529 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

APPENDIX C

Ebay Exhibit 1013, Page 530 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

The Windows Interface
Guidelines — A Guide
for Designing Software

Microsoft Windows

February 1995

This is a preliminary release of the documentation. It may be changed
substantially prior to final commercial release. This document is provided for
informational purposes only and Microsoft Corporation makes no warranties,
either expressed or implied, in this prerelease document.

Ebay Exhibit 1013, Page 531 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

2/13/95

Information in this document is subject to change without notice. Companies, names, and data used in
examples herein are fictitious unless otherwise noted. No part of this document may be reproduced or
transmitted in any form or by any means, electronic or mechanical, for any purpose, without the express
written permission of Microsoft Corporation.

Microsoft may have patents or pending patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. The furnishing of this document does not give you
any license to these patents, trademarks, copyrights, or other intellectual property rights.

Copyright © 1995 by Microsoft Corporation. All rights reserved.

Microsoft, MS, and MS-DOS, Windows, and the Windows logo are registered trademarks and Windows NT
is a trademark of Microsoft Corporation.

Ebay Exhibit 1013, Page 532 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 iii

February 13, 1995

Contents

Introduction . xiii
What's New . xiii
How to Use This Guide . xiv

How to Apply the Guidelines . xiv
Notational Conventions . xv

Chapter 1 Design Principles and Methodology . 1
User-Centered Design Principles. 1

User in Control . 1
Directness . 2
Consistency . 2
Forgiveness . 3
Feedback . 4
Aesthetics . 4
Simplicity . 4

Design Methodology . 5
A Balanced Design Team. 5
The Design Cycle . 5
Usability Assessment in the Design Process . 8

Understanding Users . 10
Design Tradeoffs . 11

Chapter 2 Basic Concepts . 13
Data-Centered Design. 13
Objects as Metaphor. 13

Object Characteristics . 14
Relationships . 14
Composition . 15
Persistence. 15

Putting Theory into Practice . 15

Chapter 3 The Windows Environment . 17
The Desktop. 17
The Taskbar . 17

The Start Button. 18
Window Buttons . 18
The Status Area . 19

Ebay Exhibit 1013, Page 533 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 Contents xi

February 13, 1995

Icons . 20
Windows . 22

Chapter 4 Input Basics . 23
Mouse Input. 23

Mouse Pointers . 23
Mouse Actions. 24

Keyboard Input . 26
Text Keys . 26
Access Keys . 27
Mode Keys . 27
Shortcut Keys . 28

Pen Input . 29
Pen Pointers. 32
Pen Gestures . 32
Pen Recognition. 33
Ink Input . 33
Targeting. 34

Chapter 5 General Interaction Techniques . 35
Navigation . 35

Mouse and Pen Navigation . 35
Keyboard Navigation . 35

Selection . 37
Selection Feedback . 37
Scope of Selection . 38
Hierarchical Selection . 38
Mouse Selection . 38
Pen Selection . 43
Keyboard Selection . 44
Selection Shortcuts. 45

Common Conventions for Supporting Operations . 46
Operations for a Multiple Selection. 46
Default Operations and Shortcut Techniques . 46
View Operations . 47

Editing Operations . 49
Editing Text. 49
Handles . 51
Transactions . 51
Properties . 53

Ebay Exhibit 1013, Page 534 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 Contents xi

February 13, 1995

Pen-Specific Editing Techniques . 53

Ebay Exhibit 1013, Page 535 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 Contents xi

February 13, 1995

Transfer Operations . 59
Command Method . 60
Direct Manipulation Method. 63
Transfer Feedback . 68
Specialized Transfer Commands. 70
Shortcut Keys for Transfer Operations . 70
Scraps . 71

Creation Operations . 71
Copy Command. 71
New Command . 71
Insert Command . 71
Using Controls. 72
Using Templates . 72

Operations on Linked Objects . 72

Chapter 6 Windows . 75
Common Types of Windows. 75
Primary Window Components . 75

Window Frames. 76
Title Bars. 76
Title Bar Icons . 77
Title Text. 78
Title Bar Buttons . 80

Basic Window Operations . 81
Activating and Deactivating Windows . 81
Opening and Closing Windows. 82
Moving Windows . 83
Resizing Windows . 84
Scrolling Windows. 86
Splitting Windows . 92

Chapter 7 Menus, Controls, and Toolbars . 97
Menus . 97

The Menu Bar and Drop-down Menus . 97
Common Drop-down Menus . 99
Pop-up Menus . 101
Pop-up Menu Interaction . 102
Common Pop-up Menus. 103
Cascading Menus. 107
Menu Titles . 107

Ebay Exhibit 1013, Page 536 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 Contents xi

February 13, 1995

Menu Items . 108

Ebay Exhibit 1013, Page 537 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 Contents xi

February 13, 1995

Controls . 112
Buttons . 113
List Boxes . 120
Text Fields. 127
Other General Controls . 132
Pen-Specific Controls. 136

Toolbars and Status Bars . 139
Interaction with Controls in Toolbars and Status Bars . 140
Support for User Options . 140
Common Toolbar Buttons . 142

Chapter 8 Secondary Windows . 145
Characteristics of Secondary Windows . 145

Appearance and Behavior. 145
Window Placement . 148
Modeless vs. Modal . 148
Default Buttons . 148
Navigation in Secondary Windows . 149
Validation of Input. 151

Property Sheets and Inspectors . 151
Property Sheet Interface . 151
Property Sheet Commands . 153
Closing a Property Sheet . 154
Property Inspectors . 155
Properties of a Multiple Selection . 156
Properties of a Heterogeneous Selection . 156
Properties of Grouped Items . 156

Dialog Boxes . 157
Dialog Box Commands . 157
Layout. 157
Common Dialog Box Interfaces . 158

Palette Windows . 167
Message Boxes . 169

Message Box Types . 169
Command Buttons in Message Boxes . 171
Message Box Text . 173

Pop-up Windows . 174

Ebay Exhibit 1013, Page 538 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 Contents xi

February 13, 1995

Chapter 9 Window Management . 175
Single Document Window Interface . 175
Multiple Document Interface . 176

Opening and Closing MDI Windows . 178
Moving and Sizing MDI Windows . 178
Switching Between MDI Child Windows . 180

MDI Alternatives . 181
Workspaces . 182
Workbooks . 184
Projects . 185

Selecting a Window Model. 186
Presentation of Object or Task . 187
Display Layout . 188
Data-Centered Design . 188
Combination of Alternatives. 188

Chapter 10 Integrating with the System. 189
The Registry . 189

Registering Application State Information. 190
Registering Application Path Information . 192
Registering File Extensions . 193
Supporting Creation . 199
Registering Icons . 200
Registering Commands . 201
Enabling Printing . 202
Registering OLE . 202
Registering Shell Extensions . 202
Supporting the Quick View Command . 204
Registering Sound Events. 205

Installation . 206
Copying Files . 206
Making Your Application Accessible . 208
Designing Your Installation Program . 208
Uninstalling Your Application . 209
Installing Fonts . 210
Installing Your Application on a Network . 211
Supporting Auto Play. 211

Ebay Exhibit 1013, Page 539 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 Contents xi

February 13, 1995

System Naming Conventions . 213
Taskbar Integration . 214

Taskbar Window Buttons . 214
Status Notification . 214
Message Notification . 215

Recycle Bin Integration . 216
Control Panel Integration . 216

Adding Control Panel Objects . 216
Adding to the Passwords Object . 217

Plug and Play Support . 217
System Settings and Notification. 218
Modeless Interaction . 218

Chapter 11 Working with OLE Embedded and OLE Linked Objects . 219
The Interaction Model . 219
Creating OLE Embedded and OLE Linked Objects . 221

Transferring Objects . 221
Inserting New Objects . 225

Displaying Objects . 229
Selecting Objects . 232

Accessing Commands for Selected Objects . 234
Activating Objects . 236

Outside-in Activation . 236
Inside-out Activation . 237
Container Control of Activation . 237

OLE Visual Editing of OLE Embedded Objects. 238
The Active Hatched Border . 243
Menu Integration . 244
Keyboard Interface Integration . 247
Toolbars, Frame Adornments, and Palette Windows . 248
Opening OLE Embedded Objects . 251

Editing an OLE Linked Object . 254
Automatic and Manual Updating . 256
Operations and Links . 256
Types and Links. 257
Link Management . 257

Accessing Properties of OLE objects. 257
The Properties Command . 258
The Links Command . 260

Ebay Exhibit 1013, Page 540 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 Contents xi

February 13, 1995

Converting Types . 262
Using Handles . 263
Undo Operations for Active and Open Objects . 264
Displaying Messages . 266

Object Application Messages . 266
OLE Linked Object Messages . 269
Status Line Messages . 271

Chapter 12 User Assistance . 273
Contextual User Assistance. 273

Context-Sensitive Help. 273
Guidelines for Writing Context-Sensitive Help . 276
Tooltips . 277
Status Bar Messages. 277
Guidelines for Writing Status Bar Messages . 279
The Help Command Button . 279

Task Help . 280
Task Topic Windows . 280
Guidelines for Writing Task Help Topics . 282
Shortcut Buttons . 282

Reference Help . 283
The Reference Help Window . 283
Guidelines for Writing Reference Help . 285

The Help Topics Browser . 286
The Help Topic Tabs . 286
Guidelines for Writing Help Contents Entries . 290
Guidelines for Writing Help Index Keywords . 290

Wizards . 291
Wizard Buttons . 291
Guidelines for Writing Text for Wizards . 291
Guidelines for Writing Text for Wizard Pages. 294

Chapter 13 Visual Design . 295
Visual Communication . 295

Composition and Organization . 295
Color. 297
Fonts . 299
Dimensionality . 300

Ebay Exhibit 1013, Page 541 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 Contents xi

February 13, 1995

Design of Visual Elements . 300
Basic Border Styles . 300
Window Border Style. 302
Button Border Styles . 302
Field Border Style . 303
Status Field Border Style . 304
Grouping Border Style . 305
Visual States for Controls. 305

Layout . 312
Font and Size . 312
Capitalization . 315
Grouping and Spacing . 315
Alignment . 316
Button Placement. 316

Design of Graphic Images. 317
Icon Design . 318
Pointer Design . 320

Selection Appearance . 322
Highlighting . 322
Handles . 323

Transfer Appearance . 324
Open Appearance . 325
Animation . 325

Chapter 14 Special Design Considerations . 327
Sound . 327
Accessibility . 328

Visual Disabilities . 329
Hearing Disabilities . 330
Physical Movement Disabilities . 330
Speech or Language Disabilities . 330
Cognitive Disabilities. 330
Seizure Disorders. 330
Types of Accessibility Aids . 331
Compatibility with Screen Review Utilities. 332
The User's Point of Focus. 334
Timing and Navigational Interfaces . 335
Keyboard and Mouse Interface . 337
Documentation, Packaging, and Support . 337
Usability Testing . 338

Ebay Exhibit 1013, Page 542 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 Contents xi

February 13, 1995

Internationalization. 338
Text. 339
Graphics . 340
Keyboards . 341
Character Sets . 341
Formats . 342
Layout. 343
References to Unsupported Features . 343

Network Computing . 343
Leverage System Support . 343
Client-Server Applications . 344
Shared Data Files . 344

Records Processing . 344
Telephony . 345
Microsoft Exchange . 346

Coexisting with Other Information Services . 346
Adding Menu Items and Toolbar Buttons . 347
Supporting Connections . 347
Installing Information Services . 348

Appendix A Mouse Interface Summary . 349

Appendix B Keyboard Interface Summary. 357

Appendix C Guidelines Summary . 361
General Design . 361
Design Process. 362
Input and Interaction. 362
Windows . 362
Controls . 363
Integrating with the System . 364
User Assistance . 364
Visual Design. 365
Sound . 365
Accessibility . 365
International Users . 366
Network Users . 366

Ebay Exhibit 1013, Page 543 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 Contents xi

February 13, 1995

Appendix D Supporting Windows 95 and Windows NT Version 3.51. 367

Appendix E Localization Word Lists . 369

Bibliography . 377
General Design . 377
Graphic Information Design . 378
Usability . 378
Object-Oriented Design . 378
Accessibility . 379
Organizations. 380

Glossary . 381

Ebay Exhibit 1013, Page 544 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

xiii

February 13, 1995

Introduction
Welcome to The Windows Interface Guidelines  A Guide for Designing Software, an
indispensable guide to designing software that runs with the MicrosoftWindows
operating system. The design of your software's interface, more than anything else,
affects how a user experiences your product. This guide promotes good interface
design and visual and functional consistency within and across Windows-based
applications.

What's New
Continuing the direction set by Microsoft OLE, the enhancements in the Windows
user interface provide a design evolution from the basic and graphical to the more
object oriented  that is, from an application-centered interface to a more data-
centered one. In response, developers and designers may need to rethink the interface
of their software  the basic components and the respective operations and properties
that apply to them. This is important because, from a user's perspective, applications
have become less the primary focus and more the engines behind the objects in the
interface. Users can now interact with data without having to think about applications,
allowing them to better concentrate on their tasks.
When adapting your existing Windows-based software, make certain you consider the
following important design aspects.
• Title bar text and icons

• Property sheets

• Transfer model (including drag and drop)

• Pop-up menus

• New controls

• Integration with the system

• Help interface

• OLE embedding and OLE linking

• Visual design of windows, controls, and icons

• Window management

• Presentation of minimized windows

These elements are covered in depth throughout this guide.

How to Use This Guide
This guide is intended for those who are designing and developing Windows-based
software. It may also be appropriate for those interested in a better understanding of
the Windows environment and the human-computer interface principles it supports.
The content of the guide covers the following areas.

Ebay Exhibit 1013, Page 545 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 Introduction xv

February 13, 1995

• Basic design principles and process  fundamental design philosophy,
assumptions about human behavior, design methodology, and concepts
embodied in the interface.

• Interface elements  descriptive information about the various components in
the interface as well as when and how to use them.

• Design details  specific information about the details of effective design and
style when using the elements of the interface.

• Additional information  summaries and tables of topics included in the guide
for quick reference, a bibliography of works related to interface design, a
comprehensive word list translated into 27 languages to assist in product
localization, a glossary of terms defined in the guide, and an index.

This guide focuses on the design and rationale of the user interface. Although an
occasional technical reference is included, this guide does not generally cover detailed
information about technical implementation or application programming interfaces
(APIs), because there are many different types of development tools that you can use
to develop software for Windows. The documentation included with the Microsoft
Win32 Software Development Kit (SDK) is one source of information on specific
APIs.

How to Apply the Guidelines
This guide promotes visual and functional consistency within and across the Windows
operating system. Although following these guidelines is encouraged, you are free to
adopt the guidelines that best suit your software. However, you and your customers
will benefit if, by following these guidelines, you enable users to transfer their skills
and experience from one task to the next and to learn new tasks easily. The data-
centered design environment begins to break down the lines between traditional
application domains. Inconsistencies in the interface become more obvious and more
distracting to users.
Conversely, adhering to the design guidelines does not guarantee usability. The
guidelines are valuable tools, but they must be combined with other factors as part of
an effective software design process, such factors as application of design principles,
task analysis, prototyping, and usability evaluation.
You may extend these guidelines, provided that you do so in the spirit of the principles
on which they are based, and maintain a reasonable level of consistency with the
visual and behavioral aspects of the Windows interface. In general, avoid adding new
elements or behaviors unless the interface does not otherwise support them. More
importantly, avoid changing an existing behavior for common elements. A user builds
up expectations about the workings of an interface. Inconsistencies not only confuse
the user, they also add unnecessary complexity.
These guidelines supersede those issued for Windows version 3.1 and all previous
releases and are specific to the development of applications designed for Microsoft
Windows 95, Microsoft Windows NT Workstation 3.51 (and Microsoft
Windows NT Server 3.51), and later releases. There is no direct relationship between
these guidelines and those provided for other operating systems.

Ebay Exhibit 1013, Page 546 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 Introduction xv

February 13, 1995

Notational Conventions
The following notational conventions are used throughout this guide.

Convention Used for

SMALL CAPITAL LETTERS Names of keys on the keyboard  for example, SHIFT,
CTRL, or ALT.

KEY+KEY Key combinations for which the user must press and hold
down one key and then press another  for example,
CTRL+P or ALT+F4.

KEY,KEY Key sequences for which the user must press and release
one key and then press and release another  for example,
ALT,SPACEBAR.

Italic text New terms and variable expressions, such as parameters.

Bold text Win32 API keywords.

Monospace text Examples of registry entries.

[] Optional information.

Cross-references to related topics are shown in the margin. Special notes about
material are shown in line.

Ebay Exhibit 1013, Page 547 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

1

February 13, 1995

C H A P T E R 1
Design Principles and Methodology
A well-designed user interface is built on principles and a development process that centers on users and their tasks.
This chapter summarizes the basic principles of the interface design for Microsoft Windows. It also includes
techniques and methodologies employed in an effective human-computer interface design process.

User-Centered Design Principles
The information in this section describes the design principles on which Windows and the guidelines in this book are
based. You will find these principles valuable when designing software for Windows.

User in Control
An important principle of user interface design is that the user should always feel in control of the software, rather
than feeling controlled by the software. This principle has a number of implications.

The first implication is the operational assumption that actions are started not by the computer or the software but by
the user, a user who plays an active, rather than reactive, role. Task automation and constraints are still possible, but
you should implement them in a balanced way that allows the user freedom of choice.

The second implication is that users, because of their widely varying skills and preferences, must be able to
customize aspects of the interface. The system software provides user access to many of these aspects. Your software
should reflect user settings for different system properties such as color, fonts, or other options.

The final implication is that your software should be as interactive and responsive as possible. Avoid modes
whenever possible. A mode is a state that excludes general interaction or otherwise limits the user to specific
interactions. When a mode is the only or the best design alternativefor example, for selecting a particular tool in a
drawing programmake certain the mode is obvious, visible, the result of an explicit user choice, and easy to
cancel.

For information about applying the design principle of user in control, see Chapter 4, "Input Basics," and Chapter 5,
"General Interaction Techniques." These chapters cover the basic forms of interaction your software should support.

Directness
Design your software so that users can directly manipulate software representations of information. Whether
dragging an object to relocate it or navigating to a location in a document, users should see how the actions they take
affect the objects on the screen. Visibility of information and choices also reduce the user's mental workload. Users
can recognize a command easier than they can recall its syntax.

Familiar metaphors provide a direct and intuitive interface to user tasks. By allowing users to transfer their
knowledge and experience, metaphors make it easier to predict and learn the behaviors of software-based
representations.

When using metaphors, you need not limit a computer-based implementation to its "real world" counterpart. For
example, unlike its paper-based counterpart, a folder on the Windows desktop can be used to organize a variety of
objects such as printers, calculators, and other folders. Similarly, a Windows folder can be more easily resorted. The
purpose of using metaphor in the interface is to provide a cognitive bridge; the metaphor is not an end in itself.

Ebay Exhibit 1013, Page 548 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 1 Design Principles and Methodology 11

February 13, 1995

Metaphors support user recognition rather than recollection. Users remember a meaning associated with a familiar
object easier than they remember the name of a particular command.

For information about applying the principle of directness and metaphor, see Chapter 5, "General Interaction
Techniques," and Chapter 13, "Visual Design." These chapters cover, respectively, the use of directness in the
interface (including drag and drop) and the use of metaphors when designing icons or other graphical elements.

Consistency
Consistency allows users to transfer existing knowledge to new tasks, learn new things more quickly, and focus more
on tasks because they need not spend time trying to remember the differences in interaction. By providing a sense of
stability, consistency makes the interface familiar and predictable.

Consistency is important through all aspects of the interface, including names of commands, visual presentation of
information, and operational behavior. To design consistency into software, you must consider several aspects.

• Consistency within a product. Present common functions using a consistent set of commands and
interfaces. For example, do not provide a Copy command that immediately carries out an operation
in one situation but in another presents a dialog box that requires a user to type in a destination. As
a corollary to this example, use the same command to carry out functions that seem similar to the
user.

• Consistency within the operating environment. By maintaining a high level of consistency between
the interaction and interface conventions provided by
Windows, your software benefits from users' ability to apply interaction skills they have already
learned.

• Consistency with metaphors. If a particular behavior is more characteristic of a different object
than its metaphor implies, the user may have difficulty learning to associate that behavior with an
object. For example, an incinerator communicates a different model than a wastebasket for the
recoverability of objects placed in it.

Although applying the principle of consistency is the primary goal of this guide, the following chapters focus on the
elements common to all Windows-based software: Chapter 6, "Windows," Chapter 7, "Menus, Controls, and
Toolbars," and Chapter 8, "Secondary Windows." For information about closely integrating your software with the
Windows environment, see Chapter 10, "Integrating with the System," and Chapter 11, "Working with OLE
Embedded and OLE Linked Objects."

Forgiveness
Users like to explore an interface and often learn by trial and error. An effective interface allows for interactive
discovery. It provides only appropriate sets of choices and warns users about potential situations where they may
damage the system or data, or better, makes actions reversible or recoverable.

Even within the best designed interface, users can make mistakes. These mistakes can be both physical (accidentally
pointing to the wrong command or data) and mental (making a wrong decision about which command or data to
select). An effective design avoids situations that are likely to result in errors. It also accommodates potential user
errors and makes it easy for the user to recover.

For information about applying the principle of forgiveness, see Chapter 12, "User Assistance," which provides
information on supporting discoverability in the interface through the use of contextual, task-oriented, and reference

Ebay Exhibit 1013, Page 549 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 1 Design Principles and Methodology 11

February 13, 1995

forms of user assistance. For information about designing for the widest range of users, see Chapter 14, "Special
Design Considerations."

Feedback
Always provide feedback for a user's actions. Visual, and sometimes audio, cues should be presented with every user
interaction to confirm that the software is responding to the user's input and to communicate details that distinguish
the nature of the action.

Effective feedback is timely, and is presented as close to the point of the user's interaction as possible. Even when the
computer is processing a particular task, provide the user with information regarding the state of the process and how
to cancel that process if that is an option. Nothing is more disconcerting than a "dead" screen that is unresponsive to
input. A typical user will tolerate only a few seconds of an unresponsive interface.

It is equally important that the type of feedback you use be appropriate to the task. Pointer changes or a status bar
message can communicate simple information; more complex feedback may require the display of a message box.

For information about applying the principle of visual and audio feedback, see Chapter 13, "Visual Design," and
Chapter 14, "Special Design Considerations."

Aesthetics
The visual design is an important part of a software's interface. Visual attributes provide valuable impressions as well
as communicate important cues to the interaction behavior of particular objects. At the same time, it is important to
remember that every visual element that appears on the screen potentially competes for the user's attention. Provide a
pleasant environment that clearly contributes to the user's understanding of the information presented. A graphics or
visual designer may be invaluable with this aspect of the design.

For information and guidelines related to the aesthetics of your interface, see Chapter 13, "Visual Design." This
chapter covers everything from individual element design to font use and window layout.

Simplicity
An interface should be simple (not simplistic), easy to learn, and easy to use. It must also provide access to all
functionality provided by an application. Maximizing functionality and maintaining simplicity work against each
other in the interface. An effective design balances these objectives.

One way to support simplicity is to reduce the presentation of information to the minimum required to communicate
adequately. For example, avoid wordy descriptions for command names or messages. Irrelevant or verbose phrases
clutter your design, making it difficult for users to easily extract essential information. Another way to design a
simple but useful interface is to use natural mappings and semantics. For example, arranging elements together
strengthens their association.

You can also help users manage complexity by using progressive disclosure. Progressive disclosure involves careful
organization of information so that it is shown only at the appropriate time. By "hiding" information presented to the
user, you reduce the amount of information to process. For example, clicking a menu displays its choices; the use of
dialog boxes can reduce the number of menu options.

Progressive disclosure does not imply using unconventional techniques for revealing information, such as requiring a
modifier key as the only way to access basic functions or forcing the user down a longer sequence of hierarchical
interaction. This can make an interface more complex and cumbersome.

Ebay Exhibit 1013, Page 550 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 1 Design Principles and Methodology 11

February 13, 1995

For information about applying the principle of simplicity, see Chapter 7, "Menus, Controls, and Toolbars." This
chapter discusses progressive disclosure in detail and describes how and when to use the standard (system-supplied)
elements in your interface.

Design Methodology
Effective interface design is more than just following a set of rules. It requires a user-centered attitude and design
methodology. It also involves early planning of the interface and continued work through the software development
process.

A Balanced Design Team
An important consideration in the design of a product is the composition of the team that designs and builds it.
Always try to balance disciplines and skills, including development, visual design, writing, human factors, and
usability assessment. Rarely are these characteristics found in a single individual, so create a team of individuals who
specialize in these areas and who can contribute uniquely to the final design.

Ensure that the design team can effectively work and communicate together. Locating them in the same area of the
building or office space, or providing them with a common area to work out design details fosters better
communication and interaction.

The Design Cycle
An effective user-centered design process involves a number of important phases: designing, prototyping, testing,
and iterating. The following sections describe these phases.
Design
The initial work on a software's design can be the most critical because, during this phase, you decide the general
shape of your product. If the foundation work is flawed, it is difficult to correct afterwards.

This part of the process involves not only defining the objectives and features for your product, but understanding
who your users are and their tasks, intentions, and goals. This includes understanding factors such as their
backgroundage, gender, expertise, experience level, physical limitations, and special needs; their work
environmentequipment, social and cultural influences, and physical surroundings; and their current task
organizationthe steps required, the dependencies, redundant activities, and the output objective. An order-entry
system may have very different users and requirements than an information kiosk.

At this point, begin defining your conceptual framework to represent your product with the knowledge and
experience of your target audience. Ideally, you want to create a design model that fits the user's conceptual view of
the tasks to be performed. Consider the basic organization and different types of metaphors that can be employed.
Often, observing users at their current tasks can provide ideas on effective metaphors to use.

Document your design. Committing your planned design to a written format not only provides a valuable reference
point and form of communication, but often helps make the design more concrete and reveals issues and gaps.
Prototype
After you have defined a design model, prototype some of the basic aspects of the design. This can be done with
"pencil and paper" modelswhere you create illustrations of your interface to which other elements can be attached;
storyboardscomic book-like sequences of sketches that illustrate specific processes; animationsmovie-like
simulations; or operational software using a prototyping tool or normal development tools.

Ebay Exhibit 1013, Page 551 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 1 Design Principles and Methodology 11

February 13, 1995

A prototype is a valuable asset in many ways. First, it provides an effective tool for communicating the design.
Second, it can help you define task flow and better visualize the design. Finally, it provides a low-cost vehicle for
getting user input on a design. This is particularly useful early in the design process.

The type of prototype you build depends on your goal. Functionality, task flow, interface, operation, and
documentation are just some of the different aspects of a product that need to be assessed. For example, pen and
paper models or storyboards may work when defining task organization or conceptual ideas. Operational prototypes
are usually best for the mechanics of user interaction.

Consider whether to focus your prototype on breadth or depth. The broader the prototype, the more features you
should try to include to gain an understanding about how users react to concepts and organization. When your
objective is focused more on detailed usage of a particular feature or area of the design, use depth-oriented
prototypes that include more detail for a given feature or task.
Test
User-centered design involves the user in the design process. Usability testing a design, or a particular aspect of a
design, provides valuable information and is a key part of a product's success. Usability testing is different than
quality assurance testing in that, rather than find programming defects, you assess how well the interface fits user
needs and expectations. Of course, defects can sometimes affect how well the interface will fit.

Usability testing provides you not only with task efficiency and success-or-failure data, it also can provide you with
information about the user's perceptions, satisfaction, questions, and problems, which may be just as significant as
the ability to complete a particular task.

When testing, it is important to use participants who fit the profile of your target audience. Using fellow workers
from down the hall might be a quick way to find participants, but software developers rarely have the same
experience as their customers. The following section, "Usability Assessment in the Design Process," provides details
about conducting a usability test.

There can be different reasons for testing. You can use testing to look for potential problems in a proposed design.
You can also focus on comparative studies of two or more designs to determine which is better, given a specific task
or set of tasks.
Iterate
Because testing often uncovers design weaknesses, or at least provides additional information you will want to use,
repeat the entire process, taking what you have learned and reworking your design or moving onto reprototyping and
retesting. Continue this refining cycle through the development process until you are satisfied with the results.

During this iterative process, you can begin substituting the actual application for prototypes as the application code
becomes available. However, avoid delaying your design cycle waiting for the application code to be complete
enough; you can lose valuable time and input that you could have captured with a prototype. Moreover, by the time
most applications are complete enough for testing, it is difficult to consider significant changes. This happens for two
reasons: 1) it becomes easier to ignore usability defects because of the time and resources invested, and 2) it usually
delays the application's delivery schedule.

Usability Assessment in the Design Process
As described in the previous section, usability testing is a key part of the design process, but testing design
prototypes is only one part of the picture. Usability assessment begins in the early stages of product development,
where you can use it to gather data about how users do their work. You then roll your findings back into the design
process. As the design progresses, usability assessment continues to provide valuable input for analyzing initial

Ebay Exhibit 1013, Page 552 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 1 Design Principles and Methodology 11

February 13, 1995

design concepts and, in the later stages of product development, can be used to test specific product tasks. Apply
usability assessment early and often.

Consider the user's entire experience as part of a product's usability. The usability assessment should include all of a
product's components. A software interface is more than just what shows up on the screen or in the documentation.
Usability Testing Techniques
Usability testing involves a wide range of techniques and investment of resources, including trained specialists
working in sound-proofed labs with one-way mirrors and sophisticated recording equipment. However, even the
simplest investment of an office or conference room, tape recorder, stopwatch, and notepad can produce benefits.
Similarly, all tests need not involve great numbers of subjects. More typically, quick, iterative tests with a small,
well-targeted sample, 6−10 participants, can identify 80 to 90 percent of most design problems. You can achieve that
level with as few as 3−4 users if you only target a single skill level of users, such as novices or immediate level
users.

Like the design process itself, usability testing begins with defining the target audience and test goals. When
designing a test, focus on tasks, not features. Even if your goal is testing specific features, remember that your
customers will use them within the context of particular tasks. It is also a good idea to run a pilot test to work out the
bugs of the tasks to be tested and make certain the task scenarios, prototype, and test equipment work smoothly.

Ebay Exhibit 1013, Page 553 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 1 Design Principles and Methodology 11

February 13, 1995

When conducting the usability test, provide an environment comparable to the target setting; usually a quiet location,
free from distractions, is best. Make participants feel comfortable. It often helps to emphasize that you are testing the
software, not the participants. If they become confused or frustrated, it is not a reflection upon them. Unless you have
participated yourself, you may be surprised by the pressure many test participants feel. You can alleviate some
pressure by explaining the testing process and equipment to the participants.

Allow the user reasonable time to try and work through a difficult situation they encounter. Although it is generally
best to not interrupt participants during a test, they may get stuck or end up in situations that require intervention.
This need not necessarily disqualify the test data, as long as the test coordinator carefully guides or hints around a
problem. Begin with general hints before moving to specific advice. For more difficult situations, you may need to
stop the test and make adjustments; Keep in mind that less intervention usually yields better results. Always record
the techniques and search patterns that users employ when attempting to work through a difficulty, and the number
and type of hints you have to provide them.

Ask subjects to think aloud as they work, so you can hear what assumptions and inferences they are making. As the
participants work, record the time they take to perform a task as well as any problems they encounter. You may also
want to follow up the session with a questionnaire that asks the participants to evaluate the product or tasks they
performed.

Record the test results using a portable tape recorder, or better, a video camera. Since even the best observer can miss
details, reviewing the data later will prove invaluable. Recorded data also allows more direct comparisons between
multiple participants. It is usually risky to base conclusions on observing a single subject. Recorded data also allows
all the design team to review and evaluate the results.

Ebay Exhibit 1013, Page 554 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 1 Design Principles and Methodology 11

February 13, 1995

Whenever possible, involve all members of the design team in observing the test and reviewing the results. This
ensures a common reference point and better design solutions as team members apply their own insights to what they
observe. If direct observation is not possible, make the recorded results available to the entire team.
Other Assessment Techniques
There are many techniques you can use to gather usability information. In addition to those already mentioned,
"focus groups" are helpful for generating initial ideas or trying out ideas. A focus group requires a moderator who
directs the discussion about aspects of a task or design, but allows participants to freely express their opinions. You
can also conduct demonstrations, or "walkthroughs," in which you take the user through a set of sample scenarios
and ask about their impressions along the way. In a so-called "Wizard of Oz" technique, a testing specialist simulates
the interaction of an interface. Although these latter techniques can be valuable, they often require a trained,
experienced test coordinator.

Understanding Users
The design and usability techniques described in the previous sections have been used in the development of
Windows and in many of the guidelines included in this book. That process has yielded the following general
characteristics about users. Consider these characteristics in the design of your software.

• Beginning Windows users often have difficulty with the mouse. For example, dragging and
double-clicking are skills that may take time for beginning mouse users to master. Dragging may
be difficult because it requires continued pressure on the mouse button and involves properly
targeting the correct destination. Double-clicking is not the same as two separate clicks, so many
beginning users have difficulty handling the timing necessary to distinguish these two actions, or
they overgeneralize the behavior to assume that everything needs double-clicking. Design your
interface so that double-clicking and dragging are not the only ways to perform basic tasks; allow
the user to conduct the task using single click operations.

Ebay Exhibit 1013, Page 555 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 1 Design Principles and Methodology 11

February 13, 1995

• Beginning users often have difficulty with window management. They do not always realize that
overlapping windows represent a three-dimensional space. As a result, when a window is hidden
by another, a user may assume it no longer exists.

• Beginning users often have difficulty with file management. The organization of files and folders

nested more than two levels is more difficult to understand because it is not as obvious in the real
world.

• Intermediate users may understand file hierarchies, but have difficulty with other aspects of file

management — such as moving and copying files. This may be because most of their experience
working with files is often from within an application.

• Advanced, or "power," users want efficiency. The challenge in designing for advanced users is

providing for efficiency without introducing complexity for less-experienced users. (Shortcut
methods are often useful for supporting these users.) In addition, advanced users may be dependent
upon particular interfaces, making it difficult for them to adapt to significant rearrangement or
changes in an interface.

• To develop for the widest audience, consider international users and users with disabilities.

Including these users as part of your planning and design cycle is the best way to ensure that you
can accommodate them.

Design Tradeoffs
A number of additional factors may affect the design of a product. For example, competition may require you to
deliver a product to market with a minimal design process, or comparative evaluations may force you to consider
additional features. Remember that additional features and shortcuts can affect the product. There is no simple
equation to determine when a design tradeoff is appropriate. So in evaluating the impact, consider the following.

• Every additional feature potentially affects performance, complexity, stability, maintenance, and
support costs of an application.

• It is harder to fix a design problem after the release of a product because users may adapt, or even
become dependent on, a peculiarity in the design.

Ebay Exhibit 1013, Page 556 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 1 Design Principles and Methodology 11

February 13, 1995

• Simplicity is not the same as being simplistic. Making something simple to use often requires a
good deal of work and code.

• Features implemented by a small extension in the application code do not necessarily have a
proportional effect in a user interface. For example, if the primary task is selecting a single object,
extending it to support selection of multiple objects could make the frequent, simple task more
difficult to carry out.

Ebay Exhibit 1013, Page 557 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

11

February 13, 1995

C H A P T E R 2
Basic Concepts
Microsoft Windows supports the evolution and design of software from a basic graphical user interface to a data-
centered interface that is better focused on users and their tasks. This chapter outlines the fundamental concepts of
data-centered design. It covers some of the basic definitions used throughout this guide and provides the fundamental
model for how to define your interface to fit well within the Windows environment.

Data-Centered Design
Data-centered design means that the design of the interface supports a model where a user can browse for data and
edit it directly instead of having to first locate an appropriate editor or application. As a user interacts with data, the
corresponding commands and tools to manipulate the data or the view of the data automatically become available to
the user. This frees a user to focus on the information and tasks rather than on applications and how applications
interact.

In this data-centered context, a document is a common unit of data used in tasks and exchanged between users. The
use of the term document is not limited to the output of a word-processing or spreadsheet application, however. The
emphasis is on the data, not the software.

Objects as Metaphor
A well-designed user interface provides an understandable, consistent framework in which users can work, without
being confounded by the details of the underlying technology. To help accomplish this, the design model of the
Windows user interface uses the metaphor of objects. This is a natural way we interpret and interact with the world
around us. In the interface, objects not only describe files or icons, but any unit of information, including cells,
paragraphs, characters, and circles, and the documents in which they reside.

Object Characteristics
Objects, whether real-world or computer representations, have certain characteristics that help us understand what
they are and how they behave. The following concepts describe the aspects and characteristics of computer
representations:

• Properties — Objects have certain characteristics or attributes, called properties, that define their
appearance or statefor example, color, size, and modification date. Properties are not limited to
the external or visible traits of an object. They may reflect the internal or operational state of an
object, such as an option in a spelling check utility that automatically suggests alternative spellings.

• Operations — Things that can be done with or to an object are considered its operations. Moving
or copying an object are examples of operations. You can expose operations in the interface
through a variety of mechanisms, including commands and direct manipulation.

• Relationships  Objects always exist within the context of other objects. The context, or
relationships, that an object may have often affects the way the object appears or behaves. The
most common relationships are collection, constraint, and composite.

Relationships
The simplest relationship is collection, in which objects in a set share a common aspect. The results of a query or a
multiple selection of objects are examples of a collection. The significance of a collection is that it enables operations
to be applied to the set.

Ebay Exhibit 1013, Page 558 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 2 Basic Concepts 13

February 13, 1995

A constraint is a stronger relationship between a set of objects in that changing an object in the set affects some other
object in the set. The way a text box streams text, the way a drawing application layers its objects, and even the way
a word-processing application organizes a document into pages are all examples of constraints.

When a relationship between objects becomes so significant that the aggregation can be identified as an object itself
with its own set of properties and operations, the relationship is called a composite. A range of cells, a paragraph, and
a grouped set of drawing objects are examples of composites.

Another common kind of relationship found in the interface is containment. A container is an object that is the place
where other objects exist, such as text in a document or documents in a folder. A container often influences the
behavior of its content. It may add or suppress certain properties or operations of an object placed in it. In addition, a
container controls access to its content as well as what kind of object it will accept as its content. This may affect the
results when transferring objects from one container to another.

All these aspects contribute to an object's type, a descriptive way of distinguishing or classifying objects. Objects of a
common type have similar traits and behaviors.

Composition
As in the natural world, the metaphor of objects implies a constructed environment. Objects are compositions of
other objects. You can define most tasks supported by applications as a specialized combination or set of
relationships between objects. A text document is a composition of text, paragraphs, footnotes, or other items. A
table is a combination of cells, a chart, or a particular organization of graphics. When you define user interaction
with objects to be as consistent as possible at any level, you can produce complex constructions while maintaining a
small, basic set of conventions. These conventions can apply throughout the interface, increasing ease of use. In
addition, using composition to model tasks encourages modular, component-oriented design. This allows objects to
be potentially adapted or recombined for other uses.

Persistence
In the natural world, objects persist in their existing state unless changed or destroyed. When you use a pen to write a
note, you need not invoke a command to ensure that the ink is preserved on the paper. The act of writing implicitly
preserves the information. This is the long term direction for objects in the interface as well. Although it is still
appropriate to design software that requires explicit user actions to preserve data, consider whether data can be
preserved automatically. In addition, view state information, such as cursor position, scroll position, and window size
and location, should be preserved so it can be restored when an object's view is reopened.

Putting Theory into Practice
Using objects in an interface design does not guarantee usability. But applying object-based concepts does offer
greater potential for a well-designed interface. As with any good user interface design, a good user-centered design
process ensures the success and quality of the interface.

The first step to object-based design should begin as any good design with a thorough understanding of what users'
objectives and tasks are. When doing the task analysis, identify the basic components or objects used in those tasks
and the behavior and the characteristics that differentiate each kind of object, including the relationships of the
objects to each other and to the user. Also identify the actions that are performed, the objects to which they apply,
and the state information or attributes that each object in the task must preserve, display, and allow to be edited.

Once the analysis is complete, you can start identifying the user interfaces for the objects. Define how the objects
you identified are to be presented, either as icons or data elements in a form. Use icons primarily for representing
composite or container objects that need to be opened into their own windows. Attribute or state information should
typically be presented as properties of the associated object, most often using property sheets. Map behaviors and

Ebay Exhibit 1013, Page 559 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 2 Basic Concepts 13

February 13, 1995

operations to specific kinds of interaction, such as menu commands, direct manipulation, or both. Make these
accessible when the object is selected by the user. The information in this guide will help you define how to apply
the interfaces provided by the system.

Porting an existing Windows 3.1-based application to a more data-centered interface need not require an immediate,
complete overhaul. You can begin the evolution by adding contextual interfaces such as pop-up menus, property
sheets, and OLE drag-and-drop and by following the recommendations for designing your window title bars and
icons.

Ebay Exhibit 1013, Page 560 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

15

February 13, 1995

C H A P T E R 3
The Windows Environment
This chapter provides a brief overview of some of the basic elements included in the Microsoft Windows operating
system that allow the user to control the environment (sometimes collectively referred to as the shell). These
elements provide not only the backdrop for a user's environment, but can be landmarks for the user's interaction with
your application as well.

The Desktop
The desktop represents a user's primary work area; it fills the screen and forms the visual background for all
operations. However, the desktop is more than just a background. It can also be used as a convenient location to
place objects that are stored in the file system. In addition, for a computer connected to a network, the desktop also
serves as a private work area through which a user can still browse and access objects remotely located on the
network.

The Taskbar
The taskbar, as shown in Figure 3.1, is a special component of the desktop that can be used to switch between open
windows and to access global commands and other frequently used objects. As a result, it provides a home base — an
operational anchor for the interface.

Figure 3.1 The taskbar

Like most toolbars, the taskbar can be configured. For example, a user can move the taskbar from its default location
and relocate it along another edge of the screen. The user can also configure display options of the taskbar.

The taskbar can provide the user access to your application. It can also be used to provide status information even
when your application is not active. Because the taskbar is an interface shared across applications, be sure to follow
the conventions and guidelines covered in this guide.

For more information about integrating your application with the taskbar, see Chapter 10, "Integrating with the
System."

The Start Button
The Start button at the left side of the taskbar displays a special menu that includes commands for opening or finding
files. The Program menu entry automatically includes the Program Manager entries when the system is installed over
Windows 3.1. When installing your Windows application, you also can include an entry for your application by
placing a shortcut icon in the system's Programs folder.

Window Buttons
Whenever the user opens a primary window, a button is placed in the taskbar for that window. This button provides
the user access to the commands of that window and a convenient interface for switching to that window. The
taskbar automatically adjusts the size of the buttons to accommodate as many buttons as possible. When the size of
the button requires that the window's title be abbreviated, the taskbar also automatically supplies a tooltip for the
button.

Ebay Exhibit 1013, Page 561 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 3 The Windows Environment 21

February 13, 1995

When a window is minimized, the window's button remains in the taskbar, but is removed when the window is
closed.

Taskbar buttons can also be used as drag and drop destinations. When the user drags over a taskbar button, the
system activates the associated window, allowing the user to drop within that window.

For more information about drag and drop, see Chapter 5, "General Interaction Techniques."

The Status Area
On the opposite side of the taskbar from the Start menu is a special status area. Your application can place special
status or notification indicators here, even when it is not active.

Ebay Exhibit 1013, Page 562 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 3 The Windows Environment 21

February 13, 1995

Icons
Icons may appear on the desktop and in windows. Icons are pictorial representations of objects. This is different than
the use of icons in Windows 3.1, which also represented minimized windows. Your software should provide and
register icons for its application file and any of its associated document or data files.

For more information about the use of icons, see Chapter 10, "Integrating with the System." For information about
the design of icons, see Chapter 13, "Visual Design."

Windows includes a number of icons that represent basic objects, such as the following.

Table 3.1 Icons

Icon Type Function

Computer Provides access to a user's private storage.

Network Provides access to the network.

Folder Provides organization of files and folders.

Ebay Exhibit 1013, Page 563 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 3 The Windows Environment 21

February 13, 1995

Table 3.1 Icons (continued)

Icon Type Function

Shortcut Provides access to other objects.
(Typically, shortcut icons are links used for
providing convenient access to objects that may be
stored elsewhere.)

Saved Search Locates files or folders.

Windows Explorer Allows browsing of the content of a user's computer
or the network.

Recycle Bin Stores deleted icons.

Control Panel Provides access to properties of installed devices
and resources (for example, fonts, displays, and
keyboards).

Ebay Exhibit 1013, Page 564 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 3 The Windows Environment 21

February 13, 1995

Windows
You can open icons into windows. Windows provides a means of viewing and editing information, and viewing the
content and properties of objects. You can also use windows to display parameters to complete commands, palettes
of controls, or messages informing a user of a particular situation. Figure 3.2 demonstrates some of the different uses
for windows.

Figure 3.2 Different uses of windows

For more information about windows, see Chapter 6, "Windows," and Chapter 8, "Secondary Windows."

Ebay Exhibit 1013, Page 565 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

23

February 13, 1995

C H A P T E R 4
Input Basics
A user can interact with objects in the interface using different types of input devices. The most common input
devices are the mouse, the keyboard, and the pen. This chapter covers the basic behavior for these devices; it does
not exclude other forms of input.

Mouse Input
The mouse is a primary input device for interacting with objects in the Microsoft Windows interface. Other types of
pointing devices that emulate a mouse, such as trackballs, fall under the general use of the term "mouse."

For more information about interactive techniques such as navigation, selection, viewing, editing, transfer, and
creating new objects, see Chapter 5, "General Interaction Techniques."

Mouse Pointers
The mouse is operationally linked with a graphic on the screen called the pointer (also referred to as the cursor). By
positioning the pointer and clicking the buttons on the mouse, a user can select objects and their operations.

As a user moves the pointer across the screen, its appearance can change to provide feedback about a particular
location, operation, or state. Table 4.1 lists common pointer shapes and their uses.

Table 4.1 Common Pointers

Shape Screen location Indicates available or current action

 Over most objects Pointing, selecting, moving, resizing.

Over text Selecting text.

Over any object or location Processing an operation.

Over any screen location Processing in the background (application
loading), but the pointer is still interactive.

Over most objects Contextual Help mode.

Inside a window Zooming a view.

Along column gridlines Resizing a column.

Along row gridlines Resizing a row.

Over split box in vertical scroll bar Splitting a window (or adjusting a split)

horizontally.

Over split box in horizontal scroll
bar

Splitting a window (or adjusting a split)
vertically.

Ebay Exhibit 1013, Page 566 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 4 Input Basics 33

February 13, 1995

Over any object Not available.

Your software can define additional pointers, as needed.

Each pointer has a particular point—called a hot spot—that defines the exact screen location of the mouse. The hot
spot determines what object is affected by mouse actions. Screen objects can additionally define a hot zone; the hot
zone defines the area the hot spot must be within to be considered over the object. Typically, the hot zone coincides
with the borders of an object, but it may be larger, or smaller, to make user interaction easier.

Mouse Actions
All basic mouse actions in the interface use either mouse button 1 or button 2. By default, button 1 is the leftmost
mouse button and button 2 is the rightmost button. The system allows the user to swap the mapping of the buttons.

Note For a mouse that supports three buttons, button 2 is the rightmost button, not the center
button.

The following are the common behaviors performed with the mouse.

Action Description

Pointing Positioning the pointer so it "points to" a particular object on the screen
without using the mouse button. Pointing is usually part of preparing for
some other interaction, because the mouse pointing action is often an
opportunity to provide visual cues or other feedback to a user.

Clicking Positioning the pointer over an object and then pressing and releasing the
mouse button. Generally, the mouse is not moved during the click, and the
mouse button is quickly released after it is pressed. Clicking identifies
(selects) or activates objects.

Double-clicking Positioning the pointer over an object and pressing and releasing the
mouse button twice in rapid succession. Double-clicking an object
typically invokes its default operation.

Pressing Positioning the pointer over an object and then holding down the mouse
button. Pressing is often the beginning of a click or drag operation.

Dragging Positioning the pointer over an object, pressing down the mouse button
while holding the mouse button down, and moving the mouse. Use
dragging for actions such as selection and direct manipulation of an
object.

For most mouse interactions, pressing the mouse button only identifies an operation. User feedback is usually
provided at this point. Releasing the mouse button activates (carries out) the operation. An operation that
automatically repeats is an exception — for example, pressing a scroll arrow.

Ebay Exhibit 1013, Page 567 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 4 Input Basics 33

February 13, 1995

This guide does not cover other mouse behaviors such as chording (pressing multiple mouse buttons simultaneously)
and multiple-clicking (triple- or quadruple-clicking). Because these behaviors require more user skill, they are not
generally recommended for basic operations.

Because not all mouse users have a third button, there is no basic action defined for a third (generally the middle)
mouse button. It is best to limit the assignment of operations to this button to those environments where the
availability of a third mouse button can be assumed, and for providing redundant or shortcut access to operations
adequately supported elsewhere in the interface. When assigning actions to the button, you need to define the
behaviors for the actions already described (pointing, clicking, dragging, and double-clicking) for this button.

Keyboard Input
The keyboard is a primary means of entering or editing text information. However, the Windows interface also uses
keyboard input to navigate, toggle modes, modify input, and, as a shortcut, to invoke certain operations.

For more information about navigation, toggling modes, modifying input, shortcuts, and selection, see Chapter 5,
"General Interaction Techniques."

Following are the common interactive behaviors performed with the keyboard.

Action Description

Pressing Pressing and releasing a key. Unlike mouse interaction, keyboard interaction
occurs upon the down transition of the key. Pressing typically describes the
keyboard interaction for invoking particular commands or for navigation.

Holding Pressing and holding down a key. Holding typically describes interaction with
keys such as ALT, SHIFT, and CTRL that modify the standard behavior of other
inputfor example, another key press or mouse action.

Typing Typing input of text information from the keyboard.

Text Keys
Text keys include the following:

• Alphanumeric keys (a−z, A−Z, 0−9)

• Punctuation and symbol keys

• TAB and ENTER keys

• The SPACEBAR

In text-entry contexts, pressing a text key enters the corresponding character and typically displays that character on
the screen. Except in special views, the characters produced by the TAB and ENTER keys are not usually visible.

Note These keys can also be used for navigation or for invoking specific operations.

Most keyboards include two keys labeled ENTER: one on the main keyboard, one on the numeric keypad. Because
these keys have the same label (and on some keyboards the latter may not be available), assign both keys the same
functionality.

Ebay Exhibit 1013, Page 568 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 4 Input Basics 33

February 13, 1995

Access Keys
An access key is an alphanumeric key—sometimes referred to as a mnemonic—that when used in combination with
the ALT key navigates to and activates a control. The access key matches one of the characters in the text label of the
control. For example, pressing ALT+O activates a control whose label is "Open" and whose assigned access key is
"O". Typically, access keys are not case sensitive. The effect of activating a control depends on the type of control.

Assign access key characters to controls using the following guidelines (in order of choice):

1. The first letter of the label for the control, unless another letter provides a better mnemonic
association.

2. A distinctive consonant in the label.

3. A vowel in the label.

Nonunique access key assignments within the same scope access the first control. Depending on the control, if the
user presses the access key a second time, it may or may not access another control with the same assignment.
Therefore, define an access key to be unique within the scope of its interactionthat is, the area in which the control
exists and to which keyboard input is currently being directed.

Controls without explicit labels can use static text to create labels with assigned access keys. Software that supports a
nonroman writing system (such as Kanji), but that runs on a standard keyboard, can prefix each control label with an
alphabetic (roman) character as its access key.

For more information about static text controls, see Chapter 7, "Menus, Controls, and Toolbars."

Mode Keys
Mode keys change the actions of other keys (or other input devices). There are two kinds of mode keys: toggle keys
and modifier keys.

A toggle key turns a particular mode on or off each time it is pressed. For example, pressing the CAPS LOCK key
toggles uppercase alphabetic keys; pressing the NUM LOCK key toggles between numeric and directional input using
the keypad keys.

Ebay Exhibit 1013, Page 569 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 4 Input Basics 33

February 13, 1995

Modifier keys include the SHIFT, CTRL, and ALT keys. Like toggle keys, modifier keys change the actions of normal
input. Unlike toggle keys, however, modifier keys establish modes that remain in effect only while the modifier key
is held down. Such a "spring-loaded" mode is often preferable to a "locked" mode because it requires the user to
continuously activate it, making it a conscious choice and allowing the user to easily cancel the mode by releasing
the key.

Because it can be difficult for a user to remember multiple modifier assignments, avoid using multiple modifier keys
as the primary means of access to basic operations. In some contexts, such as pen-input−specific environments, the
keyboard may not be available. Therefore, use modifier-based actions only for quick access to operations that are
supported adequately elsewhere in the interface.

Shortcut Keys
Shortcut keys (also referred to as accelerator keys) are keys or key combinations that, when pressed, provide quick
access to frequently performed operations. CTRL+letter combinations and function keys (F1 through F12) are usually
the best choices for shortcut keys. By definition, a shortcut key is a keyboard equivalent of functionality that is
supported adequately elsewhere in the interface. Therefore, avoid using a shortcut key as the only way to access a
particular operation.

When defining shortcut keys, observe the following guidelines:

• Assign single keys where possible because these keys are the easiest for the user to perform.

• Make modified-letter key combinations case insensitive.

• Use SHIFT+key combinations for actions that extend or complement the actions of the key or key
combination used without the SHIFT key. For example, ALT+TAB switches windows in a top-to-
bottom order. SHIFT+ALT+TAB switches windows in reverse order. However, avoid SHIFT+text
keys, because the effect of the SHIFT key may differ for some international keyboards.

• Use CTRL+key combinations for actions that represent a larger scale effect. For example, in text
editing contexts, HOME moves to the beginning of a line, and CTRL+HOME moves to the beginning
of the text. Use CTRL+key combinations for access to commands where a letter key is used — for
example, CTRL+B for bold. Remember that such assignments may be meaningful only for English-
speaking users.

• Avoid ALT+key combinations because they may conflict with the standard keyboard access for
menus and controls. The ALT+key combinations — ALT+TAB, ALT+ESC, and ALT+SPACEBAR — are
reserved for system use. ALT+number combinations enter special characters.

• Avoid assigning shortcut keys defined in this guide to other operations in your software. That is, if
CTRL+C is the shortcut for the Copy command and your application supports the standard copy
operation, don't assign CTRL+C to another operation.

• Provide support for allowing the user to change the shortcut key assignments in your software,
when possible.

• Use the ESC key to stop a function in process or to cancel a direct manipulation operation. It is also
usually interpreted as the shortcut key for a Cancel button.

Note Function key and modified function key combinations may be easier for international users
because they have no mnemonic relationship. However, there is a tradeoff because function keys

Ebay Exhibit 1013, Page 570 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 4 Input Basics 33

February 13, 1995

are often more difficult to remember and to reach. For a list of the most common shortcut key
assignments, see Appendix B, "Keyboard Interface Summary."

Some keyboards also support three new keys, the Application key and the two Windows keys. The primary use for
the Application key is to display the pop-up menu for current selection (same as SHIFT+F10). You may also use it
with modifier keys for application-specific functions. Pressing either of the Windows keysleft or rightdisplays
the Start button menu. These keys are also used by the system as modifiers for system-specific functions. Do not use
these keys as modifiers for non−system-level functions.

For more information about pop-up menus, see Chapter 7, "Menus, Controls, and Toolbars."

Pen Input
Systems with a Windows pen driver installed support user input using tapping or writing on the surface of the screen
with a pen, and in some cases with a finger. Your software can determine whether Windows pen extensions have
been installed by checking the SM_PENWINDOWS constant using the GetSystemMetrics function.

For more information about the SM_PENWINDOWS constant and the GetSystemMetrics function, see the
Microsoft Win32 Programmer's Reference.

Ebay Exhibit 1013, Page 571 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 4 Input Basics 33

February 13, 1995

Depending on where the pen is placed, you can use it for both pointing and writing. For example, if you move the
pen over menus or most controls, it acts as a pointing device. Because of the pointing capabilities of the pen, the user
can perform most mouse-based operations. When over a text entry or drawing area, the pen becomes a writing or
drawing tool; the pointer changes to a pen shape to provide feedback to the user. When the tip of the pen touches the
screen, the pen starts inkingthat is, tracing lines on the screen. The user can then draw shapes, characters, and other
patterns; these patterns remain on the screen exactly as drawn or can be recognized, interpreted, and redisplayed.

The pen can retain the functionality of a pointing device (such as a mouse) even in contexts where it would normally
function as a writing or drawing tool. For example, you can use timing to differentiate operations; that is, if the user
holds the pen tip in the same location for a predetermined period of time, a different action may be inferred. This
method is often unreliable or inefficient for many operations, however, so it may be better to use toolbar buttons to
switch to different modes of operation. Choosing a particular button allows the user to define whether to use the pen
for entering information (writing or drawing) or as a pointing device.

You can also provide the user with access to other operations using an action handle. An action handle can be used to
support direct manipulation operations or to provide access to pop-up menus.

For more information about action handles, see Chapter 7, "Menus, Controls, and Toolbars."

Note When designing for pen input, it is more important to make the interface easy to use than to
assume all actions should be based on handwriting recognition or gestural interfaces. Often, the
pen can be more effective as a pointing device than as a text-entry device.

Following are the fundamental behaviors defined for a pen.

Action Description

Pressing Positioning the pen tip over the screen and pressing the tip to the screen. A
pen press is equivalent to a mouse press and typically identifies a
particular pen action.

Tapping Pressing the pen tip on the screen and lifting it without moving the pen. In
general, tapping is equivalent to clicking mouse button 1. Therefore, this
action typically selects an object, setting a text insertion point or activating
a button

Double-tapping Pressing and lifting the pen tip twice in rapid succession. Double-tapping
is usually interpreted as the equivalent to double-clicking mouse button 1.

Dragging Pressing the pen tip on the screen and keeping it pressed to the screen
while moving the pen. In inking contexts, you can use dragging for the
input of pen strokes for writing, drawing, gestures, or for direct
manipulation, depending on which is most appropriate for the context. In
noninking contexts, it is the equivalent of a mouse drag.

Some pens include buttons on the pen barrel that can be pressed. For pens that support barrel buttons, the following
behaviors may be supported.

Ebay Exhibit 1013, Page 572 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 4 Input Basics 33

February 13, 1995

Action Description

Barrel-tapping Holding down the barrel button of the pen while tapping. Barrel-tapping is
equivalent to clicking with mouse button 2.

Barrel-dragging Holding down the barrel button of the pen while dragging the pen. Barrel-
dragging is equivalent to dragging with mouse button 2.

Note Because not all pens support barrel buttons, any behaviors that you support using a barrel button
should also be supported by other techniques in the interface.

Pen input is delimited, either by the lifting of the pen tip, an explicit termination tap (such as tapping the pen on
another window or as the completion of a gesture), or a time-out without further input. You can also explicitly define
an application-specific recognition time-out.

Ebay Exhibit 1013, Page 573 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 4 Input Basics 33

February 13, 1995

Proximity is the ability to detect the position of the pen without it touching the screen. While Windows provides
support for pen proximity, avoid depending on proximity as the exclusive means of access to basic functions,
because not all pen hardware supports this feature. Even pen hardware that does support proximity may allow other
non-pen input, such as touch input, where proximity cannot be supported.

Pen Pointers
Because the pen (unlike the mouse) points directly at the screen, graphical onscreen pointers may seem superfluous;
however, they do have an important role to play. Pointers help the pen user select small targets faster. Moreover,
changes from one pointer to another provide useful feedback about the actions supported by the object under the pen.
For example, when the pen moves over a resizable border, the pointer can change from a pen (indicating that writing
is possible) to a resizing pointer (indicating that the border can be dragged to resize the object). Whenever possible,
include this type of feedback in pen-enabled applications to help users understand the kinds of supported actions.

Following are two common pointers used with the pen.

Table 4.2 Pen Pointers

Shape Common usage

 Pointing, selecting, moving, and resizing

Writing and drawing

Because a pointer may be partially obscured by the pen or by the user's hand, consider including other forms of
feedback, such as toolbar button states or status bar information.

Pen Gestures
When using the pen for writing, keep in mind that certain ink patterns are interpreted as gestures. Using one of these
specially drawn symbols invokes a particular operation, such as deleting text, or produces a nonprinting text
character, such as a carriage return or a tab. For example, an X shape is equivalent to the Cut command. After the
system interprets a gesture, the gesture's ink is removed from the display.

For more information about common gestures and their interpretation, see Chapter 5, "General Interaction
Techniques."

All gestures include a circular stroke to distinguish them from ordinary characters. Most gestures also operate
positionally; in other words, they act upon the objects on which they are drawn. Determining the position of the
specific gesture depends on either the area surrounded by the gesture or a single point—the hot spot of the gesture.

Pen gestures usually cannot be combined with ink (writing or drawing actions) within the same recognition
sequence. For example, the user cannot draw a few characters, immediately followed by a gesture, followed by more
characters.

The rapidity of gestural commands is one of the key advantages of the pen. Do not rely on gestures as the only or
primary way to perform commands, however, because gestures require memorization by users. Regard gestures as a
quick access, shortcut method for operations adequately supported elsewhere in the interface, such as in menus or
buttons. If the pen extensions are installed, you can optionally place a bitmap of the gesture next to the corresponding
command (in place of the keyboard shortcut text) to help the user learn particular gestures.

Ebay Exhibit 1013, Page 574 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 4 Input Basics 33

February 13, 1995

In addition, avoid using gestures when they interfere with common functionality or making operations with parallel
input devices, such as the mouse or keyboard, more cumbersome. For example, although writing a character gesture
in a list box could be used as a way to scroll automatically within the list, it would interfere with the basic and more
frequent user action of selecting an item in the list. A better technique is to provide a text input field where the user
can write and, based on the letters entered, scroll the list.

Pen Recognition
Recognition is the interpretation of pen strokes into some standardized form. Consider recognition as a means to an
end, not an end in itself. Do not use recognition if it is unnecessary or if it is not the best interface. For example, it
may be more effective to provide a control that allows a user to select a date, rather than requiring the user to write it
in just so your software can recognize it.

Where it is appropriate to do so, you can improve recognition by using context and constraints. For example, a
checkbook application can constrain certain fields to contain only numbers.

Accurate recognition is difficult to achieve, but you can greatly improve your recognition interface by providing a
fast, easy means to correct errors. For example, if you allow users to overwrite characters or choose alternatives, they
will be less frustrated and find recognition more useful.

Ink Input
In some casesfor example, signaturesrecognition of pen input may be unnecessary; the ink is a sufficient
representation of information. Ink is a standard data type supported by the Clipboard. Consider supporting ink entries
as input wherever your software accepts normal text input, unless the representation of that input needs to be
interpreted for other operations, such as searching or sorting.

Ebay Exhibit 1013, Page 575 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 4 Input Basics 33

February 13, 1995

Targeting
Targeting, or determining where to direct pen input, is an important design factor for pen-enabled software. For
example, if the user gestures over a set of objects, which objects should be affected? If the user writes text that spans
several writing areas, which text should be placed in which area? In general, you use the context of the input to
determine where to apply pen input. More specifically, use the following guidelines for targeting gestures on objects.

• If the user draws the gesture on any part of a selection, apply the gesture to the selection.

• If the user draws the gesture on an object that is not selected, select that object, and the gesture is
applied to that object.

• If the user does not draw the gesture on any object or selection, but there is a selection, apply the
gesture to that selection.

If none of these guidelines applies, ignore the gesture.

For handwriting, the context also determines where to direct the input. Figure 4.1 demonstrates how the proximity of
the text to the text boxes determines the destination of the written text.

Figure 4.1 Targeting Handwritten input

The system's pen services provide basic support for targeting, but your application can also provide additional
support. For example, your application can define a larger inking rectangle than the control usually provides. In
addition, because your application often knows the type of input to expect, it can use this information to better
interpret where to target the input.

Ebay Exhibit 1013, Page 576 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

35

February 13, 1995

C H A P T E R 5
General Interaction Techniques
This chapter covers basic interaction techniques, such as navigation, selection, viewing, editing, and creation. Many
of these techniques are based on an object-action paradigm in which a user identifies an object and an action to apply
to that object. By maintaining these techniques consistently, you enable users to transfer their skills to new tasks.

Where applicable, support the basic interaction techniques for the mouse, keyboard, and pen. When adding or
extending these basic techniques, consider how the feature or function can be supported across input devices.
Techniques for a particular device need not be identical for all devices. Instead, tailor techniques to optimize the
strengths of a particular device. In addition, make it easy for the user to switch between devices so that an interaction
started with one device can be completed with another.

Navigation
One of the most common ways of identifying or accessing an object is by navigating to it. The following sections
include information about mouse, pen, and keyboard techniques.

Mouse and Pen Navigation
Navigation with the mouse is simple; when a user moves the mouse left or right, the pointer moves in the
corresponding direction on the screen. As the mouse moves away from or toward the user, the pointer moves up or
down. By moving the mouse, the user can move the pointer to any location on the screen. Pen navigation is similar to
mouse navigation, except that the user navigates by moving the pen across the display without touching the screen.

Keyboard Navigation
Keyboard navigation requires a user to press specific keys and key combinations to move the input focus  the
indication of where the input is being directed  to a particular location. The appearance of the input focus varies by
context; in text, it appears as a text cursor or insertion point.

For more information about the display of the input focus, see Chapter 13, "Visual Design."
Basic Navigation Keys
The navigation keys are the four arrow keys and the HOME, END, PAGE UP, PAGE DOWN, and TAB keys. Pressed in
combination with the CTRL key, a navigation key increases the movement increment. For example, where pressing
RIGHT ARROW moves right one character in a text field, pressing CTRL+RIGHT ARROW moves right one word in the
text field. Table 5.1 lists the common navigation keys and their functions. You can define additional keys for
navigation.

Table 5.1 Basic Navigation Keys

Key Moves cursor to... CTRL+key moves cursor to...
LEFT ARROW Left one unit. Left one (larger) unit.

RIGHT ARROW Right one unit. Right one (larger) unit.

UP ARROW Up one unit or line. Up one (larger) unit.

DOWN ARROW Down one unit or line. Down one (larger) unit.

Ebay Exhibit 1013, Page 577 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 5 General Interaction Techniques 73

February 13, 1995

HOME Beginning of line. Beginning of data or file (topmost
position).

END End of line. End of data or file (bottommost
position).

PAGE UP Up one screen (previous
screen, same position).

Left one screen (or previous unit,
if left is not meaningful).

PAGE DOWN Down one screen
 (next screen, same
 position).

Right one screen (or next unit, if
right is not meaningful).

TAB Next field. (SHIFT+TAB
 moves in reverse order).

Next larger field.

Unlike mouse and pen navigation, keyboard navigation typically affects existing selections. Optionally, though, you
can support the SCROLL LOCK key to enable scrolling navigation without affecting existing selections. If you do so,
the keys will scroll the appropriate increment.

For more information about keyboard navigation in secondary windows such as dialog boxes, see Chapter 8,
"Secondary Windows."

Selection
Selection is the primary means by which the user identifies objects in the interface. Consequently, the basic model
for selection is one of the most important aspects of the interface.

Selection typically involves an overt action by the user to identify an object. This is known as an explicit selection.
Once the object is selected, the user can specify an action for the object.

There are also situations where the identification of an object can be derived by inference or implied by context. An
implicit selection works most effectively where the association of object and action is simple and visible. For
example, when the user drags a scroll box, the user establishes selection of the scroll box and the action of moving at
the same time. Implicit selection may result from the relationships of a particular object. For example, selecting a
character in a text document may implicitly select the paragraph of which the character is a part.

A selection can consist of a single object or multiple objects. Multiple selections can be contiguouswhere the
selection set is made up of objects that are logically adjacent to each other, also known as a range selection. A
disjoint selection set is made up of objects that are spatially or logically separated.

Multiple selections may also be classified as homogeneous or heterogeneous, depending on the type or properties of
the selected objects. Even a homogeneous selection might have certain aspects in which it is heterogeneous. For
example, a text selection that includes bold and italic text can be considered homogeneous with respect to the basic
object type (characters), but heterogeneous with respect to the values of its font properties. The homogeneity or
heterogeneity of a selection affects the access of the operations or properties of the objects in the selection.

Selection Feedback
Always provide visual feedback as a selection is made, so that the user can tell the effect of the selection operation.
Display the appropriate selection appearance for each object included in the selection set. The form of selection
appearance depends on the object and its context.

Ebay Exhibit 1013, Page 578 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 5 General Interaction Techniques 73

February 13, 1995

For more information about how to visually render the selection appearance of an object, see Chapter 13, "Visual
Design." Chapter 11, "Working with OLE Embedded and OLE Linked Objects," also includes information about
how the context of an object can affect its selection appearance.

Scope of Selection
The scope of a selection is the area, extent, or region in which, if other selections are made, they will be considered
part of the same selection set. For example, you can select two document icons in the same folder window. However,
the selection of these icons is independent of the selection of the window's scroll bar, a menu, the window itself, or
selections made in other windows. So, the selection scope of the icons is the area viewed through that window.
Selections in different scopes are independent of each other. The scope of a selection is important because you use it
to define the available operations for the selected items and how the operations are applied.

Hierarchical Selection
Range selections typically include objects at the same level. However, you can also support a user’s elevating a
range selection to the next higher level if it extends beyond the immediate containment of the object (but within the
same window). When the user adjusts the range back within the containment of the start of the range, return the
selection to the original level. For example, extending a selection from within a cell in a table to the next cell, as
shown in Figure 5.1, should elevate the selection from the character level to the cell level; adjusting the selection
back within the cell should reset the selection to the character level.

Figure 5.1 Hierarchical selection

Mouse Selection
Selection with the mouse relies on the basic actions of clicking and dragging. In general, clicking selects a single
item or location, and dragging selects a single range consisting of all objects logically included from the button-down
to the button-up location. If you also support dragging for object movement, use keyboard-modified mouse selection
or region selection to support multiple selection.
Selection with the Mouse
Support user selection using either mouse button. When the user presses the mouse button, establish the starting
point, or anchor point, of a selection. If, while pressing the mouse button, the user drags the mouse, extend the
selection to the object nearest the hot spot of the pointer. If, while holding the mouse button down, the user drags the
mouse within the selection, reduce the selection to the object now nearest the pointer. Tracking the selection with the
pointer while the mouse button continues to be held down allows the user to adjust a range selection dynamically.
Use appropriate selection feedback to indicate the objects included in the selection.

For more information about selection feedback appearance, see Chapter 13, "Visual Design."

Ebay Exhibit 1013, Page 579 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 5 General Interaction Techniques 73

February 13, 1995

The release of the mouse button ends the selection operation and establishes the active end of the selection. Support
selection adjustment with subsequent selection operations using the SHIFT and CTRL keys. If the user presses mouse
button 2 to make a selection, display the contextual pop-up menu for the selected objects when the user releases the
mouse button.

For more information about pop-up menus, see Chapter 7, "Menus, Controls, and Toolbars."

The most common form of selection optimizes for the selection of a single object or a single range of objects. In such
a case, creating a new selection within the scope of an existing selection (for example, within the same area of the
window) cancels the selection of the previously selected objects. This allows simple selections to be created quickly
and easily.

When using this technique, reset the selection when the user presses the mouse button and the pointer (hot spot) is
outside (not on) any existing selection. If the pointer is over a selected item, however, don’t cancel the former
selection. Instead, determine the appropriate result according to whether the user pressed mouse button 1 or 2.
If the user presses mouse button 1 and the pointer does not move from the button down point, the effect of the release
of the mouse button is determined by the context of the selection. You can support whichever of the following best
fits the nature of the user's task.

• The result may have no effect on the existing selection. This is the most common and safest effect.

• The object under the pointer may receive some special designation or distinction; for example,
become the next anchor point or create a subselection.

• The selection can be reset to be only the object under the pointer.

If the user pressed mouse button 2, the selection is not affected, but you display a pop-up menu for selection.

Although selection is typically done by positioning the pointer over an object, it may be inferred based on the logical
proximity of an object to a pointer. For example, when selecting text, the user can place the pointer on the blank area
beyond the end of the line and the resulting selection is inferred as being the end of the line.
Selection Adjustment
Selections are adjusted (elements added to or removed from the selection) using keyboard modifiers with the mouse.
The CTRL key is the disjoint, or toggle, modifier. If the user presses the CTRL key while making a new selection,
preserve any existing selection within that scope and reset the anchor point to the new mouse button-down location.
Toggle the selection state of the object under the pointerthat is, if it is not selected, select it; if it is already
selected, unselect it.

If a selection modified by the CTRL key is made by dragging, the selection state is applied for all objects included by
the drag operation (from the anchor point to the current pointer location). This means if the first item included during
the drag operation is not selected, select all objects included in the range. If the first item included was already
selected, unselect it and all the objects included in the range regardless of their original state. For example, the user
selects the first two items in the list by dragging.

Ebay Exhibit 1013, Page 580 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 5 General Interaction Techniques 73

February 13, 1995

The user can then press the CTRL key and drag to create a disjoint selection, resetting the anchor point.

The user must press the CTRL key before using the mouse button for a disjoint (toggle) selection. After a disjoint
selection is initiated, it continues until the user releases the mouse button (even if the user releases the CTRL key
before the mouse button).
The SHIFT key adjusts (or extends) a single selection or range selection. When the user presses the mouse button
while holding down the SHIFT key, reset the active end of a selection from the anchor point to the location of the
pointer. Continue tracking the pointer, resetting the active end as the user drags, similar to a simple range drag
selection. When the user releases the mouse button, the selection operation ends. You should then set the active end
to the object nearest to the mouse button release point. Do not reset the anchor point. It should remain at its current
location.

Only the selection made from the current anchor point is adjusted. Any other disjoint selections are not affected
unless the extent of the selection overlaps an existing disjoint selection.

The effect on the selection state of a particular object is based on the first item included in the selection range. If the
first item is already selected, select (not toggle the selection state of) all objects included in the range; otherwise,
unselect (not toggle the selection state of) the objects included.

The user must press and hold down the SHIFT key before pressing the mouse button for the action to be interpreted as
adjusting the selection. When the user begins adjusting a selection by pressing the SHIFT key, continue to track the
pointer and adjust the selection (even if the user releases the modifier key) until the user releases the mouse button.

Pressing the SHIFT modifier key always adjusts the selection from the current anchor point. This means the user can
always adjust the selection range of a single selection or CTRL key–modified disjoint selection. For example, the user
could select the following items by making a range selection by dragging.

The user can accomplish this same result by making an initial selection.

Ebay Exhibit 1013, Page 581 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 5 General Interaction Techniques 73

February 13, 1995

The user can then adjust the selection with the SHIFT key and dragging.

The following sequence illustrates how the user can use the SHIFT key and dragging to adjust a disjoint selection. The
user makes the initial selection by dragging.

The user then presses the CTRL key and drags to create a disjoint selection.

The user can then extend the disjoint selection using the SHIFT key and dragging. This adjusts the selection from the
anchor point to the button down point and tracks the pointer to the button up point.

Ebay Exhibit 1013, Page 582 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 5 General Interaction Techniques 73

February 13, 1995

Ebay Exhibit 1013, Page 583 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 5 General Interaction Techniques 73

February 13, 1995

The following summarizes the mouse selection operations.

Operation Mouse action
Select object (range of objects)

Click (drag)

Disjoint selection state of noncontiguous
object (range of objects)

CTRL+click (drag)

Adjust current selection to object (or range of
objects)

SHIFT+click (drag)

For more information about the mouse interface, including selection behavior, see Appendix A, "Mouse Interface
Summary."
Region Selection
In Z-ordered, or layered, contexts, in which objects may overlap, user selection can begin on the background
(sometimes referred to as white space). To determine the range of the selection in such cases, a bounding outline
(sometimes referred to as a marquee) is drawn. The outline is typically a rectangle, but other shapes (including
freeform outline) are possible.

When the user presses the mouse button and moves the pointer (a form of selection by dragging), display the
bounding outline. You set the selection state of objects included by the outline using the selection guidelines
described in the previous sections, including operations that use the SHIFT and CTRL modifier keys.

You can use the context of your application and the user's task to determine whether an object must be totally
enclosed or only intersected by the bounding region to be affected by the selection operation. Always provide good
selection feedback during the operation to communicate to the user which method you support. When the user
releases the mouse button, remove the bounding region, but retain the selection feedback.

Pen Selection
When the pen is being used as the pointing device, you can use the same selection techniques defined for the mouse.
For example, in text input controls, you support user selection of text by dragging through it. Standard pen interfaces
also support text selection using a special pen selection handle. In discrete object scenarios, like drawing programs,
you support selection of individual objects by tapping or by performing region selection by dragging.

For more information about selection support in pen-enabled controls, see the "Pen-Specific Editing Techniques"
section later in this chapter.

In some contexts, you can also use the lasso-tap gesture to support selection of individual objects or ranges of
objects. However, avoid implementing this gesture when it might interfere with primary operations such as direct
manipulation.

Lasso-tap involves making a circular gesture around the object, then tapping within the gesture. For example, in
Figure 5.2, making the lasso-tap gesture selects the word "controversial."

Ebay Exhibit 1013, Page 584 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 5 General Interaction Techniques 73

February 13, 1995

Figure 5.2 A lasso-tap gesture

In text contexts, base the selection on the extent of the lasso gesture and the character-word-paragraph granularity of
the text elements covered. For example, if the user draws the lasso around a single character, select only that
character. If the user draws the lasso around multiple characters within a word, select the entire word. If the gesture
encompasses characters in multiple words, select the range of words logically included by the gesture. This reduces
the need for the user to be precise.

Keyboard Selection
Keyboard selection relies on the input focus to define selected objects. The input focus can be an insertion point, a
dotted outline box, or some other cursor or visual indication of the location where the user is directing keyboard
input.

For more information about input focus, see Chapter 13, "Visual Design."

In some contexts, selection may be implicit with navigation. When the user presses a navigation key, you move the
input focus to the location (as defined by the key) and automatically select the object at that location.

In other contexts, it may be more appropriate to move the input focus and require the user to make an explicit
selection with the Select key. The recommended keyboard Select key is the SPACEBAR, unless this assignment
directly conflicts with the specific contextin which case, you can use CTRL+SPACEBAR. (If this conflicts with your
software, define another key that best fits the context.) In some contexts, pressing the Select key may also unselect
objects; in other words, it will toggle the selection state of an object.
Contiguous Selection
In text contexts, the user moves the insertion point to the desired location using the navigation keys. Set the anchor
point at this location. When the user presses the SHIFT key with any navigation key (or navigation key combinations,
such as CTRL+END), set that location as the active end of the selection and select all characters between the anchor
point and the active end. (Do not move the anchor point.) If the user presses a subsequent navigation key, cancel the
selection and move the insertion point to the appropriate location defined by the key. If the user presses LEFT ARROW
or RIGHT ARROW keys, move the insertion point to the end of the former selection range. If UP ARROW or DOWN

ARROW are used, move the insertion point to the previous or following line at the same relative location.

You can use this technique in other contexts, such as lists, where objects are logically contiguous. However, in such
situations, the selection state of the objects logically included from the anchor point to the active end depend on the
selection state of the object at, or first traversed from, the anchor point. For example, if the object at the anchor point
is selected, then select all the objects in the range regardless of their current state. If the object at the anchor point is
not selected, unselect all the items in the range.
Disjoint Selection
Use the Select key for supporting disjoint selections. The user uses navigation keys or navigation keys modified by
the SHIFT key to establish the initial selection. The user can then use navigation keys to move to a new location and
subsequently use the Select key to create an additional selection.

In some situations, you may prefer to optimize for selection of a single object or single range. In such cases, when
the user presses a navigation key, reset the selection to the location defined by the navigation key. Creating a disjoint

Ebay Exhibit 1013, Page 585 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 5 General Interaction Techniques 73

February 13, 1995

selection requires supporting the Add mode key (SHIFT+F8). In this mode, you move the insertion point when the
user presses navigation keys without affecting the existing selections or the anchor point. When the user presses the
Select key, toggle the selection state at the new location and reset the anchor point to that object. At any point, the
user can use the SHIFT+navigation key combination to adjust the selection from the current anchor point.

When the user presses the Add mode key a second time, you toggle out of the mode, preserving the selections the
user created in Add mode. But now, if the user makes any new selections within that selection scope, you return to
the single selection optimizationcanceling any existing selectionsand reset the selection to be only the new
selection.

Selection Shortcuts
Double-clicking with mouse button 1 and double-tappingits pen equivalentis a shortcut for the default operation
of an object. In text contexts, it is commonly assigned as a shortcut to select a word. When supporting this shortcut,
select the word and the space following the word, but not the punctuation marks.

Note Double-clicking as a shortcut for selection generally applies to text. In other contexts, it may
perform other operations.

You can define additional selection shortcuts or techniques for specialized contexts. For example, selecting a column
label may select the entire column. Because shortcuts cannot be generalized across the user interface, however, do
not use them as the only way to perform a selection.

Common Conventions for Supporting Operations
There are many ways to support operations for an object, including direct manipulation of the object or its control
point (handle), menu commands, buttons, dialog boxes, tools, or programming. Support for a particular technique is
not exclusive to other techniques. For example, the user can size a window by using the Size menu command as well
as by dragging its border.

Design operations or commands to be contextual, or related to, the selected object to which they apply. That is,
determine which commands or properties, or other aspects of an object, are made accessible by the characteristics of
the object and its context (relationships). Often the context of an object may add to or suppress the traits of the
object. For example, the menu for an object may include commands defined by the object's type as well as
commands supplied by the object's current container.

Operations for a Multiple Selection
When determining which operations to display for a multiple selection, use an intersection of the operations that
apply to the members of that selection. The selection's context may add to or filter out the available operations or
commands displayed to the user.

It is also possible to determine the effect of an operation for a multiple selection based upon a particular member of
that selection. For example, when the user selects a set of graphic objects and chooses an alignment command, you
can make the operation relative to a particular item identified in the selection.

Limit operations on a multiple selection to the scope of the selected objects. For example, deleting a selected word in
one window should not delete selections in other windows (unless the windows are viewing the same selected
objects).

Default Operations and Shortcut Techniques
An object can have a default operation; a default operation is an operation that is assumed when the user employs a
shortcut technique, such as double-clicking or drag and drop. For example, double-clicking a folder displays a

Ebay Exhibit 1013, Page 586 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 5 General Interaction Techniques 73

February 13, 1995

window with the content of the folder. For other objects, such as the Mouse object in the Control Panel, double-
clicking displays the properties of the object, or, in text editing situations, selects the word. The behavior differs
because the default commands in each case differ: for a folder, the default command is Open; for a device object
such as a mouse, the command is Properties; and for text, it is Select Word.

Similarly, when the user drags and drops an object at a new location with mouse button 1, there must be a default
operation defined to determine the result of the operation. Dragging and dropping to some locations can be
interpreted as a move, copy, link, or some other operation. In this case, the drop destination determines the default
operation.

For more information about supporting default operations for drag and drop, see the "Transfer Operations" section in
this chapter; also see Chapter 11, "Working with OLE Embedded and OLE Linked Objects."

Shortcut techniques for default operations provide greater efficiency in the interface, an important factor for more
experienced users. However, because they typically require more skill or experience and because not all objects may
have a default operation defined, avoid shortcut techniques as the exclusive means of performing a basic operation.
For example, even though double-clicking opens a folder icon, the Open command appears on its menu.

View Operations
Following are some of the common operations associated with viewing objects. Although these operations may not
always be used with all objects, when supported, they should follow similar conventions.

Operation Action
Open Opens a primary window for an object. For container objects, such as

folders and documents, this window displays the content of the
object.

Close Closes a window.

Properties Displays the properties of an object in a window, typically in a
property sheet window.

Help Displays a window with the contextual Help information about an
object.

When the user opens a new window, you should display it at the top of the Z order of its peer windows and activate
it. Primary windows are typically peers. Display supplemental or secondary windows belonging to a particular
application at the top of their local Z order that is, the Z order of the windows of that application, not the Z order
of other primary windows.

If the user interacts with another window before the new window opens, the new window does not appear on top;
instead, it appears where it would usually be displayed if the user activated another window. For example, if the user
opens window A, then opens window B, window B appears on top of window A. If the user clicks back in window A
before window B is displayed, however, window A remains active and at the top of the Z order; window B appears
behind window A.

Whether opening a window allows the user to also edit the information in that window's view depends on a number
of factors. These factors can include who the user is, the type of view being used, and the content being viewed.

Ebay Exhibit 1013, Page 587 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 5 General Interaction Techniques 73

February 13, 1995

After the user opens a window, re-executing the command that opened the window should activate the existing
window, instead of opening another instance of the window. For example, if the user chooses the Properties
command for an selected object whose property sheet is already open, the existing property sheet is activated, rather
than a second window opened.

For more information about opening windows, property sheets, and Help windows, see Chapter 6, "Windows,"
Chapter 8, "Secondary Windows," and Chapter 12, "User Assistance," respectively.

Note This guideline applies per user desktop. Two users opening a window for the same object on
a network can each see separate windows for the object from their individual desktops.

Closing a window does not necessarily mean quitting the processes associated with the object being viewed. For
example, closing a printer's window does not cancel the printing of documents in its queue. So even though exiting
an application closes its windows, closing a window does not necessarily exit an application. Similarly, you can use
other commands in secondary windows which result in closing the windowfor example, OK and Cancel. However,
the effect of closing the window with a Close command depends on the context of the window. Avoid assuming that
the Close command is always the equivalent of the Cancel command.

If there are changes transacted in a window that have not yet been applied and the user chooses the Close command,
and those changes will be lost if not applied, display a message asking whether the user wishes to apply or discard
the changes or cancel the Close operation. If there are no outstanding changes or if pending changes are retained for
the next time the window is opened, remove the window.

Ebay Exhibit 1013, Page 588 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 5 General Interaction Techniques 73

February 13, 1995

View Shortcuts
Following are the recommended shortcut techniques for the common viewing commands.

Shortcut Operation
CTRL+O Opens a primary window for an object. For container objects,

such as folders and documents, this window displays the
content of the object.

ALT+F4 Closes a window.

F1 Displays a window with contextual Help information.

SHIFT+F1
Starts context-sensitive
Help mode.

Starts context-sensitive Help mode.

Double-click
(button 1) or ENTER
Carries out the default
command.

Carries out the default command.

ALT+double-click
or ALT+ENTER

Displays the properties of an object in a window, typically in
a property sheet window.

For more information on reserved and recommended shortcut keys, see Appendix B, "Keyboard Interface
Summary."

Use double-clicking and the ENTER key to open a view of an object when that view command is the default command
for the object. For example, double-clicking a folder opens the folder's primary window. But double-clicking a
mouse object displays its property sheet; this is because the Open command is the default command for folders, and
the Properties command is the default command for device objects.

Editing Operations
Editing involves changing (adding, removing, replacing) some fundamental aspect about the composition of an
object. Not all changes constitute editing of an object, though. For example, changing the view of a document to an
outline or magnified view (which has no effect on the content of the document) is not editing. The following sections
cover some of the common interface techniques for editing objects.

Editing Text
Editing text requires that you target the input focus at the text to be edited. For mouse input, the input focus always
coincides with the pointer (button down) location. For the pen, it is the point where the pen touches the screen. For
the keyboard, the input focus is determined with the navigation keys. In all cases, the visual indication that a text
field has the input focus is the presence of the text cursor, or insertion point.
Inserting Text
Inserting text involves the user placing the insertion point at the appropriate location and then typing. For each
character typed, your application should move the insertion point one character to the right (or left, depending on the
language).

If the text field supports multiple lines, wordwrap the text; that is, automatically move text to the next line as the
textual input exceeds the width of the text-entry area.

Ebay Exhibit 1013, Page 589 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 5 General Interaction Techniques 73

February 13, 1995

Overtype Mode
Overtype is an optional text-entry behavior that operates similarly to the insertion style of text entry, except that you
replace existing characters as new text is enteredwith one character being replaced for each new character entered.

Use a block cursor that appears at the current character position to support overtype mode, as shown in Figure 5.3.
This looks the same as the selection of that character and provides the user with a visual cue about the difference
between the text-entry modes.

Figure 5.3 An overtype cursor

Use the INSERT key to toggle between the normal insert text-entry convention and overtype mode.
Deleting Text
The DELETE and BACKSPACE keys support deleting text. The DELETE key deletes the character to the right of the text
insertion point. BACKSPACE removes the character to the left. In either case, move text in the direction of the deletion
to fill the gap — this is sometimes referred to as auto-joining. Do not place deleted text on the Clipboard. For this
reason, include at least a single-level undo operation in these contexts.

For a text selection, when the user presses DELETE or BACKSPACE, remove the entire block of selected text. Delete
text selections when new text is entered directly or by a transfer command. In this case, replace the selected text by
the incoming input.

For more information about transfer operations, see the "Transfer Operations" section later in this chapter.

Ebay Exhibit 1013, Page 590 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 5 General Interaction Techniques 73

February 13, 1995

Handles
Objects may include special control points, called handles; handles facilitate certain types of operations, such as
moving, sizing, scaling, cropping, shaping, or auto-filling. The type of handle you use depends on the type of object.
For example, for windows the title bar acts as a "move handle." The borders of the window act as "sizing handles."
For icons, the selected icon acts as its own "move handle." In pen-enabled controls, special handles may appear for
selection and access to the operations available for an object.

For more information about these handles, see the "Pen-Specific Editing Techniques" section later in this chapter.

A common form of handle is a square box placed at the edge of an object, as shown in Figure 5.4.

Figure 5.4 Handles

When the handle's interior is solid, the handle implies that it can perform a certain operation, such as sizing,
cropping, or scaling. If the handle is "hollow," the handle does not currently support an operation. You can use such
an appearance to indicate selection even when an operation is not available.

For more information about the design of handles, see Chapter 13, "Visual Design."

Transactions
A transaction is a unit of change to an object. The granularity of a transaction may span from the result of a single
operation to that of a set of multiple operations. In an ideal model, transactions are applied immediately, and there is
support for “rolling back,” or undoing, transactions. Because there are times when this is not practical, specific
interface conventions have been established for committing transactions. If there are pending transactions in a
window when it is closed, always prompt the user to ask whether to apply or discard the transactions.

Transactions can be committed at different levels, and a commitment made at one level may not imply a permanent
change. For example, the user may change font properties of a selection of text, but these text changes may require
saving the document file before the changes are permanent.

Use the following commands for committing transactions at the file level.

Command Function
Save Saves all interim edits, or checkpoints, to disk and begins a new editing

session.

Close Prompts the user to save any uncommitted edits. If confirmed, the interim
edits are saved and the window is removed.

Note Use the Save command in contexts where committing file transactions applies to transactions
for an entire file, such as a document, and are committed at one time. It may not necessarily apply
for transactions committed on an individual basis, such as record-oriented processing.

Ebay Exhibit 1013, Page 591 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 5 General Interaction Techniques 73

February 13, 1995

On a level with finer granularity, you can use the following commands for common handling transactions within a
file.

Command Function
Repeat Duplicates the last/latest user transaction.

Undo
Reverses the
last, or
specified,
transaction.

Reverses the last, or specified, transaction.

Redo
Restores the
most recent,
or specified,
"undone"
transaction.

Restores the most recent, or specified, "undone" transaction.

Apply
Commits
any pending
transactions,
but does not
remove the
window.

Commits any pending transactions, but does not remove the window.

Cancel Discards any pending transactions and removes the window.

Following are the recommended commands for handling process transactions.

Command Function
Pause Suspends a process.

Resume
Resumes a
suspended
process.

Resumes a suspended process.

Stop
Halts a
process.

Halts a process.

Note Although you can use the Cancel command to halt a process, Cancel implies that the state
will be restored to what it was before the process was initiated.

Ebay Exhibit 1013, Page 592 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 5 General Interaction Techniques 73

February 13, 1995

Properties
Defining and organizing the properties of an application's components are a key part of evolving toward a more data-
centered design. Commands such as Options, Info, Summary Info, and Format often describe features that can be
redefined as properties of a particular object (or objects). The Properties command is the common command for
accessing the properties of an object; when the user chooses this command, you typically display the property sheet
for the selection.

For more information about property sheets, see Chapter 8, "Secondary Windows."
Defining how to provide access to properties for visible or easily identifiable objects, such as a selection of text,
cells, or drawing objects, is straightforward. It may be more difficult to define how to access properties of less
tangible objects, such as paragraphs. In some cases, you can include these properties by implication. For example,
requesting the properties of a text selection can also provide access to the properties of the paragraph in which the
text selection is included.

Another way to provide access to an object's properties is to create a representation of the object. For example, the
properties of a page could be accessed through a graphic or other representation of the page in a special area (for
example, the status bar) of the window.

Yet another technique to consider is to include specific property entries on the menu of a related object. For example,
the pop-up menu of a text selection could include a menu entry for a paragraph. Or consider using the cascading
submenu of the Properties command for individual menu entries, but only if the properties are not easily made
accessible otherwise. Adding entries for individual properties can easily end up cluttering a menu.

The Properties command is not the exclusive means of providing access to the properties of an object. For example,
folder views display certain properties of objects stored in the file system. In addition, you can use toolbar controls to
display properties of selected objects.

Pen-Specific Editing Techniques
A pen is more than just a pointing device. When a standard pen device is installed, the system provides special
interfaces and editing techniques.
Editing in Pen-Enabled Controls
If a pen is installed, the system automatically provides a special interface, called the writing tool button, to make text
editing as easy as possible, enhance recognition accuracy, and streamline correction of errors. The writing tool
interface, as shown in Figure 5.5, adds a button to your standard text controls. Because this effectively reduces the
visible area of the text box, take this into consideration when designing their size.

Figure 5.5 A standard text box with writing tool button

Figure 5.6 shows how you can also add writing tool support for any special needs of your software.

Ebay Exhibit 1013, Page 593 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 5 General Interaction Techniques 73

February 13, 1995

Figure 5.6 Adding the writing tool button

When the text box control has the focus, a selection handle appears. The user can drag this handle to make a
selection.

Tapping the writing tool button with a pen (or clicking it with a mouse) presents a special text editing window, as
shown in Figure 5.7. Within this window, the user can write text that is recognized automatically.

Figure 5.7 Single and multiline text editing windows

Ebay Exhibit 1013, Page 594 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 5 General Interaction Techniques 73

February 13, 1995

In the writing tool editing window, each character is displayed within a special cell. If the user selects text in the
original text field, the writing tool window reflects that selection. The user can reset the selection to an insertion
point by tapping between characters. This also displays a special selection handle that can be dragged to select
multiple characters, as shown in Figure 5.8.

Figure 5.8 Selecting text with the selection handle

The user can select a single character in its cell by tapping, or double-tapping to select a word. When the user taps a
single character, an action handle displays a list of alternative characters, as shown in Figure 5.9.

Figure 5.9 An action handle with a list of alternatives

Choosing an alternative replaces the selected character and removes the list. Writing over a character or tapping
elsewhere also removes the list. The new character replaces the existing one and resets the selection to an insertion
point placed to the left of the new character.

The list also includes an item labeled Wordlist. When the user selects this choice, the word that contains the
character becomes selected and a list of alternatives is displayed, as shown in Figure 5.10. This list also appears
when the user selects a complete word by double-tapping. Choosing an alternative replaces the selected word.

Figure 5.10 Tapping displays a list of Alternatives

When a selection exists in the window, an action handle appears; the user can use it to perform other operations on
the selected items. For example, using the action handle moves or copies the selection by dragging, or the pop-up
menu for the selection can be accessed by tapping on the handle, as shown in Figure 5.11.

For more information about pop-up menus, see Chapter 7, "Menus, Controls, and Toolbars."

Ebay Exhibit 1013, Page 595 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 5 General Interaction Techniques 73

February 13, 1995

Figure 5.11 Tapping on the handle displays a pop-up menu

The buttons on the writing tool window provide for scrolling the text as well as common functions such as Undo,
Backspace, Insert Space, Insert Period, and Close (for closing the text window). A multiline writing tool window
includes Insert New Line.

The writing tool window also provides a button for access to an onscreen keyboard as an alternative to entering
characters with the pen, as shown in Figure 5.12. The user taps the button with the corresponding keyboard glyph on
it and the writing tool onscreen keyboard pop-up window replaces the normal writing tool window.

Figure 5.12 The writing toolpop-up window

The writing tool "remembers" its previous use — for text input or as an onscreen keyboard—and opens in the
appropriate editing window when subsequently used. In addition, note that when the user displays a writing tool
window, it gets the input focus, so avoid using the loss of input focus to a field as an indication that the user is
finished with that field or that all text editing occurs directly within a text box.

Ebay Exhibit 1013, Page 596 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 5 General Interaction Techniques 73

February 13, 1995

Pen Editing Gestures
The pen, when used as a pointing device, supports editing techniques defined for the mouse; the pen also supports
gestures for editing. Gestures (except for Undo) operate positionally, acting on the objects on which they are drawn.
If the user draws a gesture on an unselected object, it applies to that object, even if a selection exists elsewhere
within the same selection area. Any pending selections become unselected. If a user draws a gesture over both
selected and unselected objects, however, it applies only to the selected ones. If a gesture is drawn over only one
element of the selection, it applies to the entire selection. If the gesture is drawn in empty space (on the background),
it applies to any existing selection within that selection scope. If no selection exists, the gesture has no effect.

For most gestures, the hot spot of the gesture determines specifically which object the gesture applies to. If the hot
spot occurs on any part of a selection, it applies to the whole selection.

Table 5.2 lists the common pen editing gestures. For these gestures, the hot spot of the gesture is the area inside the
circle stroke of the gesture.

Table 5.2 Basic Navigation Keys

Gesture Name Operation

check-circle Edit (displays the writing tool
editing window) for text;
Properties for all other objects.

c-circle Copy

d-circle Delete (or Clear)

m-circle Menu

n-circle New line

p-circle Paste

s-circle Insert space

t-circle Insert tab

u-circle Undo

x-circle Cut

^-circle Insert text

Ebay Exhibit 1013, Page 597 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 5 General Interaction Techniques 73

February 13, 1995

Note These gestures can be localized in certain international versions. In Kanji versions, the
circle-k gesture is used to convert Kana to Kanji.

Ebay Exhibit 1013, Page 598 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 5 General Interaction Techniques 73

February 13, 1995

Transfer Operations
Transfer operations are operations that involve (or can be derived from) moving, copying, and linking objects from
one location to another. For example, printing an object is a form of a transfer operation because it can be defined as
copying an object to a printer.

Three components make up a transfer operation: the object to be transferred, the destination of the transfer, and the
operation to be performed. You can define these components either explicitly or implicitly, depending on which
interaction technique you use.

The operation defined by a transfer is determined by the destination. Because a transfer may have several possible
interpretations, you can define a default operation and other optimal operations, based on information provided by
the source of the transfer and the compatibility and capabilities of the destination. Attempting to transfer an object to
a container can result in one of the following alternatives:

• Rejecting the object.

• Accepting the object.

• Accepting a subset or transformed form of the object (for example, extract its content or properties
but discard its present containment, or convert the object into a new type).

Ebay Exhibit 1013, Page 599 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 5 General Interaction Techniques 73

February 13, 1995

Most transfers are based on one of the following three fundamental operations.

Operation Description
Move Relocates or repositions the selected object. Because it does not change

the basic identity of an object, a move operation is not the same as
copying an object and deleting the original.

Copy
Makes a
duplicate of
an object.
The
resulting
object is
independent
of its
original.
Duplication
does not
always
produce an
identical
clone. Some
of the
properties of
a duplicated
object may
be different
from the
original. For
example,
copying an
object may
result in a
different
name or
creation
date.
Similarly, if
some
component
of the object
restricts
copying,
then only
the
unrestricted
elements
may be
copied.

Makes a duplicate of an object. The resulting object is independent of its
original. Duplication does not always produce an identical clone. Some of
the properties of a duplicated object may be different from the original.
For example, copying an object may result in a different name or creation
date. Similarly, if some component of the object restricts copying, then
only the unrestricted elements may be copied.

Ebay Exhibit 1013, Page 600 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 5 General Interaction Techniques 73

February 13, 1995

Link
Creates a
connection
between two
objects. The
result is
usually an
object in the
destination
that
provides
access to the
original.

Creates a connection between two objects. The result is usually an object
in the destination that provides access to the original.

There are two different methods for supporting the basic transfer interface: the command method and the direct
manipulation method.

Command Method
The command method for transferring objects uses the Cut, Copy, and Paste commands. Place these commands on
the Edit drop-down menu as well as on the pop-up menu for a selected object. You can also include toolbar buttons
to support these commands.

To transfer an object, the user:

1. Makes a selection.

2. Chooses either Cut or Copy.

3. Navigates to the destination (and sets the insertion location, if appropriate).

4. Chooses a Paste operation.

Cut removes the selection and transfers it (or a reference to it) to the Clipboard. Copy duplicates the selection (or a
reference to it) and transfers it to the Clipboard. Paste completes the transfer operation. For example, when the user
chooses Cut and Paste, remove the selection from the source and relocate it to the destination. For Copy and Paste,
insert an independent duplicate of the selection and leave the original unaffected. When the user chooses Copy and
Paste Link or Paste Shortcut, insert an object at the destination that is linked to the source.

Choose a form of Paste command that indicates how the object will be transferred into the destination. Use the Paste
command by itself to indicate that the object will be transferred as native content. You can also use alternative forms
of the Paste command for other possible transfers, using the following general form.

Paste [short type name] [as | to object type | object name]

For example, Paste Cells as Word Table, where [short type name] is Cells and [object type] is Word Table.

For more information about object names, including their short type name, see Chapter 10, "Integrating with the
System."

Ebay Exhibit 1013, Page 601 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 5 General Interaction Techniques 73

February 13, 1995

The following summarizes common forms of the Paste command.

Command Function

Paste Inserts the object on the Clipboard as native
content (data).

Paste [short type name] Inserts the object on the Clipboard as an OLE
embedded object. The OLE embedded object can
be activated directly within the destination.

Paste [short type name] as Icon Inserts the object on the Clipboard as an OLE
embedded object. The OLE embedded object is
displayed as an icon.

Paste Link Inserts a data link to the object that was copied to
the Clipboard. The object's value is integrated or
transformed as native content within the
destination, but remains linked to the original
object so that changes to it are reflected in the
destination.

Paste Link to [object name] Inserts an OLE linked object, displayed as a
picture of the object copied to the Clipboard. The
representation is linked to the object copied to the
Clipboard so that any changes to the original
source object will be reflected in the destination.

Paste Shortcut Inserts an OLE linked object, displayed as a
shortcut icon, to the object that was copied to the
Clipboard. The representation is linked to the
object copied to the Clipboard so that any changes
to the original source object will be reflected in
the destination.

Paste Special Displays a dialog box that gives the user explicit
control over how to insert the object on the
Clipboard.

For more information about these Paste command forms and the Paste Special dialog box, see Chapter 11, "Working
with OLE Embedded and OLE Linked Objects."

Use the destination's context to determine what form(s) of the Paste operation to include based on what options it can
offer to the user, which in turn may be dependent on the available forms of the object that its source location object
provides. It can also be dependent on the nature or purpose of the destination. For example, a printer defines the
context of transfers to it.

Ebay Exhibit 1013, Page 602 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 5 General Interaction Techniques 73

February 13, 1995

Typically, you will need only Paste and Paste Special commands. The Paste command can be dynamically modified
to reflect the destination's default or preferred form by inserting the transferred objectfor example, as native data
or as an OLE embedded object. The Paste Special command can be used to handle any special forms of transfer.
Although, if the destination's context makes it reasonable to provide fast access to another specialized form of
transfer, such as Paste Link, you can also include that command.

Use the destination's context also to determine the appropriate side effects of the Paste operation. You may also need
to consider the type of object being inserted by the Paste operation and the relationship of that type to the destination.
The following are some common scenarios.

• When the user pastes into a destination that supports a specific insertion location, replace the
selection in the destination with the transferred data. For example, in text or list contexts, where the
selection represents a specific insertion location, replace the destination's active selection. In text
contexts where there is an insertion location, but there is no existing selection, place the insertion
point after the inserted object.

• For destinations with nonordered or Z-ordered contexts where there is no explicit insertion point,
add the pasted object and make it the active selection. Use the destination's context also to
determine where to place the pasted object. Consider any appropriate user contextual information.
For example, if the user chooses the Paste command from a pop-up menu, you can use the pointer's
location when the mouse button is clicked to place the incoming object. If the user supplies no
contextual clues, place the object at the location that best fits the context of the destination — for
example, at the next grid position.

• If the new object is automatically connected (linked) to the active selection (for example, table data
and a graph), you may insert the new object in addition to the selection and make the inserted
object the new selection.

You also use context to determine whether to display an OLE embedded or OLE linked object as content (view or
picture of the object's internal data) or as an icon. For example, you can decide what presentation to display based on
what Paste operation the user selects; Paste Shortcut implies pasting an OLE link as an icon. Similarly, the Paste
Special command includes options that allow the user to specify how the transferred object should be displayed. If
there is no user-supplied preference, the destination application defines the default. For documents, you typically
display the inserted OLE object as in its content presentation. If icons better fit the context of your application, make
the default Paste operation display the transferred OLE object as an icon.

The execution of a Paste command should not affect the content of the Clipboard. This allows data on the Clipboard
to be pasted multiple times, although subsequent paste operations should always result in copies of the original.
Remember that a subsequent Cut or Copy command will replace the last entry on the Clipboard.

Direct Manipulation Method
The command method is useful when a transfer operation requires the user to navigate between source and
destination. However, for many transfers, direct manipulation is a natural and quick method. In a direct manipulation
transfer, the user selects and drags an object to the desired location, but because this method requires motor skills
that may be difficult for some users to master, avoid using it as the exclusive transfer method. The best interfaces
support the transfer command method for basic operations as well as direct manipulation transfer as a shortcut.

When a pen is being used as a pointing device, or when it drags an action handle, it follows the same conventions as
dragging with mouse button 1. For pens with barrel buttons, use the barrel+drag action as the equivalent of dragging
with mouse button 2.

Ebay Exhibit 1013, Page 603 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 5 General Interaction Techniques 73

February 13, 1995

There is no keyboard interface for direct manipulation transfers.

You can support direct manipulation transfers to any visible object. The object (for example, a window or icon) need
not be currently active. For example, the user can drop an object in an inactive window. This action activates the
window. If an inactive object cannot accept a direct manipulation transfer, it (or its container) should provide
feedback to the user.

How the transferred object is integrated and displayed in the drop destination is determined by the destination's
context. A dropped object can be incorporated either as native data, as an OLE object, or as a partial form of the
object such as its properties or a transformed object. You determine whether to add to or replace an existing selection
based on the context of the operation, using such factors as the formats available for the object, the destination's
purpose, and any user-supplied information such as the specific location that the user drops or commands (or modes)
that the user has selected. For example, an application can supply a particular type of tool for copying the properties
of objects.
Default Drag and Drop
Default drag and drop transfers an object using mouse button 1. How the operation is interpreted is determined by
what the destination defines as the appropriate default operation. As with the command method, the destination
determines this based on information about the object (and the formats available for the object) and the context of the
destination itself. Avoid defining a destructive operation as the default. When that is unavoidable, display a message
box to confirm the intentions of the user.

Using this transfer technique, the user can directly transfer objects between documents defined by your application as
well as to system resources, such as folders and printers. Support drag and drop following the same conventions the
system supports: the user presses button 1 down on an object, moves the mouse while holding the button down, and
then releases the button at the destination. For the pen, the destination is determined by the location where the user
lifts the pen tip from the screen.

The most common default transfer operation is Move, but the destination (dropped on object) can reinterpret the
operation to be whatever is most appropriate. Therefore, you can define a default drag and drop operation to be
another general transfer operation such as Copy or Link, a destination specific command such as Print or Send To, or
even a specialized form of transfer such as Copy Properties.
Nondefault Drag and Drop
Nondefault drag and drop transfers an object using mouse button 2. In this case, rather than executing a default
operation, the destination displays a pop-up menu when the user releases the mouse button, as shown in Figure 5.13.
The pop-up menu contains the appropriate transfer completion commands.

Figure 5.13 A nondefault drag and drop operation

Ebay Exhibit 1013, Page 604 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 5 General Interaction Techniques 73

February 13, 1995

The destination always determines which transfer completion commands to include on the resulting pop-up menu,
usually factoring in information about the object supplied by the source location.

The form for nondefault drag and drop transfer completion verbs follows similar conventions as the Paste command.
Use the common transfer completion verbs, Move Here, Copy Here, and Link Here, when the object being
transferred is native data of the destination. When it is not, include the short type name. You can also display
alternative completion verbs that communicate the context of the destination; for example, a printer displays a Print
Here command. For commands that support only a partial aspect or a transformation of an object, use more
descriptive indicators — for example, Copy Properties Here, or Transpose Here.

Use the following general form for nondefault drag and drop transfer commands.

[Command Name] [object type | object name] Here [as object type]

The following summarizes command forms for nondefault transfer completion commands.

Command Function

Move Here Moves the selected object to the destination
as native content (data).

Copy Here Creates a copy of the selected object in the
destination as native content.

Link Here Creates a data link between the selected
object and the destination. The original
object's value is integrated or transformed as
native data within the destination, but
remains linked to the original object so that
changes to it are reflected in the destination.

Move [short type name] Here
Copy [short type name] Here

Moves or copies the selected object as an
OLE embedded object. The OLE embedded
object is displayed in its content presentation
and can be activated directly within the
destination.

Link [short type name] Here Creates an OLE linked object displayed as a
picture of the selected object. The
representation is linked to the selected object
so that any changes to the original object will
be reflected in the destination.

Move [short type name] Here as Icon
Copy [short type name] Here as Icon

Moves or copies the selected object as an
OLE embedded object and displays it as an
icon.

Create Shortcut Here Creates an OLE linked object to the selected
object; displayed as a shortcut icon. The
representation is linked to the selected object
so that any changes to the original object will
be reflected in the destination.

Ebay Exhibit 1013, Page 605 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 5 General Interaction Techniques 73

February 13, 1995

Define and appropriately display one of the commands in the pop-up menu to be the default drag and drop command.
This is the command that corresponds to the effect of dragging and dropping with mouse button 1.

For more information about how to display default menu commands, see Chapter 13, "Visual Design."
Canceling a Drag and Drop Transfer
When a user drags and drops an object back on itself, interpret the action as cancellation of a direct manipulation
transfer. Similarly, cancel the transfer if the user presses the ESC key during a drag transfer. In addition, include a
Cancel command in the pop-up menu of a nondefault drag and drop action. When the user chooses this command,
cancel the operation.
Differentiating Transfer and Selection When Dragging
Because dragging performs both selection and transfer operations, provide a convention that allows the user to
differentiate between these operations. The convention you use depends on what is most appropriate in the current
context of the object, or you can provide specialized handles for selection or transfer. The most common technique
uses the location of the pointer at the beginning of the drag operation. If the pointer is within an existing selection,
interpret the drag to be a transfer operation. If the drag begins outside of an existing selection, on the background's
white space, interpret the drag as a selection operation.
Scrolling When Transferring by Dragging
When the user drags and drops an object from one scrollable area (such as a window, pane, or list box) to another,
some tasks may require transferring the object outside the boundary of the area. Other tasks may involve dragging
the object to a location not currently in view. In this latter case, it is convenient to automatically scroll the area (also
known as automatic scrolling or autoscroll) when the user drags the object to the edge of that scrollable area. You
can accommodate both these behaviors by using the velocity of the dragging action. For example, if the user is
dragging the object slowly at the edge of the scrollable area, you scroll the area; if the object is being dragged
quickly, do not scroll.

To support this technique, during a drag operation you sample the pointer's position at the beginning of the drag,
each time the mouse moves, and on an application-set timeout (every 100 milliseconds recommended). Store each
value in an array large enough to hold at least three samples, replacing existing samples with later ones. Then
calculate the pointer's velocity based on at least the last two locations of the pointer.

Ebay Exhibit 1013, Page 606 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 5 General Interaction Techniques 73

February 13, 1995

To calculate the velocity, sum the distance between the points in each adjacent sample and divide the total by the
sum of the time elapsed between samples. Distance is the absolute value of the difference between the x and y
locations, or (abs(x1 − x2) + abs(y1 − y2)). Multiply this by 1024 and divide it by the elapsed time to produce the
velocity. The 1024 multiplier prevents the loss of accuracy caused by integer division.

Note Distance as implemented in this algorithm is not true Cartesian distance. This
implementation uses an approximation for purposes of efficiency, rather than using the square root
of the sum of the squares, (sqrt((x1 − x2)^2 + (y1 − y2)^2)), which is more computationally
expensive.

You also predefine a hot zone along the edges of the scrollable area and a scroll timeout value. The recommended
hot zone width is XXX. You use the scroll timeout value to control the scroll rate. During the drag operation, scroll
the area if the following conditions are met: the user moves the pointer within the hot zone, the current velocity is
below a certain threshold velocity, the scroll timeout has elapsed, and the scrollable area is able to scroll in the
direction associated with the hot zone it is in. The recommended threshold velocity is XXX. These principles are
illustrated in Figure 5.14.

Figure 5.14 Automatic scrolling based on velocity of dragging

Note The system provides support for automatic scrolling using the AddTimeSample function
and the AUTO_SCROLL_DATA structure to record and maintain time and position samples and
the scroll timeout. For more information about using these API elements, see the Microsoft Win32
Programmer's Reference.

Transfer Feedback
Because transferring objects is one of the most common user tasks, providing appropriate feedback is an important
design factor. Inconsistent or insufficient feedback can result in user confusion.

For more information about the design of transfer feedback, see Chapter 13, "Visual Design."

Ebay Exhibit 1013, Page 607 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 5 General Interaction Techniques 73

February 13, 1995

Command Method Transfers
For a command method transfer, remove the selected object visually when the user chooses the Cut command. If
there are special circumstances that make removing the object's appearance impractical, you can instead display the
selected object with a special appearance to inform the user that the Cut command was completed, but that the
object's transfer is pending. For example, the system displays icons in a checkerboard dither to indicate this state. But
the user will expect Cut to remove a selected object, so carefully consider the impact of inconsistency if you choose
this alternate feedback.

The Copy command requires no special feedback. A Paste operation also requires no further feedback than that
already provided by the insertion of the transferred object. However, if you did not remove the display of the object
and used an alternate representation when the user chose the Cut command, you must remove it now.
Direct Manipulation Transfers
During a direct manipulation transfer operation, provide visual feedback for the object, the pointer, and the
destination. Specifically:

• Display the object with selected appearance while the view it appears in has the focus. To indicate
that the object is in a transfer state, you can optionally display the object with some additional
appearance characteristics. For example, for a move operation, use the checkerboard dithered
appearance used by the system to indicate when an icon is Cut. Change this visual state based on
the default completion operation supported by the destination the pointer is currently over. Retain
the representation of the object at the original location until the user completes the transfer
operation. This not only provides a visual cue to the nature of the transfer operation, it provides a
convenient visual reference point.

• Display a representation of the object that moves with the pointer. Use a presentation that provides
the user with information about how the information will appear in the destination and that does
not obscure the context of the insertion location. For example, when transferring an object into a
text context, it is important that the insertion point not be obscured during the drag operation. A
translucent or outline representation, as shown in Figure 5.15, works well because it allows the
underlying insertion location to be seen while also providing information about the size, position,
and nature of the object being dragged.

Figure 5.15 Outline and translucent representations for transfer operations

• The object's existing source location provides the transferred object's initial appearance, but any
destination can change the appearance. Design the presentation of the object to provide feedback as
to how the object will be integrated by that destination. For example, if an object will be embedded
as an icon, display the object as an icon. If the object will be incorporated as part of the native
content of the destination, then the presentation of the object that the destination displays should
reflect that. For example, if a table being dragged into a document will be incorporated as a table,
the representation could be an outline or translucent form of the table. On the other hand, if the
table will be converted to text, display the table as a representation of text, such as a translucent
presentation of the first few words in the table.

Ebay Exhibit 1013, Page 608 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 5 General Interaction Techniques 73

February 13, 1995

• Display the pointer appropriate to the context of the destination, usually used for inserting objects.
For example, when dragging an object into a text editing context such that the object will be
inserted between characters, display the usual text editing pointer (sometimes called the I-beam
pointer).

• Display the interpretation of the transfer operation at the lower right corner of the pointer, as
shown in Figure 5.16. No additional glyph is required for a move operation. Use a plus sign (+)
when the transfer is a copy operation. Use the shortcut arrow graphic for linking.

Figure 5.16 Pointers −−−− move, copy, and link operations

• Use visual feedback to indicate the receptivity of potential destinations. You can use selection
highlighting and optionally animate or display a representation of the transfer object in the
destination. Optionally, you can also indicate when a destination cannot accept an object by using
the "no drop" pointer when the pointer is over it, as shown in Figure 5.17.

Figure 5.17 A "no drop " pointer

Specialized Transfer Commands
In some contexts, a particular form of a transfer operation may be so common, that introducing an additional
specialized command is appropriate. For example, if copying existing objects is a frequent operation, you can include
a Duplicate command. Following are some common specialized transfer commands.

Command Function

Delete Removes an object from its container. If the object is a file, the
object is transferred to the Recycle Bin.

Clear Removes the content of a container.

Duplicate Copies the selected object.

Print Prints the selected object on the default printer.

Send To Displays a list of possible transfer destinations and transfers the
selected object to the user selected destination.

Note Delete and Clear are often used synonymously. However, they are best differentiated by
applying Delete to an object and Clear to the container of an object.

Shortcut Keys for Transfer Operations
Following are the defined shortcut techniques for transfer operations.

Ebay Exhibit 1013, Page 609 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 5 General Interaction Techniques 73

February 13, 1995

Shortcut Operation

CTRL+X Performs a Cut command.

CTRL+C Performs a Copy command.

CTRL+V Performs a Paste command.

CTRL+drag Toggles the meaning of the default direct manipulation transfer
operation to be a copy operation (provided the destination can
support the copy operation). The modifier may be used with either
mouse button.

ESC Cancels a drag and drop transfer operation.

Because of the wide use of these command shortcut keys throughout the interface, do not reassign them to other
commands.

For more information about reserved and recommended shortcut key assignments, see Appendix B, "Keyboard
Interface Summary."

Ebay Exhibit 1013, Page 610 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 5 General Interaction Techniques 73

February 13, 1995

Scraps
The system allows the user to transfer objects within a data file to the desktop or folders providing that the
application supports the OLE transfer protocol. The result of the transfer operation is a file icon called a scrap. When
the user transfers a scrap into an application, integrate it as if it were being transferred from its original source. For
example, if a selected range of cells from a spreadsheet is transferred to the desktop, they become a scrap. If the user
transfers the resulting scrap into a word processing document, incorporate the cells as if they were transferred
directly from the spreadsheet. Similarly, if the user transfers the scrap back into the spreadsheet, integrate the cells as
if they were originally transferred within that spreadsheet.

Creation Operations
Creating new objects is a common user action in the interface. Although applications can provide the context for
object creation, avoid considering an application's interface as the exclusive means of creating new objects. Creation
is typically based on some predefined object or specification and can be supported in the interface in a number of
ways.

Copy Command
Making a copy of an existing object is the fundamental paradigm for creating new objects. Copied objects can be
modified and serve as prototypes for the creation of other new objects. The transfer model conventions define the
basic interaction techniques for copying objects. Copy and Paste commands and drag and drop manipulation provide
this interface.

New Command
The New command facilitates the creation of new objects. New is a command applied to a specific object,
automatically creating a new instance of the object's type. The New command differs from the Copy and Paste
commands in that it is a single command that generates a new object.

Insert Command
The Insert command works similarly to the New command, except that it is applied to a container to create a new
object, usually of a specified type, in that container. In addition to inserting native types of data, use the Insert
command to insert objects of different types. By supporting OLE, you can support the creation of a wide range of
objects. In addition, objects supported by your application can be inserted into data files created by other OLE
applications.

For more information about inserting objects, see Chapter 11, "Working with OLE Embedded and OLE Linked
Objects."

Using Controls
You can use controls to support the automatic creation of new objects. For example, in a drawing application,
buttons are often used to specify tools or modes for the creation of new objects, such as drawing particular shapes or
controls. Buttons can also be used to insert OLE objects.

For more information about using buttons to create new objects, see Chapter 11, "Working with OLE Embedded and
OLE Linked Objects." For general information about using controls to perform operations, see Chapter 7, "Menu,
Controls, and Toolbars."

Ebay Exhibit 1013, Page 611 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 5 General Interaction Techniques 73

February 13, 1995

Using Templates
A template is an object that automates the creation of a new object. To distinguish its purpose, display a template
icon as a pad with the small icon of the type of the object to be created, as shown in Figure 5.18.

Figure 5.18 A template icon

Define the New command as the default operation for a template object; this starts the creation process, which may
either be automatic or request specific input from the user. Place the newly created object in the same location as the
container of the template. If circumstances make that impractical, place the object in a common location such as the
desktop, or, during the creation process, include a prompt that allows a user to specify some other destination. In the
former situation, display a message box so that the user knows where the object will appear.

Operations on Linked Objects
A link is a connection between two objects that represents or provides access to another object that is in another
location in the same container or in a different, separate container. The components of this relationship include the
link source (sometimes referred to as the referent) and the link or linked object (sometimes referred to as the
reference). A linked object often has operations and properties independent of of its source. For example, a linked
object's properties can include attributes like update frequency, the path description of its link source, and the
appearance of the linked object. The containers in which they reside provide access to and presentation of commands
and properties of linked objects.

Ebay Exhibit 1013, Page 612 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 5 General Interaction Techniques 73

February 13, 1995

Links can be presented in various ways in the interface. For example, a data link propagates a value between two
objects, such as between two cells in a worksheet or a series of data in a table and a chart. Jumps (also referred to as
hyperlinks) provide navigational access to another object. An OLE linked object provides access to any operation
available for its link source and also supplies a presentation of the link source. A shortcut icon is a link, displayed as
an icon.

For more information about OLE linked objects, see Chapter 11, "Working with OLE Embedded and OLE Linked
Objects"

When the user transfers a linked object, store both the absolute and relative path to its link source. The absolute path
is the precise description of its location, beginning at the root of its hierarchy. The relative path is the description of
its location relative to its current container.

The destination of a transfer determines whether to use the absolute or relative path when the user accesses the link
source through the linked object. The relative path is the most common default path. However, regardless of which
path you use, if it fails, use the alternative path. For example, if the user copies a linked object and its link source to
another location, the result is a duplicate of the linked object and the link source. The relative path for the duplicate
linked object is the location of the duplicate of the link source. The absolute path for the duplicate linked object is the
description of the location of the initial link source. Therefore, when the user accesses the duplicate of the linked
object, its inferred connection should be with the duplicate of the link source. If that connection fails − for example,
because the user deletes the duplicate of the linked source − use the absolute path, the connection to the original link
source.

You can optionally make the preferred path for a linked object a field in the property sheet for linked object. This
allows the user to choose whether to have a linked object make use of the absolute or relative path to its link source.

When the user applies a link operation to a linked object, link to the linked object rather than its linked source. That
is, linking a linked object results in a linked object linked to a linked object. If such an operation is not valid or
appropriate − for example, because the linked object provides no meaningful context − then disable any link
commands or options when the user selects a linked object.

Ebay Exhibit 1013, Page 613 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 5 General Interaction Techniques 73

February 13, 1995

Activation of a linked object depends on the kind of link. For example, a single click can activate a jump; however, it
only results in selecting a data link or an OLE linked object. If you use a single click to do anything other than select
the linked object, distinguish the object by either presenting it as a button control, displaying the hand pointer (as
shown in Figure 5.19) when the user moves the pointer over the linked object, or both.

Figure 5.19 A hand pointer

Ebay Exhibit 1013, Page 614 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

75

February 13, 1995

C H A P T E R 6
Windows
Windows provide the fundamental way a user views and interacts with data. Consistency in window design is
particularly important because it enables users to easily transfer their learning skills and focus on their tasks rather
than learn new conventions. This chapter describes the common window types and presents guidelines for general
appearance and operation.

Common Types of Windows
Because windows provide access to different types of information, they can be classified according to common
usage. Interacting with objects typically involves a primary window in which most primary viewing and editing
activity takes place. In addition, multiple supplemental secondary windows can be included to allow users to specify
parameters or options, or to provide more specific details about the objects or actions included in the primary
window.

For more information about secondary windows, see Chapter 8, "Secondary Windows."

Primary Window Components
A typical primary window consists of a frame (or border) which defines its extent, and a title bar which identifies
what is being viewed in the window. If the viewable content of the window exceeds the current size of the window,
scroll bars are used. The window can also include other components like menu bars, toolbars, and status bars.

For more information about these components, see Chapter 7, "Menus, Controls, and Toolbars," and the section,
"Scrolling Windows," later in this chapter.

Ebay Exhibit 1013, Page 615 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 6 Windows 95

February 13, 1995

Figure 6.1 shows the common components of a primary window.

Figure 6.1 A primary window

Window Frames
Every window has a boundary that defines its shape. A sizable window has a distinct border that provides central
points (handles) for resizing the window using direct manipulation. If the window cannot be resized, the border
coincides with the edge of the window.

Title Bars
At the top edge of the window, inside its border, is the title bar (also referred to as the caption or caption bar), which
extends across the width of the window. The title bar identifies what the window is viewing. It also serves as a
control point for moving the window and an access point for commands that apply to the window and its associated
view. For example, clicking on the title bar with mouse button 2 displays the pop-up menu for the window. Pressing
the ALT+SPACEBAR key combination also displays the pop-up menu for the window.

For more information about pop-up menus, see Chapter 7, "Menus, Controls, and Toolbars."

Title Bar Icons
A small version of the object's icon appears in the upper left corner of the title bar; it represents the object being
viewed in the window. If the window represents a "tool" application (that is, an application that does not create, load,
and save separate data files), insert the small version of the application's icon in its title bar, as shown in Figure 6.2.

Ebay Exhibit 1013, Page 616 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 6 Windows 95

February 13, 1995

Figure 6.2 "Tool" title bar

If the application loads and saves documents or data files, place the icon that represents its document or data file type
in the title bar, as shown in Figure 6.3.

Figure 6.3 Document title bar

For information about how to register icons for your application and data file types, see Chapter 10, "Integrating with
the System." For more information about designing icons, see Chapter 13, "Visual Design."

If an application uses the multiple document interface (MDI), place the application's icon in the parent window's title
bar, and place an icon that reflects the application data file type in the child window's title bar, as shown in Figure
6.4.

Figure 6.4 MDI application and document title bars

However, when a user maximizes the child window, hide the title bar, and merge its title information with the parent,
as shown in Figure 6.5. Then display the icon from the child window's title bar in the menu bar of the parent
window. If multiple child windows are open within the MDI parent window, display the icon from the active
(topmost) child window.

Figure 6.5 MDI parent window title bar with maximized child window

For more information about MDI, see Chapter 9, "Window Management."

Ebay Exhibit 1013, Page 617 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 6 Windows 95

February 13, 1995

When the user clicks the title bar icon with mouse button 2, display the pop-up menu for the object. Typically, the
menu contains the same set of commands available for the icon from which the window was opened, except that
Close replaces Open. Close is also the default command, so when the user double-clicks the title bar icon, the
window closes.

Note When the user clicks the title bar icon with mouse button 1, the pop-up menu for the window is displayed.
However, this behavior is only supported for backward compatibility with Windows 3.1. Avoid documenting it as
the primary way to access the pop-up menu for the window.

Title Text
The title text is a label that identifies the name of the object being viewed through the window. It should correspond
to the current icon in the title bar. For example, if a document or data file is displayed in the window, display the
name of the file. It is also optional to include the name of the application in use; however, if it is used, the name of
the file appears first, followed by a dash and the application name, as shown in Figure 6.6.

Figure 6.6 Title text order: document name — application name

Note The order of the document (or data) filename and application name differs from the Windows
3.1 guidelines. The new convention is better suited for the design of a data-centered interface.

Ebay Exhibit 1013, Page 618 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 6 Windows 95

February 13, 1995

If the window represents a "tool" application without any associated data files, such as the Windows Calculator,
display the application's name in the title bar. If the tool application includes a specifier then include a dash and the
specification text. For example, the Windows Find File application indicates a specification of search criteria in the
title bar. Similarly, the Windows Explorer indicates what container the user is exploring. While this may appear to be
inconsistent with the guideline for data files, the key distinction is what icon you display in the title bar. If that icon
represents the application, then display the application name first. If the icon represents the data file, display the data
filename first.

For an MDI application, use the application's name in the parent window and the data file's name in the child
windows. When the user maximizes the file's child window, format the title text following the same convention as a
tool application, with the application's name first, followed by the data filename..

If a data file currently has no user-supplied name, create one automatically by using the short type name — for
example Document n, Sheet n, Chart n, where n is a number (as in Document 1). Use this name in the title text and
also as the proposed default filename for the object in the Save As dialog box. If it is impractical or inappropriate to
supply a default name, display a placeholder in the title, such as (Untitled).

For more information about short type names, see Chapter 10, "Integrating with the System." For more information
about the Save dialog box, see Chapter 8, "Secondary Windows."

Display the text exactly as it appears to the user in the file system, using both uppercase and lowercase letters. Avoid
including the file extensions or the path name in the title bar. This information is not meaningful for most users and
can make it more difficult for them to identify the file. However, the system does provide an option for users to
display filename extensions. Support this option by using the SHGetFileInfo function to format and display the
filename appropriately based on the user's preference.

For more information about SHGetFileInfo, see the Microsoft Win32 Programmer's Reference.

If the name of the displayed object in the window changes — for example, when the user edits the name in the
object's property sheet — update the title text to reflect that change. Always maintain a clear association between the
object and its open window.

Ebay Exhibit 1013, Page 619 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 6 Windows 95

February 13, 1995

The title text and icon always represent the outmost container — the object that was opened — even if the user selects
an embedded object or navigates the internal hierarchy of the object being viewed in the window. If you need an
additional specifier to clarify what the user is viewing, place this specifier after the filename and clearly separated
from the filename, such as enclosed in parentheses — for example, My HardDisk (C:). Because the system now
supports long filenames, avoid additional specification whenever possible. Complex or verbose additions to the title
text also make it more difficult for the user to easily read and identify the window.

When the width of the window does not allow you to display the complete title text, you may abbreviate the title text,
being careful to maintain the essential information that allows the user to quickly identify the window.

For more information about abbreviating names, see Chapter 10, "Integrating with the System."

Avoid drawing directly into the title area or adding other controls. Such added items can make reading the name in
the title difficult, particularly because the size of the title bar varies with the size of the window. In addition, the
system uses this area for displaying special controls. For example, in some international versions of Windows, the
title area provides information or controls associated with the input of certain languages.

Title Bar Buttons
Command buttons associated with the commands of the window appear in the title bar. They act as shortcuts to
specific window commands. Clicking a title bar button with mouse button 1 invokes the command associated with
the command button. When the user clicks a command button with mouse button 2, display the pop-up menu for the
window. For the pen, tapping a window button invokes its associated command, and barrel-tapping it (or using the
pen menu gesture) displays the pop-up menu for the window.

Typically, the following buttons appear in a primary window (provided that the window supports the respective
functions).

Command
button

Operation

 Closes the window.

 Minimizes the window.

 Maximizes the window.

 Restores the window.

When the commands are supported, by a window do not display the buttons.

Basic Window Operations
The basic operations for a window include: activation and deactivation, opening and closing, moving and sizing, and
scrolling and splitting. The following sections describe these operations.

Activating and Deactivating Windows
While the system supports the display of multiple windows, the user generally works within a single window at a
time. This window is called the active window. The active window is typically at the top of the window Z order. It is
also visually distinguished by its title bar that is displayed in the active window title color (also referred to as the
COLOR_ACTIVECAPTION value). All other windows are inactive with respect to the user's input; that is, while
other windows can have ongoing processes, only the active window receives the user's input. The title bar of an

Ebay Exhibit 1013, Page 620 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 6 Windows 95

February 13, 1995

inactive window displays the system inactive window color of the system (the COLOR_INACTIVECAPTION
value).

For more information about the COLOR_ACTIVECAPTION and COLOR_INACTIVECAPTION values, and the
GetSysColor function, see the Microsoft Win32 Programmer's Reference.

The user activates a primary window by switching to it; this inactivates any other windows. To activate it with the
mouse or pen, the user clicks or taps on any part of the window, including its interior. If the window is minimized,
the user clicks (taps) the button representing the window in the taskbar. From the keyboard, the system provides the
ALT+TAB key combination for switching between primary windows. (The SHIFT+ALT+TAB key also switches
between windows, but in reverse order.) The reactivation of a window does not affect any pre-existing selection; the
selection and focus are restored to the previously active state.

When the user reactivates a primary window, the window and all its secondary windows come to the top of the
window order and maintain their relative positions. If the user activates a secondary window, its primary window
comes to the top of the window order along with the primary window's other secondary windows.

When a window becomes inactive, hide the selection feedback (for example, display of highlighting or handles) of
any selection within it to prevent confusion over which window is receiving keyboard input. A direct manipulation
transfer (drag and drop) is an exception. Here, you can display transfer feedback if the pointer is over the window
during the drag operation. Do not activate the window unless the user releases the mouse button (pen tip is lifted) in
that window.

For more information about selection and transfer appearance, see Chapter 13, "Visual Design."

Opening and Closing Windows
When the user opens a primary window, include an entry for it on the taskbar. If the window has been opened
previously, restore the window to its size and position when it was last closed. If possible and appropriate, reinstate
the other related view information, such as selection state, scroll position, and type of view. When opening a primary
window for the first time, open it to a reasonable default size and position as best defined by the object or
application.

Opening the primary window activates that window and places it at the top of the window order. If the user attempts
to open a primary window that is already open within the same desktop, follow these recommendations:

Ebay Exhibit 1013, Page 621 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 6 Windows 95

February 13, 1995

File type Action when repeating an open operation

Document or data file Activates the existing window of the object and
displays it at the top of the window Z order.

Application file Displays a message box indicating that an open
window of that application already exists and offers
the user the option to switch to the open window or
to open another window. Either choice activates the
selected window and brings it to the top of the
window Z order.

Document file that is already open in
a multiple document interface (MDI)
application window

Activates the existing window of the file. Its MDI
parent window comes to the top of the window Z
order, and the file appears at the top of the Z order
within its MDI parent window.

Document file that is not already
open, but its associated multiple
document interface (MDI)
application is already running (open)

Opens a new instance of the file's associated MDI
application at the top of the window Z order and
displays the child window for the file.

For more information about MDI, see Chapter 9, "Window Management."

When opening a window, consider the size and orientation of the current screen upon which it will be opened. For
example, on some systems, the display may be landscape oriented (long dimension along the bottom) and on others
it may be portrait. The display resolution may vary as well. In such cases, adjust the size and position of the window
from its stored state so that it appears relative to and yet completely on the user's display configuration.

Ebay Exhibit 1013, Page 622 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 6 Windows 95

February 13, 1995

The user closes a primary window by clicking (for a pen, tapping the screen) the Close button in the title bar or
choosing the Close command from the window's pop-up menu. In addition, you can support double-clicking (with a
pen, double-tapping the screen) on the title bar icon as a shortcut for closing the window for compatibility with
previous versions of Windows.

When the user chooses the Close command or any other command that results in closing the primary window (for
example, Exit or Shut Down), display a message asking the user whether to save any changes, discard any changes,
or cancel the Close operation before closing the window. This gives the user control over any pending transactions
that are not automatically saved. If there are no pending transactions, close the window.

For more information about supporting the Close command, see Chapter 5, "General Interaction Techniques."

When closing the primary window, close any of its dependent secondary windows as well. The design of your
application affects whether closing the primary window also ends the application processes. For example, closing the
window of a text document typically halts any application code or processes remaining for inputting or formatting
text. However, closing the window of a printer has no effect on the jobs in the printer's queue. In both cases, closing
the window removes its entry from the taskbar.

Moving Windows
The user can move a window either by dragging its title bar using the mouse or pen or by using the Move command
on the window's pop-up menu. On most configurations, an outline representation moves with the pointer during the
operation, and the window is redisplayed in the new location after the completion of the move. (The system also
provides a display property setting that redraws the window dynamically as it is moved.) After choosing the Move
command, the user can move the window with the keyboard interface by using arrow keys and pressing the ENTER
key to end the operation and establish the window's new location. Never allow the user to reposition a window such
that it cannot be accessed.

A window need not be active before the user can move it. The implicit action of moving the window activates it.

Moving a window can clip or reveal information shown in the window. In addition, activation can affect the view
state of the window — for example, the current selection can be displayed. However, when the user moves a window,
avoid making any changes to the content being viewed in that window.

Resizing Windows
Make your primary windows resizable unless the information displayed in the window is fixed, such as in the
Windows Calculator program. The system provides several conventions that support user resizing of a window.
Sizing Borders
The user resizes a primary window by dragging the sizing border with the mouse or pen at the edge of a window or
by using the Size command on the window's menu. On most configurations, an outline representation of the window
moves with the pointer. (A display property setting allows the user to have the system dynamically redraw the
window as it is sized.) After completing the size operation, the window assumes its new size. Using the keyboard,
the user can size the window by choosing the Size command, using the arrow keys, and pressing the ENTER key.

A window does not need to be active before the user can resize it. The action of sizing the window implicitly makes
it active, and it remains active after the sizing operation.

When the user resizes a window to be smaller, you must determine how to display the information being viewed in
that window. Use the context and type of information to help you choose your approach. The most common

Ebay Exhibit 1013, Page 623 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 6 Windows 95

February 13, 1995

approach is to clip the information. However, in other situations where you want the user to see as much information
as possible, you may want to consider using different methods, such as rewrapping or scaling the information. Use
these variations carefully because they may not be consistent with the resizing behavior of most windows. In
addition, avoid these methods when readability or maintaining the structural relationship of the information is
important.

While the size of a primary window may vary, based on the user's preference, you can define a window's maximum
and minimum size. When defining these sizes, consider the reasonable usage within the window, and the size and
orientation of the screen.
Maximizing Windows
Although the user may be able to directly resize a window to its maximum size, the Maximize command optimizes
this operation. The command is available on a window's pop-up menu, and as the Maximize command button in the
title bar of a window.

Ebay Exhibit 1013, Page 624 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 6 Windows 95

February 13, 1995

Maximizing a window increases the size of the window to its largest, optimum size. The system default setting for
the maximum size is as large as the display, excluding the space used by the taskbar. For an MDI child window, the
default maximize size fills the parent window. However, you can define the size to be less (or, in some cases, more)
than the display dimensions. Because display resolution and orientation varies, your software should not assume a
fixed display size, but rather adapt to the shape and size defined by the system. If you use a standard system
interface, such as the SetWindowPlacement function, the system automatically places your windows relative to the
current display configuration.

For more information about the SetWindowPlacement function, see the Microsoft Win32 Programmer's Reference.

When the user maximizes a window, replace the Maximize button with a Restore button. In addition, disable the
Maximize command and enable the Restore command on the pop-up menu for the window.
Minimizing Windows
Minimizing a window reduces it to its smallest size. To minimize a window, the user chooses the Minimize
command on the window's pop-up menu or the Minimize command button on the title bar. For primary windows,
minimizing removes the window from the screen, but leaves its entry in the taskbar. For MDI child windows, the
window resizes to a minimum size within its parent window.

Note The Windows 3.1 representation of a minimized window using an icon is no longer appropriate. To reflect
some status information about the open, but minimized, window, place the entry on the taskbar. For more
information about status notification, see Chapter 10, "Integrating with the System."

When the user minimizes a window, disable the Minimize command on the pop-up menu for the window and enable
the Restore command.
Restoring Windows
After maximizing or minimizing a window, the user can restore it to its previous size and position using the Restore
command. For maximized windows, make this command available from the window's pop-up menu or the button
which replaces the Maximize button in the title bar of the window.

For minimized, primary windows, enable the Minimize command in the pop-up menu of the window. The user
restores a minimized primary window to its former size and position by clicking (for pens, tapping the screen) on its
button in the taskbar that represents the window, selecting the Restore command on the pop-up menu of the
window's taskbar button, or using the ALT+TAB key combination or the SHIFT+ALT+TAB key combination.
Size Grip
When you define a sizable window, include a size grip. A size grip is a special handle for sizing a window. It is not
exclusive to the sizing border. To size the window, the user drags the grip and the window resizes following the
same conventions as the sizing border.

Always locate the size grip in the lower right corner of the window. Typically, this means you place the size grip at
the junction of a horizontal or vertical scroll bar, or at the right end of a horizontal scroll bar, or the bottom of a
vertical scroll bar. However, if you include a status bar in the window, display the size grip at the far corner of the
status bar instead. Never display the size grip in both locations at the same time.

For more information on the use of the size grip in a status bar, see Chapter 7, "Menus, Controls, and Toolbars."

Ebay Exhibit 1013, Page 625 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 6 Windows 95

February 13, 1995

Scrolling Windows
When the information viewed in a window exceeds the size of that window, the window should support scrolling.
Scrolling enables the user to view portions of the object that are not currently visible in a window. Scrolling is
commonly supported through the use of a scroll bar. A scroll bar is a rectangular control consisting of scroll arrows,
a scroll box, and a scroll bar shaft, as shown in Figure 6.7.

Figure 6.7 Scroll bar and its components

You can include a vertical scroll bar, a horizontal scroll bar, or both. The scroll bar aligns with the vertical or
horizontal edge of the window orientation it supports. If the content is never scrollable in a particular direction, do
not include a scroll bar for that direction.

Scroll bars are also available as separate window components. For more information about scroll bar controls, see
Chapter 7, "Menus, Controls, and Toolbars."

Ebay Exhibit 1013, Page 626 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 6 Windows 95

February 13, 1995

The common practice is to display scroll bars if the view requires some scrolling under any circumstances. If the
window becomes inactive or resized so that its content does not require scrolling, continue to display the scroll bars.
While removing the scroll bars potentially allows the display of more information as well as feedback about the state
of the window, it also requires the user to explicitly activate the window to scroll. Consistently displaying scroll bars
also provides a more stable environment.
Scroll Arrows
Scroll arrow buttons appear at each end of a scroll bar, pointing in opposite directions away from the center of the
scroll bar. The scroll arrows point in the direction that the window "moves" over the data. When the user clicks (for
pens, tapping the screen) a scroll arrow, the data in the window moves, revealing information in the direction of the
arrow in appropriate increments. The granularity of the increment depends on the nature of the content and context,
but it is typically based on the size of a standard element. For example, you can use one line of text for vertical
scrolling, one row for spreadsheets. You can also use an increment based a fixed unit of measure. Whichever
standard you choose, maintain the same scrolling increment throughout a window. The objective is to provide an
increment that provides smooth but efficient scrolling. When a window cannot be scrolled any further in a particular
direction, disable the scroll arrow corresponding to that direction.

Note The default system support for scroll bars does not disable the scroll arrow buttons when the region or area is no
longer scrollable in this direction. However, it does provide support for you to disable the scroll arrow button under
the appropriate conditions.

When scroll arrow buttons are pressed and held, they exhibit a special auto-repeat behavior. This action causes the
window to continue scrolling in the associated direction as long as the pointer remains over the arrow button. If the
pointer is moved off the arrow button while the user presses the mouse button, the auto-repeat behavior stops and
does not continue unless the pointer is moved back over the arrow button (also when the pen tip is moved off the
control).
Scroll Box
The scroll box, sometimes referred to as the elevator, thumb, or slider, moves along the scroll bar to indicate how far
the visible portion is from the top (for vertical scroll bars) or from the left edge (for horizontal scroll bars). For
example, if the current view is in the middle of a document, the scroll box in the vertical scroll bar is displayed in the
middle of the scroll bar.

Ebay Exhibit 1013, Page 627 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 6 Windows 95

February 13, 1995

The size of the scroll box can vary to reflect the difference between what is visible in the window and the entire
content of the file, as shown in Figure 6.8.

Note The proportional scroll box was not supported in earlier releases of Windows.

Figure 6.8 Proportional relationship between scroll box and content

For example, if the content of the entire document is visible in a window, the scroll box extends the entire length of
the scroll bar, and the scroll arrows are disabled. Make the minimum size of the scroll box no smaller than the width
of a window's sizing border.

The user can also scroll a window by dragging the scroll box. Update the view continuously as the user moves the
scroll box. If you cannot support scrolling at a reasonable speed, you can scroll the information at the end of the drag
operation as an alternative.

Ebay Exhibit 1013, Page 628 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 6 Windows 95

February 13, 1995

If the user starts dragging the scroll box and then moves outside of the scroll bar, the scroll box returns to its original
position. The distance the user can move the pointer off the scroll bar before the scroll box snaps back to its original
position is proportional to the width of the scroll bar. If dragging ends at this point, the scroll action is canceled —
that is, no scrolling occurs. However, if the user moves the pointer back within the scroll-sensitive area, the scroll
box returns to tracking the pointer movement. This behavior allows the user to scroll without having to remain within
the scroll bar and to selectively cancel the initiation of a drag-scroll operation.

Dragging the scroll box to the end of the scroll bar implies scrolling to the end of that dimension; this does not
always mean that the area cannot be scrolled further. If your application's document structure extends beyond the
data itself, you can interpret dragging the scroll box to the end of its scroll bar as moving to the end of the data rather
than the end of the structure. For example, the document of a typical spreadsheet exceeds the data in it — that is, the
spreadsheet may have 65,000 rows, with data only in the first 50 rows. This means you can implement the scroll bar
so that dragging the scroll box to the bottom of the vertical scroll bar scrolls to the last row containing data rather
than the last row of the spreadsheet. The user can use the scroll arrow buttons to scroll further to the end of the
structure. This situation also illustrates why disabling the scroll arrow buttons can provide important feedback so that
the user can distinguish between scrolling to the end of data from scrolling to the end of the extent or structure. In the
example of the spreadsheet, when the user drags the scroll box to the end of the scroll bar, the arrow would still be
shown as enabled because the user can still scroll further, but it would be disabled when the user scrolls to the end of
the spreadsheet.
Scroll Bar Shaft
The scroll bar shaft not only provides a visual context for the scroll box, it also serves as part of the scrolling
interface. Clicking in the scroll bar shaft scrolls the view an equivalent size of the visible area in the direction of the
click. For example, if the user clicks in the shaft below the scroll box in a vertical scroll bar, the view is scrolled a
distance equivalent to the height of the view. Where possible, allow overlap from the previous view, as shown in
Figure 6.9. For example, if the user clicks below the scroll box, the top line of the next screen becomes the line that
was at the bottom of the previous screen. The same thing applies for clicking above the scroll box and horizontal
scrolling. These conventions provide the user with a common reference point.

Ebay Exhibit 1013, Page 629 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 6 Windows 95

February 13, 1995

Figure 6.9 Scrolling with the scroll bar shaft by a screenful

Pressing and holding mouse button 1 with the pointer in the shaft auto-repeats the scrolling action. If the user moves
the pointer outside the scroll-sensitive area while pressing the button, the scrolling action stops. The user can resume
scrolling by moving the pointer back into the scroll bar area. (This behavior is similar to the effect of dragging the
scroll box.)

Ebay Exhibit 1013, Page 630 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 6 Windows 95

February 13, 1995

Automatic Scrolling
The techniques previously summarized describe the explicit ways for scrolling. However, the user may also scroll as
a secondary result of some situations. This type of scrolling is called automatic scrolling. The situations in which to
support automatic scrolling are as follows:

• When the user begins or adjusts a selection and drags it past the edge of the scroll bar or window,
scroll the area in the direction of the drag.

• When the user drags an object and approaches the edge of a scrollable area, scroll the area
following the recommended auto-scroll conventions. Base the scrolling increment on the context of
the destination and, if appropriate, on the size of the object being dragged.

• When the user enters text from the keyboard at the edge of a window or moves or copies an object
into a location at the edge of a window, the view should scroll to allow the user to focus on the
currently visible information. The amount to scroll depends on context. For example, for text typed
in vertically, scroll a single line at a time. When scrolling horizontally, scroll in units greater than a
single character to prevent continuous or uneven scrolling. Similarly, when the user transfers a
graphic object near the edge of the view, base scrolling on the size of the object.

• If an operation results in a selection or moves the cursor, scroll the view to display the new
selection. For example, for a Find command that selects a matching object, scroll the object into
view because usually the user wants to focus on that location. In addition, other forms of
navigation may cause scrolling. For example, completing an entry field in a form may result in
navigating to the next field. In this case, if the field is not visible, the form can scroll to display it.

For more information about scrolling when the user drags objects, see Chapter 5, “General Interaction Techniques.”

Ebay Exhibit 1013, Page 631 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 6 Windows 95

February 13, 1995

Keyboard Scrolling
Use navigation keys to support scrolling with the keyboard. When the user presses a navigation key, the cursor
moves to the appropriate location. For example, in addition to moving the cursor, pressing arrow keys at the edge of
a scrollable area scrolls in the corresponding direction. Similarly, the PAGE UP and PAGE DOWN keys are comparable
to clicking in the scroll bar shaft, but they also move the cursor.

Optionally, you can use the SCROLL LOCK key to facilitate keyboard scrolling. In this case, when the SCROLL LOCK
key is toggled on and the user presses a navigation key, the view scrolls without affecting the cursor or selection.
Placing Adjacent Controls
It is sometimes convenient to locate controls or status bars adjacent to a scroll bar and position the end of the scroll
bar to accommodate them. Although split box controls are an example of such controls, other types of controls also
exist. Take care when placing adjacent elements; too many can make it difficult for users to scroll, particularly if you
reduce the scroll bar too much. If you need a large number of controls, consider using a conventional toolbar instead.

For more information about toolbars, see Chapter 7, "Menus, Controls, and Toolbars."

Splitting Windows
A window can be split into two or more separate viewing areas, which are called panes. For example, a split window
allows the user to examine two parts of a document at the same time. You can also use a split window to display
different, yet simultaneous views of the same object (data), as shown in Figure 6.10.

Ebay Exhibit 1013, Page 632 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 6 Windows 95

February 13, 1995

Figure 6.10 A split window

While you can use a split window panes to view the contents of multiple files or containers at the same time,
displaying these in separate windows typically allows the user to better identify the files as individual elements.
When you need to present views of multiple files as a single task, consider the window management techniques such
as the Multiple Document Interface.

Ebay Exhibit 1013, Page 633 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 6 Windows 95

February 13, 1995

The panes that appear in a window can be implemented either as part of a window's basic design or as a user-
configurable option. To support splitting a window that is not presplit by design, include a split box. A split box is a
special control placed adjacent to the end of a scroll bar that splits or adjusts the split of a window. The size of the
split box should be just large enough for the user to successfully target it with the pointer; the default size of a size
handle, such as the window's sizing border, is a good guideline. Locate the split box at the top of the up arrow button
of the vertical scroll bar or to the left of the left arrow button of a horizontal scroll bar as shown in Figure 6.11.

Figure 6.11 Split box location

The user splits a window by dragging the split box to the desired position. When the user positions the hot spot of the
pointer over a split box, change the pointer's image to provide feedback and help the user target the split box. While
the user drags the split box, move a representation of the split box and split bar with the pointer, as shown in Figure
6.12.

At the end of the drag, display a visual separator, called the split bar, that extends from one side of the window to the
other, defining the edge between the resulting panes, as shown in Figure 6.12. Base the size for the split bar to be, at
a minimum, the current setting for the size of window sizing borders. This allows you to appropriately adjust when a
user adjusts size borders. If you display the split box after the split operation, place it adjacent to the split bar.

Ebay Exhibit 1013, Page 634 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 6 Windows 95

February 13, 1995

Figure 6.12 Moving the split bar

You can support dragging the split bar (or split box) to the end of the scroll bar to close the split. Optionally, you can
also support double-clicking (or, for pens, double-tapping the screen) as a shortcut technique for splitting the window
at some default location (for example, in the middle of the window or at the last split location) or for removing the
split. This technique works best when the resulting window panes display peer views. It may not be appropriate
when the design of the window requires that it always be displayed as split or for some types of specialized views.

To provide a keyboard interface for splitting the window, include a Split command for the window or view's menu.
When the user chooses the Split command, split the window in the middle or in a context-defined location. Support
arrow keys for moving the split box up or down; pressing the ENTER key sets the split at the current location.
Pressing the ESC key cancels the split mode.

You can also use other commands to create a split window. For example, you can define specialized views that,
when selected by the user, split a window to a fixed or variable set of panes. Similarly, you can enable the user to
remove the split of a window by closing a view pane or by selecting another view command.

Ebay Exhibit 1013, Page 635 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 6 Windows 95

February 13, 1995

When the user splits a window, add scroll bars if the resulting panes require scrolling. In addition, you may need to
scroll the information in panes so that the split bar does not obscure the content over which it appears. Scroll in the
direction that is opposite of the split. Use a single scroll bar, at the appropriate side of the window, for a set of panes
that scroll together. However, if the panes each require independent scrolling, a scroll bar should appear in each pane
for that purpose. For example, the vertical scroll bars of a set of panes in a horizontally split window would typically
be controlled separately.

When you use split window panes to provide separate views, independently maintain each pane's view properties,
such as view type and selection state. Display only the selection in the active pane. However, if the selection state is
shared across the panes, display a selection in all panes and support selection adjustment across panes.

When a window is closed, save the window's split state (that is, the number of splits, the place where they appear, the
scrolled position in each split, and its selection state) as part of the view state information for that window so that it
can be restored the next time the window is opened.

Ebay Exhibit 1013, Page 636 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

97

February 13, 1995

C H A P T E R 7
Menus, Controls, and Toolbars
Microsoft Windows provides a number of interactive components that make it easier to carry out commands and
specify values. These components also provide a consistent structure and set of interface conventions. This chapter
describes the interactive elements of menus, controls, and toolbars, and how to use them.

Menus
Menus list the commands available to the user. By making commands visible, menus leverage user recognition rather
than depending on user recollection of command names and syntax.

There are several types of menus, including drop-down menus, pop-up menus, and cascading menus. The following
sections cover these menus in more detail.

The Menu Bar and Drop-down Menus
A menu bar, one of the most common forms of a menu, is a special area displayed across the top of a window
directly below the title bar (as shown in Figure 7.1). A menu bar includes a set of entries called menu titles. Each
menu title provides access to a drop-down menu composed of a collection of menu items, or choices.

Figure 7.1 A menu bar

The content of the menu bar and its drop-down menus are determined by the functionality of your application and the
context of a user's interaction. You can also optionally provide user configuration of the menu structure, including
hiding the menu bar. If you provide this kind of option, supplement the interface with other components such as pop-
up menus, handles, and toolbars, so that a user can access the functionality typically provided by the menu bar.
Drop-down Menu Interaction
When the user chooses a menu title, it displays its associated drop-down menu. To display a drop-down menu with
the mouse, the user points to the menu title and presses or clicks mouse button 1. This action highlights the menu
title and opens the menu. Tapping the menu title with a pen has the same effect as clicking the mouse.

If the user opens a menu by pressing the mouse button while the pointer is over the menu title, the user can drag the
pointer over menu items in the drop-down menu. As the user drags, each menu item is highlighted, tracking the
pointer as it moves through the menu. Releasing the mouse button with the pointer over a menu item chooses the
command associated with that menu item and the system removes the drop-down menu. If the user moves the pointer
off the menu and then releases the mouse button, the menu is "canceled" and the drop-down menu is removed.
However, if the user moves the pointer back onto the menu before releasing the mouse button, the tracking resumes
and the user can still select a menu item.

If the user opens a menu by clicking on the menu title, the menu title is highlighted and the drop-down menu remains
displayed until the user clicks the mouse again. Clicking a menu item in the drop-down menu or dragging over and
releasing the mouse button on a menu item chooses the command associated with the menu item and removes the
drop-down menu.

Ebay Exhibit 1013, Page 637 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 7 Menus, Controls, and Toolbars 143

February 13, 1995

The keyboard interface for drop-down menus uses the ALT key to activate the menu bar. When the user presses an
alphanumeric key while holding the ALT key, or after the ALT key is released, the drop-down menu whose access key
for the menu title matches the alphanumeric key (matching is not case sensitive) is displayed. Pressing a subsequent
alphanumeric key chooses the menu item in the drop-down menu with the matching access character.

The user can also use arrow keys to access drop-down menus from the keyboard. When the user presses the ALT key,
but has not yet selected a drop-down menu, LEFT ARROW and RIGHT ARROW keys highlight the previous or next menu
title, respectively. At the end of the menu bar, pressing another arrow key in the corresponding direction wraps the
highlight around to the other end of the menu bar. Pressing the ENTER key displays the drop-down menu associated
with the selected menu title. If a drop-down menu is already displayed on that menu bar, then pressing LEFT ARROW
or RIGHT ARROW navigates the highlight to the next drop-down menu in that direction, unless the drop-down menu
has multiple columns, in which case the arrow keys move the highlight to the next column in that direction, and then
to the next drop-down menu.

Pressing UP ARROW or DOWN ARROW in the menu bar also displays a drop-down menu if none is currently open. In
an open drop-down menu, pressing these keys moves to the next menu item in that direction, wrapping the highlight
around at the top or bottom. If the drop-down menu has multiple columns, then pressing the arrow keys first wraps
the highlight around to the next column.

The user can cancel a drop-down menu by pressing the ALT key whenever the menu bar is active. This not only
closes the drop-down menu, it also deactivates the menu bar. Pressing the ESC key also cancels a drop-down menu.
However, the ESC key cancels only the current menu level. For example, if a drop-down menu is open, pressing ESC
closes the drop-down menu, but leaves its menu title highlighted. Pressing ESC a second time unhighlights the menu
title and deactivates the menu bar, returning input focus to the content information in the window.

You can assign shortcut keys to commands in drop-down menus. When the user presses a shortcut key associated
with a command in the menu, the command is carried out immediately. Optionally, you can also highlight its menu
title, but do not display the drop-down.

Common Drop-down Menus
This section describes the conventions for drop-down menus commonly used in applications. While these menus are
not required for all applications, apply these guidelines when including these menus in your software's interface.
The File Menu
The File menu provides an interface for the primary operations that apply to a file. Your application should include
commands such as Open, Save, Send To, and Print. These commands are often also included on the pop-up menu of
the icon displayed in the title bar of the window.

For more information about the commands in the pop-up menu for a title bar icon, see the section, "Icon Pop-up
Menus," later in this chapter.

If your application supports an Exit command, place this command at the bottom of the File menu preceded by a
menu separator. When the user chooses the Exit command, close any open windows and files, and stop any further
processing. If the object remains active even when its window is closed — for example, like a folder or printer — then
include the Close command instead of Exit.
The Edit Menu
Include general purpose editing commands on the Edit menu. These commands include the Cut, Copy, and Paste
transfer commands, OLE object commands, and the following commands (if they are supported).

Ebay Exhibit 1013, Page 638 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 7 Menus, Controls, and Toolbars 143

February 13, 1995

For more information about menu commands for OLE objects, see Chapter 11, "Working with OLE Embedded and
OLE Linked Objects."

Command Function

Undo Reverses last action.

Repeat Repeats last action.

Find and Replace Searches for and substitutes text.

Delete Removes the current selection.

Duplicate Creates a copy of the current selection.

Include these commands on this menu and on the pop-up menu of the selected object.

The View Menu
Commands on the View menu change the user's view of data in the window. Include commands on this menu that
affect the view and not the data itself — for example, Zoom or Outline. Also include commands for controlling the
display of particular interface elements in the view — for example, Show Ruler. These commands should be placed
on the pop-up menu of the window or pane.
The Window Menu
Use the Window menu in multiple document interface-style (MDI) applications for managing the windows within an
MDI workspace. Also include these commands on the pop-up menu of the parent MDI window.

For more information about the design of MDI software, see Chapter 9, "Window Management."
The Help Menu
The Help menu contains commands that provide access to Help information. Include a Help Topics command; this
command provides access to the Help Topics browser, which displays topics included in your application's Help file.
Alternatively, you can provide individual commands that access specific pages of the Help Topics browser such as
Contents, Index, and Find Topic. You can also include other user assistance commands on this drop-down menu.

For more information about the Help Topics browser and support for user assistance, see Chapter 12, "User
Assistance."

If you provide access to copyright and version information for your application, include an About application name
command on this menu. When the user chooses this command, display a window containing the application's name,
version number, copyright information, and any other informational properties related to the application. Display this
information in a dialog box or alternatively as a copyright page of the property sheet of the application's main
executable (.EXE) file. Do not use an ellipsis at the end of this command because the resulting window does not
require the user to provide any further parameters.

Pop-up Menus
Even if you include a menu bar in your software's interface, you should also incorporate pop-up menus, as shown in
Figure 7.2. Pop-up menus provide an efficient way for the user to access the operations of objects. Because pop-up
menus are displayed at the pointer's current location, they eliminate the need for the user to move the pointer to the
menu bar or a toolbar. In addition, because you populate pop-up menus with commands specific to the object or its
immediate context, they reduce the number of commands the user must browse through. Pop-up menus also
minimize screen clutter because they are displayed only upon demand and do not require dedicated screen space.

Ebay Exhibit 1013, Page 639 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 7 Menus, Controls, and Toolbars 143

February 13, 1995

Figure 7.2 A pop-up menu

While a pop-up menu looks similar to a drop-down menu, a pop-up menu contains commands that apply to the
selected object or objects and its context, rather than commands grouped by function. For example, a pop-up menu
for a text selection can include the font properties of the text and the paragraph properties of which the selection is a
part. However, keep the size of the pop-up menu as small as possible by limiting the items on the menu to common,
frequent actions. It is better to include a single Properties command and allow the user to navigate among properties
in the resulting property sheet than to list individual properties in the pop-up menu.

The container or the composition of which a selection is a part typically supplies the pop-up menu as a selection.
Similarly, the commands included on a pop-up menu may not always be supplied by the object itself, but rather be a
combination of those commands provided by the object and by its current container. For example, the pop-up menu
for a file in a folder includes transfer commands. In this case, the folder (container) supplies the commands, not the
files. Pop-up menus for OLE objects follow these same conventions.

For more information about the integration of commands for OLE objects, see Chapter 11, "Working with OLE
Embedded and OLE Linked Objects."

Avoid using a pop-up menu as the exclusive means to a particular operation. At the same time, the items in a pop-up
menu need not be limited only to commands that are provided in drop-down menus.

When ordering the commands in a pop-up menu, use the following guidelines:

• Place the object's primary commands first (for example, commands such as Open, Play, and Print),
transfer commands, other commands supported by the object (whether provided by the object or by
its context), and the What's This? command (when supported).

• Order the transfer commands as Cut, Copy, Paste, and other specialized Paste commands.

• Place the Properties command, when present, as the last command on the menu.

Ebay Exhibit 1013, Page 640 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 7 Menus, Controls, and Toolbars 143

February 13, 1995

For more information about transfer commands and the Properties command, see Chapter 5, "General Interaction
Techniques." For more information about the What's This? command, see Chapter 12, "User Assistance."

Pop-up Menu Interaction
With a mouse, the user displays a pop-up menu by clicking an object with button 2. The down transition of the
mouse button selects the object. Upon the up transition, display the menu to the right and below the hot spot of the
pointer; this is adjusted to avoid the menu being clipped by the edge of the screen.

If the pointer is over an existing selection when the user invokes a pop-up menu, display the menu that applies to that
selection. If the menu is outside a selection but within the same selection scope, then establish a new selection
(usually resetting the current selection in that scope) at the button down point and display the menu for the new
selection. If the user clicks the button a second time within the same selection, remove the menu. Also, dismiss the
pop-up menu when the user clicks outside the menu with button 1 or if the user presses the ESC key.

You can support pop-up menus for objects that are implicitly selected or cannot be directly selected, such as scroll
bars or items in a status bar. When providing pop-up menus for objects such as controls, include commands for the
object that the control represents, rather than for the control itself. For example, a scroll bar represents a navigational
view of a document, so commands might include Beginning of Document, End of Document, Next Page, and
Previous Page. But when a control represents itself as an object, as in a forms layout or window design environment,
you can include commands that apply to the control—for example, commands to move or copy the control.

The pen interface uses an action handle in pen-enabled controls to access the pop-up menu for the selection. Tapping
the action handle displays the pop-up menu, as shown in Figure 7.3.

Figure 7.3 Pop-up menus with the pen interface

In addition, you can use techniques like barrel-tapping or the pop-up menu gesture to display a pop-up menu. This
interaction is equivalent to a mouse button 2 click.

For more information about pen interaction techniques, see Chapter 5, "General Interaction Techniques."

As for the keyboard interface for displaying a pop-up menu for a selection, support SHIFT+F10 and the "application
key" for keyboards that support the Microsoft Logo keys specification. In addition, menu access keys, arrow keys,
ENTER, and ESC keys all operate in the same fashion in the menu as they do in drop-down menus. To enhance space
and visual efficiency, avoid including shortcut keys in pop-up menus.

Ebay Exhibit 1013, Page 641 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 7 Menus, Controls, and Toolbars 143

February 13, 1995

Common Pop-up Menus
The pop-up menus included in any application depend on the objects and context supplied by that application. The
following sections describe common pop-up menus for all Windows-based applications.
The Window Pop-up Menu
The window pop-up menu is the pop-up menu associated with the window—do not confuse it with the Window
drop-down menu found in MDI applications. The window pop-up menu replaces the Windows 3.1 Control menu,
also referred to as the System menu. For example, a typical primary window includes Close, Restore, Move, Size,
Minimize, and Maximize.

You can also include other commands on the window's menu that apply to the window or the view within the
window. For example, an application can append a Split command to the menu to facilitate splitting the window into
panes. Similarly, you can add commands that affect the view, such as Outline, commands that add, remove, or filter
elements from the view, such as Show Ruler, or commands that open certain subordinate or special views in
secondary windows, such as Show Color Palette.

A secondary window also includes a pop-up menu. Usually, because the range of operations are more limited than in
a primary window, a secondary window's pop-up menu includes only Move and Close commands, or just Move.
Palette windows can also include an Always on Top command that sets the window to always be on top of its parent
window and secondary windows of its parent window.

The user displays a window's pop-up menu by clicking mouse button 2 anywhere in the title bar area, excluding the
title bar icon. Clicking on the title bar icon displays the pop-up menu for the icon. For the pen, performing barrel-
tapping or the equivalent pop-up menu gesture on these areas displays the menu. Pressing ALT+SPACEBAR also
displays the menu.

Note To support compatibility with previous versions of Windows, the system also supports clicking button 1 on the
icon in the title bar to access the pop-up menu of a window.

Icon Pop-up Menus
Pop-up menus displayed for icons include operations of the objects represented by those icons. Accessing the pop-up
menu of an application or document icon follows the standard conventions for pop-up menus, such as displaying the
menus with a mouse button 2 click.

An icon's container application supplies the pop-up menu for the icon. For example, pop-up menus for icons placed
in standard folders or on the desktop are automatically provided by the system. However, your application supplies
the pop-up menus for OLE embedded or linked objects placed in it — that is, placed in the document or data files
your application supports.

For more information about supporting pop-up menus for OLE objects, see Chapter 11, "Working with OLE
Embedded and OLE Linked Objects."

The container populates the pop-up menu for an icon with commands the container supplies for its content, such as
transfer commands and those registered by the object's type. For example, an application can register a New
command that automatically generates a new data file of the type supported by the application.

For more information about registering commands, see Chapter 10, "Integrating with the System."

The pop-up menu of an application's icon, for example, the Microsoft WordPad executable file, typically includes the
following commands.

Ebay Exhibit 1013, Page 642 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 7 Menus, Controls, and Toolbars 143

February 13, 1995

Table 7.1 Application File Icon Pop-up Menu Commands

Command Meaning

Open Opens the application file.

Send To Displays a submenu of destinations to which the file can be
transferred. The content of the submenu is based on the content of the
system's Send To folder.

Cut Marks the file for moving. (Registers the file on the Clipboard.)

Copy Marks the file for duplication. (Registers the file on the Clipboard.)

Paste Attempts to open the file registered on the Clipboard with the
application.

Create Shortcut Creates a shortcut icon of the file.

Delete Deletes the file.

Rename Allows the user to edit the filename.

Properties Displays the properties for the file.

An icon representing a document or data file typically includes the following common menu items for the pop-up
menu for its icon.

Table 7.2 Document or Data File Icon Pop-up Menu Commands

Command Meaning

Open Opens the file's primary window.

Print Prints the file on the current default printer.

Send To Displays a submenu of destinations to which the file can be
transferred. The content of the submenu is based on the content of the
system's Send To folder.

Cut Marks the file for moving. (Registers the file on the Clipboard.)

Copy Marks the file for duplication. (Registers the file on the Clipboard.)

Delete Deletes the file.

Rename Allows the user to edit the filename.

Properties Displays the properties for the file.

For the Open and Print commands to appear on the menu, your application must register these commands in the
system registry. You can also register additional or replacement commands. For example, you can optionally register
a Quick View command that displays the content of the file without running the application and a What's This?
command that displays descriptive information for your data file types.

For more information about registering commands and the Quick View command, see Chapter 10, "Integrating with
the System." For more information about the What's This? command, see Chapter 12, "User Assistance."

Ebay Exhibit 1013, Page 643 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 7 Menus, Controls, and Toolbars 143

February 13, 1995

The icon in the title bar of a window represents the same object as the icon the user opens. As a result, the
application associated with the icon also includes a pop-up menu with appropriate commands for the title bar's icon.
When the icon of an application appears in the title bar, include the same commands on its pop-up menu as are
included for the icon that the user opens, unless a particular command cannot be applied when the application's
window is open. In addition, replace the Open command with Close.

Similarly, when the icon of the data or document file appears in the title bar, you also use the same commands as
found on its file icon, with the following exceptions: replace the Open command with a Close command and add
Save if the edits in the document require explicit saving to file.

For an MDI application, supply a pop-up menu for the application icon in the parent window, following the
conventions for application title bar icons. Include the following commands where they apply.

Table 7.3 Optional MDI Parent Window Title Bar Icon Pop-up Menu Commands

Command Meaning

New Creates a new data file or displays a list of data file types supported
by the application from which the user can choose.

Save All Saves all data files open in the MDI workspace, and the state of the
MDI window.

Find Displays a window that allows the user to specify criteria to locate a
data file.

For more information about the design of MDI-style applications, see Chapter 9, "Window Management."

In addition, supply an appropriate pop-up menu for the title bar icon that appears in the child window's title bar. You
can follow the same conventions for non-MDI data files.

Cascading Menus
A cascading menu (also referred to as a hierarchical menu or child menu) is a submenu of a menu item. The visual
cue for a cascading menu is the inclusion of a triangular arrow display adjacent to the label of its parent menu item.

You can use cascading menus to provide user access to additional choices rather than taking up additional space in
the parent menu. They may also be useful for displaying hierarchically related objects.

Be aware that cascading menus can add complexity to the menu interface by requiring the user to navigate further
through the menu structure to get to a particular choice. Cascading menus also require more coordination to handle
the changes in direction necessary to navigate through them.

In light of these design tradeoffs, use cascading menus sparingly. Minimize the number of levels for any given menu
item, ideally limiting your design to a single submenu. Avoid using cascading menus for frequent, repetitive
commands.

As an alternative, make choices available in a secondary window, particularly when the choices are independent
settings; this allows the user to set multiple options in one invocation of a command. You can also support many
common options as entries on a toolbar.

Ebay Exhibit 1013, Page 644 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 7 Menus, Controls, and Toolbars 143

February 13, 1995

The user interaction for a cascading menu is similar to that of a drop-down menu from the menu bar, except a
cascading menu displays after a short time-out. This avoids the unnecessary display of the menu if the user is
browsing or navigating to another item in the parent menu. Once displayed, if the user moves the pointer to another
menu item, the cascading menu is removed after a short time-out. This time-out enables the user to directly drag
from the parent menu into an entry in its cascading menu.

Menu Titles
All drop-down and cascading menus have a menu title. For drop-down menus, the menu title is the entry that appears
in the menu bar. For cascading menus, the menu title is the name of the parent menu item. Menu titles represent the
entire menu and should communicate as clearly as possible the purpose of all items on the menu.

Use single words for menu bar menu titles. Multiple word titles or titles with spaces may be indistinguishable from
two one-word titles. In addition, avoid uncommon compound words, such as Fontsize.

Ebay Exhibit 1013, Page 645 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 7 Menus, Controls, and Toolbars 143

February 13, 1995

Define one character of each menu title as its access key. This character provides keyboard access to the menu.
Windows displays the access key for a menu title as an underlined character, as shown in Figure 7.4.

Figure 7.4 Access keys in a menu bar

Define unique access keys for each menu title. Using the same access key for more than one menu title may
eliminate direct access to a menu.

For more information about keyboard input and defining access keys, see Chapter 4, "Input Basics."

Menu Items
Menu items are the individual choices that appear in a menu. Menu items can be words, graphics — such as icons —
or graphics and word combinations that represent the actions presented in the menu, as shown in Figure 7.5. The
format for a menu item provides the user with visual cues about the nature of the effect it represents.

Figure 7.5 Different menu items

Whenever a menu contains a set of related menu items, you can separate those sets with a grouping line known as a
separator. The standard separator is a single line that spans the width of the menu. Avoid using menu items
themselves as group separators, as shown in Figure 7.6.

Figure 7.6 Inappropriate use of a separator

Ebay Exhibit 1013, Page 646 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 7 Menus, Controls, and Toolbars 143

February 13, 1995

Always provide the user with a visual indication about which menu items can be applied. If a menu item is not
appropriate or applicable in a particular context, then disable or remove it. Leaving the menu item enabled and
presenting a message box when the user selects the menu item is an ineffective method for providing feedback.

It is better to disable a menu item rather than remove it because this provides more stability in the interface.
However, if the context is such that the menu item is no longer or never relevant, remove it. For example, if a menu
displays a set of open files and one of those files is closed or deleted, it is appropriate to remove the corresponding
menu item.

If all items in a menu are disabled, disable its menu title. If you disable a menu item or its title, it does not prevent
the user from browsing or choosing it. If you provide status bar messages, display a message indicating that the
command is unavailable and why.

For more information about status bar messages, see Chapter 12, "User Assistance."

The system provides a standard appearance for displaying disabled menu items. If you are supplying your own
visuals for a disabled menu item, follow the visual design guidelines for how to display it with unavailable
appearance.

For more information about displaying commands with an unavailable appearance, see Chapter 13, "Visual Design."
Types of Menu Items
Many menu items take effect as soon as they are chosen. If the menu item is a command that requires additional
information prior to execution, follow the command with an ellipsis (...). The ellipsis informs the user that
information is incomplete. When it is used with a command, it indicates that the user needs to provide more
information to complete that command. Such commands usually result in the display of a dialog box. For example,
the Save As command includes an ellipsis because the command is not complete until the user supplies or confirms a
filename.

Ebay Exhibit 1013, Page 647 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 7 Menus, Controls, and Toolbars 143

February 13, 1995

Not every command that produces a dialog box or other secondary window needs to be listed with an ellipsis. For
example, the Properties command does not have an ellipsis after it because executing the Properties command
displays a properties window. After completing the command, no further parameters or actions are required to fulfill
the intent of the command. Similarly, do not include an ellipsis for a command that can result in the display of a
message box.

While you can use menu items to carry out commands, you can also use menu items to switch a mode or set a state
or property, rather than initiating a process. For example, choosing an item from a menu that contains a list of tools
or views implies changing to that state. If the menu item represents a property value, when the user chooses the menu
item, the property setting changes.

Menu items for state settings can be independent or interdependent:

• Independent settings are the menu equivalent of check boxes. For example, if a menu contains text
properties, such as Bold and Italic, they form a group of independent settings. The user can change
each setting without affecting the others, even though they both apply to a single text selection.
Include a check mark to the left of an independent setting when that state applies.

• Interdependent settings are the menu equivalent of option buttons. For example, if a menu contains
alignment properties such as Left, Center, and Right, they form a group of interdependent settings.
Because a particular paragraph can have only one type of alignment, choosing one resets the
property to be the chosen menu item setting. When the user chooses an interdependent setting,
place an option button mark to the left of that menu item.

In some cases, it is appropriate to reflect the change of a setting by changing the menu item, rather than adding a
graphic. If the two states of a setting are obvious opposites, such as the presence or absence of a property value, use a
check mark. For example, when reflecting the state of a text selection with a menu item labeled Bold, show a check
mark next to the menu item when the text selection is bold and no check mark when it is not. If a selection contains
mixed values for the same state reflected in the menu, you also display the menu without the check mark.

If the two states of the setting are not obvious opposites, use a pair of alternating menu item names to indicate the
two states. For example, a naive user might guess that the opposite of a menu item called Full Duplex is Empty
Duplex. Because of this ambiguity, pair the command with the alternative name Half Duplex, rather using a graphic
to indicate the alternative states, and consider the following guidelines for how to display those alternatives:

• If there is room in a menu, include both alternatives as individual menu items and interdependent
choices. This avoids confusion because the user can view both options simultaneously. You can
also use menu separators to group the choices.

• If there is not sufficient room in the menu for the alternative choices, you can use a single menu
item and change its name to the alternative action when selected. In this case, the menu item's
name does not reflect the current state; it indicates the state after choosing the item. Where
possible, define names that use the same access key. For example, the letter D could be used for a
menu item that toggles between Full Duplex and Half Duplex.

Note Avoid defining menu items that change depending on the state of a modifier key. Such techniques hide
functionality from a majority of users.

A menu can also have a default item. A default menu item reflects a choice that is also supported through a shortcut
technique, such as double-clicking or drag and drop. For example, if the default command for an icon is Open,
display this as the default menu item. Similarly, if the default command for a drag and drop operation is Copy,

Ebay Exhibit 1013, Page 648 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 7 Menus, Controls, and Toolbars 143

February 13, 1995

display this command as the default menu item in the pop-up menu that results from a nondefault drag and drop
operation (button 2). The system default appearance for designating a default menu item is to display the command
as bold text.

For more information about default operations, see Chapter 5, "General Interaction Techniques."
Menu Item Labels
Include a descriptive text or graphic label for each menu item. Even if you provide a graphic for the label, consider
including text as well. The text allows you to provide more direct keyboard access to the user.

Use the following guidelines for writing menu items:

• Define unique item names within a menu. However, item names can be repeated in different menus
to represent similar or different actions.

• Use a single word or multiple words, but keep the wording brief and succinct. Verbose menu item
names can make it harder for the user to scan the menu.

• Define unique access keys for each menu item within a menu. This provides the user direct
keyboard access to the menu item. The guidelines for selecting an access key for menu items are
the same as for menu titles, except that the access key for a menu item can also be a number
included at the beginning of the menu item name. This is useful for menu items that vary, such as
filenames. Where possible, also define consistent access keys for common commands.

Ebay Exhibit 1013, Page 649 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 7 Menus, Controls, and Toolbars 143

February 13, 1995

For more information about defining access keys, see Chapter 4, "Input Basics." For more information about
common access key assignments, see Appendix B, "Keyboard Interface Summary."

• Follow book title capitalization rules for menu item names. Capitalize the first letter of every word,
except for articles, conjunctions, and prepositions that occur other than at the beginning or end of a
multiple-word name. For example, the following menu names are correct: New Folder, Go To,
Select All, and Table of Contents.

• Avoid formatting individual menu item names with different text properties. Even though these
properties illustrate a particular text style, they also may make the menu cluttered, illegible, or
confusing. For example, it may be difficult to indicate an access key if an entire menu entry is
underlined.

Shortcut Keys in Menu Items
A drop-down menu item can also display a keyboard shortcut associated with the command. Display the shortcut key
on the menu next to the item and align shortcuts with other shortcuts in the menu. Typically, they are left aligned at
the first tab position after the longest item in the menu that has a shortcut. Do not use spaces for alignment because
they may not display properly in the proportional font used by the system to display menu text or when the font
setting menu text changes.

You can match key names with those commonly inscribed on the keycap. Display CTRL and SHIFT key combinations
as Ctrl+key (rather than Control+key or CONTROL+key or ^+key) and Shift+key. When using function keys for menu
item shortcuts, display the name of the key as Fn, where n is the function key number.

For more information about the selection of shortcut keys, see Chapter 4, "Input Basics."

Avoid including shortcut keys in pop-up menus. Pop-up menus are already a shortcut form of interaction and are
typically accessed with the mouse. In addition, excluding shortcut keys makes pop-up menus easier for users to scan.

Controls
Controls are graphic objects that represent the properties or operations of other objects. Some controls display and
allow editing of particular values. Other controls start an associated command.

Each control has a unique appearance and operation designed for a specific form of interaction. The system also
provides support for designing your own controls. When defining your own controls, follow the conventions
consistent with those provided by the system-supplied controls.

For more information about using standard controls and designing your own controls, see Chapter 13, "Visual
Design."

Like most elements of the interface, controls provide feedback indicating when they have the input focus and when
they are activated. For example, when the user interacts with controls using a mouse, each control indicates its
selection upon the down transition of the mouse button, but does not activate until the user releases the button, unless
the control supports auto-repeat.

Controls are generally interactive only when the pointer, also referred to as the hot spot, is over the control. If the
user moves the pointer off the control, the control no longer responds to the input device. For some controls, such as
scroll bars, the pointer is inactive when it is outside a defined hot zone of the control. If the user moves the pointer
back onto the control, it once again responds to the input device.

Many controls provide labels. Because labels help identify the purpose of a control, it is best to label a control. If a
control does not have a label, you can provide a label using a static text field or a tooltip control. Define an access

Ebay Exhibit 1013, Page 650 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 7 Menus, Controls, and Toolbars 143

February 13, 1995

key for text labels to provide the user direct keyboard access to a control. Where possible, define consistent access
keys for common commands.

For more information about access key assignments for common commands, see Appendix B, "Keyboard Interface
Summary."

While controls provide specific interfaces for user interaction, you can also include pop-up menus for controls. This
can provide an effective way to transfer the value the control represents or to provide access to context-sensitive
Help information. The interface to pop-up menus for controls follows the standard conventions for pop-up menus,
except that it does not affect the state of the control; that is, clicking the control with button 2 does not start the
control. The only action is the display of the pop-up menu.

A pop-up menu for a control is contextual to what the control represents, rather than the control itself. Therefore, do
not include commands such as Set, Unset, Check, or Uncheck. The exception is in a forms design or window layout
context, where the commands on the pop-up menu can apply to the control itself.

Buttons
Buttons are controls that start actions or change properties. There are three basic types of buttons: command buttons,
option buttons, and check boxes.

Ebay Exhibit 1013, Page 651 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 7 Menus, Controls, and Toolbars 143

February 13, 1995

Command Buttons
A command button, also referred to as a push button, is a control, commonly rectangular in shape, that includes a
label (text, graphic, or sometimes both), as shown in Figure 7.7.

Figure 7.7 Command buttons

When the user chooses a command button with mouse button 1 (for pens, tapping), the command associated with the
button is carried out. When the user presses the mouse button, the input focus moves to the button, and the button
state changes to its pressed appearance. If the user moves the pointer off the command button while the mouse button
remains pressed, the button returns to its original state. Moving the pointer back over the button while pressing the
mouse button returns the button to its pressed state.

When the user releases the mouse button with the pointer on the command button, the command associated with the
control starts. If the pointer is not on the control when the user releases the mouse button, no action occurs.

You can define access keys and shortcut keys for command buttons. In addition, you can use the TAB key and arrow
keys to support user navigation to or between command buttons. The SPACEBAR activates a command button if the
user moves the input focus to the button.

For more information about navigation and activation of controls, see Chapter 8, "Secondary Windows."

The effect of choosing a button is immediate with respect to its context. For example, in toolbars, clicking a button
carries out the associated action. In a secondary window, such as a dialog box, activating a button may initiate a
transaction within the window, or apply a transaction and close the window.

The command button's label represents the action the button starts. When using a text label, the text should follow
the same capitalization conventions defined for menus. If the control is unavailable, the label of the button is
displayed as unavailable.

Include an ellipsis (...) as a visual cue for buttons associated with commands that require additional information. Like
menu items, the use of an ellipsis indicates that further information is needed, not simply that a window will appear.
Some buttons, when clicked, can display a message box, but this does not imply that the command button's label
should include an ellipsis.

You can use command buttons to enlarge a secondary window and display additional options, also known as an
unfold button. An unfold button is not really a different type of control, but the use of a command button for this
specific function. When using a command button for this purpose, include a pair of "greater than" (>>) characters as
part of the button's label.

For more information about the use of an ellipsis in a button label and unfold buttons in secondary windows, see
Chapter 8, "Secondary Windows."

In some cases, a command button can represent an object and its default action. For example, the taskbar buttons
represent an object's primary window and the Restore command. When the user clicks on the button with mouse
button 1, the default command of the object is carried out. Clicking on the button with mouse button 2 displays a
pop-up menu associated with the object.

Ebay Exhibit 1013, Page 652 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 7 Menus, Controls, and Toolbars 143

February 13, 1995

You can also use command buttons to reflect a mode or property value similar to the use of option buttons or check
boxes. While the typical interaction for a command button is to return to its normal "up" state, if you use it to
represent a state, display the button in the option-set appearance, which is a checkerboard pattern in the button's
highlight color on the background of the button, as shown in Table 7.4.

Table 7.4 Command Button Appearance

Visual Representation

Normal appearance

Pressed appearance

Option-set appearance

Unavailable appearance

Option-set, unavailable appearance

Mixed-value appearance

Input focus appearance

For more information about the appearance of different states of buttons, see Chapter 13, "Visual Design."

Ebay Exhibit 1013, Page 653 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 7 Menus, Controls, and Toolbars 143

February 13, 1995

You can also use command buttons to set tool modes — for example, in drawing or forms design programs for
drawing out specific shapes or controls. In this case, design the button labels to reflect the tool's use. When the user
chooses the tool (that is, clicks the button), the button is displayed using the option-set appearance and the pointer is
changed to indicate the change of the mode of interaction.

You can also use a command button to display a pop-up menu. This convention is known as a menu button. While
this is not a specific control provided by the system, you can create this interface using the standard components.

A menu button looks just like a standard command button, except that, as a part of its label, it includes a triangular
arrow similar to the one found in cascading menu titles, as shown in Figure 7.8.

Figure 7.8 A menu button

A menu button supports the same type of interaction as a drop-down menu; the menu is displayed when the button is
pressed and allows the user to drag into the menu from the button and make menu selections. Like any other menu,
use highlighting to track the movement of the pointer.

Similarly, when the user clicks a menu button, the menu is displayed. At this point, interaction with the menu is the
same as with any menu. For example, clicking a menu item carries out the associated command. Clicking outside the
menu or on the menu button removes the menu.

Ebay Exhibit 1013, Page 654 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 7 Menus, Controls, and Toolbars 143

February 13, 1995

When pressed, display the menu button with the pressed appearance. When the user releases the mouse button and
the menu is displayed, the command button uses the option-set appearance — a checkerboard appearance using the
button's highlight color on the background of the button. Otherwise, the menu button's appearance is the same as a
typical command button. For example, if the button is unavailable, the button displays the unavailable appearance.

For more information about the appearance of button states, see Chapter 13, "Visual Design."
Option Buttons
An option button, also referred to as a radio button, represents a single choice within a limited set of mutually
exclusive choices — that is, in any group of option buttons, only one option in the group can be set. Accordingly,
always group option buttons in sets of two or more, as shown in Figure 7.9.

Figure 7.9 A set of option buttons

Option buttons appear as a set of small circles. When an option button choice is set, a dot appears in the middle of
the circle. When the choice is not the current setting, the circle is empty. Avoid using option buttons to start an action
other than the setting of a particular option or value represented by the option button. The only exception is that you
can support double-clicking the option button as a shortcut for setting the value and carrying out the default
command of the window in which the option buttons appear, if choosing an option button is the primary user action
for the window.

You can use option buttons to represent a set of choices for a particular property. When the option buttons reflect a
selection with mixed values for that property, display all the buttons in the group using the mixed-value appearance
to indicate that multiple values exist for that property. The mixed-value appearance for a group of option buttons
displays all buttons without a setting dot, as shown in Figure 7.10.

Figure 7.10 Option buttons with mixed-value appearance

If the user chooses any option button in a group with mixed-value appearance, that value becomes the setting for the
group; the dot appears in that button and all the other buttons in the group remain empty.

Limit the use of option buttons to small sets of options, typically seven or less, but always at least two. If you need
more choices, consider using another control, such as a single selection list box or drop-down list box.

Option buttons include a text label. (If you need graphic labels for a group of exclusive choices, consider using
command buttons instead.) Define the label to best represent the value or effect for that choice. Also use the label to
indicate when the choice is unavailable. Use sentence capitalization for an option button's label; only capitalize the
first letter of the first word, unless it is a word in the label normally capitalized.

Ebay Exhibit 1013, Page 655 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 7 Menus, Controls, and Toolbars 143

February 13, 1995

For more information about labeling or appearance states, see Chapter 13, "Visual Design."

Because option buttons appear as a group, you can use a group box control to visually define the group. You can
label the option buttons to be relative to a group box's label. For example, for a group box labeled Alignment, you
can label the option buttons as Left, Right, and Center.

As with command buttons, the mouse interface for choosing an option button uses a click with mouse button 1 (for
pens, tapping) either on the button's circle or on the button's label. The input focus is moved to the option button
when the user presses the mouse button, and the option button displays its pressed appearance. If the user moves the
pointer off the option button before releasing the mouse button, the option button is returned to its original state. The
option is not set until the user releases the mouse button while the pointer is over the control. Releasing the mouse
button outside of the option button or its label has no effect on the current setting of the option button. In addition,
successive mouse clicks on the same option button do not toggle the button's state; the user needs to explicitly select
an alternative choice in the group to change or restore a former choice.

Assign access keys to option button labels to provide a keyboard interface to the buttons. You can also define the
TAB or arrow keys to allow the user to navigate and choose a button.

For more information about the guidelines for defining access keys, see Chapter 4, "Input Basics." For more
information about navigation and interaction with option buttons, see Chapter 8, "Secondary Windows."

Ebay Exhibit 1013, Page 656 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 7 Menus, Controls, and Toolbars 143

February 13, 1995

Check Boxes
Like option buttons, check boxes support options that are either on or off; check boxes differ from option buttons in
that you typically use check boxes for independent or nonexclusive choices. A check box appears as a square box
with an accompanying label. When the choice is set, a check mark appears in the box. When the choice is not set, the
check box is empty, as shown in Figure 7.11.

Figure 7.11 A set of check boxes

As in the case of independent settings in menus, use check boxes only when both states of the choice are clearly
opposite and unambiguous. If this is not the case, then use option buttons or some other form of single selection
choice control instead.

A check box's label is typically in text and the standard control includes a label. (Use a command button instead of a
check box when you need a nonexclusive choice with a graphic label.) Define the label to appropriately express the
value or effect of the choice. Use sentence capitalization for multiple word labels. The label also serves as an
indication of when the control is unavailable.

Group related check box choices. If you group check boxes, it does not prevent the user from setting the check boxes
on or off in any combination. While each check box's setting is typically independent of the others, you can use a
check box's setting to affect other controls. For example, you can use the state of a check box to filter the content of a
list. If you have a large number of choices or if the number of choices varies, use a multiple selection list box instead
of check boxes.

When the user clicks a check box with mouse button 1 (for pens, tapping) either on the check box square or on the
check box's label, that button is chosen and its state is toggled. When the user presses the mouse button, the input
focus moves to the control and the check box assumes its pressed appearance. Like option buttons and other controls,
if the user moves the pointer off the control while holding down the mouse button, the control's appearance returns to
its original state. The setting state of the check box does not change until the mouse button is released. To change the
control's setting, the pointer must be over the check box or its label when the user releases the mouse button.

Define access keys for check box labels to provide a keyboard interface for navigating to and choosing a check box.
In addition, the TAB key and arrow keys can also be supported to provide user navigation to or between check boxes.
In a dialog box, for example, the SPACEBAR toggles a check box when the input focus is on the check box.

For more information about the guidelines for defining access keys, see Chapter 4, "Input Basics." For more
information about navigation and choosing controls with the keyboard, see Chapter 8, "Secondary Windows."

If you use a check box to display the value for the property of a multiple selection whose values for that property
differ (for example, for a text selection that is partly bold), display the check box in its mixed-value appearance, a
checkerboard pattern inside the box, as shown in Figure 7.12.

Ebay Exhibit 1013, Page 657 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 7 Menus, Controls, and Toolbars 143

February 13, 1995

Figure 7.12 A mixed-value check box (magnified)

If the user chooses a check box in the mixed-value state, the associated value is set and a check mark is placed in it.
This implies that the property of all elements in the multiple selection will be set to this value when it is applied. If
the user chooses the check box again, the setting to be unchecked is toggled. If applied to the selection, the value will
not be set. If the user chooses the check box a third time, the value is toggled back to the mixed-value state. When
the user applies the value, all elements in the selection retain their original value. This three-state toggling occurs
only when the control represents a mixed set of values.

List Boxes
A list box is a convenient, preconstructed control for displaying a list of choices for the user. The choices can be text,
color, icons, or other graphics. The purpose of a list box is to display a collection of items and, in most cases, support
selection of a choice of an item or items in the list.

List boxes are best for displaying large numbers of choices that vary in number or content. If a particular choice is
not available, omit the choice from the list. For example, if a point size is not available for the currently selected font,
do not display that size in the list.

Order entries in a list using the most appropriate choice to represent the content in the list and to facilitate easy user
browsing. For example, alphabetize a list of filenames, but put a list of dates in chronological order. If there is no
natural or logical ordering for the content, use ascending or alphabetical ordering — for example, 0 – 9 or A – Z.

List box controls do not include their own labels. However, you can include a label using a static text field; the label
enables you to provide a descriptive reference for the control and keyboard access to the control. Use sentence
capitalization for multiple word labels and make certain that your support for keyboard access moves the input focus
to the list box and not the static text field label.

For more information about navigation to controls in a secondary window, see Chapter 8, "Secondary Windows."
For more information about defining access keys for control labels, see Chapter 4, "Input Basics." For more
information about static text fields, see the section, "Static Text Fields," later in this chapter.

When a list box is disabled, display its label using an unavailable appearance. If possible, display all of the entries in
the list as unavailable to avoid confusing the user as to whether the control is enabled or not.

The width of the list box should be sufficient to display the average width of an entry in the list. If that is not
practical because of space or the variability of what the list might include, consider one or more of the following
options:

• Make the list box wide enough to allow the entries in the list to be sufficiently distinguished.

• Use an ellipsis (...) in the middle or at the end of long text entries to shorten them, while preserving
the important characteristics needed to distinguish them. For example, for long paths, usually the
beginning and end of the path are the most critical; you can use an ellipsis to shorten the entire
name: \Sample\...\Example.

Ebay Exhibit 1013, Page 658 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 7 Menus, Controls, and Toolbars 143

February 13, 1995

• Include a horizontal scroll bar. This option reduces some usability, because adding the scroll bar
reduces the number of entries the user can view at one time. In addition, if most entries in the list
box do not need to be horizontally scrolled, including a horizontal scroll bar accommodates the
infrequent case.

When the user clicks an item in a list box, it becomes selected. Support for multiple selection depends on the type of
list box you use. List boxes also include scroll bars when the number of items in the list exceeds the visible area of
the control.

Arrow keys also provide support for selection and scrolling a list box. In addition, list boxes include support for
keyboard selection using text keys. When the user presses a text key, the list navigates and selects the matching item
in the list, scrolling the list if necessary to keep the user's selection visible. Subsequent key presses continue the
matching process. Some list boxes support sequential matches based on timing; each time the user presses a key, the
control matches the next character in a word if the user presses the key within the system's time-out setting. If the
time-out elapses, the control is reset to matching upon the first character. Other list box controls, such as combo
boxes and drop-down combo boxes, do sequential character matching based on the characters typed into the text box
component of the control. These controls may be preferable because they do not require the user to master the timing
sequence. However, they do take up more space and potentially allow the user to type in entries that do not exist in
the list box.

Ebay Exhibit 1013, Page 659 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 7 Menus, Controls, and Toolbars 143

February 13, 1995

When the list is scrolled to the beginning or end of data, disable the corresponding scroll bar arrow button. If all
items in the list are visible, disable both scroll arrows. If the list box never includes more items that can be shown in
the list box, so that the user will not need to scroll the list, you may remove the scroll bar.

For more information about disabling scroll bar arrows, see Chapter 6, "Windows."

When incorporating a list box into a window's design, consider supporting both command (Cut, Copy and Paste) and
direct manipulation (drag and drop) transfers for the list box. For example, if the list displays icons or values that the
user can move or copy to other locations, such as another list box, support transfer operations for the list. The list
view control automatically supports this; however, the system provides support for you to enable this for other list
boxes as well.

List boxes can be classified by how they display a list and by the type of selection they support.
Single Selection List Boxes
A single selection list box is designed for the selection of only one item in a list. Therefore, the control provides a
mutually exclusive operation similar to a group of option buttons, except that a list box can more efficiently handle a
large number of items.

Define a single selection list box to be tall enough to show at least three to eight choices, as shown in Figure 7.13—
depending on the design constraints of where the list box is used. Always include a vertical scroll bar. If all the items
in the list are visible, then follow the window scroll bar guidelines for disabling the scroll arrows and enlarging the
scroll box to fill the scroll bar shaft.

Figure 7.13 A single selection list box

The currently selected item in a single selection list box is highlighted using selection appearance.

Ebay Exhibit 1013, Page 660 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 7 Menus, Controls, and Toolbars 143

February 13, 1995

The user can select an entry in a single selection list box by clicking on it with mouse button 1 (for pens, tapping).
This also sets the input focus on that item in the list. Because this type of list box supports only single selection,
when the user chooses another entry any other selected item in the list becomes unselected. The scroll bar in the list
box allows the mouse user to scroll through the list of entries, following the interaction defined for scroll bars.

For more information about the interaction techniques of scroll bars, see Chapter 6, "Windows."

The keyboard interface uses navigation keys, such as the arrow keys, HOME, END, PAGE UP, and PAGE DOWN. It also
uses text keys, with matches based on timing; for example, when the user presses a text key, an entry matching that
character scrolls to the top of the list and becomes selected. These keys not only navigate to an entry in the list, but
also select it. If no item in the list is currently selected, when the user chooses a navigation key, the first item in the
list that corresponds to that key is selected. For example, if the user presses the DOWN ARROW key, the first entry in
the list is selected, instead of navigating to the second item in the list.

If the choices in the list box represent values for the property of a selection, then make the current value visible and
highlighted when displaying the list. If the list box reflects mixed values for a multiple selection, then no entry in the
list should be selected.
Drop-down List Boxes
Like a single selection list box, a drop-down list box provides for the selection of a single item from a list of items;
the difference is that the list is displayed upon demand. In its closed state, the control displays the current value for
the control. The user opens the list to change the value. Figure 7.14 shows the drop-down list box in its closed and
opened state.

Figure 7.14 A drop-down list box (closed and opened state)

While drop-down list boxes are an effective way to conserve space and reduce clutter, they require more user
interaction for browsing and selecting an item than a single selection list box.

Ebay Exhibit 1013, Page 661 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 7 Menus, Controls, and Toolbars 143

February 13, 1995

Make the width of a closed drop-down list box a few spaces larger than the average width of the items in its list. The
open list component of the control should be tall enough to show three to eight items, following the same
conventions of a single selection list box. The width of the list should be wide enough not only to display the choices
in the list, but also to allow the user to drag directly into the list.

The interface for drop-down list boxes is similar to that for menus. For example, the user can press the mouse button
on the current setting portion of the control or on the control's menu button to display the list. Choosing an item in
the list automatically closes the list.

If the user navigates to the control using an access key, the TAB key or arrow keys, an UP ARROW or DOWN ARROW,
or ALT+UP ARROW or ALT+DOWN ARROW displays the list. Arrow keys or text keys navigate and select items in the
list. If the user presses ALT+UP ARROW, ALT+DOWN ARROW, a navigation key, or an access key to move to another
control, the list automatically closes. When the list is closed, preserve any selection made while the list was open.

If the choices in a drop-down list represent values for the property of a multiple selection and the values for that
property are mixed, then display no value in the current setting component of the control.
Extended and Multiple Selection List Boxes
Although most list boxes are single selection lists, some contexts require the user to choose more than one item.
Extended selection list boxes and multiple selection list boxes support this functionality.

Extended and multiple selection list boxes follow the same conventions for height and width as single selection list
boxes. The height should display no less than three items and generally no more than eight, unless the size of the list
varies with the size of the window. Base the width of the box on the average width of the entries in the list.

Extended selection list boxes support conventional navigation, and contiguous and disjoint selection techniques. That
is, extended selection list boxes are optimized for selecting a single item or a single range, while still providing for
disjoint selections.

For more information about contiguous and disjoint selection techniques, see Chapter 5, "General Interaction
Techniques."

When you want to support user selection of several disjoint entries from a list, but an extended selection list box is
too cumbersome, you can define a multiple selection list box. Whereas extended selection list boxes are optimized
for individual item or range selection, multiple selection list boxes are optimized for independent selection.

Ebay Exhibit 1013, Page 662 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 7 Menus, Controls, and Toolbars 143

February 13, 1995

Precede each item in a multiple selection list box with a check box, as shown in Figure 7.15. This appearance helps
the user to distinguish the difference in the interface of the list box with a familiar convention. It also serves to
differentiate keyboard navigation from the state of a choice. Because the check box controls are nested, you use the
flat appearance style for the check boxes.

For more information about the flat appearance style for controls in a list box, see Chapter 13, "Visual Design."

Figure 7.15 A multiple selection list box

List View Controls
A list view control is a special extended selection list box that displays a collection of items, each item consisting of
an icon and a label. List view controls can display content in four different views.

View Description
Icon Each item appears as a full-sized icon with a label below it. The user can

drag the icons to any location within the view.

Small Icon Each item appears as a small icon with its label to the right. The user can
drag the icons to any location within the view.

List Each item appears as a small icon with its label to the right. The icons
appear in a columnar, sorted layout.

Report Each item appears as a line in a multicolumn format with the leftmost
column including the icon and its label. The subsequent columns contain
information supplied by the application displaying the list view control.

The control also supports options for alignment of icons, selection of icons, sorting of icons, and editing of the icon's
labels. It also supports drag and drop interaction.

Use this control where the representation of objects as icons is appropriate. In addition, provide pop-up menus on the
icons displayed in the views. This provides a consistent paradigm for how the user interacts with icons elsewhere in
the Windows interface.

Selection and navigation in this control work similarly to that in folder windows. For example, clicking on an icon
selects it. After selecting the icon, the user can use extended selection techniques, including region selection, for
contiguous or disjoint selections. Arrow keys and text keys (time-out based matching) support keyboard navigation
and selection.
Tree View Controls
A tree view control is a special list box control that displays a set of objects as an indented outline based on their
logical hierarchical relationship. The control includes buttons that allow the outline to be expanded and collapsed, as

Ebay Exhibit 1013, Page 663 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 7 Menus, Controls, and Toolbars 143

February 13, 1995

shown in Figure 7.16. You can use a tree view control to display the relationship between a set of containers or other
hierarchical elements.

Figure 7.16 A tree view control

You can optionally include images with the text label of each item in the tree. Different images can be displayed
when the user expands or collapses the item to reflect different state information.

The control supports drawing lines that define the hierarchical relationship of the items in the list and buttons for
expanding and collapsing the outline. It is best to include these features (even though they are optional) because they
make it easier for the user to interpret the outline.

Arrow keys provide keyboard support for navigation through the control; the user presses UP ARROW and DOWN

ARROW to move between items and LEFT ARROW and RIGHT ARROW to move along a particular branch of the outline.
Pressing RIGHT ARROW can also expand the outline at a branch if it is not currently displayed. Text keys can also be
used to navigate and select items in the list, using the matching technique based on timing.

When you use this control in a dialog box, if you press the ENTER key or use double-clicking to carry out the default
command for an item in the list, make certain that the default command button in your dialog box matches. For
example, if you use double-clicking an entry in the outline to display the item's properties, then define a Properties
button to be the default command button in the dialog box when the tree view control has the input focus.

Text Fields
Windows includes a number of controls that facilitate the display, entry, or editing of a text value. Some of these
controls combine a basic text entry field with other types of controls.

Text fields do not include labels as a part of the control. However, you can add one using a static text field. Including
a label helps identify the purpose of a text field and provides a means of indicating when the field is disabled. Use
sentence capitalization for multiple word labels. You can also define access keys for the text label to provide
keyboard access to the text field. When using a static text label, define keyboard access to move the input focus to
the text field with which the label is associated rather than the static text field itself. You can also support keyboard
navigation to text fields by using the TAB key (and, optionally, arrow keys).

Ebay Exhibit 1013, Page 664 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 7 Menus, Controls, and Toolbars 143

February 13, 1995

For more information about static text fields, see the section, "Static Text Fields," later in this chapter. For more
information about validation of input, see Chapter 8, "Secondary Windows." For more information about the visual
presentation of read-only text fields, see Chapter 13, "Visual Design."

When using a text field for input of a restricted set of possible values, for example, a field where only numbers are
appropriate, validate user input immediately, either by ignoring inappropriate characters or by providing feedback
indicating that the value is invalid or both.

You can use text fields to display information that is read-only; that is, text that can be displayed, but not directly
edited by a user. However, you can support selection of text in a read-only text field.
Text Boxes
A text box (also referred to as an edit control) is a rectangular control where the user enters or edits text, as shown in
Figure 7.17. It can be defined to support a single line or multiple lines of text. The outline border of the control is
optional, although the border is typically displayed in a toolbar or a secondary window.

Figure 7.17 A standard text box

The standard text box control provides basic text input and editing support. Editing includes the insertion or deletion
of characters and the option of text wrapping. Although individual font or paragraph properties are not supported, the
entire control can support a specific font setting.

A text box supports standard interactive techniques for navigation and contiguous selection. Horizontal scrolling is
available for single line text boxes, and horizontal and vertical scroll bars are supported for multiple line text boxes.

You can limit the number of characters accepted as input for a text box to whatever is appropriate for the context. In
addition, text boxes defined for fixed-length input can also support auto-exit; that is, as soon as the last character is
typed in the text box, the focus moves to the next control. For example, you can define a five-character auto-exit text
box to facilitate the entry of zip code, or three two-character auto-exit text boxes to support the entry of a date. Use
auto-exit text boxes sparingly; the automatic shift of focus can surprise the user. They are best limited to situations
involving extensive data entry.
Rich-Text Boxes
A rich-text box, as shown in Figure 7.18, provides the same basic text editing support as a standard text box. In
addition, a rich-text box supports font properties, such as typeface, size, color, bold, and italic format, for each
character and paragraph format properties, such as alignment, tabs, indents, and numbering. The control also
supports printing of its content and embedding of OLE objects.

For more information about OLE embedded and linked objects, see Chapter 11, "Working with OLE Embedded and
OLE Linked Objects."

Ebay Exhibit 1013, Page 665 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 7 Menus, Controls, and Toolbars 143

February 13, 1995

Figure 7.18 A rich-text box

Ebay Exhibit 1013, Page 666 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 7 Menus, Controls, and Toolbars 143

February 13, 1995

Combo Boxes
A combo box is a control that combines a text box with a list box, as shown in Figure 7.19. This allows the user to
type in an entry or choose one from the list.

Figure 7.19 A combo box

The text box and its associated list box have a dependent relationship. As text is typed into the text box, the list
scrolls to the nearest match. In addition, when the user selects an item in the list box, it automatically uses that entry
to replace the content of the text box and selects the text.

The interface for the control follows the conventions supported for each component, except that the UP ARROW and
DOWN ARROW keys move only in the list box.
Drop-down Combo Boxes
A drop-down combo box, as shown in Figure 7.20, combines the characteristics of a text box with a drop-down list
box. A drop-down combo box is more compact than a regular combo box; it can be used to conserve space. The
tradeoff to conserve the space is the additional user interaction required to display the list.

Figure 7.20 A drop-down combo box (closed and opened state)

The closed state of a drop-down combo box is similar to that of a drop-down list, except that the text box is
interactive. When the user clicks the control's menu button the list is opened. Clicking the menu button a second
time, choosing an item in the list, or clicking another control closes the list. Pressing the access key or shortcut key
for the control navigates to the control. You can also support the TAB key or arrow keys for navigation to the control.
When the control has the input focus, when the user presses the UP ARROW or DOWN ARROW or ALT+UP ARROW or
ALT+DOWN ARROW key, the list is displayed.

When the control has the input focus, pressing a navigation key, such as the TAB key, or an access key or ALT+UP
ARROW or ALT+DOWN ARROW to navigate to another control closes the list. When the list is closed, preserve any
selection made while the list was open, unless the user presses a Cancel command button.

Ebay Exhibit 1013, Page 667 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 7 Menus, Controls, and Toolbars 143

February 13, 1995

When the list is displayed, the interdependent relationship between the text box and list is the same as it is for
standard combo boxes when the user types text into the text box. When the user chooses an item in the list, the
interaction is the same as for drop-down lists; the selected item becomes the entry in the text box.
Spin Boxes
Spin boxes are text boxes that accept a limited set of discrete ordered input values that make up a circular loop. A
spin box is a combination of a text box and a special control that incorporates a pair of buttons (also known as an up-
down control), as shown in Figure 7.21.

Figure 7.21 A spin box

When the user clicks on the text box or the buttons, the input focus is set to the text box component of the control.
The user can type a text value directly into the control or use the buttons to increment or decrement the value. The
unit of change depends on what you define the control to represent.

Use caution when using the control in situations where the meaning of the buttons may be ambiguous. For example,
with numeric values, such as dates, it may not be clear whether the top button increments the date or changes to the
previous date. Define the top button to increase the value by one unit and the bottom button to decrease the value by
one unit. Typically, wrap around at either end of the set of values. You may need to provide some additional
information to communicate how the buttons apply.

By including a static text field as a label for the spin box and defining an associated access key, you can provide
direct keyboard access to the control. You can also support keyboard access using the TAB key (or, optionally, arrow
keys). Once the control has the input focus, the user can change the value by pressing UP ARROW or DOWN ARROW.

You can also use a single set of spin box buttons to edit a sequence of related text boxes, for example, time as
expressed in hours, minutes, and seconds. The buttons affect only the text box that currently has the input focus.
Static Text Fields
You can use static text fields to present read-only text information. At the same time, your application can still alter
read-only text to reflect a change in state. For example, you can use static text to display the current directory path or
the status information such as page number, key states, or time and date. Figure 7.22 illustrates a static text field.

Figure 7.22 A static text field

You can also use static text fields to provide labels or descriptive information for other controls. Using static text
fields as labels for other controls allows you to provide access-key activation for the control with which it is
associated. Make certain that the input focus moves to its associated control and not to the static field.
Shortcut Key Input Controls
A shortcut key input control (also known as a hot key control) is a special kind of text box to support user input of a
key or key combination to define a shortcut key assignment. Use it when you provide an interface for the user to
customize shortcut keys supported by your application. Because shortcut keys carry out a command directly, they
provide a more efficient interface for common or frequently used actions.

For more information about the use of shortcut keys, see Chapter 4, "Input Basics."

Ebay Exhibit 1013, Page 668 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 7 Menus, Controls, and Toolbars 143

February 13, 1995

The control allows you to define invalid keys or key combinations to ensure valid user input; the control will only
access valid keys. You also supply a default modifier to use when the user enters an invalid key. The control displays
the valid key or key combination including any modifier keys.

When the user clicks a shortcut key input control, the input focus is set to the control. Like most text boxes, the
control does not include its own label, so use a static text field to provide a label and assign an appropriate access
key. You can also support the TAB key to provide keyboard access to the control.

Ebay Exhibit 1013, Page 669 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 7 Menus, Controls, and Toolbars 143

February 13, 1995

Other General Controls
The system also provides support for controls designed to organize other controls and controls for special types of
interfaces.
Group Boxes
A group box is a special control you can use to organize a set of controls. A group box is a rectangular frame with an
optional label that surrounds a set of controls, as shown in Figure 7.23. Group boxes generally do not directly
process any input. However, you can provide navigational access to items in the group using the TAB key or by
assigning an access key to the group label.

Figure 7.23 A group box

You can make the label for controls that you place in a group box relative to the group box's label. For example, a
group labeled Alignment can have option buttons labeled Left, Right, and Center. Use sentence capitalization for a
multiple word label.
Column Headings
Using a column heading control, also known as a header control, you can display a heading above columns of text or
numbers. You can divide the control into two or more parts to provide headings for multiple columns, as shown in
Figure 7.24. The list view control also provides support for a column heading control.

Figure 7.24 A column heading divided into four parts

You can configure each part to behave like a command button to support user tasks, such as sorting a list by clicking
on a particular header part. For example, the user could sort the list displayed in Figure 7.24 by size by clicking on
the Size header part.

Ebay Exhibit 1013, Page 670 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 7 Menus, Controls, and Toolbars 143

February 13, 1995

Each header part label can include text and a graphic image. Use the graphic image to show information such as the
sort direction. You can align the title elements to be left, right, or centered. The control also supports the user
dragging on the divisions that separate header parts to set the width of each column.
Tabs
A tab control is analogous to a divider in a file cabinet or notebook, as shown in Figure 7.25. You can use this
control to define multiple logical pages or sections of information within the same window.

Figure 7.25 A tab control

By default, a tab control displays only one row of tabs. If you need more tabs, the control supports multiple rows.
You can also use other controls to scroll a set of tabs. But if it is important for the user to see the full range of tabs at
one time, the multiple row design works better.

Tab labels can include text or graphic information, or both. Usually, the control automatically sizes the tab to the size
of its label; however, you can define your tabs to have a fixed width. It is best to use the system font for the text
labels of your tabs and use sentence capitalization for multiple word labels. If you use only graphics as your tab
label, support tooltips for your tabs.

For more information about tooltips, see Chapter 12, "User Assistance."

When the user clicks a tab with mouse button 1, the input focus moves and switches to that tab. When a tab has the
input focus, LEFT ARROW or RIGHT ARROW keys move between tabs. CTRL+TAB also switches between tabs.
Optionally, you can also define access keys for navigating between tabs. If the user switches pages using the tab, you
can place the input focus on the particular control on that page. If there is no appropriate control or field in which to
place the tab, leave the input focus on the tab itself.
Property Sheet Controls
A property sheet control provides the basic framework for defining a property sheet. It provides the common
controls used in a property sheet and accepts modeless dialog box layout definitions to automatically create tabbed
property pages.

For more information about property sheets, see Chapter 8, "Secondary Windows."
Scroll Bars
Scroll bars are horizontal or vertical scrolling controls you can use to create scrollable areas other than on the
window frame or list box where they can be automatically included. Use scroll bar controls only for supporting
scrolling contexts. For contexts where you want to provide an interface for setting or adjusting values, use a slider or
other control, such as a spin box. Because scroll bars are designed for scrolling information, using a scroll bar to set
values inconsistently may confuse the user as to the purpose or interaction of the control.

When using scroll bar controls, follow the recommended conventions for disabling the scroll bar arrows. Disable a
scroll bar arrow button when the user scrolls the information to the beginning or end of the data, unless the structure
permits the user to scroll beyond the data. For more information about scroll bar conventions, see Chapter 6,
"Windows."

While scroll bar controls can support the input focus, avoid defining this type of interface. Instead, define the
keyboard interface of your scrollable area so that it can scroll without requiring the user to move the input focus to a

Ebay Exhibit 1013, Page 671 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 7 Menus, Controls, and Toolbars 143

February 13, 1995

scroll bar. This makes your scrolling interface more consistent with the user interaction for window and list box
scroll bars.
Sliders
Use a slider for setting or adjusting values on a continuous range of values, such as volume or brightness. A slider is
a control, sometimes called a trackbar control, that consists of a bar that defines the extent or range of the adjustment,
and an indicator that both shows the current value for the control and provides the means for changing the value, as
shown in Figure 7.26.

Figure 7.26 A slider

The user can move the slide indicator by dragging to a particular location or clicking in the hot zone area of the bar,
which moves the slide indicator directly to that location. To provide keyboard interaction, support the TAB key and
include a static text label for access key navigation. Use sentence capitalization for a multiple word label. When the
control has the input focus, arrow keys can be used to move the slide indicator in the respective direction represented
by the key.

Sliders support a number of options. You can set the slider orientation as vertical or horizontal, define the length and
height of the slide indicator and the slide bar component, define the increments of the slider, and whether to display
tick marks for the control.

Because a slider does not include its own label, use a static text field to create one. You can also add text and
graphics to the control to help the user interpret the scale and range of the control.
Progress Indicators
A progress indicator is a control, also known as a progress bar control, you can use to show the percentage of
completion of a lengthy operation. It consists of a rectangular bar that "fills" from left to right, as shown in Figure
7.27.

Figure 7.27 A progress indicator

Because a progress indicator only displays information, it is typically noninteractive. However, it may be useful to
add static text or other information to help communicate the purpose of the progress indicator. You can use progress
indicators in message boxes and status bars depending on how modal the operation or process the progress indicator
represents. Use the control as feedback for long operations or background processes as a supplement to changing the
pointer. The control provides more visual feedback to the user about the progress of the process. You can also use
the control to reflect the progression of a background process, leaving the pointer's image to reflect interactivity for
foreground activities.

For more information about message boxes, see Chapter 9, "Secondary Windows." For more information about
status bars, see the section, "Toolbars and Status Bars," later in this chapter.

Ebay Exhibit 1013, Page 672 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 7 Menus, Controls, and Toolbars 143

February 13, 1995

Tooltip Controls
A tooltip control provides the basic functionality of a tooltip. A tooltip is a small pop-up window that includes
descriptive text displayed when the user moves the pointer over a control, as shown in Figure 7.28. The tooltip
appears after a short time-out and is automatically removed when the user clicks the control or moves the pointer off
the control. The tooltip is usually displayed at the lower right of the pointer, but is automatically adjusted if this
location is offscreen.

For more information about the use of tooltips, see Chapter 12, "User Assistance." For more information about the
use of tooltips in toolbars, see the section, "Toolbars and Status Bars," later in this chapter.

Figure 7.28 A tooltip control

Wells
A well is a special field similar to a group of option buttons, but facilitates user selection of graphic values such as a
color, pattern, or images, as shown in Figure 7.29. This control is not currently provided by the system; however, its
purpose and interaction guidelines are described here to provide a consistent interface.

Figure 7.29 A well control for selection colors

Like option buttons, use well controls for values that have two or more choices and group the choices to form a
logical arrangement. When the control is interactive, use the same border pattern as a check box or text box. When
the user chooses a particular value in the group, indicate the set value with a special selection border drawn around
the edge of the control.

Follow the same interaction techniques as option buttons. When the user clicks a well in the group the value is set to
that choice. Provide a group box or static text to label the group and define an access key for that label as well as
supporting the TAB key to navigate to a group. Use arrow keys to move between values in the group

Pen-Specific Controls
When the user installs a pen input device, single line text boxes and combo boxes automatically display a writing
tool button. In addition, the system provides controls for supporting pen input.

For more information about the writing tool button, see Chapter 5, "General Interaction Techniques."

Ebay Exhibit 1013, Page 673 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 7 Menus, Controls, and Toolbars 143

February 13, 1995

Boxed Edit Controls
A boxed edit control provides the user with a discrete area for entering characters. It looks and operates similarly to a
writing tool window without some of the writing tool window's buttons, as shown in Figure 7.30.

Figure 7.30 A single line boxed edit control

Both single and multiple line boxed edit controls are supported. Figure 7.31 shows a multiple line boxed edit control.

Figure 7.31 A multiple line boxed edit control

Like the writing tool window, these controls provide a pen selection handle for selection of text and an action handle
for operations on a selection. They also provide easy correction by overwriting and selecting alternative choices.

Ebay Exhibit 1013, Page 674 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 7 Menus, Controls, and Toolbars 143

February 13, 1995

Ink Edit Controls
The ink edit is a pen control in which the user can create and edit lines drawn as ink; no recognition occurs here. It is
a drawing area designed for ink input, as shown in Figure 7.32.

Figure 7.32 An ink edit control

The control provides support for an optional grid, optional scroll bars, and optional display of a frame border.
Selection is supported using tapping to select a particular stroke; lasso-tapping is also supported for selecting single
or multiple strokes. After the user makes a selection, an action handle is displayed. Tapping on the action handle
displays a pop-up menu that includes commands for Undo, Cut, Copy, Paste, Delete, Use Eraser, Resize, What's
This?, and Properties. Choosing the Properties command displays a property sheet associated with the selection —
this allows the user to change the stroke width and color.

If you use an ink edit control, you may also want to include some controls for special functions. For example, a good
addition is an Eraser button, as shown in Figure 7.33.

Figure 7.33 The eraser toolbar button

Implement the Eraser button to operate as a "spring-loaded" mode; that is, choosing the button causes the pen to act
as an eraser while the user presses the pen to the screen. As soon as it is lifted, the pen reverts to its drawing mode.

Ebay Exhibit 1013, Page 675 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 7 Menus, Controls, and Toolbars 143

February 13, 1995

Toolbars and Status Bars
Like menu bars, toolbars and status bar are special interface constructs for managing sets of controls. A toolbar is a
panel that contains a set of controls, as shown in Figure 7.34, designed to provide quick access to specific commands
or options. Specialized toolbars are sometimes called ribbons, tool boxes, and palettes.

Figure 7.34 Examples of toolbars

A status bar, shown in Figure 7.35, is a special area within a window, typically the bottom, that displays information
about the current state of what is being viewed in the window or any other contextual information, such as keyboard
state. You can also use the status bar to provide descriptive messages about a selected menu or toolbar button. Like a
toolbar, a status bar can contain controls; however, typically include read-only or noninteractive information.

For more information about status bar messages, see Chapter 12, "User Assistance."

Figure 7.35 Examples of status bars

Interaction with Controls in Toolbars and Status Bars
The user can access the controls included in a toolbar or status bar with the mouse or pen through the usual means of
interaction for those controls. You can provide keyboard access using either shortcut keys or access keys. If a control
in a toolbar or status bar does not have a text label, access keys may not be as effective. Furthermore, if a particular
access key is already in use in the primary window, it may not be available for accessing the control in the toolbar.
For example, if the menu bar of the primary window is already using a particular access key, then the menu bar
receives the key event.

Ebay Exhibit 1013, Page 676 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 7 Menus, Controls, and Toolbars 143

February 13, 1995

When the user interacts with controls in a toolbar or status bar that reflect properties, any change is directly applied
to the current selection. For example, if a button in a toolbar changes the property of text to bold, choosing that
button immediately changes the text to bold; no further confirmation or transaction action is required. The only
exception is if the control, such as a button, requires additional input from the user; then the effect may not be
realized until the user provides the information for those parameters. An example of such an exception would be the
selection of an object or a set of input values through a dialog box.

Always provide a tooltip for controls you include in a toolbar or status bar that do not have a text label. The system
provides support for tooltips in the standard toolbar control and a tooltip control for use in other contexts.

Support for User Options
To provide maximum flexibility for users and their tasks, design your toolbars and status bars to be user
configurable. Providing the user with the option to display or hide toolbars and status bars is one way to do this. You
can also include options that allow the user to change or rearrange the elements included in toolbars and status bars.

Provide toolbar buttons in two sizes: 24 by 22 and 32 by 30 pixels. To fit a graphic label in these button sizes, design
the images no larger than 16 by 16 and 24 by 24 pixels, respectively. In addition, support the user's the option to
change between sizes by providing a property sheet for the toolbar (or status bar).

Consider also making the location of toolbars user adjustable. While toolbars are typically docked by default—
aligned to the edge of a window or pane to which they apply—design your toolbars to be moveable so that the user
can dock them along another edge or display them as a palette window.

For more information about palette windows, see Chapter 8, "Secondary Windows."

Ebay Exhibit 1013, Page 677 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 7 Menus, Controls, and Toolbars 143

February 13, 1995

To undock a toolbar from its present location, the user must be able to click anywhere in the "blank" area of the
toolbar and drag it to its new location. If the new location is within the hot zone of an edge, your application should
dock the toolbar at the new edge when the user releases the mouse button. If the new location is not within the hot
zone of an edge, redisplay the toolbar in a palette window. To redock the window with an edge, the user drags the
window by its title bar until the pointer enters the hot zone of an edge. Return the toolbar to a docked state when the
user releases the mouse button.

As the user drags the toolbar, provide visual feedback, such as a dotted outline of the toolbar. When the user moves
the pointer into a hot zone of a dockable location, display the outline in its docked configuration to provide a cue to
the user about what will happen when the drag operation is complete. You can also support user options such as
resizing the toolbar by dragging its border or docking multiple toolbars side by side, reconfiguring their arrangement
and size as necessary.

When supporting toolbar and status bar configuration options, avoid including controls whose functionality is not
available elsewhere in the interface. In addition, always preserve the current position and size, and other state
information, of toolbar and status bar configuration so that they can be restored to their state when the user reopens
the window.

The system includes toolbar and status bar controls that you can use to implement these interfaces in your
applications. The toolbar control supports docking and windowing functionality. It also supports a dialog box for
allowing the user to customize the toolbar. You define whether the customization features are available to the user
and what features the user can customize. The standard status bar control also includes the option of including a size
grip control for sizing the window. When the status bar size grip is displayed, if the window displays a size grip at
the junction of the horizontal and vertical scroll bars of a window, that grip should be hidden so that it does not
appear in both locations at the same time. Similarly, if the user hides the status bar, restore the size grip at the corner
of the scroll bars.

For more information about the size grip control, see Chapter 6, "Windows."

Ebay Exhibit 1013, Page 678 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 7 Menus, Controls, and Toolbars 143

February 13, 1995

Common Toolbar Buttons
Table 7.5 illustrates the button images that you can use for common functions.

Table 7.5 Common Toolbar Buttons

16 x 16
Button

24 x 24
Button

Function

New

Open

Save

Print

Print Preview

Undo

Redo

Cut

Copy

Paste

Delete

Find

Replace

Properties

Bold

Italic

Ebay Exhibit 1013, Page 679 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 7 Menus, Controls, and Toolbars 143

February 13, 1995

Table 7.5 Common Toolbar Buttons (continued)

16 x 16
Button

24 x 24
Button

Function

Underline

What's This? (context-sensitive Help mode)

Show Help Topics

Open parent folder

View as large icons

View as small icons

View as list

View as details

Region selection tool

Writing tool (pen)

Eraser tool (pen)

Use these images only for the function described. Consistent use of these common tool images allows the user to
transfer their learning and skills from product to product. If you use one of the standard images for a different
function, you may confuse the user.

When designing your own toolbar buttons, follow the conventions supported by the standard system controls. For
more information about the design of toolbar buttons, see Chapter 13, "Visual Design."

Ebay Exhibit 1013, Page 680 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

145

February 13, 1995

C H A P T E R 8
Secondary Windows
Most primary windows require a set of secondary windows to support and supplement a user's activities in the
primary windows. Secondary windows are similar to primary windows but differ in some fundamental aspects. This
chapter covers the common types of secondary windows, such as property sheets, dialog boxes, palette windows, and
message boxes.

Characteristics of Secondary Windows
While secondary windows share some characteristics with primary windows, they also differ from primary windows
in their behavior and use. For example, secondary windows do not appear on the taskbar. Secondary windows obtain
or display supplemental information which is often related to the objects that appear in a primary window.

Appearance and Behavior
A typical secondary window, as shown in Figure 8.1, includes a title bar and frame; a user can move it by dragging
its title bar. However, a secondary window does not include Maximize and Minimize buttons, because these sizing
operations typically do not apply to a secondary window. A Close button can be included to dismiss the window. The
title text is a label that describes the purpose of the window; the content of the label depends on the use of the
window. The title bar does not include icons.

Figure 8.1 A secondary window

Like a primary window, a secondary window includes a pop-up menu with commands that apply to the window. A
user can access the pop-up menu for the window using the same interaction techniques as primary windows.

A secondary window can also include a What's This? button in its title bar. This button allows a user to display
context-sensitive Help information about the components displayed in the window.
Interaction with Other Windows
Secondary windows that are displayed because of a command carried out within a primary window depend on the
state of the primary window; that is, when the primary window is closed or minimized, its secondary windows are
also closed or hidden. When the user reopens or restores the primary window, the secondary windows are restored to
their former positions and states. However, if opening a secondary window is the result of an action outside of the
object's primary window — for example, if the user carries out the Properties command on an icon in a folder or on
the desktop — then the property sheet window is independent and appears as a peer with any primary windows,
though it does not appear in the taskbar.

Ebay Exhibit 1013, Page 681 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 8 Secondary Windows 175

February 13, 1995

When the user opens or switches to a secondary window, it is activated or deactivated like any other window. With
the mouse or pen, the user activates a secondary window in the same way as a primary window. With the keyboard,
the ALT+F6 key combination switches between a secondary window and its primary window, or other peer secondary
windows that are related to its primary window.

When the user activates a primary window, bringing it to the top of the window Z order, all of its dependent
secondary windows also come to the top, maintaining their same respective order. Similarly, activating a dependent
secondary window brings its primary window and related peer windows to the top.

A dependent secondary window always appears on top of its associated primary window, layered with any related
window that is a peer secondary window. When activated, the secondary window appears on top of its peers. When a
peer is activated, the secondary window appears on top of its primary window, but behind the newly activated
secondary window that is a peer.

You can design a secondary window to appear at the top of its peer secondary windows. Typically, you should use
this technique only for palette windows and, even in this situation, make this feature configurable by the user by
providing an Always On Top property setting for the window. If you support this technique for multiple secondary
windows, then the windows are managed in their own Z order within the collection of windows of which they are a
part.

Avoid having a secondary window with this behavior appear on top of another application's primary window (or any
of the other application's dependent secondary windows) when the user activates a window of that application, unless
the Always On Top window can also be applied to that application's windows.

For more information about a window’s pop-up menu, see Chapter 7, “Menus, Controls, and Toolbars.”

When the user chooses a command that opens a secondary window, use the context of the operation to determine
how to present that window. In property sheets, for example, set the values of the properties in that window to
represent the selection. Generally, support a model of persistence of state, displaying the window in the same state as
the user last accessed it. For example, the Open dialog box preserves the current directory setting between the
openings of a window. Similarly, if you use tabbed pages for navigating through information in a secondary window,
display the last page the user was viewing when the user closed the window. This makes it easier for the user to
repeat an operation that is associated with the window. It also provides a sense of stability in the interface. However,
if a command or task implies or requires that the user begin a process in a particular sequence or state, you can
alternatively present a secondary window using a fixed or consistent presentation. For example, entering a record
into a database may require the user to enter the data in a particular sequence. Therefore, it may be more appropriate
to present the input window, displaying the first entry field.
Unfolding Secondary Windows
Typically, secondary windows cannot be resized because their purpose is to provide concise, predefined information;
the exception is some forms of palette windows. There may be situations when it is appropriate to expand the size of
the window to reveal additional options — a form of progressive disclosure. In this case, you can use a command
button with a label followed by two "greater than" characters (>>), sometimes referred to as an unfold button, to
indicate that there are special options. When the user chooses the button, the secondary window expands to its
alternative fixed size. As an option, you can use the button to “refold” the additional part of the window.
Cascading Secondary Windows
You can also provide the user access to additional options by including a command button that opens another
secondary window. If the resulting window is independent in its operation, close the secondary window from which

Ebay Exhibit 1013, Page 682 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 8 Secondary Windows 175

February 13, 1995

the user opened it and display only the new window. However, if the intent of the subsequent window is to obtain
information for a field in the original secondary window, then the original should remain displayed and the
dependent window should appear on top, offset slightly to the right and below the original secondary window. When
using this latter method, limit the number of secondary windows to a single level to avoid creating a cluttered
cascading chain of hierarchical windows.

Window Placement
The placement of a secondary window depends on a number of factors, including the use of the window, the overall
display dimensions, and the reason for the appearance of the window. In general, display a secondary window where
it last appeared. If the user has not yet established a location for the window, place the window in a location that is
convenient for the user to navigate to and that fully displays the window. If neither of these guidelines apply,
horizontally center the secondary window within the primary window, just below the title bar, menu bar, and any
docked toolbars.

Modeless vs. Modal
A secondary window can be modeless or modal. A modeless secondary window allows the user to interact with
either the secondary window or the primary window, just as the user can switch between primary windows. It is also
well suited to situations where the user wants to repeat an action — for example, finding the occurrence of a word or
formatting the properties of text.

A modal secondary window requires the user to complete interaction within the secondary window and close it
before continuing with any further interaction outside the window. A secondary window can be modal in respect to
its primary window or the system. In the latter case, the user must respond and close the window before interacting
with any other windows or applications.

Because modal secondary windows restrict the user’s choice, use them sparingly. Limit their use to situations when
additional information is required to complete a command or when it is important to prevent any further interaction
until satisfying a condition. Use system modal secondary windows only in severe situations — for example, if an
impending fatal system error or unrecoverable condition occurs.

Default Buttons
When defining a secondary window, you can assign the ENTER key to activate a particular command button, called
the default button, in the window. By default, the system provides a visual designation for distinguishing the default
button from other command buttons with a bold outline that appears around the button.

By definition, the default button carries out the most likely action at a given time, such as a confirmation action or an
action that applies transactions made in the secondary window. Avoid making a command button the default button
if its action is potentially destructive. For example, in a text search and substitution window, do not use a Replace All
button as the default button for the window.

You can change the default button as the user interacts with the window. For example, if the user navigates to a
command button that is not the default button, the new button temporarily becomes the default. In such a case, the
new default button takes on the default appearance, while the former default button loses the default appearance.
Similarly, if the user moves the input focus to another control within the window that is not a command button, the
original default button resumes the default.

The assignment of a default button is a common convenience for users. However, when there is no appropriate
button to designate as the default button or another control requires the ENTER key (for example, entering new lines
in a multiline text control), it may not be appropriate to define a default button for the window. Alternatively, when a

Ebay Exhibit 1013, Page 683 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 8 Secondary Windows 175

February 13, 1995

particular control has the input focus and requires use of the ENTER key, you can temporarily have no button defined
as the default. Then when the user moves the input focus out of the control, you can restore the default button.

Optionally, you can use double-clicking on single selection control, such as an option button or single selection list,
to set or select the option and carry out the default button of the secondary window.

Navigation in Secondary Windows
With the mouse and pen, navigation to a particular field or control involves the user pointing to the field and clicking
or tapping it. For button controls, this action also activates that button. For example, for check boxes, it toggles the
check box setting and for command buttons, it carries out the command associated with that button.

The keyboard interface for navigation in secondary windows uses the TAB and SHIFT+TAB keys to move between
controls, to the next and previous control, respectively. Each control has a property that determines its place in the
navigation order. Set this property such that the user can move through the secondary window following the usual
conventions for reading in western countries: left-to-right and top-to-bottom. Start with the primary control the user
interacts with; for countries using roman alphabets, this control is usually located in the upper left corner. Order
controls such that the user can progress through the window in a logical sequence, proceeding through groups of
related controls. Command buttons for handling transactions are usually at the end of the order sequence.

You need not provide TAB access to every control in the window. When using static text as a label, the control you
associated it with is the appropriate navigational destination, not the static text field itself. In addition, combination
controls such as combo boxes, drop-down combo boxes, and spin boxes are considered single controls for
navigational purposes. Because option buttons typically appear as a group, use the TAB key for moving the input
focus to the current set choice in that group, but not between individual options — use arrow keys for this purpose.
For a group of check boxes, provide TAB navigation to each control because their settings are independent of each
other.

Generally, you can also use arrow keys to support keyboard navigation between controls — except when controls use
these keys for their internal interface. It is acceptable to use them in addition to the TAB navigation technique
wherever the control is not using the keys. For example, you can use the UP ARROW and DOWN ARROW keys to
navigate between single-line text boxes or within a group of check boxes or command buttons. Always use arrow
keys to navigate between option button choices and within list box controls.

You can also use access keys to provide navigation controls within a secondary window. This allows the user to
access a control by pressing and holding the ALT key and an alphanumeric key that matches the access key character
designated in the label of the control.

When the user presses an unmodified alphanumeric key that matches a label's access key, the key navigates to the
control if the keyboard is not being used as input for another control that currently has the keyboard input focus. For
example, if the input focus is currently on a check box control and the user presses an alphanumeric key, the input
focus moves to the control with the matching access key. However, if the input focus is in a text box or list box, an
alphanumeric key is used as text input for that control so the user cannot use it for navigation within the window
without modifying it with the ALT key.

Access keys not only allow the user to navigate to the matching control, they have the same effect as clicking the
control with the mouse. For example, pressing the access key for a command button carries out the action associated
with that button. To ensure the user direct access to all controls, select unique access keys within a secondary
window.

Ebay Exhibit 1013, Page 684 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 8 Secondary Windows 175

February 13, 1995

For more information about guidelines for selecting access keys, see Chapter 4, "Input Basics."

You can use access keys to support navigation to a control, but then return the input focus to the control from which
the user navigated. For example, when the user presses the access key for a specific command button that modifies
the content of a list box, you can return the input focus to the list box after the command has been carried out.

OK and Cancel command buttons are typically not assigned access keys if they are the primary transaction keys for a
secondary window. In this case, the ENTER and ESC keys, respectively, provide access to these buttons.

Pressing ENTER always navigates to the default command button, if one exists, and invokes the action associated with
that button. If there is no current default command button, then a control can use the ENTER key for its own use.

Validation of Input
Validate the user’s input for a field or control in a secondary window as closely to the point of input as possible.
Ideally, input is validated when it is entered for a particular field. You can either disallow the input, or use audio and
visual feedback to alert the user that the data is not appropriate. You can also display a message box, particularly if
the user repeatedly tries to enter invalid input. You can also reduce invalid feedback by using controls that limit
selection to a specific set of choices — for example, check boxes, option buttons, drop-down lists — or preset the
field with a reasonable default value.

If it is not possible to validate input at the point of entry, consider validating the input when the user navigates away
from the control. If this is not feasible, then validate it when the transaction is committed, or whenever the user
attempts to close the window. At that time, leave the window open and display a message; after the user dismisses
the message, set the input focus to the control with the inappropriate data.

Property Sheets and Inspectors
You can display the properties of an object in the interface in a number of ways. For example, some folder views
display the file storage properties of an object. The image and name of an icon on the desktop also reflect certain
properties of that object. Other interface conventions, such as toolbars, status bars, or even scroll bars, can reflect
certain properties. The most common presentation of an object’s properties is a secondary window, called a property
sheet. A property sheet is a modeless secondary window that displays the user-accessible properties of an object —
that is, viewable and often editable properties. Display a property sheet when the user chooses the Properties
command for an object.

Property Sheet Interface
The title bar text of the property sheet identifies the displayed object. If the object has a name, use its name and the
word “Properties”. If the combination of the name plus "Properties" exceeds the width of the title bar, the system
truncates the name and adds an ellipsis. If the object has no name, use the object’s type name. If the property sheet
represents several objects, then use the objects’ short type name. Where the type name cannot be applied — for
example, because the selection includes heterogeneous types — substitute the word "Selection" for the short type
name.

Because there can be numerous properties for an object and its context, categorize and group properties as sets within
the property window. There are two techniques for supporting navigation to groups of properties in a property sheet.
The first is a tabbed property page. Each set of properties is presented within the window as a page with a tab labeled
with the name of the set. Use tabbed property pages for grouping peer-related property sets, as shown in Figure 8.2.

Ebay Exhibit 1013, Page 685 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 8 Secondary Windows 175

February 13, 1995

Figure 8.2 A property sheet with tabbed pages

When displaying the property sheet of an object, you provide access to the properties of the object's immediate
context or hierarchically related properties in the property sheet. For example, if the user selects text, you may want
to provide access to the properties of the paragraph of that text in the same property sheet. Similarly, if the user
selects a cell in a spreadsheet, you may want to provide access to its related row and column properties in the same
property sheet. While you can support this with additional tabbed pages, better access may be facilitated using
another control—such as a drop-down list—to switch between groups of tabbed pages, as shown in Figure 8.3.

Ebay Exhibit 1013, Page 686 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 8 Secondary Windows 175

February 13, 1995

Figure 8.3 A drop-down list for access to hierarchical property sets

Where possible, make the values for properties found in property sheets transferable. You can support special
transfer completion commands to enable copying only the properties of an object to another object. For example, you
may want to support transferring data for text boxes or items in a list box.

For more details on transfer operations, see Chapter 5, “General Interaction Techniques."

Property Sheet Commands
Property sheets typically allow the user to change the values for a property and then apply those transactions. Include
the following common command buttons for handling the application of property changes.

Command Action

OK Applies all pending changes and closes the property sheet window.

Apply Applies all pending changes but leaves the property sheet window open.

Cancel Discards any pending changes and closes the property sheet window. Does not
cancel or undo changes that have already been applied.

Optionally, you can also support a Reset command for canceling pending changes without Note

Ebay Exhibit 1013, Page 687 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 8 Secondary Windows 175

February 13, 1995

closing the window.

You can also include other command buttons in property sheets. However, the location of command buttons within
the property sheet window is very important. If you place a button on the property page, then apply the action
associated with the button to that page. For command buttons placed outside the page but still inside the window,
apply the command to the entire window.

For the common property sheet transaction buttons — OK, Cancel, and Apply — it is best to place the buttons outside
the pages because users consider the pages to be just a simple grouping or navigation technique. This means that if
the user makes a change on one page, the change is not applied when the user switches pages. However, if the user
makes a change on the new page and then chooses the OK or Apply command buttons, both changes are applied —
or, in the case of Cancel, discarded.

If your design requires groups of properties to be applied on a page-by-page basis, then place OK, Cancel, and Apply
command buttons on the property pages, always in the same location on each page. When the user switches pages,
any property value changes for that page are applied, or, you can prompt the user with a message box whether to
apply or discard the changes.

You can include a sample on a property page to illustrate a property value change that affects the object when the
user applies the property sheet. Where possible, include the aspect of the object that will be affected in the sample.
For example, if the user selects text and displays the property sheet for the text, include part of the text selection in
the property sheets sample. If displaying the actual object—or a portion of it—in the sample is not practical, use an
illustration that represents the object's type.

Closing a Property Sheet
If the user closes a property sheet window, follow the same convention as closing the content view of an object, such
as a document. Avoid interpreting the Close button as Cancel. If there are pending changes that have not been
committed, prompt the user to apply or discard the changes through a message box, as shown in Figure 8.4. If there
are no unsaved changes, just close the window.

Figure 8.4 Prompting for pending property changes

If the user chooses the Yes button, the properties are applied and the message box window and the property sheet
window are removed. If the user chooses the No button, the pending changes are discarded and the message box and
property sheet windows are closed. Include a Cancel button in the message box, to allow the user to cancel the
closing of the property sheet window.

Property Inspectors
A property inspector is different from a property sheet—even when a property sheet window is modeless, the
window is typically modal with respect to the object for which it displays properties. If the user selects another

Ebay Exhibit 1013, Page 688 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 8 Secondary Windows 175

February 13, 1995

object, the property sheet continues to display the properties of the original object. You can also display properties of
an object using a dynamic viewer or browser that reflects the properties of the current selection. Such a property
window is called a property inspector. When designing a property inspector, use a toolbar or palette window, or
preferably a toolbar that the user can configure as a docked toolbar or palette window, as shown in Figure 8.5.

For more information about supporting docked and windowed toolbars, see Chapter 7, "Menus, Controls, and
Toolbars." For more information about palette windows, see the section, "Palette Windows," later in this chapter.

Figure 8.5 A property inspector

Property transactions that the user makes in a property inspector are applied dynamically. That is, a property value is
changed in the selected object as soon as the user makes the change in the control reflecting that property value.

Property inspectors and property sheets are not exclusive interfaces; you can include both. Each has its advantages.
You can choose to display only the most common or frequently accessed properties in a property inspector and the
complete set in the property sheet. You also can include multiple property inspectors, each optimized for managing
certain types of objects.

You also can provide an interface for the user to change the behavior between a property sheet and a property
inspector form of interaction. For example, you can provide a control on a property inspector that "locks" its view to
be modal to the current object rather than tracking the selection.

Properties of a Multiple Selection
When a user selects multiple objects and requests the properties for the selection, reflect the properties of all the
objects in a single property sheet rather than opening multiple property sheet windows. Where the property values
differ, display the controls associated with those values using the mixed value appearance — sometimes referred to as
the indeterminate state. Also support the display of multiple property sheets when the user displays the property
sheet of the objects individually. This convention provides the user with sufficient flexibility and control over
window clutter. If your design still requires access to individual properties when the user displays the property sheet
of a multiple selection, include a control such as a list box or drop-down list in the property window for switching
between the properties of the objects in the set.

For more information about mixed value appearance, see Chapter 13, “Visual Design.”

Properties of a Heterogeneous Selection
When a multiple selection includes different types of objects, include the intersection of the properties between the
objects in the resulting property sheet. If the container of those selected objects treats the objects as if they were of a
single type, the property sheet includes properties for that type only. For example, if the user selects text and an
embedded object, such as a circle, and in that context an embedded object is treated as an element within the text
stream, present only the text properties in the resulting property sheet.

Properties of Grouped Items
Do not equate a multiple selection with a grouped set of objects. A group is a stronger relationship than a simple
selection, because the aggregate resulting from the grouping can itself be considered an object, potentially with its

Ebay Exhibit 1013, Page 689 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 8 Secondary Windows 175

February 13, 1995

own properties and operations. Therefore, if the user requests the properties of a grouped set of items, display the
properties of the group or composite object. The properties of its individual members may or may not be included,
depending on what is most appropriate.

Dialog Boxes
A dialog box provides an exchange of information or dialog between the user and the application. Use a dialog box
to obtain additional information from the user — information needed to carry out a particular command or task.

Because dialog boxes generally appear after choosing a particular menu item (including pop-up or cascading menu
items) or a command button, define the title text to be the name of the associated command for the window. Do not
include an ellipsis and avoid including the command's menu title unless necessary to compose a reasonable title for
the dialog box. For example, for a Print command on the File menu, define the dialog box window's title text as
Print, not Print... or File Print. However, for an Object... command on an Insert menu, title the dialog box as Insert
Object.

Dialog Box Commands
Like property sheets, dialog boxes commonly include OK and Cancel command buttons. Use OK to apply the values
in the dialog box and close the window. If the user chooses Cancel, the changes are ignored and the window is
closed, canceling the operation the user chose. OK and Cancel buttons work best for dialog boxes that allow the user
to set the parameters for a particular command. Typically, define OK to be the default command button when the
dialog box window opens.

You can include other command buttons in a dialog box in addition to or replacing the OK and Cancel buttons. Label
your command buttons to clearly define the button's purpose, but be as concise as possible. Long, wordy labels make
it difficult for the user to easily scan and interpret a dialog box's purpose. Follow the design conventions for
command buttons.

For more information about command buttons, see Chapter 7, "Menus, Controls, and Toolbars," and Chapter 13,
"Visual Design."

You can also provide a Help command button to provide Help information about the dialog box. This button
provides a different form of user assistance than the title bar context-sensitive Help button.

Layout
Orient controls in dialog boxes in the direction people read. In countries where roman alphabets are used, this means
left to right, top to bottom. Locate the primary field with which the user interacts as close to the upper left corner as
possible. Follow similar guide lines for orienting controls within a group in the dialog box.

Lay out the major command buttons either stacked along the upper right border of the dialog box or lined up across
the bottom of the dialog box. Position the most important button — typically the default command — as the first
button in the set. If you use the OK and Cancel buttons, group them together. If you include a Help command button,
make it the last button in the set. You can use other arrangements if there is a compelling reason, such as a natural
mapping relationship. For example, it makes sense to place buttons labeled North, South, East, and West in a
compass-like layout. Similarly, a command button that modifies or provides direct support for another control may
be grouped or placed next to those controls. However, avoid making that button the default button because the user
will expect the default button to be in the conventional location.

For more information about layout and spacing, see Chapter 13, “Visual Design.” For more information about Help
command buttons, see Chapter 12, "User Assistance."

Ebay Exhibit 1013, Page 690 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 8 Secondary Windows 175

February 13, 1995

Common Dialog Box Interfaces
The system provides prebuilt interfaces for many common operations. Use these interfaces where appropriate. They
can save you time while providing a high degree of consistency. If you customize or provide your own interfaces,
maintain consistency with the basic functionality supported in these applications. For example, if you provide your
own property sheet for font properties, model your design to be similar in appearance and design to the common font
dialog box. Consistent visual and operational styles will allow users to more easily transfer their knowledge and
skills.

These common dialog box interfaces have been revised from the ones provided in previous
releases of Microsoft Windows.

In all these dialog boxes, preserve the user's latest changes to the settings for the controls for subsequent openings of
the dialog box while the application is running.
Open Dialog Box
The Open dialog box, as shown in Figure 8.6, allows the user to browse the file system, including direct browsing of
the network, and includes controls to open a specified file. Use this dialog box to open files or browse for a filename,
such as the File Open menu command or a Browse command button. Always set the title text to correctly reflect the
command that displays the dialog box.

Figure 8.6 The Open dialog box

The dialog box automatically handles the display of long filenames, direct manipulation transfers, such as drag and
drop, and access to an icon’s pop-up menus. The dialog box only displays filename extensions for files of registered
types when the user selects this viewing option.

Note

Ebay Exhibit 1013, Page 691 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 8 Secondary Windows 175

February 13, 1995

Even when the dialog box does not display the extensions of filename, it still supports the opening or filtering of files
displayed based on the user input of an extension. For example, if the user types in *.TXT and clicks the Open
button, the list displays only files with the type extension of .TXT. When this occurs, display the respective type as
the setting for the Files of Type drop-down list box. If the application does not support that type, display the Files of
Type control with the mixed-case appearance — that is, no setting.

For more information about the mixed-case appearance, see Chapter 13, "Visual Design."

Selecting an item in the Look In drop-down list box or opening an directory in the files list box allows the user to
change the path, displaying the contents of that path location using the type setting as a filter. If the user changes the
current path setting in either the Open or Save As dialog box, preserve that setting for subsequent openings of the
Open dialog box for that application's open session while the application is running. Note that, changing the path in
the Open dialog box only changes the path in the Save As dialog box if the file has not yet been saved.

Use the Files of the Type drop-down list box control to list the file types your application can support. Use the
registered short type names for list items. Make the default type the most common extension used with your
application.

The Open dialog box also displays shortcut icons to files matching the setting of the Files of Type control. When the
user opens a shortcut icon, the dialog box opens the file of the object to which the link refers. In other words, the
effect is the same as if the user directly opened the original file. Therefore, display the name of the original file in the
window's title bar, not the name of the file link. Similarly, when saving the file, save the changes back to the original
file.
Save As Dialog Box
The Save As dialog box, shown in Figure 8.7, is designed to save a file using a particular name, location, and format.
Display this dialog box when the user chooses the Save command and a filename has not been supplied or confirmed
by the user. This same dialog box is the one the user chooses with the Save As command, but with the title bar text
changed to Save As. If you use this dialog box for other tasks that require saving files, define the title text of the
dialog box to appropriately reflect that command.

Ebay Exhibit 1013, Page 692 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 8 Secondary Windows 175

February 13, 1995

Figure 8.7 The Save As dialog box

This appearance and operation of the Save As dialog box is similar to the Open dialog box except that the Files of
Type field also defines how the file will be saved. Supply the file types supported by your application following the
same conventions as the Open dialog box. Do not include file formats. While a format can be related to its type, a
format and a type are not the same thing. For example, a bitmap file can be stored in monochrome, 16-, 256-, or 24-
bit color format, but the file's type for all of them is the same. If you need to support user selection of a format, add a
control to the dialog box for this purpose.

Include a default name in the File Name text box. Use the current name of the file. If the file has not been named yet,
define a name based on the registered short type name for the file. If the file already exists, save the file back to its
original location. If the file has never been saved, save the file to your application's default path setting for files or to
the location defined by the user, either by typing in the path or by using the controls in the dialog box.

For more information about filenames and short type names, see Chapter 10, "Integrating with the System."

When the user supplies a name of the file, ignore any illegal characters. In addition, do not interpret a period as a
designation for defining an extension. For example, if the user types in "My Favorite Document.TXT", that file is
saved as My Favorite Document.TXT and its file type does not change.

You can customize the Open and Save As dialog boxes by adding commands to the dialog box, but you cannot
reconfigure the dialog box layout.

Ebay Exhibit 1013, Page 693 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 8 Secondary Windows 175

February 13, 1995

Find and Replace Dialog Boxes
The Find and Replace dialog boxes provide controls that search for a text string specified by the user and optionally
replace it with a second text string specified by the user. These dialog boxes are shown in Figure 8.8.

Figure 8.8 The Find and Replace dialog boxes

Ebay Exhibit 1013, Page 694 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 8 Secondary Windows 175

February 13, 1995

Print Dialog Box
The Print dialog box, shown in Figure 8.9, allows the user to select what to print, the number of copies to print, and
the collation sequence for printing. It also allows the user to choose a printer and provides a command button that
provides shortcut access to that printer's properties.

Figure 8.9 The Print dialog box

Print Setup Dialog Box
The Print Setup dialog box displays the list of available printers and provides controls for selecting a printer and
setting paper orientation, size, source, and other printer properties.

The system includes this dialog box for compatibility with applications designed for
Windows 3.1. Printer properties are now provided through the property sheet of each printer, so do
not include this dialog box if you are creating or updating your application to the
recommendations in this guide.

Note

Ebay Exhibit 1013, Page 695 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 8 Secondary Windows 175

February 13, 1995

Page Setup Dialog Box
The Page Setup dialog box, as shown in Figure 8.10, provides controls for specifying properties about the page
elements and layout.

Figure 8.10 Page Setup interface used as a dialog box

In this context, page orientation refers to the orientation of the page and not the printer, which may also have these
properties. Generally, the page’s properties override those set by the printer, but only for the printing of that page or
document.

The Printer button in the dialog box displays a supplemental dialog box (as shown in Figure 8.11) that provides
information on the current default printer. Similarly to the Print dialog box, it displays the current property settings
for the default printer and a button for access to the printer's property sheet.

Ebay Exhibit 1013, Page 696 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 8 Secondary Windows 175

February 13, 1995

Figure 8.11 The supplemental Printer dialog box

Font Dialog Box
This dialog box displays the available fonts and point sizes of the available fonts installed in this system. You can
use the Font dialog box to display or set the font properties of a selection of text. Figure 8.12 shows the Font dialog
box.

Figure 8.12 The Font dialog box

Ebay Exhibit 1013, Page 697 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 8 Secondary Windows 175

February 13, 1995

Color Dialog Box
The Color dialog box (as shown in Figure 8.13) displays the available colors and includes controls that allow the user
to define custom colors. You can use this control to provide an interface for users to select colors for an object.

Figure 8.13 The Color dialog box

The Basic colors control displays a default set of colors. The number of colors displayed here is determined by the
installed display driver. The Custom colors control allows the user to define more colors using the various color
selection controls provided in the window.

Initially, you can display the dialog box as a smaller window (as shown in Figure 8.14) with only the Basic colors
and Custom colors controls and allow the user to expand the dialog box to define additional colors.

Ebay Exhibit 1013, Page 698 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 8 Secondary Windows 175

February 13, 1995

Figure 8.14 The Color dialog box (unexpanded appearance)

Palette Windows
Palette windows are modeless secondary windows that present a set of controls. For example, when toolbar controls
appear as a window, they appear in a palette window. Palette windows are distinguished by their visual appearance.
The height of the title bar for a palette window is shorter, but it still includes only a Close button in the title area, as
shown in 8.15.

Figure 8.15 A palette window

For more information about toolbars and palette windows, see Chapter 7, "Menus, Controls, and Toolbars."

Make the title text for a palette window the name of the command that displays the window or the name of the
toolbar it represents, optionally followed by the word “Palette." The system supplies default size and font settings for
the title bar and title bar text for palette windows.

Ebay Exhibit 1013, Page 699 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 8 Secondary Windows 175

February 13, 1995

You can define palette windows as a fixed size, or, more typically, sizable by the user. Two visual cues indicate
when the window is sizable: changing the pointer image to the size pointer, and placing a Size command in the
window’s pop-up menu. Preserve the window’s size and position so the window can be restored if it or its associated
primary window is closed.

Like other windows, the title bar, the Close button, and the border areas provide an access point for the window’s
pop-up menu. Commands on a palette window’s pop-up menu can include Close, Move, Size (if sizable), Always On
Top, and Properties, as shown in Figure 8.16.

Figure 8.16 A pop-up menu for a palette window

Including the Always On Top command or property in the window’s property sheet allows the user to configure the
palette window to always stay at the top of the Z order of the window set of which it is a part. Setting this attribute
places it at the top of other windows that are part of its related set. Turning off this option keeps the palette window
within its set of related windows, but allows the user to have other windows of the set appear on top of the palette
window. In this case, keep the palette window on top of the primary window of a set. This feature allows the user to
configure preferred access to the palette window.

You can include a Properties command on the palette window’s pop-up menu to provide an interface for allowing
the user to edit properties of the window, such as the Always On Top property or a means of customizing the content
of the palette window.

Message Boxes
A message box is a secondary window that displays messages; information about a particular situation or condition.
Messages are an important part of the interface for any software product. Messages that are too generic or poorly
written frustrate users, increase support costs, and ultimately reflect on the quality of the product. Therefore, it is
worthwhile to design effective message boxes.

However, avoid creating situations that unnecessarily create a problem that requires you to display a message. For
example, if there may be insufficient disk space to perform an operation, rather than assuming that you will display a
message box, check before the user attempts the operation and disable the command.

Use the title bar of a message box to appropriately identify the context in which the message is displayed—usually
the name of the object. For example, if the message results from editing a document, the title text is the name of that
document, optionally followed by the application name. If the message results from a nondocument object, then use
the application name. Providing an appropriate identifier for the message is particularly important in the Windows
multitasking environment, because message boxes might not always be the result of current user interaction. In

Ebay Exhibit 1013, Page 700 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 8 Secondary Windows 175

February 13, 1995

addition, because OLE technology allows objects to be embedded, different application code may be running when
the user activates the object for visual editing. Therefore, the title bar text provides an important role in
communicating the nature of a message. Do not use descriptive text for message box title text such as "warning" or
"caution." The message symbol conveys the nature of the message. Never use the word "error" in the title text.

You may include a message identification number as part of the message box text (not title text) for each message for
support purposes. To avoid interrupting the user’s ability to quickly read a message, place such a designation at the
end of the message text.

Message Box Types
Each message box includes a graphical symbol that indicates what kind of message is being presented. Most
messages can be classified in one of the following categories:

• Informational messages

• Warning messages

• Critical messages

Ebay Exhibit 1013, Page 701 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 8 Secondary Windows 175

February 13, 1995

The following table describes each message type and shows its associated symbol.

Table 8.1 Message Types and Associated Symbols

Symbol Message Type Description

Information Provides information about the results of a command. Offers
no user choices; the user acknowledges the message by
clicking the OK button.

Warning Alerts the user to a condition or situation that requires the
user’s decision and input before proceeding, such as an
impending action with potentially destructive, irreversible
consequences. The message can be in the form of a question —
for example, “Save changes to MyReport?”.

Critical Informs the user of a serious problem that requires intervention
or correction before work can continue.

Figure 8.17 shows examples of these types of message boxes .

Figure 8.17 Informational, warning, and critical message boxes

Ebay Exhibit 1013, Page 702 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 8 Secondary Windows 175

February 13, 1995

The system does provide another message icon type that has been in earlier versions of
Windows. This message icon is for cautionary messages that are phrased as a question. However,
the message icon is no longer recommended as it does not clearly represent a type of message. In
addition, the message can be confused with the Help symbol.

Because a message box disrupts the user’s current task, it is best to display a message box only when the window of
the application displaying the message box is active. If it is not active, then the application uses its entry in the
taskbar to alert the user. Once the user activates the application, the message box can be displayed.

For more information about how an application uses the taskbar to alert the user, see Chapter 10, “Integrating with
the System.”

You can also use message boxes to provide information or status without requiring direct user interaction to dismiss
them. For example, message boxes that provide a visual representation of the progress of a particular process
automatically disappear when the process is complete, as shown in Figure 8.18. Similarly, product start-up windows
that identify the product name and copyright information when the application starts can be automatically removed
once the application has loaded. In these situations, you do not need to include a message symbol. Use this technique
only for noncritical, informational messages, as some users may not be able to read the message within the short time
it is displayed.

Figure 8.18 A progress message box

However, display only one message box for a specific condition. Displaying a sequential set of message boxes tends
to confuse users.

Command Buttons in Message Boxes
Typically, message boxes contain only command buttons as the appropriate responses or choices offered to the user.
Designate the most frequent or least destructive option as the default command button. Command buttons allow the
message box interaction to be simple and efficient. If you need to add other types of controls, always consider the
potential increase in complexity.

If a message requires no choices to be made but only acknowledgement, use only an OK button — and, optionally, a
Help button. If the message requires the user to make a choice, include a command button for each option. The
clearest way to present the choices is to state the message in the form of a question and provide a button for each
response. When possible, phrase the the question to permit Yes or No answers, represented by Yes and No command
buttons. If these choices are too ambiguous, label the command buttons with the names of specific actions — for
example, “Save” and “Delete.”

Note

Ebay Exhibit 1013, Page 703 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 8 Secondary Windows 175

February 13, 1995

You can include command buttons in a message box that correct the action that caused the message box to be
displayed. Be sure, however, to make the result of any such button’s action very clear. For example, if the message
box indicates that the user must switch to another application window to take corrective action, you can include a
button that switches the user to that application window.

Some situations may require offering the user not only a choice between performing or not performing an action, but
an opportunity to cancel the process altogether. In such situations, use a Cancel button, as shown in Figure 8.19.

Figure 8.19 Message box choices

When using Cancel as a command button in a message box, remember that to users, Cancel
implies restoring the state of the process or task that started the message. If you use Cancel to
interrupt a process and the state cannot be restored, use Stop instead.

Note

Ebay Exhibit 1013, Page 704 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 8 Secondary Windows 175

February 13, 1995

Message Box Text
The message text you include in a message box should be clear, concise, and in terms that the user understands. This
usually means using no technical jargon or system-oriented information.

In addition, observe the following guidelines for your message text:

• State the problem, its probable cause (if possible), and what the user can do about it—no matter
how obvious the solution may seem to be. For example, instead of “Insufficient disk space,” use
“‘Sample Document’ could not be saved, because the disk is full. Try saving to another disk or
freeing up space on this disk.”

• Consider making the solution an option offered in the message. For example, instead of "One or
more of your lines are too long. The text can only be a maximum of 60 characters wide," you
might say, "One or more of your lines are too long. Text can be a maximum of 60 characters in
Portrait mode or 90 characters wide in Landscape. Do you want to switch to Landscape mode
now?" Offer Yes and No as the choices.

• Avoid using unnecessary technical terminology and overly complex sentences. For example,
"picture" can be understood in context, whereas "picture metafile" is a rather technical concept.

• Avoid phrasing that blames the user or implies user error. For example, use “Cannot find filename”
instead of “Filename error.” Avoid the word “error” altogether.

• Make messages as specific as possible. No more than two or three conditions should map to a
single message. For example, there may be several reasons why a file cannot be opened; provide a
specific message for each condition.

• Avoid relying on default system-supplied messages, such as MS-DOS® extended error messages
and Kernel INT 24 messages; instead, supply your own specific messages wherever possible.

• Be brief, but complete. Provide only as much background information as necessary. A good rule of
thumb is to limit the message to two or three lines. If further explanation is necessary, provide this
through a command button that opens a Help window.

Ebay Exhibit 1013, Page 705 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 8 Secondary Windows 175

February 13, 1995

Pop-up Windows
Use pop-up windows to display additional information when an abbreviated form of the information is the main
presentation. For example, use a pop-up window when an entire path cannot be presented and must be abbreviated —
the pop-up window displays the full path. They are often used to provide contextual Help information, as shown in
Figure 8.20.

Figure 8.20 A context-sensitive Help pop-up window

Tooltips are another form of contextual Help information. They provide the name for a control in toolbars. The
writing tool control is another example of the use of a pop-up window.

For more information about the use of pop-up windows for contextual Help information, see Chapter 12, "User
Assistance."

How pop-up windows are displayed depends on their use, but the typical means is by the user either pointing or
clicking with mouse button 1 (for pens, tapping), or an explicit command. If the user chooses the standard toolbar or
tooltip controls, the system automatically provides time-outs.

If you use clicking to display a pop-up window, change the pointer as feedback to the user indicating that the pop-up
window exists and requires a click. Usually, the pointing-hand cursor is the best to use. From the keyboard, use the
Select key (SPACEBAR) to open and close the window.

When you use an explicit command to display a pop-up menu — for example, a command on a pop-up menu — the
pop-up window is also immediately displayed. With either of these methods, clicking a second time dismisses the
window.

Ebay Exhibit 1013, Page 706 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

175

February 13, 1995

C H A P T E R 9

Window Management
User tasks can often involve working with different types of information, contained in more than one window or
view. There are different techniques that you can use to manage a set of windows or views. This chapter covers some
common techniques and the factors to consider for selecting a particular model.

Single Document Window Interface
In many cases, the interface of an object or application can be expressed using a single primary window with a set of
supplemental secondary windows. The desktop and taskbar provide management of primary windows. Opening the
window puts it at the top of the Z order and places an entry in the taskbar, making it easier for users to switch
between windows without having to shuffle or reposition them. This single document window interface minimizes
window clutter.

By supporting a single instance model where you activate an existing window (within the same desktop) if the user
reopens the object, you make single primary windows more manageable, and reduce the potential confusion for the
user. This also provides a data-centered, one-to-one relationship between an object and its window.

In addition, Microsoft OLE supports the creation of compound documents or other types of information containers.
Using these constructs, the user can assemble a set of different types of objects for a specific purpose within a single
primary window, eliminating the necessity of displaying or editing information in separate windows.

For more information about OLE, see Chapter 11, "Working with OLE Embedded and OLE Linked Objects."

Ebay Exhibit 1013, Page 707 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 9 Window Management 187

February 13, 1995

Some types of objects, such as device objects, may not require a primary window and use only a secondary window
for viewing and editing their properties. When this occurs, do not include the Open command in the menu for the
object; instead, replace it with a Properties command, defined as the object's default command.

It is also possible for an object to have no windows; an icon is its sole representation. In this rare case, make certain
that you provide an adequate set of menu commands to allow a user to control its activity.

Multiple Document Interface
For some tasks, the taskbar may not be sufficient for managing a set of related windows; for example, it can be more
effective to present multiple views of the same data or multiple views of related data in windows that share interface
elements. You can use the multiple document interface (MDI) for this kind of situation.

The MDI technique uses a single primary window, called a parent window, to visually contain a set of related
document or child windows, as shown in Figure 9.1. Each child window is essentially a primary window, but is
constrained to appear only within the parent window instead of on the desktop. The parent window also provides a
visual and operational framework for its child windows. For example, child windows typically share the menu bar of
the parent window and can also share other parts of the parent’s interface, such as a toolbar or status bar. You can
change these to reflect the commands and attributes of the active child window.

Figure 9.1 An MDI parent and child window

Secondary windows — such as dialog boxes, message boxes, or property sheets — displayed as a result of interaction
within the MDI parent or child, are typically not contained or clipped by the parent window. These windows are

Ebay Exhibit 1013, Page 708 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 9 Window Management 187

February 13, 1995

activated and displayed following the common conventions for secondary windows associated with a primary
window, even if they apply to individual child windows.

For more information about the interaction between a primary window and its secondary windows, see Chapter 6,
"Windows," and Chapter 8, "Secondary Windows."

The title bar of an MDI parent window includes the icon and name of the application or the object that represents the
work area displayed in the parent window. The title bar of a child window includes the icon representing the
document or data file type and its filename. The title bar also includes pop-up menus for the window and the title bar
icon for both the parent window and any child windows.

Ebay Exhibit 1013, Page 709 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 9 Window Management 187

February 13, 1995

Opening and Closing MDI Windows
The user starts an MDI application either by directly opening the application or by opening a document (or data file)
of the type supported by the MDI application. If directly opening an MDI document, the MDI parent window opens
first and then the child window for the file opens within it. To support the user opening other documents associated
with the application, include an interface such as an Open command.

When the user directly opens an MDI document outside the interface of its MDI parent window — for example, by
double-clicking the file — if the parent window for the application is already open, another instance of the MDI
parent window is opened rather than the document’s window in the existing MDI parent window. While the opening
of the child window within the existing parent window can be more efficient, the opening of the new window can
disrupt the task environment already set up in that parent window. For example, if the newly opened file is a macro,
opening it in the opened parent window can inadvertently affect other documents open in that window. If the user
wishes to open a file as part of the set in a particular parent MDI window, the commands within that window provide
that support.

For more information about opening primary windows, see Chapter 6, "Windows."

Because MDI child windows are primary windows, the user can close them using the Close button in the title bar or
the Close command on the pop-up menu for the window. When the user closes a child window, any unsaved changes
are processed following the common conventions. Do not close its parent window, unless the parent window
provides no context or operations without an open child window.

When the user closes the parent window, all of its child windows are closed. Where possible, the state of a child
window is preserved, such as its size and position within the parent window; the state is restored when the file is
reopened.

Moving and Sizing MDI Windows
MDI allows the user to move or hide the child windows as a set by moving or minimizing the parent window. When
the user moves an MDI parent window, the open child windows within it maintain their relative positions within the
parent window. Moving a child window constrains it to its parent window; in some cases, the size of the parent
window's interior area may result in clipping a child window. Optionally, you can support automatic resizing of the
parent window when the user moves or resizes a child window either toward or away from the edge of the parent
window.

Although an MDI parent window minimizes as an entry on the taskbar, MDI child windows minimize within their
parent window, as shown in Figure 9.2.

The recommended visual appearance of a minimized child window in Microsoft Windows is
now that of a window that has been sized down to display only part of its title area and its border.
This avoids potential confusion between minimized child window icons and icons that represent
objects.

Note

Ebay Exhibit 1013, Page 710 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 9 Window Management 187

February 13, 1995

Figure 9.2 A minimized MDI child window

When the user maximizes an MDI parent window, the window expands to its maximum size, like any other primary
window. When the user maximizes an MDI child window, it should also expand to its maximum size. When this size
exceeds the interior of its parent window, the child window merges with its parent window. The child window's title
bar icon, Restore button, Close button, and Minimize button (if supported) are placed in the menu bar of the parent
window in the same relative position as in the title bar of the child window, as shown in Figure 9.3. The child
window title text appends to the parent window's title text.

Ebay Exhibit 1013, Page 711 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 9 Window Management 187

February 13, 1995

Figure 9.3 A maximized MDI child window

If the user maximizes one child window and then switches to another, display that window as maximized. Similarly,
when the user restores one child window from its maximized state, restore all other child windows to their previous
sizes.

Switching Between MDI Child Windows
Apply the same common mouse conventions for activating and switching between primary windows for MDI child
windows. CTRL+F6 and CTRL+TAB (and SHIFT+ modified combinations to cycle backwards) are the recommended
keyboard shortcuts for switching between child windows. In addition, include a Window menu on the menu bar of
the parent window with commands for switching between child windows and managing or arranging the windows
within the MDI parent window — for example, Tile or Cascade.

When the user switches child windows, you can change the interface of the parent window—such as its menu bar,
toolbar, or status bar—to appropriately reflect the commands that apply to that child window. However, provide as
much consistency as possible, keeping constant any menus that represent the document files and control the
application or overall parent window environment, such as the File menu or the Window menu.

MDI Alternatives
MDI does have its limitations. MDI reinforces the visibility of the application as the primary focus for the user.
While the user can start an MDI application by directly opening one of its document or data files, to work with
multiple documents within the same MDI parent window, the user must use the application's interface for opening
those documents.

When the user opens multiple files within the same MDI parent window, the storage relationship between the child
windows and the objects being viewed in those windows is not consistent. That is, while the parent window provides

Ebay Exhibit 1013, Page 712 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 9 Window Management 187

February 13, 1995

visual containment for a set of child windows, it does not provide containment for the files those windows represent.
This makes the relationship between the files and their windows more abstract.

Similarly, because the MDI parent window does not actually contain the objects opened within it, MDI cannot
support an effective design for persistence. When the user closes the parent window and then reopens it, the context
cannot be restored because the application state must be maintained independently from that of the files last opened
in it.

MDI can make some aspects of the OLE interface unintentionally more complex. For example, if the user opens a
text document in an MDI application and then opens a worksheet embedded in that text document, the task
relationship and window management breaks down, because the embedded document's window does not appear in
the same MDI parent window.

Finally, the MDI technique of managing windows by confining child windows to the parent window can be
inconvenient or inappropriate for some tasks, such as designing with window or form layout tools. Similarly, the
nested nature of child windows may make it difficult for the user to differentiate between a child window in a parent
window versus a primary window that is a peer with the parent window, but positioned on top.

While MDI provides useful conventions for managing a set of related windows, it is not the only means of
supporting task management. Some of its window management techniques can be applied in some alternative
designs. The following — workspaces, workbooks, and projects — are examples of some of these design alternatives.
They present a single window design model, but in such a way that preserves some of the window and task
management benefits found in MDI.

While these examples suggest a form of containment, you can also apply some of these designs to display multiple
views of the same data. Similarly, these alternatives provide greater flexibility with respect to the types of objects
that they may contain. As with any container, you can define your implementation to hold and manage only certain
types of objects. For example, an appointment book and an index card file are both containers that organize a set of
information but may differ in the way and type of information they manage. Whether you define a container to hold
the same or different types of objects depends on the design and purpose of the container.

The following examples illustrate alternatives of data-centered window or task management.
They are not exclusive of other possible designs. They are intended only as suggestive
possibilities, rather than standard constructs. As a result, the system does not include these
constructs and provides no explicit programming interfaces. In addition, some specific details are
left to you to define.

Workspaces
A workspace shares many of the characteristics of MDI, including the association and management of a set of related
windows within a parent window, and the sharing of the parent window's interface elements, such as menus,
toolbars, and status bar. Figure 9.4 shows an example of a workspace.

Note

Ebay Exhibit 1013, Page 713 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 9 Window Management 187

February 13, 1995

Figure 9.4 A workspace

Workspaces as a Container
Based on the metaphor of a work area, like a table, desktop, or office, a workspace differs from an MDI by including
the concept of containment. Objects, represented as icons, may be contained or stored in the workspace in the same
way they can be contained in folders. However, within a workspace, you open icons as child windows within the
workspace parent window. In this way, a workspace's behavior is similar to that of the desktop, except that a
workspace can be displayed as an icon and opened into a window. To have an object's window appear in the
workspace, its icon must reside there. To facilitate this, you provide interaction techniques, such as drag and drop,
that allow the user to move, copy, or link icons into the workspace.

The workspace is an object itself and therefore you define its specific commands and properties. Using information
based on the registry, you also include commands for creating new objects within the workspace and, optionally, a
Save All command that saves the state of all the objects opened in the workspace.
Workspaces for Task Grouping
Because a workspace visually contains and constrains the icons and windows of the objects placed in it, you can
define workspaces to allow the user to organize a set of objects for particular tasks. Like an MDI, this makes it easy
for the user to move or switch to a set of related windows as a set.

Also similar to an MDI, the child windows of objects opened in the workspace can share the interface of the parent
window. For example, if the workspace includes a menu bar, the windows of any objects contained within the
workspace share the menu bar. If the workspace does not have a menu bar, or if you provide an option for the user to

Ebay Exhibit 1013, Page 714 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 9 Window Management 187

February 13, 1995

hide the menu bar, the menu bar appears within the document's child window. The parent window can also provide a
framework for sharing toolbars and status bars.

A workspace provides support for the user to move the icons from the workspace into other containers, such as the
desktop and folders. When the user moves an icon out of the workspace, places it on the desktop or in a folder, and
then opens it, it appears in its own window and does not open a workspace window. Its interface elements, such as its
menu bar, also appear within its own window. Only when the icon is stored in a workspace does it share the
workspace menu bar.
Window Management in a Workspace
A workspace manages windows using the same conventions as MDI. When a workspace closes, all the windows
within it close. You retain the state of these windows, for example, their size and position within the workspace, so
you can restore them when the user reopens the workspace.

Like most primary windows, when the user minimizes the workspace window, the window disappears from the
screen but its entry remains in the taskbar. Minimized windows of icons opened within the workspace have the same
behavior and appearance as minimized MDI child windows. Similarly, maximizing a window within a workspace
can follow the MDI technique: if the window's maximize size exceeds the size of the workspace window, the child
window merges with the workspace window and its title bar icon and window buttons appear in the menu bar of the
workspace window.

A workspace always provides a means of navigating between the child windows within a workspace, such as listing
the open child windows on a Window drop-down menu and on the pop-up menu for the parent window, in addition
to simple window activation.

Workbooks
A workbook, as shown in Figure 9.5, is another alternative for managing a set of views — one which uses the
metaphor of a book or notebook instead of a work area. Within the workbook, you present views of objects as
sections within the workbook's primary window rather than in individual child windows.

Ebay Exhibit 1013, Page 715 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 9 Window Management 187

February 13, 1995

Figure 9.5 A workbook

For a workbook, tabs serve as a navigational interface to move between different sections. Each section represents a
view of data, such as an individual document. Unlike a folder or workspace, you use a workbook for ordered content;
that is, where the order of the sections has significance. In addition, you can optionally include a special section
listing the content of the workbook, like a table of contents. This view can also be used as part of the navigational
interface for the workbook.

A workbook shares an interface similar to an MDI parent window with all of its child windows maximized. The
sections can share the parent window's interface elements, such as the menu bar and status bar. When the user
switches sections within the workbook, the menu bar changes so that it applies to the current object. When the user
closes a workbook, follow the common conventions for handling unsaved edits or unapplied transactions when any
primary window closes.

For more information about the conventions for closing a primary window, see Chapter 6, "Windows."

Support transfer operations so that the user can move, copy, and link objects into the workbook. Also provide an
Insert command that allows the user to create new objects, including a new tabbed section in the workbook. You can
also include a Save All command, which saves any uncommitted changes or prompts the user to save or discard
those changes.

Projects
A project, shown in Figure 9.6, is another window management technique that provides for association of a set of
objects and their windows, but without visually containing the windows. A project is similar to a folder in that the
icons contained within it can be opened into windows that are peers with the parent window. As a result, each child
window also has its own entry in the taskbar. Furthermore, a project provides window management for the windows
of its content, unlike a folder. For example, when the user opens a document in a folder and then closes the folder, it

Ebay Exhibit 1013, Page 716 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 9 Window Management 187

February 13, 1995

has no effect on the window of the opened document. However, when the user closes a project window, all the child
windows of objects contained in the project also close. In addition, when the user opens a project window, this action
restores the windows of objects contained within it to their previous state.

Similarly, when the user minimizes a project window, this action minimizes any windows of the objects it contains.
Taskbar entries for these windows remain. Allow the user to restore a specific child window without restoring the
project window or other windows within the project. In addition, support the user independently minimizing any
child window without affecting the project window.

Figure 9.6 A project

Do not allow the windows of objects stored in the project to share the menu bar or other areas within the project
window. Instead, include the interface elements for each object in its own window. As another option, you can
provide toolbar palette windows that can be shared among the windows of the objects in the project.

Just as in workspaces and workbooks, a project should include commands for creating new objects within the
project, for transferring objects in and out of the project, and for saving any changes for the objects stored in the
project. In addition, a project should include commands and properties for the project object itself.

Selecting a Window Model
Deciding how to present your application's collection of related tasks or processes requires considering a number of
design factors: presentation of object or task, screen layout, data-centered design, and the combining of alternatives.

Ebay Exhibit 1013, Page 717 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 9 Window Management 187

February 13, 1995

Presentation of Object or Task
What an object represents and how it is used and relates to other objects influences how you present its view. Simple
objects that are self contained may not require a primary window, or only require a set of menu commands and a
property sheet to edit their properties.

An object with user-accessible content in addition to properties, such as a document, requires a primary window.
This single document window interface can be sufficient when the object's primary presentation or use is as a single
unit, even when containing different types. Alternative views can easily be supported with controls that allow the
user to change the view. Simple simultaneous views of the same data can even be supported by splitting the window
into panes. The system uses the single document window style of interface for most of the components it includes,
such as folders.

MDI, workspaces, workbooks, and projects work better when the composition of an object requires simultaneous
views or the nature of the user's tasks requires views of multiple objects. These constructs provide a focus for
specific user activities, within the larger environment of the desktop.

You can use an MDI for viewing homogeneous types. The user cannot mix different objects within the same MDI
parent windows unless you supply them as part of the application. On the other hand, MDI can provide compound
documents that support views of different types of objects.

Use a workbook when you want to optimize quick user navigation of multiple views. A workbook simplifies the task
by eliminating the management of child windows, but in doing so, it limits the user's ability to see simultaneous
views.

Workspaces and projects provide flexibility for viewing and mixing of objects and their windows. Use a workspace
as you would an MDI, when you want to clearly segregate the icons and their windows used in a task. Use a project
when you do not want to constrain any child windows.

A project provides the greatest flexibility for user placement and arrangement of its windows. It does so, however, at
the expense of an increase in complexity because it may be more difficult for a user to differentiate the child window
of a project from windows of other applications.

Ebay Exhibit 1013, Page 718 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 9 Window Management 187

February 13, 1995

Display Layout
Consider the requirements for layout of information. For very high resolution displays, the use of menu bars,
toolbars, and status bars poses little problem for providing adequate display of the information being viewed in a
window. Similarly, the appearance of these common interface elements in each window has little impact on the
overall presentation. At VGA resolution, however, this can be an issue. The interface components for a set of
windows should not affect the user's work area so that the user cannot easily view or manipulate their data.

MDI, workspaces, workbooks, and projects all allow interface components to be shared among multiple views.
Within shared elements, it must be clear when a particular interface component applies. While you can automatically
switch the content of those components, consider what functions are common across views or child windows and
present them in a consistent way to provide for stability in the interface. For example, if multiple views share a Print
toolbar button, present that button in a consistent location. If the button's placement constantly shifts when the user
switches the view, the user's efficiency in performing the task decreases. In addition, shared interfaces may make
user customization of interface components more complex because you need to indicate whether the customization
applies to the current context or across all views.

Regardless of the window model you chose, always consider allowing users to determine which interface
components they wish to have displayed. Doing so means that you also need to consider how to make basic
functionality available if the user hides a particular component. For example, pop-up menus can often be used to
supplement the interface when the user hides the menu bar.

Data-Centered Design
A single document window interface provides the best support for a simple, data-centered design; MDI supports a
more conventional application-centered design. It is best suited to multiple views of the same data or contexts where
the application does not represent views of user data. You can use workspaces, workbooks, and projects to provide
single document window interfaces while preserving some of the management techniques provided by MDI.

Combination of Alternatives
Single document window interfaces, MDIs, workspaces, workbooks, and projects are not necessarily exclusive
design techniques. It may be advantageous to combine these techniques. For example, documents can be presented
within a workspace. You can also design workbooks and projects as objects within a workspace. In similar fashion, a
project might contain a workbook as one of its objects.

Ebay Exhibit 1013, Page 719 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

189

February 13, 1995

C H A P T E R 1 0
Integrating with the System
In addition to providing standard interface components such as windows and controls, Microsoft Windows includes
special support that allows you to design your application to fit and operate effectively with the system. Users
appreciate seamless integration between the system and their applications. This chapter covers details about
integrating your software with the system and how to extend its features. Some of the conventions and features may
not be supported in all releases. For more information about specific releases, see Appendix D, "Supporting
Windows 95 and Windows NT Version 3.51."

The Registry
Windows provides a special repository called the registry that serves as a central configuration database for user-,
application-, and computer-specific information. Although the registry is not intended for direct user access, the
information placed in it affects your application's user interface. Registered information determines the icons,
commands, and other features displayed for files. The registry also makes it easier to manage and support
configuration information used by applications and eliminates redundant information stored in different locations.

The registry is a hierarchical structure. Each node in the tree is called a key. Each key can contain a subkey and data
entries called values. Key names cannot include a space, backslash (\), or wildcard character (* or ?). Key names
beginning with a period (.) are reserved for special syntax (for example, filename extensions), but you can include a
period within the key name. The name of a subkey must be unique with respect to its parent key. Key names are not
localized into other languages, although their values may be.

A key can have any number of values. A value entry has three parts: the name of the value, its data type, and the
value itself. A value entry cannot be larger than 1 megabyte.

Note The example registry entries in this chapter represent only the hierarchical relationship of the keys. For more
information about the registry and registry file formats, see the documentation in the Microsoft Win32 Software
Development Kit.

When the user installs your application, register keys for where application data is stored, for filename extensions,
icons, shell commands, OLE registration data, and for any special extensions. To register your application's
information, you can create a registration (.REG) file and use the Registry Editor to merge this file into the system
registry. You may also use other utilities that support this function, or use the system-supplied registry functions to
access or manipulate registry data.

Note To use memory most efficiently, the system stores only the registry entries that have been installed and that are
required for operation. Applications should never fail to write a registry entry because it is not already installed. To
ensure this happens, use registry creation functions when adding an entry.

Registering Application State Information
Use the registry to store state information for your application. Typically, the data you store here will be information
you may have stored in .INI files in previous releases of Windows. Create subkeys in the
HKEY_LOCAL_MACHINE and HKEY_CURRENT_USER keys that include information about your
application.

Ebay Exhibit 1013, Page 720 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 Chapter 10 Integrating with the System 203

February 13, 1995

HKEY_LOCAL_MACHINE
 SOFTWARE
 CompanyName
 ProductName
 Version
...
HKEY_CURRENT_USER
 SOFTWARE
 CompanyName
 ProductName
 Version

Use your application's HKEY_LOCAL_MACHINE entry as the location to store computer-specific data and the
HKEY_CURRENT_USER entry to store user-specific data. You can define your own structure for the information
you store under your application's subkey.

Save your application's state whenever the user closes its primary window. In most cases, it is best to restore a
window to its previous state when the user reopens it.

Ebay Exhibit 1013, Page 721 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 Chapter 10 Integrating with the System 203

February 13, 1995

When the user shuts down the system with your application's window open, you may optionally store information in
the registry so that the application's state is restored when the user starts up Windows. (The system does this for
folders.) To have your application's state restored, store your window and application state information under its
registry entries when the system notifies your application that it is shutting down. Store the state information in
HKEY_CURRENT_USER and add a value name–value pair to the RunOnce subkey that corresponds to the
command line string that will run your application. Then, allow it to restore its state when the same user next starts
the system.

HKEY_LOCAL_MACHINE
 Software
 Microsoft
 Windows
 CurrentVersion
 RunOnce application/file identifier = command line

If you have multiple instances open, you can include value name entries for each or consolidate them as a single
entry and use command-line switches that are most appropriate for your application. For example, you may include
entries like the following.

WordPad Document 1 = C:\Program Files\Wordpad.exe Letter to Bill /restore
WordPad Document 2 = C:\Program Files\Wordpad.exe Letter to Paul /restore
Paint = C:\Program Files\Paint.exe Abstract.bmp Cubist.bmp

As long as you provide a valid command-line string that your application can process, you can format the entry in a
way that best fits your application.

Note The system's ability to restore an application's state depends on whether the application and its data files are
still available. If they have been deleted or the user has logged in over the network, where the same files are not
available, the system cannot restore the state.

You can also include a RunOnce entry under the HKEY_LOCAL_MACHINE key. When using this entry,
however, the system runs the application before starting up. You can use this entry for applications that may need to
query the user for information that affects how Windows starts. Just remember that any entry here will affect all
users of the computer.

Ebay Exhibit 1013, Page 722 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 Chapter 10 Integrating with the System 203

February 13, 1995

RunOnce entries are automatically removed from the registry once the system starts up. Therefore, you need not
remove or update the entries, but your application must always save its state when the user shuts down the system.
The system also supports a Run subkey in both the HKEY_CURRENT_USER and HKEY_LOCAL_MACHINE
keys. The system runs any value name entries under this subkey after the system starts up, but does not remove those
entries from the registry. For example, a virus check program can be installed to run automatically after the system
starts up.

Registering Application Path Information
The system supports "per application" paths. If you register a path, Windows sets the PATH environment to be the
registered path when it starts your application. You set your application's path in the App Paths subkey under the
HKEY_LOCAL_MACHINE key. Create a new key using your application's executable (.EXE) filename as its
name. Under this key, create a value name called Default, setting its value to the path of your executable file. The
system uses this entry to locate your application, if it fails to find it in the current path; for example, if the user
chooses the Run command on the Start menu and only includes the filename of the application, or if a shortcut icon
doesn't include a path setting. If you need to place dynamic-link libraries (DLLs) in a separate directory, you can also
include another value entry called Path and set its value to the path of your DLL files.

HKEY_LOCAL_MACHINE
 Software
 Microsoft
 Windows
 CurrentVersion
 App Paths
 Application Executable Filename
 Default = path
 Path = path

The system will automatically update the path and default entries if the user moves or renames the application's
executable file using the standard system user interface.

Register any systemwide shared dynamic-link libraries in a subkey under a SharedDLLs subkey of
HKEY_LOCAL_MACHINE key. If the file already exists, increment the entry's usage count index. For more
information about the usage count index, see the "Installation" section in this chapter.

HKEY_LOCAL_MACHINE
 Software
 Microsoft
 Windows
 CurrentVersion
 SharedDLLs filename [= usage count index]

Registering File Extensions
If your application creates and maintains files, register entries for the file types that you expose directly to users and
that you want users to be able to easily differentiate. For every file type you register, include at least two entries: a
filename-extension key entry and a class-definition key entry. If you do not register an extension for a file type, it
will be displayed with the system's generic file object icon, as shown in Figure 10.1, and its extension will always be
displayed. In addition, the user will not be able to double-click the file to open it. (Open With will be the icon's
default command.)

Ebay Exhibit 1013, Page 723 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 Chapter 10 Integrating with the System 203

February 13, 1995

Figure 10.1 System-generated icons for unregistered types

The Filename Extension Key
The filename extension entry maps a filename extension to an application identifier. To register an extension, create
a subkey in the HKEY_CLASSES_ROOT key using the three-letter extension (including a period) and set its value
to an application identifier.

HKEY_CLASSES_ROOT
 .ext = ApplicationIdentifier

For the value of the application identifier (also known as programmatic identifier or Prog ID), use a string that
uniquely identifies a given class. This string is used internally by the system and is not exposed directly to users
(unless explicitly exported with a special registry utility); therefore, you need not localize this entry.

Multiple extensions may have the same application identifier. To ensure that each file type can be distinguished by
the user, however, define each extension such that each has a unique application identifier, unless you application
already supports multiple extensions or you have utility files that the user does not interact with directly. The system
provides no arbitration for applications that use the same extensions. So define unique identifiers and check the
registry to avoid writing over and replacing existing extension entries, a practice which may seriously affect the
user's existing files. More specifically, avoid registering an extension that conflicts or redefines the common
filename extensions used by the system; these extensions are displayed in Table 10.1.

Ebay Exhibit 1013, Page 724 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 Chapter 10 Integrating with the System 203

February 13, 1995

Table 10.1 Common Filename Extensions Supported by Windows
Extension Type description

386 Windows virtual device driver

3GR Screen grabber for MS-DOS–based applications

ACM Audio compression manager driver

ADF Administration configuration files

ANI Animated pointer

AVI Video clip

AWD Fax viewer document

AWP Fax key viewer

AWS Fax signature viewer

BAK Backed-up file

BAT MS-DOS batch file

BFC Briefcase

BIN Binary data file

BMP Picture (Windows bitmap)

CAB Windows Setup file

CAL Windows Calendar file

CDA CD audio track

CFG Configuration file

CNT Configuration file

CNT Help contents

COM MS-DOS application

CPD Fax cover page

CPE Fax cover page

CPI International code page

CPL Control Panel object

CRD Windows Cardfile document

CSV Command-separated data file

CUR Cursor (pointer)

Ebay Exhibit 1013, Page 725 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 Chapter 10 Integrating with the System 203

February 13, 1995

Table 10.1 Common Filename Extensions Supported by Windows (continued)
Extension Type description

DAT System data file

DCX Fax viewer document

DLL Application extension (Dynamic-link library)

DOC WordPad document

DOS MS-DOS file (also extension for NDIS2 net card and protocol drivers)

DRV Device driver

EXE Application

FND Saved search

FON Font file

FOT Shortcut to font

GR3 Windows 3.0 screen grabber

GRP Program group file

HLP Help file

HT HyperTerminal file

ICM ICM profile

ICO Icon

IDF MIDI instrument definition

INF Setup information

INI Configuration settings

KBD Keyboard layout

LGO Windows logo driver

LIB Static-link library

LNK Shortcut

LOG Log file

MCI MCI command set

MDB File viewer extension

MID MIDI sequence

MIF MIDI instrument file

MMF Microsoft Mail message file

Ebay Exhibit 1013, Page 726 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 Chapter 10 Integrating with the System 203

February 13, 1995

Table 10.1 Common Filename Extensions Supported by Windows (continued)
Extension Type description

MMM Animation

MPD Mini-port driver

MSG Microsoft Exchange mail document

MSN The Microsoft Network home base

MSP Windows Paintbrush picture

NLS Natural language services driver

PAB Microsoft Exchange personal address book

PCX Picture (PCX format)

PDR Port driver

PF ICM profile

PIF Shortcut to MS-DOS–based application

PPD PostScript® printer description file

PRT Printer formatted file (result of Print to File option)

PST Microsoft Exchange personal information store

PWL Password list

QIC Backup set for Microsoft Backup

REC Windows Recorder file

REG Application registration file

RLE Picture (RLE format)

RMI MIDI sequence

RTF Document (rich text format)

SCR Screen saver

SET File set for Microsoft Backup

SHB Shortcut into a document

SHS Scrap

SPD PostScript printer description file

SWP Virtual memory storage

SYS System file

Ebay Exhibit 1013, Page 727 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 Chapter 10 Integrating with the System 203

February 13, 1995

Table 10.1 Common Filename Extensions Supported by Windows (continued)
Extension Type description

TIF Picture (TIFF format)

TMP Temporary file

TRN Translation file

TSP Windows telephony service provider

TTF TrueType® font

TXT Text document

VBX Visual Basic® control file

VER Version description file

VXD Virtual device driver

WAV Sound wave

WPC WordPad file converter

WRI Windows Write document

XAB Microsoft Mail address book

Also investigate extensions commonly used by popular applications so you can avoid creating a new extension that
might conflict with them, unless you intend to replace or superset the functionality of those applications
The Application Identifier Key
The second registry entry you create for a file type is its class-definition (Prog ID) key. Using the same string as the
application identifier you used for the extension's value, create a key and assign a type name as the value of the key.

HKEY_CLASSES_ROOT
 .ext = ApplicationIdentifier
 ApplicationIdentifier = Type Name

Under this key, you specify shell and OLE properties of the class. Provide this entry even if you do not have any
extra information to place under this key; doing so provides a better label for users to identify the file type. In
addition, you use this entry to register the icon for file type.

Ebay Exhibit 1013, Page 728 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 Chapter 10 Integrating with the System 203

February 13, 1995

Define the type name (also known as the MainUserTypeName) as the human-readable form of its application
identifier or class name. It should convey to the user the object’s name, behavior, or capability. A type name can
include all of the following elements:

1. Company Name
 Communicates product identity.

2. Application Name
 Indicates which application is responsible for activating a data object.

3. Data Type

 Indicates the basic category of the object (for example, drawing, spreadsheet, or sound). Limit the
number of characters to a maximum of 15.

4. Version

 When there are multiple versions of the same basic type, for upgrading purposes, a version number
is necessary to distinguish types.

When defining your type name, use title capitalization. The name can include up to a maximum of 40 characters. Use
one of the following three recommended forms:

1. Company Name Application Name[Version] Data Type
 For example, Microsoft Excel 5.0 Worksheet.

2. Company Name-Application Name[Version] Data Type
 For cases when the company name and application are the samefor example, ExampleWare 2.0

Document.

3. Company Name Application Name [Version]
 When the application sufficiently describes the data typefor example, Microsoft Graph 3.0.

These type names provide the user with a precise language for referring to objects. Because object type names appear
throughout the interface, the user becomes conscious of an object’s type and its associated behavior. However,
because of their length, you may also want to include a short type name. A short type name is the data type portion of
the full type name. Applications that support OLE always include a short type name entry in the registry. Use the
short type name in drop-down and pop-up menus. For example, a Microsoft Excel 5.0 Worksheet is simply referred
to as a “Worksheet” in menus.

Ebay Exhibit 1013, Page 729 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 Chapter 10 Integrating with the System 203

February 13, 1995

To provide a short type name, add an AuxUserType subkey under the application's registered CLSID subkey
(which in turn is under the CLSID key).

HKEY_CLASSES_ROOT
 .ext = ApplicationIdentifier
...
 ApplicationIdentifier = Type Name
 CLSID = {CLSID identifer}
...
 CLSID
 {CLSID identifer}
 AuxUserType
 2 =Short Type Name

For more information about registering type names, see the Microsoft OLE Programmer's Reference.

If a short type name is not available for an object because the string was not registered, use the full type name
instead. All controls that display the full type name must allocate enough space for 40 characters in width. By
comparison, controls need only accommodate 15 characters when using the short type name.

Supporting Creation
The system supports the creation of new objects in system containers such as folders and the desktop. Register
information for each file type that you want the system to include. The registered type will appear on the New
command for a folder and the desktop. This provides a more data-centered design because the user can create a new
object without having locate and run the associated application.

To register a file type for inclusion, create a ShellNew subkey under the extension's subkey in
HKEY_CLASSES_ROOT.

HKEY_CLASSES_ROOT
 .ext = ApplicationIdentifier
 ShellNew = Value

Ebay Exhibit 1013, Page 730 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 Chapter 10 Integrating with the System 203

February 13, 1995

Assign a value entry to the ShellNew subkey with one of the four methods for creating a file with this extension:

Value name Value Result
NullFile "" Creates a new file of this type as a null (empty) file.

Data binary data Creates a new file containing the binary data.

FileName path Creates a new file by copying the specified file.

Command path Executes the command. Use this to run your own application
code to create a new file (for example, run a wizard).

When using the Command value, you must register the name of the command. The system supports the display of
any secondary windows you might want to display as a part of the creation process. The system also provides you
with automatic filename creation for the new file.

Registering Icons
The system uses the registry to determine which icon to display for a specific file. You register an icon for every data
file type that your application supports and that you want the user to be able to distinguish easily. Create a
DefaultIcon subkey entry under the application identifier subkey you created and define its value as the filename
containing the icon. Typically, you use the application's executable (.EXE) filename and the index of the icon within
the file. The index value corresponds to the icon within the file. A positive number represents the icon's position in
the file. A negative number corresponds to the inverse of the resource ID number of the icon. The icon for your
application should always be the first icon resource in your .EXE file. The system always uses the first icon resource
to represent executable files. This means the index value for your data files will be a number greater than 0.

HKEY_CLASSES_ROOT
 ApplicationIdentifier = Type Name
 DefaultIcon = path [,index]

Instead of registering the application's .EXE file, you can register the name of a .DLL file, an icon (.ICO) file, or
bitmap (.BMP) file to supply your data file icons. If an icon does not exist or is not registered, the system supplies an
icon derived from the icon of the file type's registered application. If no icon is available for the application, the
system supplies a generic icon. These icons do not make your files uniquely identifiable, however, so design icons
for both your application and its data file types. Include the following sizes: 16 × 16 pixel (16 color) , 32 × 32 pixel
(16 color), and 48 × 48 pixel (256 color).

For more information about designing icons, see Chapter 13, "Visual Design."

Registering Commands
Many of the commands found on icons, including Send To, Cut, Copy, Paste, Create Shortcut, Delete, Rename, and
Properties, are provided by their containerthat is, their containing folder or the desktop. But you must provide
support for the icon's primary commands, also known as verbs, such as Open, Edit, Play, and Print. You can also
specify your own commands that apply to your file types, such as a What's This? command. You may also add
commands for existing file types.

For more information about context-sensitive Help for file types, see Chapter 12, "User Assistance."

To add these commands, in the HKEY_CLASSES_ROOT key, you register a Shell subkey and a subkey for each
verb, and a Command subkey for each command name.

Ebay Exhibit 1013, Page 731 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 Chapter 10 Integrating with the System 203

February 13, 1995

HKEY_CLASSES_ROOT
 ApplicationIdentifier = Type Name
 Shell [= default Verb [,Verb2 [,..]]
 Verb [= Menu Name]
 Command = path [parameters]
 ddeexec = DDE command string
 Application = DDE Application Name
 Topic = DDE topic name

A Verb is a language-independent name of the command. Applications may use it to invoke a specific command
programmatically. The system defines Open, Print, Find, and Explore as standard Verbs and automatically provides
menu names and access key assignments for these, localized in each international version of Windows. When you
supply Verbs other than these, provide strings localized for the specific version of Windows on which the application
is installed.

To support user execution of a Verb, provide the path for the application or a dynamic data exchange (DDE)
command string. You can include command-line switches. For paths, include a %1 parameter. This parameter is an
operational placeholder for whatever file the user selects.

You may have different values for each Verb. You may assign one application to carry out the Open command and
another to carry out the Print command, or use the same application for all Verbs..

The menu command corresponding to the Verbs for a file type are displayed to the user, either on a folder's File
drop-down menu or pop-up menu for a file's icon. These appear at the top of the menu. You define the order of the
menu commands by ordering the Verbs in the value of the Shell key. The first Verb becomes the default command in
the menu.

By default, capitalization follows how you enter format the menu name value of the Verb subkey. Although the
system automatically capitalizes the standard commands (Open, Print, Explore, and Find), you can use the value of
the menu name to format the capitalization differently. Similarly, you use the menu command value to set the access
key for the menu command following normal menu conventions, prefixing the character in the name with an
ampersand (&). Otherwise, the system sets the first letter of the command as the access key for that command.

 Enabling Printing
If your file types are printable, include a Print Verb value in the Application Identifier\ Shell subkey under
HKEY_CLASSES_ROOT, following the conventions described in the previous section. This will display the Print
command on the pop-up menu for the icon and when the user selects the icon on the File menu of the folder in which
the icon resides. When the user chooses the Print command, the selected object prints on the default printer.

Also register a Print To registry entry for the file types your application supports. This entry enables drag and drop of
a file onto a printer icon. Although a Print To command is not displayed on any menu, the printer includes Print Here
as the default command on the pop-up menu displayed when the user drag and drops a file on the printer using button
2.

In both cases, print the file, preferably, without opening the application's primary window. One way to do this is to
provide a command-line switch that runs the application for handling the printing operation only (for example,
Word.exe /p). Display some form of user feedback that indicates whether a printing process has been initiated and,

Ebay Exhibit 1013, Page 732 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 Chapter 10 Integrating with the System 203

February 13, 1995

if so, its progress. For example, this feedback could be a modeless message box that displays, "Printing page m of n
on printer name" and a Cancel button. You may also include a progress indicator control.

Registering OLE
Applications that support OLE use the registry as the primary means of defining class types, operations, and
properties for data types supported by applications. You store OLE registration information in the
HKEY_CLASSES_ROOT key in subkeys under the CLSID subkey and in the class description's (Prog ID) subkey.

For more information about the specific registration entries for OLE, see the Microsoft OLE Programmer's
Reference.

Registering Shell Extensions
Your application can extend the functionality of the operational environment provided by the system, also known as
the shell, in a number of ways. A shell extension enhances the system by providing additional ways to manipulate
file objects, by simplifying the task of browsing through the file system, or by giving the user easier access to tools
that manipulate objects in the file system.

Every shell extension requires a handler, a special application code (32-bit OLE in-proc server) that implements
subordinate functions. The types of handlers you can provide include:

• Pop-up menu handlers: These add menu items to the context menu for a particular file type.

• Drag handlers: These allow you to support the OLE data transfer conventions for drag and drop
operations of a specific file.

• Drop handlers: These allow you to execute some action when the user drops objects on a specific
type of file.

• Nondefault drag and drop handlers: These are pop-up menu handlers that the system calls when the
user drags and drops an object by using mouse button 2.

• Icon handlers: These can be used to add per-instance icons for file objects or to supply icons for all
files of a specific type.

• Property sheet handlers: These add pages to a property sheet that the shell displays for a file object.
The pages can be specific to a class of files or to a particular file object.

• Copy-hook handlers: These are called when a folder or printer object is about to be moved, copied,
deleted, or renamed by the user. The handler can be used to allow or prevent the operation.

You register the handler for a shell extension in the HKEY_CLASSES_ROOT\CLSID key. Each CLSID contains
a list of class identifier key values such as {00030000-0000-0000-C000-000000000046}. Each class identifier must
also be a globally unique identifier.

For more information about handlers and class identifiers, see the Microsoft OLE Programmer's Reference.

Note Support for shell extensions may depend on the version of Windows installed. For more information about
specific releases, see Appendix D, "Supporting Windows 95 and Windows NT 3.51."

Ebay Exhibit 1013, Page 733 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 Chapter 10 Integrating with the System 203

February 13, 1995

You must also create a shellex subkey under the class description entry in the HKEY_CLASSES_ROOT key.

HKEY_CLASSES_ROOT
 ApplicationIdentifier = Type Name
 Shell [= default Verb [,Verb2 [,..]]
 Verb [= Menu Name]
 Command = path [parameters]
 ddeexec = DDE command string
 Application = DDE Application Name
 Topic = DDE topic name
 shellex
 HandlerType
 {CLSID identifer} = Handler Name
 ...
 HandlerType = {CLSID identifier}

The shell also uses several other special keys, such as *, Folder, Drives, and Printers, under
HKEY_CLASSES_ROOT. You can use these keys to register extensions for system-supplied objects. For example,
you may use the * key to register handlers that the shell calls whenever it creates a pop-up menu or property sheet for
a file object, as in the following example.

HKEY_CLASSES_ROOT
 * = *
 shellex
 ContextMenuHandlers
 {00000000-1111-2222-3333-0000000001}
 PropertySheetHandlers = SummaryInfo
 {00000000-1111-2222-3333-0000000002}
 IconHandler = {00000000-1111-2222-3333-000000003}

The shell would use these handlers to add to the pop-up menus and property sheets of every file object. (The entries
are intended only as examples, not literal entries.)

A pop-up menu handler may add commands to the pop-up menu of a file type, but it may not delete or modify
existing menu commands. You can register multiple pop-up menu handlers for a file type. The order of the subkey
entries determines the order of the items in the context menu. Handler-supplied menu items always follow registered
command names.

When registering an icon handler for providing per-instance icons for a file type, set the value for the DefaultIcon
key to %1. This denotes that each file instance of this type can have a different icon.

Supporting the Quick View Command
The system includes support for fast, read-only views of many file types when the user chooses the Quick View
command from the file object's menu. This allows the user to view files without opening the application.

If your file type is not supported, install a file parser that translates your file type into a format the system file viewer
can read. Place the file parser DLL into the Windows System directory and register your extension, in the
QuickView subkey of the HKEY_CLASSES_ROOT key.

HKEY_CLASSES_ROOT
 QuickView
 .EXT = File Type Name

Ebay Exhibit 1013, Page 734 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 Chapter 10 Integrating with the System 203

February 13, 1995

Although this approach allows you to easily support viewers for your data file types, it limits the interaction options
for your file types to those provided by the system. Alternatively, you can create your own file viewer, using the
system-supplied interfaces. In this case, you need to register not only your extension in a QuickView subkey, but
also include a CLSID identifier subkey under the extension key as well as in the CLSID key. You also include a key
entry for defining the path for the file viewer DLL.

HKEY_CLASSES_ROOT
 QuickView
 .EXT = File Type Name
 {CLSID identifier} = File Viewer Name
 ...
 CLSID
 {CLSID identifier} = File Viewer Name
 InprocServer32 = path

To add your own file viewer for a file type already registered, follow the same procedure as for creating a file viewer
for a new extension, except add your CLSID identifier to the existing entries under the extension subkey and under
the CLSID subkey. Then, whenever an extension is registered, the system automatically adds Quick View to the
command for the file object.

You can also support the command for objects stored within your application's interface, either by supplying a
specific viewer for your data types or by writing the data to a temporary file and then executing a file viewer and
passing the temporary file as a parameter.

Registering Sound Events
Your application can register specific events to which the user can assign sound files so that when those events are
triggered, the assigned sound file is played. To register a sound event, create a key under the
HKEY_CURRENT_USER key.

HKEY_CURRENT_USER
 AppEvents
 Event Labels
 EventName = Event Name

Set the value for EventName to a human-readable name.

Installation
The following sections provide guidelines for installing your application's files. Applying these guidelines will help
you reduce the clutter of irrelevant files when the user browses for a file. In addition, you'll reduce the redundancy of
common files and make it easier for the user to update applications or the system software.

Copying Files
When the user installs your software, avoid copying any files into the Windows directory (folder) or its System
subdirectory. Doing so clutters the directory and may degrade system performance. Instead, create a single directory,
preferably using the application's name, in the Program Files directory (or the location that the user chooses). In this
directory, place the executable file (.EXE). For example, if a program is named My Application, create a My
Application directory and place My Application.exe in that directory.

Note To locate the Program Files directory, check the ProgramFilesDir value in the CurrentVersion subkey under
the HKEY_LOCAL_MACHINE key. The actual directory may not literally be named Program Files. For example,
in international versions of Windows the directory name is appropriately localized. For networks that do not support
the Windows long filename conventions, MS-DOS names may be used instead.

Ebay Exhibit 1013, Page 735 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 Chapter 10 Integrating with the System 203

February 13, 1995

In your application directory, create a subdirectory named System and place in it all support files that the user does
not directly access, such as dynamic-link libraries and Help files (.HLP). For example, place a support file called My
Application.dll in Program Files\My Application\System. Hide the support files and your application's System
directory and register its location using a Path value in the App Paths subkey under the
HKEY_LOCAL_MACHINE key. Although you may place support files in the same directory as your application,
placing them in a subdirectory helps avoid confusing the user and makes files easier to manage.

Applications can share common support files to reduce the amount of disk space consumed by duplication. If some
non−user-accessed files of your application are shared as systemwide components (such as Microsoft Visual Basic's
Vbrun300.dll), place them in the System subdirectory of the directory where the user installs Windows. The process
for installing shared files includes these logical steps:

1. Before copying the file, verify that it is not already present.

2. If the file is already present, compare its date and size to determine whether it is the same version
as the one you are installing. If it is, increment the usage count in its corresponding registry entry.

3. If the file you are installing is not newer, do not overwrite the existing version.

4. If the file is not present, copy it to the directory.

If you store a new file in the Windows\System directory, register a corresponding entry in the SharedDLL subkey
under the HKEY_LOCAL_MACHINE key.

If a file is shared, but only among your applications, create a subdirectory using your application's name in the
Common Files subdirectory of the Program Files subdirectory and place the file there. Alternatively, for "suite"-style
when multiple applications are bundled together, you can create a suite subdirectory in Program Files, where the
executable files reside, and a System subdirectory with the support files shared only within the suite. In either case,
register the path using the Path subkey under the App Paths subkey

Note To locate the Common Files directory, check the CommonFilesDir value in the CurrentVersion subkey of
HKEY_LOCAL_MACHINE.

When installing an updated version of the shared file, ensure that it is upwardly compatible before replacing the
existing file. Alternatively, you can create a separate entry with a different filename (for example, Vbrun301.dll).

Name your executable file, DLL files, and any other files that the user does not directly use, but that may be shared
on a network, using conventional MS-DOS (8.3) names rather than than long filenames. This will provide better
support for users operating in environments where these files may need to be installed on network services that do
not support the Windows long filename conventions.

Windows no longer requires Autoexec.bat and Config.sys files. Ensure that your application also does not require
these files. Because the system now supports loading device drivers when the application starts, they no longer need
to be loaded through Config.sys when starting the system. Similarly, because the registry allows you to register your
application paths, your application does not require path information in Autoexec.bat.

In addition, do not make entries in Win.ini. Storing information in this file can make it difficult to update or move
your application. Instead, use the registry. The registry provides conventions for defining the location for most

Ebay Exhibit 1013, Page 736 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 Chapter 10 Integrating with the System 203

February 13, 1995

application and user settings. If you have additional information that you do not want to put in the registry, you may
create your own .INI file in your application's System directory.

Make certain you register the types supported by your application and the icons for these types along with your
application's icons. In addition, register other application information, such as information required to enable
printing.

For more information about the registry, see the section,"The Registry," earlier in this chapter.

Making Your Application Accessible
To make your application easily accessible to users, place a shortcut icon to the application in the Start
Menu\Programs folder located in the main Windows directory. This adds the entry to the submenu of the Programs
menu of the Start button. Avoid adding entries for every application you might include in your software; this quickly
overloads the menu. Optionally, you can allow the user to choose which icons to place in the menu. Avoid defining a
shortcut to a folder as your entry in the Start menu, as this creates a multilevel hierarchy. Including a single entry
makes it easier and simpler for a user to access your application.

Note Similarly, you can still create a "program group" folder in the Programs folder using the
Windows 3.1 dynamic date exchange (DDE) application programming interface (API). However, this is no longer
recommended for applications installed on Windows 95 and later releases.

Also consider the layout of files you provide with your application. Windows now provides much greater flexibility
for you to organize your files than did the Windows 3.1 Program Manager. In addition to the recommended structure
for your main executable file and its support files, you may want to create special folders for documents, templates,
conversion tools, or other files that the user accesses directly .

Designing Your Installation Program
Your installation program should offer the user different installation options such as:

• Typical Setup: Installation that proceeds with the common defaults set, copying only the most
common files. Make this the default setup option.

• Compact Setup: Installation of the minimum files necessary to operate your application. This
option is best for situations where disk space must be conservedfor example, on laptop
computers. You can optionally add a Portable setup option for additional functionality designed
especially for configurations on laptops, portables, and portables used with docking stations.

• Custom Setup: Installation for the experienced user. This option allows the user to choose where to
copy files and which options or features to include. This can include options or components not
available for compact or typical setup.

• CD-ROM Setup: Installation from a CD-ROM. This option allows users to select what files to
install from the CD and allows them to execute the remaining files directly from the CD.

• Silent Setup: Installation using a command-line switch. This allows your setup program to run with

a batch file

In addition to these setup options, your installation program should be a well-designed, Windows-based application
and follow the conventions detailed elsewhere in this guide and in the following guidelines:

Ebay Exhibit 1013, Page 737 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 Chapter 10 Integrating with the System 203

February 13, 1995

• Supply a common response to every option so that the user can step through the installation

process by confirming the default settings (that is, by pressing the ENTER key).

• Tell users how much disk space they will need before proceeding with installation. In the custom
setup option, adjust the figure as the user chooses to include or exclude certain options. If there is
not sufficient disk space, let the user know, but also give the user the option to override.

• Offer the user the option to quit the installation before it is finished. Keep a log of the files copied
and the settings made so the canceled installation can be cleaned up easily.

• Ask the user to install a disk only once during the installation. Lay out your files on disk so that the
user does not have to reinsert the same disk multiple times.

• Provide an audio cue when the user needs to insert the next disk.

• Support installation from any location. Do not assume that installation must be done from a logical
MS-DOS drive (such as drive A). Design your installation program to support any valid UNC
path..

• Provide a progress indicator message box to inform the user how far they are through the
installation process.

If you are creating your own installation program, consider using the wizard control. Using this control and
following the guidelines for wizards will result in a consistent interface for users.

For more information about designing wizards, see Chapter 12, "User Assistance."

Naming your installation program Setup.exe or Install.exe will allow the system to recognize the file. When the user
chooses the Install button in the Add/Remove Programs utility in the Control Panel, the system will automatically
load and carry out your installation program.

Uninstalling Your Application
The user may need to remove your application to recover disk space or to move the application to another location.
To facilitate this, provide an uninstall program with your application that removes its files and settings. Your
uninstall program should follow the conventions detailed elsewhere in this guide and in the following guidelines:

• Display a window that provides the user with information about the progress of the uninstall
process. You can also provide an option to allow the program to uninstall "silently"that is,
without displaying any information so that it can be used in batch files.

• Display clear and helpful messages for any errors your uninstall program encounters during the
uninstall process.

• When uninstalling an application, decrement the usage count in the registry for any shared
componentfor example, a DLL. If the result is zero, give the user the option to delete the shared
component with the warning that other applications may use this file and will not work if it is
missing.

Registering your uninstall program will display your application in the list of the Uninstall page of the Add/Remove
Program utility included with Windows. To register your uninstall program, add the following entry for your
application:

Ebay Exhibit 1013, Page 738 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 Chapter 10 Integrating with the System 203

February 13, 1995

HKEY_LOCAL_MACHINE
 SOFTWARE
 Microsoft
 Windows
 CurrentVersion
 Uninstall
 ApplicationName
 DisplayName = Application Name
 UninstallString = path [switches]

Both the DisplayName and UninstallString keys must be supplied and be complete for your uninstall program to
appear in the Add/Remove Program utility. The path you supply to UninstallString must be the complete command
line used to carry out your uninstall program. The command line you supply should carry out the uninstall program
directly rather than from a batch file or subprocess.

Note Microsoft Windows NT 3.5 does not support an Add/Remove Programs utility. For information
about provided compatibility with this version of Windows, see Appendix D, "Supporting Windows 95 and
Windows NT Version 3.51."

Installing Fonts
When installing fonts with your application on a local system, determine whether the font is already present. If it is,
rename your font filefor example, by appending a number to the end of its filename. After copying a font file,
register the font in the Fonts subkey.

Installing Your Application on a Network
If you create a client-server application so that multiple users can access it from a network server, create separate
installation programs: an installation program that allows the network administrator to prepare the server component
of the application, and a client installation program that installs the client component files and sets up the settings to
connect to the server. Design your client software so that an administrator can deploy it over the network and have it
automatically configure itself when the user starts it.

For more information about designing client-server applications, see Chapter 14, "Special Design."

Because Windows may itself be configured to be shared on a server, do not assume that your installation program
can store information in the main Windows directory on the server. In addition, shared application files should not be
stored in the "home" directory provided for the user.

Design your installation program to support UNC paths. Also, use UNC paths for any shortcut icons you install in
the Start Menu folder.

Supporting Auto Play
Window supports the ability to automatically run a file when the user inserts removable media that support insertion
notification, such as CD-ROM, PCMCIA hard disks, or flash ROM cards. To support this feature, include a file
named Autorun.inf in the root directory of the removable media. The contents of the file include the name of the file
to carry out. Use the following form.

[autorun]
open = filename

Ebay Exhibit 1013, Page 739 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 Chapter 10 Integrating with the System 203

February 13, 1995

Unless you specify a path, the system looks for the file in the root of the inserted media. If you want to run a file
located in a subdirectory, include a path relative to the root; include that path with the file. For example:

open = My Directory\My File.exe

Running the file from a subdirectory does not change the current directory setting. The command-line string you
supply can also include parameters or switches.

Because the autoplay feature is intended to provide automatic operation, design the file you specify in the
Autorun.inf file to provide visual feedback quickly to confirm the successful insertion of the media. Consider using a
startup up window with a graphic or animated sequence. If the process you are automating requires a long load time
or requires user input, offer the user the option to cancel the process.

Although you can use this feature to install an application, avoid writing files to the user's local disk without first
getting the user's confirmation. Even when you get the user's confirmation, minimize the file storage requirements,
particularly for CD-ROM games or educational applications. Consuming a large amount of local file space defeats
some of the benefits of the turnkey operation that the autoplay feature provides. Also, because a network
administrator or the user may disable this feature, avoid depending on it for any required operations.

You can define the icon that the system displays for the media by including an entry in in the Autorun.inf file that
includes the filename (and optionally path) file including the icon using the following form.

icon = filename

The filename can specify an icon (.ICO), a bitmap (.BMP), an executable (.EXE), or a dynamic-link library (.DLL).
If the file contains more than one icon resource, specify the resource with a number after the filenamefor example,
My File.exe, 1. The numbering follows the same conventions as the registry. The default path for the file will be
relative to the Autorun.inf file. If you want to specify an absolute path for an icon, use the following form.

defaulticon = path

The system automatically provides a pop-up menu for the icon and includes AutoPlay as the default command on
that menu, so that double-clicking the icon will run the Open = line. You can include additional commands on the
menu for the icon by adding entries for them in the Autorun.inf file, using the following form.

shell\verb\command = filename
shell\verb = Menu Item Name

To define an access key assignment for the command, precede the character with an ampersand (&). For example, to
add the command Read Me First to the menu of the icon, include the following in Autorun.inf.

shell\readme\command = Notepad.exe My Directory\Readme.txt
shell\verb = Read &Me First

Although AutoPlay is typically the default menu item, you can define a different command to be the default by
including the following line.

shell = verb

Ebay Exhibit 1013, Page 740 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 Chapter 10 Integrating with the System 203

February 13, 1995

When the user double-clicks on the icon, the command associated with this entry will be executed.
System Naming Conventions

Windows provides support for filenames up to 255 characters long. Use the long filename when displaying the name
of a file. Avoid displaying the filename extension unless the user chooses the option to display extensions or when
the file type is not registered. The system automatically formats a filename correctly if you use the SHGetFileInfo or
GetFileTitle function. For more information about these functions, see the documentation in the Microsoft Win32
Software Development Kit.

Because the system uses three-letter extensions to describe a file type, do not use extensions to distinguish different
forms of the same file type. For example, if your application has a function that automatically backs up a file, name
the backup file Backup of filename.ext (using its existing extension) or some reasonable equivalent, not
filename.BAK. The latter implies a change of the file's type. Similarly, do not use a Windows filename extension
unless your file fits the type description.

For more information about the common types recognized by the system, see Table 10.1, earlier in this chapter.

Long filenames can include any character, except

\ / : * ? < > |

When your application automatically supplies a filename, use a name that communicates information about its
creation. For example, files created by a particular application should use either the application-supplied type name
or the short type name as a proposed namefor example, worksheet or document. When that file exists already in
the target directory, add a number to the end of the proposed namefor example, Document 2. When adding
numbers to the end of a proposed filename, use the first number of an ordinal sequence that does not conflict with an
existing name in that directory.

When you create a filename, the system automatically creates an MS-DOS filename (alias) for a file. The system
displays both the long filename and the MS-DOS filename in the property sheet for the file.

When a file is copied, use the words "Copy of" as part of the generated filenamefor example, "Copy of Sample"
for a file named "Sample." If the prefix "Copy of" is already assigned to a file, the prefix includes a numberfor
example, "Copy 2 of Sample". You can apply the same naming scheme to links, except the prefix is "Link to" or
"Shortcut to."

It is also important to support universal naming convention (UNC) paths for identifying the location of files and
folders. UNC paths and filenames have the following form.

\\Server\Share\Directory\Filename.ext

Using UNC names enables the user to directly browse the network and open files without having to make explicit
network connections.

Wherever possible, display the full name of a file. The number of characters you'll be able to display depends
somewhat on the font used and the context in which the name is displayed. In any case, supply enough characters
such that the user can reasonably distinguish between names. Take into account common prefixes such as "Copy of"
or "Shortcut to".

Ebay Exhibit 1013, Page 741 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 Chapter 10 Integrating with the System 203

February 13, 1995

You can also use an ellipsis to abbreviate a path name, in a displayable, but noneditable situation. In this case,
include at least the first two entries of the beginning and the end of the path, using ellipses as notation for the names
in between, as in the following example.

\\My Server\My Share\...\My Folder\My File

Taskbar Integration
The system provides support for integrating your application's interface with the taskbar. The following sections
provide information on some of the capabilities and appropriate guidelines.

Taskbar Window Buttons
When an application creates a primary window, the system automatically adds a taskbar button for that window and
removes it when that window closes. For some specialized types of applications that run in the background, a
primary window may not be necessary. In such cases, make certain you provide reasonable support for controlling
the application using the commands available on the application's icon; it should not appear as an entry in the
taskbar, however.

The taskbar window buttons support drag and drop, but not in the conventional way. When the user drags an object
over a taskbar window button, the system automatically restores the window. The user can then drop the object in the
window.

Status Notification
The system allows you to add status or notification information to the taskbar (using the Shell_NotifyIcon function).
Because the taskbar is a shared resource, add information to it that is of a global nature only or that needs monitoring
by the user while working with other applications.

For more information about support for status notification and the Shell_NotifyIcon function, see the documentation
in the Microsoft Win32 Software Developer's Kit.

Present status notification information in the form of a graphic supplied by your application, as shown in Figure 10.2.

Figure 10.2 Status indicator in the taskbar

When adding a status indicator to the taskbar, also support the following interactions.

• Provide a pop-up window that displays further information or controls for the object represented by
the status indicator when the user clicks with button 1. If there is no information or control that
applies, do not display anything. For example, the audio (speaker) status indicator displays a
volume control. Use a pop-up window to supply for further information rather than a dialog box,
because the user can dismiss the window by clicking elsewhere. Position the pop-up window near
the status indicator so that the user can navigate to it quickly and easily.

• Display a pop-up menu for the object represented by the status indicator when the user clicks on
the status indicator with button 2. On this menu, include commands that bring up property sheets or
other windows related to the status indicator. For example, the audio status indicator provides
commands that display the audio properties as well as the Volume Control mixer application. At a

Ebay Exhibit 1013, Page 742 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 Chapter 10 Integrating with the System 203

February 13, 1995

minimum, include a What's This? context-sensitive Help command that displays information about
the purpose of the status indicator.

• Execute the default command defined in the pop-up menu for the status indicator when the user
double-clicks.

• Display a tooltip that indicates what the status indicator represents. For example, this could include
the name of the indicator, a value, or both.

Message Notification
When your application's window is inactive but must display a message, rather than displaying a message box on top
of the currently active window and switching the input focus, flash your application's taskbar window button to
notify the user of the pending message. This avoids interfering with the user's current activity but lets the user know
a message is waiting. When the user activates your application's window, the application can display a message box.
Rather than flashing the button continually, flash the window button only a limited number of times (for example,
three), then leave the button in the highlighted state, as shown in Figure 10.3. This lets the user know there is still a
pending message.

Figure 10.3 A taskbar button used to notify a user of a pending message

This cooperative means of notification is preferable unless a message relates to system integrity or the user's data, in
which case your application may immediately display a system modal message box. In such cases, flush the input
queue so that the user does not inadvertently select a choice in that message box.

For more information about message boxes, see Chapter 8, "Secondary Windows."

Recycle Bin Integration
The Recycle Bin provides a repository for deleted files. If your application includes a facility for deleting files,
support the Recycle Bin interface by using the SHFileOperation function. To support deletion to the Recycle Bin
for other objects, first format the deleted data as a file by writing the it to a temporary file and then calling
SHFileOperation. For more information about this function, see the documentation in the Microsoft Win32
Software Development Kit.

Control Panel Integration
The Windows Control Panel includes special objects that let users configure aspects of the system. Your application
can add Control Panel objects or add property pages to the property sheets of existing Control Panel objects.

Adding Control Panel Objects
You can create your own Control Panel objects. Most Control Panel objects supply only a single secondary window,
typically a property sheet. Define your Control Panel object to represent a concrete object rather than an abstract
idea.

Every Control Panel object is a dynamic-link library. To ensure that the DLL can be automatically loaded by the
system, set the file's extension to .CPL and install it in the Windows System directory.

Note The system automatically caches information about Control Panel objects in order to provide quick user access,
provided that the Control Panel object supports the correct system interfaces. For more information about developing
Control Panel objects, see the documentation in the Microsoft Win32 Software Development Kit.

Ebay Exhibit 1013, Page 743 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 Chapter 10 Integrating with the System 203

February 13, 1995

Adding to the Passwords Object
The Passwords object in the Control Panel supplies a property sheet that allows the user to set security options and
manage passwords for all password-protected services in the system. The Passwords object also allows you to add
the name of a password-protected service to the object's list of services and use the Windows login password to be
used as the password for all password-protected services in the system.

When you add your service to the Passwords object, the name of the service appears in the Select Password dialog
box that appears when the user chooses Change Other Passwords. The user can then change the password for the
service by selecting the name and filling in the resulting dialog box. The name of your service also appears in the
Change Windows Password dialog box; the name appears with a check box next to it. By setting the check box
option, the user chooses to keep the password for the service identical to the Windows login password. Similarly, the
user can disassociate the service from the Windows login password by toggling the check box setting off.

To add your service to the Passwords object, register your service under the HKEY_LOCAL_MACHINE key.

HKEY_LOCAL_MACHINE
 System
 CurrentControlSet
 Control
 PwdProvider
 Provider Name

For more information about registering your password service, see the documentation in the Microsoft Win32
Software Development Kit.

You can also add a page to the property sheet of the Passwords object to support other security-related services that
the user can set as property values. Add a property page if your application provides security-related functionality
beyond simple activation and changing of passwords. To add a property page, follow the conventions for adding
shell extensions.

For more information about supporting shell extensions that add property pages, see the "Shell Extensions" section
earlier in this chapter.

Plug and Play Support
Plug and Play is a feature of Windows that, with little or no user intervention, automatically installs and configures
drivers when their corresponding hardware peripherals are plugged into a PC. This feature applies to peripherals
designed according to the Plug and Play specification. Supporting and appropriately adapting to Plug and Play
hardware change can make your application easier to use. Following are some examples of supporting Plug and Play.

• Resizing your windows and toolbars relevant to screen size changes.

• Prompting users to shut down and save their data when the system issues a low power warning.

• Warning users about open network files when undocking their computers.

• Saving and closing files appropriately when users eject or remove removable media or storage
devices or when network connections are broken.

System Settings and Notification
The system provides standard metrics and settings for user interface aspects, such as colors and fonts. The system
also notifies running applications when its settings change (using the WM_SETTINGSCHANGE message). When

Ebay Exhibit 1013, Page 744 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 Chapter 10 Integrating with the System 203

February 13, 1995

your application starts up, query the system to set your application's user interface to match the system parameters to
ensure visual and operational consistency. Also, design your application to adjust itself appropriately when the
system notifies it of changes to these settings.

For more information about supporting standard system settings, see the Microsoft Win32 Programmer's Reference.

Modeless Interaction
When designing your application, try to ensure that it is as interactive and nonmodal as possible. Here are some
suggested ways of doing this:

• Use modeless secondary windows wherever possible.

• Segment processes, like printing, so you do not need load the entire application to perform the
operation.

• Make long processes run in the background, keeping the foreground interactive. For example,
when something is printing, it should be possible to minimize the window even if the
document cannot be altered.

The multitasking support of Windows provides for defining separate processes, or threads, in the background. For
more information about threads, see the documentation in the Microsoft Win32 Software Development Kit.

Ebay Exhibit 1013, Page 745 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

219

February 13, 1995

C H A P T E R 11
Working with OLE Embedded
and OLE Linked Objects
Microsoft OLE is a standard set of system interfaces that enables users to combine objects supported by different
applications. This chapter outlines guidelines for the interface for OLE embedded and OLE linked objects. While the
primary focus assumes implementation using Microsoft OLE technology, you can apply many of these guidelines to
the interaction between containers and their components.

The Interaction Model
As data becomes the major focus of interface design, its content is what occupies the user's attention, not the
application managing it. In such a design, data is not limited to its native creation and editing environment; that is,
the user is not limited to creating or editing data only within its associated application window. Instead, data can be
transferred to other types of containers while maintaining its viewing and editing capability in the new container.
Compound documents are a common example and illustration of the interaction between containers and their
components, but they are not the only expression of this kind of object relationship that OLE can support.

Figure 11.1 shows an example of a compound document. The document includes word-processing text, tabular data
from a spreadsheet, a sound recording, and pictures created in other applications.

Ebay Exhibit 1013, Page 746 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 11 Working with OLE Embedded and OLE Linked Objects 271

February 13, 1995

Figure 11.1 A compound document

Ebay Exhibit 1013, Page 747 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 11 Working with OLE Embedded and OLE Linked Objects 271

February 13, 1995

How was this music review created? First, a user created a document and typed the text, then moved, copied, or
linked content from other documents. Data objects that, when moved or copied, retain their native, full-featured
editing and operating capabilities in their new container are called OLE embedded objects.

A user can also link information. An OLE linked object represents or provides access to another object that is in
another location in the same container or in a different, separate container.

Generally, containers support any level of nested OLE embedded and linked objects. For example, a user can embed
a chart in a worksheet, which, in turn, can be embedded within a word-processing document. The model for
interaction is consistent at each level of nesting.

Creating OLE Embedded and OLE Linked Objects
OLE embedded and linked objects are the result of transferring existing objects or creating new objects of a
particular type.

Transferring Objects
Transferring objects into a document follows basic command and direct manipulation interaction methods. The
following sections provide additional guidelines for these commands when you use them to create OLE embedded or
linked objects.

For more information about command and direct manipulation transfer methods, see Chapter 5, "General Interaction
Techniques."
The Paste Command
As a general rule, using the Paste command should result in the most complete representation of a transferred object;
that is, the object is embedded. However, containers that directly handle the transferred object can accept it
optionally as native data instead of embedding it as a separate object, or as a partial or transformed form of the object
if that is more appropriate for the destination container.

Use the format of the Paste command to indicate to the user how a transferred object is incorporated by a container.
When the user copies a file object, if the container can embed the object, include the object's filename as a suffix to
the Paste command. If the object is only a portion of a file, use the short type namefor example, Paste Worksheet
or Paste Recordingas shown in Figure 11.2. A short type name can be derived from information stored in the
registry. A Paste command with no name implies that the data will be pasted as native information.

For more information about type names, see Chapter 10, "Integrating with the System."

Ebay Exhibit 1013, Page 748 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 11 Working with OLE Embedded and OLE Linked Objects 271

February 13, 1995

Figure 11.2 The Paste command with short type name

The Paste Special Command
Supply the Paste Special command to give the user explicit control over pasting in the data as native information, an
OLE embedded object, or an OLE linked object. The Paste Special command displays its associated dialog box, as
shown in Figure 11.3. This dialog box includes a list box with the possible formats that the data can assume in the
destination container.

Figure 11.3 The Paste Special dialog box

Note The Microsoft Win32 Software Development Kit includes the Paste Special dialog box and
other OLE-related dialog boxes that are described in this chapter.

In the formats listed in the Paste Special dialog box, include the object's full type name first, followed by other
appropriate native data forms. When a linked object has been cut or copied, precede its object type by the word
"Linked" in the format list. For example, if the user copies a linked Microsoft Excel 5.0 worksheet, the Paste Special

Ebay Exhibit 1013, Page 749 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 11 Working with OLE Embedded and OLE Linked Objects 271

February 13, 1995

dialog box shows "Linked Microsoft Excel 5.0 Worksheet" in the list of format options because it inserts an exact
duplicate of the original linked worksheet. Native data formats begin with the destination application's name and can
be expressed in the same terms the destination identifies in its own menus. The initially selected format in the list
corresponds to the format that the Paste Special command uses. For example, if the Paste Special command displays
Paste Object Filename or Paste Short Type Name because the data to be embedded is a file or portion of a file, this is
the format that is initially selected in the Paste Special list box.

To support creation of a linked object, the Paste Special dialog box includes a Paste link option. Figure 11.4 shows
this option.

Figure 11.4 Paste Special dialog b with Paste link option set

A Display as Icon check box allows the user to choose displaying the OLE embedded or linked object as an icon. At
the bottom of the dialog box is a section that includes text and pictures that describe the result of the operation. Table
11.1 lists the descriptive text for use in the Paste Special dialog box.

Ebay Exhibit 1013, Page 750 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 11 Working with OLE Embedded and OLE Linked Objects 271

February 13, 1995

Table 11.1 Descriptive Text for Paste Special
Function Descriptive text

Paste as an embedded object. "Inserts the contents of the Clipboard into your
document so you that you may activate it using
CompanyName ApplicationName."

Paste as an embedded object so
that it appears as an icon.

"Inserts the contents of the Clipboard into your
document so you that you may activate it using
CompanyName ApplicationName application. It will be
displayed as an icon."

Paste as native data. "Inserts the contents of the Clipboard into your
document as native type name [and optionally an
additional Help sentence]."

Paste as a linked object. "Inserts a picture of the contents of the Clipboard into
your document. Paste Link creates a link to the source
file so that changes to the source file will be reflected in
your document."

Paste as a linked object so that it
appears as a shortcut icon.

"Inserts a Shortcut icon into your document which
represents the contents of the Clipboard. A link is
created to the source file so that changes to the source
file will be reflected in your document."

Paste as linked native data. "Inserts the contents of the Clipboard into your
document as native type name. A link is created to the
source file so that changes to the source file will be
reflected in your document."

The Paste Link, Paste Shortcut, and Create Shortcut Commands
If linking is a common function in your application, you can optionally include a command that optimizes this
process. Use Paste Link to support creating a linked object or linked native data. When using the command to create
a linked object, include the name of the object preceded by the word "to"for example, "Paste Link to Latest Sales."
Omitting the name implies that the operation results in linked native data.

Use a Paste Shortcut command to support creation of a linked object that appears as a shortcut icon. You can also
include a Create Shortcut command that creates a shortcut icon in the container. Apply these commands to containers
where icons are commonly used.
Direct Manipulation
You can also support direct manipulation interaction techniques, such as drag and drop, for creating OLE embedded
or linked objects. When the user drags a selection into a container, the container application can interpret the
operation using information supplied by the source, such as the selection's type and format and by the destination
container's own context, such as the container's type and its default transfer operation. For example, dragging a
spreadsheet cell selection into a word-processing document can result in an OLE embedded table object. Dragging
the same cell selection within the spreadsheet, however, would likely result in simply transferring the data in the
cells.

Ebay Exhibit 1013, Page 751 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 11 Working with OLE Embedded and OLE Linked Objects 271

February 13, 1995

Similarly, the destination container in which the user drops the selection also determines whether the dragged object
creates an OLE linked object. For nondefault OLE drag and drop, the container application displays the appropriate
transfer commands on the resulting pop-up menu and carries out the operation corresponding to the user's choice on
that menu. The choices may include multiple commands that transfer the data in a different format or presentation.
For example, a container application could offer the following choices for creating links: Link Here, Link Short Type
Name Here, and Create Shortcut Here.

For more information about using direct manipulation for moving, copying, and linking objects, see Chapter 5,
"General Interaction Techniques."

The default appearance of a transferred object also depends on the destination container application. For most types
of documents, display the data or content presentation of the object (or in the case of an OLE linked object, a
representation of the content), rather than as an icon. If the user chooses Create Shortcut Here as the transfer
operation, the transferred object is displayed as an icon. If the object cannot be displayed as contentfor example,
because it does not support OLEthe object is displayed as an icon.

Inserting New Objects
In addition to transferring objects, you can support user creation of OLE embedded or linked objects by generating a
new object based on an existing object or object type and inserting the new object into the target container.
The Insert Object Command
Include an Insert Object command on the menu responsible for creating or importing new objects into a container,
such as an Insert menu. If no such menu exists, use the Edit menu. When the user selects this command, display the
Insert Object dialog box, as shown in Figure 11.5. This dialog box allows the user to generate new objects based on
their object type or an existing file.

Figure 11.5 The Insert Object dialog box

The type list is composed of the type names of registered types. When the user selects a type from the list box and
chooses the OK button, an object of the selected type is created and embedded.

Ebay Exhibit 1013, Page 752 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 11 Working with OLE Embedded and OLE Linked Objects 271

February 13, 1995

For more information on type names and the registry, see Chapter 10, "Integrating with the System."

The user can also create an OLE embedded or linked object from an existing file, using the Create From File and
Link options. When the user sets these options and chooses the OK button, the result is the same as directly copying
or linking the selected file.

When the user chooses the Create From File option button, the Object Type list is removed, and a text box and
Browse button appear in its place, as shown in Figure 11.6.

Figure 11.6 Creating an OLE embedded object from an existing file

The text box initially includes the current directory as the selection. The user can edit the current directory path when
specifying a file. Use the file's type to determine the type of OLE embedded or linked object. Ignore any selection
formerly displayed in the Object Type list box (shown in Figure 11.5).

Use the Link check box to support the creation of an OLE linked object to the file specified. The Insert Object dialog
box displays this option only when the user chooses the Create From File option. This means that a user cannot insert
an OLE linked object when choosing the Create New option button, because linked objects can be created only from
existing files.

The Display As Icon check box in the Insert Object dialog box enables the user to specify whether to display the
OLE embedded or linked object as an icon. When this option is set, the icon appears beneath the check box. An OLE
linked object displayed as an icon is the equivalent of a shortcut icon.

Note If the user chooses a non-OLE file for insertion, it can be inserted only as an icon. The result is
an OLE package. A package is an OLE encapsulation of a file so that it can be embedded in an OLE container.
Because packages support limited editing and viewing capabilities, support OLE for all your object types so they will
not be converted into packages.

Ebay Exhibit 1013, Page 753 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 11 Working with OLE Embedded and OLE Linked Objects 271

February 13, 1995

At the bottom of the Insert Object dialog box, text and pictures describe the final outcome of the insertion. Table
11.2 outlines the syntax of descriptive text to use within the Insert Object dialog box.

Table 11.2 Descriptive Text for Insert Object Dialog Box

Function Resulting text

Creates a new (embedded) object
from a selected type.

"Inserts a new Type Name into your document."

Creates a new object from a
selected type and displays it as an
icon.

"Inserts a new Type Name into your document as an
icon."

Creates a new object based on a
selected file.

"Inserts the contents of the file as an object into your
document so that you may activate it using the
application which created it."

Creates a new object based on a
selected file and displays it as an
icon.

"Inserts the contents of the file as an object into your
document so that you may activate it using the
application which created it. It will be displayed as an
icon."

Creates a new object that is linked
to a selected file.

"Inserts a picture of the file contents into your
document. The picture will be linked to the file so that
changes to the file will be reflected in your document."

Creates a new object that is linked
to a selected file and displays it as
a Shortcut icon.

"Inserts a Shortcut icon into your document which
represents the file. The Shortcut icon will be linked to
the original file, so that you can quickly open the
original from inside your document."

You can also use the context of the current selection in the container to determine the format of the newly created
object and the effect of it being inserted into the container. For example, an inserted graph can automatically reflect
the data in a selected table. Use the following guidelines to support predictable insertion:

• If an inserted object is not based on the current selection, follow the same conventions as for a
Paste command and add or replace the selection depending on the context. For example, in text or
list contexts, where the selection represents a specific insertion location, replace the active
selection. For nonordered or Z-ordered contexts, where the selection does not represent an explicit
insertion point, add the object, using the destination context to determine where to place the object.

For more information about the guidelines for inserting an object with a Paste command, see Chapter 5, "General
Interaction Techniques."

• If the new object is automatically connected (linked) to the selection (for example, table data and a
graph), insert the new object in addition to the selection and make the inserted object the new
selection.

Ebay Exhibit 1013, Page 754 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 11 Working with OLE Embedded and OLE Linked Objects 271

February 13, 1995

• If the object is based on, but does not remain connected to, the selection, the new object's
application (not the container application) determines whether to remove the given selection. In
this case, consider the specific use of an object type to determine whether adding the object or
replacing the current selection is more meaningful.

After inserting an OLE embedded object, activate it for editing. If you insert an OLE linked object, do not activate
the object.
Other Techniques for Inserting Objects
The Insert Object command provides support for inserting all registered OLE objects. You can include additional
commands tailored to provide access to common or frequently used object types. You can implement these as
additional menu commands or as toolbar buttons or other controls. These buttons provide the same functionality as
the Insert Object dialog box, but perform more efficiently. Figure 11.7 illustrates two examples. The drawing button
inserts a new blank drawing object; the graph button creates a new graph that uses the data values from a currently
selected table.

Figure 11.7 Drawing and graph buttons

Displaying Objects
When displaying an OLE embedded or linked object in its presentation or content form (as opposed to displaying the
object as an icon), use a cached metafile description (though, it is possible for an object to draw itself directly in its
container). In this presentation, the object may be visually indistinguishable from native objects, as shown in Figure
11.8.

Ebay Exhibit 1013, Page 755 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 11 Working with OLE Embedded and OLE Linked Objects 271

February 13, 1995

Figure 11.8 Compound document with indistinguishable objects

You may find it preferable to enable the user to visually identify OLE embedded or linked objects without
interacting with them. To do so, provide a Show Objects command that, when chosen, displays a solid border, one
pixel wide, drawn in the window text color (COLOR_WINDOWTEXT) around the extent of an OLE embedded
object and a dotted border around OLE linked objects (shown in Figure 11.9). If the container application cannot
guarantee that an OLE linked object is up-to-date with its source because of an unsuccessful automatic update or a
manual link, the system should draw a dotted border using the system grayed text color (COLOR_GRAYTEXT) to
suggest that the OLE linked object is out of date. The border should be drawn around a container's first-level objects
only, not objects nested below this level.

For more information about COLOR_WINDOWTEXT and COLOR_GRAYTEXT and the GetSysColor function,
see the Microsoft Win32 Programmer's Reference.

Ebay Exhibit 1013, Page 756 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 11 Working with OLE Embedded and OLE Linked Objects 271

February 13, 1995

Figure 11.9 Compound document with distinguishable objects

If these border conventions are not adequate to distinguish OLE embedded and linked objects, you can optionally
include additional distinctions; however, make them clearly distinct from the appearance for any standard visual
states, and distinguish OLE embedded from OLE linked objects.

Whenever the user creates an OLE linked or embedded object with the Display As Icon check box set, display the
icon using its original appearance, unless the user explicitly changes it. A linked icon also includes the shortcut
graphic. If an icon is not registered in the registry for the object, use the system-generated icon.

An icon includes a label. When the user creates an OLE embedded object, define the icon's label to be one of the
following, based on availability:

• The name of the object, if the object has an existing human-readable name such as a filename
without its extension.

• The object's registered short type name (for example, Picture, Worksheet, and so on), if the object
does not have a name.

• The object's registered full type name (for example, Microsoft Paint 1.0 Picture, Microsoft Excel
5.0 Worksheet), if the object has no name or registered short type name.

• “Document” if an object has no name, short type name, or registered type name.

Ebay Exhibit 1013, Page 757 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 11 Working with OLE Embedded and OLE Linked Objects 271

February 13, 1995

When an OLE linked object is displayed as an icon, define the label using the source filename as it appears in the
registry, preceded by the words "Shortcut to"for example, "Shortcut to Annual Report." The path of the source is
not included. Avoid displaying the filename extension unless the user chooses the system option to display
extensions or the file type is not registered. The system automatically formats a filename correctly if the
SHGetFileInfo function is used.

For more information about the SHGetFileInfo function, see the documentation included in the Microsoft Win32
Software Development Kit.

Follow the same conventions for labeling the shortcut icon when you create an OLE linked object to only a portion
of a document (file). Because a container can include multiple links to different portions of the same file, optionally
you may provide further identification to differentiate linked objects by appending a portion of the end of the link
path (moniker). For example, you may want to include everything from the end of the path up to the last or next to
last occurrence of a link path delimiter. The standard OLE link path delimiter that a link source should provide for
identifying a data range is the exclamation character. However, the link path may include other types of delimiters.
Be careful when deriving an identifier from the link path to format the additional information using only valid
filename characters. Make sure that if the user transfers the shortcut icon to a folder or the desktop, the name can be
used.

Selecting Objects
An OLE embedded or linked object follows the selection behavior and appearance techniques supported by its
container; the container application supplies the specific appearance of the object. For example, Figure 11.10 shows
how the linked drawing of a horn is handled as part of a contiguous selection in the document.

For more information about selection techniques, see Chapter 5, "General Interaction Techniques." For more
information about selection appearance, see Chapter 13, "Visual Design."

Ebay Exhibit 1013, Page 758 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 11 Working with OLE Embedded and OLE Linked Objects 271

February 13, 1995

Figure 11.10 An OLE linked object as part of a multiple selection

When the user individually selects the object, display the object with an appropriate selection appearance for that
type, as shown in Figure 11.11. For example, for the content view of an object, display it with handles. In addition, if
your application's window includes a status bar that displays messages, display an appropriate description of how to
activate the object. When the object is displayed as an icon, use the checkerboard selection highlighting used for
icons in folders and on the desktop. For OLE linked objects, overlay the content view's lower left corner with the
shortcut graphic.

For more information about status line messages, see Table 11.3, "File Menu Status Line Messages," later in this
chapter.

Ebay Exhibit 1013, Page 759 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 11 Working with OLE Embedded and OLE Linked Objects 271

February 13, 1995

Figure 11.11 An individually selected OLE linked object

Accessing Commands for Selected Objects
A container application always displays the commands that can be applied to its objects. When the user selects an
OLE embedded or linked object as part of the selection of native data in a container, enable commands that apply to
the selection as a whole. When the user individually selects the object, enable only commands that apply specifically
to the object. Your application retrieves these commands from what has been registered by the object's type in the
registry and displays these commands in the menus that are supplied for the object. If your application includes a
menu bar, include the selected object's commands on a submenu of the Edit menu, or as a separate menu on the menu
bar. Use the name of the object as the text for the menu item. If you use the short type name as the name of the
object, add the word “Object.” For an OLE linked object, use the short type name, preceded by the word “Linked.”
Figure 11.12 shows these variations.

Ebay Exhibit 1013, Page 760 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 11 Working with OLE Embedded and OLE Linked Objects 271

February 13, 1995

Figure 11.12 Selected object menus

Define the first letter of the word “Object”, or its localized equivalent, as the access character for keyboard users.
When no object is selected, display the command with just the text, “Object”, and disable it.

A container application also provides a pop-up menu for a selected OLE object (shown in Figure 11.13), displayed
using the standard interaction techniques for pop-up menus (clicking with mouse button 2). Include on this menu the
commands that apply to the object as a whole as a unit of content, such as transfer commands, and the object's
registered commands. In the pop-up menu, display the object's registered commands as individual menu items rather
than in a cascading menu. It is not necessary to include the object's name or the word “Object” as part of the menu
item text. In addition, provide a Properties command on the menu and on the property sheet of the selected object.

Figure 11.13 Pop-up menu for an OLE embedded picture

You can enable commands that depend on the state of the object. For example, a media object that uses Play and
Rewind as operations disables Rewind when the object is at the beginning of the media object.

Ebay Exhibit 1013, Page 761 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 11 Working with OLE Embedded and OLE Linked Objects 271

February 13, 1995

Note You can also support operations based on the selection appearance. For example, you can
support operations such as resizing using the handles you supply. When the user resizes a selected OLE object,
however, scale the presentation of the object, because there is no method by which another operation, such as
cropping, can be applied to the OLE object.

If an object's type is not registered, you still supply any commands that can be appropriately applied to the object as
content, such as a transfer command, alignment commands, and a Properties command. Also add an Open With
command and define it as the default command for the object so that double-clicking starts the command. When the
user chooses the Open With command, a system-supplied dialog box is displayed that enables the user to choose
from a list of applications that can operate on the type or convert the object's type.

Activating Objects
While selecting an object provides access to commands applicable to the object as a whole, it does not provide
access for the user to interact with the data or content of an object. Activating the object allows user interaction with
the internal content of the object. There are two basic models for activating objects: outside-in activation and inside-
out activation.

Outside-in Activation
Outside-in activation occurs when an activation command is carried out. Selecting an object that is already selected
simply reselects that object and does not constitute an explicit action. The user activates the object by using a
particular command such as Edit or Play, usually the object's command. Shortcut actions that correspond to these
commands, such as double-clicking or pressing a shortcut key, can also activate the object. Most OLE container
applications employ this model because it allows the user to easily select objects and reduces the risk of
inadvertently activating an object whose underlying code may take a significant amount of time to load and dismiss.

When supporting outside-in activation, display the standard pointer (northwest arrow) over an outside-in activated
object within your container when the object is selected but inactive. This indicates to the user that the outside-in
object behaves as a single, opaque object. When the user activates the object, the object's application displays the
appropriate pointer for its content. Use the registry to determine the object's activation commands.

Inside-out Activation
With inside-out activation, interaction with an object is direct; that is, the object is activated as the user moves the
pointer over the extent of the object. From the user's perspective, inside-out objects are indistinguishable from native
data, because the content of the object is directly interactive and no additional action is necessary. Use this method
for the design of objects that benefit from direct interaction, or when activating the object has little effect on
performance or use of system resources.

Inside-out activation requires closer cooperation between the container and the object. For example, when the user
begins a selection within an inside-out object, the container must clear its own selection so that the behavior is
consistent with normal selection interaction. An object supporting inside-out activation controls the appearance of
the pointer as it moves over its extent and responds immediately to input. Therefore, to select the object as a whole,
the user selects the border, or some other handle, provided by the object or its container. For example, the container
application can support selection techniques such as region selection that select the object. Similarly, the object and
its container can cooperate to support selection of the object. For example, if the user begins a selection by dragging
within the object and crosses the extent of the object, the entire object becomes selected.

Although the default behavior for an OLE embedded object is outside-in activation, you can store information in the
registry that indicates that an object's type (application class) is capable of inside-out activation (the

Ebay Exhibit 1013, Page 762 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 11 Working with OLE Embedded and OLE Linked Objects 271

February 13, 1995

OLEMISC_INSIDEOUT constant) and prefers inside-out behavior (the OLEMISC_ACTIVATEWHENVISIBLE
constant). You can set these values in a MiscStatus subkey, under the CLSID subkey of the
HKEY_CLASSES_ROOT key. The values may be accessed using IOleObject::GetMiscStatus. The result of
these values is subject to the container.

For more information about the registry, see Chapter 10, "Integrating with the System," and the Microsoft OLE
Programmer's Reference.

Container Control of Activation
The container application determines how to activate its component objects: either it allows the inside-out objects to
handle events directly or it intercedes and only activates them upon an explicit action. This is true regardless of the
capability or preference of the object. That is, even though an object may register inside-out activation, it can be
treated by a particular container as outside-in. Use an activation style for your container that is most appropriate for
its specific use and is in keeping with its own native style of activation so that objects can be easily assimilated.

Regardless of the activation capability of the object, a container always consistently activates its content objects of
the same type. Otherwise, the unpredictability of the interface is likely to impair its ease of use. Following are four
potential container activation methods and when to use them.

Activation method When to use

Outside-in throughout This is the common design for containers that often embed
large OLE objects and deal with them as whole units. Because
many available OLE objects are not yet inside-out capable,
most compound document editors support outside-in
throughout to preserve uniformity.

Inside-out throughout Ultimately, OLE containers will blend embedded objects with
native data so seamlessly that the distinction dissolves. Inside-
out throughout containers will become more feasible as
increasing numbers of OLE objects support inside-out
activation.

Outside-in plus
inside-out preferred objects

Some containers may use an outside-in model for large, foreign
embeddings but also include some inside-out preferred objects
as though they were native objects (by supporting the
OLEMISC_ACTIVATEWHENVISIBLE constant). For
example, an OLE document might present form control objects
as inside-out native data while activating larger spreadsheet
and chart objects as outside-in.

Switch between inside-out
throughout and outside-in
throughout

Visual programming and forms layout design applications
include design and run modes. In this type of environment, a
container typically holds an object that is capable of inside-out
activation (if not preferable) and alternates between outside-in
throughout when designing and inside-out throughout when
running.

OLE Visual Editing of OLE Embedded Objects

Ebay Exhibit 1013, Page 763 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 11 Working with OLE Embedded and OLE Linked Objects 271

February 13, 1995

One of the most common uses for activating an object is editing its content in its current location. Supporting this
type of in-place interaction is also called OLE visual editing, because the user can edit the object within the visual
context of its container.

Unless the container and the object both support inside-out activation, the user activates an embedded object for
visual editing by selecting the object and executing its Edit command, either from a drop-down or pop-up menu. You
can also support shortcut techniques. For example, if Edit is the object's default operation, you can use double-
clicking to activate the object for editing. Similarly, you can support pressing the ENTER key as a shortcut for
activating the object.

Note Although earlier versions of OLE user interface documentation suggested using the ALT+ENTER
key combination to activate an object if the ENTER key was already assigned, this key combination is now the
recommended shortcut key for the Properties command. Instead, support the pop-up menu shortcut key, SHIFT+F10.
This enables the user to activate the object by selecting the command from the pop-up menu.

When the user activates an OLE embedded object for OLE visual editing, the user interface for its content becomes
available and blended into its container application's interface. The object can display its frame adornments, such as
row or column headers, handles, or scroll bars, outside the extent of the object and temporarily cover neighboring
material. The object's application can also change the menu interface, which can range from adding menu items to
existing drop-down menus to replacing entire drop-down menus. The object can also add toolbars, status bars, and
supplemental palette windows.

The degree of interface blending varies based on the nature of the OLE embedded object. Some OLE embedded
objects may require extensive support and consequently result in dramatic changes to the container application's
interface. Finer grain objects that emulate the native components of a container may have little or no need to make
changes in the container's user interface. The container determines the degree to which an OLE embedded object's
interface can be blended with its own, regardless of the capability or preference of the OLE embedded object. A
container application that provides its own interface for an OLE embedded object can suppress an OLE embedded
object's own interface. Figure 11.14 shows how the interface might appear when its embedded worksheet is active.

Ebay Exhibit 1013, Page 764 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 11 Working with OLE Embedded and OLE Linked Objects 271

February 13, 1995

Figure 11.14 A worksheet activated for OLE visual editing

When the user activates an OLE embedded object, avoid changing the view and position of the rest of the content in
the window. Although it may seem reasonable to scroll the window and thereby preserve the content’s position,
doing so can disturb the user's focus, because the active object shifts down to accommodate a new toolbar and shifts
back up when it is deactivated. An exception may be when the activation exposes an area in which the container has
nothing to display. Even in this situation, you may wish to render a visible region or filled area that corresponds to
the background area outside the visible edge of the container so that activation keeps the presentation stable.

Activation does not affect the title bar. Always display the top-level container's name. For example, when the
worksheet shown in Figure 11.14 is activated, the title bar continues to display the name of the document in which
the worksheet is embedded and not the name of the worksheet. You can provide access to the name of the worksheet
by supporting property sheets for your OLE embedded objects.

For more information about property sheets for OLE embedded objects, see the section, "Using Property Sheets,"
later in this chapter.

A container can contain multiply nested OLE embedded objects. However, only a single level is active at any one
time. Figure 11.15 shows a document containing an active embedded worksheet with an embedded graph of its own.
Clicking on the graph merely selects it as an object within the worksheet.

Ebay Exhibit 1013, Page 765 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 11 Working with OLE Embedded and OLE Linked Objects 271

February 13, 1995

Figure 11.15 A selected graph within an active worksheet

Activating the embedded graph, for example, by choosing the graph's Edit command, activates the object for OLE
visual editing, displaying the graph’s menus in the document's menu bar. This is shown in Figure 11.16. At any
given time, only the interface for the currently active object and the topmost container are presented; intervening
parent objects do not remain visibly active.

Ebay Exhibit 1013, Page 766 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 11 Working with OLE Embedded and OLE Linked Objects 271

February 13, 1995

Figure 11.16 An active graph within a worksheet

Note Ideally, an OLE embedded object supports OLE visual editing on any scale because its
container can be scaled arbitrarily. If an object cannot accommodate OLE visual editing in its
container's current view scale, or if its container does not support OLE visual editing, open the
object into a separate window for editing. For more information about OLE embedded objects, see
the section, "Opening an Embedded Object," later in this chapter.

For any user interaction, such as when the user selects outside the extent of an active object or activates another
object in the container, deactivate the current object and give the focus to the new object. This is also true for an
object that is nested in the currently active object. An object application also supports user deactivation when the
user presses the ESC key. If the object uses the ESC key at all times for its internal operation, the SHIFT+ESC key
should deactivate the object, after which it becomes the selected object of its container.

Edits made to an active object become part of the container immediately and automatically, just like edits made to
native data. Consequently, do not display an “Update changes?” message box when the object is deactivated.
Remember that the user can abandon changes to the entire container, embedded or otherwise, if the topmost
container includes an explicit command that prompts the user to save or discard changes to the container's file.

OLE embedded objects participate in the undo stack of the window in which they are activated.

For more information about embedded objects and the undo stack, see the section, "Undo for Active and Open
Objects," later in this chapter.

Ebay Exhibit 1013, Page 767 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 11 Working with OLE Embedded and OLE Linked Objects 271

February 13, 1995

While Edit is the most common command for activating an OLE embedded object for OLE visual editing, other
commands can also create such activation. For example, when the user carries out a Play command on a video clip,
you can display a set of commands that allow the user to control the clip (Rewind, Stop, and Fast Forward). In this
case, the Play command provides a form of OLE visual editing.

The Active Hatched Border
If a container allows an OLE embedded object's user interface to change its user interface, then the active object's
application displays a hatched border around itself to show the extent of the OLE visual editing context (shown in
Figure 11.17). That is, if an active object places its menus in the topmost container's menu bar, display the active
hatched border. The object's request to display its menus in the container's menu bar must be granted by the container
application. If the object's menus do not appear in the menu bar (because the object did not require menus or the
container refused its request for menu display), or the object is otherwise accommodated by the container's user
interface, you need not display the hatched border.

Figure 11.17 Hatched border around active OLE embedded objects

The hatched pattern is made up of 45-degree diagonal lines. The active object takes on the appearance that is best
suited for its own editing; for example, the object may display frame adornments, table gridlines, handles, and other
editing aids. Because the hatched border is part of the object's territory, the active object defines the pointer that
appears when the user moves the mouse over the pointer.

Ebay Exhibit 1013, Page 768 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 11 Working with OLE Embedded and OLE Linked Objects 271

February 13, 1995

Clicking in the hatched pattern (and not on the handles) is interpreted by the object as clicking just inside the edge of
the border of the active object. The hatched area is effectively a hot zone that prevents inadvertent deactivations and
makes it easier to select the content of the object.

Menu Integration
As the user activates different objects, different commands need to be accessed in the window's user interface. The
following classification of menus—primary container menu, workspace menu, and active object menus—separates
the interface based on menu groupings. This classification enhances the usability of the interface by defining the
interface changes as the user activates or deactivates different objects.
Primary Container Menu
The topmost or primary container viewed in a primary window controls the work area of that window. If the primary
container includes a menu bar, it supplies a single menu that includes commands that apply to the primary container
as an entire unit. For document objects, use a File menu for this purpose, as shown in Figure 11.18. This menu
includes document and file level commands such as Open, Save, and Print. Always display the primary container
menu in the menu bar at all times, regardless of which object is active.

Figure 11.18 OLE visual editing menu layout

Workspace Menu
An MDI-style application also includes a workspace menu (typically labeled "Window") on its menu bar that
provides commands for managing the document windows displayed within it, as shown in Figure 11.19. Like the
primary container menu, the workspace menu should always be displayed, independent of object activation.

Figure 11.19 OLE visual editing menu layout for MDI

For more information about the multiple document interface (MDI), see Chapter 9, "Window Management."
Active Object Menus
Active objects can define menus that appear on the primary container's menu bar that operate on their content. Place
commands for moving, deleting, searching and replacing, creating new items, applying tools, styles, and Help on
these menus.

Active object commands apply only within the extent of the object. An active object's menus typically occupy the
majority of the menu bar. Organize these menus following the same order and grouping that you display when the
user opens the object into its own window. As their name suggests, active object commands are executed by the

Ebay Exhibit 1013, Page 769 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 11 Working with OLE Embedded and OLE Linked Objects 271

February 13, 1995

currently active object. If no embedded objects are active, but the window is active, the primary container is the
active object. Avoid naming your active object menus File or Window, because primary containers often use those
titles. Objects that use direct manipulation as their sole interface need not provide active object menus or alter the
menu bar when activated.

The active object can display a View menu. However, when the object is active, include only commands that apply
to the object. If the object's container requires its document or window-level “viewing” commands to be available
while an object is active, place them on a menu that represents the primary container window's pop-up menu and on
the Window menu — if present.

When designing the interface of selected objects within an active object, follow the same guidelines as that of a
primary container and one of its selected OLE embedded objects; that is, the active object displays the commands of
the selected object (as registered in the registry) either as submenus of its menus or as separate menus.

An active object also has the responsibility for defining and displaying the pop-up menu for its content, specifically
commands appropriate to apply to any selection within it. Figure 11.20 shows an example of a pop-up menu for a
selection within an active bitmap image.

Figure 11.20 Active object pop-up menu

Keyboard Interface Integration
In addition to integrating the menus, you must also integrate the access keys and shortcut keys used in these menus.
Access Keys
The access keys assigned to the primary container's menu, an active object's menus, and MDI workspace menus
should be unique. Following are guidelines for defining access keys for integrating these menu names.

Ebay Exhibit 1013, Page 770 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 11 Working with OLE Embedded and OLE Linked Objects 271

February 13, 1995

• Use the first letter of the menu of the primary container as its access key character. Typically, this

is "F" for File. Use "W" for a workspace's Window menu. Localized versions should use the
appropriate equivalent.

• Use characters other than those assigned to the primary container and workspace menus for the
menu titles of active OLE embedded objects. (If an OLE embedded object has previously existed
as a standalone document, its application avoids these characters already.)

• Define unique access keys for an object's registered commands and avoid characters that are
potential access keys for common container-supplied commands, such as Cut, Copy, Paste, Delete,
and Properties.

Despite these guidelines, if the same access character is used more than once, pressing an ALT+letter combination
cycles through the candidates, selecting the next match each time it is pressed. To carry out the command, the user
must press the ENTER key when it is selected. This is standard system behavior for menus.

For more information about defining access keys, see Chapter 4, "Input Basics."
Shortcut Keys
For primary containers and active objects, follow the shortcut key guidelines covered in this guide. In addition, avoid
defining shortcut keys for active objects that are likely to be assigned to the container. Include the standard editing
and transfer (Cut, Copy, and Paste) shortcut keys, but avoid File menu or system-assigned shortcut keys. There is no
provision for registering shortcut keys for a selected object's commands.

For more information about defining shortcut keys, see Chapter 4, "Input Basics," and Appendix B, "Keyboard
Interface Summary."

If a container and an active object share a common shortcut key, the active object captures the event. That is, if the
user activates an OLE embedded object, its application code directly processes the shortcut key. If the active object
does not process the key event, it is available to the container, which has the option to process it or not. This applies
to any level of nested OLE embedded objects. If there is duplication between shortcut keys, the user can always
direct the key based on where the active focus is by activating that object. To direct a shortcut key to the container,
the user deactivates an OLE embedded object — for example, by selecting in the container — but outside the OLE
embedded object. Activation, not selection, of an OLE embedded object allows it to receive the keyboard events. The
exception is inside-out activation, where activation results from selection.

Toolbars, Frame Adornments, and Palette Windows
Integrating drop-down and pop-up menus is straightforward because they are confined within a particular area and
follow standard conventions. Toolbars, frame adornments (as shown in Figure 11.21), and palette windows can be
constructed less predictably, so it is best to follow a replacement strategy when integrating these elements for active
objects. That is, toolbars, frame adornments, and palette windows are displayed and removed as entire sets rather
than integrated at the individual control level—just like menu titles on the menu bar.

Ebay Exhibit 1013, Page 771 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 11 Working with OLE Embedded and OLE Linked Objects 271

February 13, 1995

Figure 11.21 Examples of toolbars and frame adornments

When the user activates an object, the object application requests a specific area from its container in which to post
its tools. The container application determines whether to:

• Replace its tool (or tools) with the tools of the object, if the requested space is already occupied by
a container tool.

• Add the object’s tool (or tools), if a container tool does not occupy the requested space.

• Refuse to display the tool (or tools) at all. This is the least desirable method.

Toolbars, frame adornments, and palette windows are all basically the same interfaces — they differ primarily in their
location and the degree of shared control between container and object. There are four locations in the interface
where these types of controls reside, and you determine their location by their scope.

Location Description

Object frame Places object-specific controls, such as a table header or a local
coordinate ruler, directly adjacent to the object itself for tightly
coupled interaction between the object and its interface. An
object (such as a spreadsheet) can include scrollbars if its content
extends beyond the boundaries of its frame.

Pane frame

Locates view-specific controls at the pane level. Rulers and
viewing tools are common examples.

Document (primary
container) window frame

Attaches tools that apply to the entire document (or documents in
the case of an MDI window) just inside any edge of its primary
window frame. Popular examples include ribbons, drawing tools,
and status lines.

Windowed

Displays tools in a palette window — this allows the user to place
them as desired. A palette window typically floats above the
primary window and any other windows of which it is part.

Ebay Exhibit 1013, Page 772 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 11 Working with OLE Embedded and OLE Linked Objects 271

February 13, 1995

For more information about the behavior of palette windows, see Chapter 8, "Secondary Windows."

When determining where to locate a tool area, avoid situations that cause the view to shift up and down as different-
sized tool areas are displayed or removed as the user activates different objects. This can be disruptive to the user's
task. Figure 11.22 shows possible positions for interface controls.

Figure 11.22 Possible positions for interface controls

Because container tool areas can remain visible while an object is active, they are available to the user simply by
interacting with them—this can reactivate the
container application. The container determines whether to activate or leave the object active. If toolbar buttons of an
active object represent a primary container or workspace, commands, such as Save, Print, or Open, disable them.

For more information about the negotiation protocols used for activation, see the Microsoft OLE Programmer's
Reference.

As the user resizes or scrolls its container's area, an active object and its toolbar or frame adornments placed on the
object frame are clipped, as is all container content. These interface control areas lie in the same plane as the object.

Ebay Exhibit 1013, Page 773 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 11 Working with OLE Embedded and OLE Linked Objects 271

February 13, 1995

Even when the object is clipped, the user can still edit the visible part of the object in place and while the visible
frame adornments are operational.

Some container applications scroll at certain increments that may prevent portions of an OLE embedded object from
being visually edited. For example, consider a large picture embedded in a worksheet cell. The worksheet scrolls
vertically in complete row increments; the top of the pane is always aligned with the top edge of a row. If the
embedded picture is too large to fit within the pane at one time, its bottom portion is clipped and consequently never
viewed or edited in place. In cases like this, the user can open the picture into its own window for editing.

Window panes clip frame adornments of nested embedded objects, but not by the extent of any parent object.
Objects at the very edge of their container's extent or boundary potentially display adornments that extend beyond
the bounds of the container's defined area. In this case, if the container displays items that extend beyond the edge,
display all the adornments; otherwise, clip the adornments at the edge of the container. Do not temporarily move the
object within its container just to accommodate the appearance of an active embedded object's adornments. A pane-
level control can potentially be clipped by the primary (or parent, in the case of MDI) window frame, and a primary
window adornment or control is clipped by other primary windows.

Opening OLE Embedded Objects
The previous sections have focused on OLE visual editing—editing an OLE embedded object in place; that is, its
current location is within its container. Alternatively, the user can also open embedded objects into their own
window. This gives the user the opportunity of seeing more of the object or seeing the object in a different view
state. Support this operation by registering an Open command for the object. When the user chooses the Open
command of an object, it opens it into a separate window for editing, as shown in Figure 11.23.

Ebay Exhibit 1013, Page 774 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 11 Working with OLE Embedded and OLE Linked Objects 271

February 13, 1995

Figure 11.23 An opened OLE embedded worksheet

After opening an object, the container displays it masked with an "open" hatched (lines at a 45-degree angle) pattern
that indicates the object is open in another window, as shown in Figure 11.24.

Figure 11.24 An opened object

Format the title text for the open object’s window as "Object Name in Container Name" (for example, “Sales
Worksheet in Classical CD Review"). Including the container's name emphasizes that the object in the container and
the object in the open window are considered the same object.

Note This convention for the title bar text applies only when the user opens an embedded object. It does not apply
when the user activates the object in place. In this latter case, do not change the title bar text.

Ebay Exhibit 1013, Page 775 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 11 Working with OLE Embedded and OLE Linked Objects 271

February 13, 1995

An open OLE embedded object represents an alternate window onto the same object within the container as opposed
to a separate application that updates changes to the container document. Therefore, edits are immediately and
automatically reflected in the object in the document, and there is no longer the need for displaying an update
confirmation message upon exiting the open window.

Nevertheless, you can still include an Update Source File command in the window of the open objects to allow the
user to request an update explicitly. This is useful if you cannot support frequent “real-time” image updates because
of operational performance. In addition, when the user closes an open object's window, automatically update its
presentation in the container's window.

You may also include Import File and similar commands in the window of the open object. Treat importing a file
into the window of the open embedded object the same as any change to the object.

When the user opens an object, it is the selected object in the container; however, the user can change the selection in
the container afterwards. Like any selected OLE embedded object, the container supplies the appropriate selection
appearance together with the open appearance, as shown in Figure 11.25. The selected and open appearances apply
only to the object's appearance on the display. If the user chooses to print the container while an OLE embedded
object is open or active, use the presentation form of objects; neither the open nor active hatched pattern should ap-
pear in the printed document because neither pattern is part of the content.

Figure 11.25 A selected open object

While an OLE embedded object is open, it is still a functioning member of its container. It can still be selected or
unselected, and can respond to appropriate container commands. At any time, the user may open any number of OLE
embedded objects. When the user closes its container window, deactivate and close the windows for any open OLE
embedded objects.

When the user opens an OLE embedded object, if it has file operations, such as Open, remove these in the resulting
window or replace them with commands such as Import to avoid severing the object's connection with its container.
The objective is to present a consistent conceptual model; the object in the opened window is the same as the one in
the container.

Editing an OLE Linked Object
An OLE linked object can be stored in a particular location, moved or copied, and has its own properties. Container
actions can be applied in as much as the OLE linked object acts as a unit of content. So an OLE container supplies
commands, such as Cut, Copy, Delete, and Properties, and interface elements such as handles, drop-down and pop-
up menu items, and property sheets, for the OLE linked objects it contains.

For more information about providing access to selected OLE objects, see the section, "Accessing Commands for
Selected Objects," earlier in this chapter.

Ebay Exhibit 1013, Page 776 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 11 Working with OLE Embedded and OLE Linked Objects 271

February 13, 1995

The container also provides access to the commands that activate the OLE linked object, including the commands
that provide access to content represented by the OLE linked object. These commands are the same as those that
have been registered for the link source's type. Because an OLE linked object represents and provides access to
another object that resides elsewhere, editing an OLE linked object always takes the user back to the link source.
Therefore, the command used to edit an OLE linked object is the same as the command of its linked source object.
For example, the menu of a linked object can include both Open and Edit if its link source is an OLE embedded
object. The Open command opens the embedded object, just as carrying out the command on the OLE embedded
object does. The Edit command opens the container window of the OLE embedded object and activates the object for
OLE visual editing.

Figure 11.26 shows the result of opening a linked bitmap image of a horn. The image appears in its own window for
editing. Note that changes made to the horn are reflected not only in its host container, the "Classical CD Review"
document, but in every other document that contains an OLE linked object linked to that same portion of the "Horns"
document. This illustrates both the power and the potential danger of using links in documents.

Figure 11.26 Editing a link source

Ebay Exhibit 1013, Page 777 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 11 Working with OLE Embedded and OLE Linked Objects 271

February 13, 1995

At first glance, editing an OLE linked object seems to appear similar to an opened OLE embedded object. A separate
primary window opens displaying the data, but the container of an OLE linked object does not render the link
representation using the open hatched pattern because the link source does not reside at this location. The OLE
linked object is not the real object, only a stand-in that enables the source to be visually present in other locations.
Editing the linked object is functionally identical to opening the link source. Similarly, the title bar text of the link
source's window does not use the convention as an open OLE embedded object because the link source is an
independent object. Therefore, the windows operate and close independently of each other. If the link source's
window is already visible, the OLE linked object notifies the link source to activate, bringing the existing window to
the top of the Z order.

Note that the container of the OLE linked object does display messages related to opening the link source. For
example, the container displays a message if the link source cannot be accessed.

Automatic and Manual Updating
When the user creates an OLE link, by default it is an automatic link; that is, whenever the source data changes, the
link’s visual representation changes without requiring any additional information from the user. Therefore, do not
display an “Update Automatic Links Now?” message box. If the update takes a significant time to complete, you can
display a message box indicating the progress of the update.

If users wish to exercise control over when links are updated, they can set the linked object’s update property to
manual. Doing so requires that the user choose an explicit command to update the link representation. The link can
also be updated as a part of the link container's “update fields” or “recalc” action or command.

For more information about updating links automatically or manually, see the section, "Maintaining Links," later in
this chapter.

Operations and Links
The operations available for an OLE linked object are supplied by its container and its source. When the user
chooses a command supplied by its container, the container application handles the operation. When the user chooses
a command supplied by its source, the operation is conceptually passed back to the linked source object for
processing. In this sense, activating an OLE linked object activates its source object.

In certain cases, the linked object exhibits the result of an operation; in other cases, the linked source object can be
brought to the top of the Z order to handle the operation. For example, executing commands such as Play or Rewind
on a link to a sound recording appear to operate on the linked object in place. However, if the user chooses a
command to alter the link's representation of its source's content (such as Edit or Open), the link source is exposed
and responds to the operation instead of the linked object itself.

A link may play a sound in place, but cannot support editing in place. For a link source to properly respond to editing
operations, fully activate the source object (with all of its containing objects and its container). For example, when
the user double-clicks a linked object whose default operation is Edit, the source (or its container) opens, displaying
the linked source object ready for editing. If the source is already open, the window displaying the source becomes
active. This follows the standard convention for activating a window already open; that is, the window comes to the
top of the Z order. You can adjust the view in the window, scrolling or changing focus within the window, as
necessary, to present the source object for easy user interaction. The linked source window and linked object window
operate and close independently of each other.

Ebay Exhibit 1013, Page 778 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 11 Working with OLE Embedded and OLE Linked Objects 271

February 13, 1995

Note If a link source is contained within a read-only document, edits cannot be saved to the source
file.

Types and Links
An OLE linked object includes a cached copy of its source’s type at the time of the last update. When the type of a
linked source object changes, all links derived from that source object contain the old type and operations until either
an update occurs or the linked source is activated. Because out-of-date links can potentially display obsolete
operations to the user, a mismatch can occur. When the user chooses a command for an OLE linked object, the
linked object compares the cached type with the current type of the linked source. If they are the same, the OLE
linked object forwards the operation on to the source. If they are different, the linked object informs its container. In
response, the container can either:

• Carry out the new type's operation, if the operation issued from the old link is syntactically

identical to one of the operations registered for the source’s new type.

• Display a message box, if the issued operation is no longer supported by the link source’s new
type.

In either case, the OLE linked object adopts the source’s new type, and subsequently the container displays the new
type's operations in the OLE linked object's menu.

Link Management
An OLE linked object has three properties: the name of its source, its source's type, and the link's updating basis,
which is either automatic or manual. An OLE linked object also has a set of commands related to these properties. It
is the responsibility of the container of the linked object to provide the user access to these commands and properties.
To support this, an OLE container provides a property sheet for all of its OLE objects. You can also include a Links
dialog box for viewing and altering the properties of several links simultaneously.

Accessing Properties of OLE objects
Like other types of objects, OLE embedded and linked objects have properties. The container of an OLE object is
responsible for providing the interface for access to the object's properties. The following sections describe how to
provide user access to the properties of OLE objects.

Ebay Exhibit 1013, Page 779 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 11 Working with OLE Embedded and OLE Linked Objects 271

February 13, 1995

The Properties Command
Design OLE containers to include a Properties command and property sheets for any OLE objects it contains. If the
container application already includes a Properties command for its own native data, you can also use it to support
selected OLE embedded or linked objects. Otherwise, add the command to the drop-down and pop-up menu you
provide for accessing the other commands for the object, preceded by a menu, as shown in Figure 11.27.

Figure 11.27 The Properties command

When the user chooses the Properties command, the container displays a property sheet containing all the salient
properties and values, organized by category, for the selected object. Figure 11.28 shows examples of property sheets
for an OLE embedded and linked worksheet object.

Ebay Exhibit 1013, Page 780 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 11 Working with OLE Embedded and OLE Linked Objects 271

February 13, 1995

Figure 11.28 OLE embedded and linked object property sheets

Follow the format the system uses for property sheets and the conventions outlined in this guide. Use the short type
name in the title bar; for an OLE linked object, precede the name with the word "Linked," as in "Linked Worksheet."
Include a General property page displaying the icon, name, type, size, and location of the object. Also include a
Convert command button to provide access to the type conversion dialog box. On a View page, display properties
associated with the view and presentation of the OLE object within the container. These include scaling or position
properties as well as whether to display the object in its content presentation or as an icon. This field includes a
Change Icon command button that allows the user to customize the icon presentation of the object.

For OLE linked objects, also include a Link page in its property sheet containing the essential link parameters. For
the typical OLE link, include the source name, the Update setting (automatic or manual), the Last Update timestamp,
and command buttons that provide the following link operations:

• Break Link effectively disconnects the selected link.

• Update Now forces the selected link to connect to its sources and retrieve the latest information.

• Open Source opens the link source for the selected link.

• Change Source invokes a dialog box similar to the common Open dialog box to allow the user to
respecify the link source.

Ebay Exhibit 1013, Page 781 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 11 Working with OLE Embedded and OLE Linked Objects 271

February 13, 1995

The Links Command
OLE containers can include a Links command that provides access to a dialog box for displaying and managing
multiple links. Figure 11.29 shows the Links dialog box. The list box in the dialog box displays the links in the
container. Each line in the list contains the link source's name, the link source's object type (short type name), and
whether the link updates automatically or manually. If a link source cannot be found, “Unavailable” appears in the
update status column.

Note The Microsoft Win32 Software Development Kit includes the Links dialog box and other OLE-
related dialog boxes described in this chapter.

Figure 11.29 The Links dialog box

If the user chooses the Links command when the current selection includes a linked object (or objects), display that
link (or links) as selected in the Links dialog box and scroll the list to display the first selected link at the top of the
list box.

Allow 15 characters for the short type name field, and enough space for Automatic and Manual to appear com-
pletely. As the user selects each link in the list, its type, name, and updating basis appear in their entirety at the
bottom of the dialog box. The dialog box also includes link management command buttons included in the Link page
of OLE linked object property sheets: Break Link, Update Now, Open Source, and Change Source.

Define the Open Source button to be the default command button when the input focus is within the list of links.
Support double-clicking an item in the list as a shortcut for opening that link source.

The Change Source button enables the user to change the source of a link by selecting a file or typing a filename. If
the user enters a source name that does not exist and chooses OK, a message box is displayed with the following
message, as shown in Figure 11.30.

Ebay Exhibit 1013, Page 782 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 11 Working with OLE Embedded and OLE Linked Objects 271

February 13, 1995

Figure 11.30 A message box for an invalid source

If the user chooses Yes, display the Change Source dialog box to correct the string. If the user chooses No, store the
unparsed display name of the link source until the user links successfully to a newly created object that satisfies the
dangling reference. The container application can also choose to allow the user to connect only to valid links. If the
user chooses Cancel, remove the message box and return input focus to the Links dialog box.

If the user changes a link source or its directory, and other linked objects in the same container are connected to the
same original link source, the container may offer the user the option to make the changes for the other references.
To support this option, use the message box, as shown in Figure 11.31.

Figure 11.31 Changing additional links with the same source

Converting Types
Users may want to convert an object's type, so they edit the object with a different application. To support the user's
converting an OLE object from its current type to another registered type, provide a Convert dialog box, as shown in
Figure 11.32. The user accesses the Convert dialog box by including a Convert button beside the Type field in an
object’s property sheet.

Note Previous guidelines recommended including a Convert command on the menu for a selected
OLE object. You may continue to support this; however, providing access through the property sheet of the object is
the preferred method.

Ebay Exhibit 1013, Page 783 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 11 Working with OLE Embedded and OLE Linked Objects 271

February 13, 1995

Figure 11.32 The Convert dialog box

This dialog box displays the current type of the object and a list box with all possible conversions. This list is
composed of all types registered as capable of reading the selected object’s format, but this does not necessarily
guarantee the possibility of reverse conversion. The list should not contain the object’s type, because that would
result in null operation. If the user selects a new type from the list and chooses the OK button, the selected object is
converted immediately to the new type. If the object is open, the container closes it before beginning the conversion.

Make sure the application that supplies the conversion does so with minimal impact in the user interface. That is,
avoid displaying your application's primary window, but do provide a progress indicator message box with
appropriate controls so that the user can monitor or interrupt the conversion process.

For more information about progress message boxes, see Chapter 8, "Secondary Windows."

If the conversion of the type could result in any lost data or information, the application you use to support the type
conversion should display a warning message box indicating that data will be lost and request confirmation by the
user before continuing. Make the message as specific as possible about the nature of the information that might be
lost; for example, "Text properties will not be preserved." If the conversion will result in no data loss, the warning
message is not necessary.

The Convert button on an object's property sheet should be disabled for linked objects, because conversion must
occur on the link source. In any case, disable the Convert button for all objects that do not have any conversion
options; that is, no other type is capable of converting the selected object.

Using Handles
A container displays handles for an OLE embedded or linked object when the object is selected individually. When
an object is selected and not active, only the scaling of the object (its cached metafile) can be supported. If a
container uses handles for indicating selection but does not support scaling of the image, use the hollow form of
handles.

For more information about the appearance of handles, see Chapter 13, "Visual Design."

When an OLE embedded object is activated for OLE visual editing, it displays its own handles. The active object
also determines which operation to support when the user drags a handle. Display the handles within the active
hatched pattern, as shown in Figure 11.33.

Ebay Exhibit 1013, Page 784 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 11 Working with OLE Embedded and OLE Linked Objects 271

February 13, 1995

Figure 11.33 An active OLE embedded object with handles

The interpretation of dragging the handle is defined by the OLE embedded object's application. The recommended
operation is cropping, where you expose more or less of the OLE embedded object's content and adjust the viewport.
If cropping is inappropriate or unsupportable, use an operation that better fits the context of the object or simply
support scaling of the object. If no operation is meaningful, but handles are required to indicate selection while
activated, use the hollow handle appearance.

Undo Operations for Active and Open Objects
Different objects (that is, different underlying applications) take control of a window during OLE visual editing, so
managing commands like Undo or Redo present a question: How are the actions performed within an edited OLE
embedded object reconciled with actions performed on the native data of the container with the Undo command? The
recommended undo model is a single undo stack per open window — that is, all actions that can be reversed, whether
generated by OLE embedded objects or their container, accumulate on the same undo state sequence. Therefore,
choosing Undo from either the container's menus or an active object's menus reverses the last undoable action
performed in that open window, regardless of whether it occurred inside or outside the OLE embedded object. If the
container has the focus and the last action in the window occurred within an OLE embedded object, when the user
chooses Undo, activate the embedded object, reverse the action, and leave the embedded object active.

The same rule applies to open objectsthat is, objects that have been opened into their own window. Because each
open window manages a single stack of undoable states, actions performed in an open object are local to that object’s
window and consequently must be undone from there; actions performed in the open object (even if they create
updates in the container) do not contribute to the undo state of the container.

Carrying out a registered command of a selected, but inactive, object (or using a shortcut equivalent) is not a
reversible action; therefore, it does not add to a container’s undo stack. This includes opening an object into another
window for editing. For example, if the user opens an object, this action cannot be undone from its container. The
resulting window must be closed directly to remove it.

Figure 11.34 shows two windows: Container Window A, which has an active OLE embedded object, and an open
embedded object in Window B. Between the two windows, nine actions have been performed in the order and at the
location indicated by the numbers. The resulting undo stacks are displayed beneath the windows.

Ebay Exhibit 1013, Page 785 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 11 Working with OLE Embedded and OLE Linked Objects 271

February 13, 1995

Window A

Window B ��
��
��
��
��
��1 2 3 4 5 6 9

7 8

Undo Thread

Figure 11.34 Undo stacks forive and open OLE embedded objects

The sequence of undo states shown in Figure 11.34 does not necessarily imply an n-level undo. It is merely a
timeline of actions that can be undone at 0, 1, or more levels, depending on what the container-object cooperation
supports.

The active object actions and native data actions within Window A have been serialized into the same stack, while
the actions in Window B have accumulated onto its own separate stack.

The actions discussed so far apply to a single window, not to actions that span multiple windows, such as OLE drag
and drop. For a single action that spans multiple windows, the ideal design allows the user to undo the action from
the last window involved. This is because, in most cases, the user focuses on that window when the mistake is
recognized. So if the user drags and drops an item from Window A into Window B, the action appends to Window
B’s undo thread, and undoing it undoes the entire OLE drag and drop operation. Unfortunately, the system does not
support multiple window undo coordination. So for a multiple window action, create independent undo actions in
each window involved in the action.

Displaying Messages

Ebay Exhibit 1013, Page 786 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 11 Working with OLE Embedded and OLE Linked Objects 271

February 13, 1995

This section includes recommendations about other messages to display for OLE interaction using message boxes
and status line messages. Use the following messages in addition to those described earlier in this chapter.

Object Application Messages
Display the following messages to notify the user about situations where an OLE object's application is not
accessible.

Object's Application Cannot Run Standalone
Some OLE objects are designed to be used only as components within a container and have no value in being opened
directly. If the user attempts to open or run an OLE object's application that cannot run as a standalone application,
display the message box shown in Figure 11.35.

Figure 11.35 Object's application cannot be run standalone message

Object's Application Location Unknown
When the user selects an entry from the Insert Object dialog box or activates an object, and the container cannot
locate the requested object's application, display the message shown in Figure 11.36.

Figure 11.36 Object's application location is unknown message

When the user chooses the Browse button, display the common Open dialog box. Enter the user-supplied path in the
registry as the new object application path and filename.

If a container supports inside-out activation for an object, display this message when the user tries to interact with
that object, not when the container is opened. This avoids the display of the message to the user who only intends to
view the content.

Ebay Exhibit 1013, Page 787 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 11 Working with OLE Embedded and OLE Linked Objects 271

February 13, 1995

Object's Application Unavailable
An object's application can be unavailable for several reasons. For example, it can be busy printing, waiting for user
input to a modal message box, or the application has stopped responding to the system. If the object's application is
not available, display the message box shown in Figure 11.37.

Figure 11.37 Object’s application is unavailable message

Object's Application Path Unavailable
If the path for the object's application is invalid because a network is unavailable, display the message box shown in
Figure 11.38.

Figure 11.38 Object’s application path is unavailable message

Object's Type Unregistered
If the user attempts to activate an object whose type is not registered in the registry, display the message box shown
in Figure 11.39.

Ebay Exhibit 1013, Page 788 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 11 Working with OLE Embedded and OLE Linked Objects 271

February 13, 1995

Figure 11.39 Object type is not registered message

Choosing the Convert button displays the Convert dialog box. Choosing the Open With button displays a dialog box
with a list of current types the user can use to edit the object. Ideally, an application that registers the type should be
able to read and write that format without any loss of information. If it cannot preserve the information of the
original type, the application handling the type emulation displays a message box warning the user about what
information it cannot preserve and optionally allows the user to convert the object's type.

OLE Linked Object Messages
Display the following messages to notify the user about situations related to interaction with OLE linked objects.

Link Source Files Unavailable
When a container requests an update for its OLE linked objects, either because the user chooses an explicit Update
command or as the result of another action such as a Recalc operation, if the link source files for some OLE links are
unavailable to provide the update, display the message box shown in Figure 11.40.

Figure 11.40 Link source files are unavailable message

Include two buttons, OK and Properties. When the user chooses the OK button, close the dialog box without
updating the links. Choosing the Properties button displays a property sheet for the link (see Figure 11.28) with
"Unavailable" in the Update field. The user can then use the Change Source button to search for the file or choose
other commands related to the link.

Optionally, you can also include a Links button in the message box. When the user chooses this button, display your
Links dialog box, following the same conventions as for the property sheet.

Ebay Exhibit 1013, Page 789 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 11 Working with OLE Embedded and OLE Linked Objects 271

February 13, 1995

Similarly, if the user issues a command to an OLE linked object with an unavailable source, display the warning
message shown in Figure 11.41. Display the OLE linked object's update status as "Unavailable."

Figure 11.41 Selected link source is unavailable message

Link Source Type Changed
If a link source's type has changed, but it is not yet reflected for an OLE linked object, and the user chooses a
command that does not support the new type, display the message box shown in Figure 11.42.

Figure 11.42 Link source's type has changed message

Link Updating
While links are updating, display the progress indicator message box shown in Figure 11.43. The Stop button
interrupts the update process and prevents any updating of additional links.

Figure 11.43 Progress indicator while links update message

Ebay Exhibit 1013, Page 790 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 11 Working with OLE Embedded and OLE Linked Objects 271

February 13, 1995

Status Line Messages

Table 11.3 lists suggested status line messages for commands on the primary container menu (commonly the File
menu) of an opened object.

Table 11.3 Primary Container Menu Status Line Messages

Command Status line message

Update container-document Updates the appearance of this full type name
in container-document.

Close & Return To container-document Closes object name and returns to container-
document.

Save Copy As Saves a copy of descriptive type name in a
separate file.

Exit & Return To container-document

Exits object application and returns to
container-document.

Note If the open object is within an MDI application with other open documents, the Exit & Return To command
should simply be "Exit". There is no guarantee of a successful Return To container-document after exiting, because
the container might be one of the other documents in that MDI instance.

Ebay Exhibit 1013, Page 791 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 11 Working with OLE Embedded and OLE Linked Objects 271

February 13, 1995

Table 11.4 lists the recommended status line messages for the Edit menu of containers of OLE embedded and linked
objects.

Table 11. 4 Edit Menu Status Line Messages

Command Status line message

Paste Object Name1

Inserts the content of the Clipboard as
Object Name.

Paste Special Inserts the content of the Clipboard
with format options.

Paste Link [To] Object Name1 Inserts a link to Object Name.

Paste Shortcut [To] Object Name1 Inserts a shortcut icon to Object Name.

Insert Object Inserts a new object.

[Linked]Object Name1 [Object] Applies the following commands to
object name.

[Linked] Object Name1 [Object] Command Varies based on command.

[Linked] Object Name1 [Object] Properties Allows properties of object name to be
viewed or modified.

Links Allows links to be viewed, updated,
opened, or removed.

1object name may be either the object's short type name or its filename.

Table 11.5 lists other related status messages.

Table 11. 5 Other Status Line Messages

Command Status line message

Show Objects Displays the borders around objects (toggle).

Select object
(when the user selects an object)

Double-click or press ENTER to default -
command object name or full type name.

Note The default command stored in the registry contains an ampersand character (&) and the access key indicator;
these must be stripped out before the verb is displayed on the status line.

Ebay Exhibit 1013, Page 792 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

273

February 13, 1995

C H A P T E R 12
User Assistance
User assistance is an important part of a product's design. A well-designed Help interface provides a user with
assistance upon demand, but the assistance must be simple, efficient, and relevant so that a user can obtain it
without becoming lost in the Help interface. A user wants to accomplish a task — a Help interface design should
assist in that objective without being intrusive. This chapter provides a description of the system support to
create your own user assistance support and guidelines for implementation.

Contextual User Assistance
A contextual form of user assistance provides information about a particular object and its context. It answers
questions such as “What is this?" and "Why would I use it?” This section covers some of the basic ways to
support contextual user assistance in your application.

Context-Sensitive Help
The What’s This? command, as shown in Figure 12.1, supports a user obtaining contextual information about
any object on the screen, including controls in property sheets and dialog boxes. This form of contextual user
assistance is referred to as context-sensitive Help. You can support user access to this command by including:

• A What’s This? command from the Help drop-down menu.

• A What’s This? button on a toolbar.

• A What’s This? button on the title bar of a secondary window.

• A What’s This? command on the pop-up menu for the specific object.

Figure 12.1 Different methods of accessing What's This?

Design your application so that when the user chooses the What’s This? command from the Help drop-down
menu or clicks a What’s This? button, the system is set to a temporary mode. Change the pointer’s shape to
reflect this mode change, as shown in Figure 12.2. The SHIFT+F1 combination is the shortcut key for this mode.

Ebay Exhibit 1013, Page 793 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 12 User Assistance 237

February 13, 1995

Figure 12.2 A context-sensitive Help pointer

Display the context-sensitive Help pointer only over the window that provides context-sensitive Help; that is,
only over the active window from which the What’s This? command was chosen.

In this mode, when the user clicks an object with mouse button 1 (for pens, tapping), display a context-sensitive
Help pop-up window for that object. The context-sensitive Help window provides a brief explanation about the
object and how to use it, as shown in Figure 12.3. Once the context-sensitive Help window is displayed, return
the pointer and pointer operation to its usual state.

Figure 12.3 A pop-up window for context-sensitive Help

If the user presses a shortcut key that applies to a window that is in contextual Help mode, you can display a
contextual Help pop-up window for the command associated with that shortcut key.

However, there are some exceptions to this interaction. First, if the user chooses a menu title, either in the menu
bar or a cascading menu, maintain the mode and do not display the context-sensitive Help window until the user
chooses a menu item. Second, if the user clicks the item with mouse button 2 and the object supports a pop-up
menu, maintain the mode until the user chooses a menu item or cancels the menu. If the object does not support
a pop-up menu, the interaction should be the same as clicking it with mouse button 1. Finally, if the chosen
object or location does not support context-sensitive Help or is otherwise an inappropriate target for context-

Ebay Exhibit 1013, Page 794 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 12 User Assistance 237

February 13, 1995

sensitive Help, continue to display the context-sensitive Help pointer and maintain the context-sensitive Help
mode.

If the user chooses the What’s This? command a second time, clicks outside the window, or presses the ESC key,
cancel the context-sensitive Help mode. Restore the pointer to its usual image and operation in that context.

When the user chooses the What’s This? command from a pop-up menu (as shown in Figure 12.4), the
interaction is slightly different. Because the user has identified the object by clicking mouse button 2, there is no
need for entering the context-sensitive Help mode. Instead, immediately display the context-sensitive Help pop-
up window for that object.

Figure 12.4 A pop-up menu for a control

The F1 key is the shortcut key for this form of interaction; that is, pressing F1 displays a context-sensitive Help
window for the object that has the input focus.

Guidelines for Writing Context-Sensitive Help
When authoring context-sensitive Help information, you are answering the question “What is this?” Start each
topic with a verb — for example, “Adjusts the speed of your mouse,” “Click this button to close the window,”
or “Type in a name for your document.” When describing a function or object, use words that explain the
function or object in common terms. For example, instead of “Undoes the last action,” say “Reverses the last
action.”

In the explanation, you might want to include “why” information. You can also include “how to” information,
but this information is better handled by providing access to task-oriented Help. Keep your information brief,
but as complete as possible so that the Help window is easy and quick to read.

You can provide context-sensitive Help information for your supported file types by registering a What's This?
command for the type, as shown in Figure 12.5. This allows the user to choose the “What’s This?” command
from the file icon's pop-up menu to get information about an icon representing that type. When defining this
Help information, include the long type name and a brief description of its function, using the previously
described guidelines.

For more information about registering commands for file types and about type names, see Chapter 10,
"Integrating with the System."

Ebay Exhibit 1013, Page 795 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 12 User Assistance 237

February 13, 1995

Figure 12.5 Help information for an icon

Tooltips
Another form of contextual user assistance are tooltips. Tooltips are small pop-up windows that display the
name of a control when the control has no text label. The most common use of tooltips is as toolbar buttons that
have graphic labels, as shown in Figure 12.6.

Figure 12.6 A tooltip for a toolbar button

Display a tooltip after the pointer, or pointing device, remains over the button for a short period of time. Base
the time-out on the system timing metric (XXX). The tooltip remains displayed until the user presses the button
or moves off of the control, or after another time-out. If the user moves the pointer directly to another control
supporting a tooltip, ignore the time-out and display the new tooltip immediately, replacing the former one.

For more information about the appearance of toolips, see Chapter 13, “Visual Design.”

Status Bar Messages
You can also use a status bar to provide contextual user assistance. However, because it is important to support
the user's choice of displaying a status bar, avoid using it for displaying information or access to functions that
are essential to basic operation and not provided elsewhere in the application's interface.

In addition to displaying state information about the context of the activity in the window, you can display
descriptive messages about menu and toolbar buttons, as shown in Figure 12.7. Like tooltips, the window
typically must be active to support these messages. When the user moves the pointer over a toolbar button or
presses the mouse button on a menu or button, display a short message the describing use of the associated
command.
For more information about the status bar control, see Chapter 7, “Menus, Controls, and Toolbars.”

Ebay Exhibit 1013, Page 796 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 12 User Assistance 237

February 13, 1995

Figure 12.7 A status bar message for a menu command

A status bar message can include a progress indicator control or other forms of feedback about an ongoing
process, such as printing or saving a file, that the user initiated in the window. While you can display progress
information in a message box, you may want to use the status bar for background processes so that the window's
interface is not obscured by the message box.

Ebay Exhibit 1013, Page 797 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 12 User Assistance 237

February 13, 1995

Guidelines for Writing Status Bar Messages
When writing status bar messages, begin the text with a verb in the present tense and use familiar terms,
avoiding jargon. For example, say “Cuts the selection and puts it on the Clipboard.” Try to be as brief as
possible so the text can be easily read, but avoid truncation.

Be constructive, not just descriptive, informing the user about the purpose of the command. When describing a
command with a specific function, use words specific to the command. If the scope of the command has
multiple functions, try to summarize. For example, say “Contains commands for editing and formatting your
document.”

When defining messages for your menu and toolbar buttons, don't forget their unavailable, or disabled, state.
Provide an appropriate message to explain why the item is not currently available. For example, say "This
command is not available because no text is selected."

The Help Command Button
You can also provide contextual Help for a property sheet, dialog box, or message box by including a Help
button in that window, as shown in Figure 12.8.

Figure 12.8 A Help button in a secondary window

This differs from the “What’s This?” form of Help because it provides an overview, summary assistance, or
explanatory information for that window. For example, the Help button on a property sheet provides
information about the properties included in the property sheet; for a message box, it provides more information
about causes and remedies for the reason the message was displayed.

When the user presses the Help command button, display the Help information in a Help secondary window,
rather than a context-sensitive Help pop-up window, as shown in Figure 12.9.

Ebay Exhibit 1013, Page 798 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 12 User Assistance 237

February 13, 1995

Figure 12.9 A Help secondary window

Task Help
Task-oriented help provides the steps for carrying out a task. It can involve a number of procedures. You present
task-oriented Help in task topic windows.

Task Topic Windows
Help task topic windows are displayed as primary windows. The user can size this window like any other
primary window.

Note The window style is referred to as a primary window because of its appearance and
operation. In technical documentation, this window style is sometimes referred to as a Help secondary window.

Ebay Exhibit 1013, Page 799 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 12 User Assistance 237

February 13, 1995

Task topic windows include a set of command buttons at the top of the window (as shown in Figure 12.10) that
provide the user access to the tabbed pages of the Help Topics browser, the previously selected topic, and other
Help options, such as copying and printing a topic. You can define which buttons appear by defining them in
your Help files.

Figure 12.10 A window for a Help task topic

While you can define the size and location of a Help task topic window to the specific requirements of your
application, it is best to size and position the window so as to cover the minimum of space, but make it large
enough to allow the user to read the topic, preferably without having to scroll the window.

Like tooltips, the interior color of a task topic window uses the system color setting for Help windows. This
allows the user to more easily distinguish the Help topic from their other windows.

For more information about the visual design of Help windows, see Chapter 13, "Visual Design."

Guidelines for Writing Task Help Topics
The buttons that appear in a task topic window are defined by your Help file. At a minimum, you should provide
a button that displays the Help Topics browser dialog box, a Back button to return the user to the previous topic,
and buttons that provide access to other functions, such as Copy and Print. You can provide access to the Help
Topics browser dialog box by including a Help Topics button. This displays the Help Topics browser window
on the tabbed page that the user was viewing when the window was last displayed. While this is the most
common form of access to the Help Topics browser window, alternatively you can include buttons, such as
Contents and Index, that correspond to the tabbed pages to provide the user with direct access to those pages
when the dialog box is displayed.

As with context-sensitive Help, when writing Help task information topics, make them complete, but brief.
Focus on “how” information rather than “what” or “why.” If there are multiple alternatives, pick one method —
usually the simplest, most common method for a specific procedure. If you want to include information on
alternative methods, provide access to them through other choices or commands.

Ebay Exhibit 1013, Page 800 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 12 User Assistance 237

February 13, 1995

If you keep the procedure to four or fewer steps, the user will not need to scroll the window. Avoid introductory,
conceptual, or reference material in the procedure.

Also, take advantage of the context of a procedure. For example, if a property sheet includes a slider control that
is labeled “Slow” at one end and “Fast” at the other, be contextually concise. Say “Move the slider to adjust the
speed” instead of “To increase the speed, move the slider to the right. To decrease the speed, move the slider to
the left.” If you refer to a control by its label, capitalize each word in the label, even though the label has only
the first word capitalized.

Shortcut Buttons
Help task topic windows can also include a shortcut or “do it” button that provides the user with a shortcut or
automated form of performing a particular step, as shown in Figure 12.11. For example, use this to
automatically open a particular dialog box, property sheet, or other object so that the user does not have to
search for it.

Figure 12.11 A Task Topic with a shortcut button

Reference Help
Reference Help is a form of Help information that serves more as online documentation. Use reference Help to
document the features of a product or as a user's guide to a product. Often the use determines the balance of text
and graphics used in the Help file. Reference-oriented documentation typically includes more text and follows a
consistent presentation of information. User's guide documentation typically organizes information by specific
tasks and may include more illustrations.

The Reference Help Window
When designing reference Help, use a Help primary window style (sometimes called a "main" Help window), as
shown in Figure 12.12, rather than the context-sensitive Help pop-up windows or task topic windows.

Ebay Exhibit 1013, Page 801 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 12 User Assistance 237

February 13, 1995

Figure 12.12 A reference Help window

You can provide access to reference Help in a variety of ways. The most common is as an explicit menu item in
the Help drop-down menu, but you can also provide access using a toolbar button, or even as a specific file
object (icon).

A reference Help window includes a menu bar, with File, Edit, Bookmark, Options, and Help entries and a
toolbar with Contents, Index, Back, and Print buttons. (The system provides these features by default for a
"main" Help window.) These features support user functions such as opening a specific Help file, copying and
printing topics, creating annotations and bookmarks for specific topics, and setting the Help window's
properties. You can add other buttons to this window to tailor your online documentation to fit your particular
user needs.

While the reference Help style can provide information similar to that provided in contextual Help and task
Help, these forms of Help are not exclusive of each other. Often the combination of all these items provides the
best solution for user assistance. They can also be supplemented with other forms of user assistance.

Guidelines for Writing Reference Help
Reference Help topics can include text, graphics, animations, video, and audio effects. Follow the guidelines
included throughout this guide for recommendations on using these elements in the presentation of information.
In addition, the system provides some special support for Help topics.

Ebay Exhibit 1013, Page 802 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 12 User Assistance 237

February 13, 1995

For more information about authoring Help files, see the help provided with
the Windows Help Compiler in the Microsoft Win32 SDK.
Adding Menus and Toolbar Buttons
You can author additional menus and buttons to appear in the reference Help window. However, you cannot
remove existing menus.

Because reference Help files typically include related topics, include Previous Topic and Next Topic browse
buttons in your Help window toolbar. Another common button you may want to include is a See Also button
that either displays a pop-up window or a dialog box with the related topics. Other common buttons include Up
for moving to the parent or overview topic and History to display a list of the topics the user has viewed so they
can return directly to a particular topic.

Make toolbar buttons contextual to the topic the user is viewing. For example, if the current topic is the last in
the browse chain, disable the Next Topic button. When deciding whether to disable or remove a button, follow
the guidelines defined in this guide for menus.

For more information about disabling and removing menu entries, see Chapter 7, "Menus, Controls, and
Toolbars."
Topic Titles
Always provide a title for the current topic. The title identifies the application and context of the topic and
provides the user with a landmark within the Help system.
Nonscrolling Regions
If your topics are very long, you may want to include a nonscrollable region in your Help file. A nonscrolling
region allows you to keep the topic title and other information visible when the user scrolls. A nonscrolling
region appears with a line at its bottom edge to delineate it from the scrollable area. Display the scroll bar for the
scroll area of the topic so that its top appears below the nonscrolling region, not overlapped within that region.
Jumps
A jump is a button or hot spot area that triggers an event when the user clicks on it. You can use a jump as a
one-way navigation link from one topic to another, either within the same topic window, to another topic
window, or a topic in another Help file.

You can also use jumps to display a pop-up window. As with pop-up windows for context-sensitive Help, use
this form of interaction to support a definition or explanatory information about the word or object that the user
clicks.

Jumps can also carry out particular commands. Shortcut buttons used in Help task topics are this form of a
jump.

You need to provide visual indications to distinguish a jump from noninteractive areas of the window. You can
do this by formatting a jump as a button, changing the pointer image to indicate an interactive element,
formatting the item with some other visual distinction such as color or font, or a combination of these methods.
The default system presentation for text jumps is green underlined text.

The Help Topics Browser

Ebay Exhibit 1013, Page 803 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 12 User Assistance 237

February 13, 1995

The Help Topics browser dialog box provides user access to Help information. To open this window, include a
Help Topics menu item on the Help drop-down menu. Alternatively, you can include menu commands that open
the window to a particular tabbed page — for example, Contents, Index, and Find Topic.

In addition, provide a Help Topics button in the toolbar of a Help Topics window. When the user chooses this
button, display the Help Topics browser window as the last page the user accessed. If you prefer, provide
Contents, Index, and Find Topic buttons for direct access to a specific page.

The Help Topic Tabs
Opening the Help Topics window displays a set of tabbed pages. The default pages include Contents, Index, and
Find tabs. You can author additional tabs.

The Contents page displays the list of topics organized by category, as shown in Figure 12.13. A book icon
represents a category or group of related topics and a page icon represents an individual topic. You can nest
topic levels, but avoid nesting topics too deeply as this can make access cumbersome.

Ebay Exhibit 1013, Page 804 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 12 User Assistance 237

February 13, 1995

Figure 12.13 The Contents page of the Help topics browser

The buttons at the bottom of the page allow the user to open or close a "book" of topics and display a particular
topic. The Print button prints either a “book” of topics or a specific topic depending on which the user selects.
The outline also supports direct interaction for opening the outline or a topic.

The Index page of the browser organizes the topics by keywords that you define for your topics, as shown in
Figure 12.14.

Ebay Exhibit 1013, Page 805 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 12 User Assistance 237

February 13, 1995

Figure 12.14 The Index age of the Help Topics browser

The user can enter a keyword or select one from the list. Choosing the default button displays the topic
associated with that keyword. If there are multiple topics that use the same keyword, then another secondary
window is displayed that allows the user to choose from that set of topics, as shown in Figure 12.15.

Ebay Exhibit 1013, Page 806 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 12 User Assistance 237

February 13, 1995

Figure 12.15 The Help topics window

The Find page provides full text search functionality that allows the user to search for any word or phrase in the
Help file. This capability requires a full-text index file, which you can create when building the Help file, or
which the user can create when using Help, as shown in Figure 12.16.

Ebay Exhibit 1013, Page 807 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 12 User Assistance 237

February 13, 1995

Figure 12.16 The Find page of the Help Topics browser

Guidelines for Writing Help Contents Entries
The entries listed on the Contents page are based on what you author in your Help files. Define them to allow
the user to see the organizational relationship between topics. Make the topic titles you include for your
software brief, but descriptive, and correspond to the actual topic titles.

Guidelines for Writing Help Index Keywords
Provide an effective keyword list to help users find the information they are looking for. When deciding what
keywords to provide for your topics, consider the following categories:

• Words for a novice user

• Words for an advanced user

• Common synonyms of the words in the keyword list

Ebay Exhibit 1013, Page 808 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 12 User Assistance 237

February 13, 1995

• Words that describe the topic generally

• Words that describe the topic discretely

Wizards
A wizard is a special form of user assistance that automates a task through a dialog with the user. Wizards help
the user accomplish tasks that can be complex and require experience. They also provide the interface for
streamlining certain tasks.

Wizards may not always appear as an explicit part of the Help interface. You can provide access to them in a
variety of ways, including toolbar buttons or even specific objects, such as templates.

For more information about template objects, see Chapter 5, “General Interaction Techniques.”

Wizard Buttons
At the bottom of the window, include the following command buttons that allow the user to navigate through
the wizard.

Command Action

<Back Returns to the previous page. (Disables the button on the first page.)

Next> Moves to the next page in the sequence, maintaining whatever settings th
provides in previous pages.

Finish Applies user-supplied or default settings from all pages and completes th

Cancel Discards any user-supplied settings, terminates the process, and closes th
wizard window.

Guidelines for Writing Text for Wizards
A wizard is a series of presentations or pages, displayed in a secondary window, that helps the user automate a
task. The pages include controls that you define to gather input from the user; that input is then used to complete
the task for the user. Wizards can automate almost any task, including creating new objects and formatting the
presentation of a set of objects, such as a table or paragraph. They are especially useful for complex or
infrequent tasks that the user may have difficulty learning or doing. However, use them to supplement, rather
than replace, the user's direct ability to perform those tasks. The system provides support for creating wizards
with the property sheet controls.

For more information about this control, see Chapter 7, "Menus, Controls, and Toolbars."

Optionally, you can define wizards as a series of secondary windows through which the user navigates.
However, this can lead to increased modality and screen clutter, so using a single secondary window is
recommended.

On the first page of a wizard, include a graphic in the left side of the window, as shown in Figure 12.17. The
purpose of this graphic is to establish a reference point, or theme — such as a conceptual rendering, a snapshot of
the area of the display that will be affected, or a preview of the result. On the top right portion of the wizard
window, provide a short paragraph that welcomes the user to the wizard and explains what it does.

Ebay Exhibit 1013, Page 809 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 12 User Assistance 237

February 13, 1995

Figure 12.17 The introductory page of a wizard

On subsequent pages you can continue to include a graphic for consistency or, if space is critical, use the entire
width of the window for displaying instructional text and controls for user input. When using graphics, include
pictures that help illustrate the process, as shown in Figure 12.18. Include default values or settings for all
controls where possible.

Ebay Exhibit 1013, Page 810 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 12 User Assistance 237

February 13, 1995

Figure 12.18 Input page for a wizard

You can include the Finish button at any point that the wizard can complete the task. For example, if you can
provide reasonable defaults, you can even include the Finish button on the first page. This allows the user to
step through the entire wizard or only the page on which they wish to provide input. On the last screen of the
wizard, indicate to the user that the wizard is prepared to complete the task and instruct the user to click the
Finish button to proceed.

Design your wizard pages to be easy to understand. It is important that users immediately understand what a
wizard is about so they don't feel like they have to read it very carefully to understand what they have to answer.
It is better to have more simple pages with fewer choices than complex pages with too many options or text.
Similarly, while you can include controls that display a secondary window, minimize their use to keep the
wizard operation simple and direct.

Make certain that the design alternatives offered by your wizard provide the user with positive results. You can
use the context, such as the selection, to determine what options may be reasonable to provide. In addition,
make certain that it is obvious how the user can proceed when the wizard has completed its process. This may
be accomplished by the text you include on the last page of the wizard.

Guidelines for Writing Text for Wizard Pages
Use a conversational, rather than instructional, writing style for the text you provide on the screens. The
following guidelines can be used to assist you in writing the textual information:

• Use words like "you" and "your."

Ebay Exhibit 1013, Page 811 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 12 User Assistance 237

February 13, 1995

• Start most questions with phrases like "Which option do you want..." or "Would you like...."
Users respond better to questions that enable them to do a task than being told what to do. For
example, "Which layout do you want?" works better in wizards than "Choose a layout."

• Use contractions and short, common words. In some cases, it may be acceptable to use slang,
but consider localization when doing so.

• Avoid using technical terminology that may be confusing to a novice user.

• Try to use as few words as possible. For example, the question "Which style do you want for
this newsletter?" could be written simply as "Which style do you want?"

• Keep the writing clear, concise, and simple, but not condescending.

Ebay Exhibit 1013, Page 812 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

295

February 13, 1995

C H A P T E R 1 3
Visual Design
What we see influences how we feel and what we understand. Visual information communicates nonverbally, but
very powerfully. It can include emotional cues that motivate, direct, or distract. The visual design of Microsoft
Windows reflects an objective for making the interface easy to learn and use by effectively using visual
communication and aesthetics. This chapter covers the visual and graphic design principles and guidelines that you
can apply to the interface design of your Windows-based applications.

Visual Communication
Effective visual design serves a greater purpose than decoration; it is an important tool for communication. How you
organize information on the screen can make the difference between a design that communicates a message and one
that leaves a user feeling puzzled or overwhelmed.

Even the best product functionality can suffer if it doesn't have a well-designed, effective visual presentation. If you
are not trained in visual or information design, it is a good idea to work with a designer who has education and
experience in this field and include that person as a member of the design team early in the development process.
Good graphic designers provide a perspective concerning how to take the best advantage of the screen and how to
use effectively the concepts of shape, color, contrast, focus, and composition. Moreover, graphic designers
understand how to design and organize information, and the effects of fonts and color on perception.

Composition and Organization
We organize what we read and how we think about information by grouping it spatially. We read a screen in the
same way we read other forms of information. The eye is always attracted to the colored elements before black and
white, to isolated elements before elements in a group, and to graphics before text. We even read text by scanning the
shapes of groups of letters. Consider the following principles when designing the organization and composition of
visual elements of your interface: hierarchy of information, focus and emphasis, structure and balance, relationship
of elements, readability and flow, and unity of integration.
Hierarchy of Information
The principle of hierarchy of information addresses the placement of information based on its relative importance to
other visual elements. The outcome of this ordering affects all of the other composition and organization principles,
and determines what information a user sees first and what a user is encouraged to do first. To further consider this
principle, ask these questions:

• What information is most important to a user?

In other words, what are the priorities of a user when encountering your application's interface. For
example, the most important priority may be to create or find a document.

• What does a user want or need to do first, second, third, and so on?

Will your ordering of information support or complicate a user's progression through the interface?

• What should a user see on the screen first, second, third, and so on?

What a user sees first should match the user's priorities when possible, but can be affected by the
elements you want to emphasize.

Ebay Exhibit 1013, Page 813 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 13 Visual Design 325

February 13, 1995

Focus and Emphasis
The related principle of focus and emphasis guides you in the placement of priority items. Determining focus
involves identifying the central idea, or the focal point, for activity. Determine emphasis by choosing the element
that must be prominent and isolating it from the other elements or making it stand out in other ways.

Where the user looks first for information is an important consideration in the implementation of this principle.
Culture and interface design decisions can govern this principle. People in western cultures, for example, look at the
upper left corner of the screen or window for the most important information. So, it makes sense to put a top-priority
item there, giving it emphasis.
Structure and Balance
The principle of structure and balance is one of the most important visual design principles. Without an underlying
structure and a balance of those elements, there is a lack of order and meaning and this affects all other parts of the
visual design. More importantly, a lack of structure and balance makes it more difficult for the user to clearly
understand the interface.
Relationship of Elements
The principle of relationship of elements is important in reinforcing the previous principles. The placement of a
visual element can help communicate a specific relationship of the elements of which it is a part. For example, if a
button in a dialog box affects the content of a list box, there should be a spatial relationship between the two
elements. This helps the user to clearly and quickly make the connection just by looking at the placement.
Readability and Flow
This principle calls for ideas to be communicated directly and simply, with minimal visual interference. Readability
and flow can determine the usability of a dialog box or other interface component. When designing the layout of a
window, consider the following:

• Could this idea or concept be presented in a simpler manner?

• Can the user easily step through the interface as designed?

• Do all the elements have a reason for being there?

Unity and Integration
The last principle, unity and integration, reflects how to evaluate a given design in relationship to its larger
environment. When an application's interface is visually unified with the general interface of Windows, the user
finds it easier to use because it offers a consistent and predictable work environment. To implement this principle,
consider the following:

• How do all of the different parts of the screen work together visually?

• How does the visual design of the application relate to the system's interface or other applications
with which it is used?

Color
Color is a very important aesthetic property in the visual interface. Because color has attractive qualities, use it to
identify elements in the interface to which you want to draw the user’s attention — for example, the current selection.
Color also has an associative aspect; we often assume there is a relationship between items of the same color. Color
also carries with it emotional or psychological qualities. For example, colors are often categorized as cool or warm.

When used indiscriminately, color can have a negative or distracting effect. It can affect not only the user’s reaction
to your software but also productivity, by making it difficult to focus on a task.

Ebay Exhibit 1013, Page 814 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 13 Visual Design 325

February 13, 1995

Ebay Exhibit 1013, Page 815 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 13 Visual Design 325

February 13, 1995

In addition, there are a few more things to consider about using color:

• While you can use color to show relatedness or grouping, associating a color with a particular
meaning is not always obvious or easily learned.

• Color is a very subjective property. Everyone has different tastes in color. What is pleasing to you
may be distasteful to someone else.

• Some percentage of your users may work with equipment that only supports monochrome
presentation.

• Interpretation of color can vary by culture. Even within a single culture, individual associations
with color can differ.

• Some percentage of the population may have color-identification problems. For example, about 10
percent of the adult male population have some form of color confusion.

The following sections summarize guidelines for using color: color as a secondary form of information, use of a
limited set of colors, allowing the option to change colors.
Color as a Secondary Form of Information
Use color as an additive, redundant, or enhanced form of information. Avoid relying on color as the only means of
expressing a particular value or function. Shape, pattern, location, and text labels are other ways to distinguish
information. It is also a good practice to design visuals in black and white or monochrome first, then add color.
Use of a Limited Set of Colors
While the human eye can distinguish millions of different colors, using too many usually results in visual clutter and
can make it difficult for the user to discern the purpose of the color information. The colors you use should fit their
purpose. Muted, subtle, complementary colors are usually better than bright, highly saturated ones, unless you are
really looking for a carnival-like appearance where bright colors compete for the user's attention.

Color also affects color. Adjacent or background colors affect the perceived brightness or shade of a particular color.
A neutral color (for example, light gray) is often the best background color. Opposite colors, such as red and green,
can make it difficult for the eye to focus. Dark colors tend to recede in the visual space, while light colors come
forward.
Options to Change Colors
Because color is a subjective, personal preference, allow the user to change colors where possible. For interface
elements, Windows provides standard system interfaces and color schemes. If you base your software on these
system properties, you can avoid including additional controls, plus your visual elements are more likely to
coordinate effectively when the user changes system colors. This is particularly important if you are designing your
own controls or screen elements to match the style reflected in the system.

When providing your own interface for changing colors, consider the complexity of the task and skill of the user. It
may be more helpful if you provide palettes, or limited sets of colors, that work well together rather than providing
the entire spectrum. You can always supplement the palette with an interface that allows the user to add or change a
color in the palette.

Fonts
Fonts have many functions in addition to providing letterforms for reading. Like other visual elements, fonts
organize information or create a particular mood. By varying the size and weight of a font, we see text as more or
less important and perceive the order in which it should be read.

Ebay Exhibit 1013, Page 816 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 13 Visual Design 325

February 13, 1995

By the very nature of the computer screen, fonts are generally less legible online than on a printed page. Avoid italic
and serif fonts; these are often hard to read, especially at low resolutions. Figure 13.1 shows various font choices.

Figure 13.1 Effective and ineffective font choices

Limit the number of fonts and styles you use in your software’s interface. Using too many fonts usually results in
visual clutter.

Wherever possible, use the standard system font for common interface elements. This provides visual consistency
between your interface and the system's interface and also makes your interface more easily scaleable. Because many
interface elements can be customized by the user, check the system settings for the default system font and set the
fonts in your interface accordingly.

For more information about system font settings, see the section, "Layout," later in this chapter.

Dimensionality
Many elements in the Windows interface use perspective, highlighting, and shading to provide a three-dimensional
appearance. This emphasizes function and provides real-world feedback to the user’s actions. For example,
command buttons have the same appearance as real buttons do. This provides the user with natural visual cues and
the ability to discriminate between different types of information.

Windows bases its three-dimensional effects on a common theoretical light source, the conceptual direction that light
would be coming from to produce the lighting and shadow effects used in the interface. The light source in Windows
comes from the upper left.

In general, three-dimensional objects should look like their real-world counterparts. Introduce enough detail to
communicate the real-world association and no more. In addition, avoid using three-dimensional effects for an
element that is not interactive.

Design of Visual Elements
All visual elements influence one another. Effective visual design depends on context. In a graphical user interface, a
graphic element and its function are completely interrelated. A graphical interface needs to function intuitively — it
needs to look the way it works and work the way it looks.

Basic Border Styles
Windows provides a unified visual design for building visual components based on the border styles, as shown in
Figure 13.2.

Ebay Exhibit 1013, Page 817 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 13 Visual Design 325

February 13, 1995

Figure 13.2 Basic border styles

Border style Description

Raised outer border Use a single-pixel width line in the button face color for its top
and left edges and the window frame color for its bottom and
right edges.

Raised inner border Use a single-pixel width line in the button highlight color for its
top and left edges and the button shadow color for its bottom
and right edges.

Sunken outer border Use a single-pixel width line in the button shadow color for its
top and left border and the button highlight color for its bottom
and right edges.

Sunken inner border Use a single-pixel width line in the window frame color for its
top and left edges and the button face color for its bottom and
right edges.

If you use standard Windows controls and windows, these border styles are automatically supplied for your
application. If you create your own controls, your application should map the colors of those controls to the
appropriate system colors so that the controls fit in the overall design of the interface when the user changes the basic
system colors.

The standard system color settings can be accessed using the GetSysColor function. The DrawEdge function
automatically provides these border styles using the correct color settings.

For more information about the GetSysColor and GetSysColor functions, see the Microsoft Win32 Programmer's
Reference.

Ebay Exhibit 1013, Page 818 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 13 Visual Design 325

February 13, 1995

Window Border Style
The borders of primary and secondary windows use the window border style, except for pop-up windows. Menus,
scroll arrow buttons, and other situations where the background color may vary also use this border style. The border
style is composed of the raised outer and raised inner basic border styles, as shown in Figure 13.3.

Figure 13.3 Window border style

Button Border Styles
Command buttons use the button border style. The button border style uses a variation of the basic border styles
where the colors of the top and left outer and inner borders are swapped when combining the borders, as shown in
Figure 13.4.

Figure 13.4 Button border styles

The normal button appearance combines the raised outer and raised inner button borders. When the user presses the
button, the sunken outer and sunken inner button border styles are used. The button down border style (shown in
Figure 13.5) is also used for read-only areas (for example, read-only text boxes).

Ebay Exhibit 1013, Page 819 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 13 Visual Design 325

February 13, 1995

Figure 13.5 Button up and button down border styles

Field Border Style
Text boxes (text boxes that are editable), check boxes, drop-down combo boxes, drop-down list boxes, spin boxes,
list boxes, and wells use the field border style, as shown in Figure 13.6. You can also use the style to define the work
area within a window. It uses the sunken outer and sunken inner basic border styles.

Figure 13.6 The field border style

For most controls, the interior of the field uses the button highlight color. However, in wells, the color may vary
based on how the field is used or what is placed in the field, such as a pattern or color sample.

Ebay Exhibit 1013, Page 820 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 13 Visual Design 325

February 13, 1995

Status Field Border Style
Status fields use the status field border style, as shown in Figure 13.7. This style uses only the sunken outer basic
border style.

Figure 13.7 The status field border style

Grouping Border Style
Group boxes and menu separators use the grouping border style, as shown in Figure 13.8. The style uses the sunken
outer and raised inner basic border styles.

Figure 13.8 The group border style

Visual States for Controls
The visual design of controls must include the various states supported by the control. If you use standard Windows
controls, Windows automatically provides specific appearances for these states. If you design your own controls, use
the information in the previous section for the appropriate border style and information in the following sections to
make your controls consistent with standard Windows controls.

For more information about standard control behavior and appearance, see the Microsoft Win32 Programmer's
Reference.
Pressed Appearance
When the user presses a control, it provides visual feedback on the down transition of the mouse button. (For the pen,
the feedback provided is for when the pen touches the screen and, for the keyboard, upon the down transition of the
key.)

Ebay Exhibit 1013, Page 821 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 13 Visual Design 325

February 13, 1995

For standard Windows check boxes and option buttons, the background of the button field is drawn using the button
face color, as shown in Figure 13.9.

Figure 13.9 Pressed appearance for check boxes and option buttons

For command buttons, the button-down border style is used and the button label moves down and to the right by one
pixel, as shown in Figure 13.10.

Figure 13.10 Pressed appearance for a command button

Option-Set Appearance
When using buttons to indicate when its associated value or state applies or is currently set, the controls provide an
option-set appearance. The option-set appearance is used upon the up transition of the mouse button or pen tip, and
the down transition of a key. It is visually distinct from the pressed appearance.

Standard check boxes and option buttons provide a special visual indicator when the option corresponding to that
control is set. A check box uses a check mark, and an option button uses a large dot that appears inside the button, as
shown in Figure 13.11.

Figure 13.11 Option-set appearance for check boxes and option buttons

When using command buttons to represent properties or other state information, the button face reflects when the
option is set. The button continues to use the button-down border style, but a checkerboard pattern using the color of
the button face and button highlight is displayed on the background of the button, as shown in Figure 13.12. The
glyph on the button does not otherwise change from the pressed appearance.

Ebay Exhibit 1013, Page 822 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 13 Visual Design 325

February 13, 1995

Figure 13.12 Option-set appearance for a command button

For well controls (shown in Figure 13.13), when a particular choice is set, place a border around the control, using
the text color and the color of the button highlight.

Figure 13.13 Option-set appearance for a well

Mixed-Value Appearance
When a control represents a property or other setting that reflects a set of objects where the values are different, the
control is displayed with a mixed-value appearance (also referred to as indeterminate appearance), as shown in
Figure 13.14.

For most standard controls, leave the field blank (that is, with no indication of a current set value) if it represents a
mixed value. Standard check boxes support a special appearance for this state that draws a special mark in the box.

The system defines these states as BS_3STATE and BS_AUTO3STATE when using the CreateWindow and
CreateWindowEx functions.

For more information about these constants and their functions, see the Microsoft Win32 Programmer's Reference.

Ebay Exhibit 1013, Page 823 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 13 Visual Design 325

February 13, 1995

Figure 13.14 Mixed-value Appearance for a check box

For graphical command buttons, such as those used on toolbars, a checkerboard pattern using the button highlight
color is drawn on the background of the button face, as shown in Figure 13.15.

Figure 13.15 Mixed-value appearance for buttons

For button controls, when the user clicks the button, the property value or state is set. Clicking a second time clears
the value. Typically, a third click returns the button to the mixed-value state.
Unavailable Appearance
When a control is unavailable (also referred to as disabled), its normal functionality is no longer available to the user
(though it can still support access to contextual Help information) because the functionality represented does not
apply or is inappropriate under the current circumstances. To reflect this state, the label of the control is rendered
with a special engraved unavailable appearance, as shown in Figure 13.16.

Figure 13.16 Unavailable appearance for check boxes and option buttons

For graphical or textual buttons, create the engraved effect by drawing the label in the color of the button highlight
and then overlaying it, at a small offset, with the image drawn in the color of the button shadow, as shown in Figure
13.17.

Ebay Exhibit 1013, Page 824 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 13 Visual Design 325

February 13, 1995

Figure 13.17 Unavailable appearance for buttons

If a check box or option button is set, but the control is unavailable, then the control's label is displayed with an
unavailable appearance, and its mark appears in the button shadow color, as shown in Figure 13.18.

Figure 13.18 Unavailable appearance for check boxes and option buttons (when set)

If a graphical button needs to reflect both the set and unavailable appearance (as shown in Figure 13.19), omit the
background checkerboard pattern and use the unavailable appearance for the button’s label.

Figure 13.19 Unavailable and option-set appearance for buttons

Ebay Exhibit 1013, Page 825 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 13 Visual Design 325

February 13, 1995

Input Focus Appearance
You can provide a visual indication so the user knows where the input focus is. For text boxes, the system provides a
blinking cursor, or insertion point. For other controls a dotted outline is drawn around the control or the control’s
label, as shown in Figure 13.20.

Figure 13.20 Example of Input focus in a control

The system provides support for drawing the dotted outline input focus indicator using the DrawFocusRect
function. It is supported automatically for standard controls. To use it with your own custom controls, specify the
rectangle to allow at least one pixel of space around the extent of the control. If the input focus indicator would be
too intrusive, as an option, you can include it around the label for the control.

For more information about the DrawFocusRect function, see the Microsoft Win32 Programmer's Reference.

Ebay Exhibit 1013, Page 826 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 13 Visual Design 325

February 13, 1995

Flat Appearance
When you nest controls inside of a scrollable region or control, avoid using a three-dimensional appearance because
it may not work effectively against the background. Instead, use the flat appearance style, as shown in Figure 13.21.

Figure 13.21 Flat appearance for standard controls

The system provides this appearance for standard Windows controls. Use the DrawFrameControl function with the
DFCS_FLAT value. If you draw your own controls, use the DrawEdge function with the BF_FLAT value.

For more information about the DrawFrameControl and DrawEdge functions, see the Microsoft Win32
Programmer's Reference.

Layout
Size, spacing, and placement of information are critical in creating a visually consistent and predictable environment.
Visual structure is also important for communicating the purpose of the elements displayed in a window. In general,
follow the layout conventions for how information is read. In western countries, this means left-to-right, top-to-
bottom, with the most important information located in the upper left corner.

Ebay Exhibit 1013, Page 827 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 13 Visual Design 325

February 13, 1995

Font and Size
The default system font is a key metric in the presentation of visual information. The default font used for interface
elements in Windows (U.S. release) is MS Sans Serif for 8-point. Menu bar titles, menu items, control labels, and
other interface text all use 8-point MS Sans Serif. Title bar text also uses the 8-point MS Sans Serif bold font, as
shown in Figure 13.22. However, because the user can change the system font, make certain you check this setting
and adjust the presentation of your interface appropriately.

Figure 13.22 Font usage in Windows −−−− MS Sans Serif

The system also provides settings for the font and size of many system components including title bar height, menu
bar height, border width, title bar button height, icon title text, and scroll bar height and width. When designing your
window layouts, take these variables into consideration so that your interface will scale appropriately. In addition,
use these standard system settings to determine the size of your custom interface elements.

You can access the system settings for many standard window interface elements using the GetSystemMetrics
function. You can access the current system font settings using SystemParametersInfo (primary window fonts) and
GetStockObject (dialog box fonts).

For more information about the GetSystemMetrics, SystemParametersInfo and GetStockObject functions, see the
Microsoft Win32 Programmer's Reference.

The default size for most single-line controls is 14 dialog base units. A dialog base unit is a device-independent
measure to use for layout. One horizontal unit is equal to one-fourth of the average character width for the current
system font. One vertical unit is equal to one-eighth of an average character height for the current system font. Figure
13.23 shows the recommended spacing.

Ebay Exhibit 1013, Page 828 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 13 Visual Design 325

February 13, 1995

Your application can retrieve the number of pixels per base unit for the current display using the
GetDialogBaseUnits function.

Figure 13.23 Recommended layout of controls and text

If a menu item represents a default command, the text is bold. Default command buttons use a bold outline around
the button. In general, use nonbold text in your windows. Use bold text only when you want to call attention to an
area or create a visual hierarchy.

The recommended maximum size for secondary windows, such as dialog boxes and property sheets, is 234 dialog
base units wide by 263 dialog base units high (415 pixels by 452 pixels). Maintaining this size keeps the window
from becoming too large to display at some resolutions, and provides reasonable space to display supportive
information, such as Help windows that apply to the dialog box or property sheet.

Toolbar buttons should be 24 pixels wide by 22 pixels high on VGA resolution. This includes the border. For greater
resolutions, you can proportionally size the button to be the same height as a text box control. This allows the button
to maintain its proportion with respect to other controls. The glyph used on the button should be 16 pixels wide by 16
pixels high for VGA resolution. For greater resolutions, stretch the glyph when the button is an even multiple of the
VGA resolution; that is, if the button is twice as big, then double the glyph. Your application can also supply
alternative images for higher resolutions. This can be preferable, because it provides better visual results. Center the
glyph on the button’s face.

Toolbar buttons generally have only graphical labels and no accompanying textual label. You can use a tooltip to
provide the name of the button.

For more information about tooltips, see Chapter 7, "Menus, Controls, and Toolbars," and Chapter 12, "User
Assistance."

Ebay Exhibit 1013, Page 829 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 13 Visual Design 325

February 13, 1995

Capitalization
When defining command names in menus and command buttons, use conventional title capitalization. Capitalize the
first letter in each word unless it is an article or preposition not occurring at the beginning or end of the name, or
unless the word’s conventional usage is not capitalized. For example:

Insert Object
Paste Link
Save As
Go To
Always on Top
By Name

Default names provided for title bar text or icon names also follow this convention. Of course, if the user supplies a
name for an object, display the name as the user specifies it, regardless of case.

Field labels, such as those used for option buttons, check boxes, text boxes, group boxes, and page tabs, should use
sentence-style capitalization. Capitalize the first letter of the initial word and any words that are normally capitalized.
For example:

Extended (XMS) memory
Working directory
Print to
Find whole words only

Grouping and Spacing
Group related components together. You can use group box controls or spacing. Leave at least three dialog base units
between controls. You can also use color to visually group objects, but this often involves design tradeoffs. Maintain
consistent spacing (seven dialog base units is recommended) from the edge of the window. Use spacing between
groups within the window.

For more information about the use of color, see the section, “Color,” earlier in this chapter.

Position controls in a toolbar so that there is at least a window’s border width from the edges of the toolbar. You can
apply the same measure for spacing between buttons, unless you want to align a set of related buttons adjacently. Use
adjacent alignment for buttons that form an exclusive choice set. That is, when using buttons like a set of option
buttons, align them without any spacing between them.

Alignment
When information is positioned vertically, align fields by their left edges (in western countries). This usually makes
it easier for the user to scan the information. Text labels are usually left aligned and placed above or to the left of the
areas to which they apply. When placing text labels to the left of text box controls, align the height of the text with
text displayed in the text box.

Button Placement
Stack the main command buttons in a secondary window in the upper right corner or in a row along the bottom, as
shown in Figure 13.24. If there is a default button, it is typically the first button in the set. Place OK and Cancel
buttons next to each other. The last button is a Help button (if supported). If there is no OK button, but other action
buttons, it is best to place the Cancel button at the end of a set of action buttons, but before a Help button. If a
particular command button applies only to a particular field, you may place it grouped with that field.

Ebay Exhibit 1013, Page 830 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 13 Visual Design 325

February 13, 1995

For more information about button placement in secondary windows, see Chapter 8, "Secondary Windows."

Figure 13.24 Layout of buttons

For easy readability, make buttons a consistent length. However, if maintaining this consistency greatly expands the
space required by a set of buttons, it may be reasonable to have one button larger than the rest.

Placement of command buttons (or other controls) within a tabbed page implies the application of only the
transactions on that page. If command buttons are placed within the window, but not on the tabbed page, they apply
to the entire window.

Design of Graphic Images
When designing pictorial representations of objects, whether they are icons or graphical buttons, begin by defining
the icon’s purpose and its use. Brainstorm about possible ideas, considering real-world metaphors. It is often difficult
to design icons that define operations or processesactivities that rely on verbs. Use nouns instead. For example,
scissors can represent the idea of Cut.

Draw your ideas using an icon-editing utility or pixel (bitmapped) drawing package. Drawing them directly on the
screen provides immediate feedback about their appearance.

It is a good idea to begin the design in black and white. Consider color as an enhancing property. Also, test your
images on different backgrounds. They may not always be seen against white or gray backgrounds.

An illustrative style tends to communicate metaphorical concepts more effectively than abstract symbols. However,
in designing an image based on a real-world object, use only the amount of detail that is really necessary for user
recognition and recall. Where possible and appropriate, use perspective and dimension (lighting and shadow) to
better communicate the real-world representation, as shown in Figure 13.25.

Ebay Exhibit 1013, Page 831 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 13 Visual Design 325

February 13, 1995

Figure 13.25 Perspective and dimension improve graphics

Consistency is also important in the design of graphic images. As with other interface elements, design images
assuming a light source from the upper left. In addition, make certain the scale (size) and orientation of your icons
are consistent with the other objects to which they are related and fit well within the working environment.

You may want to include a technique called anti-aliasing. Anti-aliasing involves adding colored pixels to smooth the
jagged edges of a graphic. However, do not use anti-aliasing on the outside edge of an icon as the contrasting pixels
may look jagged or fuzzy on varying backgrounds.

Finally, remember to consider the potential cultural impact of your graphics. What may have a certain meaning in
one country or culture may have unforeseen meanings in another. It is best to avoid letters or words, if possible, as
this may make the graphics difficult to apply for other cultures.

For more information about designing for international audiences, see Chapter 14, “Special Design Considerations.”

Icon Design
Icons are used throughout the interface to represent objects or tasks. Because icons represent your software’s objects,
it is important not only to supply effective icons, but to design them to effectively communicate their purpose.

When designing icons, design them as a set, considering their relationship to each other and to the user's tasks. Do
several sketches or designs and test them for usability.
Sizes and Types
Supply icons for your application in all standard sizes: 16- by 16-pixel, 32- by 32-pixel, and 48- by 48- pixel, as
shown in Figure 13.26.

Figure 13.26 Three sizes of icons

Define icons not only for your application executable file, but also for all data file types supported by your
application, as shown in Figure 13.27.

Figure 13.27 Application and supported document icons

Ebay Exhibit 1013, Page 832 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 13 Visual Design 325

February 13, 1995

Icons for documents and data files should be distinct from the application’s icon. Include some common element of
the application’s icon, but focus on making the document icon recognizable and representative of the file’s content.

Register the icons you supply in the system registry. If your software does not register any icons, the system
automatically provides one, as shown in Figure 13.28. However, it is unlikely to be as detailed or distinctive as one
you can supply.

For more information about registering your icons, see Chapter 10, "Integrating with the System."

Figure 13.28 System-generated icon that is not registered

Ebay Exhibit 1013, Page 833 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 13 Visual Design 325

February 13, 1995

Icon Style
When designing your icons, use a common style across all icons. Repeat common characteristics, but avoid repeating
unrelated elements.

Some icon style recommendations have been slightly modified from those used in Windows 3.1. The new
recommendations reflect the same light source as the system controls. Black outlines have also been eliminated to
reduce visual clutter, as shown in Figure 13.29.

Figure 13.29 Revised icon style

User Recognition and Recollection
User recognition and recollection are two important factors to consider in icon design. Recognition means that the
icon is identifiable by the user and easily associated with a particular object. Support user recognition by using
effective metaphors. Use real-world objects to represent abstract ideas so that the user can draw from previous
learning and experiences. Exploit the user's knowledge of the world and allude to the familiar.

To facilitate recollection, design your icons to be simple and distinct. Applying the icon consistently also helps build
recollection; therefore, design your small icons to be as similar as possible to their larger counterparts. It is generally
best to try to preserve general shape and any distinctive detail. 48- by 48-pixel icons can be rendered in 256 colors.
This allows very realistic-looking icons, but focus on simplicity and careful use of color. If your software is targeted
at computers that can only display 256 colors, make certain you only use colors from the system's standard 256-color
palette. If you aim at computers configured for 65,000 colors, you can use any combination of colors.

Pointer Design
You can use the pointer design to help the user identify objects and provide feedback about certain conditions or
states. However, use pointer changes conservatively so that the user is not distracted by excessive flashing of
multiple pointer changes while traversing the screen. One way to handle this is to use a time-out before making
noncritical pointer changes.

When you use a pointer to provide feedback, use it only over areas where that state applies. For example, when using
the hourglass pointer to indicate that a window is temporarily noninteractive, if the pointer moves over a window that
is interactive, change it to its appropriate interactive image.

Pointer feedback may not always be sufficient. For example, for processes that last longer than a few seconds, it is
better to use a progress indicator that indicates progressive status, elapsed time, estimated completion time, or some
combination of these to provide more information about the state of the operation.

Use a pointer that best fits the context of the activity. The I-beam pointer is best used to select text. The normal
arrow pointer works best for most drag and drop operations, modified when appropriate to indicate copy and link
operations.

Ebay Exhibit 1013, Page 834 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 13 Visual Design 325

February 13, 1995

For more information about some of the common pointers, see Chapter 4, "Input Basics." For information about
displaying pointers for drag and drop operations, see Chapter 5, "General Interaction Techniques."

The location for the hot spot of a pointer (shown in Figure 13.30) is important for helping the user target an object.
The pointer’s design should make the location of the hot spot intuitive. For example, for a cross-hair pointer, the
implied hot spot is the intersection of the lines.

Figure 13.30 Pointer hot spots

Animating a pointer can be a very effective way of communicating information. However, remember that the goal is
to provide feedback, not to distract the user. In addition, pointer animation should not restrict the user’s ability to
interact with the interface.

Ebay Exhibit 1013, Page 835 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 13 Visual Design 325

February 13, 1995

Selection Appearance
When the user selects an item, provide visual feedback to enable the user to distinguish it from items that are not
selected. Selection appearance generally depends on the object and the context in which the selection appears.

Highlighting
For many types of object, you can display the background or some distinguishing part of the object (for example, a
resizing handle) using the system highlight color. Figure 13.31 shows examples of selection appearances.

The system settings for interface colors such as the highlight color, COLOR_HIGHLIGHT, can be accessed using
the GetSysColor function. For more information about this function, see the Microsoft Win32 Programmer's
Reference.

Figure 13.31 Examples of selection appearance

Display an object with selection appearance as the user performs a selection operation. For example, display
selection appearance when the user presses the mouse button.

For more information about selection techniques, see Chapter 4, “Input Basics.”

It is best to display the selection appearance only for the scope, area, or level (window or pane) that is active. This
helps the user recognize which selection currently applies and the extent of the scope of that selection. Therefore,
avoid displaying selections in inactive windows or panes, or at nested levels.

Ebay Exhibit 1013, Page 836 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 13 Visual Design 325

February 13, 1995

However, in other contexts it may still be appropriate to display selection appearance simultaneously in multiple
contexts. For example, when the user selects an object and then selects a menu item to apply to that object, selection
appearance is always displayed for both items because it is clear where the user is directing the input. In cases such
as in a hierarchical selection, where you need to show simultaneous selection, but with the secondary selection
distinguished from the active selection, consider drawing an outline in the selection highlight color around the
secondary selection or using some similar variant of the standard selection highlight technique.

Similarly, in a secondary window, it may be appropriate to display selection highlighting when the highlight is also
being used to reflect the setting for a control. For example, in list boxes, highlighting often indicates a current setting.
In cases like this, provide an input focus indication as well so the user can distinguish when input is being directed to
another control in the window; you can also use check marks instead of highlighting to indicate the setting.

Handles
Handles provide access to operations for an object, but they can also indicate selection for some kinds of objects. The
typical handle is a solid, filled square box that appears on the edge of the object. The handle is “hollow” when the
handle indicates selection, but is not a control point by which the object may be manipulated. Figure 13.32 shows a
solid and a hollow handle.

Figure 13.32 Normal and hollow handles

Ebay Exhibit 1013, Page 837 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 13 Visual Design 325

February 13, 1995

Base the default size of a handle on the current system settings for window border and edge metrics so that your
handles are appropriately sized when the user explicitly changes window border widths or to accommodate higher
resolutions. Similarly, base the colors you use to draw handles on system color metrics so that when the user changes
the default system colors, handles change appropriately. Use the system highlighted text color for the border of
normal handles and the selection highlight for the handle's fill color. For hollow handles use the opposite: selection
highlight color for the border and highlighted text color for the fill color.

The system settings for window border and edge metrics can be accessed using the GetSystemMetrics function. For
more information about this function, see the Microsoft Win32 Programmer's Reference.

Transfer Appearance
When the user drags an object to perform an operation, for example, move, copy, print, and so on, display a
representation of the object that moves with the pointer. In general, do not simply change the pointer to be the object,
as this may obscure the insertion point at some destinations. Instead, use a translucent or outline representation of the
object that moves with the pointer, as shown in Figure 13.33.

Figure 13.33 Translucent and outline representation (drag transfer)

You can create a translucent representation by using a checkerboard mask made up of 50 percent transparent pixels.
When used together with the object’s normal appearance, this provides a representation that allows part of the
destination to show through.

The presentation displayed is always defined by the destination. Use a representation that best communicates how
the transferred object will be incorporated when the user completes the drag transfer. For example, if the object being
dragged will be displayed as an icon, then display an icon as its representation. If, on the other hand, it will be
incorporated as native content, then display an appropriate representation. You could display a graphics object as an
outline or translucent image of its shape, a table cell as the outline of a rectangular box, and text selection as the first
few characters of a selection with a transparent background.

Set the pointer image to be whichever pointer the target location uses for directly inserting information. For example,
when dragging an object into normal text context, use the I-beam pointer. In addition, include the copy or link image
at the bottom right of the pointer if that is the meaning for the operation.

For more information about transfer operations, see Chapter 5, "General Interaction Techniques."

Open Appearance
Open appearance is most commonly used for an OLE embedded object, but it can also apply in other situations
where the user opens an object into its own window. To indicate that an object is "open," display the object in its
container's window overlaid with a set of hatched (45 degree) lines drawn every four pixels, as shown in Figure
13.34.

Ebay Exhibit 1013, Page 838 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Chapter 13 Visual Design 325

February 13, 1995

Figure 13.34 An object with opened appearance

For more information about the use of open appearance for OLE embedded objects, see Chapter 11, "Working with
OLE Embedded and OLE Linked Objects."

Animation
Animation can be an effective way to communicate information. For example, it can illustrate the operation of a
particular tool or reflect a particular state. It can also be used to include an element of fun in your interface. You can
use animation effects for objects within a window and interface elements, such as icons, buttons, and pointers.

Effective animation involves many of the same design considerations as other graphics elements, particularly with
respect to color and sound. Fluid animation requires presenting images at 16 (or more) frames per second.

When you add animation to your software, ensure that it does not affect the interactivity of the interface. Do not
force the user to remain in a modal state to allow the completion of the animation. Unless animation is part of a
process, make it interruptible by the user or independent of the user’s primary interaction.

Avoid gratuitous use of animation. When animation is used for decorative effect it can distract or annoy the user.
You may want to provide the user with the option of turning off the animation or otherwise customizing the
animation effects.

Ebay Exhibit 1013, Page 839 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 327

February 13, 1995

C H A P T E R 14
Special Design Considerations
A well-designed Microsoft Windows application must consider other factors to appeal to the widest possible
audience. This chapter covers special user interface design considerations, such as sound, accessibility,
internationalization, and network computing.

Sound
You can incorporate sound as a part of an application in several waysfor example, music, speech, or sound
effects. Such auditory information can take the following forms:

• A primary form of information, such as the composition of a particular piece of music
or a voice message.

• An enhancement of the presentation of information but that is not required for the
operation of the software.

• A notification or alerting of users to a particular condition.

Sound is an effective form of information and enhances the interface when appropriately used. Try to avoid
using sound as the only means of conveying information. Some users may be hard-of-hearing or deaf. Others
may work in a noisy environment or in a setting that requires that they disable sound or maintain it at a low
volume. In addition, like color, sound is a very subjective part of the interface. As a result, sound is best
incorporated as a redundant or secondary form of information, or supplemented with alternative forms of
communication. For example, if a user turns off the sound, consider flashing the window's title bar, taskbar
button, presenting a message box, or other means of bringing the user's attention to a particular situation.
Even when sound is the primary form of information, you can supplement the audio portion by providing
visual representation of the information that might otherwise be presented as audio output, such as
captioning or animation.

The taskbar can also provide visual status or notification information. For more information about using the
taskbar for this purpose, see Chapter 10, "Integrating with the System."

Always allow the user to customize sound support. Support the standard system interfaces for controlling
volume and associating particular sounds with application-specific sound events. You can also register your
own sound events for your application.

The system provides a global system setting, ShowSounds. The setting indicates that the user wants a visual
representation of audio information. Your software should query the GetSystemMetrics function to check
the status of this setting and provide captioning for the output of any speech or sounds. Captioning should
provide as much information visually as is provided in the audible format. It is not necessary to caption
ornamental sounds that do not convey useful information.

For more information about accessing the GetSystemMetrics function, the ShowSounds option, and the
SoundSentry option, see the Microsoft Win32 Programmer's Reference.

Do not confuse the ShowSounds option with the system's SoundSentry option. When the user sets the
SoundSentry option, the system automatically supplies a visual indication whenever a sound is produced.

Ebay Exhibit 1013, Page 840 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 Chapter 14 Special Design Considerations 327

February 13, 1995

Avoid relying on SoundSentry alone if the ShowSounds option is set because SoundSentry only provides
rudimentary visual indications, such as flashing of the display or screen border, and it cannot convey the
meaning of the sound to the user. The system provides SoundSentry primarily for applications that do not
provide support for ShowSounds. The user sets either of these options with the Microsoft Windows
Accessibility Options.

In Windows 95, SoundSentry only works for audio output directed through the
internal PC speaker.

Accessibility
Accessibility means making your software usable and accessible to a wide range of users, including those
with disabilities. A number of users require special accommodation because of temporary or permanent
disabilities.

The issue of software accessibility in the home and workplace is becoming increasingly important. Nearly
one in five Americans have some form of disabilityand it is estimated that 30 million people in the U.S.
alone have disabilities that may be affected by the design of your software. In addition, between seven and
nine out of every ten major corporations employ people with disabilities who may need to use computer
software as part of their jobs. As the population ages and more people become functionally limited,
accessibility for users with disabilities will become increasingly important to the population as a whole.
Legislation, such as the Americans with Disabilities Act, requires that most employers provide reasonable
accommodation for workers with disabilities. Section 508 of the Rehabilitation Act is also bringing
accessibility issues to the forefront in government businesses and organizations receiving government
funding.

Designing software that is usable for people with disabilities does not have to be time consuming or
expensive. However, it is much easier if you include this in the planning and design process rather than
attempting to add it after the completion of the software. Following the principles and guidelines in this
guide will help you design software for most users. Often recommendations, such as the conservative use of
color or sound often benefit all users, not just those with disabilities. In addition, keep the following basic
objectives in mind:

• Provide a customizable interface to accommodate a wide variety of user needs and
preferences.

• Provide compatibility with accessibility utilities that users can install.

• Avoid creating unnecessary barriers that make your software difficult or inaccessible to
certain types of users.

The following sections provide information on types of disabilities and additional recommendations about
how to address the needs of customers with those disabilities.

Visual Disabilities
Visual disabilities range from slightly reduced visual acuity to total blindness. Those with reduced visual
acuity may only require that your software support larger text and graphics. For example, the system
provides scalable fonts and controls to increase the size of text and graphics. To accommodate users who are
blind or have severe impairments, make your software compatible with the speech or Braille utilities.

Note

Ebay Exhibit 1013, Page 841 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 Chapter 14 Special Design Considerations 327

February 13, 1995

Color blindness is another visual impairment that makes it difficult for users to distinguish between certain
color combinations. This is one reason why color is not recommended as the only means of conveying
information. Always use color as an additive or enhancing property.

Hearing Disabilities
Users who are deaf or hard-of-hearing are generally unable to detect or interpret auditory output at normal or
maximum volume levels. Avoiding the use of auditory output as the only means of communicating
information is the best way to support users with this disability. Instead, use audio output only as a
redundant, additive property.

For more information about supporting sound, see the section "Sound" earlier in this chapter.

Physical Movement Disabilities
Some users have difficulty or are unable to perform certain physical tasks — for example, moving a mouse or
simultaneously pressing two keys on the keyboard. Other individuals have a tendency to inadvertently strike
multiple keys when targeting a single key. Consideration of physical ability is important not only for users
with disabilities, but also for beginning users who need time to master all the motor skills necessary to
interact with the interface. The best way to support users with physical movement disabilities is to provide
good keyboard and mouse interfaces.

Speech or Language Disabilities
Users with language disabilities, such as dyslexia, find it difficult to read or write. Spell- or grammer-check
utilities help children, users with writing impairments, and users with a different first language. Supporting
accessibility tools and utilities designed for users who are blind can also help those with reading
impairments. Most design issues affecting users with oral communication difficulties apply only to utilities
specifically designed for speech input.

Cognitive Disabilities
Cognitive disabilities can take many forms, including perceptual differences and memory impairments. You
can accommodate users with these disabilities by allowing them to modify or simplify your software's
interface, such as supporting menu or dialog box customization. Similarly, using icons and graphics to
illustrate objects and choices can be helpful for users with some types of cognitive impairments.

Seizure Disorders
Some users are sensitive to visual information that alternates its appearance or flashes at particular rates
often the greater the frequency, the greater the problem. However, there is no perfect flash rate. Therefore,
base all modulating interfaces on the system's cursor blink rate. Because users can customize this value, a
particular frequency can be avoided. If that is not practical, provide your own interface for changing the flash
rate.

Types of Accessibility Aids
There are a number of accessibility aids to assist users with certain types of disabilities. To allow these users
to effectively interact with your application, make certain it is compatible with these utilities. This section
briefly describes the types of utilities and how they work.

One of the best ways to accommodate accessibility in your software's interface is to use standard Windows
conventions wherever possible. Windows already provides a certain degree of customization for users and
most accessibility aids work best with software that follows standard system conventions.

Ebay Exhibit 1013, Page 842 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 Chapter 14 Special Design Considerations 327

February 13, 1995

Screen Enlargement Utilities
Screen enlargers (also referred to as screen magnification utilities or large print programs) allow users to
enlarge a portion of their screen. They effectively turn the computer monitor into a viewport showing only a
portion of an enlarged virtual display. Users then use the mouse or keyboard to move this viewport to view
different areas of the virtual display. Enlargers also attempt to track where users are working, following the
input focus and the activation of windows, menus, and secondary windows, and can automatically move the
viewport to the active area.
Screen Review Utilities
People who cannot use the visual information on the screen can interpret the information with the aid of a
screen review utility (also referred to as a screen reader program or speech access utility). Screen review
utilities take the displayed information on the screen and direct it through alternative media, such as
synthesized speech or a refreshable Braille display. Because both of these media present only text
information, the screen review utility must render other information on the screen as text; that is, determine
the appropriate text labels or descriptions for graphical screen elements. They must also track users' activities
to provide descriptive information about what the user is doing. These utilities often work by monitoring the
system interfaces that support drawing on the screen. They build an off-screen database of the objects on the
screen, their properties, and their spatial relationships. Some of this information is presented to users as the
screen changes, and other information is maintained until users request it. Screen review utilities often
include support for configuration files (also referred to as set files or profiles) for particular applications.
Voice Input Systems
Users who have difficulty typing can choose a voice input system (also referred to as a speech recognition
program) to control software with their voice instead of a mouse and keyboard. Like screen reader utilities,
voice input systems identify objects on the screen that users can manipulate. Users activate an object by
speaking the label that identifies the object. Many of these utilities simulate keyboard interfaces, so if your
software includes a keyboard interface, it can be adapted to take advantage of this form of input.
On-Screen Keyboards
Some individuals with physical disabilities cannot use a standard keyboard, but can use one or more switches
or point with a mouse or headpointer (a device that lets users manipulate the mouse pointer on the screen
through head motion). Groups of commands are displayed on the screen and the user employs a switch to
choose a selected group, then a command within the group. Another form of this technique displays a picture
of the keyboard allowing users to generate keystroke input on the screen by pointing to graphic images of the
keys.
Keyboard Filters
Impaired physical abilities, such as erratic motion, tremors, or slow response, can sometimes be
compensated by filtering out inappropriate keystrokes. The Windows Accessibility Options supports a wide
range of keyboard filtering options. These are generally independent of the application with which users are
interacting and therefore require no explicit support except for the standard system interfaces for keyboard
input. However, users relying on these features can type slowly.

Compatibility with Screen Review Utilities
You can use the following techniques to ensure software compatibility with screen review utilities. The
system allows your application to determine whether the system has been configured to provide support for a
screen review utility (check the SM_SCREENREADER constant using the GetSystemMetrics function),
allowing your software to enable or disable certain capabilities.

Ebay Exhibit 1013, Page 843 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 Chapter 14 Special Design Considerations 327

February 13, 1995

For more information about the SM_SCREENREADER constant, the GetSystemMetrics function, and
other information about supporting screen review utilities, see the Microsoft Win32 Programmer's
Reference.
Controls
Use standard Windows controls wherever possible. Most of these have already been implemented to support
screen review utilities. Custom controls may not be usable by screen review utilities.

Always include a label for every control, even if you do not want the control's label to be visible. This
applies regardless of whether you use standard controls or your own specialized controls (such as owner
drawn controls or custom controls). If the control does not provide a label, you can create a label using a
static text control.

Follow the normal layout conventions by placing the static text label before the control (above or to the left
of the control). Also, set the keyboard TAB navigation order appropriately so that tabbing to a label navigates
to the associated control it identifies instead of a label. To make certain that the label is recognized correctly,
include a colon at the end of the label's text string. In cases where a label is not needed or would be visually
distracting, provide the label, but do not make it visible. Although the label is not visible, it is accessible to a
screen review utility.

Text labels are also effective for choices within a control. For example, you can enhance menus or lists that
display colors or line widths by including some form of text representation, as shown in Figure 14.1.

Ebay Exhibit 1013, Page 844 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 Chapter 14 Special Design Considerations 327

February 13, 1995

Figure 14.1 Using text to help identify choices

If providing a combined presentation is too difficult, offer users the choice between text and graphical
representation, or choose one of them based on the system's screen review utility flag.
Text Output
Screen review utilities usually interpret textincluding properties such as font, size, and facethat is
displayed with standard system interfaces. However, text displayed as graphics (for example, bitmapped
text) is not accessible to a screen review utility. To make it accessible, your application can create an
invisible text label and associate the graphical representation of text with it. Screen review utilities can read
standard text representations in a metafile, so you can also use metafiles instead of bitmap images for
graphics information that includes text.
Graphics Output
Users with normal sight may be able to easily distinguish different elements of a graphic or pictorial
information, such as a map or chart, even if they are drawn as a single image; however, a screen review
utility must distinguish between different components. Ideally, use a metafile for graphics wherever possible.

When using bitmap images, consider separately drawing each component that requires identification. If
performance is an issue, combine the component images in an off-screen bitmap using separate drawing
operations and then display the bitmap on the screen with a single operation.

Alternatively, you can redraw each component with a null operation (NOP). This will not have an effect on
the visible image, but allows a screen review utility to identify the region. You can also use this method to
associate a text label with a graphic element.

Ebay Exhibit 1013, Page 845 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 Chapter 14 Special Design Considerations 327

February 13, 1995

Any of these methods can be omitted when the SM_SCREENREADER constant is not set. When drawing
graphics, use standard Windows drawing functions. If you change an image directlyfor example, clearing
a bitmap by writing directly into its memory a screen review utility does not recognize the content change
and inappropriately describes it to users.
Icons and Windows
Accompany icons that represent objects with a text label (title) of the object's name. Use the system font and
color for icon labels, and follow the system conventional for placement of the text relative to the icon. This
allows a screen review utility to identify the object without special support. Similarly, make certain that all
your windows have titles. Even if the title is not visible it is still available to access utilities. The more
unique your window titles, the easier users can differentiate between them, especially when using a screen
review utility. Using unique window class names is another way to provide for distinct window
identification, but providing appropriate window titles is preferred.

The User's Point of Focus
Many accessibility aids must follow where the user is working. For example, a screen review utility conveys
to users where the input focus is; a screen enlarger pans its viewport to ensure that users' focus is always kept
on the visible portion of the screen. Most utilities give users the ability to manually move the viewport, but
this becomes a laborious process, especially if it has to be repeated each time the input focus moves.

When the system handles the move of the input focus, through selecting a menu, navigating between
controls in a dialog box, or activating a window, an accessibility utility tracks the changes. However, the
utility may not detect when an application moves the input focus within its own window. Therefore,
whenever possible, use standard system functions to place the input focus, such as the text insertion point.
Even when you provide your own implementation of focus, you can use the system functions (such as the
SetCaretPos function) to indicate focus location without making the standard input focus indicator visible.

For more information about the SetCaretPos function, see the Microsoft Win32 Programmer's Reference.

Timing and Navigational Interfaces
Some users read text or press keys very slowly, and do not respond to events as quickly as the average user.
Avoid displaying critical feedback or presenting messages briefly and then automatically removing them
because many users cannot read or respond to them. Similarly, limit your use of time-out based interfaces
and always provide a way for users to configure them where you use them.

Also, avoid displaying or hiding information based on the movement of the pointer unless it is part of a
standard system interface (for example, tooltips). Although such techniques can benefit some users, it may
not be available for those using accessibility utilities. If you do provide such support, consider making these
features optional so that users can turn them on or off when the SM_SCREENREADER constant is set.

Similarly, you should avoid using general navigation to trigger operations, because users of accessibility aids
may need to navigate through all controls. For example, basic TAB keyboard navigation in a dialog box
should not carry out the actions associated with a control, such as setting a check box or carrying out a
command button. However, navigation can be used to faciliate further user interaction, such as validating
user input or opening a drop-down control.
Color
Base the color properties of your interface elements on the system colors for window components, rather
than hard coding specific colors. Remember to use appropriate foreground and background color
combinations. If the foreground of an element is rendered with the button text color, use the button face color

Ebay Exhibit 1013, Page 846 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 Chapter 14 Special Design Considerations 327

February 13, 1995

as its background rather than the window background color. If the system does not provide standard color
settings that can be applied to some elements, you can include your own interface that allows users to
customize colors. In addition, you can provide graphical patterns as an optional substitute for colors as a way
to distinguish information.

For more information about the use of color and how it is used for interface elements, see Chapter 13,
"Visual Design."

The system also provides a global setting called High Contrast Mode that users can set through the Windows
Accessibility Options. The setting provides a high contrast color setting between foreground and background
visual elements.

Your application should check for this setting's status when it starts, and whenever it receives notification of
system setting changes. When set, adjust your interface colors based on those set for the high contrast color
scheme. In addition, whenever High Contrast Mode is set, hide any images that are drawn behind text (for
example, watermarks or logos) to maintain the legibility of the information on the screen. You can also
display monochrome versions of bitmaps and icons using the appropriate foreground color.

The accessibility High Contrast Mode status is available using the HIGHCONTRAST structure. For more
information about this structure, see the Microsoft Win32 Programmer's Reference.
Scalability
Another important way to provide for visual accessibility is to allow for the scalability of screen elements.
Sometimes, this simply means allowing users to change the font for the display of information. The system
provides scalable fonts, controls, and functions that make it easy for the user to customize their interface.
The system also provides a way for users to change the size and color of standard screen elements. You
should use these same metrics for appropriately adjusting the size of other visual information you provide.

For more information about the system metrics for font and size, see Chapter 13, "Visual Design."

You can enlarge display information through scaling of your visual elements. The system already supports
the scaling of standard Windows components. For your own custom elements, you can provide scaling by
including a TrueType font or metafiles for your graphics images.

It may also useful to provide scaling features within your application. For example, many application
provide a "Zoom" command that scales the presentation of the information displayed in a window, or other
commands that make the presentation of information easier to read.

Keyboard and Mouse Interface
Providing a good keyboard interface is the most important step in accessibility because it affects users with a
wide range of disabilities. For example, a keyboard interface may be the only option for users who are blind
or use voice input utilities, and those who cannot use a mouse. The Windows Accessibility Options often
compensate for users with disabilities related to keyboard interaction; however, it is more difficult to
compensate for problems related to pointing device input.

You should follow the conventions for keyboard navigation techniques presented in this guide. For
specialized interfaces within your software, model your keyboard interface on conventions that are familiar
and appropriate for that context. Where they apply, use the standard control conventions as a guide for your
defining interaction.

Ebay Exhibit 1013, Page 847 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 Chapter 14 Special Design Considerations 327

February 13, 1995

Make certain the user can navigate to all objects. Avoid relying only on navigational design that requires the
user to understand the spatial relationship between objects. TAB and SHIFT+TAB can supplement arrow key
navigation.

Providing a well-designed mouse interface is also important. Pointing devices may be the only means of
interaction for some users. When designing the interface for pointing input, avoid making basic functions
available only through multiple clicking, drag and drop manipulation, and keyboard-modified mouse actions.
Such actions are best considered shortcut techniques for more advanced users. Make basic functions
available through single click techniques.

Where possible, avoid making the implementation of basic functions dependent on a particular device. This
is critical for supporting users with physical disabilities and users who may not wish to use or install a
particular device.

Documentation, Packaging, and Support
While this guide focuses primarily on the design of the user interface, a design that provides for accessibility
needs to take into consideration other aspects of a product. For example, consider the documentation needs
of your users. For users who have difficulty reading or handling printed material, provide online
documentation for your product.

If the documentation or installation instructions are not available online, you can provide documentation
separately in alternative formats, such as ASCII text, large print, Braille, or audio tape format.

For more information about organizations that can help you produce and distribute such documentation, see
the Bibliography.

When possible, choose a format and binding for your documentation that makes it accessible for users with
disabilities. As in the interface, information in color should be a redundant form of communication. Bindings
that allow a book to lie flat are usually better for users with limited dexterity.

Packaging is also important because many users with limited dexterity can have difficulty opening packages.
Consider including an easy-opening overlap or tab that helps users remove shrink-wrapping.

Finally, although support is important for all users, it is difficult for users with hearing impairments to use
standard support lines. Consider making these services available to customers using text telephones (also
called "TT" or "TDD"). You can also provide support through public bulletin boards or other networking
services.

Usability Testing
Just as it is important to test the general usability of your software, it is a good idea to test how well it
provides for accessibility. There are a variety of ways of doing this. One way is to include users with
disabilities in your prerelease or usability test activities. In addition, you can establish a working relationship
with companies that provide accessibility aids. Finally, you can also try running your software in a fashion
similar to that used by a person with disabilities. Try some of the following ideas for testing:

• Use the Windows Accessibility Options and set your display to a high contrast scheme,
such as white text on a black background. Are there any portions of your software that
become invisible or hard to use or recognize?

Ebay Exhibit 1013, Page 848 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 Chapter 14 Special Design Considerations 327

February 13, 1995

• Try using your software for a week without using a mouse. Are there operations that
you cannot perform? Was anything especially awkward?

• Increase the size of the default system fonts. Does your software still look good? Does
your software fonts appropriately adjust to match the new system font?

For more information about accessibility vendors or potential test sites, see the Bibliography.
Internationalization

To successfully compete in international markets, your software must easily accommodate differences in
language, culture, and hardware. This section does not cover every aspect of preparing software for the
international market, but it does summarize some of the key design issues.

The process of translating and adapting a software product for use in a different country is called
localization. Like any part of the interface, include international considerations early in the design and
development process. In addition to adapting screen information and documentation for international use,
Help files, scenarios, templates, models, and sample files should all be a part of your localization planning.

For more information about the technical details for localizing your application, see the documentation
included in the Microsoft Win32 Software Development Kit.

Language is not the only relevant factor when localizing an interface. Several countries can share a common
language but have different conventions for expressing information. In addition, some countries can share a
language but use a different keyboard convention.

A more subtle factor to consider when preparing software for international markets is cultural differences.
For example, users in the U.S. recognize a rounded mail box with a flag on the side as an icon for a mail
program, but this image may not be recognized by users in other countries.

It is helpful to create a supplemental document for your localization team that covers the terms and other
translatable elements your software uses, and describes where they occur. Documenting changes between
versions saves time in preparing new releases.

Text
A major aspect of localizing an interface involves translating the text used by the software in its title bars,
menus and other controls, and messages. To make localization easier, store interface text as resources in the
resource file rather than including it in the source code of the application. Remember to translate menu
commands your application stores for its file types in the system registry.

Translation is a challenging task. Each foreign language has its own syntax and grammar. Following are
some general guidelines to keep in mind for translation:

• Do not assume that a word always appears at the same location in a sentence, that word
order is always the same, that sentences or words always have the same length, or that
nouns, adjectives, and verbs always keep the same form.

• Avoid using vague words that can have several meanings in different contexts.

• Avoid colloquialisms, jargon, acronyms, and abbreviations.

Ebay Exhibit 1013, Page 849 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 Chapter 14 Special Design Considerations 327

February 13, 1995

• Use good grammar. Translation is a difficult enough task without a translator having to
deal with poor grammar.

• Avoid dynamic, or run-time, concatenation of different strings to form new stringsfor
example, composing messages by combining frequently used strings. An exception is
the construction of filenames and path.

• Avoid hard coding filenames in a binary file. Filenames may need to be translated.

Translation of interface text from English to other languages often increases the length of text by 30 percent
or more. In some extreme cases, the character count can increase by more than 100 percent; for example, the
word "move" becomes "verschieben" in German. Accordingly, if the amount of the space for displaying text
is strictly limited, as in a status bar, restrict the length of the English interface text to approximately one half
of the available space. In contexts that allow more flexibility, such as dialog boxes and property sheets,
allow 30 percent for text expansion in the interface design. Message text in message boxes, however, should
allow for text expansion of about 100 percent. Avoid having your software rely on the position of text in a
control or window because translation may require movement of the text.

Expansion due to translation affects other aspects of your product. A localized version is likely to affect file
sizes, potentially changing to the layout of your installation disks and setup software.

Translation is not always a one-to-one correspondence. A single word in English can have multiple
translations in another language. Adjectives and articles sometimes change spelling according to the gender
of the nouns they modify. Therefore, be careful when reusing a string in multiple places. Similarly, several
English words may have only a single meaning in another language. This is particularly important when
creating keywords for the Help index for your software.

Graphics
It is best to review the proposed graphics for international applicability early in your design cycle. Localizing
graphics can be time consuming.

While graphics communicate more universally than text, graphical aspects of your software — especially
icons and toolbar button images — may also need to be revised to address an international audience. Choose
generic images and glyphs. Even if you can create custom designs for each language, having different
images for different languages can confuse users who work with more than one language version.

Many symbols with a strong meaning in one culture do not have any meaning in another. For example, many
symbols for U.S. holidays and seasons are not shared around the world. Importantly, some symbols can be
offensive in some cultures (for example, the open palm commonly used at U.S. crosswalk signals is
offensive in some countries).

Keyboards
International keyboards also differ from those used in the U.S. Avoid using punctuation character keys as
shortcut keys because they are not always found on international keyboards or easily produced by the user.
Remember too, that what seems like an effective shortcut because of its mnemonic association (for example,
CTRL+B for Bold) can warrant a change to fit a particular language. Similarly, macros or other utilities that
invoke menus or commands based on access keys are not likely to work in an international version, because
the command names on which the access keys are based differ.

Keys do not always occupy the same positions on all international keyboards. Even when they do, the
interpretation of the unmodified keystroke can be different. For example, on U.S. keyboards, SHIFT+8 results

Ebay Exhibit 1013, Page 850 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 Chapter 14 Special Design Considerations 327

February 13, 1995

in an asterisk character. However, on French keyboards, it generates the number 8. Similarly, avoid using
CTRL+ALT combinations, because the system interprets this combination for some language versions as the
ALTGR key, which generates some alphanumeric characters.

Your software can query standard system interfaces to determine keyboard configuration for a particular
installation using the SystemParametersInfo function. For more information about the
SystemParametersInfo function, see the Microsoft Win32 Programmer's Reference.

Character Sets
Some international countries require support for different character sets (sometimes called code pages). The
system provides a standard interface for supporting multiple character sets and sort tables. Use these
interfaces wherever possible for sorting and case conversion. In addition, consider the following guidelines:

• Do not assume that the character set is U.S. ANSI. Many ANSI character sets are
available. For example, the Russian version of Windows 95 uses the Cyrillic ANSI
character set which is different that the U.S. ANSI set.

• Use the system functions for supporting font selection (such as the common font dialog
box).

• Always save the character set with font names in documents.

Ebay Exhibit 1013, Page 851 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 Chapter 14 Special Design Considerations 327

February 13, 1995

Formats
Different countries often use substantially different formats for dates, time, money, measurements, and
telephone numbers. This collection of language-related user preferences are call a locale. Designing your
software to accommodate international audiences requires supporting these different formats.

Windows provides a standard means for inquiring what the default format is and also allows the user to
change those properties. Your software can allow the user to change formats, but restrict these changes to
your application or document type, rather than affecting the system defaults. Table 14.1 lists the most
common format categories.

Table 14.1 Formats for International Software

Category Format considerations

Date Order, separator, long or short formats, and leading zero

Time Separator and cycle (12-hour versus 24-hour), leading zero

Physical quantity Metric vs. English measurement system

Currency Symbol and format (for example, trailing vs. preceding symbol)

Separators List, decimal, and thousandths separator

Telephone numbers Separators for area codes and exchanges

Calendar Calendar used and starting day of the week

Addresses Order and postal code format

Paper sizes U.S. vs. European paper and envelope sizes

For more information about the functions that provide access to the current locale formats, see the Microsoft
Win32 Programmer's Reference.

Ebay Exhibit 1013, Page 852 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 Chapter 14 Special Design Considerations 327

February 13, 1995

Layout
For layout of controls or other elements in a window, it is important to consider alignment in addition to
expansion of text labels. In Hebrew and Arabic countries, information is written right to left. So when
localizing for these countries, reverse your U.S. presentation.

Some languages include diacritical marks that distinguish particular characters. Fonts associated with these
characters can require additional spacing.

In addition, do not place information or controls into the title bar area. This is where Windows places special
user controls for configurations that support multiple languages.

References to Unsupported Features
Avoid confusing your international users by leaving in references to features that do not exist in their
language version. Adapt the interface appropriately for features that do not apply. For example, some
language versions may not include a grammar checker or support for bar codes on envelopes. Remove
references to features such as menus, dialog boxes, and Help files from the installation program.

Network Computing
Windows provides an environment that allows the user to communicate and share information across the
network. When designing your software, consider the special needs that working in such an environment
requires.

Conceptually, the network is just an expansion of the user's local space. The interface for accessing objects
from the network should not differ significantly from or be more complex than the user’s desktop.

Leverage System Support
Windows provides several provisions you can use when designing for network access:

• Use universal naming convention (UNC) paths to refer to objects stored in the file
system. This convention provides transparent access to objects on the network.

• Use system-supported user identification that allows you to determine access without
having to include your own password interface.

• Adjust window sizes and positions based on the local screen properties of the user.

• Avoid assuming the presence of a local hard disk. It is possible that some of your users
work with diskless workstations.

Client-Server Applications
Users operating on a network may wish to run your application from a network server. For applications that
store no state information, no special support is required. However, if your application stores state
information, design your application with a server set of components and a client set of components. The
server components include the main executable (.EXE) files, dynamic link libraries (DLLs), and any other
files that need to be shared across the network. The client components consist of the components of the
application that are specific to the user, including local registry information and local files that provide the
user with access to the server components.

For information about installing the client and server components of your application, see Chapter 10,
"Integrating with the System."

Ebay Exhibit 1013, Page 853 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 Chapter 14 Special Design Considerations 327

February 13, 1995

Shared Data Files
When storing a file in the shared space of the network, it should be readily accessible to all users, so design
the file to be opened multiple times. The granularity of concurrent access depends on the file type; that is, for
some files you may only support concurrent access by word, paragraph, section, page, and so on. Provide
clear visual cues as to what information can be changed and what cannot. Where multiple access is not easily
supported, provide users with the option to open a copy of the file, if the original is already open.

Records Processing
Record processing or transaction-based applications require somewhat different structuring than the typical
productivity application. For example, rather than opening and saving discrete files, the interface for such
applications focuses on accessing and presenting data as records through multiple views, forms, and reports.
One of the distinguishing and most important design aspects of record-processing applications is the
definition of how the data records are structured. This dictates what information can be stored and in what
format.

Ebay Exhibit 1013, Page 854 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 Chapter 14 Special Design Considerations 327

February 13, 1995

However, you can apply much of the information in this guide to record-oriented applications. For example,
the basic principles of design and methodology are just as applicable as they are for individual file-oriented
applications. You can also apply the guide's conventions for input, navigation, and layout when designing
forms and reports designs. Similarly, your can apply other secondary window conventions for data-entry
design, including the following:

• Provide reasonable default values for fields.

• Use the appropriate controls. For example, use drop-down list boxes instead of long lists of
push buttons.

• Design for logical and smooth user navigation. Order fields as the user needs to move
through them. Auto-exit text boxes are often good for input of predefined data formats,
such as time or currency inputs.

• Provide data validation as close to the site of data entry as possible. You can use input
masks to restrict data to specific types or list box controls to restrict the range of input
choices.

Telephony
Windows provides support for creating applications with telephone communications, or telephony, services.
Those services include the Assisted Telephony services, for adding minimal, but useful telelphonic
functionality to applications, and the full Telephony API, for implementing full telephonic applications.

For more information about creating application using the Microsoft Windows Telephony API (TAPI), see
the documentation included in the Microsoft Win32 Software Developer's Kit.

Ebay Exhibit 1013, Page 855 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 Chapter 14 Special Design Considerations 327

February 13, 1995

Consider the following guidelines when developing telephony applications:

• Provide separate fields for users to enter country code, area code, and a local number. You
may use auto-exit style navigation to facilitate the number entry. You can also use a drop-
down list box to allow users to select a country code. (The TAPI lineGetCountry function
will provide you will the list of available codes.)

• Provide access to the TAPI "Dialing Properties" property sheet window wherever a user
enters a phone number. This window provides a consistent and easy interface for users.

• Use the modem configuration interfaces provided by the system. If the user has not
installed a modem, run the Windows TAPI modem installation wizard.

Microsoft Exchange
Microsoft Exchange is the standard Windows interface for email, voice mail, FAX, and other
communication media. Applications interact with Exchange by using the Messaging API (MAPI) and
support services and components.

Microsoft Exchange allows you to create support for an information service. An information service is a
utility that enables messaging applications to send and receive messages and files, store items in an
information store, obtain user addressing information, or any combination of these functions.

Coexisting with Other Information Services
Microsoft Exchange is designed to simultaneously support different information services. Therefore when
designing an information service, avoid:

• Initiating lengthy operations.

• Assuming exclusive use of key hardware resources, such as communications (COMM)
ports and modems.

• Adding menu commands that might be incompatible with other services.

Ebay Exhibit 1013, Page 856 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 Chapter 14 Special Design Considerations 327

February 13, 1995

Adding Menu Items and Toolbar Buttons
Microsoft Exchange allows you to add menu items and toolbar buttons to the main viewer window. Follow
the recommendations in this guide for defining menu and toolbar entries. In addition, where possible, define
your menu items and toolbar entries (or their tooltips) in a way that allows the user to clearly associate the
functionality with a specific information service.

Supporting Connections
When the user selects an information service that you support, provide the user with a dialog box to confirm
the choice and allow the user access to configuration properties. Because simultaneous services run at the
same time, clearly identify the service. Figure 14.2 provides an example of a typical connection window.

Figure 14.2 A connection dialog box

At the top of the window, display the icon and name of the service. You can include an option to not display
the dialog box.

Installing Information Services
Microsoft Exchange includes a special wizard for installation of information services. You can support this
wizard to allow the user to easily install your service.

The system also provides profiles and files that define which services are available to users when they log
on. When the user installs your service, ask the user which profile they would like to include your service,
such as their default profile.

Ebay Exhibit 1013, Page 857 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 Chapter 14 Special Design Considerations 327

February 13, 1995

Ebay Exhibit 1013, Page 858 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

261

February 13, 1995

A P P E N D I X A
Mouse Interface Summary
The tables in this appendix summarize the basic mouse interface, including selection and direct manipulation
(drag and drop).

Table A. 1 Interaction Guidelines for Common, Unmodified Mouse Actions

Action Target Effect on

selection state
Effect on anchor
point location

Resulting
operation using
button 1

Resulting
operation using
button 2

Press. Unselected
object.

Clears the active
selection.

Resets the anchor
point to the
object.

Selects the object. Selects the
object.

 Selected
object.

None. None. None1. None.

 White space
(background).

Clears the active
selection.

Resets the anchor
point to the button
down location.

Initiates a region
(marquee)
selection.

Initiates a region
(marquee)
selection.

Click. Unselected
object.

Clears the active
selection.

Resets the anchor
point to the
object.

Selects the object. Selects the object
and displays its
pop-up menu.

 Selected
object.

None2. None2. Selects the
object1.

Selects the object1
and displays the
selection's pop-up
menu.

 White space
(background).

Clears the active
selection.

None. None. Displays the pop-
up menu for the
white space.

Drag. Unselected
object.

Clears the active
selection.

Resets the anchor
point to the
object.

Selects the object
and carries out the
default transfer
operation upon
reaching
destination.

Selects the object
and displays the
nondefault
transfer pop-up
menu upon
reaching
destination.

Ebay Exhibit 1013, Page 859 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Appendix A Mouse Interface Summary 267

February 13, 1995

Table A. 1 Interaction Guidelines for Common, Unmodified Mouse Actions (continued)

Action Target Effect on

selection state
Effect on anchor
point location

Resulting
operation using
button 1

Resulting
operation using
button 2

Drag. Selected
object.

None. None. Carries out the
default transfer
operation on
selection upon
reaching
destination.

Displays the
nondefault
transfer pop-up
menu upon
reaching
destination.

 White space
(background).

Clears the active
selection.

None. Selects everything
logically included
from anchor point
to active end.

Selects everything
logically included
from anchor point
to active end and
displays pop-up
menu for the
resulting
selection.

Double-
click.

Unselected
object.

Clears the active
selection.

Resets the anchor
point to the
object.

Selects the object
and carries out the
default operation.

Selects the object
and carries out the
Properties
command.

 Selected
object.

None. None. Carries out the
selection's default
operation.

Carries out the
selection's
Properties
command.

 White space
(background).

Clears the active
selection.

None. Carries out the
default operation
for the white
space3.

Carries out the
white space's
Properties
command3.

1Alternatively, you can support subselection for this action. Subselection means to distinguish a specific object in a
selection for some purpose. For example, in a selection of objects, subselecting an object may define that object as
the reference point for alignment commands.

2Alternatively, you can support clearing the active selection and reset the anchor point to the object — if this better
fits the context of the user's task.

3 The white space (or background) is an access point for commands of the view, the container, or both. For example,
white space can include view commands related to selection (Select All), magnification (Zoom), type of view
(Outline), arrangement (Arrange By Date), display of specific view elements (Show Grid), general operation of the
view (Refresh), and containment commands that insert objects (Paste).

Ebay Exhibit 1013, Page 860 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Appendix A Mouse Interface Summary 267

February 13, 1995

Table A. 2 Interaction Guidelines for Using the SHIFT Key to Modify Mouse Actions

Action Target Effect on

selection state
Effect on
anchor point
location

Resulting
operation
using button 1

Resulting operation
using button 2

SHIFT+
Press.

Unselected
object.

Clears the active
selection1.

None. Extends the
selection state
from the anchor
point to the
object2.

Extends the selection
state from the anchor
point to the object3.

 Selected
object.

Clears the active
selection1.

None. Extends the
selection state
from the anchor
point to the
object2.

Extends the selection
state from the anchor
point to the object3.

 White space
(background).

Clears the active
selection1.

None. Extends the
selection state
from the anchor
point to the
object logically
included at the
button down
point2.

Extends the selection
state from the anchor
point to the object
logically included at the
button down point3.

SHIFT+
Click.

Unselected
object.

Clears the active
selection1.

None. Extends the
selection state
from the anchor
point to the
object2.

Extends the selection
state from the anchor
point to the object2 and
displays the pop-up
menu for the resulting
selection3.

 Selected
object.

Clears the active
selection1.

None. Extends the
selection state
from the anchor
point to the
object2.

Extends the selection
state from the anchor
point to the object2 and
displays the pop-up
menu for the resulting
selection3.

 White space
(background).

Clears the active
selection1.

None. Extends the
selection state
from the anchor
point to the
object logically
included at the
button down
point2.

Extends the selection
state from the anchor
point to the object2
logically included at the
button down point and
displays the pop-up
menu for the resulting
selection3.

Ebay Exhibit 1013, Page 861 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Appendix A Mouse Interface Summary 267

February 13, 1995

Table A. 2 Interaction Guidelines for Using the SHIFT Key to Modify Mouse Actions (continued)

Action Target Effect on

selection state
Effect on
anchor point
location

Resulting
operation
using button 1

Resulting operation
using button 2

SHIFT+
Drag.

Unselected
object.

Clears the active
selection1.

None. Extends the
selection state
from the anchor
point to the
object2.

Extends the selection
state from the anchor
point to the object2 and
displays the pop-up
menu for the resulting
selection3.

 Selected
object.

Clears the active
selection1.

None. Extends the
selection state
from the anchor
point to the
object2.

Extends the selection
state from the anchor
point to the object2 and
displays the pop-up
menu for the resulting
selection3.

 White space
(background).

Clears the active
selection1.

None. Extends the
selection state
from the anchor
point to the
object logically
included at the
button down
point2.

Extends the selection
state from the anchor
point to the object
logically included at the
button down point2 and
displays the pop-up
menu for the resulting
selection3.

SHIFT+
Double-
click.

Unselected
object.

Clears the active
selection1.

Resets the
anchor point
to the object.

Extends the
selection state
from the anchor
point to the
object and
carries out the
default
command on
the resulting

selection2,3.

Extends the selection
state from the anchor
point to the object2 and
carries out the Properties
command on the
resulting selection3.

Ebay Exhibit 1013, Page 862 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Appendix A Mouse Interface Summary 267

February 13, 1995

Table A. 2 Interaction Guidelines for Using the SHIFT Key to Modify Mouse Actions (continued)

Action Target Effect on

selection state
Effect on
anchor point
location

Resulting
operation
using button 1

Resulting operation
using button 2

SHIFT+
Double-
click.

Selected
object.

None. None. Extends the
selection state
from the anchor
point to the
object and
carries out the
default
command on
the resulting

selection2,3.

Extends the selection
state from the anchor
point to the object2 and
carries out the Properties
command on the
resulting selection3.

 White space
(background).

Clears the active
selection1.

None. Extends the
selection state
from the anchor
point to the
object logically
included at the
button down
point2 and
carries out the
default
command on
the resulting
selection3.

Extends the selection
state from the anchor
point to the object
logically included at the
button down point2 and
carries out the Properties
command on the
resulting selection3.

1 Only the active selection is cleared. The active selection is the selection made from the current anchor point. Other
selections made by disjoint selection techniques are not affected, unless the new selection includes those selected
elements.

2 The resulting selection state is based on the selection state of the object at the anchor point. If that object is
selected, all the objects included in the range are selected. If the object is not selected, all the objects included in the
range are also not selected.

3 If the effect of extending the selection results unselects the object or a range of objects, the operation applies also to
the remaining selected objects.

Ebay Exhibit 1013, Page 863 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Appendix A Mouse Interface Summary 267

February 13, 1995

Table A. 3 Interaction Guidelines for Using the CTRL Key to Modify Mouse Actions

Action Target Effect on

selection state
Effect on anchor
point location

Resulting
operation using
button 1

Resulting
operation using
button 2

CTRL+
Press.

Unselected
object.

None. Resets the anchor
point to the
object.

Selects the
object1.

Selects the
object1.

 Selected object. None. Resets the anchor
point to the
object.

None. None.

 White space
(background).

None. Resets the anchor
point to the button
down location.

Initiates a disjoint
region selection.

Initiates a disjoint
region selection.

CTRL+
Click.

Unselected
object.

None. Resets the anchor
point to the
object.

Selects the
object1.

Selects the
object1 and
displays the pop-
up menu for the
entire selection.

 Selected object. None. Resets the anchor
point to the
object.

Unselects the
object1.

Unselects the
object1and
displays the pop-
up menu for the
remaining
selection.

 White space
(background).

None. None. None. Displays the pop-
up menu for the
existing selection.

Ebay Exhibit 1013, Page 864 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Appendix A Mouse Interface Summary 267

February 13, 1995

Table A. 3 Interaction Guidelines for Using the CTRL Key to Modify Mouse Actions (continued)

Action Target Effect on

selection state
Effect on anchor
point location

Resulting
operation using
button 1

Resulting
operation using
button 2

CTRL+
Drag.

Unselected
object.

None. Resets the anchor
point to the
object.

Selects the object1

and copies the
entire selection2.

Selects the object1
and displays the
pop-up menu for
the selection 3.

 Selected
object.

None. Resets the anchor
point to the
object.

Copies the entire
selection to the
destination
defined at the
button up
location2.

Copies the entire
selection to the
destination
defined at the
button up
location3.

 White space
(background).

None. None. Toggles the
selection state of
objects logically
included by
region selection4.

Toggles the
selection state of
objects logically
included by
region selection4
and displays the
pop-up menu for
the resulting
selection5.

Ebay Exhibit 1013, Page 865 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Appendix A Mouse Interface Summary 267

February 13, 1995

Table A. 3 Interaction Guidelines for Using the CTRL Key to Modify Mouse Actions (continued)

Action Target Effect on

selection state
Effect on anchor
point location

Resulting
operation using
button 1

Resulting
operation using
button 2

CTRL+
Double-
click.

Unselected
object.

None. Resets the anchor
point to the
object.

Toggles the
selection state of
the object
(selects) and
carries out the
default command
on the selection
set.

Toggles the
selection state of
the object
(selects) and
carries out the
Properties
command on the
selection set.

 Selected
object.

None. Resets the anchor
point to the
object.

Toggles the
selection state of
the object
(selects) and
carries out the
default command
on the selection
set5.

Toggles the
selection state of
the object
(selects) and
carries out the
Properties
command on the
selection set5.

 White space
(background).

None. None. Carries out the
default command
on the existing
selection.

Carries out the
Properties
command on the
white space6.

1 The CTRL key toggles the selection state of an object; this table entry shows the result.

2 If the user releases the CTRL key before releasing the mouse button, the operation reverts to the default transfer
operation (as determined by the destination).

3 If the user releases the CTRL key before releasing the mouse button, the operation reverts to displaying the
nondefault transfer (drag and drop) pop-up menu.

4 The range of objects included are all toggled to the same selection state, which is based on the first object included
by the bounding region (marquee).

5 If the effect of toggling cancels the selection of the object, the operation applies to the remaining selected objects.

6 The white space (background) is an access point to the commands of the view, the container, or both.

Ebay Exhibit 1013, Page 866 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

357

February 13, 1995

A P P E N D I X B
Keyboard Interface Summary
This appendix summarizes the common keyboard operations, shortcut keys, and access key assignments.

Table B.1 displays a summary of the keys commonly used for navigation.

Table B.1 Common Navigation Keys

Key Cursor movement CTRL+cursor movement

LEFT ARROW Left one unit. Left one proportionally larger unit.

RIGHT ARROW Right one unit. Right one proportionally larger unit.

UP ARROW Up one unit or line. Up one proportionally larger unit.

DOWN ARROW Down one unit or line. Down one proportionally larger unit.

HOME To the beginning of the line. To the beginning of the data (topmost
position).

END To the end of the line. To the end of the data (bottommost
position).

PAGE UP Up one screen (previous screen,
same position).

Left one screen (or previous unit, if
left is not meaningful).

PAGE DOWN Down one screen (next screen,
same position).

Right one screen (or next unit, if right
is not meaningful).

TAB1

Next field. To next tab position (in property
sheets, next page).

1 Using the SHIFT key with the TAB key navigates in the reverse direction.

Ebay Exhibit 1013, Page 867 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Appendix B Keyboard Interface Summary 359

February 13, 1995

Table B.2 lists the common shortcut keys. Avoid assigning these keys to functions other than those listed.

Table B.2 Common Shortcut Keys

Key Meaning

TRL+C Copy

TRL+O Open
TRL+P rint

TRL+S ave

TRL+V aste
TRL+X Cut

TRL+Z Undo

1 Display contextual Help window
HIFT+F1 Activate contextual Help mode (What's This?)

HIFT+F10 Display pop-up menu

PACEBAR1 elect (same as mouse button 1 click)
SC Cancel

ALT Activate or inactivate menu bar mode

ALT+TAB2 Display next primary window (or application)
ALT+ESC2 Display next window

ALT+SPACEBAR Display pop-up menu for the window

ALT+HYPHEN Display pop-up menu for the active child window
ALT+ENTER Display property sheet for current selection

ALT+F4 Close active window

ALT+F62 witch to next window within application (between modeless
secondary windows and their primary window)

ALT+PRINT SCREEN Capture screen to Clipboard
TRL+ESC Access Start button in taskbar

TRL+ALT+DEL Display system's Close Program dialog box

1 If the context (for example, a text box) uses the SPACEBAR for entering a space character, you can use
CTRL+SPACEBAR. If that is also defined by the context, define your own key.

2 Using the SHIFT key with this key combination navigates in the reverse direction.

Ebay Exhibit 1013, Page 868 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Appendix B Keyboard Interface Summary 359

February 13, 1995

Table B.3 lists shortcut key assignments for keyboards supporting the new Windows keys. The Left Windows key
and Right Windows key are handled the same. Windows key assignments are reserved for Windows shell functions.

Table B.3 Windows Keys

Key Meaning

PPLICATION key Display pop-up menu for the selected object.

WINDOWS key Display Start button menu.
WINDOWS+F1 Display Help Topics browser dialog box for the main

Windows Help file.
WINDOWS+TAB Activate next taskbar button.

WINDOWS+E Explore My Computer.

WINDOWS+F ind Document.
WINDOWS+CTRL+F ind Computer.

WINDOWS+M Minimize All.

HIFT+WINDOWS+M Undo Minimize All.
WINDOWS+R Display Run dialog box.

WINDOWS+BREAK ystem function.

Table B.4 lists the key combinations and sequences the system uses to support accessibility. Support for these
options is set by users with the Windows Accessibility Options.

Table B.4 Accessibility Keys

Key Meaning

EFT ALT+LEFT SHIFT+PRINT SCREEN Toggle High Contrast mode

EFT ALT+LEFT SHIFT+NUM LOCK Toggle MouseKeys

HIFT (pressed five consecutive times) Toggle StickyKeys
IGHT SHIFT (held eight or more seconds) Toggle FilterKeys (SlowKeys, RepeatKeys, and BounceKeys)

NUM LOCK (held five or more seconds) Toggle ToggleKeys

Ebay Exhibit 1013, Page 869 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Appendix B Keyboard Interface Summary 359

February 13, 1995

Table B.5 lists the recommended access key assignments for common commands. While the context of a command
may affect specific assignments, you should use the same access keys when you use these commands in your menus
and command buttons.

Table B.5 Access Key Assignments

About Insert Object Quick View
Always on Top Link Here Redo
Apply Maximize Repeat
Back Minimize Restore
Browse Move Resume
ı Close Move Here Retry
Copy New Run
Copy Here Next Save
Create Shortcut No Save As
ı Create Shortcut Here Open Select All
Cut Open With Send To
Delete Paste Show
Edit Paste Link Size
Exit Paste Shortcut Split
Explore Page Setup Stop
File Paste Special Undo
Find Pause View
Help Play What's This?
Help Topics Print Window
Hide Print Here Yes
Insert Properties

Avoid assigning access keys to OK and Cancel when the ENTER key and ESC key, respectively, are assigned to them
by default.

Ebay Exhibit 1013, Page 870 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

361

February 13, 1995

A P P E N D I X C
Guidelines Summary
The following checklist summarizes the guidelines covered in this guide. You can use this guideline summary to
assist you in your planning, design, and development process.

Remember, the objective of the recommendations and suggestions in this guide is to benefit your users, not to
enforce a rigid set of rules. Consistency in design makes it easier for a user to transfer skills from one task to another.
When you need to diverge from or extend these guidelines, follow the principles and spirit of this guide.

General Design
 Supports user initiation of actions

 Supports user customization of the interface

 Supports an interactive and modeless environment

 Supports direct manipulation interfaces

 Uses familiar, appropriate metaphors

 Is internally consistent; similiar actions have a similar interface

 Makes actions reversible where possible; where not possible, requests confirmation

 Makes error recovery easy

 Eliminates possibilities for user errors, where possible

 Uses visual cues to indicate user interaction

 Provides prompt feedback

 Provides feedback that is appropriate to the task

 Makes appropriate use of progressive disclosure

Ebay Exhibit 1013, Page 871 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Appendix C Guidelines Summary 365

February 13, 1995

Design Process
 Employs a balanced team

 Uses an iterative design cycle

 Incorporates usability assessment as a part of the process

 Designs for user limitations

Input and Interaction
 Follows basic mouse interaction guidelines

 Uses appropriate modifier keys for adjusting or adding elements to a selection

 Uses appropriate visual feedback, such as highlighting or handles, to indicate selected objects

 Supports default and nondefault drag and drop

 Supports standard transfer commands, where appropriate

 Provides keyboard interface for all basic operations

 Follows keyboard guidelines for navigation, shortcut keys, and access keys

 Keeps foreground activity as modeless as possible

 Indicates use of modes visually

 Provides access to common, basic operations through single click interaction

 Provides shortcut methods (such as double-clicking) to common or frequently used operations
for experienced users

Windows
 Provides title text for all windows and follows guidelines for defining correct title bar text

 Supports single window instance model: brings the existing window to the top of the Z order
when the user attempts to reopen a view or window that is already open

 Uses common dialog boxes, where applicable

 Saves and restores the window state

 Adjusts window size and position to the appropriate screen size

 Uses modeless secondary windows, wherever possible

 Limits the use of application modal secondary windows

 Avoids system modal secondary windows, except in the case of possible loss of data

 Automatically supplies a proposed name upon the creation of a new object

 Uses the appropriate message symbol in message boxes

 Provides a brief but clear statement of problem and possible remedies in message boxes

Ebay Exhibit 1013, Page 872 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Appendix C Guidelines Summary 365

February 13, 1995

 Organizes properties into property sheets, using property pages for peer properties and list
controls for hierarchical navigation

 Places command buttons that apply to the page inside a tabbed page (for example, a property
sheet) outside of a page when the user applies by window (as a set)

 Follows single document window interface (SDI) or multiple document interface (MDI or
MDI alternatives) conventions

Controls
 Use system-supplied controls wherever possible

 Provide a pop-up menu for the title bar icon

 Provide a pop-up menu for the window

 Avoid multiple level hierarchical interfaces (menus, secondary windows) for frequently used
access operations

 Use an ellipsis for commands that require a dialog box for additional input or parameters

 Use the menu (triangular arrow) glyph to indicate when a control can display more
information (cascading menus, drop-down control arrows, scroll bar arrows)

 Provide pop-up menus for selections and other user identifiable objects

 Support the display of pop-up menus using mouse button 2, SHIFT+F10, and action handles

 Display pop-up menus upon the release of the mouse button

 Follow guidelines in the order of the commands on pop-up menus

 Limit commands on pop-up menus to those that apply to the selection and its immediate
context

 Make toolbars user configurable (display, position, content)

 Define custom controls to be visually and operationally consistent with standard system
controls

Integrating with the System
 Makes full and correct use of the registry, including registration of file extensions, file types,

and icons

 Avoids use of Autoexec.bat, Config.sys, or Windows system .Ini files

 Supports print and print-to interface, for file types that are printable

 Provides and registers icons in 32-by -32, 16-by -16, and 48-by -48 pixel sizes for application,
and document and data file types

 Adds appropriate property pages for supported types

 Supports long filenames and universal naming convention (UNC) paths, where files are used

 Displays filenames correctly

Ebay Exhibit 1013, Page 873 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Appendix C Guidelines Summary 365

February 13, 1995

 Uses the taskbar to provide a user with notification and status information when a window is
not active

 Supports appropriate behavior for creating and integrating Scrap objects

 Follows guidelines for installation

 Provides an uninstall program

 Provides appropriate support for network installation

 Supports all OLE user interface guidelines, including transfer interfaces (drag and drop and
nondefault drag and drop), pop-up menus and property sheets for OLE embedded and linked
objects

User Assistance
 Provides context-sensitive Help information for elements (including controls)

 Provides task help topics for basic procedures

 Provides tooltips for all unlabeled controls, particularly in toolbars

 Follows guidelines for messages, status bar information, contextual Help, task Help, and on-
line Reference Help

Ebay Exhibit 1013, Page 874 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Appendix C Guidelines Summary 365

February 13, 1995

Visual Design
 Uses color only as an enhancing, secondary form of information

 Uses a limited set of colors

 Uses system metrics for all display elements (such as color settings and fonts)

 Uses standard border styles

 Uses appropriate appearance for visual states of controls

 Supports dimensionality using light source from the upper left

 Supports guidelines for layout and font use

 Uses correct capitalization for control labels

Sound
 Uses audio only for secondary cues (applicable only where audio is not the primary form of

information, for example, music)

 Supports system interface for adjusting sound volume

 Supports and provides appropriate visual output for system ShowSounds setting

Accessibility
 Clearly labels all controls, icons, windows, and other screen elements (even if not visible) to

make them available to screen review utilities

 Indicates keyboard focus

 Uses standard functions for displaying text

 Makes components of graphic images that must be separately discernible by using metafiles,
drawing each component separately, or by redrawing components with null operation (NOP)
when the user has installed a screen review utility

 Avoids time-out interaction or makes timing interaction user configurable

 Avoids triggering actions on user navigation in the interface

 Supports scaling or magnification views where possible and applicable

 Supports system accessibility settings (such as High Contrast Mode) and appropriately adjusts
the user interface elements

 Tests for compatibility with common accessibility aids

 Includes people with disabilities in testing process

 Provides documentation in non-printed formats, such as on-line

 Provides telephone support to users using text telephones (TT/TDD)

International Users

Ebay Exhibit 1013, Page 875 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Appendix C Guidelines Summary 365

February 13, 1995

 Provides sufficient space for character expansion for localization

 Avoids jargon and culturally dependent words or ideas

 Avoids using punctuation keys in shortcut key combinations

 Supports displaying information based on local formats

 Uses layout conventions appropriate to reading conventions

 Adjusts references to unsupported features

Network Users
 Supports system naming and identification conventions

 Supports shared access for application and data files

Ebay Exhibit 1013, Page 876 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

367

February 13, 1995

A P P E N D I X D
Supporting Windows 95
and Windows NT Version 3.51
To be supplied.

Ebay Exhibit 1013, Page 877 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Appendix D Supporting Windows 95 and Windows NT Version 3.51 265

February 13, 1995

Ebay Exhibit 1013, Page 878 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

369

February 13, 1995

A P P E N D I X E
Localization Word Lists
This appendix will contain more than 25 translations of the following word list. Although the individual

words in the list are subject to change, the intent of the list will remain the same: to provide a
comprehensive set of words and phrases that either appear in the Windows 95 user interface or are used
in describing key concepts of the operating system. Note that bold indicates command names that appear
on buttons and menus.

1 About
2 access key
3 accessibility
4 action handle
5 active
6 active end
7 active object
8 active window
9 adornment
10 Always on Top
11 anchor point
12 Apply
13 auto-exit
14 auto-repeat
15 automatic link
16 automatic scrolling (autoscroll)
17 Back
18 barrel button (pen)
19 barrel-tap
20 boxed edit (control)
21 Browse
22 Cancel
23 cascading menu
24 check box
25 check mark
26 child window
27 choose
28 click
29 Clipboard
30 Close
31 Close button
32 collapse (outline)
33 column heading (control)
34 combo box
35 command button

Ebay Exhibit 1013, Page 879 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Appendix E Localization Word Lists 375

February 13, 1995

36 container
37 context-sensitive help
38 contextual
39 control
40 Copy
41 Copy Here
42 Create Shortcut
43 Create Shortcut Here
44 Cut
45 default
46 default button
47 Delete
48 desktop
49 destination
50 dialog box
51 disability
52 disjoint selection
53 dock
54 document
55 double-click
56 double-tap
57 drag
58 drag and drop
59 drop-down combo box
60 drop-down list box

Ebay Exhibit 1013, Page 880 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Appendix E Localization Word Lists 375

February 13, 1995

61 drop-down menu
62 Edit
63 Edit menu
64 ellipsis
65 embedded object
66 Exit
67 expand (an outline)
68 Explore
69 extended selection
70 extended selection list box
71 file
72 File menu
73 Find
74 Find Next
75 Find What
76 folder
77 font
78 font size
79 font style
80 function key
81 gesture
82 glyph
83 group box
84 handle
85 Help
86 Help menu
87 Hide
88 hierarchical selection
89 hold
90 hot spot
91 hot zone
92 icon
93 inactive
94 inactive window
95 ink

Ebay Exhibit 1013, Page 881 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Appendix E Localization Word Lists 375

February 13, 1995

96 ink edit
97 input focus
98 Insert menu
99 Insert Object
100 insertion point
101 italic
102 label
103 landscape
104 lasso-tap
105 lens (control)
106 link (n.)
107 link (v.)
108 Link Here
109 list box
110 list view (control)
111 manual link
112 Maximize
113 maximize button
114 menu
115 menu bar
116 menu button
117 menu item
118 menu title
119 message box
120 Minimize
121 minimize button
122 mixed-value
123 modal
124 mode
125 modeless
126 modifier key
127 mouse
128 Move
129 Move Here
130 multiple document interface (MDI)

Ebay Exhibit 1013, Page 882 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Appendix E Localization Word Lists 375

February 13, 1995

131 multiple selection list box
132 My Computer (icon)
133 Network Neighborhood (icon)
134 New
135 Next
136 object
137 OK
138 OLE
139 OLE drag and drop
140 OLE embedded object
141 OLE linked object
142 OLE nondefault drag and drop
143 Open
144 Open With
145 option button
146 option set
147 package
148 Page Setup
149 palette window
150 pane
151 parent window
152 password
153 Paste
154 Paste Link
155 Paste Shortcut
156 Paste Special
157 path
158 Pause
159 pen
160 Play
161 Plug and Play
162 point
163 pointer
164 pop-up menu
165 pop-up window

Ebay Exhibit 1013, Page 883 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Appendix E Localization Word Lists 375

February 13, 1995

166 portrait
167 press (a key)
168 press (and hold a mouse button)
169 primary container
170 primary window
171 Print
172 printer
173 progress indicator (control)
174 project
175 Properties
176 property inspector
177 property page
178 property sheet
179 property sheet control
180 Quick View
181 read-only
182 recognition
183 Recycle Bin (icon)
184 Redo
185 region selection
186 registry
187 Repeat
188 Replace
189 Restore
190 Restore button
191 Resume
192 Retry
193 rich-text box
194 Run
195 Save
196 Save As
197 scroll
198 scroll arrow
199 scroll bar
200 scroll box
201 secondary window
202 select
203 Select All
204 selection
205 selection handle
206 Send To
207 separator
208 Settings
209 Setup
210 shortcut

Ebay Exhibit 1013, Page 884 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Appendix E Localization Word Lists 375

February 13, 1995

211 shortcut button
212 shortcut icon
213 shortcut key
214 shortcut key control
215 Show
216 Shut Down
217 single selection list box
218 Size
219 size grip
220 slider
221 spin box
222 Split
223 split bar
224 split box
225 Start button
226 StartUp folder
227 status bar
228 Stop
229 tab control
230 tap
231 taskbar
232 task-oriented Help
233 template
234 text box
235 title bar
236 title text
237 toggle key
238 toolbar
239 tooltip
240 tree view control
241 type (n.)
242 type (v.)
243 unavailable
244 Undo
245 Uninstall
246 View menu
247 visual editing
248 well control
249 What’s This?
250 window
251 Window menu
252 Windows Explorer
253 wizard
254 workbook
255 workgroup

Ebay Exhibit 1013, Page 885 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Appendix E Localization Word Lists 375

February 13, 1995

256 workspace
257 Yes

Ebay Exhibit 1013, Page 886 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

377

February 13, 1995

Bibliography
General Design

Brooks, Frederick P. The Mythical Man-Month: Essays on Software Engineering. Reading, Mass.: Addison-Wesley
Pub. Co., 1975.

Baecker, Ronald M., and Buxton, William A. S. Readings in Human-Computer Interaction: A Multidisciplinary
Approach. Los Altos, Calif.: M. Kaufmann, 1987.

Heckel, Paul. The Elements of Friendly Software Design. New Ed., San Francisco: SYBEX, 1991.

Lakoff, George, and Johnson, Mark. Metaphors We Live By. Chicago: University of Chicago Press, 1980.

Laurel, Brenda, Ed. The Art of Human-Computer Interface Design. Reading, Mass.: Addison-Wesley Pub. Co.,
1990.

Norman, Donald A. The Design of Everyday Things. New York: Basic Books, 1990.

Norman, Donald A., and Draper, Stephen, W., Eds. User Centered System Design: New Perspectives on Human-
Computer Interaction. Hillsdale, N.J.: L. Erlbaum Associates, 1986.

Shneiderman, Ben. Designing the User Interface: Strategies for Effective Human-Computer Interaction. Reading,
Mass.: Addison-Wesley, 1992.

Tognazzini, Bruce. Tog on Interface. Reading, Mass.: Addison-Wesley, 1992.

Ebay Exhibit 1013, Page 887 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Bibliography 379

February 13, 1995

Graphic Information Design
Blair, Preston. Cartoon Animation. How to Draw and Paint Series. Tustin, Calif.: Walter Foster Pub., 1989.

Dreyfuss, Henry. Symbol Sourcebook: An Authoritative Guide to International Graphic Symbols. New York: Van
Nostrand Reinhold Co., 1984.

Thomas, Frank., and Johnston, Ollie. Disney Animation: The Illusion of Life. New York: Abbeville Press, 1984.

Tufte, Edward R. Envisioning Information. Cheshire, Conn.: Graphics Press, 1990.

Tufte, Edward R. The Visual Display of Quantitative Information. Cheshire, Conn.: Graphics Press, 1983.

Usability
Dumas, Joseph S., and Redish, Janice C., A Practical Guide to Usability Testing. Norwood, N.J.: Ablex Pub. Corp.,
1993.

Nielsen, Jakob. Usability Engineering. Boston: Academic Press, 1993.

Rubin, Jeffrey. Handbook of Usability Testing: How to Plan, Design, and Conduct Effective Tests. New York:
Wiley, 1994.

Whiteside, John, Bennett, John, and Holtzblatt, Karen. "Usability Engineering: Our Experience and Evolution." In
Handbook of Human-Computer Interaction, Martin. Helander (Ed.), Elsevier Science Pub. Co., Amsterdam, 1988.
(pp. 791 - 817)

Wiklund, Michael E., Ed. Usability in Practice: How Companies Develop User-Friendly Products. Boston: AP
Professional, 1994.

Object-Oriented Design
Booch, Grady. Object-Oriented Analysis and Design with Applications. Redwood City, Calif.:
Benjamin/Cummings Pub. Co., 1994.

Peterson, Gerald E., Ed. Tutorial: Object-Oriented Computing: Volume 2: Implementations. Washington, D.C.:
Computer Society Press of the IEEE, 1987.

Rumbaugh, James, et al. Object-Oriented Modeling and Design. Englewood Cliffs, N.J.: Prentice Hall, 1991.

Accessibility
For a list of accessibility aids available for Microsoft Windows, accessibility software vendors, or potential test sites,
contact:

Microsoft Sales Information Center
One Microsoft Way
Redmond, WA 98052-6399

(800) 426-9400 (voice)
(800) 892-5234 (text telephone)
(206) 936-7329 (fax)

Ebay Exhibit 1013, Page 888 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Bibliography 379

February 13, 1995

An assistive technology program in your area can provide referrals to programs and services available to you. To
locate the assistive technology program nearest to your location, contact:

National Information System
Center for Development Disabilities
University of South Carolina
Benson Building
Columbia, SC 29208

(803) 777-4435 (voice or text telephone)
(803) 777-6058 (fax)

The Trace Research and Development Center publishes references and materials on accessibility, including:

Berliss, Jane R., Ed. Trace Resource Book: Assistive Technologies for Communication, Control and Computer
Access. Madison, Wis.: Trace Research and Development Center, 1994.

Vanderheiden, Gregg C., and Vanderheiden, Katherine R. Accessible Design of Consumer Products: Guidelines for
the Design of Consumer Products to Increase Their Accessibility to People with Disabilities or Who Are Aging.
Madison, Wis.: Trace Research and Development Center, 1991.

For information on these books and other resources available from the Trace Research and Development Center,
contact them at:

Trace Research and Development Center
University of Wisconsin - Madison
S-151 Waisman Center
1500 Highland Avenue
Madison, WI 5705-2280

(608) 263-2309 voice
(608) 263-5408 text telephone
(608) 263-8848 fax

Organizations
The following organizations publish journals and sponsor conferences on topics related to user interface design.

SIGCHI (Special Interest Group in Computer Human Interaction)
Association for Computing Machinery
1515 Broadway
New York, NY 10036-5701
212-869-7440

SIGGRAPH (Special Interest Group on Graphics)
Association for Computing Machinery

Ebay Exhibit 1013, Page 889 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Bibliography 379

February 13, 1995

1515 Broadway
New York, NY 10036-5701
212-869-7440

Human Factors and Ergonomics Society
P.O. Box 1369
Santa Monica, CA 90406-1369
310-394-1811

Ebay Exhibit 1013, Page 890 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

275

February 13, 1995

accelerator key
See shortcut key.

access key
The key that corresponds to an underlined letter on a menu or button (also referred to as a mnemonic or mnemonic access key).

accessibility
A software design that makes it usable and accessible to the widest range of users, including users with disabilities.

action handle
A special handle that provides access to a selected object's operations, typically by displaying a pop-up menu, through drag and

drop, or both. Pen-enabled interfaces or controls include action handles more frequently than mouse or keyboard.

active
The state when an object is the focus of user input.

active end
The ending point for a selected range of objects. It is usually established at the object logically nearest the hot spot of the pointer

when a user releases a mouse button or lifts the tip of a pen from the screen. Compare anchor point.

active window
The window in which a user is currently working or directing input. An active window is typically at the top of the Z order and

is distinguished by the color of its title bar. Compare inactive window.

adornment
A control that is attached to the edge of a pane or window, such as a toolbar or ruler.

anchor point
The starting point for a selected range of objects. An anchor point is usually established at the object logically nearest the hot

spot of the pointer when a user presses a mouse button or touches the tip of a pen to the screen. Compare active end.

anti-aliasing
A graphic design technique that involves adding colored pixels to smooth the jagged edges of a graphic.

apply
To commit a set of changes or pending transactions made in a secondary window, typically without closing that window.

auto-exit
A text box in which the input focus automatically moves to the next control as soon as a user types the last character.

auto-joining
The movement of text to fill a remaining gap after a user deletes other text.

automatic scrolling
A technique where a display area automatically scrolls without direct interaction with a scroll bar.

auto-repeat
An event or interaction that is automatically repeated. Auto-repeat events usually occur when a user holds down a keyboard key

or presses and holds a special control (for example, scroll bar buttons).

barrel-tap
A pen action that involves holding down the barrel button of a pen while tapping. It is the equivalent of clicking mouse button 2.

box edit
A standard Microsoft Windows pen interface control that provides a discrete area for entering each character. A user can also

edit text within the control.

cancel

Glossary

Ebay Exhibit 1013, Page 891 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 Glossary 397

February 13, 1995

To halt an operation or process and return to the state before it was invoked. Compare stop.

caret
See insertion point.

cascading menu
A menu that is a submenu of a menu item (also referred to as a hierarchical menu, child menu, or submenu).

check box
A standard Windows control that displays a setting, either checked (set) or unchecked (not set). Compare option button.

child menu
See cascading menu.

child window
A document window used within an MDI window. See also multiple document interface.

chord
To press more than one mouse button at the same time.

click
(v.) To position the pointer over an object and then press and release a mouse button. (n.) The act of clicking. See also press.

Clipboard
The area of storage for objects, data, or their references after a user carries out a Cut or Copy command.

close
To remove a window.

code page
A collection of characters that make up a character set.

collection
A set of objects that share some common aspect.

column heading
A standard Windows control that displays information in a multicolumn list.

combo box
A standard Windows control that combines a text box and interdependent list box. Compare drop-down combo box.

command button
A standard Windows control that initiates a command or sets an option (also referred to as a push button).

composite
A set or group of objects whose aggregation is recognized as an object itself (for example, characters in a paragraph, a named

range of cells in a spreadsheet, or a grouped set of drawing objects).

constraint
A relationship between a set of objects, such that making a change to one object affects another object in the set.

container
An object that holds other objects.

context menu
See pop-up menu.

context-sensitive Help
Information about an object and its current condition. It answers the questions “What is this” and “Why would I want to use it?”

Compare reference Help and task-oriented Help.

contextual
Specific to the conditions in which something exists or occurs.

contiguous selection
A selection that consists of a set of objects that are logically sequential or adjacent to each other (also referred to as range

selection). Compare disjoint selection.

control

Ebay Exhibit 1013, Page 892 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 Glossary 397

February 13, 1995

An object that enables user interaction or input, often to initiate an action, display information, or set values.

Control menu
The menu, also referred to as the System menu, was displayed on the left end of a title bar in Windows 3.1. A pop-up menu of a

window replaces the Control menu.

cursor
A generic term for the visible indication of where a user’s interaction will occur. See also input focus, insertion point, and

pointer.

data-centered design
A design in which users interact with their data directly without having to first start an appropriate editor or application.

data link
A link that propagates a value between two objects or locations.

default
An operation or value that the system or application assumes, unless a user makes an explicit choice.

default button
The command button that is invoked when a user presses the ENTER key. A default button typically appears in a secondary

window.

delete
To remove an object or value.

desktop
The visual work area that fills the display. The desktop is also a container and can be used as a convenient location to place

objects stored in the file system.

dialog base unit
A device-independent measure to use for layout. One horizontal unit is equal to one-fourth of the average character width for the

current system font. One vertical unit is equal to one-eighth of an average character height for the current system font.

dialog box
A secondary window that gathers additional information from a user. Compare message box, palette window, and property

sheet.

dimmed
See unavailable.

disability
A skill level that is near the lower range for an average person.

disabled
See unavailable.

disjoint selection
A selection that consists of a set of objects that are not logically sequential or physically adjacent to each other. Compare

contiguous selection. See also extended selection.

dock
To manipulate an interface element, such as a toolbar, such that it aligns itself with the edge of another interface element,

typically a window or pane.

document
A common unit of data (typically a file) used in user tasks and exchanged between users.

document window
A window that provides a primary view of a document (typically its content).

double-click
(v.) To press and release a mouse button twice in rapid succession. (n.) The act of double-clicking.

double-tap

Ebay Exhibit 1013, Page 893 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 Glossary 397

February 13, 1995

(v.) To press and lift the pen tip twice in rapid succession. It is typically interpreted as the double-click of the mouse.
(n.) The act of double-tapping.

drag
To press and hold a mouse button (or press the pen tip) while moving the mouse (or pen).

drag and drop
A technique for moving, copying, or linking an object by dragging. The source and destination negotiate the interpretation of the

operation. Compare nondefault drag and drop.

drop-down combo box
A standard Windows control that combines the characteristics of a text box with a drop-down list box. Compare combo box.

drop-down list box
A standard Windows control that displays a current setting, but can be opened to display a list of choices.

drop-down menu
A menu that is displayed from a menu bar. See also menu and pop-up menu.

edit field
See text box.

Edit menu
A common drop-down menu which includes general purpose commands, such as Cut, Copy, and Paste for editing objects

displayed within a window.

ellipsis
The “...” suffix added to a menu item or button label to indicate that the command requires additional information to be

completed. When a user chooses the command, a dialog box is usually displayed for user input of this additional information.

embedded object
See OLE embedded object.

event
An action or occurrence to which an application can respond. Examples of events are clicks, key presses, and mouse

movements.

explicit selection
A selection that a user intentionally performs with an input device. See also implicit selection.

extended selection
A selection technique that is optimized for selection of a single object or single range using contiguous selection techniques (that

is, canceling any existing selection when a new selection is made). However, it also supports modifying an existing selection
using disjoint selection techniques. See also disjoint selection.

extended selection list box
A list box that supports multiple selection, but is optimized for a selection of a single object or single range. See also extended

selection and list box. Compare multiple selection list box.

File menu
A common drop-down menu that includes commands for file operations, such as Open, Save, and Print.

flat appearance
The visual display of a control when it is nested inside another control or scrollable region.

folder
A type of container for objects — typically files.

font
A set of attributes for text characters.

font size
The size of a font, typically represented in points.

font style

Ebay Exhibit 1013, Page 894 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 Glossary 397

February 13, 1995

The stylistic attributes of a font, such as bold, italic, and underline.

gesture
A set of lines or strokes (inking) drawn on the screen that is recognized and interpreted as a command or character. See also

recognition and ink.

glyph
A generic term used to refer to any graphic or pictorial image that can be used on a button or in a message box. Compare icon.

grayed
See unavailable.

group box
A standard Windows control that visually groups a set of controls.

handle
An interface element added to an object that facilitates moving, sizing, reshaping, or other functions pertaining to that object.

Help menu
A common drop-down menu that includes commands that provide access to Help information or other forms of user assistance.

See also context-sensitive Help and task-oriented Help.

heterogeneous selection
A selection that includes objects with different properties or type. Compare homogeneous selection.

hierarchical menu
See cascading menu.

hold
To continue pressing a keyboard key, mouse button, or pen tip at the same location.

homogeneous selection
A selection that includes objects with the same properties or type. Compare heterogeneous selection.

hot spot
The specific portion of the pointer (or pointing device) that defines the exact location, or object, to which a user is pointing.

hot zone
The interaction area of a particular object or location with which a pointer or pointing device’s hot spot must come in contact.

icon
A pictorial representation of an object. Compare glyph.

implicit selection
A selection that is the result of inference or the context of some other operation. See also explicit selection.

inactive
The state of an object when it is not the focus of a user’s input.

inactive window
A window in which a user's input is not currently being directed. An inactive window is typically distinguished by the color of

its title bar. Compare active window.

indeterminate
See mixed-value appearance.

ink
The unrecognized, freehand drawing of lines on the screen with a pen. See also gesture and ink edit.

ink edit
A standard Windows control for input and editing of “ink.” See also ink.

input focus
The location where the user is currently directing input.

input focus appearance
The visual display of a control or other object that indicates when it has the input focus.

insertion point

Ebay Exhibit 1013, Page 895 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 Glossary 397

February 13, 1995

The location where text or graphics will be inserted (also referred to as the caret).

inside-out activation
A technique that allows a user to directly interact with the content of an OLE embedded object without executing an explicit

activation command. Compare outside-in activation.

jump
A special form of a link that navigates to another location (also referred to as a hyperlink).

label
The text or graphics associated with a control (also referred to as a caption).

landscape
An orientation where the long dimension of a rectangular area (for example, screen or paper) is horizontal.

lasso-tap
A pen gesture that makes a region selection by drawing a circle around the object to be selected and tapping within that circle.

lens
See writing tool.

link
(v.) To form a connection between two objects. (n.) A reference to an object that is linked to another object. See also OLE

linked object.

link path
The descriptive form of referring to the location of a link source (also referred to as a moniker).

list box
A standard Windows control that displays a list of choices. See also extended selection list box.

list view
A standard Windows list box control that displays a set of icons in different views (for example, a large icon, small icon, or list).

locale
A collection of language-related user preferences for formatting information such as time, currency, or dates.

localization
The process of adapting software for different countries, languages, or cultures.

marquee
See region selection.

maximize
To make a window its largest size. See also minimize.

MDI
See multiple document interface.

menu
A list of textual or graphical choices from which a user can choose. See also drop-down menu and pop-up menu.

menu bar
A horizontal bar at the top of a window, below the title bar, that contains menus. See also drop-down menu.

menu button
A command button that displays a menu.

menu item
A choice on a menu.

menu title
A textual or graphic label that designates a particular menu. For drop-down menus, the title is the entry in the menu bar; for

cascading menus the menu title is the name of its parent menu item.

message box

Ebay Exhibit 1013, Page 896 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 Glossary 397

February 13, 1995

A secondary window that is displayed to inform a user about a particular condition. Compare dialog box, palette window, and
property sheet.

minimize
To minimize the size of a window; in some cases this means to hide the window. See also maximize.

mixed-value appearance
The visual display for a control when it reflects a mixed set of values.

mnemonic
See access key.

modal
A restrictive or limiting interaction because of operating in a mode. Modal often describes a secondary window that restricts a

user’s interaction with other windows. A secondary window can be modal with respect to its primary window or to the entire
system. Compare modeless.

mode
A particular state of interaction, often exclusive in some way to other forms of interaction.

modeless
Not restrictive or limiting interaction. Modeless often describes a secondary window that does not restrict a user’s interaction

with other windows. Compare modal.

modifier key
A keyboard key that, when pressed, changes the actions of ordinary input.

mouse
A commonly used input device that has one or more buttons used to interact with a computer. It is also used as a generic term to

include other pointing devices that operate similarly (for example, trackballs).

multiple document interface (MDI)
A technique for managing a set of windows whereby documents are opened into windows (sometimes called child windows)

that are constrained to a single primary (parent) window. See also child window and parent window.

multiple selection list box
A list box that is optimized for making multiple, independent selections. Compare extended selection list box.

My Computer
A standard Windows icon that represents a user’s private, usually local, storage.

Network Neighborhood
A standard Windows icon that represents access to objects stored on the network file system.

nondefault drag and drop
A drag (transfer) operation whose interpretation is determined by a user’s choice of command. These commands are included in

a pop-up menu displayed at the destination when the object is dropped. Compare drag and drop.

object
An entity or component identifiable by a user that can be distinguished by its properties, operations, and relationships.

object-action paradigm
The basic interaction model for the user interface in which the object to be acted upon is specified first, followed by the

command to be executed.

OLE (Microsoft OLE)
The name that describes the technology and interface for implementing support for object interaction.

OLE embedded object
A data object that retains the original editing and operating functionality of the application that created it, while physically

residing in another document.

OLE linked object
An object that represents or provides an access point to another object that resides at another location in the same container or a

different, separate container. See also link.

OLE visual editing

Ebay Exhibit 1013, Page 897 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 Glossary 397

February 13, 1995

The ability to edit an OLE embedded object in place, without opening it into its own window.

open appearance
The visual display of an object when the user opens the object into its own window.

operation
A generic term that refers to the actions that can be done to or with an object.

option button
A standard Windows control that allows a user to select from a fixed set of mutually exclusive choices (also referred to as a

radio button). Compare check box.

option-set appearance
The visual display for a control when its value is set.

outside-in activation
A technique that requires a user to perform an explicit activation command to interact with the content of an OLE embedded

object. Compare inside-out activation.

package
An OLE encapsulation of a file so that it can be embedded in an OLE container.

palette window
A secondary window that displays a toolbar or other choices, such as colors or patterns. Compare dialog box and message box.

See also property sheet.

pane
One of the separate areas in a split window.

parent window
A primary window that provides window management for a set of child windows. See also child window and multiple document

interface.

pen
An input device that consists of a pen-shaped stylus that a user employs to interact with a computer.

persistence
The principle that the state of an object is automatically preserved.

point
(v.) To position the pointer over a particular object and location. (n.) A unit of measurement for type (1 point equals

approximately 1/72 inch).

pointer
A graphic image displayed on the screen that indicates the location of a pointing device (also referred to as a cursor).

pop-up menu
A menu that is displayed at the location of a selected object (also referred to as a context menu or shortcut menu). The menu

contains commands that are contextually relevant to the selection.

pop-up window
A secondary window with no title bar that is displayed next to an object; it provides contextual information about that object.

portrait
An orientation where the long dimension of a rectangular area (for example, screen or paper) is vertical.

press
To press and release a keyboard key or to touch the tip of a pen to the screen. See also click.

pressed appearance
The visual display for an object, such as a control, when it is being pressed.

primary window
The window in which the main interaction takes place. See also secondary window and window.

progress indicator

Ebay Exhibit 1013, Page 898 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 Glossary 397

February 13, 1995

Any form of feedback that provides the user with information about the state of a process.

progress indicator control
A standard Windows control that displays the percentage of completion of a particular process as a graphical bar.

project
A window or task management technique that consists of a container holding a set of objects, such that when the container is

opened, the windows of the contained objects are restored to their former positions.

properties
Attributes or characteristics of an object that define its state, appearance, or value.

property inspector
A dynamic properties viewer that displays the properties of the current selection. Compare property sheet.

property page
A grouping of properties on a tabbed page of a property sheet. See also property sheet.

property sheet
A secondary window that displays the properties of an object when a user chooses its Properties command. Compare dialog box

and property inspector. See also property page.

property sheet control
A standard Windows control used to create property sheet interfaces.

proximity
The ability of some pen devices to detect the presence of the pen without touching the pen to the screen.

push button
See command button.

radio button
See option button.

range selection
See contiguous selection.

recognition
The interpretation of strokes or gestures as characters or operations. See also gesture.

reference Help
A form of online Help information that can contain conceptual and explanatory information. Compare task-oriented Help and

context-sensitive Help.

region selection
A selection technique that involves dragging out a bounding outline (also referred to as a marquee) to define the selected

objects.

Recycle Bin
The standard Windows icon that represents the repository for deleted files.

relationships
The context or ways an object relates to its environment.

rich-text box
A standard Windows control that is similar to a standard text box, except that it also supports individual character and paragraph

properties.

scope
The definition of the extent that a selection is logically independent from other selections. For example, selections made in

separate windows are typically considered to be independent of each other.

scrap
An icon created when the user transfers a data selection from within a file to a shell container.

scroll

Ebay Exhibit 1013, Page 899 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 Glossary 397

February 13, 1995

To move the view of an object or information to make a different portion visible.

scroll arrow button
A component of a scroll bar that allows the information to be scrolled by defined increments when the user clicks it. The

direction of the arrow indicates the direction in which the information scrolls.

scroll bar
A standard Windows control that supports scrolling.

scroll box
A component of a scroll bar that indicates the relative position (and optionally the proportion) of the visible information relative

to the entire amount of information. The user drags the scroll box to scroll the information. See also scroll bar shaft.

scroll bar shaft
The component of a scroll bar that provides the visual context for the scroll box. Clicking (or tapping) in the scroll bar shaft

scrolls the information by a screenful. See also scroll box.

secondary window
A window that provides information or supplemental interaction related to objects in a primary window.

select
To identify one or more objects upon which an operation can be performed.

selection
An object or set of objects that have been selected.

selection appearance
The visual display of an object when it has been selected.

selection handle
A graphical control point of an object that provides direct manipulation support for operations of that object, such as moving,

sizing, or scaling.

separator
An entry in a menu that groups menu items together.

shell
A generic term that refers to the interface that allows the user control over the system.

shortcut
A generic term that refers to an action or technique that invokes a particular command or performs an operation with less

interaction than its usual method.

shortcut icon
A link presented as an icon that provides a user with access to another object.

shortcut key
A keyboard key or key combination that invokes a particular command (also referred to as an accelerator key).

shortcut menu
See pop-up menu.

single selection list box
A list box that only supports selection of a single item in the list.

size grip
A special control that appears at the junction of a horizontal and vertical scroll bar or the right end of a status bar and provides

an area that a user can drag to size the lower-right corner of a window.

slider
A standard Windows control that displays and sets a value from a continuous range of possible values, such as brightness or

volume.

spin box
A control that allows a user to adjust a value from a limited range of possible values.

split bar

Ebay Exhibit 1013, Page 900 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 Glossary 397

February 13, 1995

A division between panes that appears where a window has been split; the split bar visually separates window panes.

split box
A special control added to a window, typically adjacent to the scroll bar, that allows a user to split a window or adjust a window

split.

status bar
An area that allows the display of state information of the information being viewed in the window, typically placed at the

bottom of a window.

status bar control
A standard Windows control that provides the functionality of a status bar.

stop
To halt a process or action, typically without restoring the state before the process began. Compare cancel.

submenu
See cascading menu.

System menu
See Control menu.

tab control
A standard Windows control that looks similar to a notebook or file divider and provides navigation between different pages or

sections of information.

tap
To press and lift the pen tip from the screen, usually interpreted as a mouse click.

targeting
To determine where pen input is directed.

taskbar
The toolbar of the desktop. The taskbar includes the Start button, buttons for each open primary window, and a status area.

task-oriented Help
Information about the steps involved in carrying out a particular task. Compare context-sensitive Help and reference Help.

template
An object that automates the creation of new objects.

text box
A standard Windows control in which a user can enter and edit text (also referred to as the edit field).

thread
A process that is part of a larger process or program.

title bar
The horizontal area at the top of a window that identifies the window. The title bar also acts as a handle for dragging the

window.

toggle key
A keyboard key that turns a particular operation, function, or mode on or off.

toolbar
A standard Windows control that provides a frame for containing a set of other controls.

toolbar button
A command button used in a toolbar (or status bar).

toolbar control
A standard Windows control designed with the same characteristics as the toolbar.

tooltip
A standard Windows control that provides a small pop-up window that provides descriptive text, such as a label, for a control.

transfer appearance

Ebay Exhibit 1013, Page 901 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 Glossary 397

February 13, 1995

The visual feedback displayed during a transfer operation.

transaction
A unit of change to an object.

tree control
A standard Windows control that allows a set of hierarchically related objects to be displayed as an expandable outline.

type
(v.) To enter a character from the keyboard. (n.) A classification of an object based on its characteristics, behavior, and

attributes.

unavailable
The state of a control whose normal functionality is not presently available to a user (also referred to as grayed, dimmed, and

disabled).

unavailable appearance
The visual display for a control when it is unavailable.

undo
To reverse a transaction.

unfold button
A command button used to expand a secondary window to a larger size.

visual editing
See OLE visual editing.

well control
An inset field that is used to display color or pattern choices, typically used like an option button.

white space
The background area of a window.

window
A standard Windows object that displays information. A window is a separately controllable area of the screen that typically has

a rectangular border. See also primary window and secondary window.

wizard
A form of user assistance that automates a task through a dialog with the user.

word wrap
The convention where, as a user enters text, existing text is automatically moved from the end of a line to the next line.

workbook
A window or task management technique that consists of a set of views that are organized like a tabbed notebook.

workspace
A window or task management technique that consists of a container holding a set of objects, where the windows of the

contained objects are constrained to a parent window. Similar to the multiple document interface, except that the windows
displayed within the parent window are of objects that are also contained in the workspace.

writing tool
A standard Windows pen interface control that supports text editing.

Z order
The layered relationship of a set of objects, such as windows, on the screen.

Ebay Exhibit 1013, Page 902 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

APPENDIX D

Ebay Exhibit 1013, Page 903 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

���� ��������	
�������	
�
� �����
��	��� ��
��
�	���
�
��� �
����	�����
����� �����

���������������������� �!"�� #�$%&'�(��(") #�"��"� �����"*�� #��"+$'�&�������('�& #�$��"�� #��, � #
�)- (&
�� �'./� �� �'.� $���� +�	 � �$0��$,$&��120�3445�)�6()+"7&�48�)+�6()+"7&��	9"$�')�$&��" +�$�&"�:;<�" +�$�&"�
�"�
(��)+�����9&����$�&"�:;�6()21����!$)'�(")&��"�'.),��"����&��� &9&�����"$&��'$�&"�=>?@@ABC�)�6()+"7&�48�)+�6()+"7&��	�9"$�')�$&��" +�$�&"�:;<�" +�$�&"�
�"�
(���)+�����9&����$�&"�:;�6()21����!$)'�(")&��"�'.),��"����&��� �&9&�����"$&��'$�&"�=DE>FBGHIGJK	.��!"��"7(),�'"+��&."7&�."7��"�+"��.(&�'"���'��9�")�6()+"7&��	=���7"�L&� �&"�")�6()+"7&�48=�	.(&�& �����()'�$+�&�2�!$)'�(")&/�3=��� ��, � ��+�$�&"�&:;�M����'�� ��&� �,�"% �� �� 9�:9"$�')�� L��(�)� �� 9���"����9��"�9"$�� ���(' �(")�'� &&�(!�9"$����!��;�7.���&9&����'$�&"�&�7(���%��& ��+�%9��.������$�&"�:;�!$)'�(")=�1=����$�&"�:;�M����& ��&��.��&9&����'$�&"��9"$�7)���"�'.),��:(!�(��7 &)"��& ��+�%�!"��;�)+�&����.��'$�&"���"� �)�7�&9&����'$�&"��"�'$�&"��!�"��*��=�2=�
�&���$�&"�:;�M������&��&� �&9&����'$�&"���"��.�+�! $��<& ��+�")�=��)�"�+����"�&(���(!9��.��'"+�0���+�"���+�)9���"��'.�'L(),�)+�� �(%���+�'� � �(")=��!�9"$�7)���"�$&���.(&'"+�0���&��"),�9���'"���)+�9"$��"�()'�$+�����"��.)+�(),�'"+�:9"$N���*)+�&"���'"���)�&�()&(+���.��'"+��!"��% &('����"�'.�'L(),;�)+� �&"0���"����� �(%���+�'� � �(")=

Ebay Exhibit 1013, Page 904 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

���������	
����
������	�
��
��������������������
����������
������	�
��
��
�������

������������������������
�������������
����
��
�����������������������������
���������������
��
�������������������������������������	�
��
�������������� !"#�#$%��
�����	�
��
��
�"����	�
��
�����������&������
������	�
��
�'�()�*
������	�
��
�'��)�*�+�,�-./
������	�
��
�'��)�*�+�,�.����00�1	"2#1"3!4
������	�
��
�'�,)�*�+�,�.�.��00�1	"2	"1��
������	�
��
�'�()�*�+�,�-.�
������	�
��
�'�.)�*�+�,�.�,��00�1	"2�56!3�
������	�
��
�'�-)�*�+�,�-(7��00�1	"2#1��&�����
�����������������������
�����8������
������������9�
:�)���������������9
��
�
������	�
��
�'�;)�*�+�,�-(;��00�<
������	�
��
�'�7)�*�+�,�-(-��00�1	"2��=6!44
������	�
��
�'�>)�*�+�,�-(,��00�1	"2��=6#6�
������	�
��
�'�/)�*�+�,�-(.��00�1	"2��=6#�
������	�
��
�'��)�*�+�,�-(���00�1	"2��=6# �6
������	�
��
�'��)�*�+�,�-((��00�1	"2��=6 6
������	�
��
�'�,)�*�+�,�.�-��00�1	"2?@
������	�
��
�'�()�*�+�,�.�(��00�1	"2 !��
���
�������������	�
��
&�
�����
���	�
��
��)��A#�9	�
��
������	�
��
������������
��
����������9�����������
�����B����������
����������������������������
������	�
��
���

��C�����A#�9	�
��
����������9���
��
��������������%������������������
����
��
����B����
��C��������������
��
�����������B���
����
���
��
C���������
�� ��,�!@�������������������
����������
��
������
������
�
�4���	�
��
D
��D������� ��,�!@��E������������������
��
������
������
�
�	�&��������� ��,�!@��E��������������������
�
�����
������
�
�4���	�
��
���� ��,�!@��E��������������������
�
)�����
�
�����
������
�
����������	�
��
���� ��,�!@��E��������������������
�
)�����
�
����"��
�����������
��
�������A����
������	�
��
���

����
�����+�������(������
������	�
��
�'���)�*�+���	�
��
���������A���������������
�������F��(�����������

������	�
��
�����
���
����������
Ebay Exhibit 1013, Page 905 of 1204

Ebay, Inc. v. Lexos Media IP, LLC
IPR2024-00337

��������	�
���
���������������������������� ������!���������
���"��������������
����#�������$������������������%&������ �����������������'������(�$���������	�&�����������)������������� �����������%&������ ���������
���
�����������������(������ ��	���������'�������������������������� ��������������� ������ ��������	�*�+,�!������*��(�*�*����������$���������-���-������������%&������ ��������������������'������(�$���������-���-���	��+,�!���������� ��������	�*�+,�!������*��(�*,*��������������������������!���������������� �������������������������.���������������������/�������������������� ������������������ �����/��������������'������(������ ��	�$���������	�&���+,�!����������������!��������������� ���� ���+,�!�������������������/�/��� �����������
������ ���������������!��������������������������������&�����������0�����(����������������	���������'����������������)��������/�/��� �����1�����������������������������)�������������)�������� �����2���)�����!����������������	�����)���������������3��� �������������
���
��������������������)� �����4��5�67����� �������������
�������� �������� ���������
����������������������4��5�67��8��������������������
��������
������1�����
������ �����2������+����
���
�����������������������(�3����39������
���
��������������3��(����������)�������+�����������������������%�39��������� ���� �����������)����������/�/�������������	�
���
���������������������������� ������!���������
��/�������,�����
�����������///����������/�/�����������1����������� ����������0�����(����������������	�
���
���������������������������)����
���
�����������������(�/�/
Ebay Exhibit 1013, Page 906 of 1204

Ebay, Inc. v. Lexos Media IP, LLC
IPR2024-00337

����������������	
��
���
��������
�������������
�������������� �!�"#$�#%&#'�(!)((*�+,-�,-���.�-��-/���,/0�1+#0�2/�3'#0/��-�'#��&/����+#�$�'�%#�#'�2/�-+/����$�--��/�4'#��#5&6#7�89�./'�0�:7�, #;<54;�7/0�'/���+���2/�=0/1�,��,-�,0-����#��/0�2/�'7/%$��#'>�)?�5$#0���./'%?�@?�4�,7=/0��+#�5�#�4/0��,0#'�4/0�'/�&���/0�/0��+#��//�&�'?�A?�B'�1��'#7��0C�#�/0��+#�./'%�./'��+#�0#1???�������������� �!�"#$�#%&#'�(!)((D�+,-�,-�6�-�����,-��/.��,0=-��/�+#�$���+/',0C��//�-?��+#��,-��,-�0/�7/%$�#�#��0��,��,-�$'/ ,�#��/0�2��-��-��'��$�+#�$�./'��+/-#��//=,0C�./'-�7+��//�-?�E�+� #�0/��,07���#��#7+0,7��7+�'�7�#',-�,7-<-$#7,.,7��,/0-��-#!��-��02�/�+#'�-/.�1�'#!�+#-#��//�-��'#�,0���F$#'%�0#0��20�%,7���-���#F��0�???�������������� �!�G��2�@H!�)((DB#�#'%,0#�,.��0�/&6#7��,-��7/0��,0#'?
Ebay Exhibit 1013, Page 907 of 1204

Ebay, Inc. v. Lexos Media IP, LLC
IPR2024-00337

������������	�
����
�����������������������	�
�������������
���	���
��������������	��������
��� �	�
����
���
�	�����!����
�"�!#��	
$���%���
���
���	%&������
���	�����������������	��	� ��

�	����
������ �����
���
�	�
���
�����������$��������
���	���
�����������������	���%������������	�
���'����((�����)��������
�����������	������$
�	�
�������
���������
�����*������+������$�	�
�����	
���!����%������������	�
���'����((�����)��������
�����������	��$
	�	�
���$����������
�����*�������+�����$�	�
�����	
���!����%������������	�
���'��
����������
��
���	
�	��	����	�
��
���,���	�
�
	��

����	
�-����&
����	����	�
��	
����
�������"��" ��	����� �	%�������� �	���
����
���� ��	��,.-����������	�
��

/,���0��0	�
0�

/-�����������,+-�����	� ��	��
��
������	�
�."	����0��0	�
0�

/����	�
�."	� ��	�%�+������
���	����$��1�,1
����	�
����	����%%%
Ebay Exhibit 1013, Page 908 of 1204

Ebay, Inc. v. Lexos Media IP, LLC
IPR2024-00337

������������	�
�����
�����������������������	�����	�����	�����	���������
�	������ ��!"�#��$����	��	������##�����	��% �&�
������"�'
��()*+',	�
�*�,�
	�������	��-,�
	��������(.�����
������,�
	��
���
���-����	��	��/#�����"�-�
,	��
�	��	�,�
�0�������	����$��	������	��
��$��	���	���,�
	���1�2����	���(.����
���������������	�
���'�$��	��3�����������,��������������	������	�	��������,�������	��	�����-���	,�������,�������	��
�)�
	�����
���������������	�
���(,	�0���"������������,��������������	������	�����
	����)�����	��$�	�	�����,��$���#����0�����#��-�����������
&�
�����4��������������	�
���'�$��	�"!����������)�#�)�����12�&�
!"�'�5-�
,	��
��/��	���
���	�����,���
	����
�����&�
!"�'�5���,��5,�����-�
���',,����
$�����	������,����	�,�
�0��������
�&�
�����6�������������
�&�
�����4��������������	�
���������"������ �������-�����	��-�
,	��
������-���	������-�	�����
	���#�,�-����0�����	�������-���	������-�	�����
	��#�,�-����0����
	���
��������������	������-�	�����
	�������-���	����
Ebay Exhibit 1013, Page 909 of 1204

Ebay, Inc. v. Lexos Media IP, LLC
IPR2024-00337

�����������	�
�����
����������������	�
������������������
����������������
	�
����������������������
�����������������
	
��			
����������
������������������������ �!!����"��"���#$%��
��&�"
'���(�����)����)����
��&�"
*������
�����&���)��'+*�'���������&�����
��&�"
*	�
�&
�&
�����
��&�"����&����������&
���������&��&)�������������
��&�"����
	���,�-�����)��'+*�&
�������
��&�"����&�����	����������
�������.�)�����������/
���������&�"�0��"�����&
0���
�����0����&��
�������
��
�������0�������
���&��
������������������&�������&��	�
�&
�)��������)�
����������&��
��0������
&�"�������
�����0���	�������
�����������������&��
�0�����������
������������)��)��0������
&�"�����)���0����'&	�	����)��0����������������
���&
			12324�5678292:4;<=89>?@A�BCDEFE?@G?@FHIJKDL@MINJLIDO@PCFEL?@QRSTU8V:W=X YZ[@ECK[?�IC�C?J?N>?J?\A@MIJDA?�]̂MIJDA?�_̀^MIJDA?�_]̂MIJDA?�à^MIJDA?�a]̂ b=8:=8;72�:8=c42de?CeK?NfICgILKIh8=iRU7T�j�Q283VU2TkIJ@ZLFJl�@?CeKE?@mJA?CBCK@?�nI@FJlo?[�YKA?�pI@FJl qCDBnKE�O?@KlJ>IIr�BZ[LK@nKJlQR::=87GCIZ[L?@nIIFJlfCI[L?H�NKAn�LIlKJ@kIJADEA�Z@ 12s;4kIBtCKlnAfCKeDEt�BILKEtG?CH@�u�kIJOKFIJ@1=sVXv==s42kIBtCKlnA�w�_xxyzàay�[t�{?e?L�m|AC?H?�}JE~�PLL�CKlnA@�C?@?Ce?O���o?[@KA?�[t�L?e?L?|AC?H?~EIH

Ebay Exhibit 1013, Page 910 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

APPENDIX E

Ebay Exhibit 1013, Page 911 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

��������	
��
�
����
�
�����������������������
�����
����������
���
��
 ��!���
�"���
#�$�	���������%�����&���
���#'��(��
��
���
$�	��������#�
��#��)�������%�����&*�������������+++� ,����-./�01-2/��-/�32��/45�6./7.8992�7:�-����;/0.�6./7.8992�7�5<2==5�8���7�-�.�8�;�>/.�06�-/��8-��7.86?218=�05�.�2�-�.>81��@AB�C�6./7.8992�7#��
#��
D$E���E+���
���F���!�����#�G�#��	HI�J��K#���
DL�M#
����D�NOOP�QR�,S/0-�-?25�-0-/.28=T����
�
����������#����#��
���#�%�
���#�������K#����#��D���&#�#U%#��#��#����!	("	VL�"����"WW�%�����&&�������#��EX(����JY�Z�
��#U%#��#��#
�#�F���D��������F�[J��%�����&&���+��F�D�����#�
�����
#�%�����&����
�\��
�F���D����#�F�
�
�F����
�#��%#�%�#�D������]
��#
��������%��K�����������#����#��D�
����#����%��������#����
#�F��#�F���D�����%%����
�������D��DL�����#�������
#�+���
�#K#���F�D��������
���
#���
�����
#�%�����&��F�������K���
����
�
������&�D���K#�D��������������#��
��������F�����&��#����%#��
�����D�
#&�������%%����
���������+	�
������&��D��F�
�#�%�����%�#����
�����#���#�#��%%�D�
������[J���
����
�
�����������F��������I������F
�)�����������#��
����
�#�&��
���&&���D���#�[J�+�)�������������FF#���
�#�&��
���%���
���
#���#K#��%&#�
�
���������
�#�#���#�%�#�
D��F�
����������
�#�������#���F���F��&�
�����K����
�#+�������
�D���
�
����#�
���&��D��#K#��%&#�
�
#�&���#�#��
�����
����D�
�
�������#��
�����#��
�������
����&�
��������
��
�D������������K#�����#���
��I������F
�)�����������
#�F�&��������
����&&���)�������
#�&�����#������L�������
���L��������#�
�U#��#
�+�QRQ�̂/4��2>>210=-�25�2-�-/�4.2-��8�32��/45�6./7.89_V#
]���
��
���
��
�#�������#��$��F�D�����K#����#��D�%�����&&#�����"����"WW�
#F��#�D������]
��##��
���#�������#��%�����&&�����������#�F��%�����&&����)������+���
����D���������##L�%�����&&����)������������&#���
���FF#�#�
�F��&����
��������#��	Y(�̀"�%�����&&�������#��EX(���JY�Z+����#K#����FF#�#�
���#����
�&#���&��#���FF����
L���
������
�#�#���#���&#������#��
���K#���&#��
�
�#�
#�������+���
����#�D��]K#���#��
����
�#�
�������������

#��D����F���
�%�����&�&��D�
�������#
�#���#����
��)�����������D����#
��%%��
���
�#��D�����K#��#K#������
#F��#+I��D�%#�%�#�
�����
��
��
��#���#��
��������̀)�������%�����&&����F���
��������
�#�a��FF����
a����������
�FF���
#�+�T�������%��
�
�D���#��#�������D��������%�����&&��������
����%����
�����

�#��

#�
�������#����
������#�#�
�#D�a���
�
��
#����D���
�#�
��������
�
�#��#
����a+���
�%�����&&���)����������&��#�
����\��
���������F#��&��#�F���
����L��
������FF#�#�
�%������%�DL��
��#K#�
����K#����
�#��
�����#b�#�
���������
����
�\��
��������
�
������#��������������#�
�����������#�
�U#�������
�#��%�����&��#�����#�+���
�#���&#���D�&��D������
#��#K#�
��
�D�������������#��
����"�F���
�
#F��#��
��
������
���
\#�
����#�
�
#��%�����&&�������"WW���D+������]
�������#�#�
�#�#�&D
�����&#�F��&����������]
�#K#��%��K#�
��
�
�#D���#�\��
�&D
���
�
����
�������D�����D��F�������#�����#��D�����#
�#���
�#���#��
�����#��
������%�
����&�
D��#��������
��
���&&����&�F���
+�����������D���������������
������
��%���
�#���
���
��
���
��a�������Da%�����&&������#��D����#���D����
�
�����)������������
����
��#�#����D�#�
�#��
��
#��&#���&��
#�����"�F���
���#��D�����#���&�����
�"WW����
�#��������+���#K#��
�#���&
���
�����F�)�����������"WW�
#������&#���FF����
�#��F���
#����#��+�J������������#��a��������
����#�a�&��#�����#��
��������F����)�������������&��#���FF����
����
�#�#���������
����#�����#�����
��F�F���
������
D����D�F��&�D��+�E#F������D�������������#�������
�
�
����D���
�)�������#�%#�����D��
�
�#�
#����������#�
����K#�D����#������
#
�##��)������]��
\#�
������D��������%�����&��
\#�
�+T��������
�#�F��
L�
��
�%#�%�#�������K#�#U%#��#��#����"������
��#���"WW�%�����&���#�#���K��#�K#�����
�����#�#����D���
���%��
�#&������D���������K#�D�������
�#����#���&%�#�����"+�T����
�
���������]
�&��#�D�����&��
#��)�������%�����&&#����D��D�����D�����#��#���&#����#�D��]K#
Ebay Exhibit 1013, Page 912 of 1204

Ebay, Inc. v. Lexos Media IP, LLC
IPR2024-00337

����������	�
�	�
�
����
�	��	�������	�����������	��	��	�
�	���
	����	���������	���	��	���	�����	���
��	�����������	����������	�
����������	��	���
�����	������	 ������	!������	�� !�"	#$%	&'()*+,-	.-/-0'12-3)	43)5-	678 ��
	�
�	�����9������	��	�
�	���	��	���	��������:	�
�	���	��	��9�
��	��	
��	�
��	�;���������	����������
�	�
�����"	
���	�	���	�����	���	�����	�	�
�

����	���	�	��������	��	�9��	����	��	�	�����	��	������	����	����	�	���<	���	�����
�	��	���������

�	��	���	���	���
���������	��	��

��=���������	>�9�
������	?�9���������	�=>?�	�
��	��<�	�
����	�	
��	������	���	���
	�
�	��������	���	�
�	�;����"�
��<	���	�������	���	��	�����������"	=�	���	���	��	�

	�������	��;�	������	��	�����	����	����	���	�
��	��

	�	�����
��	����	�	�������	
������
	�����
���	
�<�	@ABC	DA	BECFAGH@	����	���	I����	��	��	����"	?9��	��	���	����	����	��	�����	�
��	�����������	��	
�<�	���	�������

�	��	���	����	��������	���	���
�	����	��������	
�<�	������	����	
��

��
����:	����������	������	����	���������	���	��

	�����;�	�������9�	
�
�	��	����	�	������	����	�����
	���	������
	��	���	�
���	���	����	��	���"	 ������	�	�������	��	�
�

������	�����
	���	�
�����	��	����	��	���
�	����	���	�
���
��9��������	9�����
��	���	��<���
��"=�	�����	��	���	�
��	�������
	���	��	��	�������	�����������	�

	���	����	��	�	J�	��	��	
����	������	��	�	J�	���
	���������	 ������	���	� ������	��9�
������	���<���	�����

��"	K
�	���	����	����
��	���<����	���	��9�
�����	 ������	���
��������	���	�����������	L����
	���	������
�����	���"	M
�
���
	���
	���<����	�������	���	�����
���	�
��	����	���	����	���	������	�����	�	��������	���
	�
��"	K
��	���
	������	�������
�	�
��
��	�	������	����	��
�	��	�	�	��	���	��
�	����	�
�	��
�	�;�������	�
��
	��	"�	���	�	���	"�JJ	���	���	���	�����
�	�
��	���������
�"
��
	���	��	�
���	���<����	���	����	��	���	��	�	������	��	�������
	����������"	=	������	L����
	���"	 ��
	���
���	���	���	�
��	��9�
��	���
NOP���	 ������	���	QRP���	 ������	���
��������:	�
�����	���
	�����������	L����
	���	���	����	L������	N";	��������
�	N"SR�	��	��9�
��	NOP���M���	���	L������	T";	��������
�	S"U�	��	������	QRP���	M���"	��	�
�	��
��	
���	���������	�����	��	
�9�	���������

�	�����
��
	���	�����������
�����	�����	���	���	�
��
	��<�	��9�
������	�������

�	��	����	��9�����	��������	��	 ������	���
	��	�!?	����������
�	������"���
	���<����	���
���	�
�	��

�����V�����
��	���	
��<��	���	���
	�	���	���=���������	>�9�
������	?�9��������	=>?	���	�������	����������:	����	�������	���	���������M	9������	��	��
��	���������	���	�����
���	���
� ������	W>X	���
�����!������	���	
�����	��
��	���	���������	�
�	 ������	MJ=��
���	
�
�	��
��	���
	�
�	�����������	��	�

	MJ=	��������:	��������:	9�����
	<��	�����:	���"Y�������	�����
��K��
�	��	������	J������	���������	���
	��	>��
����	��;��:	������:	�������:	���"	����
��	M��
�������	W�����	��	Y������� ��<�
����
���	
��������	���	������	���	��9�
������	����
��	���	��	� !�?;���
�	����	���	�	���	���	��������	#$Z	['*)'	\8-)548)\)',4+0=�	�
��	�������
	=	��

	�����	��9�	���	����	���<������	<���
����	�����	�������	���	�
��	���������	���	��	����	���������	�����	���	���9�������"K
��	��	�������	T	��	�����	���
	�	�����	����
�	�������	�������	�
��
	���	���	����
���	��	����	���
���"	K
�	��
��	���	����������	���	��������
��	����	�	����
�	"]=J	��
�"	K�	��	��
�	��	���	�
�	��
��	���	
�9�	��	�;�����	�
��	�����"	���	�9���]=J	��
�	���	�
��
�	������	�	���	���������"=�	�����	��	
���	���	�����
�	�
�	����
�	��������	���	����	��	������	�	�������	����	�
�	=>?"	���	�
��	���	��

	����	�	̂? 	�������	��	�
��������	����	��	���������	L����
	���	T"U"	M	�������	��
�	<����	����<	��	�

	�
�	��
��	��
������	��	�	�������	��	��

	��	�����
��	���	
��<��	����������������	��	���
�	�
�	�;������
�	���	��	������

�	�	������	9������	��	�	��<���
�	������	�����	��	���	��	���	<���	�
��	�
��	���"	�����������	���������
��	
�9�	�
�	�;�������	"���	����	��<���
��	���	�
��	���	���

	�
���	MW�==	��;�	��
��"	_���9��	�
��	�
��
�	���	��	�
�����	���
	�	��;�	��������
���9�	���	�	
���	��	�
�	���������	������	̀>�	̂�K	?>=K̀�"K
�	�������
	��	��������	�
��	���	�����	����	���	���������
	���<�	
���9��	��	��	��������
	�
��	��	��	��	�
���
	�
�	����	���	
�9�	�
�	�������
�����	��	����	=>?	���	�
��	���	���	��
�	��	������	�
�	��
���	
�
�	��	�
�	 ������	W>X"	K
��	��	�������	��	��	����
��	������
�	���	������
�	���;�
���	�

	�
�	���������	��	���	�����	��	�����
	���
	�

	�
���	����������	���	��	�
�	��
���	
�
�	���	��

	����	�

	�
�	�����������	�����	�	�������
����������	��	�������	���	����"a���	��	����	���	�����	<���V	�
���	���	���	����	���������	�
�	��
���	
�
�	����	�
�	=>?"	�����	���	��

	����	�	�������	��

��	W?MY�_	��	�
�
�
�	����	�
��
	��<��	���	��	�
�	����;	����	����	�
���	���	���	���	�
�	
����
��<�	��	�
�	�����
	�������	��	����	�
��	���	���	
��<���	���	������	��	���	��	�9��9���	��	�
��	��	�9��
��
�"	K
�	��
��	�������
���	��	��	��������	�
�	������	��	�	�������
��	��������	����	��	����	���������	���	������N"	
Ebay Exhibit 1013, Page 913 of 1204

Ebay, Inc. v. Lexos Media IP, LLC
IPR2024-00337

��������	
��
�� ������!������������������"���#!���!���$�����!������ !�����!���$!���%���!������������������"����!��&���'�()
�*�)+,���-	,+�
./�*
�*0+��1+	%�����!���������������"���������#�����������������$��������������!��!�"���������������!��!������������ �����!$����&����� !��������������#!��������!�������������$�������!���������"!�"�����������������!�������&�&������!���������!������� ����$������������!�����������������������!���!��������!������!�����&�2������ ����������������������������#��!���!���������"����������!����!����3�������������!�����!��$������#���������� !���! �������! ����$���&�4!��"����������!�����5!��$��� ��������������������#�! ��������!�����������������!�����!��������!�����!�����!��������&6���� ����������������������$��!���!���! ������!������!���������������������������$����! �������!��������������"������������!���! ��!�����������$����#���$�����!������!�����!"���������$����#�! ��������! ��������!�����&��!��#7�������!�������������$������� !�������!����! �������������!$��������������#��"����$��7�����������7��!�����������������! ��������������� ������������!����3�����"������������!����������������������"��!��������!����! ������"������8��������������!�&�6� !��������#�������������! ��!��������������7����������������#���#���!���#7����������"��#�! ����������!!���������������!�������������&4!���������������������� �����������9�:$"�!���#���������������!��������������$#����������������������$���������� �������!�������������#������!������&�;!!��������������������������!��������������������5!����#� ���!����������������������� �����������<&�=�*�,*,>+�+11&�����������������!�����#������� !������������!���� !�����������������&�2��!������ ���!�������������!�����7�!������������������! �������!������7������!����!�7���?������������������!��! �$���!������������#���! ��!���!�����!"����&@&�A	��1B�	+��/&������������$��������#��������������#�! �����!������"����!����������$� !��7�������!��� ������� !�������������!�&C3�����D�2 ��������!�������������$#������������E���������!����3��!�������!���������������!�������7�������!�����������������!�����!��� !����������������!�������!����������!������F$��G7�!��������#���H�����������H���������F$�����G�!����!������!������$����������������������������! ��!�������!�� ��������F$���G&��������������������!����������������!��������������������!������� ������#&I�$$���������3���������������������! ���$���!��!������������!���J�������������!���������������!������3������� !���!!������������#&K&�L+1*	,�*,>+�+11&���������� ���������������!�����!"���J���������!��&������������!�����&�&�$���$���!������#�������������!�����!�!������!��������!�����!������������������!�M�����������������$���"�!��&�������������"��!���������������������������!�����!������������!����!��������� ��������������E�������"����!��&<&�=�*+	
B+	�),.,*/&�2�������������J����������������"��!���������������!������������� !�����!������$�������#��3��������$���������������!��&���������$!����������!!���3������ !��������� ������7�!����������NNC�����:;C&@&�O*��
�	
,1�*,
�&��������������������!��!�!��������������!��&�2����E��������������� ������������������!�����������"��#��������� !�����������������������&�&�����!����� !��!�������!����"������ ����!�������!� �������!�! ������������&������������D�:�������������!����!���!�����!������������!�������!����!���!�������������&�����P0/�P,�

Q1���������! ����������������������� �������������!�������!�����&�2�� ����R���!�! �����������!������!��%���!����������#����<STK�$������� �������!"����!�����������������������!���#����������&�U���������!���! �������!���������!����������������������R�����!�������!��������V���������6���2���� ����:���������W#����� !�����������������&�&�!������ !���$�������!�����!��������#����&�U����������������#��������������$�����������R��8:W�����%���!��&�:�������������! ����!��������!�����������������U�����W����������X!��!�!���U����������� �������!"�����������#���! ���"������������!����������������!�&%����%���!���K&Y������!������<SSY��������H�����"���#����!"���������������H����U������Z����������������$!!��2������%���!���S[&�W�������!���!�! �RW8N:W���������!������$��������������#��!���$����!����!�� !����V62�$����������������#�!��!������#�\X������������������ ���������#!�����������5�����������#�!�������!���������#!������!���!�����������!��������!���!�&�U���$���������������������������#�!����!�� !���!�������5!������!�����#%���!�������������������!���!��������������!��������!����������!�!�����V62�!��!����������#����DN����!�����<]�$����������������%���!���\�!����������%���!�������� ������"��#��!���������������!�#���E���������&�W����� !��R���$#���! ����!�#��������!��������3�����!��!��!������� ������!����!�����������������#�K@$���:���������W#������!������"��$���7���!�����������������������!������������#���������#&�2�����!������������$�#�!�;���!�������̂!��$!!����������������������������!���!�������! ���� !�����������������$����#&�������������!��!������������� !�������! ������������!�����!����������5����������#�����$� !�������!�����#��!���! ���� !������&����������������� !�����������������! �$!����!�����������!�������������!��!����"�������!��#������������ !��������$����������������!����� !����!���������!���\X��$���������!�����������!������������!�����&�̂!���!������!��������"��!�������!���� !���������!�����&R���!�! �������!��5������!"������V62�$������!���������! ���������%!���\�!����!������W��������������������!�&�2���������!�������������R���!�! �M��%!�������C3�����������"��!���� !��%���!���!��%���!���������"��!���� !�������$����������#�������������������!
Ebay Exhibit 1013, Page 914 of 1204

Ebay, Inc. v. Lexos Media IP, LLC
IPR2024-00337

����������	
�	��
����������	��	������������	���
��������	���	����	�
���������	�	���������	�������������������	���������
�	����
	�
�����������������

����	�	��	�	�������	����������������������������
��������������������������
���
����������
�����������
�����	�
������	��
�������	��
�
�	�	����� �������	
�����������
���������
�����������
�������
��������������
�
	��	��
�����	��������!��
�
	��	�����
�	��	������������
�������������������������	���
������
��"��
����������#�����	��������
�
����������
�#����$��	�����	��������	����
����
�
�	�����	�����	��	%�	��	�	������
	���������	������������
�����

�	���&�������������������
����	�����'���(������		�����������������
����������#������	�������
�����	���	�����
�����	�	��	�	������
	�������	������	��������������
��������)�������������	��	�	������
�	���*�������������"����������	�����	��
���
	������	���
�
���+�
	�	�#����������	������� ��	������������	������������������

���
	����	�����	�������������	����
����
����������������,��
����
�
	���
��
���	������������
�����������	���������������
�������	������	��
	��#�	���	(���	����
������	�	�����	��������
����������������
����
��	�����������
�����		�������
������
��	�	���
�
���������
�
	��	���	��������	
��������	�����
	�����	��	������	���
������
��	�������
����������	��	�������-*.����
(�����������
���
��	���	���
�.

	��
���#��	������/*.���)�0,/.	����,��
��
���
��	������
�����
�"����
�����
�	���
���
��#��0/������
�	���
	�������12"�����2)"0���������	�����
���
�	����������
������
	�������
����345�6789:;<�=>�6789:;<.�����	����������
���
������������������������	�	�������+������
���
����������
?�������
�@�A�$����������������
��������#�����
�@�AA%(������
�BC�����������
�),��������
�@�A��
�
	��������
���������������./-*.�����	��
���
���������������	��	���

	��������	��	����	��	�"�	���������
�����������	
�DEDF������

��
��,�����������������	�����������������
�@�A��
��������	������AF���"��������
�	����	��	������@G���"���������
�������
�BC�����������
�),�����������������������AF��
�������������	������
������
���������	������
	����	
�
���	���
�����		���#
��
�������
��
��������
���	��������������������������������
����	�����	����
�����������������
����	���@G/��	���������������������	��������
�),������
��	���	������������	�����������
�
��	�����	����#����	���./-*.������	
�AF���	������	��	������������������������
����������	������	����

	�����	�����������
����
����@G���	�������,��
���
����������	�������������������	����

	����������),&.�������	���#��������	��
���	��	�����
	�
����
	���	���
�����	
����	���
(���@-��������
���	��������������*���1H����������������AF���	�������	����������
�����$�������
�	����	��	���
	��������.!"�����)."�������	������������
�����
����������	�������
�D��	%��������2�������������
��	���
�������������	���#����������
�),�	���
	�	�����	�����	������	����

	����2����	���	��
�	��
������	
������?����#������	����

�	������IDF/AEE�����AF������J����
�������������	����

	����� �������	
��������	�������	����	����������
�BC��
�	���������
�����������
����	�����	���	��(������������@G���	���"���	���	���	�����	���������������	���
����),�	��	�"����	������������,�����+�������������	����������
�BC��
�	������������������������������	����
�����	��������������
�
������	���������	������	��������
�@�A�����������
�),���
#	����!���������
���
����),��������
�������	��
���
#	�����	���������	������	������������
�������������������
���	���������	���	��������
���
���������
��	�������
�	����
���������
���������������
?�	���
�����������
�������
������	������,������������
���������"�����	���
���������������	�������������
�����	�����
	��
�+�
	������	��
�������	�����"�)����	����

�
��������
	������	�	���������	��������������������	������AF���	���������	��@G���	��*������	�����+���������
��
������	��	�	�����
�����	�	
���KLM���������
�AF��	������������AF��
�����@G��	�����	���������������������	��
�$AF���	�����	��
%���
������������
����AF��������
���������
����������	�������	����
(������@G�������������	����������	�
�������������
�@�A��N�������	������
����

�����	
�	����������	��	���	���������	����

	�����	��
��������������@G
�����������	��	�
��������	��
����
���"�����	���
�	��	����������
����
����������������������
�),����������
�BC�
�������
������
���������@G��������	������������	����������	����

	��
��54�O8PQ:9RSP7:8,��
�����	�����	������
�
���	��	�����
��
����������
������������������	
�����	�������������
���
��"	���
���������
���
�������
��������
����#��������	�������	����!��������
�������	������
�
���	��
������+���	���
��
������������
��������������54T�UVWRV8P7XY�ZQ:[QX\\78[�]<4�V]V8P̂9Q7]V8�ZQ:[QX\\78["	���
����
�����	�������������(��������
	������	��
����������������
����
�����	����������
���������	��
��"�	����	������	�����	��������������	�����������
������
�������
�	
��������
	�������������
���	����#�
������$�������
�
�����������2)"0�1���
�
	�����������	�����������	��	�
�	%��������������
����
��	����	��	���

�������	���
��������������
��	�	��	�	�����������	���������	�����	����	���������

��
�	��
������	����
����������������	���
����	�	�������#�����

������#�
�����������������	��
�����	����
����������
�������	���
�
�GEEE�������	��
�$GC�����
��
�DE������
%����	���
��������������������������
������������������	��
�
	�����������(�	������
��������������
(�	��	���
	�������������	��
�	��
��.���
�����
��	�	�������
��������	��������	�������	�����
�	��������	���
���	���
����������	�����
�	����
��
����	���	��12"���#��������
�	����
������������������	��&��
	�
�����	�	��
�����
������������������
��������������
�
���	�����
�����������������#�������������������	��	(�
������������������
�������
������������������������������������
���
�
������	��"	�����������������+��������������������	�����	��#����	���#�����������	���	����
��
��������������������	���	���
���
�����������
���������
��	���
�	���������	����
���
���
�����������	����
���
��	�#������	��������	�	��	�
�������	��������
���
������������
����	������������.�������
���	�	�����	���+���	����������	��
��
������	���12"�����
�����)�����������������	��	�����
�	��	�	����������	������	�����	�����
�	�����������
��
�	���
����������	�����
�	����
��
��
��	��
���
	��&���	�����������	������
����
�������������������
�����

���
������������������	�����������	�
���������
��������������
Ebay Exhibit 1013, Page 915 of 1204

Ebay, Inc. v. Lexos Media IP, LLC
IPR2024-00337

��������	
�����
�	�������������
�	

�������	
�����������	��������������
����
����������	��

����	����
�	�	����������������������	����������	�����
������	
�������
�
����
��
���	������������� ������������
�
��������	
����������������������
������
���
!����
!����������	��������
����

	��	���	��
"�������������

	�����������

��	
��
	�
����
�
��������������	���
������������#�	�
��������
��
��������
����

	������
�
��������
�����������
����
��
����������
����

	���
�$�	
������������
��
����������������
�������������
	�
���������	���
����

	�����
�
����������������������
�������	��
���
��	���
�%#��

	�����
����
&���
��
������'����
"�!��

������������������	�������������
���	�
���
�����	������
�����	

�����	�������������	�����������

������	����	��������
��������� 	

����
�$�	
��������������	(��������� 	�����
	��������������	�
����
���	�
	��������
����

	��#���������
���
������	����
���
��	�
	�������
�����
���	���

�����

�
������	�
�����
���������
���	�
	��������
�����
���
�����
&�
	�����)������������
����
��
������
��	����	���	
�������������������������	������������������
������	
�
�*	���
�������������
������������������������������
����
�������	�
���
���+
�������������	
����������	������
�����
������������
�������
�������������
�������

	����,-"./��������
��������	(�����
��������
�����
����������������	�������������	��	����
���	
������+
�*�����
���
�01#�����2�3���������
�
���������
���	��
�
��������	
��
&�
	��������#����������������
����������������
�
���
�����	��	�
�������	
��	��4
�	(������
���������
�	(�� 	���������������5��������������

�
���	���
�����������������	
���
������������������

��	�
���
�����
	������	
���
��

	�����
��

��	

��$�	
�������	���������������������	�
�����������
���	�������
����
���
������
����
	���	

�����
�������	�	����	�
���
�����������
���	����
��
����	������
�������
������
��
����
�����������
����
�
���
�1#������������
����
�����
&�
����
����
�����������6
���
����
���������
"����
���������������
�	�%�	����
&�
	�����7���������������������
���
�89:;<=���	����	����������	������
���
����
��
����
���	���
�
�����
���	�$�	
�����
������
����
����
��
���
���	��������	�����������
��������
��

�����
�
���	�����
����
��$
���	���
	�

��

���
��
���
���	��������
���������	���������
(�
�	���
"��������������	��������
�������$�	
��������������	��������
���
��������
����
���
�	���	������
�4
�����
����
��	���
��$�	
�������
�

���5��
�������
���

����

������
���	
��(����	�
	��������������	���������	����
&�
	���������������
�
����	��	

��	
������	���
���	������������������	�����������
��������(�����	�������
��������
��	��������	�����������������
�#�����������	��

���
����	�
���
�
	�
��
��

	���01#�����2�3����������	
���$�	
����������������������
�����
����		���������
&�
	����������
�����
���

�������������
����
���	��������
����	�����
�
	�����������������������	�����
����������
�������������	���������

�
�
	�!
���
	���������	���*�����
��������

�
	
�����	����	���
���
�(�������	�����������������������������������
��
"
���

��	
���
���
�������	������	����
������������
�����	���
�����������	������	����
���
���*	�
�
	�!
���
	���������������
�������
�����

������
���	
��(����	�
	������
���	�
�����
���
�����������	�����	�
���
����
�������
������	��	

���
	������
���
����
�
����	����
&�
	���������������
�
�����	
�
���

	���	

����
�������>?@�ABC9�;BD9�EBF�G:HF:9FG����������
�
�
���
�
������ ��������
��	�	�������������	����	����
��������
�������������
����������
�����������������������	�

���
���$���
���	���
����

	����
���������
��������	
����
���������� ��������$�	
�������������	�������������
�
����	����������	�������	
����������	����	����
�#���	�����	�
	���	���7����������������
�������������

���
��������	�%IJKLMNOP�QRSOJTUVWJKS�XYJKZ[\���]̂JKS_Z̀aPMMT�bT̂MÒ[c���̂PSN̂K�dce2��������$�	
��������
"�
������	�������
����������
����������

��	
��	

��	��������� ����
�����
�����������/-���	
�������

�������
����
���������������������	��
����
������IJKLMNOP�QfJKOTfRUVWJKS�ghijhk�bJKlYJKZahmnko�VpKRSYKLPq�ahmnko�VĝPrpKRSYKLPq�kgist�M]jXOkJKPq�JKS�KjXOiVTf[\���lPRRYuPvTwZmxkkq̀aPMMT�bT̂MÒq�̀ly�_ĴRS�]̂TûYX̀q�lvz{|[c���̂PSN̂K�stxoc
Ebay Exhibit 1013, Page 916 of 1204

Ebay, Inc. v. Lexos Media IP, LLC
IPR2024-00337

���������	��
�	
�	�	
����	����
��	�
�����	�������	�����	
�	�	����	������	���	���	�����	

��	
�	
�	���	������	��
�	
�	���	����	���	������	�����	������� !�"#$	%������	�
������	����	�	�
����	�������	��	���	����	���	���	���	����	
��	%����
��	���	�
�����
��	���	�
����	
�	����	��	�
���������	
�	��	
��%�
����
��	���	%��	���	��	�	�������	��&	�����	
���	���	���
���	���'
���	
�	���	���������	�
	���	%������	���	���	�
����	
������	��	�
�����	������	����	�������
�	(��	����	���	������	����	
�	��	��'�	����	���	�
����	��
%�	���	%��	

��	�
��	����	%�����&	%���������%�	��	������)	�������)	��&�	���	�����
%�	���	��
%�	���	����	%��	���
*�)	�
�
�
��	��	��&
�
���(�
���	��	��	����	����'��	+	����	��	�������	���	���'�	�������	��	���	����	���	
��
�
��	�
��	����	
��������	%��'���
���	����	���	��,�
���	
������������
��	�
�����	���	���	
������	�&��%
����	-.-	/0121	34	5	678	5+
	���	��'�	����	����	%��'���
����	9	��	9::	��������
��	���	�������	�����	���	���	��	����	����	�
	���	%�������	
�	9	���	�
���	���������
��	�
���	4;3<=0>?)	@237<A>?)	B1<=>?)	AC@17>?)	��%�	�����	�����	
���	%������	����'��	�����	���	���	��
%�	%�����	��	����	������
�����)	���	����	���	%��	���	������	���	���	����	���	����	
�	�	�����	'��
�	���	�%%�������	%������	
�	�	�
�����	9	��������+�	
�%�	���	������	�����	���	%�������	��
%�	�������'��	%���	���	��	����	
��%�
���	
�	���	DE	���	���	����	���%

%	��	�	����
%����	����
����	���
����������
��	�
	�����	%�������	
�	���'
���	
�	��	%�����	�
����
��	��
%�	���	�
����	��������	�
��	����	�������)	�������	���	%���	9	%���������%�	��	4;3<=0>?	%��	��	����������	�
��%���	��	���	%���
���	���	����	��	���	��,�
��	������	��	�
�����	

����F����	�
�����	���	��
��	���	���	����	�����&)	���	����	���%����	���	���	����	'��
����	�����	��	
�	�	%��'���
����	9	�������	���	�
	%�����	�������	���	���	%���	9	%�������	����	���	��	%�����	������%�����	%�������	��
%�	���
�	�
��	�	����	G�
��	����	H
�%����	��	H��

��I�	J���	
�	�	�
��	�
���	����	%�����	%���	9	%��������KLMNOP					OQKR					STRQU					MV					RWKR					LPMWR	XYNY					TRNZT[KM\RYV					N]̂R_RV					KNTZONJ���'��	�
��	�����	%�������	���	��'�	��	��	%���
���	̀
�����	%�������	��
%�	���	���	��

���	
�	������	

���	�
��	�abc#de)	�abfcgde)	c#de)	��%�%�����	������	��	����	�����	�
������	h237<A	G��

���	
�	���
���I	
�	
��	�&�����	�	%������	����	���	%�����	���	�������	iC=6i<3j1	G��

���	
�ack�deI	���	%���	l��	����	
��%�
���	����	%��	��	����)	������	

��	�	�
�
���	
��%�
��	
�	���	�
�����	�m+	��	
��	�&�����	
��	4@237<A>?�	n@237<A	�������	����	��	@237<A	�&%���	��
�
��	���	������	��	�	���
��	������	����	���	�%����	G��	���	�����	������I�	n@237<A	G��

���	
�	���	�aocp!de	

��I	%��	��
����	����	�����	�
�����	���	������	

��	
�	
�	����	�
	�'��	q
%����
���	���	������	%����	J���'��	+	��%������	���	��	���	
�	���	���	;4@237<A��
%�	
�	���	�,�
'�����	�
�����	
��%�
��	
����������	�������	�
��	�
�����	%�������	
��
̀�����	
��%�
���	�%������	���	%���	��	����	����
%��
��	���	����	
�	����	������	�������	�
�����	
��%�
���	���	r���	�	
��%�
��	%�����
�����	����	���	��
���	
����
)	�
��	����	%�%�
��	�
	

��	
����	���	�������	�
�����	�m+	
��%�
���	���	���
�
���	
��	����	�������
̀�����	
��%�
���	�
��	AC@17	G����	��

���	
�	�abc#deI	�����
���	��	���
�	���	���
�
����	��

��
��	���	
������%�	�	����%���������
�
����	��'��	�
	%�����&
���	���
�	������	
�	������	
��	���	��

���J���'��	�����	
�	���	
��������	�

����%�	�������	4@237<A	���	;4@237<A�	;4@237<A	%�����	����	�
��	
����
��	��
��	�������	�������	4@237<A	%���E�	

	���	����	��	
�����	
����
��	��
��	�������	���	��'�	��	���	4@237<A�+
	���	���	�	�
�	%��
����	���)	������	�	����	���	%��	��
%�	���	(�
���	��
��	�	�
�����	
��%�
��	���	������	������	%��%�	�������	�����	
�	���,�
'�����	��	�
�
���	
��%�
��	
�	���	�
�����	�m+	���	

	��	���	
��	D�����
��	����	��	���	���%�
��
��	�
	���	%������	
�	���	������	��	����	

�����	%��%�	�������	��
�	%������	%��	��	����	�����	�
������	-.s	/01	htn5tu	=6ii37B	=C7v17<3C7+�	�'���	�������	��
���	��'�	���	��	�����	���������	���	
�	�	%��'���
����	9	�������	��
�	
�	���	
��%�
��	w��
�w	��
%�	
�	�&�%����	��	���	DE����	���	�������	
�	%������	F����	�
�����	��
�	
��%�
��	
�	%�����	wxcp� cpw	���	
�	���	���	����	���
�
����	����������	�
��	
��	+
	���	����	��	����
��	�
	%���	�
��	���	
����������
��	�
	���	
��%�
��	xcp� cp	���	�
���	����
��	�	���������)	����	���	��'�	���	����	��
����	m�E9�̀�	y��	�
�����'�	�����	�
	���	��������
��	��������	m�E9�̀	���	�
�%�	�����	��
��	9	����	��
�	����	�����z	+�	����	���	
�	�%������	�����	���	%���
���	������
�	
��%�
��	����	���	m�E9�̀	%���
��	%��'���
���	{��	����	����	����	����z����	�	
��%�
��	
�	%�����	��	�	�������	����������	�������	
�	
�	��	DE	
��%�
��	��	���	��

���	
�	����	���	�������)	���	����������	�
�%�	������%

��	
�	���	
��%�
��	%���	��'�	��	��	������	��	���	
��%�
���	��
�	
�	����	��	����
��	�����	����������	��	���	���%�	���	
�	9	���	�����	
���
%�	���	����������	���	������	
�	
���	�
���	��	��
�	G����	���������	

���I	�������	
�	m�E9�̀	
�	
�	'
%�	'�����	{��	�	�
�	����	���	��	�	������	��������	�	%�����	�
	�

����%���+�	9	���	%��	��'�	
��%�
���	�
��	'��
����	���������	�
���	��	����	�
��	@237<A	�����	���	%��	���%

�	��	����	����������	��	���	�
��G�������
%����I�	�
��	���	m�E9�̀	%���
��	%��'���
��	��
�	
�	���	����
���	���	�����
���	
��%�
���	��
��	���	m�E9�̀	%���
��	%��'���
��	��,�
��	|(����	����	�
	%���	����	%�����	G
�	}~�(
�	��������I�	{��	|	(����	���	���	����	'���	��%�)	���	��	���	�
��	q
%����
�	���
����	�
�����)q�����	���	�	�%��%�	������%�	���	|	(����	��'��	
��	�'���	�
	���	���������	�
	
��%�
��	%����	
�	�
�����	���	�	������	�
�	
�����	|	(����	��������	����	��	
����'�����	
�	�����	�
�%�	��
�	����	��'��	�	
��	9mF	%�%���	�'���	�
��	�	
��%�
��	
�	%������
Ebay Exhibit 1013, Page 917 of 1204

Ebay, Inc. v. Lexos Media IP, LLC
IPR2024-00337

����������	�
����
��������������������
������������������������������������ !"#�$����������������%��$�����%�&���%��%�'��%�	(���	����	�
��������)������������������������������������*��%��%��%�&��������������
������������������������(�+�����������%������
�*�
����������������*����
������,�*
�%	��������-./01./�	���������)�����%
����������%�&���%��
���	�$��&����	������	�*���
����&������,��*�������2���%���
%��������3�����42
35�����������*����������&(����
��
������������%����%���%������%�����������
������%�������	�	�%����*�$*�
��	�
����������
��	�
���	����$��,��%���	�%��(�+�����&�������������&��&����%�$��	����%�	�
��������
������������������������(6���&�������
���,�*��%�����
�����%������������$����������������
��������������������������������%�����%�����*���������������	���	��	�&�����&����%������%��������������	������(�7�
���%)���	������%���&&��	����	��������*���
������������%��$������*�����������%�������������	�
���
�������������	�
�����	���������������*�	����%���	����	�%�����(�+�����&����%�
���	����������&����������������������4
������%���%���	�	��������8��%�98:�����5��������������
���������������������������	�������*����%��%�&�
���	��%����������������(�8*	���������������&����%����������������������������������*��������	�����,�����������	����*�����
������	����%������
��%���������%*(�;<=�>?@�AB!CD� D!�!E"D" E!���*����������$%�������,���������$�������&����������*���&����������������%�	����%�����$��
���������
���%��%�&�F�����
%�������������
�%	�(����%������������������������%��%�&�*����������*���%������	��������*��������
��������&&��	���,���(�(��� !"#�	���)�����0GHH1IGJKL���&&��	����������	�
���%��%�&����&����&�%����	�%����	�$��(���������%�*�	�*��
������
����������	��%��%�&&�%�����	�	����$��
��%	��%��,�)������M*����
%����
�����
�%	����	������������M*�����%�������������,�*(�
%��%�&&������&&��	��
�%�����%����%��������%��������������	������&�����$������%������
�*�&��*�������������$������%��	����%��%�&&���(����������	�
���
��������&&��	���%�������������	������
�%	�����������%�������������%	�%���	���������������
�%	��$������
�������������������%(+���%�������
��	�
��(�(�������	����%��,��
���	�������%�$�$�*����%�	���	�����&&��	���,��N��!O��%��N�@D"@��%�N�@D"@�!O�
��%����������	�
�*�������$����%��������	�����&&��	������	�PQG1RG-./SKT(�+����������*��������%��%�&&�%�������������	�����&&��	������*������������%����	$���%�(����&��*�������*���U��������,�
����*���
���	������������&&��	�*����%�����,������%�����%	�������������%�������	�*���
�������	���������&&��	(������	�
������U���������������%����&�	��������������
�*�$����������%��$������	���%����%��(�V��%*���%��$����%������������%�&���%����%���
�������
�%������*����%������$$%��������������
�	�$*�����&��������������%������������
�������������������%(�+����
�*������&������%��$������������	����7����%���������������������%�����������%����*������	�%*�W��%�������%��%�&&�%������	����%������&��*��4���*���������&)��������&�&*�%���%	�5(+��������
������$������
�����&����������
�����7����%�������������������	������%��$���FXYZ[����\]̂]�����_̀]aZb[��������\[cdefẐfgh�������������������������������������ie[jf̀��XYZ[��k�������lmmn�����k_h]kb[o�������lggb[]h�p]ef]kb[�qrfdr�d]h�k[�Xst_�uvw�ge�xynz_�u{vwd�������dr]e�����d|[Y�����������zfh}b[�dr]e]d̂[er�������~y�\n_���r�ho�����������~]hob[�̂g�]��fhogqc�mk�[d̂����������������������oq������\�ms\����oqsgZ����������thcf}h[o����lf̂�p]b�[���������������������������b�������nm�������bi]e]a���������zfh}[o����lf̂�p]b�[�����������������������������q��������ms\�����qi]e]a����������hcf}h[o����lf̂�p]b�[�����������������������������������t��X���������������������hcf}h[o�fĥ[}[e�p]b�[�ud]h�k[����ge����kf̂w����h�������fĥ������h~[f}r̂��������cfh}[o�fĥ[}[e�p]b�[�ud]h�k[����ge����kf̂w������ed������s_�X�����ed�ho����������s[d̂]h}b[�ĉe�d̂�e[�dgĥ]fhfh}���dggeofh]̂[�p]b�[cc�������dr]e�����c�xfb[�]a[�����yee]Y�gj�dr]e]d̂[ec�dgĥ]fhfh}�]�ẑefh}�̂[eafh]̂[o��������������������������������kY�]�dr]e]d̂[e�p]b�[�gj��[eg�u�[eg�̂[eafh]̂[o�ĉefh}wbZ������pgfo�����bZ�]bbk]d�iegd�x]e�Zgfĥ[e�̂g�cga[̂rfh}�u[�}�]�rfoo[h�o]̂]�ĉe�d̂�e[w��������j]e����������������������h����lf̂��fhogqc�̂r[e[�]e[�ghbY�j]e�Zgfĥ[ec�cg�̂r[�̂YZ[�fc�upgfo��wbZc�����nizXs����bZc��b]cc�]a[��x]e�Zgfĥ[e�̂g�]��[eg�̂[eafh]̂[o�ẑfh}bZed����nis_�X���bZed�ho��������x]e�igfĥ[e�̂g�]�s[d̂]h}b[�ĉe�d̂�e[bZẐ����niim��X��bZẐigc��������x]e�igfĥ[e�̂g�]�igfĥ�ĉe�d̂�e[�����*���	��������
�	�����*�����%���%����%������������R��GSG�������&�������������%�������	�$���������������%�(�+��������(�(���
������*����������	�����>��%��	�����	��������T./SKTH������	�%�����F
Ebay Exhibit 1013, Page 918 of 1204

Ebay, Inc. v. Lexos Media IP, LLC
IPR2024-00337

��������������	��
���
�����������������������	�������������
������� !"#�$�#��%&'(���)�*"�+,�!�(��++!#)����,!�,-'�."���#�����!,�,�!���(��!,����"(,�%",�/�(,#!��& �#'+!��'�)�,!��)�0,�,-�(�(, &'���� !"#�!1�0#!�#��(2�3-�(�1�&&��!,�!�& �-'&0�!,-'#(�,!�"�)'#(,��)� !"#�0#!�#��(�%",��&(!� !"#('&*��,� !"�&!!4��,�,-'���������*,'#��!�,-(�!#� '�#(2�/��*�+,�/-�$'��!,�(''����(���&'�5��)!1(�0#!�#��� ',�,-�,�)!'(��!,�"('�,-�(��!,�,�!�2�678�9:;<=>;?�@>;<ABC�ADEFGHC�!1�1'I$'��!,��&&�,-�(�*��+ �1��)!1(J��+!�(J�*!�,(�',+2�(,"**�%",�-!1�)!�1'�-��)&'��,K�5'&&J�1�,-�-��)&'(�!*�+!"#('2�/��,-'�#'�&�1!#&)�'2�2��!(,�&�((�1��)!1(�-�$'���-��)&'���)� !"�"('��,�,!�!0'����)�+&!('��,2�/����1��)!1(�0#!�#����,�%�(�+�&& �,-'�(��'�,-���2�5-'�� !"�+#'�,'�,-'�1��)!1 !"��',���-��)&'�1-�+-� !"�+���,-'��"('�,!�(-!1J�-�)'J��!$'J�(�L'�!#�)'(,#! �,-'�1��)!12�M�)�,-��4(�,!�,-'�."���#�����������+!�$'�,�!��,-'*"�+,�!�(��#'�+�&&')�#'(0'+,�$'& �NOPQRSTUPQJ�VSUWRSTUPQJ�XPYWRSTUPQ�Z"(')�*!#�%!,-��!$������)�(�L���[���)�\W]̂_P̀RSTUPQ2�M&&�,-'('*"�+,�!�(�#'a"�#'�,-'�-��)&'�!*�,-'�1��)!1� !"�1��,�,!�0'#*!#��,-'��+,�!��!���(�,-'�*�#(,�0�#��','#2.!1'$'#�1��)!1�-��)&'(��#'�b"(,�!�'�0�#,�+"&�#�, 0'�!*�-��)&'(���)�,-'#'��#'���&!,��!#'�, 0'(����,-'�5��)!1(�Mc/2�d!"��',�-��)&'(�*!#��&&�, 0'(!*�1��)!1(�!%b'+,(�("+-��(��+!�(J�%�,��0(J�)��&!�"'(J��'�"(J�*!�,(J�+!&!#�0�&',,'(���)�(!�!�2�!1�1-�,�'e�+,& ��(����-��)&'K�M������*� !"�-�$'�)!�'�(!�'�+!�$'�,�!��&�0#!�#������� !"����-,�-�$'��&#'�) �+!�'��+#!((�!�'�, 0'�!*-��)&'(f�*�&'�-��)&'(2�M�*�&'�-��)&'��(���0!(�,�$'���,'�'#�$�&"'�#',"#�')�% �'�,-'#�ghij�!#�klimni���)��,��)'�,�*�'(���*�&'2�o$'# �,��'� !"�#'�)�!*�1#�,',!p�*#!��,-'�*�&'� !"��'')�,!�(0'+�* �,-'�*�&'�-��)&'���)�1-'�� !"�*���(-')� !"�kqgri�,-'�*�&'���)�,-'�*�&'�-��)&'�%'+!�'(���$�&�)2/��stuvwt���)�x�/y�,-'�$�&"'�!*���*�&'�-��)&'(��(������)'e��"�%'#�,!���,�%&'�!1�')�% �,-'�wt�1-'#'���*!#��,�!���%!",�,-'�*�&'��(�(,!#')2�t��+' !"�+���!,��++'((�,-'�,�%&'�,-'�$�&"'�!*�,-'�*�&'�-��)&'��(��!#'�!#�&'((��'�����&'((�,!� !"���)��,�+���!�& �%'�"(')�,!�+�&&�!,-'#�*�&'�*"�+,�!�(2x�)'#�5��)!1(�-��)&'(��#'�"("�&& �0!��,'#(�,!���)�,��(,#"+,"#'�)'(+#�%����,-'��((!+��,')�!%b'+,���)����,-'�(��'�����'#��,��(��'�����&'((�,!�,-'�00&�+�,�!�2�.!1'$'#�(��+'�,-'�$�&"'�!*���-��)&'��(�"��a"'�*!#���0�#,�+"&�#�!%b'+,�, 0'�Z�2'2�,-'#'�1!�I,�%'�,1!�)�**'#'�,�!%b'+,(�!*�,-'�(��'�, 0'1�,-��)'�,�+�&�-��)&'([� !"�+���+!�0�#'�,1!�-��)&'(���)��*�,-' �-�$'�,-'�(��'�$�&"'�,-' �#'*'#�,!�,-'�(��'�!%b'+,2M�+!��!����(,�4'����1��)!1(�0#!�#���������)�,-'�+�"('�*!#���� ��'�'#�&�0#!,'+,�!��*�"&,(�Zzc{([��(�,!�0�((������$�&�)�-��)&'�,!���*"�+,�!�2�M-��)&'��(�!�& �$�&�)��(�&!����(����!%b'+,�'e�(,(2�M�1��)!1�-��)&'�'2�2�%'+!�'(���$�&�)�'�,-'#��*� !"�'e0&�+�,& �+�&&�\W]̂_P̀RSTUPQ���� !"#0#!�#���!#��*�,-'�"('#�+&!('(�,-'�1��)!12�/*���-��)&'�%'+!�'(���$�&�)� !"�(-!"&)�(',��,(�$�&"'�,!��x||�,!�%'��%&'�,!�)','+,�1-',-'#��(�$�&�)�!#��$�&�)�&�,'#�!�2�67}�~FCA��GFC/��,-'�#'�&�1!#)��!,-�����(�"�&���,')���)�,-�(��&(!�,#"'�*!#�,-'�+!�0",'#�1!#&)2�{!#��&&�,-!('�1-!�!1����+�#J�0�#4����(0�+'��(�Z�0�#,�*!#���!�' [0#!%�%& �!�'�,-'�,-���(�,-�,��(��!(,�&���,')���)�-�#)�,!�*��)�,-'('�)� (2�/���'�'#�&�1'�+�&&�,-���(�&�4'�,-�,��'(!"#+'(25-�,�'e�+,& ��(���#'(!"#+'K�5'&&�*�#(,��,��(�(!�',-����,-�,��(���$'��% ���,"#'�Z!#�(!�',-���p�(!�'!�'�'&('�,-�,�%' !�)�!"#�+!�,#!&[��2'2��,�+��I,'�(�& �%'�0#!)"+')J�('+!�)��,��(�&���,')���)�,-�#)�1'�+���)'+�)'�1-'����)�-!1��"+-�1'�1��,�,!�"('�!*��,2��'�&�1!#)�#'(!"#+'(��#'��(�1'��&&4�!1�!�&���)�+!�&�*!#�'e��0&'25-'��1'�&!!4��,�,-'�+!�0",'#�1!#&)��:�<B:�F��FCA��GFC��#'�,-'��!(,�!%$�!"(2�3-'#'��(�����$'����!"�,�!*�0- (�+�&��'�!# J�,-'��cx�!0'#�,'(�,�����$'��(0'')���)�,-'#'��(���+'#,������!"�,�!*�-�#)�)�(4�(0�+'��$��&�%&'2�w%$�!"(��(�I,��,J�%",�-�$'� !"�'$'#�&!!4')��,�,-'�(+#''����#'(!"#+'K5'&&��,(�0#!0'#,�'(��#'���$'��% �,-'����"*�+,"#'#�!*� !"#��!��,!#���)� !"�+��I,�'�(�& �+-���'�,-'�J��,��(�&���,')J��(�,-'#'��(�����e��"���"�%'#�!*-!#�L!�,�&���)�$'#,�+�&�0�e'&(���)��,��(�"(')�"0�% ��&&�,-'('�0#!�#��(�,-�,� !"�(��"&,��'!"(& �#"����� !"#�zx/�'�$�#!��'�,2w��,-'�(!*,1�#'�%�,�,-'#'��#'��&(!�#'(!"#+'(�%",�,-' ��#'��!,�a"�,'��(�'�(�& �,!�(0!,2�{�#(,�,-'#'��#'�,-'�(!�+�&&')���CHF��~FCA��GFC2�3-'('��#'�!#��&& �&��4')�,!�-�#)1�#'�#'(!"#+'(����(!�'�1� �&�4'�*!#�'e��0&'�,-'��$��&�%&'��'�!# �Z%",�-'#'��,(�0- (�+�&���$�#,"�&��'�!# [2�x�)'#5��)!1(�,-'#'��#'�(!�'�!,-'#�&���,(�1-�+-��#'�'(0'+��&& ���0#!%&'��"�)'#�5��)!1(��2e���)�1'#'�)�$�)')���,!��o��o|J�zv/���)�xto��'(!"#+'(J�1-�+-��&&�#'*'#�,!�("%((,'�(�!*�5��)!1(2�3-'#'��(�'2�2���&���,�!��,-'��"�%'#�!*�*�&'�-��)&'(�,-�,�+���%'�!%,���')���)�,-�,��'��(,-�,�!�& ���+'#,�����"�%'#�!*�*�&'(�+���%'�!0'�')�(��"&,��'!"(& 2�t��+'�/w�!0'#�,�!�(��#'�-��)&')�% �,-'��'#�'&�("%((,'�J�,-�(��(����'#�'&#'(!"#+'2�zv/�#'(!"#+'(��#'�&���,(�(',�% �,-'��#�0-�+�&�("%((,'��!*�5��)!1(���)��,��+,"�&& ��'��(���&���,�!*�,-'��'�!# ��$��&�%&'�,!�(,!#'��*!#��,�!���%!",��#�0-�+�&�!%b'+,(��(�0'�(J�%#"(-'(J�%�,��0(�',+2��!,'�,-�,�,-'�&���,�!�& �#'*'#(�,!�,-'���*!#��,�!��(,!#')��%!",����!%b'+,��!,�,-'!%b'+,��,('&*��2'2�*!#�%�,��0(�,-�,��(���!��(,�!,-'#�,-���(�,-'�(�L'����0�e'&(���)���0!��,'#�,!�,-'�%�,��0�)�,��%",��!,�,-'�%�,��0�)�,���,('&*2�3-'�&���,�(��&(!��!,�(',�*!#�'�+-�!%b'+,�, 0'���)�$�)"�&& �%",�*!#�,-'�("��!*��&&�zv/�!%b'+,(2�t!��*�,-'�&���,�1�(����!%b'+,(�,-'#'�+!"&)�%'�'�,-'#�+!�%���,�!�!*�,-'��"�%'#�!*�0'�(J�%#"(-'(���)�%�,��0(�"0�,!�,-'�,!,�&�&���,�!*���2�zv/�#'(!"#+'(�1'#'��!#��&& �,-'��!(,�&�4'& �,!�#"��!",�!*�"�)'#�5��)!1(�2����)�!�+'� !"�#���!",J� !"�1'#'�&"+4 ��*� !"�1'#'��%&'�,!�(�$'� !"#�)�,����)�#'%!!,�1��)!1(2�{���&& �xto��#'(!"#+'(��#'�,-'��"�%'#�!*5��)!1(�+&�(('(���)���)�$�)"�&�1��)!1(�,-�,�+���%'�)'*��')���)�!0'�')�,-#!"�-!",�,-'�((,'�2�M(�1��)!1(�+!�'���)��!�,-'#'��(�$'# �#�#'& ��)'*�+�'�+ �(!�,-�(��(��'�'#�&& ��!,���0#!%&'��,!�1!## ��%!",2M(�/��'�,�!�')�%'*!#'�,-�(��(���0�#,�+"&�#�0#!%&'��!*�5��)!1(��2e2�x�)'#�5��)!1(��3�,-'#'��(��!�0#'�&&!+�,')��'�!# �*!#�#'(!"#+'(���)�,-"(,-'�!�& �&���,��,�,-'�,!,�&��'�!# ��$��&�%&'�1-�+-�1�&&�&'�)�,!�!,-'#�0#!%&'�(�*�#(,�!�+'� !"��#'�#"������!",2�5��)!1(�����(�������(!�'1-'#'���%',1''�2�3'+-��+�&& ��,(�(,�&&�,-'�!&)���*&'e�%&'�((,'��!*�5��)!1(��2eJ�%",�,-' �-�$'�(0&�,�#'(!"#+'�, 0'(�"0���)�"('��!#'�#'(!"#+'�-'�0(J�1-�+-%�(�+�&& ��'��(�,-�,��,�,�4'(�&!��'#�%'*!#'���(-!#,��'�!++"#(2t��+'��!1�#'(!"#+'(�-�$'�%''����0����(!�&',I(��!1��',�!��,!����!#'�*#�'�)& �, 0'�!*�#'(!"#+'(J�,-'�(!�+�&&')���A?�:���FCA��GFC2�c#!�#��#'(!"#+'(��#'��� �4��)�!*��!u+!)'���*!#��,�!�� !"�+#'�,'� !"#('&*����!#)'#�,!��))��,�,!� !"#�0#!�#��2�oe��0&'(��#'�,�%&'(�!*��� �4��)J�%�,��0
Ebay Exhibit 1013, Page 919 of 1204

Ebay, Inc. v. Lexos Media IP, LLC
IPR2024-00337

���������	
����	�
�

�������
�����
������	���������
����
��

�������������
�
�����������	
������

�
���
��
�
	����

���
�
��
����
��������������������
���

�������
��
�
	��������

�������

�
�����
����
�������������
�����	��������
������������
��������

�
����
�����������������
�����
��������
�����
��������
���
����������������������	���
������
�������

�������������
������������
���������
���
���������������

�
���	��������������������������	��
������������	����
�� ��	
������
����!"#�����$% &��

�
���
��
�
	����
���

��������

����������
�������������	���
��������
������	�
��
���
�
������ ������
���

�
���
��
�
	����
����������
�����
�������
�
�'&'�������������
�����������
�����	��
����
��		������������������
��
�
	����()*�+,-./0/12�345�0,3"���
����������
������

������������
��������
�	
������������
����

�
���������������
���6�

�677��688�������	
����������
�
�	
���� ��������
����
��9
���9�����
����

�
�����������
���
����������:���
��
�
	����������������������������
���;6��<����������
���
�����������
�
��

�
��
��
�
	��������	������������������������
�����
��������������
����������������
�����
�������
��������

�
����	
�������
�������	
�������
����������������������	
�����	������������������

����
����
����
�
������	���
������������������������7

�
���=�����
�

���������
���>?�!����
��=
�������
����

@�	���	
��������
���
�������������������
�����������������������
��)ABC��<�������
�D��
����

�EF�G�������
��������	���
������
���
�����

����HI�� ��	
�����������
������

����
����
��������

�
�������������
�����������
���������
�����
���ABC��������
���

������	
����������������������
�������

@�	�������
����
����	�����������
�
��� ���
����������������

@�	��@����	
����������������)ABC�����������
���������		

�����
��
�
�
�D��
�������%
��
��	
����������J�<����
��
������
����	���
����������������������
�
��
�
	������������	
�������: ��������
��������������
�
�	
����������
��	
����������
�"GK��������<��������
��
�
	��	
�����
��
����������
�
�;6���������
���;'#�������<��������������
��
��
��������
��
���
�
�
��
�
	�����	
����
������	
����������
���������	�������������;6��������	������ 6"������G=7������� ��������I�����
�@�	���������
����������
����'&'�������<�������������

�
�����	���������������	��	���
��������	������ ���������������������
��
�
	�	
�����
�����������;'#�������������������

�
��'&'������������
���������������
����

�
����L)�M,N�3,�O3PQ3R���
�������������

���
�������������������
�����
���������
�	��	����
��

�����������
���������

������
���
����	
����#
��
���
�������
������������
����

�
��J�R	����������
���
����
������
�������

�	����<�����
���
����������9

����
�9�����
���
��������<����������������
����������������
����

�����
�������
����

�
�������������
�D��
������
�����	���������	
������6�

�688���<�������

�	�������
���
������
����������
��	���������	
�������������
����
�����

�������	������S�
���
����������
�����
����
�����������D����������	�������
�����<����

������������������

�	��������������������
���������
���
��
������
�����
����������
���
���
������������
��	
������
����������������

���������
���
�
���
��<�����	
������

�	��������

������
�	���������
��������������������	���
������	
����������
��
����������	
������������������<������

�	���������	����������������

���������

�
�����������
���
���
��������
������� ���
����
���
�	
������
�����������������	��	����

�
���������������
���������
�
�����������������
�
���������������

�	���
����
��������<�������

�	�����������
��������
�����
�����	��
�������������������	��������
�	������

���R���
��
����
��@���������
���	
����

���	��
������	
��

������������
�����������
�
����
���� ����	�����
������
������
����

�
��������
������������
�������
�����
�������
��
�������������
�������
�����

�	����
���������R�����	���
�������
��������
���������
�
�����
���������������
��
���	���
��	
��

����
�������������
�������
�����

�	��
���� ����	����	
���������
����

�
��������������������
��
���
�����	���D�����S
����
� �
�	�
�������������������
�������������
����

�
�����������
���	���
��
�����
��
��������	�����������
������
�������	���
��	������	
���������������
��������
�����
������������	������������
����������

����T,�4,N�UPQ�V,�N5�253�N/34�OPW�XYY�0/15O�,U�Z,V5[I\\�������
��	
�������
����	�������
����������
�
������
����
��
����������<����������
�	�����
��������
�����
��������

�������
����

�
��������
����	��
��������
����

�	�����]
���
����������
�����
�������
������

�	������
������������#������	��
����
���
���
������
���
��
��������������������������������]
��	����������	
�����	���
�����
���
����

�	������
�������������	�����
������� �����������������
���
���������
���
���
������
��������
��������
��������	D��
��������������
�����
���	�
�	��
�����
���
��
������6�����
�?:�7�����6
����
:�R�����
����

�
���
�������G�����
�����

�	��E�����������������
����
��	
������������������
���

�
��������	
��������������������
��������
��
Ebay Exhibit 1013, Page 920 of 1204

Ebay, Inc. v. Lexos Media IP, LLC
IPR2024-00337

��������	
������
�����
����
��������������
�������������������������������������
�������������
���
����������������������������
������������
�����������
���������������� ���!�����������!�������
"���#����
���������������������#�������#����$�����#�����������������������������%�������
�%�����
���%�����&'�()*+,�-./+,012�3�4*+5.46�71.81)9�./,:*+0�����
�����������������#��������������;�
����%������
������
���������������������������������
������������ ������������%�������������
���������#��������������������
���
���������������
�����������
�����%������� ������#���
����������������������#������
�����������������������%��
�����������������
�����
������
"
���
�������������������������
����"�����������������
������������&'<�=>0�?*:06 ������
����������
%#�������������#������������%�����
���%
���
@$�����A���B�������
�������%
��@$������C��B�������
�����������%
��@$�����A���B��������%
��DEFGHIJKLMNO�B������%
��������
�
�����������
����
���
���#�%���DEKPKQLDRD�B�A	B�
���$���������%
���%���S
������T�$DEKPUVLDRD�B�T�B�
���$���������%
���%���S
������WXY�S
������Z @$�����A�[
����
�\��������������������������
"�����#��������������&']�=>0�71.̂05/10�_*+̀)*+a��b����"�������\��������������������#���
������������������cdefgde�� �
��
��������
�����������������������������
��%���������������hij�klmNln�PhioFhipqMrmslrND�tMiujv�qMrmslrND�tkwJxMiujv�nkmsy�IHNGznhiJv�hij�iNGzmt{|} ���%
��������������>~+6,�
�����������%���������������
���������%��������������Z��������������������#�
������������#���\�����#������������������
�������������������
�����
��������#����
����������������
������"��#��
���� �\��Z����������������������
��A���
������#�����b"���������A��
����������%�Z�����������������%����������
�����������%�������������������������#�S
�����������������������b����������#������
������������"�������#������������
���
"����"��#�
��������
�������������������������\�����#������������"��������������������������������
������������#
����������%�#������������ �
���������
��"��#�
����������������
��������
��������������������������%���"��
����%����
��������������������
��
�����������"��
�����tMiujFi�J�tMiuj����#�������������������#���
���������������������"��
�������������������������#�����������������"��
����������������������%����������������\������������������������������������
���
������������
�����������"���
����
%%����������
����#���
��
����������
��
�����������#���"��
���������������%�������������
����
���
�������������������#��
������%���������#�������������%%�����%������������������"������%���"��
��������#�����������
�����������
��
��������������
��
����������\����
�����������������������"�������\�������
������������������������
���#��
���\�� ���������������������%�cdefgde�
��>(10�~+6,��������S
�A	���
��
�������������������"
����
���������
%���#��������
���
��
��Z�aa�����
����#���
��������
��
������
����
��������#�������������������%��������"
����
��������
�����������������S
�T����
������"�������������
����
����������
���������#����������
�����#�����������������
�������������������������������
�����������������
�����\�����
�������������������������
���
�����������#����������� ������#�%����
����������\��������%���
���������������S
�A	�
������e��ge���g�g�������
����������
�����������������
�S
�T��
��������������������������
�������������%������������
������
������#�����"���
��S
�A	���
���������������������%����
���B�����������
����%�����%
����
���������%�������������
���
����������������������e���
������� �
��
��
��������������������#�����%
����
����������������
������������%
�����
��
����������������
����
����������
��
��S
�T���������������������\������������
��
������%
����
�����������������
�����������#�����
����������
���������������;�
����S����������%�����
�������������������������������������%
����
������������
%��������������������%����
���������
����������
���������������
����
�S
�T��������e���
������#���������
���
�����������\�%
���%���T�B�
�������������������
��
����%���������d����cde���� g�����������������%����
������%�����
�������������
Ebay Exhibit 1013, Page 921 of 1204

Ebay, Inc. v. Lexos Media IP, LLC
IPR2024-00337

��������	
��
�������������������������
�����������������
��
�������������������
����� �!"#��$$������
��
�����������%&'()�'*(�+,-./+�01233�*23�4((-�)(5,3'()(.�,'�,3�-/+�',6(�'/�0)(2'(�/7)�2881,02',/-�+,-./+9�:/)�'*2'�+(�73(�'*(�&7-0',/-�;<=>?=@ABCDE�2-.�,&�'*(+,-./+�02-�4(�0)(2'(.�23�38(0,&,(.�+(�+,11�)(0(,F(�2�+,-./+�*2-.1(�,-�)('7)-9�G*(�;<=>?=@ABCDE�&7-0',/-�)(H7,)(3�2�-764()�/&�82)26('()+*,0*�I�+,11�-/'�(J812,-�,-�.('2,1�3,-0(�2�8)(0,3(�.(30),8',/-�,3�8)/F,.(.�,-�'*(�/-1,-(�*(189�G*(�+,-./+�+,11�*2F(�'*(�','1(�KLM�&,)3'�N,-./+3O)/5)26K�2-.�,'3�3,P(�+,11�4(�QRR�4M�SRR�8,J(139�N,'*�'*(�TUVWXYZY[\W]̂�82)26('()3�+(�1(2F(�,'�78�'/�N,-./+3�+*()(�/-�'*(�30)((-�'*(+,-./+�+,11�4(�3*/+-�12'()�/-9$$�����
������_���� ̀ �̀���
����������� ̀ �̀�������
���������a����������b�cd_e�����
���������������bdc����������������������!fgh"�� ��"i�
�ig�j�!fk!��g��j�!fh!��g��c�����������������������f�!"i"� ��lc��f�!"i"� ��lcmnnconnc�������������������������c����c�
��
����c�������������������������#%3�,'�,3�21+2M3�5//.�8)20',3(�'/�0*(0p�'*(�)('7)-�F217(�/&�%OI�&7-0',/-3�+(�-/+�0*(0p�+*('*()�'*(�+,-./+�*2-.1(�,3�F21,.9�I&�,'�,3�-/'�,9(9�,&�'*(+,-./+�*2-.1(�,3�qW]]�+(�'()6,-2'(�'*(�8)/5)26�4M�)('7)-,-5�:%rst9������ ̀ �̀������
����� �!"#�$$�����
���������������G*(�+,-./+�,3�-/+�0)(2'(.�47'�,'�,3�-/'�F,3,41(�/-�'*(�30)((-�M('�uv/'(w�,&�M/7�+2-'�2�+,-./+�'/�4(�F,3,41(�,66(.,2'(1M�2&'()�0)(2',/-�2..�'*(+,-./+�3'M1(�UXVxyXyz]Y{9�G/�.,3812M�'*(�+,-./+�+(�0211�|}DE@ABCDE�+*,0*�)(H7,)(3�'*(�+,-./+�*2-.1(�2-.�2�&125�,-.,02',-5�*/+�'*(+,-./+�3*/71.�4(�3*/+-9�G*(�12''()�02-�4(�&/)�(J2681(�XUVX~�Uq���\]�,&�'*(�+,-./+�3*/71.�4(�3*/+-�,-�,'3�5,F(-�3,P(�XUVX~�U�yqy�y�YZ�/)�XUVX~�U�\�y�y�YZ�,&�,'�3*/71.�4(�,-,',211M�2-�,0/-�/)�&711�30)((-�/)�2-M�/'*()�/&�'*(�sN��0/-3'2-'3�.(&,-(.�,-EABCDE��}�u3((�&7-0',/-�|}DE@ABCDE�,-�'*(�s���*(18�&,1({9:/)�/7)�62,-�+,-./+�*/+(F()�+(�3*/71.�-/'�3('�'*,3�/7)3(1F(3�47'�73(�'*(�82)26('()�B;�C|}DE�+*,0*�,3�'*(�123'�82)26('()�/&�'*(�@AB�>AB8)/0(.7)(9��37211M�'*,3�+,11�4(�3('�'/�XUVX~�Uq���\]�47'�'*(�73()�02-�38(0,&M�/'*()+,3(�,-�'*(�8)/5)26�62-25()9�%&'()+2).3�+(�&/)0(�'*(+,-./+�'/�82,-'�,'3�0/-'(-'3�4M�0211,-5���C>?=@ABCDE9!����������� ̀ �̀��c��b�!����#�̀��
��������� ̀ �̀���#v/+�'*2'�'*(�+,-./+�,3�0)(2'(.�+(�0/6(�'/�'*(�6/3'�,68/)'2-'�82)'�/&�'*(�@AB�>AB�8)/0(.7)(w�'*(�6(3325(�1//89�G*,3�,3�2�3,681(�+*,1(�1//8'*2'�+,11�8/11�6(3325(�&/)6�'*(�6(3325(�H7(7(�2-.�.,382'0*�'*(6�'/�'*(�233/0,2'(.�+,-./+3�&/)�&7)'*()�8)/0(33,-59���������
_��������b��c�����c�nc�n����������l������
�_��������b���#�$��
������
���	��
������e�����������$�����i��̀�
��_��������b���#��$�����̀�
�����b�������
�������������$���G*()(�,3�2-/'*()�82)26('()�,-�'*(�@AB�>AB�8)/0(.7)(�'*2'�I�*2F(�-/'�'21p(.�24/7'�M('9���;�C�AB=�,3�2�8/,-'()�'/�2�P()/�'()6,-2'(.�3'),-5�+,'*'*(�0/662-.�1,-(�82)26('()3�38(0,&,(.�,-�'*(�8)/5)26�62-5()�/&�N,-�S9J�/)�'*(�3*/)'07'�8)/8()',(3�/&�N,-����)(38(0',F(1M9��-1,p(�,-���s�/)�vI��8)/5)263�'*(�82)26('()3�2)(�-/'�381,'�78�27'/62',0211M�,9(9�,&�M/7�0211�M/7)�8)/5)26�(959�+,'*�KT��̂YX̂ ������� Y�Y�¡¢�£¤¥¥¦ §̈§�¡©K��;�C�AB=�+,11�8/,-'�'/�2�3'),-5�0/-'2,-,-5�K¡ª�£¤¥¥¦ §̈§�¡©K9%1'*/75*�0/662-.�1,-(�/8',/-3�2)(�8)(''M�7-,68/)'2-'�,-�2�«�I�(-F,)/-6(-'�2-M+2M�'*()(�,3�/-(�'*,-5�'*(���;�C�AB=�3*/71.�21+2M3�4(�73(.&/)w�,&�M/7)�8)/5)26�.(213�+,'*�&,1(3�M/7�3*/71.�21+2M3�0*(0p�+*('*()���;�C�AB=�0/-'2,-3�2�&,1(�-26(�2-.�,&�3/�/8(-�,'9�G*,3�,3�,68/)'2-'�3,-0(62-M�73()3�3'2)'�8)/5)263�4M�./741(�01,0p,-5�/-�2�./076(-'�&,1(�,-�'*(�&,1(�62-25()�/)�'*(�(J81/)()9�O)/F,.(.�'*2'�'*(�&,1(�(J'(-3,/-�/&�'*(./076(-'�&,1(�,3�233,5-(.�'/�M/7)�2881,02',/-��'*(3(�8)/5)263�+,11�'*(-�0211�M/7)�8)/5)26�2-.�38(0,&M�'*(�./076(-'3�&,1(�-26(�,-�'*(���;�C�AB=O2)26('()9�¬ ­�T¥®̈¨̄¢̄©°�®�U©̄±¦²I-�'*(�.(30),8',/-�/&�'*(�@AB�>AB�8)/0(.7)(�24/F(�I�*2F(�6,33(.�'/�(J812,-�+*2'�³=́A�?=<@ABCDE;�>��=��20'7211M�./(39�G*,3�&7-0',/-�,3.(&,-(.�-(J'�,-�'*(�µ�&,1(�23�&/11/+3w
Ebay Exhibit 1013, Page 922 of 1204

Ebay, Inc. v. Lexos Media IP, LLC
IPR2024-00337

����������	�
������
���������������������������
����������� !"#�$%&'(")&*�+!"'!�"#�',--./�$0)1�(!.�2345634�$)0�(!.�$"0#(�"&#(,&'.�"&�,�7"&89�:0);0,1�,&/�$)0�.<.0=�"&#(,&'.�"&�,�7"&>?�:0);0,1*�0.@%"0.#�,!,&/-.�()�(!.�"&#(,&'.�,&/�0.(%0&#�,�A))-.,&�:,0,1.(.0�"&/"',("&;�+!.(!.0�(!.�$%&'(")&�+,#�#%''.##$%-�B0.(%0&�<,-%.�"#�CDEFG�)0�&)(�B0.(%0&<,-%.�"#�HIJKFGL�M�,-#)�,//./�(!.�N.=+)0/�#(,("'�+!"'!�1,N.#�(!.�$%&'(")&�"&<"#"A-.�"L.L�"&,''.##"A-.�)%(#"/.�(!"#�1)/%-.L�M(�"#�;))/�:0,'("#.�()/.'-,0.�.<.0=�$%&'(")&�(!,(�"#�&)(�',--./�$0)1�)%(#"/.�,#�#(,("'�,#�=)%�',&�$"&/�)%(�1)0.�.,#"-=�+!.0.�(!"#�$%&'(")&�"#�',--./�$0)1�,&/�=)%�',&�%#.(!.�$%&'(")&�&,1.�,;,"&�"&�)(!.0�1)/%-.#LO.(#�P%#(�/"#'%##�+!,(�,�+"&/)+�'-,##�"#L�Q�+"&/)+�'-,##�/.$"&.#�;.&.0,-�:0):.0(".#�$)0�,--�+"&/)+#�(!,(�,0.�/.0"<./�$0)1�(!"#�'-,##�"L.L�)&'.�,'-,##�!,#�A..&�/.$"&./�=)%�',&�'0.,(.�,&=�&%1A.0�)$�+"&/)+#�A,#./�)&�(!"#�/.#'0":(")&�,&/�(!.=�+"--�,--�!,<.�'.0(,"&�(!"&;#�"&�')11)&�-"N.�(!.A,'N;0)%&/�')-)0*�(!.�"')&�(!,(�"#�#!)+&�+!.&�(!.�+"&/)+�"#�1"&"1"#./�)0�1)#(�"1:)0(,&(�(!.�7"&/)+#�:0)'./%0.�+!"'!�!,&/-.#�,--�.<.&(#')&'.0&"&;�(!.�+"&/)+LM&�)0/.0�()�0.;"#(.0�,�+"&/)+�'-,##�+.�&../�()�$"--�,�#(0%'(%0.�)$�(=:.�RSTUJIKK�+!"'!�"#�/.$"&./�"&�V34WXVYZ[L�\)0�(!,(�+.�/.$"&.�,�-)',-<,0",A-.�)$�(!"#�(=:.�,&/�#.(�(!.�&,1.�)$�(!.�&.+�+"&/)+�'-,##L]���̂�	������_����̀�a�b�������c��d��b����������c�_��ee���c���f����������������� !.�&,1.�+.�#.(�!.0.�$)0�)%0�'-,##�',&�A.�<"0(%,--=�,&=�&,1.�(!,(�(,N.#�)%0�$,&'=�.g'.:(�(!.�&,1.�)$�:0./.$"&./�+"&/)+�'-,##.#L�h0./.$"&./'-,##.#�,0.�ij kl*�m Q Mn*�OMm iko*�nkpikiko*�mnqkOOiQq�,&/�rsM �+!"'!�,0.�(!.�&,1.#�)$�,--�#(,&/,0/�')&(0)-#�:0)<"/./�A=7"&/)+#L� !.�'-,##�=)%�0.;"#(.0�+"--�A.�,<,"-,A-.�$)0�=)%0�,::-"',(")&�)&-=�,&/�A.�"&<"#"A-.�()�)(!.0#t�!.&'.�=)%�,-#)�/)�&)(�&../�()�+)00=+!.(!.0�(!.�&,1.�=)%�,0.�;"<"&;�=)%0�'-,##�!,#�,-0.,/=�A..&�(,N.&�A=�,&)(!.0�,::-"',(")&L !.�&,1.�"#�&)(�;"<.&�!.0.�/"0.'(-=�A%(�"(�"#�!"//.&�"&�(!.�')&#(,&(�#(0"&;�,00,=�Yu24Wvw6YYx6yz�+!"'!�M�!,<.�/.$"&./�,(�(!.�A.;"&&"&;�)$�(!.$"-.�,#{����������������
��b����������c�|}d]�~����̂�	���~��_�.&'.�(!.�&,1.�)$�(!.�'-,##�+.�,0.�0.;"#(.0"&;�"#���RSTUJIKKL�7.�&../�(!"#�&,1.�,-#)�$)0�(!.�$%&'(")&�v�z6�z234WXV�+!"'!�"#�(!.�0.,#)&+!=�M�!,<.�:%(�"(�"&�,�<,0",A-.L�Q;,"&�,#�+.�)&-=�&../�(!.�#(0"&;�"&�(!"#�1)/%-.�"(�"#�#,<.0�()�/.$"&.�"(�,#�#(,("'�+!"'!�1,N.#�"(�"&<"#"A-.�()�)(!.0#)%0'.�')/.�1)/%-.#Ll.g(�+.�#.(�(!.�"&#(,&'.�!,&/-.�,&/�#)1.�'-,##�#(=-.�$-,;#L�Q�')&'"#.�/.#'0":(")&�)$�:)##"A-.�'-,##�#(=-.�$-,;#�',&�A.�$)%&/�"&�(!.�)&-"&.�!.-:L !.�#(=-.�M�%#./�!.0.�$)0'.#�(!.�+"&/)+�()�0./0,+�')1:-.(.-=�.<.0=�("1.�(!.�#"�.�)$�(!.�+"&/)+�'!,&;.#L��)%�1";!(�+,&(�()�(0=�)%(�+!,(�.$$.'(�"(!,#�"$�=)%�/)�&)(�#:.'"$=�(!.#.�$-,;#L�\)0�(!,(�#.(�V�ZY��wz�()��.0)�,&/�0.')1:"-.�(!.�:0);0,1L����̀����������d����
����������_���������ee���������f�a
��
�c�������������̀����������d�����
�̂
�������
�̂
��_��ee���c����������f�������������l)+�+.�&../�()�#:.'"$=�(!.�,//0.##�)$�,�$%&'(")&�!,&/-"&;�,--�(!.�.<.&(#�')&'.0&"&;�(!.�+"&/)+L� !"#�$%&'(")&�"#�',--./�(!.�+"&/)+#�:0)'./%0.,&/�=)%�--�$"&/�(!.�A)/=�$)0�(!.�$%&'(")&�"&�(!.�$)--)+"&;�:,0,;0,:!L�m"&'.�,--�+"&/)+#�/.0"<./�$0)1�(!"#�'-,##�#!,0.�(!.�#,1.�+"&/)+�:0)'./%0.+.�!,<.�,�:0)A-.1�"$�1)0.�(!,&�)&.�+"&/)+�:.0�:0);0,1�"&#(,&'.�"#�/.0"<./�$0)1�(!"#�'-,##L��)+�',&�+.�;"<.�.,'!�+"&/)+�"(#�)+&�:0"<,(.�/,(,� !.�,&#+.0�-".#�"&�(!.���24W����6�:,0,1.(.0�+!"'!�;"<.#�(!.�&%1A.0�)$�A=(.#�,--)',(./�$)0�.,'!�+"&/)+�()�#()0.�%#.0�/.$"&./�/,(,L�M&�n���(!"#"#�.L;L�%#./�()�#()0.�,�:)"&(.0�()�,�n���)AP.'(L�)�#.(�,&/�0.(0".<.�(!.�/,(,�7"&/)+#�)$$.0#�(!.�$%&'(")&#��z�234WXV2X�W�,&/��z�234WXV�X4�)0��z�234WXV2X�W�,&/��z�234WXV�X4��0.#:.'("<.-=L����̀�af�����
�����d��aa����
��_�ee����
�����f���������
�����
�����̀��������
�����d��_���ee����
������������������f�
���������������̀��������
�����d��_���ee����
������������������f�
������������ !.�0.#(�)$�(!.�#(0%'(%0.�1.1A.0#�/.$"&.#�(!.�A,#"'�,::.,0,&'.�)$�(!.�+"&/)+#�'0.,(./�$0)1�(!"#�'-,##L�\"0#(�+.�-),/�(!.�M')&�(!,(�"#�/"#:-,=./+!.&�(!.�+"&/)+�"#�1"&"1"#./�$0)1�(!.�0.#)%0'.�$"-.L��X6W��X4�/).#�(!.�P)A�A=�0.(%0&"&;�,�!,&/-.�()�(!.�"')&L�)�"/.&("$=�(!.�0.#)%0'.�+.�%#.(!.�1,'0)��I�F SCDFK¡EDUF�+!"'!�"#�,-#)�/.$"&./�"&�¢£¤¥¦¢§̈©�,&/�+!"'!�(,N.#�,�&%1.0"'�<,-%.�%&"@%.-=�"/.&("$="&;�,�0.#)%0'.L�M(#�%:�()%#�()�,##";&�&%1A.0#�)0�&,1.#�()�0.#)%0'.#�#)�M�!,<.�/.$"&./� U¡SªI««RST�"&�(!.�z�6y¬wz­Z[�!.,/.0�$"-.�,#{®��f��������������̂�̄��M$�=)%�+,&(�()�!,<.�=)%0�)+&�'%0#)0�+!.&�(!.�%#.0�"#�"&�(!.�+"&/)+�=)%�',&�%#.��X6Wv°�YX��,'')0/"&;-=L�M&�(!"#�',#.�+.�%#.�)&.�)$�7"&/)+#�#(,&/,0/�'%0#)0#�+!"'!�"#�+!=�+.�#.(�(!.�"&#(,&'.�!,&/-.�()�SEJJL�\"&,--=�+.�#.(�(!.�A,'N;0)%&/�')-)%0�()�+!"(.�,&/�(!.�1.&%�&,1.�()�SEJJL����̀��������������d�	�����������
����������±���²����
���³
�������������̂��_����̀���
��
�������d�	�����
��
��³		±��̂���

���_����̀��
���́�
�����d����
³����µ������́��¶�����������
³���_����̀�a�b������c���d��³		_
Ebay Exhibit 1013, Page 923 of 1204

Ebay, Inc. v. Lexos Media IP, LLC
IPR2024-00337

�������������	
	�
�
������
�
�������
��

����������
�����������

����
��

��

���
��
��
�
����
�������������

�����������
�������
�
�������
������������
������������ !�"#$% �&'())��*+����� !�"�!,��($% �+*������"�!-".�/01234���������*+����� !�"#$% ��%�$�5�+*6�
�������������	��
�
�	��
���	��
7�����	������

������
��
�
�����
��������
����

��89:�;<=�>?@AB>�CDBE=AFD=6�
�
�������
����
��
����
����G
�����
�������
�
7
���
�������
����
���
��	����

����
����
��������	�
7
��������
���	
����������
��
�����������������	H���
�������
�����
���
��I
�J�	
�����
���
���
����
��
���
�
�6�����
�

��
�����
�
��
�����
��������
�����������������
�
��
�����
���
���������
���������
	��K��
��
���
����
�����
���
�
����������
7�
��������������	�������
���������	��
���������������L
�M
����
������G������
��
�
����
�������
�����������������
���
����
�N1�32O1P�/0��Q02#01�R.5Q"S(�TRUV�,R.5WOXUP�Y �WRQ0�0Z�'Q%"%YW1Q0�0Z�$Q%"%Y)[�� '�!(,�Y �)���[�����(% ��RZ\]]]����������*+�̂"S(� �%�Y� %���+*����������_"�%̀4�����5��%-$!a����������*+�$�!�R�.5S' �,%.5$��!,��Y� %���+*����������"�!-".�V��R�.5S'Q"S(�,R.5WY �W'Q%"%YW$Q%"%Y)4���b��"�!-".�c14bI
���
������������
���
��
�����
�����6�����
����	�
�������
��
��
���
���
�dIefIL���
�����	�
���

���
�d�
����������������
�������K�
�G
�����gIh��
��	������������6��ij������������
����	�
��G
����
�
������������6��kl�
���
���K�
������������
���
��
�
��

����������	
�
�
����	�6�����
�����
����
���kl��������
�
������
�K�
����
������	
�
���
���
������
������
���������������
�
7��������
���
��
��
�
��
�����	���
�mnopqorstuvw�����
���
������
�rstxpst��K�

���������	
�
���
���	

��
���	�
���������������
����
����
�
����������
�������
���K�
�����
�����	
�����������
���
����������	
�
�
���
�
�
�����������
�	

��
�I����������	

��

���
��
���
�����wstuvwyz{�������
�������
�����������
���
��7�|}~��K�
�
���
������
�
����	

��

���������������
�
��

���������

����������
	�����������������
���
���
�
���
�
�	
������
�	�
�����
���

�������������������G���������
��
������
�RZ\#�30P3������������RZ\Q0XUP�������������RZ\V32P���������������RZ\2X�3RZ\1�OPP�UV�RU�������RZ\0#PX�0P3����������RZ\#�ZZ0UVI���	

��

���������������������

�	�
���
���

����������
��
������	

��
������
�����������
��K������������
�����������o�rstuvw�nv���
����
�������
��
������������������
�
������
���
	
��������
�M
����G�������
�6����������
���
���������
�	��
���������������
��

���	��
	
��
�N1�32O1P�/0��Q02#01�0̂ R̂.5Q"S(�TRUV�,R.5WOXUP�Y �WRQ0�0Z�'Q%"%YW1Q0�0Z�$Q%"%Y)[�� !%!�(��.!��Q%�.!#S-.!4���**�#S-.!�!,��.-Y_�"�S��Q%�.!�Z� %�� �"�(����5�� !%!�(�T��O2T�,/�$$�"- ,4�**�,%.5$��!S�%�_"- ,�',�(,�'��- ���S"���$$�.��!,���$$�̂ �g��
���
��
���
����������
��������
��

����
����������������
���	�
�����|}~����;�	

��

���������
��

���
�
��
���K��
��������
�	�
���
�
���
���
�
������������
�������

��
���
�����
���
���
��
����������������6�����
�����
���

���
�����
��������
�
�	
������	���	�
��
�
����	
�6�����
�����
���
������������
���
��I����
��

�������
��
�������������
����
���
���
������
������
����
���
����������������
�
����

�����������
�����
����
�	

��

�������
����
��	

��
��
M�
��������������

��
�|}~����;�N�� '�!(,�Y �)���[�����(% ��RZ\#�30P3a�����������Q%�.!#S-.!�c4����������,/�$$�"- ,�#"�%!�2S$�5�"- ,�����cW���W���))4���**�#"�%!��%�(�%.�_"- ,����������_"�%̀4
Ebay Exhibit 1013, Page 924 of 1204

Ebay, Inc. v. Lexos Media IP, LLC
IPR2024-00337

����������	�����
������
�������������
���������������������
�������
����
�����
�����������������	���
������
���������
����������������������������� !"������
���������#
���
�
�����$�����%����������#����&�����#
�	
��������������'������������$����������	���
���������� !"���
���
�&�����������������'���������������
�����������
�#
�������	���
�()*+,-./-������	�������������	������������
���
������������	���
��'�����
�
������
����
�����
����������	�����0��
�����
����
����
�1��
�
�'���������
����2����
�����������������������
���
��'������3�
����
��
������'
�����������������������
�������	���������#����4
���������5!6� 7�89:����
������������
��������'
�����������
���
�
�����
�����������#������
�����
����������
�
&�	
������
�'����������������	�����;<7����
�����������
��������
����
�����������
�'�����
�������'������������
��##�����������
�����'���
��
�����
��������	�=�6���>?@�A��������B�������	�����������������()*+C)).DE������	���2��
���������������������
��������F���B������	�����"G���H�#�
�����
�������
���
����������������������
��������
��������
��I��������������
���
�����������
�����������'�
����������
�����
���������J�HK6�LM:�����N����'�	�����	������OE)*�����
��	���
�2P�������
�Q���������RSTU�VWXYZWW[\]̂����������T_̀aRbc_dSeSfg�����������h��������������RSTU�i]WX[jZkl̂������������������]̀SmnojnpcbiqTaSqRUrW[sti\lutvZkuYtc]wxX[jZklgrbVqyr[zn{a]modenRg|������������������zeUS}|�������������RSTU�i]WX~kil̂������������������]UTaen�V̀qyn_cbVqyg|������������������zeUS}|����������������������zeUS}|���
���
�����������������
��������������������������
����������������
��2���������
�
���
������1���&�������#���
���
����������
�������	=�9��!���� !"������()*E-�/,C�������	������������
�����
�����	���������������������
���2���������
��������
������'����������
����=��6!�7!J�������
�������
����
��#���������
����
�����
��������
����
�����������������
���
�'�
������
��
�������������P����	����B��#���2���

�
������
�����
�#���������������
�������������������
����#
�������������������'����������������	������������
�����������������'������������������	������	�������RSTU�VWXwjkllZ\]ZV\̂�������������iq�Sm̀ySaU�abU�_̀qyn_�T�Rm̀Uqa�SeUS����������iq�Sm̀ySaUuURacbVqyr\kwwr�[wvtg|����������zeUS}|���
���
������
������	���������
�����������
������	�����
����������������������()*���//CD��&�()*)C��-)C�-�������������
����
���������
�#������	��������
���
�
������'���
����
�������
����	��������
�������������
����������������
�����������
�������������
������
������'�

�
����������������#������������������
�
��#�������
�����������
��
��#����'�����
�

����	������6� ���;�A����0�����
���#�
�����
���������
�������������
������������������
���������������������
���&�����#�
�����������������
���������������������
���&���
������	���
������	�������
����������
���
�#�
��������
�'���
���
���
��&��
�������
�������������#��������
������B�����	���������������#�
��������������������
��������#������
�'���#�����
������
�����	������������	�����'���
�
����'��������
�����
������������������������'���
����������
������������
���
���������
������������#���������6� ���;�A��������

���
�����	�������������
������#
����
�	������
�#������()*�.OD/������	������������
���2����������������##�����������������������
�1������	����
�#������������
��&�������������
�
�����
�
������������	�����
��#&�

����	�������������	�����
����������������������������������
�1�������
����������
���
�#
������
�����
��I

����������������������0���������������&�������#�
�����������
����������'�����������������
��##��	����
��������
��������������������������������������
�������������'��
�#�����
��������
������	������'���������
��������������

��������������������������
�����
������������
�#�������
�������������()*�.OD/������	������������	�����
������
���
���������������
���'�����������'�����
���������
���������������
����������������
�#�������������
�����
����
���#�
���������&�������������
�������'������������%���������������#�
#�����������#
�	
���������	������������
����������
���������������������	�����
������
������
��������������������
�������
����
���������
�
��#�����������������������
�����
������������RSTU�VWXd[i\l̂����������h�d[i\lvlukYl� T|������������¡]Y�byR|���������������iqReUSTU�abU�dS̀qa�WUTTSoU�Yn{qaUe������������̀dS̀qaYn{qa¢¢|���������������xUa�abU�bSqymU�an�abU�V̀qyn_T�T�]̀T mS��YnqaUpa������������byR£jUòqdS̀qacbVqyr¤ Tg|����������������\n_�dS̀qa�abU�V̀qyn_T�T�RnqaUqaT�������������dS̀qa[V̀qyn_cbVqyrbyRr̀dS̀qaYn{qarb�̀mmje{Tbg|���������������YSmm�tqydS̀qa�an�eUmUSTU�abU�]Y�Sqy��Sm̀ySaU�abU�Rm̀Uqa�SeUS������������tqydS̀qacbVqyr¤ Tg|���������������������zeUS}|4�
�������������������
����
�������#���.OD/�/,�+/�����������������
���������������������'��������	�7����G����������������	����������
����
����'�
������������
���#�
����������������������
���������
��
����������
�����������
����������
��#���������B����������������¥E+�����
����
�������
Ebay Exhibit 1013, Page 925 of 1204

Ebay, Inc. v. Lexos Media IP, LLC
IPR2024-00337

��������	�
������
��	������������
�����������
��������������������	������������	
��
���������������������� !"��	��������#�$������
�
�%��
��&�
��	��%�'���(�����������)��	�����	*�����
���+�,-��'���.�����	*�����
���+���	�	
&�����
����������	�/���
(�(���������
��*�������(���
(�(�	��	��
�&�)����	��
�

�
������	����������(��������'
����	�
.�������������#�-��.�����
��(
�0��'���'����
����(�
��(������������
�����
���(���
(�(���
��������
�����������������
�	��������	*����
���+�#�1���
��*����	�&���
���'������2��*����3������-����.����423-5�	�'	�	��&�
.�/���
(�����-�(����������
��&
����'
�����	*�����
���+�	��������23-����������+��	����
�#6
��
(������(�0���

��������������
���	*�����
���+��(������������������(�
���&�		�
��(�����(���
��	��
�����.�����
�������7889��:;<�(�����-(�����+*��������������+��*���
��*�#�1.����(��������
�������%�(��&�	�������=�:������(���������	�/���
(������(�������.���	����*������
��������������
�����	�
.�����(���
(������
(������������	����#�>���?�����(������	
�.����������	*�����
���+���#�#������������'��
&�	�������������(�����0���	��������&
��#?�
��		��
�����@AB������&�		�
������������
����������������=�:�������	�����	��
���&
	���&*
����������
���(���
(�*�
���������	��
*�
����#�C
(�����&�		��
���
����(��������������	�����
��
.���
�'���	
�-�'������(�����
��
.�	
&��
.�����&
	�����
��
�	�*��.���	���'�
���������	��*����
D ���������������=�:������&�	��
����'��������������	*
�	���
���@AB������&�		�
�#�-.��
��(�	���
��
�*������
������	*
�	���

�����&�		�
�	��
��������
��	��E��FG�����H�I��J�FG��
�
'���������.����������������
�������	*�����
���+�#3
����������������)��'
���)��*��
�������������
�������	*�����
���+��'���
��������
�=�:�����#�K������	�����&���
.�.������	*����
���+�	����������������'����������&�������
��������
�=�:������'�.
�����������
�.�
&�����@AB������(������&
	���������'���������
��&�		�
������	��������������������
���'

��/���
(#3
��
�������1?-�.�����
�	�(�����&�����	���������������
�
�����&�		�
�	�
���������������*������
�
.�
�����(���
(�'��(������������������=�:�����#�L
������
������	����	�����.��
��
�����	��/���
(�.�����
�	�(�������M���������������
�����	*�����
���+�	�����	�FN�<O�P��
��Q���O;�4����
.����	������23-�.�����
�	5#�$�����
�	��
���
���������
	��(�������M�������(���
(��������	�����	R8:���9��:;<�
��S;T�9��:;<�4(���������.�����
�	�
.�����U6>V�	�'	�	��&5#�-.��
��(�����
������
���
.����	��.�����
�	�����	*
�	���
���@AB������&�		�
���
��������(��	��
����'�.
��������������
���.����=�:�����#K�����	��&�		�
��(��������
�*�
��		�.
��
����+�&*����**������
���	�����@ABWX�� YZ�&�		�
�������
��*�
'�'���
��		���������	��	�	����(�������(���
(��	���	��
���#�����[\]̂�_̀abcdefghi����������b̂ĵk̂glm̂[knopqjjrst]ouv�ww�b̂ĵk̂�kô�xqjj�lst]o�nŷẑs�x{s|̂k}u����������~{]k�tqk̀]̂]\|̂n�uv�������ww�êjj�_qy�{�]��̂��\yk�k{�k̂s�qy\k̂����������lŝ\�v$��	��(����	��
������'��	��(�����
�������������@AB" X��X�&�		�
�#�-.��
�������&
�����	
����	����
�������������@AB" X��X�&�		�
��	����	�&�&
���
��.����������	%����	��	�����*�����������&���
�.�������&#�
(�/���
(��
�	��
��)�
(%������������	������
��
.����	�(���
(�&���	���������
.�
���*�

��&#�6
�(����(��������
��
���������
������
�����/���
(������(��(�����
����&������
����**������
���	��
�������;J�����S�JJ���#�/���
(�(���������*�����@AB�!���&�		�
�����
���&�		�
�M��������������(����
����
���������
�E��S�JJ�����������*�
�������9��S�������������������
.����
#�-.��
���

)��������&�		�
���

*�(��������.������������9��S�����
�����
��(����	�����������������������
.����
����&�����	������

����������
�������9��S����������	#��
(��
���
.�
���
����	��+�����������&
�������/���
(�(������&
���
����**������
��.�
&�&�&
��#�$�����
��
�������;J�����S�JJ����(
����)��*�
����**������
�(�����
�.
����&�		�
��'���	������������	��
�(���
(�����&
���������(
�0��'������&
���&�		�
�	#�U�.
��������������
����(����
�
�������
.�	�������**������
��4�.��
���
��
���+���������.�
&�����-3>5��	��
���'

��/���
(#K����(�	�������

��
��
(�(�	�0����,������
��
��(
�����.��
���
��
�������	���������
&*������#�-.��
��	���)��
������+�&*��������
������)��������
����0��

�(�
�
#������
��������������������@ABWX�� YZ��������	��
����
��
�������
��
�)��*�����(���
(������#�6
�(�����.�(��(�����
��)������	���.
��
�.��&���
��.��	��(��������	�����
	�	�����(���
(,#�-�����	���	���
��������
�*�
��		�����@AB"�Y�X�&�		�
��(������
����������*��
���
@ABWX�� YZ#�K����+�&*�������������*�.����	�
(��
(��
��
�����#K���
��������
�������	���.��.
���	��
��
��
(��	��
�����/���
(������������&�		�
�	������(�������
��������#�K��	��	��
���'��������
�F��9��:;<�N;����������.�����'������
.�����	(�����	����&���#�$
����������&�		�
�	�(�������*�
��		���(�����������������
.����
#������̂x\tjki����������ww�_̂��q�y�k��s{[̂]]�kô��̂]]\|̂�]{�ĵk�_qy�{�]��{�qk����������ŝktsy�b̂x_qy�{�~s{[no_y���]|��~\s\��j~\s\�uv������ŝktsy���v������W�����������������]k\kq[�z{q��~\qyk ��_qy�{�n¡_¢b�o_y��¡b£�o�[�qyk�q~\qyk£{tyk�¡rf¤d¡�ocjjq�]̂rst]ou
Ebay Exhibit 1013, Page 926 of 1204

Ebay, Inc. v. Lexos Media IP, LLC
IPR2024-00337

��������	
��������
	���
���������������	
��
������������
�	���
����
����
���������
���
��������
��
�
������
����
�
���������
�
������
����
�
��������	��

�
��
�
�	���
�����
������
����
���
	
�
���������������������
�
�������������	���
���
�
�������
�
�
�����
��!���
��
��

��
������	�

�
�
������������	��� ������
�"#�$%&'���()*+,-./012�33�4''&5�%6789:;�-%+�(-'9:;�89(<7&5+8��=>?*���'$@:82������33�A9B+:(96:(�6C�-%+�@9:86D(E(�$79+:-�&'+&��FG=HIF�%J';G'K(%2��33�J'9;9:&7�G'K(%�6C�89(<7&5�$6:-+,-��
�����
�
������
������������
���

�
�
�	�������

�����
�
�������L��	��
�
���
�������
��
�
�
�����MNOPQ����	��������
��	
��
�	��
�������
�
��
�
�
������

�����������
���������
�����
�
��
	
����
���R+-?79+:-=+$-S%@:8TU'$@:8V2W�������
�
����
���
�
�	�������

�������
��
�XYX����
�������	����
�
�
�����������������Z
�	
�
�
�����
�������

��� ���
�������	��
����
�
����
������
���
����
�
�	��
�
���
��[
�	���������
�
�����������
����
����������
�����
�
��	�����
�	�����
����
�
���������\
���
��
��	
������������
�
��������
L
���
�
���
�
	
�
�
������������
����
�
����
���
��������������	��

�
�]����������������
�
�����[���������
�����
����
	
����
���
�����
�����	����
��������	����
����
���
��
�
��
������������
��
����	���
�
����
�
	

����
�
�
���������	��

�
����
��
����
���������	̂��
�����������

�����������	����
�
��
�����	���	����_̀ àNbcdèNb�������
��
����
�
���
����������	�������

�

	��_̀ àNbcdèNb���
���
�	������

	
��
�
�
��
������f
	
�������
	���
�������
���	
��
�
�	���
�
���
���
�������

������������
�
��
�
��f
	
�
��
�������
 ��������
�
	

������
���������
��������
��
� ���
�
���
�
��
������	
�������
��
��������
�
�����������	����
���
���
�����
�
��
�
�
���������	��

�
�������������gPQhijPb����k̀ àil̀mn��!�������
���
�
��
�
�
���������	��

�
��������f������
�	
�������������
���̂
����
������
�����
�
��

��
���
���
���������

�����
�
��
	
���
����
��		������
���

���
��������
���

�������������
��������������
�
�
��������

��������	��
�
������������
o���
���
	����
�����
���

	
���	�����pqrst�uvw�xwy�]�������
��
������������
�����
����"��%J';G'K(%zI+7+$-J{|+$-S%8$T%>779<(+G'K(%V2�������������������33�(+7+$-�-%+�{'K(%��>779<(+S%8$T'$@:8}7+C-T'$@:8}-6<T'$@:8}'9;%-T'$@:8}{6--6BV2��33�A'&D�-%+�+779<(+��I+7+$-J{|+$-S%8$T%J';G'K(%V2���������������������������������33�8+(+7+$-�-%+�{'K(%~��������
��

��
�����������

�
�
�

�
���
��
�
�	
�
�
����
�
���������������
��
��
���
��l�MjPb��
���
�
��

����
�����	�����
�������
�
�

�
����
�
�����
�� ���
����jhijPbn��Pb����
���
��

�
�
���	̂����������
����
�
���������	��

�
�
��
�������
�
���
�
����
��
��������
����

����������
�
�

�
�������mMi��̀�b���D(<'9:-CS()*+,-T��&9:-�?6K:-���8���?79$��9:(98+�D9:86D�-6�'+<&9:-��T9�&9:-?6K:-V2��I+-G��68+S%8$T*=4�I�4=>�*V2���33��&�+�-+,-�-'&:(<&'+:-��A'&D*+,-S%8$T()*+,-T7(-'7+:S()*+,-VTU'$@:8TA*�I��R�>���>�A*�?>�*>=�A*��?>�*>=V2mMi��̀�b������

������
�����
��
���
�������
����
��
�
����
������

���������	��	����
�	�����
����������������������

�
�
��
�	���
�������
�
�
������
������

������]��
�
����
����������
��

����

�
����
�
����	
�����̀�bc�b������qy�����qr�����t���q�rw����wt���stq ��¡yq�y�¢�����£���

���
�	���
�����������������	�
�������
��������������
��������	���������
��
�

�������
�������
���������
�
�
����
������	
���������
�	
���������
�����¤�¥vw�¦��w����	�����
������������
�
��������������

��
�
��������������
�"§�]̈©ª�£�«�
�
������	��
����
§�]̈©ª�Z�«�Z
��
�����
§�]̈©ª�¬£�«�
�
�������
����	
����
§�]̈©ª}�?J�«��	������
�	��
����������������	�����������������A�4�JR­®}>̄>�«�°±«��
�
�
	�
���
����
�����[�������²��A�4�JR³́}>̄>�«�²µ«��
�
�
	�
���
����
�����[�������¶·Y�[�������~�
Ebay Exhibit 1013, Page 927 of 1204

Ebay, Inc. v. Lexos Media IP, LLC
IPR2024-00337

��������	
���
��	�������� !" "!�#$��%&&' (%#)"*+�,�����������-�.���/���������+����������������0���������������+�+�����	�1��������+��������������/���������2������������������3�����������,4��+�������������5�+�����1���+�����6*�����������7������.�������8����+�.���+9�-�����-����������0��������	5
�.���	�:���5
�.���+��+����������������������-��������+������������/�-���+���������+���������*7
,,�.����������������.���.�������+���������������������.���	�,�����+���+�������������������������������������0������������.������������������	�8�+�������0��+����������;���������+/�-���,2������������������������3�+�����+������������������-������	,�������������+�0����������������������������/����.��+�����������������+�������.������4����0�6����/������+�����*����������0��+�			9	�<��������-�����������������������0����������������+��������������.���������������.�����-�����+�=>/�
����������?������������������.���������+�������0��+	�*+������2��������������������������-���������	�@������������������+�������+������0�����������������+�
��������+���������	�:���������.��������+�.�+���������������+���������������+�����1�����+�A	B�����+����������.����2���0�������+�������������.���1�����+CD	����������������+����+���������+��������������������+���������-����������.������������	�:������++��������������+����-���������������������	�,.�������������.�������������-���0������++����������-������6,���������+����0������-����+����+������������2���+�������.���+���������9	�*�����������	�	������0����0����������������������+������++�0�+�����������+�������������+��������������������������+�������������������������+���������EFGHIJIKLHIGM�NOPPLQOPE��.������+�������0���������������+������.����������	?���2+���-���.���+���������.�������+���+���������������+RSTUTVW�:��+��+���������������-������������+��-���������������.����	�7�������������+���������+�����+��.�����.��������+������������+������0��������������������6����2+���������2����������+�����9	�?������������������+���������++�0���������������+����������+�������������������2������������++�0�+�.���������������	X�VT����+������+������+������������������������-��+	�8�+��������������+�����+��0�������/�-���+����	�:��0��������������������������.���������������+����/����������������@=:�Y*4	�Z������1�����+�A	B������������	�:��+�������������+�-�+�����������������������+��0������������������+������	�������������+����������++�0�+�-�0�����0������X[\�����������������	0	����+���������������������������������0����.��������������������������.�������	0	��.��������+�����0�+�-������.����������++�0�+-�0�����0������X]\	V̂ST_̀ a����+�������.����������������+���+��0������������+���������������.������������������+	�,���������������+���������+����������������+��+���+���������+�������������������-����������������	�,��������+�����0��.������������������������+��������+����������+�����+����+6���+��+����+�.���������+���������������������������������������+��-���+9	�<������������+����������+��+�������������������+��-�����������������������+�������+�����-��������������������+�.����������+�����	�b�+��-���+�������������������0���.���++�0�+�����-�0�����0�����̂_\���������.�������.������+����	0	�+�����+��������	�@���.����������++�0�+�����-�0��������̂_]\	Ẁ [_̀ _̀ a�:��+��+������-���������.�������������������������+��-��	�
��-��-���+������+�.�����������+�������+��������������������.�����+��������	0	�������������.���	�8�+�����-��-���+����2���+�����������������+������.����������c���������������+/������������+��-����������+���/�����������+������++�+�����������������������-�������������+��������-������������������������.������������	�d�����+����+�-�����++�0�+��������+�����;�����������++�0��.������-��-���+�����-�0�����0������W_\	�
��-��-���+��������+������.�������.����0�+������-�������+���-��+�����0���W_]\�����.�������	_eTT̀]����-�-���������+���.�����+������������������������0���-���+	�f�����+�����-�����������+��-�����+�6=>�����
�����������+��-�����+9/�������-���+�6�������+��������������������++���+������������������������������9/�������-�����+�6����������+��+�������������+����������������.��������������������-��+�������9����0�����.����+	�:�����������+����������������/�+���������+������-������������	�4��2���+�����������������������������	�:�����������.�����++�0�+���������.����������++�0���������������2������-����+������������.�������+��������1�����+�*Y,��������������3�-	SWg̀ ^̂_Ug����+��+�����������������������+���+������������������+����-�������+����+���������������������	�,���+�����������+�����������0�������-�������.������������������������+���������������0�����������������	�?����������������+��+�����-��+����������������.�������������+�+��+�����	�7�����-��+�����������������++�0�+�������+�����������..����������.���������������+�	�1��������0��/���������+�����-��+�+������h[\iSWg̀ ^̂���++�0�����������������������6���������0������h[\Ẁ [[U]�9/�����
������+�����-��++����h[\jSWg̀ ^̂	�:�����������	�	����/��+���+���+�-���.���+�����0�����+���������0������+��������+�������.���+�����-����+��0kOHkKlGmmnLMQO�����kOHkKlGmmoGP	@������2���0�������-�+�����.��������������������������������+�0��+�������0�.����	�,�������������+��.�1�����+����0������0�����������������+�0���.������0���-���+��+�+�����������+����..������������������+����0���+�	�,��+�������+�����+��������������������.����+����������������0���-������������������������������+�	�f����.�����������++��.������.�������+�����������.�����+��3�+�������������������+���������������0���������	�?����������+������������0������������������;��������/��������.�������+����������/�-����+���.���������0��������+�0���.�������2�����������������0����2���.����������������������������0�������+�0������������������.��+�������	�:�����+����������+�
���.��������+��+����������-����+������������������+�����0������������������0��0����������/�-����.������������������������������������-�����+���+������.�������-���+������������������������+���+��-������������-��-���+��/���������+���������	*��������++����+���������������.���������������.���+	�,�����������+������������������++�0��.�����������+�������������0����������.�����������;��������.�����������+�+�������������0������-��	�f����5�+�����1���+��������*�����������7���������������-���������0�������.���+��������������������0��,����.�������0������+��.	�,�2+���-������������/�-������������������������2+�0���0���	�b������0�������������������������+�����-������R7����+�����2���0����������0�������������+�+����������������+R:����������+������+��������������-������5�+�����1���+����.������+������0�������+���������+R
Ebay Exhibit 1013, Page 928 of 1204

Ebay, Inc. v. Lexos Media IP, LLC
IPR2024-00337

��������	
��
��	���	���	����	�����
�	
����
�
�����	�	 ��!�!"!	�	 ��#���$
�	�	 ��%�!���&	�	 �������&"%�!���&	'�()*+,-./)-+0'��&�	1�	'��	�/0.	�2,-3'4	%�&���
	'�0)2,	5+(,	0/627'�	89�	'�����%'�	������:�	�	 ��%:�

	�	 ��#���$
�	�	 �����"!�	89�	91�	���	1	%�&���
	''�	��;�<��=��	'�
��'�	���
���	�	 ��%:�

	�	 ��#���$
�	�	 ��$��
��	�	 ����$���!�	���	9��	���	9�	%�&���
	'>�?'�	�
�?�	'$"���&'�	$��
��!"�:$"���&	�	 ��%:�

	�	 ��#���$
�	�	 ����$���!�	9�1�	��	@��	9�	%�&���
	'>%/0A2B'�	�
%�&%�
�	'$"���&'�	$��!"�:$"���&	�	 ��%:�

	�	 ��#���$
�	�	 ����$���!�	9�1�	���	@��	9�CDEF	GHIJK	LHMF	NHOFJ	KEF	PHQLRNSF	MQTF	UVWXYZ[\	GRLLR]FP	̂_	KEF	K_̀F	RG	IFJRSIaF]EHaE	HJ	UVWXYZ	QMP	KEF	̀RJHKHRM	QMP	JHbF	RG	HKc	dR]	aEQMNFUVWXYZ[\	HMKR	JRTFKEHMN	TRIF	TFQMHMNGSL	LHeF	UXZ[WfghYiVjk	QMP	QPP	Q	PFGHMF	JKQKFTFMK	HM	Q	EFQPFI	GHLF]EHaE	_RS	HMaLSPF	HM	̂RKE	_RSIaRPF	QMP	KEF	IFJRSIaF	GHLFc	lRI	FmQT̀ LF	aQLL	KEF	EFQPFI	GHLF	UVWXYZnh	QMP	KEF	GRLL]RHMN	LHMFopq23-02	

���"�:�����						9��DEFM	PR	KEF	JQTF	KEHMN]HKE	KEF	HPFMKHGHFI	GRI	KEF	FPHK	aRMKIRL]EHaE	HJ	JFK	KR	VUr[kUVg\c	sG	_RS	aEQMNF	KEQK	KR	VUr[tWuk	JQ_v	_RS	EQOF	KR	QPP	QPFGHMF	GRI	KEQK	QJ]FLL	HM	KEF	EFQPFI	GHLF	LHeF	FcNcpq23-02	�
%�&���											9��dRKF	KEQK	̂RKE	OQLSFJ	aQM	̂F	wxx	JHMaF	KEF	GHIJK	RMF	HJ	Q	IFJRSIaF	QMP	KEF	JFaRMP	RMF	RML_	Q	HPFMKHGHFI]HKEHM	KEHJ	IFJRSIaFc	y_	KEF]Q_v	VUr[JKQMPJ	GRI	szFMKHGHFI	{RMKIRL	QJ	_RS	THNEK	EQOF	NSFJJFPc	ySK	_RS	PRM|K	MFFP	KR	JKHae	KR	HKc	s	MRITQLL_	JKQIK]HKE	KEF	MQTF	RG	KEF	PHQLRNSF	KEFaRMKIRL	̂FLRMNJ	KR	JR	s]RSLP	aQLL	HK	UXZWfg[tWuk	}GRI	zHQ~R���DRIHJF�d����c	�RS	PR	MRK	MFFP	aRMKIRL	HPFMKHGHFIJ	GRI	KEF	��	QMP	{QMaFLŜKKRMJ	JHMaF	VUY�	QMP	VUrWtrkX	QIF	̀IFPFGHMFP	aRMJKQMKJ	HM	KEF]HMPR]JcE	GHLF	QMP	JR	HJ	VUhkX�c	�MP	_RS	aQM	NHOF	QLL	_RSI	JKQKHa	aRMKIRLJKEF	OQLSF	RG	�w	SMLFJJ	_RS]QMK	KR	JFK	KEF	KFmK	RG	KEF	aRMKIRL	QK	ISMKHTFc�MRKEFI	KEHMN	_RS	THNEK]QMK	KR	PR	HM	KEF	FMP	HJ	KR	̀SK	_RSI	aRMKIRLJ	HM	RIPFIc	DEHJ	aQM	FHKEFI	̂F	PRMF	HM	KEF	IFJRSIaF	FPHKRI	RI	̂_	FPHKHMN	KEF	c�{GHLF	PHIFaKL_c	DEF	RIPFI	HJ	HT̀ RIKQMK	GRI	K]R	KEHMNJoDEF	GHIJK	aRMKIRL	HM	KEF	PFGHMHKHRM]EHaE	HJ	MRK	Q	JKQKHa	aRMKIRL]HLL	IFaFHOF	KEF	HM̀SK	GRaSJ	FcNc	HM	KEF	aQJF	Q̂ROFv	KEF	FPHK	aRMKIRL]RSLP	̂F	QaKHOF	QMP	_RS	aQM	FMKFI	KFmK]HKERSK	aLHaeHMN	RMKR	KEF	FPHK	aRMKIRL	GHIJKc	sG	KEF	��	̂SKKRM]RSLP	̂F	GHIJKv	KEFM	KEHJ]RSLPEQOF	KEF	HM̀SK	GRaSJ	QMP	KR	FMKFI	KFmK	_RS|P	EQOF	KR	aLHae	HK	RI	SJF	KEF	KQ̂	eF_csK	PFKFITHMFJ	HM]EHaE	RIPFI	KEF	aRMKIRL	JKQKFTFMKJ	QIF	JKF̀ F̀P	KERSNE]EFM	_RS	SJF	KEF	KQ̂	eF_c	DEHJ	HJ	HT̀ RIKQMK	GRI	QLL	KERJF]ER|P	IQKEFI	SJF	KEF	eF_̂RQIP	KEQM	KEF	TRSJF	QMP	EFMaF	HK	JERSLP	IFGLFaK	KEF	LRNHaQL	RIPFIc�LL	IHNEKv	KEQK]QJ	KEF	OHJSQL	̀QIKv	MR]	LFKJ	NR	QMP	HT̀ LFTFMK	KEF	aRPF	GRI	HKc	�n�	g��	���������	���u���DEF	̀IRaFPSIF	�������	HJ	KEF	FMKI_	̀RHMK	RG	KEF	Q̀ L̀HaQKHRM	QMP	HK	MRITQLL_	RML_	GFQKSIFJ	Q	GF]	LHMFJ	RG	aRPF	KR	aIFQKF]HMPR]	aLQJJFJ	QMP	aIFQKFKEF	TQHM	Q̀ L̀HaQKHRM]HMPR]c	sM	KEHJ	FmQT̀ LF	KEF	�������	GFQKSIFJ	QJ	TQM_	QJ	KEIFF	LHMFJ	RG	aRPFc	sG	_RS]QMK	TRIF	HMGRITQKHRM	Q̂RSK	KEF�������	QMP	KEF	̀QIQTFKFIJ	IFQP	KEF	JFaKHRM	Q̂RSK	KEF	̀IRaFPSIF	�������	HM	KEF	̀IFOHRSJ	aEQ̀KFIc-0)	!��%�
	 -0�/-0 :�&���&%�	*�0.)�	:�&���&%�	*!,2¡�0.)�	
!���	B¢%6q
-02�	-0)	0%6q�*+£¤DEF	GHIJK	̀QIQTFKFI	�V�¥¦	HJ	KEF	EQMPLF	KR	KEF	̀IRNIQT	HMJKQMaF]EHaE]F]HLL	MFFP	LQKFI	RM	GRI	OQIHRSJ	RKEFI	GSMaKHRMJc	§HMaF	HK	HJ	aRMJKQMK	QMPOQLHP	GRI	KEF]ERLF	LHGFKHTF	RG	KEHJ	HMJKQMaF	RG	KEF	̀IRNIQT]F	JKRIF	HK	HM	KEF	NLR̂QL	OQIHQ̂LF	�V�¥¦����c*�0.)/0A2̈*�0.)©dR]]F	aIFQKF	RSI	Q̀ L̀HaQKHRM]HMPR]]EHaE	HJ	Q	PHQLRNSF	̂Rm	HM	KEHJ	aQJFc	DEF	GSMaKHRM]HLL	MRK	IFKSIM	̂FGRIF	KEF	PHQLRNSF	HJ	aLRJFPc	DEHJ	K_̀F	RGPHQLRNSF	HJ	aQLLFP	Q	ªTRPQLª	PHQLRNSFc	DEFIF	HJ	QMRKEFI	K_̀F	RG	PHQLRNSF	aQLLFP	ªTRPFLFJJª]EHaE]HLL	MRK]QHK	KHLL	KEF	PHQLRNSF	HJ	aLRJFP	QMP	IFKSIMHTTFPHQKFL_c	sG	_RS]QMK	KR	GHMP	RSK	TRIF	Q̂RSK	KERJF	JFF	KEF]HMPR]J	§z�	EFL̀	GHLF	GRI	«¬­�®­̄ ��°±²c
-/B+³$+́ *�0.)/0A2���?��&�����"�%�

�����&¤�&"

��/-0
B³!,+A¤©sM	HKJ	JFaRMP	̀QIQTFKFI	̄��°±²µ±¶	IF·SHIFJ	KEF	MQTF	RG	KEF	KFT̀ LQKF	KEQK	HJ	SJFP	GRI	KEF	PHQLRNSFc	DEHJ	HJ	KEF	RMF]F	PFGHMFP	FQILHFI]HKE	KEFi�¥��������̧¥���c	�RS	aQM	EFIF	SJF	FHKEFI	Q	JKIHMN	RI	̂ FKKFI	SJF	Q	MSTFIHa	HPFMKHGHFIc	sM	KEF	LQKKFI	aQJF	_RS	EQOF	KR	SJF�¹º»¼½¾¿»ÀÁÂ¿«»	KR	̀QJJ	KEF	OQLSF	KR	KEF	GSMaKHRMc	s	SJFP	UXZ[uWVt	QJ	Q	MSTFIHa	HPFMKHGHFI]EHaE	s	PFGHMFP	HM	KEF	PHQLRNcE	EFQPFI	GHLFcDEHJ	GHLF	TSJK	KEFM	QLJR	̂F	HMaLSPFP	̂_	KEF	IFJRSIaF	GHLF	}Ã��°±²Ä¬Å�c§RTFKHTFJ	HK	aQM	EQ̀ F̀Mv	KEQK	_RS	aQLL	PHQLRNSF	̂Rmv	̂SK	MRKEHMN	EQ̀ F̀MJ	QMP	̄��°±²µ±¶	IFKSIMJ	HTTFPHQKFL_]HKE	Q	IFKSIM	OQLSF	RG	bFIRc	sMTRJK	aQJFJ	KEHJ	HJ	PSF	KR	QM	HMOQLHP	PHQLRNSF	KFT̀ LQKF	HPFMKHGHFIc	{EFae	GHIJKv]EFKEFI	̂RKE	KEF	c{	GHLF	QMP	KEF	c�{	GHLF	HMaLSPF	KEF	EFQPFI	GHLF]EFIF
Ebay Exhibit 1013, Page 929 of 1204

Ebay, Inc. v. Lexos Media IP, LLC
IPR2024-00337

���������	
�	����	�	���	
����	�������������	��	
���
���
����
�������������������	�����������	���������	
�	
�
����
������������	
�
�	�������	�����������
��
�������	��������������
������������������������������ �	��!�������������
�

�����

���"�����	��!����
��
�
����
������
��#����������#	���#�
��

�
��������	
������$�����	����������������%&'()*+),�	
��������������������������#	���#�������	
�
�
��#�����������-�����������.
�#�!�#����

�	��/0����$�����
�����������	
�����	�������������	��������������
�����������#	���������������-���
�������������!���!
����#	���#
���	
����
�����������

�
������������	-�������������
�	����	��
��!�����!���������������
�	���
������1'2345)6789:'863��������!���
������%&'()*+),�����;53345)6789:'863�����#���
��$�	
�#�
�����<�����	���
��
	���!�����������

��	������
�������
�	�!������������#	���#
�
���	���
��������	
���!������#	�����	
���������=�����>	�?@���	
�	
���
��������!#�!�����
��������	
�������
�������������!���#	����������
������������>���������#�
�	�������!����������	�������	
�
��
����#������	������!�������	���AB0 ����.
��
���
!��
�����CDEFGDH�IJKLM�NOP�AQR�STUVWXYR�ZW[�\]ŴRSY]R$�����	���	������
�����#�����������-	��
�������
����

�	����	���������-	��
�
�������������	
�����	
�������������	��#	���#������������	
��	���	
��
���������	�������������������������
�
����#	���#��_��
��
�����	�����������	
���
����#	���#����������	������
��	
�����������#	���#����
������������	�������#	���#�	
����	����	��>	���#
.
�	�
�����$�	
�#	���#����
������#	��������
�������	����������
������#�	
��#����-��������-	���	�������������	�������������������-���
��̀�	����������
�������	-�
�!������
��!�����
�������������
��
���#	���#����
���������������������-�����	
����������!���abb�����������������!����b/c��>�����
�	����#	���#����
������#���������d�����ef"��	��#����-�����
�

�������

��������
����%3gh&8i)j45)6�	��#���	��.��������	����������
������#���������AB0 �	��#�����
�

���	���������� ������#	
���k����	
���������������	����������	����������
�����lmnno�pqJ�rqstqo�uvwrDxyz{|}u�~uvw�K�}I���w�|rqJq���r�D���orqJq��vr�D���������Fy~�z��w����������y��E�|�������������������DxyE������E���wE��������������DE��M������E��GvF��������������vEF�|�H�x���~�H�vE�F~E��E���wE�������������DEFGDH�pqosLM������DEFGDH�IJKLM�$�����
��	�����������

���
�������
�

��������	����������
�������������/�A����bc������b���/��������!�������� �ABb������/�A����bc�	
�
������������	����������
������	�
��������������B �A ���

�����#�	
��	
����!�
�������#	���#����
�����
"�����
������
������	�	�	��	
���	�������
������
���������
��������	������
���
�
��=
������ �ABb�����
�������������#���
�	����
�

��!�������#	���#���
�������������������
��	�����������

���
�����������	
�����������/A���

��������!����	����#������#����������	
�������>��������
���
�!���������	
���

�����������	�������#	���#�#����������������!�������	
�������
�������������	��NOPO��AQR�����/�A����bc��R��UXRf��.
���#���������
�����	
��	���#	���
������
���������	�	�	��	
��	�����������	�������#	�����������/�A����bc���

���������!�����������������	������
�����#	����	
�����	
���������
������
�����������
���

�����������	��	����$��
����������������
��������	������������������	
������
���	�������	
��� ���l�̀���
������
��������������!�������������

�!���
��
	�!������#	
��	�������	����������������y��E�|���}�Iu�qon¡������LH��vE|�H�x�z¡EFuvw�FE�z~uvw��ut�quu}q�L��pqosL�M�����LH��vE|�H�x�z¡EFuvw�FE�z~uvw��ut�snJIo�sI��pqosL�M¢	�
��£8'¤(3h&8i)j�����	��
���#	���#��������#����-���������������������������
��������	�
���!�
���	���¥3:%(*7:3¦��#�	
��#���	-������������������	�������#	���#��������������	
�
�������	����	�	����¢�������
�
�����������������£8'¤(3h&8i)j����AB0 �	��!���#������������������
���������������� �����	
�����	���§	
������
������
������	
���!���#	������!�����������������-�	��������������
����̈���
��������������	
����������!��
���
������
�<�
���	�����!�������#	���#� ����#��
������������������	��
������������	������
��
��������
��©ª362«'i&)+¬::)8�����
�����	����	�	�����������	�
��������
�����	���������	�����������������������!���#�������
�������
��
��������������	
�	������������������	����	�	��
��������	��������
�������-��
��
�
��	-��������
��

	������������	����	�����������	
�	����	�	������������	�
���������	
����	����#	�����-��������­ee����������
�������	����	�	��
������������������	��������
����������������-��������­e­��­e@��­e?�����
������©ª362%(*+¬::)8�	
��
�����������
��
�����������t~Ey�J���xmGFFxHz~uvw��ut�qstL}u�}¡��ut�uLstL}u�}¡��ut�qstL}u�}¡�M�����t~Ey�uvwmGFFxHz~uvw��ut�tqsL�}sL}s�I�®L�IJKL�M
Ebay Exhibit 1013, Page 930 of 1204

Ebay, Inc. v. Lexos Media IP, LLC
IPR2024-00337

����������	���
������
��
���

����������
���
�	���
����

���
���������
����	��

�
�����	���	����

�
�����	�����������	���	���
���������
������
�����
����
������

��
����
��	���
��������	���
��������� !"�"##�$#���

�������������

���%$&%��!�&��
��
��'(
��
���
��
����
��	�����)*�
�����
��������+,-./0123,45,6671,89/01:2/;<=>5?:?5<@252AA?BA:5>B=>5?@?=:C@DE�����FG,7HEI	���
����
'(
��	���
����	��
����
������	�	���

�J� KL��%&M��
����
��
��
�NOPOQ�RST�J� KL��%&M�UTVVWXT�

�J� KL��%&M�����

�

����	��������	��
��	����	�
���
�����
����
����
���	�
��
��������	���	��
(
�����Y��	������
����

�
����������
�����
�
��
�

�
��
��

��Z��[\�����Z��]̂�����Z��[\��

�
�_̀ abac����[\���������d̀abac�]̂��������
��_̀ abac��	��������

���
�����
��	���

�	���	������d̀abac��	��������	�
��

�
����
�	���

��	���	������	��e����

��	��	��
���	��f��������	��������	���	�
�e����

�
��
�	��
���	��f����Z��]̂�_̀ abac�����d̀abac���
�]̂������_̀ abac������	��������	�
��

��	���	����
�����
��e����

��	��	��
���	��f��������	��������	���	�
�e����

��
�	��
���	��f�����d̀abac��	��������

�
����
��	��

��	���	������	��	�������
��	�����
��
g�h	�'���	�����

�
����
	���	��

��
(
���
�������
�
�����������
�
��
��ij������
��
���
���	�����	���	�
��	��
��
�����(
���	�iklm.,m�n2=op��qq�nl-op��k.,ml-,�rstuv���@wnwx/8yz7G74D�������qq�;{-3G{0�2/�m{G�n5<;w55>=/��k.,ml-,�rst|}~���2nwx/8yz7G74D�������qq�={3lml�73l{-�5,6671,�{m�;{-3G{0��k.,ml-,��rst���8�n=/D0z7G74����������qq�yl-.{y�97-.0,�{m��{-3G{0k,06,��qq�nl-����k.,ml-,�rstuv���yz7G74���������������qq�;{-3G{0�2/�m{G�n5<;w55>=/��k.,ml-,�rst|}~���2nwx/80z7G74D�������qq�={3lml�73l{-�5,6671,�{m�;{-3G{0��k.,ml-,��rst���8�n=/D@wnwx/80z7G74D��qq�yl-.{y�97-.0,�{m��{-3G{0k,-.lm�������
����	������
�������	��������

��
�����
���	��������(������
����
(
����	���
��	�
��	���
���

���	��������
���������	�
�������

J� KL��%&M��
����
�����

��	��	��������i���76,�n5<;w55>=/��������6yl3�98rstuvD�����qq�.,3,G4l-,�39,��{-3G{0�39,�4,6671,��74,�mG{4��������������������76,�2/;<=>5?��qq�={3lml�73l{-�4,6671,�mG{4�,.l3��{-3G{0���������������lm�8rst|}~��?=<�z/>A?D��qq�6{4,39l-1��97-1,.�l-�39,�,.l3�ml,0.���������������������������������FG,7HE�����������76,�2/;<������qq�7..��76,�6373,4,-36�m{G�{39,G��{-3G{06�������������������������qq�7-.�6{4,��{.,�3{�97-.0,�39,�,�,-3���������������FG,7HE����������������FG,7HE�����������qq�,-.�{m�n5<;w55>=/�

��������
����������	����������
�����
������	��

����

�

���

�
���������
��������������

�
��������	������
��"MK &%�������
����
�	��������
�

���������
��	����������
�����	�����	����������	��
����i�����������76,�2/;<=>5?���������������lm�8;A@5+���?=<�z/>A?D������������������l-3�0,-�+,-./0123,45,6671,89/01:2/;<=>5?:?5<@2=?@?=�A�:C:C@DE������������������?-7F0,nl-.{y8�,3/0123,489/01:2/;<>//=>5?D:0,-DE�������������������������������FG,7HE�
����
����������������������
�����	��	��i�����
���
����

�����
�
������

�
��������	�������������������̀ ����� ��

���
���

�����
��	��
�����
�������

�
�����	���	���d¡¢��¡¢£�d¤¥¦¡c�¡§§a¤¡�̈�d¤©¥�������©����¥�������ª©«©«�� �����
����
��

�����	��"MK %MM&%�����	�������	�����
��	���
�����
�����¢a¬d¡­�¢£®_��¡¦�d¤¥¦¡c�̈�d¤©¥�����������©d¡¢� ������	�'(
��	���
�����

���	�'(
����
���		���

��������������
������

��
������̄������(������	���

��
����
�����

���
��������
����	��	�����	���
����

���������
��	������°����	��	����
���±
�������
��
�����

����
��
��������
������	����
���������
����	���I	��������

�²³�����	������

��
���������
�����	�������
�
�(
�'���	�	�
�

�
��́	���������
���������	���	����
���������
�����	��������
Ebay Exhibit 1013, Page 931 of 1204

Ebay, Inc. v. Lexos Media IP, LLC
IPR2024-00337

����������	���
���������	
�����	�������	�������������
��������������������
���������
����	��	������������	
���������
������	�����������
���������������������������
����������������������
�
�
����	��������������
��
������ �����!�
��������
����
����������	
������"�����������������#���������
���	�������
�
�

��������������������
�����$������������
���	
���
������������������#��������
�
������������	
������%&'()*+'&,-&.'"����������
�����	��������
�����������������
���	������"�
������������������#���������
�
������
#���������������	�
�
	���������
��������

����������/012�3456744879:;��<<�=>??@A�7BB�A0C2�D01�/EF/G2B�������������H�/I0J�1K80C2L97M879:N:8OP���������������Q2?4ER3?2CS2T?UI4ERV3456879:V1K80C2V97M879:N:8WP$��

�������#�������������"�������
���������
����XYZ[[��\]̂��������������	�������][�Ŷ Z�_�]����$��
���
�	���������
����������	
��àbc,&��������	����	���������������d2AB4ER3?2C92110R2UI4ERV3456879:N3dSVN=6744dSe38QVfVUNg7e79WUNgdSeW1K80C2WPh�������
������������������
���
��
��
���	��
��������������������	
������ijkhlmnomohlp������

"����������������������
�#������������
������������������������������
�
�������q�
��������������������������
�����
�����������������mrs�����������$���
������������
��	����������������"����	��
��������#����������
���	�������
�
�����������������	���������
�
���������������	
����������
�������
�������
�
��������������������d2?4ER3?2CS2T?UI4ERV3456879:V8tNNWP���������������d2?u@/>1UQ2?4ER3?2CUI4ERV3456879:WWPr������
��
�����
�������������
�������������������������
��������vm���v�����������	��������
�����������������������������#���������������:A0wE2xFAB@DUQ2?4ER3?2CUI4ERV3456dyeSN3dSWVSet:WP������������z������������wJ20GP�<<�2AB�@{�3456744879:q�����
���������
���"������	���
�
	��
��������������
����	��	����������
��������������
��������������
���

���
�
���
���
�������j�������	
��

���
���
��������������������
����
��XY�_��|}̂ ������
����������������#�
�
���
��
�����������������
����$��������	
���������������
����
�
�

��������������������#��$�����#����������~����������	����
����������������������������vm���v�������������������������$�����
��������������
�����������	�
�������'��̀'����	�����	�
�
��
������������������	��������j�������������	
�����������	�
������~��

�����������
�
�����	��	���#�	��������$������������	
���+̀()*��''����&��&�����	���������������\}_����������
�
�Z��_����������������������	��	��
���������/012�3456dyeSN3dS;������������H�=yyN�50123A12A1F?F�2�314ER=>??@A5I2/G2BUI4ERV345657d:38d:8d3S3�:WP��������������=yyN�w421/2ABFARyJB2J�314ER=>??@A5I2/G2BUI4ERV34564:d5:8438QWP��������������d@J?NF1?UI4ERV3456879:N3dSVw50123A12A1F?F�2Vw421/2ABFARyJB2JWP������������z������������wJ20GPl�������
����	
������������������
����
���~�����
�������	���������
�
���������	��������������	
���
����������
������������
���������
������
����������������	���
�
�������������
�
����
�
����������������
��������
�][�Ẑ �_��������������������Y�|��Ẑ [���������������������������	
����������	�������������
������������	�����	���
�
�����������������������!��
���������������
����
�	��������������������������
���i��~��
������
���������������
�
�
�
����������������	���
�
��������������������q�������	�������������	
�����������	�����
���Y�|��Ẑ [����
���������������������	��
����������	���
�
��h�������	
������	���������
�
���������	
���������(�c)�*��$����������
�
�����������������	��������
�
��������
�
����������
�
���������
���
�
�������	��
��������������������
������������	
���������	�����������������
������������������"��������	
���
������
�
�����������������c������������(�c)�*��.�	���
�
��m��	�����
��������
��
���������������
�������������	
���������
��	
����
�������"��������
����
��
���
�
��������#������
��s�
�
��
�	������������������
���������\}_�����
�����������������
����������������������
��s�
�
��Z��_������������	
�	����
��q���
�"�����������
�����������������������/012�3496�t3S;������������:AB4F0E@RUI4ERVSet:WP������������wJ20GPq��������~���	
���
����(�c)�*������������	�������������������
���������������Y[_��\| ������#
������¡����������������������	����������������
�������
���
���	
��
����
���$��
�
������������������
������	���������
�
��������������
�
������������
����

������	�
������][�Ẑ �_���h�������	
���h�
�����������������������������
�����
�������	��������������
�������
��&̀ c̀*&��.��h���������
�����
��������¢���������
����	�����XY]�|̂ £}_��]|̂ ��
�
�
����
�
�l�����������XY _�̂ |���h��������
��������	�������
���������(�c)�*����	
���
�
Ebay Exhibit 1013, Page 932 of 1204

Ebay, Inc. v. Lexos Media IP, LLC
IPR2024-00337

��������	
���
��������������������������������������� ����������������! ��"�������#��$�����%��&
'(�)*�&
+��%,�)
&-.����������#������������,�)-���/������������0	�)�-.����1����2���3.�456�789:;<=�:>?�@;A:BCDEFFG�FHIJK�LEMH�E�NOCHP�FQQR�EI�ILH�SOQTHUVOH�VKHU�PQO�KQOICDW�ILH�FCKI�XLCTL�VKHK�E�KCYSFH�NVNNFH�KQOI�EFWQOCILYZ�[WECD�ILCK�CK�\VKI�IQ�UHYQDKIOEIHLQX�IQ�TQYYVDCTEIH�XCIL�TQDIOQFK�EDU�CI�CK�DQI�E�MHOG�HPPCTCHDI�XEG�QP�UQCDW�CIZ�[DU�EPIHO�EFF�CD�YQKI�TEKHK�ILHOH�CK�DQI�DHHU�IQ�KQOI�FCKI�NQ]HKNHTEVKH�GQV�WHI�ILH�KQOI�QSICQD�PQO�POHH�CP�GQV�KSHTCPG�ILCK�SOQSHOIG�PQO�ILH�FCKI�NQ]ZĤOHJK�ILH�SOQTHUVOH�CD�XLCTL�XH�PCOKI�EFFQTEIH�E�DVYNHO�QP�CDIHWHOK�EDU�IXQ�NVPPHOK�IQ�KIQOH�NQIL�KIOCDWK�ILEI�XH�XEDI�IQ�TQYSEOH_��/�)��������̀a
������������/������&&��2�������������_���&&��2������/���&�/��-�����������$����b.���&&��2)��c.�������2 ##��de�	f
	����
g�2 ##��he�	f
	����
g.iQX�XH�DHHU�IQ�RDQX�LQX�YEDG�CIHYK�EOH�CD�ILH�FCKIZ�jLHOHPQOH�XH�KHDU�E�YHKKEWH�klmnopqrstp�YHKKEWH�IQ�ILH�FCKI�NQ]�XLCTL�XCFF�OHIVODILH�DVYNHO�QP�FCKI�CIHYKZ������$��)��/������$��������������/�������%u�*�&(
*�v�v�-.wD�ILCK�TEKH�CI�CK�DQ�SOQNFHY�CP�ILHOH�EOH�DQ�HDIOCHK�CD�ILH�FCKI�CZHZ�xyz{|}�CK�~HOQ��KCDTH�ILH�PQFFQXCDW�IXQ�PQO�FQQSK�XCFF�LEDUFH�CI�TQOOHTIFGZ��VI�LQXENQVI�QILHO�TEKHK�XLHOH�GQV�DHHU�E�YCDCYVY�QP�QD�FCKI�HDIOG�KEGZ��HFF��DQOYEFFG�CI�KLQVFU�DQI�NH�DHTHKKEOG�IQ�TLHTR�PQO�ILEI�LHOHZ�wD�ILCKSOQWOEY�PQO�H]EYSFH�XH�TED�NH�KVOH�ILEI�ILHOH�CK�EI�FHEKI�QDH�CIHY�CD�ILH�FCKI�NQ]�QILHOXCKH�ILH���QOI��CKI��SVKL�NVIIQD�CK�UCKENFHUZ�jLCK�CK�EDCYSQOIEDI�YEIIHO��wI�CK�EFXEGK�NHIIHO�IQ�SOHMHDI�ILH�VKHO�POQY�YERCDW�CDMEFCU�CDSVI�ILED�IQ�IHFF�LCY��LHO�FEIHO�XCIL�ED�HOOQO�YHKKEWH�ILEI�ILH�CDSVIXEK�CDMEFCUZ�[DU�XCIL�XCDUQXK�GQV�LEMH�ILH�QSSQOIVDCIG�IQ�UQ�ILEI�HEKCFGZ�jERH�ILH�HUCICDW�QP�DEYHK�EK�EDQILHO�H]EYSFHZ�jLHQOHICTEFFG�QDH�TQVFUCDSVI�ED�HYSIG�KIOCDW�IQ�ILH�FCKI�NQ]��NVI�KCDTH�XH�QDFG�HDENFH�ILH��[UU�DEYH�IQ�FCKI��NVIIQD�XLHD�EI�FHEKI�QDH�TLEOETIHO�CK�CD�ILH�HUCI�PCHFU��ILCKTED�DHMHO�LESSHDZ�jLCK�OVFH�ESSFCHK�DQI�\VKI�IQ�UCEFQWVH�NQ]HKZ��HDV�TQYYEDU�EDU�IQQFNEO�NVIIQDK�TED�EDU�KLQVFU�NH�IOHEIHU�CD�ILH�KEYHYEDDHOZiQX�XH�HDIHO�ILH�PCOKI�FQQS�EDU�TQSG�ILH�IH]I�QP�ILH�PCOKI�FCKI�CIHY�CDIQ�QVO�NVPPHOZ�[WECD�XH�KHDU�E�YHKKEWH�IQ�ILH�FCKI�NQ]�IQ�UQ�ILEIZ�wP�GQVJOH�DQIKVOH�LQX�FQDW�ILH�KIOCDW�CK�EDU�XLHILHO�GQVO�NVPPHO�CK�NCW�HDQVWL��GQV�TED�KHDU�klmnoppo�pkot�PCOKI�EDU�EFFQTEIH�KVPPCTCHDI�KSETHZ��#����������$�.��v.���-��������)��/������$��������������/�������%u�**�f*�v����	�	�-���)*�-2 ##��d-.wD�ILH�CDDHO�FQQS�XH�WHI�ILH�DH]I�KIOCDW�CD�ILH�FCKI��TQYSEOH�ILH�KIOCDWK�EDU�CP�DHTTHKKEOG�XH�KXES�ILHYZ����#����b�d.b��.b��-��)��/������$��������������/�������%u�**�f*�b����	�	�-���)*�-2 ##��h-.����������������� �������¡���� ��¢�����������#��2�������������_�-�2)��c�������$c��2 ##��d�2 ##��h-�v-.�������������������������������2)��c������$c�2 ##��d�2 ##��h-�v-.����������#��2������/���&�/��-�2)��c�£2)��c.������������¤¡����������������������� ¥����������#��2)��c-�����������������¡��������� ��¢��������������)��/������$��������������/�������%����*�)*��
u�b�v�-.�������������)��/������$��������������/�������%�
)��*)*��
u�b�d����	�	�-���)*�-2 ##��h-.�����������1�������������������c��2 ##��d�2 ##��h-.�������1���11¦DPQOIVDEIHFG�ILHOH�CK�DQ�YHKKEWH�IQ�KHI�ILH�IH]I�QP�E�FCKI�NQ]�CIHYZ��VI�XLEI�XH�TED�UQ�CK�UHFHIH�ILH�TVOOHDI�KIOCDW�NG�KHDUCDWklm§okopo7p̈ ©tn�EDU�ILHD�CDKHOI�CI�EWECD�EI�ILH�SOHMCQVK�SQKCICQD�XCIL�klm©t7ö p7p̈ ©tnZ�
Ebay Exhibit 1013, Page 933 of 1204

Ebay, Inc. v. Lexos Media IP, LLC
IPR2024-00337

�����������������	
���
�������
����������
�����
���

�������������
�������
���
���
�����
�������

������������
������
������������
����
��������
�������
�������������
���
�����
��
��
���������

���
����������
��
��
�����
��������
��
��!���
���"
�#����!������������
���
���"�����

���
��
�"��������
�����
���������������
��������##��"���
���$
���
�%��
�����
�������
���"
�#��������
��������
������!��������
��"����

���#����
#�"��
�����������
������
�����
����
������������
���#������������
�
���
���
���&��#���#�
�������'�((�)�*+,-�./012
��
��3���
������������������#
������������������
��"������
� ���
���4�5����
������
��������������������#������"��
�����6�������
���##��"���
����
���
�
��
�������������
��#�
���������
��� ���
���4�7����������
��������������������""��������

����"������#�
������
���������##��"���
����������������������

�
�
����
�����������
������8
��9����:#�������
�������#�
�������
��������&��#����
���
����9�������������
���
������
�#�
��������

��
��
�%����������������
���������#�
������������"
�������������%�����������

��&"��������"�����������������������"��������������;
<�"�
�
���"�����#����
��
���
�"������2
��
��3���
������
�"
�#�
�������"
���������������������"���
���
���
���"
��
���������
��������##��"���
���$
��"���
��"
������������
���������
�������������
������������������
���
���"
�������������������
������
����8
��"
��
������
���������������
��������"=�������������'>??*@A�*@@��
�"
�#�
�������
���
��
��������"��
��BCDEEFGCEHEI�:#����������
��������
�"
��
�������"���"��������������"����"
�
����$
�������������
�������
����"
������#����������
��"

����
"���
������
��������
#�"
�
��������
��"
���
��#�����CDEEFGJEKL�M��
����
�����"�����
�������������#��������N������"
�
���#�
#��������:#��
�������
��������#�������
���
�����#����"�������&�����
��
���
����
�����

�������JOKPQGRL�8
���������
�����������
�����
������"
������&��������
"�������8
��������
��"
��������������
�
���"
��
������
�����
����#�
����������
�����
&��
���
���"���������"
�����
����
"������SGTHUVGQGRL�8
������������
����������
��
��������
����
#��
���
���#��"����#����"�������&��WGLXTGKJOHGYUZG�8
�������
����"�����6��"����������
����������������������
�"������������
�����
&��
������
����
��������
�����"����������
�
#���8
�������������
#��
��������
��"�������������
���
�������
�������#�����������
�����"��
�������
���
������
������������#�����������"
����������"�
������������������������"
�#�������
��������
���
��WGL[U\GJOHGYUZG�3���
������
���������������]IOKL̂H_�M�����
�����
������#�#�������#�
#������!��
������
�"
��
������
������
��������������
���"������
��
�����������'>??*@A�������
���"
���������$
���
���"����
���
���
����
������"��
�����
��
��#�������������"����������
��;3̀ �
��#�������!���
��������
�����"��#��
������������
�����������

���"
��"����
�����������������&��#���

���
���#�����������
#���������������������
����9�������������
����&����������
�
���
���������������
��������
����������Babcdefc�ghijklmnhgmlmn�op8
�����������
��
��������"��
�����
���
���
����
��"���
�������2
������
���������JHU_F�����##�
#������qrrl�stuvcwjetcnxycz{|ns�}|fb~l�����t����ewtc~l�����t���j��yxw~l�����t���jetcnxyc~qrrl��x�c����r�mnjklmnhgm����d����efw�������������c��tw�������������������������������������� �¡¢����d£t�w��¤w�e�c�������¥��e�c�dzr�mnjklmnhgm������d£jtxu��������������¥�rjn¦{ksm�mhsrnl§�̈�rjn¦nr©{hnvmsk��̈�rjn¦�{r|{ml������d£}ªfbrªfc����������¥�}|fb�����d£}kf�wxf¤c���������¥�}kf�wxf¤c�����d£t��w�jetc���������¥�t���jetcnxyc�����d£t��w�jetwc��������¥�t���j��yxw�����d£fgx«jetc����������¥�ghijklmnhgmlmn�����d£t��w�kfewextse����¥�n¬ll�����d£t��w��ewtc��������¥�t����ewtc�����d£t��cy�txwcnxyc����¥�p�����d£t�df{��­����������¥�n¬ll�������®�¢̄��°�����±���²³���ed�z�x�c���c��tw¥vcw�x�cjetcnxycź�d����������ct�c��c��tw¥vcwr�cfjetcnxycź�d������cw��f��c��tw�µ!���
���
�����"
����������
������
��#�
"������
���
������������
���
���

�����
�������������������"
����������
������������&�����
��
���
��������
������������
"��������������
���
����������B
Ebay Exhibit 1013, Page 934 of 1204

Ebay, Inc. v. Lexos Media IP, LLC
IPR2024-00337

��������������	�
�����
���
��������������
����������������������	�
�����
������� !�"#$� �$#$���%&'�()&*++,�,-.�&//'�0-�1*++�02/�(.&10)-&�)&�,-.3�4)&'-4�-3�')*+-5./�63-1/'.3/�4)02�7-8/42*0�+)9/:�����;�<=>�� �?@�����A���	BAC�
��D�������������������"?�<>C$�@���������������B?
EF����
�����B	;�GH�>I�������
��H����
���
���H����
�����H� #J$DD���������������������	��
������������������	��
��<
�I��B����
�����H>�<K$?D��L
��M�������������"?�<J N$@���������������B?
EF����
�����B	;�GH�J�O������
��H����
���
���H����
�����HPKQ$DD���������������������	��
������������������	��
��<
�
���B����
�����H�D��L
��M�R(�,-.�&//'�0-�/S0/&'�02/�(.&10)-&*+)0,�-(�,-.3�')*+-5./�/T5T�)&�-3'/3�0-�-((/3�*�63/U)/4�-(�02/�()+/�,-.�1*&�'-�02*0�V,�63-U)')&5�,-.3�-4&�')*+-5./0/86+*0/�*&'W�-3�76/1)(,)&5�*�2--9�63-1/'.3/T�X)&'�)&(-38*0)-&�*V-.0�02)7�)&�02/�YZ[�2/+6�()+/T�\]̂ _̂̀a�bc̀ d̂ce�bcecfdg�h̀i�fg_̀a�jk�bc̀ d̂cegl2/&�,-.�)86+/8/&0�,-.3�-4&�')*+-5./7�,-.�4)++�()&'m�02*0�02/,�70)++�+--9�7-8/42*0�')((/3/&0�(3-8�*++�02-7/�(*&1,�-&/7�,-.�7//�)&�-02/363-53*87T�l2*0�)7�8)77)&5�)7�n.70�*�&)1/�53/,�V*1953-.&'�*&'�*�&)1/�oZ�+--9�-(�*++�02/�1-&03-+7T�Y.3/+,�,-.3�*66+)1*0)-&�'-/7&p0�5*)&�*&,�8-3/(.&10)-&*+)0,�4)02�oZ�-(�3*')-�V.00-&7m�12/19�V-S/7m�/')0�1-&03-+7�*&'�02/�+-0m�V.0�)(�,-.�4*&0�.7/37�0-�*11/60�,-.3�63-53*8�,-.p'�V/00/3�5-�(-3�02/(*&1,�-&/7T�l)&'-47�qr�*+3/*',�*.0-8*0)1*++,�63-U)'/7�*�oZ�+--9�(-3�1-&03-+7m�*++�02*0�)7�8)77)&5�2/3/�)7�*�&)1/�53/,�V*1953-.&'�1-+-3�s02/�'/(*.+0*7�,-.�1*&�7//�)7�42)0/tTu-4�)(�)0�n.70�02/�V*1953-.&'�1-+-3�02*0�V-02/37�,-.m�02/&�*++�,-.�2*U/�0-�'-�)7�0-�63-1/77�02/�vwxyz{y|{|}�8/77*5/T�~2)7�8/77*5/�)7�7/&0(3-8�02/�1-&03-+�0-�02/�6*3/&0�4)&'-4�s42)12�)7�&-38*++,�*�')*+-5./t�0-�*++-4�')((/3/&0�1-+-.37�0-�V/�.7/'T��&(-30.&*0/+,�02/3/�)7�*&-02/3')((/3/&1/�V/04//&�l)&���*&'�l)&o�T�u-0/m�02*0�)0�'-/7�&-0�8*00/3�-&�42)12�U/37)-&�-(�l)&'-47�,-.�3.&�02/�63-53*8�-&+,�42)12�,-.�1-86)+/�)0(-3T�R&�l)&���,-.�-&+,�5/0�02/�-&/�8/77*5/�8/&0)-&/'�*V-U/�*&'�02/�+-4/3�4-3'�-(��������)&')1*0/7�42*0�0,6/�-(�1-&03-+�7/&0�02/�8/77*5/T~2)7�1*&�V/�*�V.00-&m�*&�/')0�1-&03-+m�*�+)70�V-Sm�*�1-8V-�V-Sm�*�70*0)1�1-&03-+�-3�02/�')*+-5./�)07/+(T�R&�l)&o��02/3/�*3/�7)S�')((/3/&0�8/77*5/7m�-&/(-3�/*12�1-&03-+�0,6/T~2)7�)7�2-4�,-.p'�'-�)0�(-3�l)&��:�����;�<=P#=>#>K@������A���	B�";>K?B
C�
��DD���������������������=P#=>#>K<?#F@��������������=P#=>#>K<JP P"=@��������������=P#=>#>K<�P�@��������������J���M=�
�
BB�?=DAC�
��HKF�B���H���H���DD���������������
���
��F��J���M>L����B#PFK �<�KQJ�D�������������
���
��� #J$����������	��G����
��*&'�02/�/�.)U)*+/&0�(-3�l)&o�:�����;�<=P#=>#>K?#F@�����;�<=P#=>#>KJP P"=@�����;�<=P#=>#>K�P�@�����J���M=�
�
BB�?=DAC�
��HKF�B���H���H���DD������
���
��F��J���M>L����B#PFK �<�KQJ�D�R&�V-02�1*7/7�,-.�7/0�02/�V*1953-.&'�1-+-3�(-3�0/S0�)&�02/�')76+*,�1-&0/S0�5)U/&�)&��������.7)&5������y�����*&'�3/0.3&�*�2*&'+/�0-�*�V3.72T�R&02)7�1*7/�R�2*U/�-V0*)&/'�02/�2*&'+/�0-�-&/�-(�02/�63/'/()&/'�V3.72/7�(3-8�*�1*++�0-���������|�����T�~2)7�(.&10)-&�1*&�*+7-�V/�.7/'�(-3�6/&7*&'�(-&07�*7�,-.�1*&�7//�42/&�+--9)&5�)0�.6�)&�02/�YZ[�2/+6�()+/T��-4/U/3�)(�,-.�4*&0�*&-02/3�1-+-3�,-.�2*U/�0-�13/*0/�*�V3.72�.7)&5
Ebay Exhibit 1013, Page 935 of 1204

Ebay, Inc. v. Lexos Media IP, LLC
IPR2024-00337

���������	
���
������������������������������� ! "# $%&'(�)����*�+,�����-.��.����/��0�1���������*����+��,*.�+�*����*����*�+������*������.���.��������*����*,,�������2"%2&%&3(�4��-��5�.0������+���.����������������#67"3&8�����0�9�����:;<�=�(>�+��*+/*��*0���5������*��.�*�����?���*�������*/��������,�+���������/�.��+�*,�0����.���+�.��*�+��������-��0������������@4��55������,�������-.�����0�A��+����BC(�)��.�5�.������1�0���.*���.�0��5�.�����0�D��.���5�-��@4�����.�,�,��.*.�(�)����,��.*.������*,,�+�2"%E#FGH#%%�*�+����-,,��.��*�,��*/�����*,.�*+��������.�A��+���������1�+�.����.�(�I5����?��������������,+��*/��*�,��J�������.���1��,�.�K4��.�*�������.�����������������*,,�+���1�����.�0.*1��*�+��*�����+���.�����+�.��*,���5.��(�I���.+�.����������?������*/�����*++�����5�,��2"%E#FGH% L�������.��.�M����M����,�J���5����-+�*++*�����.����.�����+��1�+�,�(�)������,,�1*J������4NN�,�*+�*���1*���*,,����������.��.�0.*1������*.��+(>,,����-/��0������+�����?����������,�+������2"%E#HO�5�,�PQRSTUVW�XSTYZV[\]*�+�*++�����5�,,����0�,������������̂	_̀ �	_��aYTZVbWcQdYWef\gRdYhRSWij��aYTZVkUYlmUnSThddf\gRdYhRSWij)��������,+����+�����.��.����*������0��,��(�o������������.����.�+�*,�0�����p��.�1���*0��,����*�����*,�*�+�*5��.�*.+�?�M������5�.������,�*/�����^	_̀ �	_������*,,��aYTZVqReWcQdYWef\gRdYhRSWijr���*,,����.�+�*,�0������,,��*/��*�0.����*�J0.���+?������,��J��0�+�*,�0�����p���*�+�@4�����.�,�(�I5�����*.������.����+����1�.������.�,��,�J���.��/����?�1�,�����,�1��,������p��?����������.�,�����(�����1�0����*������,��J�*������2&��2"3%H#%%(�I�5�.1*�����*���������*�����5���+�������D��.���5��4�/�,���.�r����.J�N��.*.�(�2stuvwxyxz{�#x|}v{s~�2vzu�v}tI������+�*,�0����p*1�,��I��*/�������������������������*�+*.+�����.�,�����������*�+��������+*�*(���*�+*.+�����.�,��,�J����������*�+�,������p��*.���*�+�����*���������1*J���.�0.*11��0�����J�*�+��*��(����������*�*�,��*�+�5,�p��,��*.���������.����5�*,,?������*��������*�+*.+�����.�,������M�������+�*,�0�����p�������*,���������.����.1*,�����+���(�)����5�.��p*1�,���.�*����*������������+��������+��������5��+�����̂ _
�aeWhYW�QRVl�f��q���������WTWYW���m��qm��q��������m�a�g������m��gmg���������������������\�RV������������������������g�a���������\gRdYhRSW���q��ij�*�.�����0�?���������*�����+���,*���0�����.�������5�+*�*�,�J��0.*�����?��1*0����.������1�p�+��������p�(�>�+�����*������5��������+�*�����.�,�����*�+�55�.�������*/���.�)��.��*.����.��������������������*,,�*,,�����������p���+�����5�������*,�����5����.�+�*,�0����*�+�����.�,������0������.�4.*�������.�,�(��������?�,������p���*�+���1�����p����*/��*��.���.����*,,�+������.�+.*��������������*�����?��5��������������.5�.1���������������.��,5(�)���������,�5�,?��5������*��.���5���������.�,��������+�1*�����������5�����������.�,��*�+�������,��*���*�+�55�.����.��.�����*����(�)����*,,���������(0(�����.�*�����������������1*0�����?�,������p��������+�55�.������,��.�,�������1���.��1�����p�����������1�����������0��5�*�������*�+�*���p����.��0(�����,*����0��*�����.�,(�)����������������*���*��������+������*������+�������.�������������+����.���+�.��*�+�*,,�����������5�,��.���+���1���*0��(�)����������5�,��5������p�����������*���p�����0�����.�,�����+������.�*�1��0�5�.���������������+���,*������.*���.����������5�����.*�����(���������*���(0(���������,*����0����*,,���+.*0�*�+�+.����5��,�1�����5.�1�*�+����*�,������p(K.�*���0����.���������.�,(�)����������5�,��5������*������+����1�����0���1�,���,��+�55�.����,�J���(0(�*�+��������.�,(���.�����-/��0�����+��*,,����.��,5�*�+������*��+�5�������.��������,���.���.����?�1���*0���*�+�����5��*�����1���*0��(�)���.�*������.���������.�,�����*/�����.�0����.�*����+����,*���5�.���*�+�+�5�����������+����.���+�.��5�.�������,*��(�)������1�,���.�*���*����+���+�.�/�+�5.�1������,*��(�o����*��*,����������.������,*��������+�*,�0�����1�,*�����5����.��(& z~��¡�| �¢vzu�v}t����.�+.*������.�,�����+�����*����#3$� "6��1���*0�(�)����£���¤��5������1���*0�������*����*�������.����*�#3$� "6�7"3¥2"��.����.����*������*��������+���,*�������p�?�����.���*�0,���5��������1��������+���,*�������p��*�+�*�������.�����������1�+*�*(���.�����*���p*1�,��5�.*������.�+.*��,������p���*��+���,*���*�,�����5���������.����.�*���*�,������p�����+�����.�+�*,�0�����+����������.���.������5������.�+.*���*�+���*����.��0��(�)���.����.�����*��1�����5�����,������p�������(¦K�5�,������,+�,��J����1�����0�,�J��a���b�������g�a�ga���gm�����gm���§�����m����g̈©���ª«¬­®̄°±²³²́ µ̄¶·±³���ª«¬­̧ ¬́¬¹²¶°º¬����m�a�g����
Ebay Exhibit 1013, Page 936 of 1204

Ebay, Inc. v. Lexos Media IP, LLC
IPR2024-00337

�������������������������	�
�������
	��
��� !"����!��� #�"��$�%&�' (�)�*����"���+,-./.01.2345�6����#�����$ 7�"���"�"����� #�"��$�"���) �"�8�(� "�6��"��%&9�:;<
=>�?:@A:BBC>:DE
=>��
�����F���G�����	G�G	AH	�IHG���AJK	�LJ�JAD����MMNO���P�Q������!!�"��� "�6�*�R����7�SQ 7���"�("�"��"�����!!�� "��3T-211U0V./5���!���!� �������!)�*�W� �����!)�� ����"�8P����! �#��3T-UX0.0X,1202�6����#�*YZ�:;<
=>�?:@A:BBC>:DE
=>��
�����F���G����J

�G��FI���D�LJ�JAMD�L�G�M[@\�]̂;[MN�:;<
=>�?:@A:BBC>:DE
=>��
�����F���G�����	G�G	A
JGJ�Y�D�LJ�JAME�]̂;MMNO���P�Q������"�����!)��"���+,-1V2+.0X,�6����#�� ��"���! �)�#Q��'7���!Q7�9]CB:��A�
�J��G	A_�����̀��L
�J��G	A�G�a�G�=b<YBZD�L
�J��G	A�G�a�GM=LCcC@N�������H��a�H��E�c>�cdBEN�������Y;?�����Y�e�̂=̂c�YGf?�̂=̂cN��������	�G����c]G:f?N�������]ECc����BgG:f?h��iN�������Yj�DDDY;?M=b<YBklY?:@�
Mm�M�nc:CeN�������oo�
:?:c@Y;:�?E:�]̂=̂cB�������Yj�D=b<YBklY?:@�?C?:�p��
���	�	�G	
M����������̀�Y�e�̂=̂cZ������H�IH��IHGNYGf?�̂=̂cZ������H�IH��IHGG	qGN�r�������:=B:���������̀�Y�e�̂=̂cZ��������F
��NYGf?�̂=̂cZ��������F
��G	qGN�r�������oo�	cCB:�?E:�nC]e>ĉd;<�������E�c>�cdBEZ�:=:]?�ns:]?D=b<YBklE
���c:C?:�̂=Y<�cdBEDI:?�\B�̂=̂cDY�e�̂=̂cMMMN�������LC?�=?D=b<YBklE
����=b<YBklc]�?:@t?̂b�=b<YBklc]�?:@tcY>E?k��=b<YBklc]�?:@tn̂??̂@k=b<YBklc]�?:@t?̂b�LJG��LuMN�������
:=:?:�ns:]?D�:=:]?�ns:]?D=b<YBklE
��E�c>�cdBEMMN�������oo�
cCv�?E:�Y]̂;�������
cCv�]̂;D=b<YBklE
����=b<YBklc]�?:@t?̂b�DH���FM=b<YBklY?:@
C?CMN�������oo�
cCv�?E:�?:f?�������c]G:f?Z=b<YBklc]�?:@N�������c]G:f?t=:j?Z�wN��������:;<A:BBC>:D=b<YBklEv;<�?:@����I	GG	qG�=b<YBklY?:@�
�D�LJ�JAMD�L�G�MBgG:f?MN��������:?�eÂ<:D=b<YBklE
��G�JF�LJ�	FGMN��������:?G:f?�̂=̂cD=b<YBklE
��I:?�\B�̂=̂cDYGf?�̂=̂cMMN�������
cCvG:f?D=b<YBklE
��BgG:f?�=B?c=:;DBgG:f?M�pc]G:f?�
G���FI�	��F	

G���	FG	�MN�������oo�
cCv�?E:�x̂]dB�c:]?C;>=:�������Yj�D=b<YBklY?:@�?C?:�p��
��x��a�M�����������
cCvx̂]dB�:]?D=b<YBklE
��p=b<YBklc]�?:@MN�����r�����nc:CeNUyz{|}~~����}�{�����|W��Q�!�7�"��!����"��Q8�)��� �#�����!������� !�7���) �"�8�(�"��"��Q"'Q"����) �"��$�"�����"��"�������)P�8��'7������!� ������SQ��" �)��7!�7*���Q �! ��"��"����Q77��"�"����8P�� #�) #�" �#�"�����77��'��! �#�) �"� "�6��Q� �#�3T-UX0��VUX3�*����"�P�Q�����!���"����"� ��"��"�"���Q��7�������)��"��P��"��7� "�6*�W��'7����"�"���Q��7�$7�6�!� �#�"� ���P�Q�����! ��8)��"���) �"�8�(��8Q"�Q�$�7"Q��"�)P�"� ���))��)���! ��8)��"���) �"�8�(�����7�))8�7���!�))� "�6���7��#7�P�!*����)Q" ���$�7�"� �� ��"���Q8�)����"���� �!���'7���!Q7��$�7�"���) �"�8�(���!�$)"�7��Q"��))�6�Q�����!���P8��7!�6����#��*��))��"��7�6����#���6Q�"8��'7������!������76�)����������!�"��'����"��6����"��"����7 # ��)�) �"�8�(�'7���!Q7�*B?C?Y]�xJ�L����=b�c>�YB?n̂fLĉ]N��	�a�G�xJ��LJ��J���YB?�dn]=CBBLĉ]DH�F
�E�;<�a�FG�@B>��LJ�JA�vLCcC@��LJ�JA�=LCcC@M�̀�BvY?]ED@B>M���̀�����]CB:��A���aGG�F
��F_�����]CB:��A�A�a�	A��	_�����]CB:��A���aGG�FaL_�����]CB:��A��HJ�_���������������������������������nc:CeN�����<:jCd=?_������������������������������
Ebay Exhibit 1013, Page 937 of 1204

Ebay, Inc. v. Lexos Media IP, LLC
IPR2024-00337

�������������������		
���
���
��	���������
���
���
��������������	���������������������� !"�#!$�%&'�($)%*&((�+,-�%!'+.!*�/'�+,-�012343563789:�;.!%-<$.-�)#�(+!./'=�+,-�!./=/'&*�"/'<!"�;.!%-<$.-�/'�>?@ABCDEFGHIJAHK�&'<�(-++/'=+,-�"/'<!"�;.!%-<$.-�L!.�+,-�*/(+�)!M�%!'+.!*�+!�#!$.�!"'�;.!%-<$.-N	���������
���
�O�PQR�R���S��
���
��
���S��T	�U�����
���UT�VWQXY�UXW��S
�V
ZT�R����X��
���
��
���S��T	�U�����
���UT�VWQXY�UXW��S
�V
ZT�R�������X���	�����
����[\]̂ _̀ab/+c&;(�&.-�/c&=-(�%!'(/(+/'=�!L�'�+/c-(�c�;/M-*(�d;/%+$.-�-*-c-'+(eN�f!$�%&'�%.-&+-�&'<�c!</L#�)/+c&;(�d(+!.-<�/'�Nbgh�L/*-(i�",/%,�/(�+,-(+&'<&.<�)/+c&;�L!.c&+�L!.�j/'<!"(e�"/+,�h&/'+).$(,i�gk�h&/'+�!.�&'#�!+,-.�;/M-*�!./-'+&+-<�<.&"/'=�;.!=.&cN�l,-�-&(/-(+�"&#�+!�$(-�&�)/+c&;/c&=-�/'�#!$.�&;;*/%&+/!'�/(�+!�/'%*$<-�/+�&(�&�.-(!$.%-N�l,-�.-(!$.%-�L/*-�%!<-�L!.�&�)/+c&;�/(mUTVUnQSo�pUWnQ��q�r�����s���qj,-.-�362317:t�/+�+,-�'&c-�!.�'$c-./%�/<-'+/L/-.�!L�+,-�)/+c&;�&'<�û v\̂_wxyẑ ù�/(�+,-�'&c-�!L�+,-�L/*-�%!'+&/'/'=�+,-�)/+c&;Nf!$�%&'�+,-'*!&<�/+�/'�#!$.�;.!=.&c�"/+,�+,-�%!cc&'<�CH{|}DF~{?�",/%,�=/�-(�#!$�&�,&'<*-�+!�+,-�)/+c&;�d+#;-��[3517�eN�-N=N�U����O�
��p�������U��������nQYoUZWRoX��R�o�UTVUnQSo���l,-�!'*#�;.!)*-c�#!$�,&�-�'!"i�/(�+!�)./'=�+,-�)/+c&;�!'�+,-�(%.--'N�l,/(�.-�$/.-(�&�*/++*-�)/+�!L�;.-;&.&+/!'N��/.(+�#!$�'--<�&�c-c!.#�</(;*&#%!'+-M+N��-+�c-��$(+�)./-L*#�-M;*&/'�",&+�+,&+�/(N���c-c!.#�</(;*&#�%!'+-M+�/(�)&(/%&**#�+,-�(&c-�&(�&�"/'<!"�)$+�/'(+-&<�!L�c&;;/'=�!$+;$+�+!�+,-(%.--'�&**�<.&"/'=�=!-(�+!�c-c!.#N�j,-.-�+,-�!$+;$+�&.-&�!L�&��'!.c&*��</(;*&#�%!'+-M+�/(�+,-�%*/-'+�&.-&�!L�&�"/'<!"�",/%,�/(�%!'(+.&/'-<�)#+,-�"/'<!"�(/�-�&'<�+,-�%!*!$.�<-;+,�d)/+(�.-�$/.-<�+!�</(;*&#�+,-�c&M/c$c�'$c)-.�!L�%!*!$.(e�!L�+,-�%$..-'+�</(;*&#�c!<-i�+,-�!$+;$+�&.-&�!L�&c-c!.#�</(;*&#�%!'+-M+�/(�%!'(+.&/'-<�)#�+,-�"/<+,i�,-/=,+�&'<�%!*!$.�<-;+,�!L�+,-�)/+c&;�(-*-%+-<�/'+!�/+N�l,-.-L!.-�&�c-c!.#�</(;*&#�%!'+-M+'--<(�&�)/+c&;��$(+�&(�&�"/'<!"�'--<(�+,-�(%.--'Nl,-�.-&(!'�",#�"-�'--<�&�c-c!.#�</(;*&#�%!'+-M+�/(�+,&+�"-�%&''!+�(-*-%+�&�)/+c&;�</.-%+*#�/'+!�&�"/'<!"�</(;*&#�%!'+-M+i�)$+�"-�%&'�%!;#<&+&�L.!c�!'-�</(;*&#�%!'+-M+�/'+!�&'!+,-.i�;.!�/<-<�+,&+�+,-#�&.-�%!c;&+/)*-N�l,-�L!**!"/'=�%!<-�%.-&+-(�&�c-c!.#�</(;*&#�%!'+-M+�+,&+�/(%!c;&+/)*-�"/+,�+,-�</(;*&#�%!'+-M+�!L�+,-�(%.--'m�n��T�O�������
������	�T��Z�����l,-��&*$-�!L�4�88�&*"&#(�%.-&+-(�&�</(;*&#�%!'+-M+�+,&+�/(�%!c;&+/)*-�"/+,�+,-�(%.--'N��;+/!'&**#�#!$�%&'�=/�-�/+�+,-�,&'<*-�!L�#!$.�"/'<!"�(</(;*&#�%!'+-M+i�)$+�/+�"!'�+�c&�-�&'#�</LL-.-'%-N��L�#!$�$(-�)/+c&;(�c!.-�+,&'�!'%-���.-%!cc-'<�+,&+�#!$�%.-&+-�&�c-c!.#�</(;*&#�%!'+-M+�&++,-�)-=/''/'=�/'�+,-��D��{D��&'<�c&�-�+,-�,&'<*-�=*!)&*N��+�/(�&*"&#(�$(-L$*�+!�,&�-�&�c-c!.#�</(;*&#�%!'+-M+�&.!$'<N -M+�*-+�(�(--�",&+�"-�%&'�<!�"/+,�+,&+N�k$;;!(-�#!$.�)/+c&;�/(�����+/c-(�����;/M-*(�)/=�&'<�#!$�"&'+�+!�</(;*&#�/+�&+�;!(/+/!'��i��!L�#!$."/'<!"�+,-'�#!$.�012�7345�c-((&=-�,&'<*/'=�%!$*<�*!!��(!c-",&+�*/�-�+,/(m�����
nV�QUZW���������QUZWXWR��W������������pUWnQ������p��������������T����������������Op�����������
��������������������p�����OX�	���������������U��������������p��p	�������������������n��T������XR���������������X�	������������������p��������������o���������
�������������������������l,-�L$'%+/!'�",/%,�<!-(�+,-��!)�/(�}DF}>F�",/%,�(+&'<(�L!.�b/+�b*!%��l.&'(L-.N��+�%!;/-(�&'�&.-&�L.!c�&�(!$.%-�</(;*&#�%!'+-M+i�",/%,�/(�+,-c-c!.#�</(;*&#�%!'+-M+�/'�+,/(�%&(-i�/'+!�&�<-(+/'&+/!'�</(;*&#�%!'+-M+i�",/%,�/(�!$.�"/'<!"�/'�+,/(�%&(-N�l,/(�"!.�(�&*(!�+,-�!+,-.�"&#�.!$'<�!L%!$.(-�&'<�#!$�%&'�&*(!�%!;#�L.!c�!'-�c-c!.#�%!'+-M+�/'+!�&'!+,-.�!.�L.!c�"/'<!"�%!'+-M+�/'+!�&'!+,-.N�b-L!.-�#!$�$(-�&�}DF}>F�"/+,�&c-c!.#�</(;*&#�%!'+-M+�,!"-�-.i�#!$�,&�-�+!�(-*-%+�&�)/+c&;�/'+!�/+i�",/%,�#!$�<!�"/+,���>�KF@G �KFN��(�"/+,�&**�!+,-.�¡¢��!)�-%+(�d;-'(i).$(,-(i�L!'+(�&'<�;&*-++-(e�#!$�,&�-�+!�.-c-c)-.�+,-�!./=/'&*�!)�-%+�&'<�.-(+!.-�+,-�</(;*&#�%!'+-M+�/L�#!$�<!�'!+�'--<�/+�&'#�c!.-N�'(+-&<�!L�}DF}>F�#!$�%&'�&*(!�$(-��FA�FK£}>F�",/%,�(+.-+%,-(�!.�%!c;.-((-(�+,-�)/+c&;�L.!c�/+(�!./=/'&*�(/�-�/'+!�+,-�<-(+/'&+/!'�.-%+&'=*-Nl,-.-�/(�'!"�!'*#�!'-�+,/'=�+!�.-c-c)-.m�¤*-&'/'=�$;�&L+-."&.<(N�j-�,&�-�&**!%&+-<�+"!�.-(!$.%-(i�&�)/+c&;�&'<�&�</(;*&#�%!'+-M+i�",/%,�#!$,&�-�+!�<-*-+-�)-L!.-�+-.c/'&+/'=�+,-�;.!=.&cN�l,-.-L!.-�"-�$(-
Ebay Exhibit 1013, Page 938 of 1204

Ebay, Inc. v. Lexos Media IP, LLC
IPR2024-00337

������������	
��
������������������������������������	
������������������������� !���"���!�#����$�%&��"�'�"�()"��"# ��#���*�����") +�#���+�������"%�&�� ���"�"���)#�����"�!�����,��'����)��������"������-�#�)�����"��!�' ���������� ��)�� �����+����""�.��()"�����)����%�&���� �����"���*��/�'����!�)�"�� ��������*�'����0�1�#��-�����������2�����"�30-2"4�����5��� �6������"%�2)���+�!�)��������,��'��� �����)������/�!�)� ����!�����������,%�789:;9:<=�1��!�)��1� �� �������� �����)������#��* ����#�3'����!�) ��'��� �* ����+�#�) "�4������0>?�� �@A-B�� �* ��C�-�����/������-�#��������!�)����������,�"��*�"�3�����������+� �����*��������� ���� ����)��4����*����� ��"������� �")������!�) ��'��� ���� ������"�1� �)���!�����""��������*������ �*���+� �1� !�� ���� %�-+�!�)�����+� �DEFGDEH�3I����J�)�?���-"�I����J�)�K��4�� ��1���()"����� ��� �� ����� �1��'/�!�)�()"����1�����+� *�����%-"�I����'"���!������ �����C�I��������"/���������()"�������%�6 �����*���!����*�)��� �I����'"��"� ����!�� �1��������!�)�#�������()"��)"������"����!+���/�+����"�.������+����"�!���!�)���,���)����"��� �����)������,�����+�* ����#"���#�)���*�������"�'����)����!���++�#)����"%?)���"��!�)L1��*�����+)�#�����#������MNOPQRSSTOPUVW�'��#��!�)��� ����!�#�����������DXY7ZG[\�� ��#���+�!�) �'����'�� �#��) ����,�]�
̂��_�̀ab�cde�����f�ab�cdgdhi�d�ĵ��������k���
l���������
l�mn��opa
op�	
_plqrĵ����������a
op�bjj_oplst	
l����������upla
op�	
_plqrĵ�������v������w�
x�A������� �'�������"�+)�#��������"/�!�)�#�����1���$�#��!�����"�����)��)�����!�) �� ���� �()"���!�#�����*����'������� ���� ���"���!�#����$����"������+��"# ������"���!�#����$�%�=��#���������!�����*�!�)�������������"�"�������*���,������+����'��*�+)�#����/�'��#�� ���"���������/�� �1� �+�������������� ���)��� ��+�����#) ����� ���� �3��������!�)L1��"��#�+�����"�����"����� ��� ���� ��������#��� ��������4����������# ����"�����"���!�#����$�+� ������� ����]awop�_oplst	ysol�f��

w�̂��yo��z{|}~����

w�̂c
��z|�~q̂�woy�wz�}~q̂asw�z{|~���k���
awop��w��������aws�o��g�wop�	�_�c��_g�q���u���u�q���q�̂��yo��q̂o��s�	̂��yo�������̂ �̂
p�	̂��yo��q���|�z�q~q��}z�q~q�{|z�q~�q�̂c
��q�̂�woy�wq�̂asw�����
awop��w��m�w�
����	̂�woy�wq̂c
��q̂asw�qci������������������	
awop��w��������������	
awop��w����vA����������/��"���C�>�/���!����-���1���$�**� ����������%�&��"�'� ,"/��)����� �����!�!�)L�����1���������������� �����*�����IJ?-IJK� �")��%��� �$���������*���������)�1������+����"�.��� ���+����!�)L ��)"��*�+� �����"# ����!�)���1������������+����'��*]op������sp�go��	k���
awop��w��qop��pg�w��pk�o�
��f�a��cd�j����j���m}���j���m�����oy	pg�w��pk�o�
�q�����yo���
ĵ	
awop��w��q���a��u�g��q� �����a�s�a	
awop��w��qrj�q{�����w���wp�j����v@"������ ��) ��1��)����'����+��������¡¢£¤O¥¦Q�� ��� �!��+���§̈ H©̈ [\�"�)#�) ������# �������+����+� �� �����*�)"��*�ª«¤NQ¤¬VPQ­PUO«¤®Q/�"���#���������!�) ���"���!�#����$��)"��*�̄¤¡¤®Q°±²¤®Q������++�!�)�*�%&�� �� ��1������� ��� ���"��+������ ���� ���"���!�#����$��!�)�#���#����³¤Q́¤µO®¤ªNS¶��"���������$���������1�%�&������ ���������'������������*���+���� ���� ���*�������$��"�+� ��$������!�)�#���#����³¤Q́¤µO®¤ªNS¶�'����������������+������ ���� ���"���!�#����$����������� �·̈ ¹̧FG¹º�� »º̧ \FG¹º%
Ebay Exhibit 1013, Page 939 of 1204

Ebay, Inc. v. Lexos Media IP, LLC
IPR2024-00337

����������	�
�����������
���������
�������������	�������������	�����������������	������������	
�����
���������	���
����	������������

��������	��������������������������� !��"#$%&'��
������	�����	������������
����	����������(���
�����)�������*���������+()*,��*����
�������-�	�����������-����	����������(���
����.������������
������+/01234/56578,��'��������������������������9�:� ;<9=>�:����
����-�������?@A������+����������	��,��'�������������	������BCDEFGHIJ�KLLMNMOJLPQRPPPPMEISGTNUVHEIWXYZ[[\]̂_̀\U[[_]̂aP\bcXdÛ_eUf̂YghPPPP(����������+�i���������(*j,�������-���
����������	������
����-�����k����������������	�����������������������lm�9n�:o=ll;�:�����
�����()*�����������������������

�����������������������
�������
�-�����'�������������
������	�������������lm�9n�:o=ll;�:��������������������
������-����?@A����������������pqrrs%t�u#vq�s%w#vuxrs#%?�������
�����

��������������y���������������������������	z���
��-�-���������-���-�����������������������-�	�����+*���	�������������������*���,�{�������������-�������������-�������|�-	����������������������
��������	���	���
����-����������	z�������
�����������-�������������������-�����(���-�����*���-���������?�������
�����

���������������
��������
����@�������������
�����������������
�����}��������j�����

����~������
�����	����������������	������������
���������?��������'��������A���������?�������j�����

����~��+A�?j~,������i�

����?�������	������(k���������������
��������������������������������
������}j~��-	�������������	��������������|�����	��������|��-�������������

����

������������������|�
���
	���������
����-����@A*������+@	����A�����*����������|�����(������������
�������A����������,�����	������������������
�����������������������������|�����������������
�������	���������������	�����
B�(���������}����
�j�����

������-�����'���������)j��	�����������
�������-�	���������������	����������������������-�	��?�����������	��������|�A��	���k���������A��	���k��������@

����������������

���|�Ak�������)��j�����

����������������	�������?��������������?�������{'��*����������������������

�����-����������

����?������������-��)�������������������������������������
	-��������������(���������}����
���	����|���
�������������
���
�������|��������������������������	������������
�������@��������	z����������������������������z��-������|���	�����
�
�������j�����*z����
������}�����������������	������������)j�+-	����
�
-�����z��������������������,�'���-����������)j����������	
������������������
��������	z�����������	-����-���������(���������j�����
���{�������+(}j{,����	����������������	�����������)j�-	�����������}j~������
�������������
������������	�������'�����������
�������-�	������(}j{��������������y
�������B(���������j�����
���{����������(���������?��.��
���|�?@������y�����}@��iB�+���,����y����|�@���B�j�����
���{������*�������B�
����
�����������

Ebay Exhibit 1013, Page 940 of 1204

Ebay, Inc. v. Lexos Media IP, LLC
IPR2024-00337

APPENDIX F

Ebay Exhibit 1013, Page 941 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

The X Window System

ROBERT W. SCHEIFLER
MIT Laboratory for Computer Science
and
JIM GETTYS
Digital Equipment Corporation and MIT Project Athena

An overview of the X Window System is presented, focusing on the system substrate and the low-
level facilities provided to build applications and to manage the desktop. The system provides high-
performance, high-level, device-independent graphics. A hierarchy of resizable, overlapping windows
allows a wide variety of application and user interfaces to be built easily. Network-transparent access
to the display provides an important degree of functional separation, without significantly affecting
performance, which is crucial to building applications for a distributed environment. To a reasonable
extent, desktop management can be custom-tailored to individual environments, without modifying
the base system and typically without affecting applications.

Categories and Subject Descriptors: C.2.2 [Computer-Communication Networks]: Network Pro-
tocols-protocol architecture; C.2.4 [Computer-Communication Networks]: Distributed Sys-
terns-distributedapplications; D.4.4 [Operating Systems]: Communication Management-network
communication; terminal management; H.1.2 [Models and Principles]: User/Machine Systems-
human factors; 1.3.2 [Computer Graphics]: Graphics Systems-distributed/network graphics; 1.3.4
[Computer Graphics]: Graphics Utilities-graphics packages; software support; 1.3.6 [Computer
Graphics]: Methodology and Techniques-device independence; interaction techniques

General Terms: Design, Experimentation, Human Factors, Standardization

Additional Key Words and Phrases: Virtual terminals, window managers, window systems

1. INTRODUCTION
The X Window System (or simply X) developed at MIT has achieved fairly
widespread popularity recently, particularly in the UNIX1 community. In this
paper we present an overview of X, focusing on the system substrate and the
low-level facilities provided to build applications and to manage the desktop. In
X, this base window system provides high-performance graphics to a hierarchy
of resizable windows. Rather than mandate a particular user interface, X provides
primitives to support several policies and styles. Unlike most window systems,
the base system in X is defined by a network protocol: asynchronous

‘UNIX is a trademark of AT&T Bell Laboratories.

Authors’ addresses: R. W. Scheifler, 545 Technology Square, Cambridge, MA 02139; J. Gettys, Project
Athena, MIT, Cambridge, MA 02139.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
0 1987 ACM 0730-03Ol/S6/0400-0079 $00.75

ACM Transactions on Graphics, Vol. 5, No. 2, April 1986, Pages 79-109.

Ebay Exhibit 1013, Page 942 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

http://crossmark.crossref.org/dialog/?doi=10.1145%2F22949.24053&domain=pdf&date_stamp=1986-04-01
http://crossmark.crossref.org/dialog/?doi=10.1145%2F22949.24053&domain=pdf&date_stamp=1986-04-01

80 l FL W. Scheifler and J. Gettys

stream-based interprocess communication replaces the traditional procedure call
or kernel call interface. An application can utilize windows on any display in a
network in a device-independent, network-transparent fashion. Interposing a
network connection greatly enhances the utility of the window system, without
significantly affecting performance. The performance of existing X implemen-
tations is comparable to that of contemporary window systems and, in general,
is limited by display hardware rather than network communication. For example,
19,500 characters per second and 3500 short vectors per second are possible on
Digital Equipment Corporation’s VAXStation-II/GPX, both locally and over a
local-area network, and these figures are very close to the limits of the display
hardware.

X is the result of two separate groups at MIT having a simultaneous need for
a window system. In the summer of 1984, the Argus system [16] at the Laboratory
for Computer Science needed a debugging environment for multiprocess distrib-
uted applications, and a window system seemed the only viable solution. Project
Athena [4] was faced with dozens, and eventually thousands, of workstations
with bitmap displays and needed a window system to make the displays useful.
Both groups were starting with the Digital VSlOO display [14] and VAX hardware,
but it was clear at the outset that other architectures and displays had to be
supported. In particular, IBM workstations with bitmap displays of unknown
type were expected eventually within Project Athena. Portability was therefore
a goal from the start. Although all of the initial implementation work was for
Berkeley UNIX, it was clear that the network protocol should not depend on
aspects of the operating system.

The name X derives from the lineage of the system. At Stanford University,
Paul Asente and Brian Reid had begun work on the W window system [3] as an
alternative to VGTS [13, 221 for the V system [5]. Both VGTS and W allow
network-transparent access to the display, using the synchronous V communi-
cation mechanism. Both systems provide “text” windows for ASCII terminal
emulation. VGTS provides graphics windows driven by fairly high-level object
definitions from a structured display file; W provides graphics windows based on
a simple display-list mechanism, with limited functionality. We acquired a UNIX-
based version of W for the VSlOO (with synchronous communication over TCP
[24] produced by Asente and Chris Kent at Digital’s Western Research Labora-
tory. From just a few days of experimentation, it was clear that a network-
transparent hierarchical window system was desirable, but that restricting the
system to any fixed set of application-specific modes was completely inadequate.
It was also clear that, although synchronous communication was perhaps accept-
able in the V system (owing to very fast networking primitives), it was completely
inadequate in most other operating environments. X is our “reaction” to W. The
X window hierarchy comes directly from W, although numerous systems have
been built with hierarchy in at least some form [ll, 15, 18, 28, 30, 32-361. The
asynchronous communication protocol used in X is a significant improvement
over the synchronous protocol used in W, but is very similar to that used in
Andrew [lo, 201. X differs from all of these systems in the degree to which both
graphics functions and “system” functions are pushed back (across the network)
as application functions, and in the ability to tailor desktop management
transparently.
ACM Transactions on Graphics, Vol. 5, No. 2, April 1986.

Ebay Exhibit 1013, Page 943 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

The X Window System l 81

The next section presents several high-level requirements that we believe a
window system must satisfy to be a viable standard in a network environment,
and indicates where the design of X fails to meet some of these requirements. In
Section 3 we describe the overall X system model and the effect of network-
based communication on that model. Section 4 describes the structure of windows,
and the primitives for manipulating that structure. Section 5 explains the
color model used in X, and Section 6 presents the text and graphics facilities.
Section 7 discusses the issues of window exposure and refresh, and their resolution
in X. Section 8 deals with input event handling. In Section 9 we describe the
mechanisms for desktop management.

This paper describes the version’ of X that is currently in widespread use. The
design of this version is inadequate in several respects. With our experience to
date, and encouraged by the number of universities and manufacturers taking a
serious interest in X, we have designed a new version that should satisfy a
significantly wider community. Section 10 discusses a number of problems with
the current X design and gives a general idea of what changes are contemplated.

2. REQUIREMENTS

A window system contains many interfaces. A programming interface is a library
of routines and types provided in a programming language for interacting with
the window system. Both low-level (e.g., line drawing) and high-level (e.g., menus)
interfaces are typically provided. An application interface is the mechanical
interaction with the user and the visual appearance that is specific to the
application. A management interface is the mechanical interaction with the user,
dealing with overall control of the desktop and the input devices. The manage-
ment interface defines how applications are arranged and rearranged on the
screen, and how the user switches between applications; an individual application
interface defines how information is presented and manipulated within that
application. The user interface is the sum total of all application and management
interfaces.

Besides applications, we distinguish three major components of a window
system. The window manager3 implements the desktop portion of the manage-
ment interface; it controls the size and placement of application windows, and
also may control application window attributes, such as titles and borders. The
input manager implements the remainder of the management interface; it con-
trols which applications see input from which devices (e.g., keyboard and mouse).
The base window system is the substrate on which applications, window managers,
and input managers are built.

In this paper we are concerned with the base window system of X, with the
facilities it provides to build applications and managers. The following require-
ments for the base window system crystallized during the design of X (a few were
not formulated until late in the design process):

1. The system should be implementable on a variety of displays. The system
should work with nearly any bitmap display and a variety of input devices. Our
design focused on workstation-class display technology likely to be available in a

’ Version 10.
3 Some people use this term for what we call the base window system; that is not the meaning here.

ACM Transactions on Graphics, Vol. 5, No. 2, April 1986.

Ebay Exhibit 1013, Page 944 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

82 l R. W. Scheifler and J. Gettys

university environment over the next few years. At one end of the spectrum is a
simple frame buffer and monochrome monitor, driven directly by the host CPU
with no additional hardware support. At the other end of the spectrum is a
multiplane display with color monitor, driven by a high-performance graphics
coprocessor. Input devices, such as keyboards, mice, tablets, joysticks, light pens,
and touch screens, should be supported.

2. Applications must be device independent. There are several aspects to device
independence. Most important, it must not be necessary to rewrite, recompile,
or even relink an application for each new hardware display. Nearly as important,
every graphics function defined by the system should work on virtually every
supported display; the alternative, which is to use GKS-style inquire operations
[12] to determine the set of implemented functions at run time, leads to tedious
case analysis in every application and to inconsistent user interfaces. A third
aspect of device independence is that, as far as possible, applications should not
need dual control paths to work on both monochrome and color displays.

3. The system must be network transparent. An application running on one
machine must be able to utilize a display on some other machine, nor should it
be necessary for the two machines to have the same architecture or operating
system.

There are numerous examples of why this is important: a compute-intensive
VLSI design program executing on a mainframe, but displaying results on a
workstation; an application distributed over several stand-alone processors, but
interacting with a user at a workstation; a professor running a program on one
workstation, presenting results simultaneously on all student workstations.

In a network environment, there are certain to be applications that must run
on particular machines or architectures. Examples include proprietary software,
applications depending on specific architectural properties, and programs manip-
ulating large databases. Such applications still should be accessible to all users.
In a truly heterogeneous environment, not all programming languages and
programming systems are supported on all machines, and it is very undesirable
to have to write an interactive front end in multiple languages in order to make
the application generally available. With network-transparent access, this is not
necessary; a single front end written in the same language as the application
suffices.

One might think that remote display will be extremely infrequent, and that
performance is therefore much less important than for local display. Experience
at MIT, however, indicates that many users routinely make use of the remote
display capabilities in X, and that the performance of remote display is quite
important. The desktop display, although physically connected to a single com-
puter, is used as a true network virtual terminal; indeed, the idea of an X server
(see the next section) built into a Blit-like terminal [23] is an intriguing one.

4. The system must support multiple applications displaying concurrently. For
example, it should be possible to display a clock with a sweep second hand in one
window, while simultaneously editing a file in another window.
ACM Transactions on Graphics, Vol. 5, No. 2, April 1986.

Ebay Exhibit 1013, Page 945 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

The X Window System l 83

5. The system should be capable of supporting many different application and
management interfaces. No single user interface is “best”; different communities
have radically different ideas about user interfaces. Even within a single com-
munity, “experts” and “novices” place different demands on an interface. Instead
of mandating a particular user interface, the base window system should support
a wide range of interfaces.

To achieve this, the system must provide hooks (mechanism) rather than
religion (policy). For example, since menu styles and semantics vary dramatically
among different user interfaces, the base window system must provide primitives
from which menus can be built, instead of just providing a fixed menu facility.

The system should be designed in such a way that it is possible to implement
management policy in a way that is external to the base window system and
external to applications. Applications should be largely independent of manage-
ment policy and mechanism; applications should react to management decisions,
rather than direct those decisions. For example, an application needs to be
informed when one of its windows is resized and should react by reformatting
the information displayed, but involvement of the application should not be
required in order for the user to change the size. Making applications management
independent, as well as device independent, facilitates the sharing of applications
among diverse cultures.

6. The system must support overlapping windows, including output to partially
obscured windows. This is in some sense a by-product of the previous require-
ment, but it is important enough to merit explicit statement. Not all user
interfaces allow windows to overlap arbitrarily. However, even interfaces that do
not allow application windows to overlap typically provide some form of pop-up
menu that overlaps application windows. If such menus are built from windows,
then support for overlapping windows must exist.

7. The system should support a hierarchy of resizable windows, and an appli-
cation should be able to use many windows at once. Subwindows provide a clean,
powerful mechanism for exporting much of the basic system machinery back to
the application for direct use. Many applications make use of their own window-
like abstractions; some even implement what is essentially another window
system, nested within the “real” window system. It is important to support
arbitrary levels of nesting. What is viewed as a single window at one abstraction
level may well require multiple subwindows at a lower level. By providing a true
window hierarchy, application windows can be implemented as true windows
within the system, freeing the application from duplicating machinery such as
clipping and input control.

8. The system should provide high-performance, high-quality support for text,
2-D synthetic graphics, and imaging. The base window system must provide
“immediate” or “transparent” graphics: The application describes the image
precisely, and the system does not attempt to second-guess the application. The
use of high-level models, whereby the application describes what it wants in
terms of fairly abstract objects and the system determines how best to render the

ACM Transactions on Graphics, Vol. 5, No. 2, April 1986.

Ebay Exhibit 1013, Page 946 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

a4 l R. W. Scheifler and J. Gettys

image, cannot be imposed as the only form of graphics interface. Such models
generally fail to provide adequate support for some important class of applica-
tions, and different user communities tend to have strong opinions about which
model is “best.” It is extremely important to provide high-level models, but they
should be built in layers on top of the base window system.

Support for 3-D graphics is not listed as a requirement, but this is not to say
it is unimportant. We simply have not considered 3-D graphics, owing to lack of
expertise and lack of time.

9. The system should be extensible. For example, the core system may not
support 3-D graphics, but it should be possible to extend the system with such
support. The extension mechanism should allow communities to extend the
system noncooperatively, yet allow such independent extensions to be merged
gracefully.

We believe that a window system must satisfy these requirements to be a viable
standard in an environment of high-performance workstations and mainframes
connected via high-performance local-area networks. X satisfies most of these
requirements, but currently fails to satisfy a few owing to practical considerations
of staffing and time constraints: The design and much of the implementation of
the base window system were to be handled solely by the first author; it was
important to get a working system up fairly quickly; and the immediate applica-
tions only required relatively simple text and graphics support. As a result, X is
not designed to handle high-end color displays or to deal with input devices other
than a keyboard and mouse, some support for high-quality text and graphics is
missing, X only provides support for one class of management policy, and no
provision has been made for extensions. As discussed in Section 10, these and
other problems are being addressed in a redesign of X.

3. SYSTEM MODEL

The X window system is based on a client-server model (see Figure 1); this
model follows naturally from requirements 2 and 3 in the previous section. For
each physical display, there is a controlling server. A client application and a
server communicate over a reliable duplex (S-bit) byte stream. A simple block-
stream protocol is layered on top of the byte stream. If the client and server are
on the same machine, the stream is typically based on a local interprocess
communication (IPC) mechanism; otherwise a network connection is established
between the pair. Requiring nothing more than a reliable duplex byte stream
(without urgent data) for communication makes X usable in many environ-
ments. For example, the X protocol can be used over TCP [24], DECnet [38],
and Chaos [191.

Multiple clients can have connections open to a server simultaneously, and a
client can have connections open to multiple servers simultaneously. The essen-
tial tasks of the server are to multiplex requests from clients to the display, and
demultiplex keyboard and mouse input back to the appropriate clients. Typically,

. . the server is implemented as a single sequential process, using round-robin
scheduling among the clients, and this centralized control trivially solves many
ACM Transactions on Graphics, Vol. 5, No. 2, April 1986.

Ebay Exhibit 1013, Page 947 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

The X Window System l 85

Application

GKS
library

X VDI

X library

Pseudo ttY

Text editor

VT100 Window
emulator manager Text library

X library X library X library

Network

X server

Device library

Keyboard Mouse f \

Screen

L 1

Fig. 1. System structure.

synchronization problems; however, a multiprocess server has also been imple-
mented. Although one might place the server in the kernel of the operating
system in an attempt to increase performance, a user-level server process is
vastly easier to debug and maintain, and performance under UNIX in fact does
not seem to suffer. Similar performance results have been obtained in Andrew
[lo]. Various tricks are used in both clients and server to optimize performance,
principally by minimizing the number of operating system calls [9].

The server encapsulates the base window system. It provides the fundamental
resources and mechanisms, and the hooks required to implement various user
interfaces. All device dependencies are encapsulated by the server; the commu-
nication protocol between clients and server is device independent. By placing
all device dependencies on one end of a network connection, applications are
truly device independent. The addition of a new display type simply requires the
addition of a new server implementation; no application changes are required.
Of course, the server itself is designed as device-independent code layered on

ACM Transactions on Graphics, Vol. 5, No. 2, April 1986.

Ebay Exhibit 1013, Page 948 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

86 ’ R. W. Scheifler and J. Gettys

top of a device-dependent core, so only the “back end” of the server need be
reimplemented for each new display.4

3.1 Network Considerations

It is extremely important for the server to be robust with respect to client failures.
The server and the network protocol must be designed so that the server never
trusts clients to provide correct data. As a corollary, the protocol must be designed
in such a way that, if the server ever has to wait for a response from a client, it
must be possible to continue servicing other clients. Without this property a
buggy client or a network failure could easily cause the entire display to
freeze up.

Byte ordering [6] is a standard problem in network communication: When a
16- or 32-bit quantity is transmitted over an &bit byte stream, is the most
significant byte transmitted first (big-endian byte order) or is the least significant
byte transmitted first (little-endian byte order)? Some machines with byte-
addressable memory use big-endian order internally, and others use little-endian
order. If a single order is chosen for network communication, some machines will
suffer the overhead of swapping bytes, even when communicating with a machine
using the same internal byte order. Such an approach also means that both
parties in the communication must worry about byte order.

The X protocol uses a different approach. The server is designed to accept
both big-endian and little-endian connections. For example, using TCP this is
accomplished by having the server listen on two distinct ports; little-endian
clients connect to the server on one port, and big-endian clients connect on the
other. Clients always transmit and receive in their native byte order. The server
alone is responsible for byte swapping, and byte swapping only occurs between
dissimilar architectures. This eliminates the byte swapping overhead in the most
common situations and greatly simplifies the building of client-side interface
libraries in various programming languages. X is not unique in its use of this
trick; the current VGTS implementation uses the same trick, and similar protocol
optimizations have been used in various network-based applications.

Another potential problem in protocol design is word alignment. In particular,
some architectures require 16-bit quantities to be aligned on 16-bit boundaries
and 32-bit quantities to be aligned on 32-bit boundaries in memory. To allow
efficient implementations of the protocol across a spectrum of 16- and 32-bit
architectures, the protocol is defined to consist of blocks that are always multiples
of 32 bits, and each 16- and 32-bit quantity within a block is aligned on 16- and
32-bit boundaries, respectively.

X is designed to operate in an environment where the interprocess communi-
cation round-trip time is between 5 and 50 milliseconds (ms), both for local and
for network communication. We also assume that data transmission rates are
comparable to display rates; for example, to transmit and display 5000 characters
per second, a data rate of approximately 50 kilobits per second (kbits/s) will be
needed, and to transmit and display 20,000 characters per second, a data rate of

’ A back end has been implemented using a programming interface to X itself, such that a complete
“recursive” X server executes inside a window of another X server.

ACM Transactions on Graphics, Vol. 5, No. 2, April 1986.

Ebay Exhibit 1013, Page 949 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

The X Window System l 87

approximately 200 kbits/s will be needed. Networks and protocol implementa-
tions with these characteristics are now quite commonplace. For example,
workstations running Berkeley UNIX, connected via lo-megabit-per-second
(Mbit/s) local area networks, typically have round-trip times of 15 to
30 ms, and data rates of 500 kbits/s to 1 Mbit/s.

The round-trip time is important in determining the form of the communica-
tion protocol. Text and graphics are the most common requests sent from a client
to the server; examples of individual requests might be to draw a string of text
or to draw a line. Such requests could be sent either synchronously, in which
case the client sends a request only after receiving a reply from the server to the
previous request, or they could be sent asynchronously, without the server
generating any replies. However, since the requests are sent over a reliable
stream, they are guaranteed to arrive and arrive in order, so replies from the
server to graphics requests serve no useful purpose. Moreover, with round-trip
times over 5 ms, output to the display must be asynchronous, or it will be
impossible to drive high-speed displays adequately. For example, at 80 characters
per request and a 25-ms round-trip time, only 3200 characters per second can be
drawn synchronously, whereas many hardware devices are capable of displaying
between 5000 and 30,000 characters per second.

Similarly, polling the server for keyboard and mouse input would be unaccept-
able in many applications, particularly those written in sequential languages. For
example, an application attempting to provide real-time response to input has to
poll periodically for input during screen updates. For an application with a single
thread of control, this effectively results in synchronous output and consequent
performance loss. Hence, input must be generated asynchronously by the server,
so that applications need at most perform local polling.

The round-trip time is also important in determining what user interfaces can
be supported without embedding them directly in the server. The most important
concern is whether remote, application-level mouse tracking is feasible. By
tracking, we do not mean maintaining the cursor image on the screen as the user
moves the mouse; that function is performed autonomously by the X server,
often directly in hardware. Rather, applications track the mouse by animating
some other image on the screen in real time as the mouse moves. For round-trip
times under 50 ms, tracking is perfectly reasonable, driven either by motion
events generated by the server or by continuous polling from the application.
With a refresh occurring up to 30 times every second, remote tracking is
demonstrably “instantaneous” with mouse motion.

For tracking to be effective, however, relatively little time can be spent updating
the display at each movement, so typically only relatively small changes can be
made to the screen while tracking. This is certainly the case for simple tracking,
such as rubber banding window outlines and highlighting menu items. It might
be argued that the ability to run application-specific code in the server is required
for acceptable hand-eye coordination during more complex tracking. For exam-
ple, NeWS [31] provides such a mechanism in a novel way. However, we are not
convinced there are sufficient benefits to justify such complexity. Typically,
complex tracking is bound intimately to application-specific data structures and
knowledge representations. The information needed by the front end for tracking

ACM Transactions on Graphics, Vol. 5, No. 2, April 1986.

Ebay Exhibit 1013, Page 950 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

88 l R. W. Scheifler and J. Gettys

is intertwined with the information needed by the back end for the “real” work;
the information cannot be reasonably separated or duplicated. It is simply
unreasonable to believe that applications will download large, complex front ends
into a server; communication round-trip times are a reality that cannot be
escaped.

3.2 Resources

The basic resources provided by the server are windows, fonts, mouse cursors,
and offscreen images; later sections describe each of these. Clients request
creation of a resource by supplying appropriate parameters (such as the name of
the font); the server allocates the resource and returns a 29-bit5 unique identifier
used to represent it. The use and interpretation of a resource identifier are
independent of any network connection. Any client that knows (or guesses) the
identifier for a resource can use and manipulate the resource freely, even if it
was created by another client. This capability is required to allow window
managers to be written independently of applications, and to allow multiprocess
applications to manipulate shared resources. However, to avoid problems asso-
ciated with clients that fail to clean up their resources at termination (which is
all too common in operating systems where users can unilaterally abort pro-
cesses), the maximum lifetime of a resource is always tied to the connection over
which it was created. Thus, when a client terminates, all of the resources it
created are destroyed automatically.

Access control is performed only when a client attempts to establish a connec-
tion to the server; once the connection is established, the client can freely
manipulate any resource. Since accidental manipulation of some other client’s
resource is extremely unlikely (both in theory and in practice), we believe
introducing access control on a per-resource basis would only serve to decrease
performance, not to significantly increase security or robustness. The current
access control mechanism is based simply on host network addresses, as this
information is provided by most network stream protocols, and there seems to
be no widely used or even widely available user-level authentication mechanism.
Host-based access control has proved to be marginally acceptable in a workstation
environment, but is rather unacceptable for time-shared machines.6

Each client-generated protocol request is a simple data block consisting of an
opcode, some number of fixed-length parameters, and possibly a variable-length
parameter. For example, to display text in a window, the fixed-length parameters
include the drawing color and the identifiers for the window and the font, and
the variable-length parameter is the string of characters. All operations on a
resource explicitly contain the identifier of the resource as a parameter. In this
way, an application can multiplex use of many windows over a single network
connection. This multiplexing makes it easy for the client to control the time
order of updates to multiple windows; if a separate stream was used for each
window, time order could not be controlled without strong guarantees from the
stream mechanism. Similarly, each input event generated by the server contains

5 To simplify implementation in languages built with garbage collection, high-order bits are not used.
6 It is interesting that professors at MIT have argued vociferously to disable all access control.

ACM Transactions on Graphics, Vol. 5, No. 2, April 1966.

Ebay Exhibit 1013, Page 951 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

The X Window System l 89

the identifier of the window in which the event occurred. Multiplexing over a
single stream allows the client to act on events from multiple windows in correct
time order; again, the use of a stream per window would not allow such ordering,
even if the events carry timestamps.

Numerous UNIX-based window systems [17,20,21,30,36] use file or channel
descriptors to represent windows; window creation involves an interaction with
the operating system, which results in the creation of such a descriptor. Typically,
this means the window cannot be named (and hence cannot be shared) by
programs running on different machines, and perhaps not even by programs
running on the same machine. More serious, there is often a severe restriction
on the number of active descriptors a process may have: 20 on older systems and
usually 64 on newer systems. The use of 50 or more windows (albeit nested inside
a single top-level window) is quite common in X applications. The use of a single
connection, over which an arbitrary number of windows can be multiplexed, is
clearly a better approach.

4. WINDOW HIERARCHY

The server supports an arbitrarily branching hierarchy of rectangular windows.
At the top is the root window, which covers the entire screen. The top-level
windows of applications are created as subwindows of the root window. The
window hierarchy models the now-familiar “stacks of papers” desktop. For a
given window, its subwindows can be stacked in any order, with arbitrary
overlaps. When window Wl partially or completely covers window W2, we say
that W1 obscures W2. This relationship is not restricted to siblings; if Wl
obscures W2, then W1 may also obscure subwindows of W2. A window also
obscures its parent. Window hierarchies never interleave; if window Wl obscures
sibling window W2, then subwindows of W2 never obscure WI or subwindows of
Wl. A window is not restricted in size or placement by the boundaries of its
parent, but a window is always visibly clipped by its parent: Portions of the
window that extend outside the boundaries of the parent are never displayed and
do not obscure other windows. Finally, a window can be either mapped or
unmapped. An unmapped window is never visible on the screen; a mapped window
can only be visible if all of its ancestors are also mapped.

Output to a leaf window (one with no subwindows) is always clipped to the
visible portions of the window; drawing on such a window never draws into
obscuring windows. Output to a window that contains subwindows can be
performed in two modes. In clipped mode the output is clipped normally by all
obscuring windows (including subwindows), but in draw-through mode the output
is not clipped by subwindows. For example, draw-through mode is used on the
root window during window management, tracking the mouse with the outline of
a window to indicate how the window is to be moved or resized. If clipped mode
were used instead, the entire outline would not be visible.

The coordinate system is defined with the X axis horizontal and the Y axis
vertical. Each window has its own coordinate system, with the origin at the upper
left corner of the window. Having per-window coordinate systems is crucial,
particularly for top-level windows; applications are almost always designed to be
insensitive to their position on the screen, and having to worry about race

ACM Transactions on Graphics, Vol. 5, No. 2, April 1986.

Ebay Exhibit 1013, Page 952 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

90 - FL W. Scheifler and J. Gettys

conditions when moving windows would be a disaster. The coordinate system is
discrete: Each pixel in the window corresponds to a single unit in the coordinate
system, with coordinates centered on the pixels, and all coordinates are expressed
as integers in the protocol. We believe fractional coordinates are not required at
the protocol level for the raster graphics provided in X (see Section 6), although
they may be required for high-end color graphics, such as antialiasing. The aspect
ratio of the screen is not masked by the protocol, since we believe that most
displays have a one-to-one aspect ratio; in this regard X is arguably device
dependent.

Although the coordinate system is discrete at the protocol level, continuous or
alternate-origin coordinate systems certainly can be used at the application level,
but client-side libraries must eventually translate to the discrete coordinates
defined by the protocol. In this way, we can ignore the many variations in
floating-point (or even fixed-point) formats among architectures. Further, the
coordinates can be expressed in the protocol as 16-bit quantities, which can be
manipulated efficiently in virtually every machine/display architecture and which
minimizes the number of data bytes transmitted over the network. The use of
16-bit quantities does have a drawback, in that some applications (particularly
CAD tools) like to perform zoom operations simply by scaling coordinates and
redrawing, relying on the window system to clip appropriately. Since scaling
quickly overflows 16 bits, additional clipping must be performed explicitly by
such applications.

A window can optionally have a border, a shaded outer frame maintained
explicitly by the X server. The origin of the window’s coordinate system is inside
the border, and output to the window is clipped automatically so as not to extend
into the border. The presence of borders slightly complicates the semantics of
the window system; for simplicity we ignore them in the remainder of this paper.

The basic operations on window structure are straightforward. An unmapped
window is created by specifying the parent window, the position within the parent
of the upper left corner of the new window, and the width and height (in
coordinate units) of the new window. A window can be destroyed, in which case
all windows below it in the hierarchy are also destroyed. A window can be mapped
and unmapped, without changing its position. A window can be moved and
resized, including being moved and resized simultaneously. A window can also be
“depthwise” raised to the top or lowered to the bottom of the stack with respect
to its siblings, without changing its coordinate position. Currently mapping or
configuring a window forces the window to be raised. This restriction appeared
to simplify the server implementation but also happened to match the basic
management interface we expected to build. This restriction will be eliminated
in the next version.

The windows described above are the usual opaque windows. X also provides
transparent windows. A transparent window is always invisible on the screen and
does not obscure output to, or visibility of, other windows. Output to a transparent
window is clipped to that window but is actually drawn on the parent window.
Thus, for output, a transparent window is simply a clipping rectangle that can
be applied to restrict output within a (parent) window. Input processing for
transparent and opaque windows is identical, as described in Section 8. In
ACM Transactions on Graphics, Vol. 5, No. 2, April 1986.

Ebay Exhibit 1013, Page 953 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

The X Window System 91

Section 10 we argue that most uses of transparent windows are better satisfied
with other mechanisms. Therefore, for simplicity, we ignore transparent windows
in the rest of this paper.

The X server is designed explicitly to make windows inexpensive. Our goal
was to make it reasonable to use windows for such things as individual menu
items, buttons, and even individual items in forms and spreadsheets. As such,
the server must deal efficiently with hundreds (though not necessarily thousands)
of windows on the screen simultaneously. Experience with X has shown that
many implementors find this capability extremely useful, particularly when
building extensible tool kits.

5. COLOR

The screen is viewed as two dimensional, with an N-bit pixel value stored at each
coordinate. The number of bits in a pixel value and how a value translates into
a color depend on the hardware. X is designed to support two types of hardware:
monochrome and pseudocolor. A monochrome display has 1 bit per pixel, and
the two values translate into black and white. Pseudocolor displays typically
have between 4 and 12 bits per pixel; the pixel value is used as an index into a
color map, yielding red, green, and blue intensities. The color map can be changed
dynamically, so that a given pixel value can represent different colors over time.
Gray scale is viewed as a degenerate case of pseudocolor.

We desire a design matching most display hardware, while abstracting differ-
ences in such a way that programmers do not have to double- or triple-code their
applications to cover the spectrum. We also want multiple applications to coexist
within a single color map, so that applications always show true color on the
screen. To allow this and to keep applications device independent, pixel values
should not be coded explicitly into applications. Instead, the server must be
responsible for managing the color map, and color map allocation must be
expressed in hardware-independent terms.

All graphics operations in X are expressed in terms of pixel values. For example,
to draw a line, one specifies not only the coordinates of the endpoints, but the
pixel value with which to draw the line. (Logic functions and plane-select masks
are also specified, as described in Section 6.) On a monochrome display, the only
two pixel values are 0 and 1, which are (somewhat arbitrarily) defined to be black
and white, respectively. On a pseudocolor display, pixel values 0 and 1 are
preallocated by the server for use as “black” and “white” so that monochrome
applications display correctly on color displays. Of course, the actual colors need
not be black and white, but can be set by the user.

There are two ways for a client to obtain pixel values. In the simplest request
the client specifies red, green, and blue color values, and the server allocates an
arbitrary pixel value and sets the color map so that the pixel value represents
the closest color the hardware can provide. The color map entry for this pixel
value cannot be changed by the client, so, if some other client requests an
equivalent color, the server is free to respond with the same pixel value. Such
sharing is important in maximizing use of the color map. To isolate applications
from variations in color representation among displays (e.g., due to the standard
of illumination used for calibration), the server provides a color database that

ACM Transactions on Graphics, Vol. 5, No. 2, April 1986.

Ebay Exhibit 1013, Page 954 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

92 l R. W. Scheifler and J. Gettys

clients can use to translate string names of colors into red, green, and blue values
tailored for the particular display.

The second request allocates writable map entries. This mechanism was
designed explicitly for X; we are not aware of a comparable mechanism in any
other window system. The client specifies two numbers, C and P, with C positive
and P nonnegative; the request can be expressed as “allocate C colors and P
planes.” The total number of pixel values allocated by the server is C x 2’. The
values passed back to the client consist of C base pixel values and a plane mask
containing P bits. None of the base pixel values have any 1 bits in common with
the plane mask, and the complete set of allocated pixel values is obtained by
combining all possible combinations of 1 bits from the plane mask with each of
the base pixel values. The client can optionally require the P planes to be
contiguous, in which case all P bits in the plane mask will be contiguous.

There are three common uses of this second request. One is simply to allocate
a number of “unrelated” pixel values; in this case P will be 0. A second use is in
imaging applications, where it is convenient to be able to perform simple arith-
metic on pixel values. In this case a contiguous block of pixel values is allocated
by setting C to 1 and P to the log (base 2) of the number of pixel values required,
and requesting contiguous allocation. Arithmetic on the pixel values then requires
at most some additional shift and mask operations.

A third form of allocation arises in applications that want some form of overlay
graphics, such as highlighting or outlining regions. Here the requirement is to be
able to draw and then erase graphics without disturbing existing window contents.
For example, suppose an application typically uses four colors, but needs to be
able to overlay a rectangle outline in a fifth color. An allocation request with C
set to 4 and P set to 1 results in two groups of four pixel values. The four base
pixel values are assigned the four normal colors, and the four alternate pixel
values are all assigned the fifth color. Overlay graphics can then be drawn by
restricting output (see the next section) to the single bit plane specified in the
mask returned by the color allocation. Turning bits in this plane on (to l’s)
changes the image to the fifth color, and turning them off reverts the image to
its original color.

6. GRAPHICS AND TEXT

Graphics operations are often the most complex part of any window system,
simply because so many different effects and variations are required to satisfy a
wide range of applications. In this section we sketch the operations provided in
X so that the basic level of graphics support can be understood. The operations
are essentially a subset of the Digital Workstation Graphics Architecture; the
VSlOO display [14] implements this architecture for l-bit pixel values. The set
of operations was purposely kept simple in order to maximize portability.

Graphics operations in X are expressed in terms of relatively high-level
concepts, such as lines, rectangles, curves, and fonts. This is in contrast to
systems in which the basic primitives are to read and write individual pixels.
Basing applications on pixel-level primitives works well when display memory
can be mapped into the application’s address space for direct manipulation.
However, both display hardware and operating systems exist for which such
ACM Transactions on Graphics, Vol. 5, No. 2, April 1986.

Ebay Exhibit 1013, Page 955 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

The X Window System l 93

direct access is not possible, and emulating pixel-level manipulations in such an
environment results in extremely poor performance. Expressing operations at a
higher level avoids such device dependencies, as well as potential problems with
network bandwidth. With high-level operations, a protocol request transmitted
as a small number of bits over the network typically affects lo-100 times as
many pixels on the screen.

6.1 Images

Two forms of offscreen images are supported in X: bitmaps and pixmaps. A
bitmap is a single plane (bit) rectangle. A pixmap is an N-plane (pixel) rectangle,
where N is the number of bits per pixel used by the particular display. A bitmap
or pixmap can be created by transmitting all of the bits to the server; a pixmap
can also be created by copying a rectangular region of a window. Bitmaps and
pixmaps of arbitrary size can be created. Transmitting very large (or deep) images
over a network connection can be quite slow; however, the ability to make use of
shared memory in conjunction with the IPC mechanism would help enormously
when the client and server are on the same machine.

The primary use of bitmaps is as masks (clipping regions). Several graphics
requests allow a bitmap to be used as a clipping region, as in [37]. Bitmaps are
also used to construct cursors, as described in Section 8. Pixmaps are used for
storing frequently drawn images and as temporary backing-store for pop-up
menus (as described in Section 8). However, the principal use of pixmaps is as
tiles, that is, as patterns that are replicated in two dimensions to cover a region.
Since there are often hardware restrictions as to what tile shapes can be replicated
efficiently, guaranteed shapes are not defined by the X protocol. An application
can query the server to determine what shapes are supported, although to date
most applications simply assume 16-by-16 tiles are supported. A better semantics
is to support arbitrary shapes but allow applications to query which shapes are
most efficient.

The tiling origin used in X is almost always the origin of the destination
window. That is, if enough tiles have been laid out, one tile would have its upper
left corner at the upper left corner of the window. In this way, the contents of
the window are independent of the window’s position on the screen, and the
window can be moved transparently to the application.

Servers vary widely in the amount of offscreen memory provided. For example,
some servers limit offscreen memory to that accessible directly to the graphics
processor (typically one to three times the size of screen memory), and fonts and
other resources are allocated from this same pool. Other servers utilize their
entire virtual address space for offscreen memory. Since offscreen memory for
images is finite, an explicit part of the X protocol is the possibility that bitmap
or pixmap creation can fail. Depending on the intended use of the image, the
application may or may not be able to cope with the failure. For example, if the
image is being stored simply to speed up redisplay, the application can always
transmit the image directly each time (see below). If the image is to be a temporary
backing-store for a window, the application can fall back on normal exposure
processing (as described in Section 7). Servers should be constructed in such a
way as to virtually guarantee sufficient memory (e.g., by caching images) for

ACM Transactions on Graphics, Vol. 5, No. 2, April 1986.

Ebay Exhibit 1013, Page 956 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

craig
Highlight

94 l R. W. Scheifler and J. Gettys

creating at least small tiles and cursors, although this is not true in current
implementations.

6.2 Graphics

All graphics and text requests include a logic function and a plane-select mask
(an integer with the same number of bits as a pixel value) to modify the operation.
All 16 logic functions are provided, although in practice only a few are ever used.
Given a source and destination pixel, the function is computed bitwise on
corresponding bits of the pixels, but only on bits specified in the plane-select
mask. Thus the result pixel is computed as

((source FUNC destination), AND mask) OR (destination AND (NOT mask)).

The most common operation is simply replacing the destination with the source
in all planes.

The simplest graphics request takes a single source pixel value and combines
it with every pixel in a rectangular region of a window. Typically, this is used to
fill a region with a color, but by varying the logic function or masks, other effects
can be achieved. A second request takes a tile, effectively constructs a tiled
rectangular source with it, and then combines the source with a rectangular
region of a window.

An arbitrary image can be displayed directly, without first being stored off-
screen. For monochrome images, the full contents of a bitmap are transmitted,
along with a pair of pixel values; the image is displayed in a region of a window
with those two colors. For color images, the full contents of a pixmap can be
transmitted and displayed. In order to avoid requiring inordinate buffer space in
the server, very large images must be broken into sections on the client side and
displayed in separate requests.

The CopyArea request allows one region of a window to be moved to (or
combined with) another region of the same window. This is the usual bitblt, or
“bit block transfer” operation. The source and destination are given as rectan-
gular regions of the window; the two regions have, the same dimensions. The
operation is such that overlap of the source and destination does not affect the
result.

X provides a complex primitive for line drawing. It provides for arbitrary
combinations of straight and curved segments, defining both open and closed
shapes. Lines can be solid, by drawing with a single source pixel value, dashed,
by alternately drawing with a single source pixel value and not drawing, and
patterned, by alternately drawing with two source pixel values. Lines are drawn
with a rectangular brush. Clients can query the server to determine what brush
shapes are supported, a better semantics would be to support arbitrary shapes
but allow applications to query which shapes are most efficient.

A final request allows an arbitrary closed shape (such as could be specified in
the line-drawing request) to be filled with either a single source pixel value or a
tile. For self-intersecting shapes, the even-odd rule is used: A point is inside the
shape if an infinite ray with the point as origin crosses the path an odd number
of times.
ACM Transactions on Graphics, Vol. 5, No. 2, April 1986.

Ebay Exhibit 1013, Page 957 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

The X Window System l 95

6.3 Text

For high-performance text, X provides direct support for bitmap fonts. A font
consists of up to 256 bitmaps; each bitmap in a font has the same height but can
vary in width. To allow server-specific font representations, clients “create” fonts
by specifying a name rather than by downloading bitmap images into the server.
An application can use an arbitrary number of fonts, but (as with all resources)
font allocation can fail for lack of memory. A reasonably implemented server
should support an essentially unbounded number of fonts (e.g., by caching), but
some existing server implementations are deficient in this respect. Unlike Andrew
[lo], no heuristics are applied by the server when resolving a name to a font;
specific communities or applications may demand a variety of heuristics, and as
such they belong outside the base window system. Also unlike Andrew, the X
server is not free to dynamically substitute one font for another; we do not believe
such behavior is necessary or appropriate in the base window system.

A string of text can be displayed by using a font either as a mask or as a source.
When a font is used as a mask, the foreground (the 1 bits in the bitmap) of each
character is drawn with a single source pixel value. When a font is used as a
source, the entire image of each character is drawn, using a pair of pixel values.
Source font output is provided specifically for applications using fixed-width
fonts in emulating traditional terminals.

To support “cut-and-paste” operations between applications, the server pro-
vides a number of buffers into which a client can read and write an arbitrary
string of bytes. (This mechanism was adopted from Andrew.) Although these
buffers are used principally for text strings, the server imposes no interpretation
on the data, so cooperating applications can use the buffers to exchange such
things as resource identifiers and images.

7. EXPOSURES

Given that output to obscured windows is possible, the issue of exposure must be
addressed. When all (or a piece) of an obscured window again becomes visible
(e.g., as the result of the window being raised), is the client or the server
responsible for restoring the contents of the window? In X, it is the responsibility
of the client. When a region of a window becomes exposed, the server sends an
asynchronous event to the client specifying the window and the region that have
been exposed; the rest is up to the application. A trivial application might simply
redraw the entire window; a more sophisticated application would only redraw
the exposed region.

Why is the client responsible? Because X imposes no structure on or relation-
ships between graphics operations from a client, there are only two basic mech-
anisms by which the server might restore window contents: by maintaining
display lists and by maintaining offscreen images. In the first approach, the
server essentially retains a list of all output requests performed on the window.
When a region of the window becomes exposed, the server reexecutes either all
requests to the entire window or only requests that affect the region while
clipping the output to that region. In the alternative approach, when a window

ACM Transactions on Graphics, Vol. 5, No. 2, April 1986.

Ebay Exhibit 1013, Page 958 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

96 l R. W. Scheifler and J. Gettys

becomes obscured, the server saves the obscured region (or perhaps the entire
window) in offscreen memory. All subsequent output requests are executed not
only to the visible regions of the window, but to the offscreen image as well.
When an obscured region becomes visible again, the offscreen copy is simply
restored.

We believe that neither server-based approach is acceptable. With display lists,
the server is unlikely to have any reasonable notion of when later output requests
nullify earlier ones. Either the display list becomes unmanageably long, and a
refresh that should appear nearly instantaneous instead appears as an extended
replay, or the server spends a significant length of time pruning the display list,
and normal-case performance is considerably reduced. One problem with the
offscreen image approach is (virtual) memory consumption: On a 1024-by-1024
eight-plane display, just one full-screen image requires 1 megabyte (Mbyte) of
storage, and multiple overlapping windows could easily require many times that
amount. Another problem is that the cost of the implementation can be prohib-
itive. Consider, for example, the QDSS display [7], which has a graphics
coprocessor. In the QDSS, display memory is inaccessible to the host pro-
cessor. In addition, the coprocessor cannot perform operations in host memory
and has relatively little offscreen memory of its own. The only viable way to
maintain offscreen images for displays like the QDSS may be to emulate the
coprocessor in software. It can easily take tens of thousands of lines of code to
emulate a coprocessor, and such emulation may execute orders of magnitude
slower than the coprocessor.

Our belief is that many applications can take advantage of their own infor-
mation structures to facilitate rapid redisplay, without the expense of maintaining
a distinct display structure or backing-store in the client or the server, and often
with even better performance. (Sapphire [21] permits client refresh for this
reason.) For example, a text editor can redisplay directly from the source, and a
VLSI editor can redisplay directly from the layout and component definitions.
Many applications will be built on top of high-level graphics libraries that
automatically maintain the data structures necessary to implement rapid
redisplay. For example, the structured display file mechanism in VGTS could be
supported in a client library. Of course, pushing the responsibility back on the
application may not simplify matters, particularly when retrofitting old systems
to a new environment. For example, the current GKS design does not quite
provide adequate hooks for automatic, system-generated refresh of application
windows, nor does it provide an adequate mechanism for forcing refresh back on
the application.

Relying on client-controlled refresh also derives from window management
philosophy. Our belief is that applications cannot be written with fixed top-level
window sizes built in. Rather, they must function correctly with almost any size
and continue to function correctly as windows are dynamically resized. This is
necessary if applications are to be usable on a variety of displays under a variety
of window management policies. (Of course, an application may need a minimum
size to function reasonably and may prefer the width or height to be a multiple
of some number; X allows the client to attach a resize hint to each window to
inform window managers of this.) Our belief is that most applications, for one
ACM Transactions on Graphics, Vol. 5, No. 2, April 1986.

Ebay Exhibit 1013, Page 959 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

The X Window System l 97

reason or another, will already have code for performing a complete redisplay of
the window, and that it is usually straightforward to modify this code to deal
with partial exposures. Similar arguments were used in the design of both Andrew
and Mex and confirmed by experience [lo, 25,261.

This is not to argue that the server should never maintain window contents,
only that it should not be required to maintain contents. For complex imaging
and graphics applications, efficient maintenance by the server may be critical for
acceptable performance of window management functions. There is nothing
inherent in the X protocol that precludes the server from maintaining window
contents and not generating exposure events. In the next version of X, windows
will have several attributes to advise the server as to when and how contents
should be maintained.

In X, clients are never informed of what regions are obscured, only of what
regions have become visible. Thus, clients have insufficient information for
optimizing output by only drawing to visible regions. However, we feel this is
justified on two grounds. First, realistically, users seldom stack windows such
that the active ones are obscured, so there is little point in complicating appli-
cations to optimize this case. More important, allowing applications to restrict
output to only visible regions would conflict with the desire to have the server
maintain obscured regions automatically when possible.

An interesting complication with the CopyArea request (described in
Section 6) arises when client refresh is decided on. If part of the source region of
the CopyArea is obscured, then not all of the destination region can be updated
properly, and the client must be notified (with an exposure event) so that it can
correct the problem. Since output requests are asynchronous, care must be taken
by the application to handle exposure events when using CopyArea. In particular,
if a region is exposed and an event sent by the server, a subsequent CopyArea
may move all or part of the region before the event is actually received by the
application. Several simple algorithms have been designed to deal with this
situation, but we do not present them here.

Client refresh raises a visual problem in a network environment. When a
region of a window becomes exposed, what contents should the server initially
place in the window? In a local, tightly coupled environment, it might be perfectly
reasonable to leave the contents unaltered, because the client can almost instan-
taneously begin to refresh the region. In a network environment, however (and
even in a local system where processes can get “swapped out” and take consid-
erable time to swap back in), inevitable delays can lead to visually confusing
results. For example, the user may move a window and see two images of the
window on the screen for a significant length of time, or resize a window and see
no immediate change in the appearance of the screen.

To avoid such anomalies in X, clients must define a background for every
window. The background can be a single color, or it can be a tiling pattern.
Whenever a region of a window is exposed, the server immediately paints the
region with the background. Users therefore see window shapes immediately,
even if the “contents” are slow to arrive. Of course, many application windows
have some notion of a background anyway, so having the server initialize with a
background seldom results in extraneous redisplay. In fact, many nonleaf

ACM Transactions on Graphics, Vol. 5, No. 2, April 1986.

Ebay Exhibit 1013, Page 960 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

98 l R. W. Scheifler and J. Gettys

windows typically contain nothing but a background, and having the server paint
that background frees the applications from performing any redisplay at all to
those windows.

Although we believe client-generated refresh is acceptable most of the time, it
does not always perform well with momentary pop-up menus, where speed is at
a premium. To avoid potentially expensive refresh when a menu is removed from
the screen, a client can explicitly copy the region to be covered by the menu into
offscreen memory (within the server) before mapping the menu window. A special
unmap request is used to remove the menu: It unmaps the window without
affecting the contents of the screen or generating exposure events. The original
contents are then copied back onto the screen. In addition, the client usually
grubs the server for the entire sequence, using a request that freezes all other
clients until a corresponding ungrab request is issued (or the grabbing client
terminates). Without this, concurrent output from other clients to regions ob-
scured by the menu would be lost. Although freezing other clients is, in general,
a poor idea, it seems acceptable for momentary menus.

8. INPUT

We now turn to a discussion of input events, but first we briefly describe the
support for mouse cursors. Clients can define arbitrary shapes for use as mouse
cursors. A cursor is defined by a source bitmap, a pair of pixel values with which
to display the bitmap, a mask bitmap that defines the precise shape of the image,
and a coordinate within the source bitmap that defines the “center” or “hot spot”
of the cursor. Cursors of arbitrary size can be constructed, although only a portion
of the cursor may be displayed on some hardware. Clients can query the server
to determine what cursor sizes are supported, but existing applications typically
just assume a 16-by-16 image can always be displayed. Cursors also can be
constructed from character images in fonts; this provides a simple form of named
indirection, allowing custom-tailoring to each display without having to modify
the applications.

A window is said to contain the mouse if the hot spot of the cursor is within a
visible portion of the window or one of its subwindows. The mouse is said to be
in a window if the window, but no subwindow, contains the mouse. Every window
can have a mouse cursor defined for it. The server automatically displays the
cursor of whatever window the mouse is currently in; if the window has no cursor
defined, the server displays the cursor of the closest ancestor with a cursor
defined.

Input is associated with windows. Input to a given window is controlled by a
single client, which need not be the client that created the window. Events are
classified into various types, and the controlling client selects which types are of
interest to it. Only events matching in type with this selection are sent to the
client. When an input event is generated for a window and the controlling client
has not selected that type, the server propagates the event to the closest ancestor
window for which some client has selected the type, and sends the event to that
client instead. Every event includes the window that had the event type selected;
this window is called the event window. If the event has been propagated, the
ACM Transactions on Graphics, Vol. 5, No. 2, April 1986.

Ebay Exhibit 1013, Page 961 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

The X Window System l 99

event also includes the next window down in the hierarchy between the event
window and the original window on which the event was generated.

8.1 The Keyboard

For the keyboard, a client can selectively receive events on the press or release
of a key. Keyboard events are not reported in terms of ASCII character codes;
instead, each key is assigned a unique code, and client software must translate
these codes into the appropriate characters. The mapping from keycaps to
keycodes is intended to be “universal” and predefine& a given keycap has the
same keycode on all keyboards. Applications generally have been written to read
a “keymap file” from the user’s home directory so that users can remap the
keyboard as they see fit.

The use of coded keys is secondary to the ability to detect both up and down
transitions on the keyboard. For example, a common trick in window systems is
for mouse button operations to be affected by keyboard modifiers such as the
Shift, Control, and Meta keys. A useful feature of the Genera [34] system is the
use of a “mouse documentation line,” which changes dynamically as modifiers
are pressed and released, indicating the function of the mouse buttons. A base
window system must provide this capability. Transitions are not only useful on
modifiers; various applications for systems other than X have been designed to
use “chords” (groups of keys pressed simultaneously), and again the window
system should support them.

The keyboard is always attached to some window (typically the root window
or a top-level window); we call this window the focus window. A request can be
used (usually by the input manager) to attach the keyboard to any window. The
window that receives keyboard input depends on both the mouse position and
the focus window. If the mouse is in some descendant of the focus window, that
descendant receives the input. If the mouse is not in a descendant of the focus
window, then the focus window receives the input, even if the mouse is outside
the focus window. For applications that wish to have the mouse state modify the
effect of keyboard input, a keyboard event contains the mouse coordinates, both
relative to the event window and global to the screen, as well as the state of the
mouse buttons.

To provide a reasonable user interface, keyboard events also contain the state
of the most common modifier keys: Shift, ShiftLock, Control, and Meta. Without
this information, anomalous behavior can result. If the user switches windows
while modifier keys are down, the new client must somehow determine which
modifiers are down. Placing the modifier state in the keyboard events solves such
problems and also has another benefit: Most clients do not have to maintain
their own shadow of the modifier state and so often can completely ignore key
release events. However, there is a conflict between this server-maintained state
and client-maintained keyboard mappings. In particular, clients cannot use
nonstandard keys as modifiers or chords without the possibility of anomalies,
such as those described above. We believe the correct solution (not yet supported
in X) is for the server to maintain a bit mask reflecting the full state of the
keyboard and allow clients to read this mask. An application using chords or

ACM Transactions on Graphics, Vol. 5, No. 2, April 1986.

Ebay Exhibit 1013, Page 962 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

100 l R. W. Scheifler and J. Gettys

nonstandard modifiers would request the server to send this mask automatically
whenever the mouse has entered the application’s window.

8.2 The Mouse

The X protocol is (somewhat arbitrarily) designed for mice with up to three
buttons. An application can selectively receive events on the press or release of
each button. Each event contains the current mouse coordinates (both local to
the window and global to the screen), the current state of all buttons and modifier
keys, and a timestamp that can be used, for example, to decide when a succession
of clicks constitutes a double or triple click. An application can also choose to
receive mouse motion events, either whenever the mouse is in the window or
only when particular buttons have also been pressed. The application cannot
control the granularity of the reporting, nor is any minimum granularity guar-
anteed. In fact, typical server implementations make an effort to compact motion
events in order to minimize system overhead and wired memory in device drivers.
Thus X may not serve adequately for fine-grained tracking, such as in fast
moving freehand drawing applications.

Even with motion compaction, servers can generate considerable numbers of
motion events. If an application attempts to respond in real time to every event,
it can easily get far behind relative to the actual position of the mouse. Instead,
many applications simply treat motion events as hints. When a motion event is
received, the event is simply discarded, and the client then explicitly queries the
server for the current mouse position. While waiting for the reply, more motion
events may be received, these are also discarded. The client then reacts on the
basis of the queried mouse pcsition. The advantage of this scheme over contin-
uously polling the mouse position is that no CPU time is consumed while the
mouse is stationary.

Clients can also receive an event each time the mouse enters or leaves a
window. This can be particularly useful in implementing menus. For example,
each menu item can be placed in a separate subwindow of the overall menu
window. When the mouse enters a subwindow, the item is highlighted in some
fashion (e.g., by inverting the video sense), and when the mouse leaves the
window, the item is restored to normal. Implementing a menu in this manner
requires considerably less CPU overhead than continuously polling the mouse,
and also less overhead than using motion events, since most motion events would
be within windows and thus uninteresting.

Owing to the nature of overlapping windows and because continuous tracking
by the server is not guaranteed, the mouse may appear to move instantaneously
between any pair of windows on the screen. Certainly, the window the mouse
was in should be notified of the mouse leaving, and the window the mouse is now
in should be notified of the mouse entering. However, all of the “in between”
windows in the hierarchy may also be interested in the transition. This is useful
in simplifying the structure of some applications and is necessary in implementing
certain kinds of window managers and input managers. Thus, when the mouse
moves from window A to window B, with window W as their closest (least)
common ancestor, all ancestors of A below W also receive leave events, and all
ancestors of B below W receive enter events.
ACM Transactions on Graphics, Vol. 5, No. 2, April 1986.

Ebay Exhibit 1013, Page 963 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

The X Window System l 101

It might be argued that, except for mouse motion events, events are infrequent
enough for the server to always send all events to the client and eliminate the
complexity of selecting events. However, some applications are written with
interrupt-driven input; events are received asynchronously and cause the current
computation to be suspended so that the input can be processed. For example, a
text editor might use interrupt-driven input, with the normal computation being
redisplay of the window. The receipt of extraneous input events (e.g., key release
events) can cause noticeable “hiccups” in such redisplay.

9. INPUT AND WINDOW MANAGEMENT

There are two basic modes of keyboard management: real-estate and listener. In
real-estate mode, the keyboard “follows” the mouse; keyboard input is directed
to whatever window the mouse is in. In listener mode, keyboard input is directed
to a specific window, independent of the mouse position. A few systems provide
only real-estate mode [2], some only listener mode [ll, 18, 21, 25, 33, 341, and a
few provide both [lo, 301, although the mode may not be changeable during a
session. Both modes are supported in X, and the mode can be changed dynami-
cally. Real-estate mode is the default behavior, with the root window as the focus
window, as described in the previous section. An input manager can also make
some other (typically top-level) window the focus window, yielding listener mode.
Note, however, that, in listener mode in X, the client controlling the focus
window can still get real-estate behavior for subwindows, if desired; this capability
has proved useful in several applications.

The primary function of a window manager is reconfiguration: restacking,
resizing, and repositioning top-level windows. The configuration of nested win-
dows is assumed to be application specific, and under control of the applications.
There are two broad categories of window managers: manual and automatic. A
manual window manager is “passive” and simply provides an interface to allow
the user to manipulate the desktop; windows can be resized and reorganized at
will. The initial size and position of a window typically (but not always) are
under user or application control. Automatic window managers are “active” and
operate for the most part without human interaction; size and position at window
creation and reconfiguration at window destruction are chosen by the system.
Automatic managers typically tile the screen with windows such that no two
windows overlap, automatically adjusting the layout as windows are created and
destroyed. Several systems [lo, 18, 27, 361 provide automatic management plus
limited manual reconfiguration capability.

Existing window managers for X are manual. Automatic management that is
transparent to applications cannot be accomplished reasonably in X; future
support for automatic management is discussed in Section 10. In the current X
design, clients are responsible for initially sizing and placing their top-level
windows, not window managers. In this way, applications continue to work when
no window manager is present. Typically, the user either specifies geometry
information in the application command line or uses the mouse to sweep out a
rectangle on the screen. (For the latter, the application grabs the mouse, as
described below.)

ACM Transactions on Graphics, Vol. 5, No. 2, April 1986.

Ebay Exhibit 1013, Page 964 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

102 - FL W. Scheifler and J. Gettys

9.1 Mouse-Driven Management

Existing managers are primarily mouse driven and are based on the ability to
“steal” events. Specifically, a manager (or any other client) can grub a mouse
button in combination with a set of modifier keys, with the following effect:
Whenever the modifier keys are down and the button is pressed, the event is
reported to the grabbing client, regardless of what window the mouse is in. All
mouse-related events continue to be sent to that client until the button is released.
As part of the grab, the client also specifies a mouse cursor to be used for the
duration of the grab and a window to be used as the event window. A manager
specifies the root window as the event window when grabbing buttons; with the
event propagation semantics described in Section 8, the grabbed events contain
not only the global mouse coordinates, but also the top-level application window
(if any) containing the mouse. This is sufficient information to manipulate top-
level windows.

This button-grab mechanism has enabled several different management inter-
faces to be built, including a “programmable” interface [8] that allows the user
to assign individual commands or user-defined menus of commands to any
number of button/modifier combinations. For example, a button click (press and
release without intervening motion) might be interpreted as a command to raise
or lower a window, or to attach the keyboard, a press/motion/release sequence
might be interpreted as a command to move a window to a new position; or a
button press might cause a menu to pop up, with the selection indicated by the
mouse position at the release of the button. By allowing both specific commands
and menus to be bound to buttons, a range of interfaces can be constructed to
satisfy both “expert” and “novice” users.

Another form of manager simply displays a static menu bar along the top of
the screen, with items for such operations as moving a window and attaching the
keyboard. The menu is used in combination with a mouse-grab primitive, with
which a client can unilaterally grab the mouse and then later explicitly release
it; during such a mouse grab, events are redirected to the grabbing client, just as
for button grabs. When the user clicks on a menu bar item with any button, the
manager unilaterally grabs the mouse. The user then uses the mouse to execute
the specific command. For example, having clicked on the “move” item, the user
indicates the window to be moved by placing the mouse in the window and
pressing a button and then indicates the new position by moving the mouse and
releasing the button. The manager then releases the mouse.

9.2 icons
One important “resizing” operation performed by a window manager is trans-
forming a window into a small icon and back again. In X, icons are merely
windows. Transforming a window into an icon simply involves unmapping the
window and mapping its associated icon. The association between a window and
its icon is maintained in the server, rather than in the window manager, and
either the application or the manager can provide the icon. In this way, the

’ manager can provide a default icon form for most clients, but clients can provide
their own if desired, possibly with dynamic rather than static contents. The
client is still insulated from management policy, even if it provides the icon: The
ACM Transactions on Graphics, Vol. 5, No. 2, April 1986.

Ebay Exhibit 1013, Page 965 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

The X Window System - 103

manager is responsible for positioning, mapping, and unmapping the icon, and
the client is responsible only for displaying the contents.

The icon state is maintained in the server not only to allow clients to provide
icons, but to avoid the loss of state if the window manager should terminate
abnormally. When a window manager terminates, any windows it has created
are destroyed, including icon windows. With knowledge of icons, the server can
detect when an icon is destroyed and automatically remap the associated client
window. Without this, abnormal termination of the window manager would result
in “lost” windows.

9.3 Race Conditions
There are many race conditions that must be dealt with in input and window
management because of the asynchronous nature of event handling. For example,
if a manager attempts to grab the mouse in response to a press of a button, the
mouse-grab request might not reach the server until after the button is released,
and intervening mouse events would be missed. Or, if the user clicks on a window
to attach the keyboard there and then immediately begins typing, the first few
keystrokes might occur before the manager actually responds to the click and
the server actually moves the keyboard focus. A final example is a simple interface
in which clicking on a window lowers it. Given a stack of three windows, the user
might rapidly click twice in the same spot, expecting the top two windows to be
lowered. Unless the first click is sent to the manager and the resulting request
to lower is processed by the sever before the second click takes place, the event
window for the second click will be the same as for the first click, and the
manager will lower the first window twice.

A work-around for the last example, used by existing managers, is to ignore
the event window reported in most events. Instead, the global mouse coordinates
reported in the event are used in a follow-up query request to determine which
top-level window now contains that coordinate. However, not all race conditions
have acceptable solutions within the current X design. For a general solution it
must be possible for the manager to synchronize operations explicitly with event
processing in the server. For example, a manager might specify that, at the
press of a button, event processing in the server should cease until an explicit
acknowledgment is received from the manager.

10. FUTURE
On the basis of critiques from numerous universities and commercial firms, fairly
extensive evaluation and redesign of the X protocol have been under way since
May 1986. Our desire is to define a “core” protocol that can serve as a standard
for window system construction over the next several years. We expect to present
the rationale for this new design in the very near future, once it has been
validated by at least a preliminary implementation. In this section, we highlight
the major protocol changes.

10.1 Resource Allocation
Since the server is responsible for assigning identifiers to resources, each
resource allocation currently requires a round-trip time in order to perform. For
applications that allocate many resources, this causes a considerable start-up

ACM Transactions on Graphics, Vol. 5, No. 2, April 1986.

Ebay Exhibit 1013, Page 966 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

104 l R. W. Scheifler and J. Gettys

delay. For example, a multipane menu might consist of dozens of windows,
numerous fonts, and several different mouse cursors, leading to a delay of 1
second or longer.

In retrospect, this is the most significant defect in the design of X. To get
around these delays, programming interfaces have been augmented to provide
“batch mode” operations. If several resources must be created, but there are no
interdependencies among the allocation requests, all of the requests are sent in
a batch, and then all of the replies are received. This effectively reduces the delay
to a single round-trip time.

A better solution to this problem is to make clients generate the identifiers.
When the client establishes a connection to the server, it is given a specific
subrange from which it can allocate. This change will significantly improve start-
up times without affecting applications, as identifiers can be generated inside
low-level libraries without changing programming interfaces.

10.2 Transparent Windows
Transparent windows can be used as clipping regions; however, they are unsat-
isfactory for this purpose because every coordinate in a graphics request must be
translated by the client from the “real” window’s origin to the transparent
window’s origin. A better approach to clipping regions is to allow clients to create
clipping regions and attach them to all graphics requests. As noted in Section 6,
X currently allows a clipping region in the form of a bitmap to be attached to a
few graphics requests. Allowing a clipping region, specified either as a bitmap or
a list of rectangles, to be attached to all graphics requests provides a more uniform
mechanism.

To date transparent windows have been primarily used as inexpensive opaque
windows. In the current server implementation, transparent windows can be
created and transformed significantly faster than opaque windows. Because of
this, transparent windows are often used when opaque windows would otherwise
be adequate. We believe a new implementation of the server will improve the
performance of opaque windows to the point at which this will no longer be
necessary.

With explicit clipping regions added for graphics and the performance advan-
tages of transparent windows reduced, the only remaining use of transparent
windows is for input (and cursor) control. Various applications want relatively
fine-grained input control, and such control must not affect graphics output.
Close control of cursor images and mouse motion events seems particularly
important. However, the vast majority of the time control naturally is associated
with normal window boundaries, so it would be unwise to divorce input control
completely from windows. As such, the new protocol provides “input-only”
windows, which act like normal windows for the purposes of input and cursor
control, but which cannot be used as a source or destination in graphics requests,
and which are completely invisible as far as output is concerned.

10.3 Color
X originally was not designed to deal with direct-color displays. Direct-color
displays typically have between 12 and 36 bits per pixel; the pixel value consists
of three subfields, which are used as indexes into three independent color maps:
ACM Transactions on Graphics, Vol. 5, No. 2, April 1986.

Ebay Exhibit 1013, Page 967 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

The X Window System l 105

one for red intensities, one for green, and one for blue. Some direct-color displays
also have a fourth subfield, sometimes referred to as “z-channel” information,
used to control attributes such as blending or chroma keying. We now understand
how to incorporate direct-color displays without z-channel information into X in
such a way that the differences between direct-color and pseudocolor color maps
need not be apparent to the application, yet still allow all of the usual color map
tricks to be played.

At present there is only one color map for all applications, and color applica-
tions fail when this map gets full. Although dozens of applications typically can
be run under X within a single &bit pseudocolor map, a single map is clearly
unacceptable when dealing with small color maps or with multiple applications
(e.g., CAD tools) that need large portions of the color map. The solution is to
support multiple virtual color maps, still permitting applications to coexist within
any map, but allowing the possibility that not all applications show true color
simultaneously. This also matches next-generation displays, which actually sup-
port multiple color maps in hardware [39].

10.4 Graphics
Perhaps the biggest mistake in the graphics area was failing to support fonts
with kerning (side bearings) [26]. For example, a relatively complete emulation
of the Andrew programming interface was built for X, but Andrew applications
depend heavily on kerned fonts. There are other deficiencies that will be cor-
rected. For example, large glyph-sets (e.g., Japanese) will be supported, as well
as stippling (using a clip mask constructed by tiling a region with a bitmap). The
notions of line width, join style, and end style found in PostScript [l] are usually
preferred to brush shapes for line drawing and will be supported.

In an attempt to support a wide range of devices, the exact path followed for
lines and filled shapes was originally left undefined in X (the class of curve was
not even specified). Different devices use slightly different algorithms to draw
straight lines, and it seemed better to have high performance with minor variation
than to have uniformity with poor performance. Relatively few devices support
curve drawing in hardware, but some support it in firmware, and again perform-
ance seemed more important than accuracy. In retrospect, however, allowing
such device-dependent behavior was a poor decision. The vast majority of
applications draw lines aligned on an axis, and speed and precision are not an
issue. The applications that do require complex shapes also require predictable
results, so precise specifications are important.

A notable feature missing in X is the ability to perform graphics offscreen.
The reasons for this are essentially the same as those presented in the discussion
of exposures (Section 7). In particular, not all graphics coprocessors can operate
on host memory, and emulating such processors can be expensive. However,
application builders have demanded this capability, and the demand appears to
be sufficient leverage for convincing server implementors to provide the capabil-
ity. Offscreen graphics will be possible in the new protocol, although the amount
of offscreen memory and its performance characteristics may vary widely. In
addition, the protocol is being extended to allow the manipulation of both images
and windows of varying depths. For example, a server might support depths of
1, 4, 8, 12, and 24 bits. This allows imaging applications to transmit data more

ACM Transactions on Graphics, Vol. 5, No. 2, April 1986.

Ebay Exhibit 1013, Page 968 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

106 l FL W. Scheifler and J. Gettys

compactly, allows for more efficient memory utilization in the server, and provides
a match with next-generation display hardware.

A common debate in graphics systems is whether and where to have state.
Should parameters such as logic function, plane mask, source pixel value or tile,
tiling origin, font, line width and style, and clipping region be explicit in every
request or collected into a state object? The current X protocol is stateless for
the following reasons: Both state and stateless programming interfaces can be
easily built on top of the protocol; the currently supported graphics requests have
just few enough parameters for them to be represented compactly; and the initial
set of displays we were interested in (and the implementations we had in mind
for them) would not benefit from the addition of state. However, we now believe
that a state-based protocol is generally superior, since it handles complex graphics
gracefully and allows significantly faster implementations on some displays.

10.5 Management

An obvious interface style presently not supported in X is the ability to use the
keyboard for management commands. To allow this, a key-grab mechanism, akin
to the button-grab mechanism described in Section 9, will be provided. To allow
such styles as using the first button click in a window to attach the keyboard,
both button grabs and key grabs have been extended to apply to specific
subhierarchies, rather than always to the entire screen. To handle the kinds of
race conditions described in Section 9, a general event synchronization mecha-
nism has been incorporated into the grab mechanisms.

To support automatic window management, a manager must be able to inter-
cept certain management requests from clients (such as mapping or moving a
window) before they are executed by the server, and to be notified about others
(such as unmapping a window) after they are executed. In addition, some
managers want to provide uniform title bars and border decorations automati-
cally. To allow this, it is useful to be able to “splice” hierarchies: to move a
window from one parent to another. To allow input managers and window
managers to be implemented as separate applications, the ability for multiple
clients to select events on the same window is being added. For example, both a
window manager and an input manager might be interested in the unmapping or
destruction of a window.

10.6 Extensibility

The information that input and window managers might desire from applications
is quite varied, and it would be a mistake to try to define a fixed set. Similarly,
the information paths between applications (e.g., in support of “cut and paste”)
need to be flexible. To this end, we are adding a LISPish property list [29]
mechanism to windows, and the event mechanism is being augmented to provide
a simple form of interclient communication.

The new X protocol explicitly continues to avoid certain areas, such as
3-D graphics and antialiasing. However, a general mechanism has been designed
to allow extension libraries to be included in a server. The intention is that all
servers implement the “core” protocol, but each server can provide arbitrary
extensions. If an extension becomes widely accepted by the X community, it can
ACM Transactions on Graphics, Vol. 5, No. 2, April 1986.

Ebay Exhibit 1013, Page 969 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

The X Window System l 107

be adopted as part of the core. Each extension library is assigned a global name,
and an application can query the server at run time to determine whether a
particular extension is present. Request opcodes and event types are allocated
dynamically, so that applications need not be modified to execute in each new
environment.

11. SUMMARY

The X Window System provides high-performance, high-level, device-
independent graphics. A hierarchy of resizable, overlapping windows allows
a wide variety of application and user interfaces to be built easily. Network-
transparent access to the display provides an important degree of functional
separation, without significantly affecting performance, that is crucial to building
applications for a distributed environment. To a reasonable extent, desktop
management can be custom-tailored to individual environments, without modify-
ing the base system and typically without affecting applications.

To date, the X design and implementation effort has focused on the base
window system, as described in this paper, and on essential applications and
programming interfaces. The design of the network protocol and the color
allocation mechanism, the design and implementation of device-independent
layer of server, and the implementation of several applications and a prototype
window manager were carried out by the first author. The design and implemen-
tation of the C programming interface, the implementation of major portions of
several applications, and the coordination of efforts within Project Athena and
Digital Equipment Corporation were carried out by the second author. In addi-
tion, many other people from Project Athena, the Laboratory for Computer
Science, and institutions outside MIT have contributed software.

Necessary applications, such as window managers and VT100 and Tektronics
4014 terminal emulators, have been created, and numerous existing applications,
such as text editors and VLSI layout systems, have been ported to the X
environment. Although several different menu packages have been implemented,
we are only now beginning to see a rich library of tools (scroll bars, frames,
panels, more menus, etc.) for facilitating the rapid construction of high-quality
user interfaces. Tool building is taking place at many sites, and several univer-
sities are now attempting to unify window systems work with X as a base, so
that such tools can be shared.

The use of X has grown far beyond anything we had imagined. Digital has
incorporated X into a commercial product, and other manufacturers are following
suit. With the appearance of such products and the release of complete X sources
on the Berkeley 4.3 UNIX distribution tapes, it is no longer feasible to track all
X use and development. Existing applications written in C are known to have
been ported to 7 machine architectures of more than 12 manufacturers, and the
C server to 6 machine architectures and more than 16 display architectures. In
most cases the code is running under UNIX, but other operating systems are
also involved. In addition, relatively complete server implementations exist in
two LISP dialects. Apart from the portability of the system’s design, a large part
of this success is due to MIT’s decision to distribute X sources without any

ACM Transactions on Graphics, Vol. 5, No. 2, April 1986.

Ebay Exhibit 1013, Page 970 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

108 l R. W. Scheifler and J. Gettys

licensing restrictions, and the willingness of people in both educational and
commercial institutions to contribute code without restrictions.

ACKNOWLEDGMENTS

Our thanks go to the many people who have contributed to the success of X.
Particular thanks go to those who have made significant contributions to the
nonproprietary implementation: Paul Asente (Stanford University), Scott Bates
(Brown University), Mike Braca (Brown), Dave Bundy (Brown), Dave Carver
(Digital), Tony Della Fera (Digital), Mike Gancarz (Digital), James Gosling (Sun
Microsystems), Doug Mink (Smithsonian Astrophysical Observatory), Bob
McNamara (Digital), Ron Newman (MIT), Ram Rao (Digital), Dave Rosenthal
(Sun), Dan Stone (Brown), Stephen Sutphen (University of Alberta), and Mark
Vandevoorde (MIT).

Special thanks go to Digital Equipment Corporation. A redesign of the protocol
and a reimplementation of the server to deal with color and to increase per-
formance were made possible with funding (in the form of hardware) from
Digital. To their credit, all of the resulting device-independent code remained
the property of MIT.

REFERENCES

1. ADOBE SYSTEMS. PostScript Language Reference Manual. Addison-Wesley, Reading, Mass.,
1985.

2. APOLLO COMPUTER. Domain System User’s Guide. Apollo Computer, Chelmsford, Mass., 1985.
3. ASENTE, P. W reference manual. Internal document, Dept. Computer Science, Stanford Univ.,

Calif., 1984.
4. BALKOVICH, E., LERMAN, S., AND PARMELEE, R. P. Computing in higher education: The

Athena experience. Commun. ACM 28,ll (Nov. 1985), 1214-1224.
5. CHERITON, D. The V kernel: A software base for distributed systems. IEEE Softw. 1, 2 (Apr.

1984), 19-42.
6. COHEN, D. On holy wars and a plea for peace. Computer 14,lO (Oct. 1981), 48-54.
7. DIGITAL EQUIPMENT CORP. VCB02 Video Subsystem Technical Manual. Educational Services,

Digital Equipment Corporation, Bedford, Mass., 1986.
8. GANCARZ, M. UWM: A user interface for X windows. In Summer Conference Proceedings

(Atlanta, Ga., June 10-13). USENIX Association, 1986, pp. 429-440.
9. GETTYS, J. Problems implementing window systems in Unix. In Winter Conference Proceedings

(Denver, Colo., Jan. 15-17). USENIX Association, 1986, pp. 89-97.
10. GOSLING, J., AND ROSENTHAL, D. A window-manager for bitmapped displays and Unix. In

Methodology of Window-Managers, F. R. A. Hopgood et al., Eds. Springer-Verlag, New York,
1986.

11. HAWLEY, M. J., AND LEFFLER, S. J. Windows for Unix at Lucasfilm. In Summer Conference
Proceedings (Portland, Oreg., June 11-14). USENIX Association, 1985, pp. 393-406.

12. INTERNATIONAL STANDARDS ORGANIZATION. Information processing: Graphical kernel system
(GKS)-Functional description. Rep. DIS 7942, International Organization for Standardization,
Geneva, Switzerland, 1982.

13. LANTZ, K. A., AND NOWICKI, W. I. Structured graphics for distributed systems. ACM Trans.
Graph. 3, 1 (Jan. 1984), 23-51.

14. LEVY, H. VAXstation: A general-purpose raster graphics architecture. ACM Trans. Graph. 3, 1
(Jan. 1984), 70-83.

15. LIPKIE, D. E., EVANS, S. R., NEWLIN, J. K., AND WEISSMAN, R. L. Star graphics: An object-
oriented implementation. Comput. Graph. I6,3 (July 1982), 115-124.

16. LISKOV, B., AND SCHEIFLER, R. Guardians and actions: Linguistic support for robust, distrib-
uted programs. AC! Trans. Program. Lung. Syst. 5,3 (July 1983), 381-404.

ACM Transactions on Graphics, Vol. 5, No. 2, April 1986.

Ebay Exhibit 1013, Page 971 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

The X Window System l 109

17. MCKEE, L. MC- WINDOWS Programming Manual, Revision A. Massachusetts Computer Cor-
poration, Westford, Mass., 1985.

18. MICROSOFT CORP. Microsoft Windows: Programmer’s Guide. Microsoft Corporation, Redmond,
Wash., 1985.

19. MOON, D. Chaosnet. AI Memo 628, Artificial Intelligence Laboratory, MIT, Cambridge, Mass.,
June 1981.

20. MORRIS, J. H., SATYANARAYANAN, M., CONNER, M. H., HOWARD, J. H., ROSENTHAL, D. S. H.,
AND DONELSON SMITH, F. Andrew: A distributed personal computing environment. Commun.
ACM 29,3 (Mar. 1986), 184-201.

21. MYERS, B. Issues in window management design and implementation. In Methodology of
Window-Managers, F. R. A Hopgood et al., Eds. Springer-Verlag, New York, 1986.

22. NOWICKI, W. Partitioning of function in a distributed graphics system. Ph.D. dissertation,
Dept. Computer Science, Stanford Univ., Calif., 1985.

23. PIKE, R. The Blitz A multiplexed graphics terminal. AT&T Bell Lab. Tech. J. 63,8 (Oct. 1984),
1607-1631.

24. POSTEL, J. Transmission control protocol. Rep. RFC 793, USC/Information Sciences Institute,
Marina de1 Rey, Calif., Sept. 1981.

25. RHODES, R., HAEBERLI, P, AND HICKMAN, K. Mex-A window manager for the IRIS. In
Summer Conference Proceedings (Portland, Oreg., June 11-14). USENIX Association, 1985,
pp. 381-392.

26. ROSENTHAL, D. Window system implementations. USENIX Association, 1986. (Course notes
for Winter Conference, Denver.)

27. SMITH, D. C., IRBY, C., KIMBALL, R., AND HARSLEM, E. The Star user interface: An overview.
In Proceedings of the 1962 National Computer Conference (Houston, Tex., June 7-10). AFIPS
Press, Reston, Va., 1982, pp. 515-528.

28. STALLMAN, R., MOON, D., AND WEINREB, D. Lisp Machine Window System Manual. MIT
Artificial Intelligence Laboratory, Cambridge, Mass., Aug. 1983.

29. STEELE, G. L. Common Lisp: The Language. Digital Press, Bedford, Mass., 1984.
30. SUN MICROSYSTEMS. Programmer’s Reference Manual for SunWindows. Sun Microsystems,

Mountain View, Calif., 1985.
31. SUN MICROSYSTEMS. NeWS Preliminary Technical Overview. Sun Microsystems, Mountain

View, Calif., 1986.
32. SWEET, R. Mesa programming environment. ACM SZGPLAN Not. 20, 7 (July 1985), 216-229.
33. SWEETMAN, D. A modular window system for Unix. In Methodology of Window-Managers,

F. R. A. Hopgood et al., Eds. Springer-Verlag, New York, 1986.
34. SYMBOLICS. Programming the User Interface. Symbolics, Cambridge, Mass., 1986.
35. TEITELMAN, W. The Cedar programming environment: A midterm report and examination.

Rep. CSL 83-11, Xerox PARC, Palo Alto, Calif., June 1984.
36. TRAMMEL, R. D. A capability based hierarchic architecture for Unix window management. In

Summer Conference Proceedings (Portland, Oreg., June 11-14). USENIX Association, 1985,
pp. 373-37s.

37. WARNOCK, J., AND WYA~, D. K. A device independent graphics imaging model for use with
raster devices. Comput. Graph. 16,3 (July 1982), 313-319.

38. WECKER, S. DNA: The digital network architecture. IEEE Trans. Commun. COM-28, 4
(Apr. 1980), 510-526.

39. WILKES, A. J., SINGER, D. W., GIBBONS, J. J., KING, T. R., ROBINSON, P., AND WISEMAN,
N. E. The Rainbow workstation. Comput. J. 27,2 (May 1984), 112-120.

Received July 1986; revised October 1986; accepted October 1986

ACM Transactions on Graphics, Vol. 5, No. 2, April 1986.

Ebay Exhibit 1013, Page 972 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

APPENDIX G

Ebay Exhibit 1013, Page 973 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

New A~Icle
3

The Role of Balloon Help

David K. Farkas
Department of Technical Communication
College of Engineering
University of Washington

Abstract. Balloon Help, which is becoming standard in the
Macintosh world, enables the user to display brief annotations of inter-
face objects by passing the pointer (cursor) over those objects. This
investigation explains the operation of Balloon Help, presents the theo-
retical and empirical rationale for Balloon Help, assesses its value in
supporting both exploration of an interface and task-focused behavior,
considers its relationship with other forms of help, and evaluates some
possible modifications of Balloon Help. Balloon Help is viewed as a
successful implementation of minimalist principles that nevertheless
needs to be supplemented by other forms of documentation.

Balloon Help was introduced into the Macintosh operating
system with the System 7 release. Balloon Help was used
by Apple in documenting System 7, and Apple strongly
supports its use by all developers of software for the
Macintosh. A great many developers are incorporating
Balloon Help as they introduce new products and recode
their existing products for System 7, and so Balloon Help
will very likely become standard in the Mac world
(Gass6e, 1991).

In this study, I analyze and assess Balloon Help.
Specifically, I

• explain its operation,

• present it as a form of interface annotation
incorporating minimalist principles,

• assess its effectiveness when used both for initial famili-
arization with a product and for accomplishing tasks,

• consider its relationship to and potential duplication of
other forms of online help, and

• evaluate some possible enhancements of Balloon Help.

Balloon Help has received generally favorable commen-
tary in the trade press (Swaine, 1990; Matthies, 1991; Poole,
1991; Davis, 1991); it is applauded for providing users with
quick, convenient access to help information. But the re-
views are not consistently positive. One commentator calls
Balloon Help "little more than a gimmick" (Reed, 1991),
while another refers to it as "something my 5-year old
child needed occasionally" (Levitan, 1991). In my own

Ebay Exhibit 1013, Page 974 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

http://crossmark.crossref.org/dialog/?doi=10.1145%2F154425.154426&domain=pdf&date_stamp=1993-05-01
http://crossmark.crossref.org/dialog/?doi=10.1145%2F154425.154426&domain=pdf&date_stamp=1993-05-01

New Article

4

experience, Balloon Help has left many experienced Mac
users unimpressed. It is not, after all, a stunning techno-
logical advance: It employs no AI technology, interactive
dialog with the user, multimedia, or sophisticated
hypertext linking. Much flashier online aids have
appeared of late. Furthermore, if a help system is
measured by the amount of information it delivers to the
user, Balloon Help is certainly less than impressive. De-
spite all the things it is not, Balloon Help, I maintain, is
effective in a variety of situations. Simple and undramatic,
it is an instance of appropriate technology in the world of
online assistance.

How Balloon Help Works
Users enter the Balloon Help mode by selecting the Show
Balloons command from the Help menu on the Macintosh
menu bar. They exit this mode by means of the Hide
Balloons command on the same menu. Once in the
Balloon Help mode, many interface objects on the screen
are "hot." That is, they will display small "balloons" (see
Figure 1) containing brief help messages when the user
moves the pointer (cursor) over them. These balloons,
which are named after the balloons used in comic book
dialog, appear at the location of the hot spot. Each balloon
has a "tip" that points precisely at the hot interface object.
Balloons are parsimonious in design: there are no buttons
to click, no scroll bars, no title area. The dimensions of the
balloon are barely larger than the space required for the
balloon message.

Which spots will generate balloons? This depends on the
software developer. Balloons for the Title bar, Close box,
and other unvarying Macintosh interface objects are pro-
vided by System 7. But software developers can put bal-
loons almost anywhere, and the process is relatively easy,
especially with the BalloonWriter utility. Even temporary
interface objects like handles for graphics can trigger bal-
loons. Furthermore, a different message can be written for
the same spot when it is in a different condition. That is,
an option button (radio button) may display a different
message when it is selected, unselected or unavailable for
selection (dimmed). Other than this moderate degree of
context sensitivity, the display of balloons is unrelated to
deeper-level changes in the system's state or the actions of
the user; Balloon Help is not intelligent online assistance.
For both technical and communicative reasons balloon
messages must be short, and although graphics can be

Ebay Exhibit 1013, Page 975 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

New Article
5

Balloon for a default Save button

[Cancel 1

Save ~ ~ T o save the changes you have
I made to the settings in the
~ dialog box, click this button.

BaUoon for a selection handle

%

~':~':c'hange the size of"
I the selected item, drag
L this handle.

Animal Display Preferences:
[] Adults
[] Juven i l es

I~; lI'~l)i h~r~,,,, '
I Shows the animals in their /
I habitat (their natural

J I surroundings). Not available
J because Zoo Animals is

L selected above.

Balloon for setting a clock

I o 1:36:32 M t I
• -~1:36:32 PM ~1

I ~ l I ~ i number, thenoliok the
arrows that appear.

Hint: you can also type
a new number.

Figure 1. Several examples of Balloon Help on display.

Ebay Exhibit 1013, Page 976 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

New Article

6

placed in balloons, this is rarely done. Typically, the mes-
sages explain the purpose of the interface object (Apple
Publications Style Guide, 1991).

A balloon is dismissed as soon as the pointer leaves the
hot spot; thus only one balloon at a time is displayed.
Even so, an often-cited problem is "balloon barrage."
Users are distracted by numerous balloons that appear
unintentionally as the user moves the pointer toward the
next object of interest. To limit the number of uninten-
tional balloons, the pointer must pause for 1/10 second
over a hot spot before a balloon is triggered (Matthies,
1991). Consequently, if the user moves the pointer deci-
sively from one location to the next, unintended balloons
will not appear. Computer users, however, do not neces-
sarily move the pointer decisively, especially when they
are looking for information, and so balloon barrage
remains an issue.

One solution for balloon barrage has been offered by the
developers of "init" utilities, such as Helium, that enable
the user to toggle in and out of Balloon Help mode from
the keyboard. In the case of Helium, Balloon Help is active
only while a key combination is held down. This quick-
toggle feature permits the highly selective display of bal-
loons, but eliminates the automatic, effortless quality of
the original implementation. Summing up the salient
features of Balloon Help, we can say:

1. Balloon Help is spot-triggered. Unlike many forms of
context-sensitive help, a developer can trigger help
information from almost any pixel on the screen.

2. Balloon Help is spot-displayed. That is, in contrast to
many forms of context-sensitive help, balloons appear
right next to the object that triggered them. Because of
spot-display and also because of the balloon tip and the
small size of balloons, there is a close association in the
user's mind between a balloon and the object that
triggers it.

3. Balloon Help has some awareness of the system state
and separate balloons can be written for the same object
in different states.

Ebay Exhibit 1013, Page 977 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

New Article

7

One way is to point out a limitation of the now-dominant
graphical-user interface (GUI): the numerous graphical
controls and icons they contain are not completely intui-
tive and self-disclosing, and there is rarely enough screen
"real estate" to explain everything users need to know
about the system. New users of a GUI do not reliably infer
the function of such standard objects as scroll bars and
zoom boxes, and even users who are experienced with a
particular GUI cannot predictably infer the function of the
various application-specific icons and other graphical ob-
jects they encounter in an unfamiliar product. In addition
to mysterious graphical objects, graphical-user interfaces
contain many text labels, such as command names and la-
beled check boxes and option buttons. Because of space
constraints, these labels are often too brief to be meaning-
ful. Non-graphical interfaces face much the same problem,
but there is likely to be a higher proportion of brief text la-
bels to graphical objects. Balloons, then, can be thought of
as interface annotations, elaborative comments. But
whereas permanently displayed screen annotations,
"persistent help" in Kearsley's terms (1988), would hope-
lessly clutter the screen ff they were placed everywhere
the user could benefit from them, balloon annotations ap-
pear when they are needed and disappear when they are
not.

A second rationale can be drawn from the theoretical and
empirical work conducted for IBM by John Carroll
(Carroll, Smith-Kerker, Ford, and Mazur-Rimetz, 1987-88;
Carroll and Rosson, 1987; Carroll, 1990). This work defined
and popularized the concept of minimalist documentation.
Carroll made the important observation that computer
users are impatient and highly curious and that, rather
than reading extended documentation, they want to begin
immediately working with the product (Carroll, Smith-
Kerker, Ford, and Mazur-Rimetz, 1987-88; Carroll and
Rosson, 1987). Carroll also observed that, even while they
are just starting to learn a system, users want to get actual
work done, and--again--that users prefer to bypass
documentation or use the briefest possible documentation
as they accomplish their work (Carroll and Rosson, 1987).
The minimal manual was Carroll's primary effort to sat-
isfy these desires of computer users (Carroll, Smith-
Kerker, Ford, and Mazur-Rimetz, 1987-88). Balloon Help
can be seen as an online implementation of the original
minimalist idea. Users forego introductions, conceptual
overviews, any instructional curriculum, and complete
procedures for quick access to explanations and hints that
will support their own explorations and task-focused
efforts with the software.

Ebay Exhibit 1013, Page 978 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

New Article

8

A third rationale comes from empirical research on the
behavior of computer users conducted by Sellen and Nicol
(1990) as part of Apple Computer's ongoing research in
the area of online assistance. Sellen and Nicol report that
computer users formulate the following five kinds of
questions when trying to learn an unfamiliar software
product.

1. Goal oriented--What kinds of things can I do with this
program?

2. Descriptive--What is this? What does this do?

3. Procedural--How do I do this?

4. Interpretive--Why did that happen? What does this
mean?

5. Navigational--Where am I?

Sellen and Nicol then briefly describe a research prototype
quite similar to Balloon Help as a means of providing de-
scriptive information. Furthermore, they note that de-
scriptive information is needed in two different modes of
user behavior: The first is an exploratory mode in which
users are becoming familiar with the interface; the second
is a task-focused mode in which users need explanations
of objects when they are focused on accomplishing actual
tasks. Their work, therefore, like Carroll's provides a gen-
eral rationale for Balloon Help and points more specifi-
cally to two roles it can play in supporting users. We will
now turn from the general rationale for Balloon Help to an
assessment of its roles in the full documentation set, and
we will begin by considering Balloon Help both as a
means of exploring an interface and learning how to
perform tasks.

Balloon Help For Familiarization
Many forms of documentation, both print and online, can
help the user explore and gain an overall familiarity with a
new product. Both tutorials and user's guides can serve
this end. Online demos (or "tours") are intended specifi-
cally for familiarization. Balloon Help, however, is ideal in
supporting the user's initial exploration of a product or a
part of the product the user has not yet examined. First,
Balloon Help provides user-directed exploration in which
the user's curiosity rather than some instructional curricu-
lum is satisfied. Also important is the speed at which bal-
loons are displayed. Information comes a mere mouse

Ebay Exhibit 1013, Page 979 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

New Article

9

flick after the user's attention has been drawn to an object.
Not even the most helpful human tutor can respond as
quickly to a user's interest in some part of the interface---
and the discourse of a human tutor is harder to turn off
than a balloon.

Spot display also contributes to initial familiarization. As
Carroll has noted, one problem users face learning new
systems is correctly focusing their attention. They often
miss important messages and cues (Carroll, 1990, p. 34).
But the close association of the balloon message with the
object of interest eliminates this problem.

One limitation of Balloon Help is the necessary brevity of
balloon text. Brevity, however, is very appropriate for in-
itial exploration. Furthermore, in Balloon Help every word
counts. Manuals and conventional help screens need to in-
clude verbal descriptions or else screen representations to
show the user where on the screen to look for the object
being explained. This, of course, is unnecessary in Balloon
Help, where the interface serves as its own graphic. Also,
there is often no need to state the action the user must per-
form to execute a step in a procedure. The close associa-
tion of the balloon with a particular interface object--a
menu choice, a button, a checkbox, etc.--in many situ-
ations adequately implies the appropriate action.

Finally, although balloons are not a form of intelligent
help, the fact that separate balloons can be written for ob-
jects that are selected, unselected, and unavailable for se-
lection adds considerable value. Users particularly want
an explanation when the object they are interested in is
unavailable.

There is at least informal empirical support for the value
of Balloon Help in initial exploration. Michael Hancheroff
(1991), who provides support to users at the University of
Washington Microcomputer Showroom, observed that
users unfamiliar with System 7 and with Macintosh appli-
cations offering Balloon Help typically explore the inter-
face with Balloon Help for a short period of time, an hour
at most, and then turn it off. Also/Marshall McClintock
(1992) reports observations on Balloon Help that were in-
cidental to other usability tests he conducted at Microsoft.
McClintock found that sessions with Balloon Help, though
very brief, can "have a dramatic influence," especially in
providing users with the background to make good use of
other forms of help. Given that users basically dislike
documentation of all kinds, the brevity of Balloon Help
sessions, if the sessions are productive, is in my judgment
no ground for criticism.

Ebay Exhibit 1013, Page 980 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

New Article
10

Balloon Help for Tasks
While important, familiarization is only one part of a
user's life history with a software product. Users, as noted
above, are curious and wish to explore, but they also have
a very strong urge to accomplish actual work. How well,
then, does Balloon Help support users when they have
completed initial familiarization and are seeking online
help in support of real tasks?

Finding the Right Balloon
Information access is not an issue when users are explor-
ing an interface to gain familiarity. The user sees an object,
wonders about it, moves the pointer, and views a balloon.
But once the user has committed to trying to accomplish a
particular task, information access becomes paramount:
users must identify the appropriate interface objects before
they can access the relevant balloon. Balloon Help, there-
fore, requires the user to draw inferfences from the inter-
face. Carroll applauds documentation that encourages this
kind of active learning as well as documentation that
keeps the user's focus on the working interface rather than
on pages of a manual or windows of help information.

The success of this problem-solving activity, however, de-
pends both on a particular user's skill at inferring and the
quality of the interface. If the key control for the desired
task is buried four levels deep in the interface or is placed
under an unlikely menu, the user might never find the
requisite control and its balloon. There are also procedures
that are not associated with any particular part of the in-
terface, leaving the help writer with no good place to as-
sociate a balloon. On the other hand, if the interface is well
designed, information access via Balloon Help is likely to
be fast and accurate. A prototypical instance is the user
who finds the command that seems to match the task goal,
uses the balloon to confirm that choice, displays the dialog
box for that command, and then uses the dialog box bal-
loons to provide convenient capsule explanations of the
dialog box options.

Following the Procedure
Balloons are necessarily brief. As Sellen and Nicol point
out, balloons often describe the function of an interface
object rather than present a series of steps that will en-
compass the complete task. In the case of dialog box op-
tions, this is no limitation, because the dialog box option
is, in effect, a self-contained mini-procedure that enables a
user to complete a task in the exact manner the user

Ebay Exhibit 1013, Page 981 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

New Article

11

desires (e.g., printing, but printing only a portion of the
document).

If, on the other hand, the user selects a block of text, dis-
plays the balloon for the Copy command, and reads that
the copy command "copies the selected text and graphics
to the Clipboard," the user must be able to complete the
task (pasting the selected text or graphic back into the
document) from other knowledge of the system. Alterna-
tively, the help writer may write a longer balloon that in-
cludes an explanation of pasting, thus relieving the user of
this burden. The sample balloon for setting the time is in-
teresting and impressive because in only 21 words it packs
a purpose statement (to set the time), and three action
steps (clicking a number, clicking the arrows, and the al-
ternative method, typing a number), along with a feed-
back step (arrows will appear).

Many products, however, require much lengthier and
conceptually more complex procedures in which several
steps are decision points (conditionals) for which guide-
lines must be provided. In these instances, the inability of
balloons to provide more than the briefest conceptual in-
formation and feedback information becomes a limitation.
Also, many complex procedures require users to operate
controls located in disparate parts of the interface. Few
users will be willing to successively consult a series of
balloons as they carry out a single procedure.

Clearly, then, both in terms of information access and
presentation, there will be products and portions of prod-
ucts in which the practical limits of Balloon Help are ex-
ceeded. Both Sellen and Nicol and the Apple Publications
Style Guide acknowledge this fact. On the other hand,
Balloon Help is an excellent means of providing familiar-
ity and supports task-focused behavior over a broad range
of product functionality.

Complementing Balloon Help
If Balloon Help does not fully support task-focused behav-
ior, a good means of complementing Balloon Help is not
far to seek. One of the most prevalent forms of help con-
sists of windows or panels of help information accessed by
a hierarchy of descriptive phrases. The user scans a menu
or some other listing of top-level entries and then navi-
gates down into a hierarchy of more specific entries until
finding the title of the desired procedure. (Other

Ebay Exhibit 1013, Page 982 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

New Article

12

hierarchies can be devised for commands, keyboard
shortcuts, etc.) Accessing windows or panels of procedural
information in this way is comparable to using the table of
contents in a printed user's guide. Constructing an
effective procedure hierarchy requires a systematic
analysis of the tasks the user might want to perform and a
mapping of these tasks to the functionality of the product.
But if this is done correctly, the access is relatively
immune to quirks in the interface, and supports users who
do not want to explore an interface and infer which objects
support which tasks. These users only deal with the
interface when they follow instructions for carrying out a
procedure.

Another traditional form of access is the keyword list or
online index, the online equivalents of the traditional
back-of-book index. Here the help writer complies an ex-
tensive alphabetical listing of words and phrases that are
meant to correspond to the phrases that users are likely to
formulate to represent their goals. In both cases, the user
does not find help information from the working interface,
but rather consults listings of task-oriented phrases de-
vised by the help writer. So, a good complement to the in-
terface-based access provided by Balloon Help (and vari-
ous other forms of context-sensitive help) is its diametric
opposite, what we can call "phrase-based" access to help
information.

Apart from information access, another reason why
phrased-based access is a good complement to Balloon
Help is information presentation. In almost all implemen-
tations, phrase-based access provides much more com-
plete help information than does Balloon Help. Typically,
the user is shown a full window or panel from a library of
help topics, and this window (or panel) can offer scrolling
or paging through the help topic as well as links to other
help topics in the help library provided by a browse se-
quence, hypertext jumps, and pop-up definitions. Also,
because these windows are not associated with particular
interface objects and, in the better implementations,
remain on the screen while the user works with the prod-
uct, they are well suited for documenting procedures that
involve disparate parts of the interface.

Ebay Exhibit 1013, Page 983 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

New Article

13

Balloon Help and System Prompts:
Is There Duplication ?

Although phrase-based access to detailed help informa-
tion complements Balloon Help, there might well be sig-
nificant duplication of function if a software product
included both Balloon Help and some other form of help
optimized to display brief help messages.

There is a form of help, in fact, which has been imple-
mented along with Balloon Help in certaIn products,
which in some respects resembles Balloon Help, and
which might well be perceived as duplication of Balloon
Help. This is help in the form of system prompts. It is
worthwhile, therefore, to clarify the relationship between
system prompts and balloons and to demonstrate that any
duplication is incidental and a kind of historical anomaly.

Many computer products offer system-initiated messages
of various kinds. These Include error messages, alerts of
important actions (Do you wish to overwrite the file:
Lovenote), progress and completion messages (Backing
up the file: Lovenote . . . Backup completed), and
prompts for the next user action.

Error messages and alert messages usually appear promi-
nently on the screen and require some explicit action
before the user can resume normal operations with the
software. Other system messages, including prompts,
typically appear in a small message area located at the bot-
tom or some other margin of the screen and do not require
any explicit response. The user simply continues working
with the product and can either heed or ignore this
information.

In current systems, prompt messages are sometimes
similar and even identical to balloon messages. Sun
Microsystem's Open Look UI Style Guide (1989), for exam-
ple, suggests the following prompt when the user has se-
lected the rectangle tool from a drawing palette: "Position
pointer then dragwRectangle Tool." A balloon for the rec-
tangle tool might be quite similar. Moreover, In some
Microsoft products, certain balloons are similar or
identical to prompts that appear in the status line located
at the bottom of the screen. If a software product offers
two forms of help that might display the same message, is
there a significant overlap in function?

Ebay Exhibit 1013, Page 984 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

New Article

14

One difference, of course, is that prompts are not spot-
displayed. Furthermore, whereas balloons are sensitive to
the position of the pointer over an object, prompts require
the object to be selected or given some explicit focus. This
difference has the practical result of limiting the range of
objects for which prompts can be written and in making
access to prompts slower than access to balloons. But this
difference also points to a more fl.mdamental difference
between Balloon Help and system prompts, the difference
in their essential nature and ultimate evolution. Balloons
are annotations and explain the purpose of interface ob-
jects. Prompts are directive in nature; they reflect the sys-
tem's record of the user's recent actions and best guess as
to the user's current intentions. In intent, they are not ex-
planations of interface objects but explicit instructions for
what to do next.

Currently, prompts can provide explicit instructions only
in highly restricted or highly structured domains such as
automated bank tellers, simple e-mail systems, logon pro-
cedures for mainframes, and data-entry screens. In more
complex domains, however, it is often impossible to effec-
tively track and anticipate user actions, and so help
writers often can do no more than write balloon-like anno-
tations explaining the function of the most recently se-
lected object. The prompt, then, becomes no more than a
hint and a somewhat inferior form of Balloon Help.

But despite the current limitations of prompts in complex
domains, computers will achieve intelligent prompting.
They will track more user actions, make better inferences
about these actions, query users for clarification of their in-
tentions, and offer more detailed advice that can include
conditional instructions (If you are trying to do A, then)
Thus, as prompting becomes more intelligent, there will
be increasing divergence in the nature of prompt
messages and balloon messages.

Modifying Balloon Help
What is the potential for modifying Balloon Help and for
creating new, more refined help engines on the general
model of Balloon Help? What kinds of changes are
worthwhile enhancements? Should changes be
implemented that alter the fundamental character of
Balloon Help?

Ebay Exhibit 1013, Page 985 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

New Article
15

A common thread running through all these potential
modifications is the issue of added complexity, either in
the way in which the user operates Balloon Help or in the
nature of the help display. Complexity is the bane of help
systems, and so careful thought and usability testing are
necessary to confirm the value of any potential
modification.

Ouick Toggling
The prevalence of Helium indicates user interest in a
quick-toggle feature that permits balloons to be accessed
deliberately. The choice between system-initiated and
user-initiated display of balloons is highly individual, but
a means of preventing unwanted balloons would be
particularly valuable for users engaged in task-focused
activity.

This is because task-focused activity, much more than
familiarization, requires problem-solving and other
deeper-level mental processes, and so balloon barrage can
be much more distracting. The proliferation of balloons is
competing for scarce processing resources (Navon and
Miller, 1987). I have personally seen several users turn off
Balloon Help as they made the transition from familiari-
zation to trying to accomplish a new task. Had Helium
been installed, they might well have continued to use
Balloon Help. It therefore seems that with some sort of
Heliumqike quick toggle, a major impediment for using
Balloon Help to support task-focused behavior is
removed.

Filtering System-Level Balloons
A problem related to balloon barrage is that users who
have learned the basics of the Macintosh interface soon
tire of repeatedly viewing the balloons for standard and
very familiar objects such as the title bar, scroll bar, and
inactive windows. A possible modification of Balloon
Help, therefore, is a filtering option that would eliminate
the underlying System 7 "beginner's balloons" and retain
only balloons specific to the application being used. The
principle of "layering" information for different users is
central to documentation, and this modification is an
implementation of this principle.

Revealing the Area Triggering a Balloon
Users can benefit from an immediate visual cue indicating
the number of interface objects a particular balloon per-
tains to. For example, the use of highlighting could more
strongly distinguish an instance in which one balloon per-
tains collectively to three related option buttons from an
instance in which three related option buttons have three
separate balloons. This concept was implemented in the

Ebay Exhibit 1013, Page 986 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

New Article

16

precursor to Balloon Help that appears in some
HyperCard 2.0 help panels. When the balloon is dis-
played, the entire region that triggered the balloon is
highlighted until the user moves the pointer out of this
region and dismisses the balloon (Figure 2). Although this
feature adds visual complexity to balloon display, it might
be worth implementing.

mmmmatm ~"." ¢'r'-~"/'' ~

I Jl il I
V-V--IF--I
F--II---IF--]
I---V--IF---I To
F--II---IF--3
1 II II 1

lsyout

H o w n~amy c,zds to pr in t rport

To print all the cexds in the stack, O.ecich
click ~All card.e." .~ of

nOW,

To print only the marked, cs.rds, P ~'
i 9 Mm' click "Marked ~rds," er)
! O~Sf~ i ~ : = ~ l ~ , I overeachereaofthe I
L"O--"--~" O"~--~'"'--"'-J I (lrdormatloheboutit. J

IleMI=-: ~ ~ ~ El ~ I ,¢Indo~¢ nevfor more |

[1
........... 2~:~,7;:..~-~.,T.:~;,-:,:;...-~,i.T v: I rrp~]1~ ~ , ~ r ~ , r ~ c s Id.,;;.:,:~V,: ~:: ,~.,;;,d.: :.;f~. I

[i~i|~41~Hii=,!,i,li,=,il,i,i,l,=,i,i,i,;,lb=l ~ , ' M'r ~ I,, m ~ I=~!t o !,,,i q'l,

Figure 2. HyperCard 2.0 help screen showing highlight for the area
that triggered a "balloon2

Links to the Standard Help Library
Many software products offer context-sensitive access to
the standard help library normally accessed by topic hier-
archies or keywords. In one implementation the user
selects a particular interface object and presses a key; in
another, the user turns the pointer into a special help
pointer and then selects an object. This form of help sup-
ports interface-oriented problem-solving, somewhat as
Balloon Help does, but provides detailed information
rather than brief balloon messages.

A possible enhancement to Balloon Help is to provide
rapid access from any balloon to the most appropriate
screen in the standard help library. Balloons might have
their own hot spots (a bit tricky to implement) or the F1
key could be used. The help windows in Sun's
OpenWindows Spot Help includes a button that brings up
the standard help reference, Help Viewer, displaying a list
of topics generally related to the topic of the Spot Help
window. The Open Look UI Style Guide (see Figure 3) sug-
gests a more elaborate variation in which the help infor-
mation window contains three buttons for accessing more
help information.

Ebay Exhibit 1013, Page 987 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

N e w Art ic le

17

G r a p h i c s a n d M u l t i m e d i a
At a time when multimedia help is appearing, Balloon
Help does not even utilize graphics. Should something be
done? In many instances, Balloon Help does quite well
without graphics. The most common form of graphic in
computer documentation is the screen representation that
shows a specific portion of the interface to the user.
Balloon Help uses its own association with the relevant
object as a very adequate substitute for screen representa-
tions. While animated documentation is not always the
best means of providing help information (Palmiter,
Elkerton, and Baggett, 1991), animation is often highly
desirable for explaining processes and other documenta-
tion tasks. A company called Motion Works has devel-
oped a product that software developers can use to create
special balloons containing brief animated sequences.

M o r e " I n t e l l i g e n t " B a l l o o n s
An. interesting issue is the desirability of providing greater
context sensitivity and even "intelligence" for Balloon
Help. There are clearly benefits in adding greater context
sensitivity to Balloon Help. For example, in a word proc=
essing program, the command for adding footnotes might
trigger separate balloons depending on whether footnotes
had already been created for the document. Going further,
the way in which footnotes had been added to the docu-
ment could dictate the nature of the balloon message. But
even if greater context sensitivity is added to Balloon
Help, its fundamental character should not be changed. It
should remain annotative and descriptive, an aid to users
as they figure out what to do, and not a means of provid-
ing (or trying to provide) explicit directions for the user's
next action. Explicit directions are the natural evolution of
prompts and other forms of help, such as alerts, which
represent the best advice of the system as a whole and are
not closely associated with specific objects on the interface.
Furthermore, given limited resources, the large

I

J'JJ~) Mall Help: "To" field

l'he "To" field is used to designate recipients
for the mail message.

The recipients can be individuals or groups
which are on:
• your local network
• your internet
• any network to which your network can

connect (automatically or manually)

I"1 I"

Figure 3. Buttons for immediate access to detailed help information.

i More Details) CRelated Topics)(General Help) r "r

Ebay Exhibit 1013, Page 988 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

New Article

18

investment entailed in developing intelligent help is
probably best directed toward system prompts rather than
Balloon Help.

Conclusion
This investigation of Balloon Help mentioned three broad
families of help: context-sensitive help, help that uses
phrased-based access, and help which takes the form of
system prompts which track the user's interactions with
the system and which aspire beyond context sensitivity
toward true intelligence.

Balloon Help is a form of context-sensitive help featuring
spot triggering of balloons, spot display of balloons, and
balloons optimized for brief messages. Also, whereas most
context-sensitive help is user initiated, Balloon Help, with
the addition of Helium, can operate in either system-
initiated mode (ideal for familiarization) and the more
deliberate user-initiated mode (ideal for task-focused
learning).

Balloon Help is brief and instantly available, and asks us-
ers to keep their attention on the interface and engage in
inferential learning. Thus it broadly follows John Carroll's
minirnalist program, and is, in fact, a successful
implementation of minimalism.

Balloon Help, nonetheless, has significant limitations, par-
ticularly in supporting long and complex procedures. For
this reason, and because users should not be required to
rely on the interface to find documentation for the tasks
they want to accomplish, Balloon Help should not be the
sole piece of documentation or even the sole piece of on-
line documentation for a product.

Despite the mixed reception it has received, Balloon Help
should have a bright future. The now-dominant graphical-
user interfaces seem to sport ever more cryptic graphical
objects, and commands have ever more options, all repre-
sented in dialog boxes (and other places) in very terse
form. All this needs explication.

Another trend favors Balloon Help. As graphical interfaces
become ever more prevalent and more standardized, users
are becoming more familiar with such basic GUI opera-
tions as pulling down menus, clicking buttons, and typing
into text boxes. Greater numbers of users, one might

Ebay Exhibit 1013, Page 989 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

New Article

19

reason, will become impatient with step-by-step proce-
dures that incorporate descriptions of these actions. Brief
purpose-oriented statements, the ideal content of balloons,
may be increasingly favored, and more users may migrate
to Balloon Help from more conventional forms of
documentation.

References

Apple Publications Style Guide. (Fall 1991).
Cupertino, CA: Apple Computer, Inc.

BalloonWriter User's Guide. (1991).
Cupertino, CA: Apple Computer, Inc.

Carroll, J.M. (1990). The N/irnberg Funnel:
Designing Minimalist Instruction for
Practical Computer Skill, Cambridge,
MA: MIT Press.

Carroll, J.M., and Rosson, M.B. (1987). The
paradox of the active user. In J.M. Carroll
(ed.), Interfacing Thought: Cognitive
Aspects of Human Computer Interaction,
pp. 80-111. Cambridge, MA: MIT
Press/Bradford Books.

Carroll, J.M., Smith-Kerker, P.A., Ford, J.R.,
and Mazur-Rimetz, S.A. (1987-88). The
minimal manual. Human Computer
Interaction. 3, pp. 123-153.

Davis, F. (May 20, 1991). Operating systems
are evolutionary, not revolutionary. PC
Week, 8, p. 165

Gass6e, J.L. (August 6, 1991). System 7
getting pledge of allegiance. MacWeek 5,
p. 64.

Hancheroff, M.C. (October 25, 1991).
Personal Communication.

Levitan, A. (October 1991). A tale of two
operating systems. Computer Shopper,
11, pp. 137 & 148.

Kearsley, G. (1988). Online Help Systems:
Design and Implementation. Norwood,
NJ: Ablex.

Matthies, K.W.G. (1991). Balloon Help takes
off. MacUser, December 1991, pp. 241-48.

McClintock, M. (January 17, 1992). Personal
Communication.

Navon, D., and Miller, J. (1987). Role of
outcome conflict in dual-task interference.
Journal of Experimental Psychology:
Human Perception and Performance, 12,
pp. 435-48.

Open Look UI Style Guide. (1989). Mountain
View, CA: Sun Microsystems, Chapters 11
& 12.

Palmiter, S., Elkerton, J., and BaggeR, P.
(1991). Animated demonstrations vs.
written instructions for procedural tasks:
a preliminary investigation. International
Journal of Man-Machine Studies, 34,
pp. 678-701.

Poole, L. (July 1991). Confessions of a
System 7 user. Mac World, 8, pp. 195-201.

Reed, S. (August 1991). Apple scouts ahead
with System 7. PC Computing, 4,
pp. 40-42.

Sellen, A., and Nicol, A. (1990). Building
user-centered on-line help. In B. Laurel
(ed.) The Art of Human-Computer
Interface Design, pp. 143-153. Reading,
MA: Addison-Wesley.

Swaine, M. (November 1990). System 7.0
watch: the read balloon. MacUser, 6,
p. 244.

Thanks to Jean Farkas, Mark Hancheroff, Linda and David Leonard,
Marshall McClintock, Maria Staaf, Kent Sullivan, and Jon
Wiederspan.

Ebay Exhibit 1013, Page 990 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

APPENDIX H

Ebay Exhibit 1013, Page 991 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Ebay Exhibit 1013, Page 992 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Ebay Exhibit 1013, Page 993 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

This page
intentionally left

blank

Ebay Exhibit 1013, Page 994 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Ebay Exhibit 1013, Page 995 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Copyright © 2009, New Age International (P) Ltd., Publishers
Published by New Age International (P) Ltd., Publishers

All rights reserved.
No part of this ebook may be reproduced in any form, by photostat, microfilm,
xerography, or any other means, or incorporated into any information retrieval
system, electronic or mechanical, without the written permission of the publisher.
All inquiries should be emailed to rights@newagepublishers.com

PUBLISHING FOR ONE WORLD

NEW AGE INTERNATIONAL (P) LIMITED, PUBLISHERS
4835/24, Ansari Road, Daryaganj, New Delhi - 110002
Visit us at www.newagepublishers.com

ISBN (13) : 978-81-224-2861-2

Ebay Exhibit 1013, Page 996 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

In recent years there have been significant advances in the development of high performance
personal computer and networks. There is now an identifiable trend in industry toward
downsizing that is replacing expensive mainframe computers with more cost-effective
networks of personal computer that achieve the same or even better results. This trend
has given rise to the architecture of the Client/Server Computing.

The term Client/Server was first used in the 1980s in reference to personal computers
on a network. The actual Client/Server model started gaining acceptance in the late 1980s.
The term Client/Server is used to describe a computing model for the development of
computerized systems. This model is based on the distribution of functions between two
types of independent and autonomous entities: Server and Client. A Client is any process
that request specific services from server processes. A Server is process that provides
requested services for Clients. Or in other words, we can say “A client is defined as a
requester of services and a server is defined as the provider of services.” A single machine
can be both a client and a server depending on the software configuration. Client and
Server processes can reside in same computer or in different computers linked by a network.

In general, Client/Server is a system. It is not just hardware or software. It is not
necessarily a program that comes in a box to be installed onto your computer’s hard drive.
Client/Server is a conglomeration of computer equipment, infrastructure, and software
programs working together to accomplish computing tasks which enable their users to be
more efficient and productive. Client/Server applications can be distinguished by the nature
of the service or type of solutions they provide. Client/Server Computing is new technology
that yields solutions to many data management problems faced by modern organizations.

Client/Server Computing: An Introduction, features objective evaluations and details of
Client/Server development tools, used operating system, database management system and
its mechanism in respect of Client/Server computing and network components used in
order to build effective Client/Server applications.

Preface

Ebay Exhibit 1013, Page 997 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Last but not the least, this work is primarily a joint work with a number of fellow
teacher who have worked with us. My parents, wife Meera, and our children, Akanksha
and Harsh. I am particularly grateful to Dr. A. P. Singh, Principal, Udai Pratap Inter College,
Varanasi; Dr. D. S. Yadav, Sr. Lecturer, Department of Computer Science and Engineering,
IET, Lucknow; Dr. A. K. Naiyak, Director IIBM, Patna, former President of IT and Computer
Science Section of Indian Science Congress Association; Prof. A. K. Agrawal, Professor
and Ex-Head of Department, Computer Science and Engineering IT, BHU, Varanasi and
Mr. Manish Kumar Singh, Sr. Lecturer, Rajarshi School of Management and Technology
for providing the necessary help to finish this work.

Suggestions and comments about the book are most welcome and can be sent by e-mail
to scy@rediffmail.com.

Subhash Chandra Yadav

Prefacevi

Ebay Exhibit 1013, Page 998 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Preface v

1 INTRODUCTION 1–23
1.1 What is Client/Server Computing? 1

1.1.1 A Server for Every Client 2
1.1.2 Client/Server: Fat or Thin 4
1.1.3 Client/Server: Stateless or Stateful 4
1.1.4 Servers and Mainframes 5
1.1.5 Client/Server Functions 7
1.1.6 Client/Server Topologies 7
1.1.7 Integration with Distributed Computing 8
1.1.8 Alternatives to Client/Server Systems 9

1.2 Classification of Client/Server Systems 9
1.2.1 Two-tier Client/Server Model 9
1.2.2 Three-tier Client/Server Model 12

1.2.2.1 Transaction Processing Monitors 15
1.2.2.2 Three-tier with Message Server 16
1.2.2.3 Three-tier with an Application Server 17
1.2.2.4 Three-tier with an ORB Architecture 17
1.2.2.5 Three-tier Architecture and Internet 17

1.2.3 N-tier Client/Server Model 18
1.3 Clients/Server— Advantages and Disadvantages 19

1.3.1 Advantages 19
1.3.2 Disadvantages 21

1.4 Misconceptions About Client/Server Computing 22
Exercise 1 23

Contents

Ebay Exhibit 1013, Page 999 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Contentsviii

2 DRIVING FORCES BEHIND CLIENT/SERVER COMPUTING 25–40

2.1 Introduction 25
2.2 Driving Forces 26

2.2.1 Business Perspective 26
2.2.2 Technology Perspective 28

2.3 Development of Client/Server Systems 29
2.3.1 Development Tools 30
2.3.2 Development Phases 30

2.4 Client/Server Standards 32
2.5 Client/Server Security 33

2.5.1 Emerging Client /Server Security Threats 33
2.5.2 Threats to Server 34

2.6 Organizational Expectations 34
2.7 Improving Performance of Client/Server Applications 36
2.8 Single System Image 37
2.9 Downsizing and Rightsizing 38
2.10 Client/Server Methodology 39

Exercise 2 40

3 ARCHITECTURES OF CLIENT/SERVER SYSTEMS 41–62

3.1 Introduction 41
3.2 Components 42

3.2.1 Interaction between the Components 43
3.2.2 Complex Client/Server Interactions 43

3.3 Principles behind Client/Server Systems 45
3.4 Client Components 46
3.5 Server Components 48

3.5.1 The Complexity of Servers 51
3.6 Communications Middleware Components 52
3.7 Architecture for Business Information System 55

3.7.1 Introduction 55
3.7.2 Three-Layer Architecture 56
3.7.3 General Forces 56
3.7.4 Distribution Pattern 58

3.8 Existing Client/Server Architecture 59
3.8.1 Mainframe-based Environment 59
3.8.2 LAN-based Environment 60
3.8.3 Internet-based Environment 60
Exercise 3 62

Ebay Exhibit 1013, Page 1000 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 Contents ix

4 CLIENT/SERVER AND DATABASES 63–78

4.1 Introduction 63
4.2 Client/Server in Respect of Databases 64

4.2.1 Client/Server Databases 64
4.2.2 Client/Server Database Computing 65

4.3 Client/Server Database Architecture 66
4.4 Database Middleware Component 70
4.5 Access to Multiple Databases 71
4.6 Distributed Client/Server Database Systems 72
4.7 Distributed DBMS 74
4.8 Web/database System for Client/Server Applications 76

4.8.1 Web/database Vs Traditional Database 77
Exercise 4 78

5 CLIENT/SERVER APPLICATION COMPONENTS 79–104

5.1 Introduction 79

5.2 Technologies for Client/Server Application 79

5.3 Service of a Client/Server Application 80

5.4 Categories of Client/Server Applications 84

5.5 Client Services 85
5.5.1 Inter Process Communication 87

5.5.2 Remote Services 91

5.5.3 Window Services 92

5.5.4 Dynamic Data Exchange (DDE) 92

5.5.5 Object Linking and Embedding (OLE) 93

5.5.6 Common Object Request Broker Architecture (CORBA) 94

5.5.7 Print/Fax Services 95

5.5.8 Database Services 95

5.6 Server Services 96

5.7 Client/Server Application: Connectivity 100
5.7.1 Role and Mechanism of Middleware 101

5.8 Client/Server Application: Layered Architecture 102
5.8.1 Design Approach 102

5.8.2 Interface in Three Layers 103

Exercise 5 104

Ebay Exhibit 1013, Page 1001 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Contentsx

6 SYSTEM DEVELOPMENT 105–138

6.1 Hardware Requirements 105
6.1.1 PC Level Processing Units 105
6.1.2 Storage Devices 110
6.1.3 Network Protection Devices 115
6.1.4 Surge Protectors 117
6.1.5 RAID Technology 120
6.1.6 Server Specific Jargon 122

6.2 Software Requirements 124
6.2.1 Client OS 124
6.2.2 Server OS 124
6.2.3 Network OS 128

6.3 Communication Interface Technology 131
6.3.1 Network Interface Card 131
6.3.2 LAN Cabling 132
6.3.3 WAN 132
6.3.4 ATM 133
6.3.5 Ethernet 133
6.3.6 Token Ring 134
6.3.7 FDDI 135
6.3.8 TCP/IP 135
6.3.9 SNMP 135
6.3.10 NFS 136
6.3.11 SMTP 136
Exercise 6 137

7 TRAINING AND TESTING 139–156

7.1 Introduction 139
7.2 Technology Behind Training Delivery 140

7.2.1 Traditional Classroom 140
7.2.2 On-the-Job Training (OTJ) 141
7.2.3 Video Conferencing 141
7.2.4 Collaborative Tools 141
7.2.5 Virtual Groups and Event Calls 142
7.2.6 E-Learning 142
7.2.7 Web-based Training 142
7.2.8 Learning Management Systems (LMS) 143
7.2.9 Electronic Performance Support Systems (EPSS) 143

Ebay Exhibit 1013, Page 1002 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 Contents xi

7.3 To Whom Training is Required? 143
7.3.1 System Administrator Training 143
7.3.2 DBA Training 144
7.3.3 Network Administrator Training 145
7.3.4 End-User and Technical Staff Training 146
7.3.5 GUI Applications Training 146
7.3.6 LAN/WAN Administration and Training Issues 148

7.4 Impact of Technology on Training 149
7.4.1 Client/Server Administration and Management 150

7.5 Client/Server Testing Technology 150
7.5.1 Client/Server Software 150
7.5.2 Client/Server Testing Techniques 151
7.5.3 Testing Aspects 152
7.5.4 Measures of Completeness 153

7.6 Testing Client/Server Application 153
Exercise 7 156

8 CLIENT/SERVER TECHNOLOGY AND WEB SERVICES 157–172

8.1 Introduction 157
8.2 What are Web Services? 158

8.2.1 Web Services History 158
8.2.2 Web Server Technology 158
8.2.3 Web Server 162
8.2.4 Web Server Communication 163

8.3 Role of Java for Client/Server on Web 164
8.4 Web Services and Client/Server/Browser – Server Technology 167
8.5 Client/Server Technology and Web Applications 168
8.6 Balanced Computing and the Server’s Changing Role 171
Exercise 8 172

9 FUTURE OF THE CLIENT/SERVER COMPUTING 173–193

9.1 Introduction 173
9.2 Technology of the Next Generation 173

9.2.1 Networking 174
9.2.2 Development Tools 174
9.2.3 Processors and Servers 177
9.2.4 Paradigms 178

Ebay Exhibit 1013, Page 1003 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Contentsxii

9.3 Enabling Technology 178
9.3.1 Expert Systems 178
9.3.2 Imaging 180
9.3.3 Point-of-Service 181

9.4 Client/Server Computing and the Intranet 181
9.4.1 Intranet 181
9.4.2 Is the Intranet Killing Client/Server? 182
9.4.3 Extranet 183

9.5 Future Perspectives 183
9.5.1 Job Security 183
9.5.2 Future Planning 184
9.5.3 Conclusion 184

9.6 Transformational System 185
9.6.1 Electronic Mail 185
9.6.2 Client/Server and User Security 186
9.6.3 Object-oriented Technology: CORBA 188
9.6.4 Electronic Data Interchange 192
Exercise 9 193

References 195–197

Index 199–200

Ebay Exhibit 1013, Page 1004 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

1.1 WHAT IS CLIENT/SERVER COMPUTING?

According to MIS terminology, Client/Server computing is new technology that yields
solutions to many data management problems faced by modern organizations. The term
Client/Server is used to describe a computing model for the development of computerized
systems. This model is based on distribution of functions between two types of independent
and autonomous processes: Server and Client. A Client is any process that requests specific
services from the server process. A Server is a process that provides requested services for
the Client. Client and Server processes can reside in same computer or in different computers
linked by a network.

When Client and Server processes reside on two or more independent computers on a
network, the Server can provide services for more than one Client. In addition, a client
can request services from several servers on the network without regard to the location or
the physical characteristics of the computer in which the Server process resides. The
network ties the server and client together, providing the medium through which the
clients and the server communicate. The Fig. 1.1 given below shows a basic Client/Server
computing model.

 Client
Process

 Network

Services:
File, Print, Fax, Multimedia,
Communication

Request/Reply
travels through

network

Server
Process

Fig.1.1: Basic Client/Server Computing Model

Introduction

11111

Ebay Exhibit 1013, Page 1005 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Introduction to Client/Server Computing2

From the Fig. 1.1 it is clear that services can be provided by variety of computers in the
network. The key point to Client/Server power is where the request processing takes
place. For example: Client/Server Database. In case of Client/Server database system, the
functionality is split between the server system and multiple clients such that networking
of computers allows some tasks to be executed on the client system.

1.1.1 A Server for Every Client

A file server can store any type of data, and so on simpler systems, may be the only server
necessary. On larger and more complicated systems, the server responsibility may be
distributed among several different types of servers. In this section, we have discussed the
purpose of various available server:

File ServerFile ServerFile ServerFile ServerFile Server
All the files reside on the server machine. File Server provides clients access to records
within files from the server machine. File Servers are useful for sharing files across a network
among the different client process requesting the services. The server process is somewhat
primitive because of tends to demand many message exchanges over the network to find
the requested data.

The examples of File servers are:
• UNIX: Network File Services (NFS) created by Sun Micro systems.
• Microsoft Windows “Map Drive” e.g., Rivier College’s “P-drive”.
• Samba: An open Source/Free Software suite that provides seamless file and print

services to SMB/CIFS clients (i.e., Microsoft Windows clients).

Print ServerPrint ServerPrint ServerPrint ServerPrint Server
This machine manages user access to the shared output devices, such as printers. These
are the earliest type of servers. Print services can run on a file server or on one or more
separate print server machines.

Application ServerApplication ServerApplication ServerApplication ServerApplication Server
This machine manages access to centralized application software; for example, a shared
database. When the user requests information from the database, the application server
processes the request and returns the result of the process to the user.

Mail ServerMail ServerMail ServerMail ServerMail Server
This machine manages the flow of electronic mail, messaging, and communication with
mainframe systems on large-scale networks.

Fax ServerFax ServerFax ServerFax ServerFax Server
Provides the facility to send and receive the Faxes through a single network connection.
The Fax server can be a workstation with an installed FAX board and special software or
a specialized device dedicated and designed for Fax Services. This machine manages flow
of fax information to and from the network. It is similar to the mail server.

Ebay Exhibit 1013, Page 1006 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 Introduction 3

Directory Services ServerDirectory Services ServerDirectory Services ServerDirectory Services ServerDirectory Services Server
It is found on large-scale systems with data that is distributed throughout multiple servers.
This machine functions as an organization manager, keeping track of what is stored where,
enabling fast and reliable access to data in various locations.

Web ServerWeb ServerWeb ServerWeb ServerWeb Server
This machine stores and retrieves Internet (and intranet) data for the enterprise. Some
documents, data, etc., reside on web servers. Web application provides access to documents
and other data. “Thin” clients typically use a web browser to request those documents.
Such servers shares documents across intranets, or across the Internet (or extranets). The
most commonly used protocol is HTTP (Hyper Text Transfer Protocol). Web application
servers are now augmenting simple web servers. The examples of web application servers
are Microsoft’s Internet Information Server (IIS), Netscape’s iPlanet IBM’s WebSphere,
BEA’s WebLogic and Oracle Application Server.

Database ServerDatabase ServerDatabase ServerDatabase ServerDatabase Server
Data resides on server, in the form of a SQL database. Database server provides access to
data to clients, in response to SQL requests. It shares the data residing in a database across
a network. Database Server has more efficient protocol than File Server. The Database
Server receives SQL requests and processes them and returning only the requested data;
therefore the client doesn’t have to deal with irrelevant data. However, the client does
have to implement SQL application code. The example of database server is: Oracle9i database
server.

Transaction ServersTransaction ServersTransaction ServersTransaction ServersTransaction Servers
The data and remote procedures reside on the server. The Server provides access to high-
level functions, and implements efficient transaction processing. It shares data and high-
level functions across a network. Transaction servers are often used to implement Online
Transaction Processing (OLTP) in high-performance applications. A transaction server
utilizes a more efficient protocol in comparison to a Database Server. The transaction
Server receives high-level function request from the clients and it implements that function.
Often it needs to return less information to the client than a Database Server. Examples of
the Transaction servers mainly categorized as

• TP-Light with Database Stored Procedures like Oracle, Microsoft SQL Server etc.
• TP-Heavy with TP Monitors like BEA Tuxedo, IBM CICS/TX Series.

Groupware Servers
Liable to store semi-structured information like text, image, mail, bulletin boards, flow of
work. Groupware Server provides services, which put people in contact with other people,
that is because “groupware” is an ill-defined classification protocol differing from product
to product. For Example: Lotus Notes/Domino and Microsoft Exchange.

Ebay Exhibit 1013, Page 1007 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Introduction to Client/Server Computing4

Object Application Servers
Communicating distributed objects reside on the server. The object server primarily
provides access to those objects from the designated client objects. The object Application
Servers are responsible for sharing distributed objects across the network. Object
Application Servers use the protocols that are usually some kind of Object Request Broker
(ORB). Each distributed object can have one or more remote methods. ORB locates an
instance of the object server class, invokes the requested method, and returns the results
to the client object. Object Application Server provides an ORB and application servers to
implement this. For example:

• Common Object Request Broker Architecture (CORBA): Iona’s Orbix, Borland’s
Visibroker.

• Microsoft’s Distributed Component Object Model (DCOM), aka COM+.
• Microsoft Transaction Server (MTS).

1.1.2 Client/Server: Fat or Thin

A Client or a Server is so named depending on the extent to which the processing is shared
between the client and server. A thin client is one that conducts a minimum of processing
on the client side while a fat client is one that carries a relatively larger proportion of
processing load. The concept of Fat Clients or Fat Servers is given by one of the important
criterion, that is, how much of an application is placed at the client end vs. the server end.

Fat Clients: This architecture places more application functionality on the client machine(s).
They are used in traditional of Client/Server models. Their use can be a maintenance
headache for Client/Server systems.

Fat Servers: This architecture places more application functionality on the server
machine(s). Typically, the server provides more abstract, higher level services. The current
trend is more towards fat servers in Client/Server Systems. In that case, the client is often
found using a fast web browser. The biggest advantage of using the fat server is that it is
easier to manage because only the software on the servers needs to be changed, whereas
updating potentially thousands of client machines is a real headache.

1.1.3 Client/Server: Stateless or Stateful

A stateless server is a server that treats each request as an independent transaction that is
unrelated to any previous request. The biggest advantage of stateless is that it simplifies
the server design because it does not need to dynamically allocate storage to deal with
conversations in progress or worry about freeing it if a client dies in mid-transaction. There
is also one disadvantage that it may be necessary to include more information in each
request and this extra information will need to be interpreted by the server each time. An
example of a stateless server is a World Wide Web server. With the exception of cookies,
these take in requests (URLs) which completely specify the required document and do not

Ebay Exhibit 1013, Page 1008 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 Introduction 5

require any context or memory of previous requests contrast this with a traditional FTP
server which conducts an interactive session with the user. A request to the server for a
file can assume that the user has been authenticated and that the current directory and file
transfer mode have been set. The Gopher protocol and Gopher+ are both designed to be
stateless.

Stateful ServerStateful ServerStateful ServerStateful ServerStateful Server
Client data (state) information are maintained by server on status of ongoing interaction
with clients and the server remembers what client requested previously and at last
maintains the information as an incremental reply for each request.

The advantages of stateful server is that requests are more efficiently handled and are
of smaller in size. Some disadvantages are their like state information becomes invalid when
messages are unreliable. Another disadvantage is that if clients crash (or reboot) frequently,
state information may exhaust server’s memory. The best example of stateful server is
remote file server.

Stateless vs Stateful ServersStateless vs Stateful ServersStateless vs Stateful ServersStateless vs Stateful ServersStateless vs Stateful Servers
There are some comparative analysis about stateless and stateful servers.
* A stateful server remembers client data (state) from one request to the next.
* A stateless server keeps no state information. Using a stateless file server, the client

must specify complete file names in each request specify location for reading or
writing and re-authenticate for each request.

* Using a stateful file server, the client can send less data with each request. A stateful
server is simpler.

On the other hand, a stateless server is more robust and lost connections can’t leave a
file in an invalid state rebooting the server does not lose state information rebooting the
client does not confuse a stateless server.

1.1.4 Servers and Mainframes

From a hardware perspective, a mainframe is not greatly different from a personal computer.
The CPU inside a mainframe was, however, much faster than a personal computer. In fact,
what a mainframe most closely resembled was a LAN. A mainframe was ‘larger’ in terms
of:

* The raw speed expressed in instructions per second, or cycles.
* The amount of memory that could be addressed directly by a program.

Mainframes are the monstrous computer system that deals mainly the business functions
and technically these giant machines will run MVS, IMS and VSAM operating systems.
There is a common believe that a mainframe is ‘database’. There are many reasons behind
this belief:

* Many servers are either file or database servers running sophisticated database
such as Sybase, Oracle and DB2.

Ebay Exhibit 1013, Page 1009 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Introduction to Client/Server Computing6

* These servers connect to the mainframe primarily to access databases.
* Organisations use servers specifically to replace mainframe databases.
* Organisations keep applications on the mainframe usually for better database

performance, integrity and functionality.
Mainframe users argue that in the long run, a mainframe is at least as good a server as

a PC, and perhaps even better. And because the mainframe portrayed as a better server
than a PC, the picture is clear: PC servers and mainframe servers compete at the back-end
both are essentially databases.

There is some controversy as to whether servers will eventually replace mainframes.
They may, but not in the near future. Mainframes still serve the purpose in managing the
complex business rules of very large organizations and enterprises that are spread out over
a very large area. But the increasing processing power of servers combined with their
lower costs makes them the logical replacement to mainframe-based systems in the future.

In the meanwhile, Client/Server networks will often find it necessary to connect to
mainframe-based systems. This is because some data can only be found in the mainframe
environment, usually because the business rules for handling it are sufficiently complex
or because the data itself is massive or sensitive enough that as a practical matter it remains
stored there.

Connection to a mainframe requires some form of network – like access. Even if you
are using a telephone and modem as your access hardware, you still require special software
to make your workstation appear to the mainframe to be just another network terminal.
Many vendors can provide the necessary software to handle this type of network extension.

A very natural question at this stage is: How do Client/Server Systems differ from Mainframe
Systems?

The extent of the separation of data processing task is the key difference.
In mainframe systems all the processing takes place on the mainframe and usually

dumb terminals are used to display the data screens. These terminals do not have autonomy.
On the other hand, the Client/Server environment provides a clear separation of server

and client processes, both processes being autonomous. The relationship between client
and server is many to many.

Various other factors, which can have, prime considerations to differentiate the
mainframe and Client/Server systems:

• Application development: Mainframe systems are over structured, time-consuming
and create application backlogs. On the other hand, PC-based Client/Server systems
are flexible, have rapid application development and have better productivity tools.

• Data manipulation: Mainframe systems have very limited data manipulation
capabilities whereas these techniques are very flexible in the case of Client/Server
systems.

Ebay Exhibit 1013, Page 1010 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 Introduction 7

• System management: Mainframe systems are known to be integrated systems but
in the case of Client/Server systems only few tools are available for system
management.

• Security: Mainframe systems are highly centralized whether as Client/Server
systems are relaxed or decentralized.

• End user platform: Mainframe systems comprise of dumb terminals, are character-
based, single task oriented and of limited productivity. On the other hand, Client/
Server systems are intelligent PC’s with graphical user interface having multitasking
OS with better productivity tools.

1.1.5 Client/Server Functions

The main operations of the client system are listed below:
• Managing the user interface.
• Accepts and checks the syntax of user inputs.
• Processes application logic.
• Generates database request and transmits to server.
• Passes response back to server.
The main operations of the server are listed below:
• Accepts and processes database requests from client.
• Checks authorization.
• Ensures that integrity constraints are not violated.
• Performs query/update processing and transmits responses to client.
• Maintains system catalogue.
• Provide concurrent database access.
• Provides recovery control.

1.1.6 Client/Server Topologies

A Client/Server topology refers to the physical layout of the Client/Server network in
which all the clients and servers are connected to each other. This includes all the
workstations (clients) and the servers. The possible Client/Server topological design and
strategies used are as follows:

(i) Single client, single server
(ii) Multiple clients, single server

(iii) Multiple clients, multiple servers
(i) Single client, single server: This topology is shown in the Fig. 1.2 given

below. In this topology, one client is directly connected to one server.

Ebay Exhibit 1013, Page 1011 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Introduction to Client/Server Computing8

Client Server

Fig.1.2: Single Client, Single Server

(ii) Multiple clients, single server: This topology is shown in the Fig. 1.3 given
below. In this topology, several clients are directly connected to only one server.

Client 2

Client 1
Server

Fig.1.3: Multiple Clients, Single Server

(iii) Multiple clients, multiple servers: This topology is shown in the following
Fig. 1.4 In this topology several clients are connected to several servers.

Client 1

Client 2

Client 3

Server 1

Server 2

Fig.1.4: Multiple Clients, Multiple Servers

1.1.7 Integration with Distributed Computing

Distributed computing is the term used for implementation of technologies across
heterogeneous environments. For operating systems, heterogeneous computing means the
ability to communicate with other operating systems and protocols. Distributed computing
is a complex architecture. It involves rearchitecture of applications, redevelopment of
systems and increased efficiency in maintaining a network as a whole. Many distributed

Ebay Exhibit 1013, Page 1012 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 Introduction 9

nodes work on behalf of one requesting client. This makes the system fault tolerant and
decentralized, which is an obvious advantage over centralized systems. For the technology
to become effective and revolutionary, developers of distributed applications have to do
everything possible to minimize the complexity of development and maintenance and
integrate their software with disparate platforms. Client/Server application designing
necessitates the modularization of applications and their functions into discrete
components. These components must be bounded only by encapsulated data and functions
that may be moved between the systems. This design model gives Client/Server software
more adaptability and flexibility.

1.1.8 Alternatives to Client/Server Systems

There are various client/server projects are running in industry by various companies.
Before committing a project to Client/Server, some alternatives can be considered that
includes:

• Movement of an existing mainframe application to a smaller hardware platforms,
for examples IBM’s ICCS transaction processing to an AS/400 or an OS/2 LAN
Server.

• Replacement of mainframes computer terminals with PCs that is able to emulate
terminals.

• Replacing an existing mainframe system with a packaged system that does the job
better.

• Beautifying an existing mainframe application by adding a GUI front-end to it.
There are programs available specifically to do this.

1.2 CLASSIFICATION OF CLIENT/SERVER SYSTEMS

Broadly, there are three types of Client/Server systems in existence.
(i) Two-tier

(ii) Three-tier
(iii) N-Tier

1.2.1 Two-tier Client/Server Model

The application processing is done separately for database queries and updates and for
business logic processing and user interface presentation. Usually, the network binds the
back-end of an application to the front-end, although both tiers can be present on the same
hardware.

Sometimes, the application logic (the real business logic) is located in both the client
program and in the database itself. Quiet often, the business logic is merged into the
presentation logic on the client side. As a result, code maintenance and reusability become
difficult to achieve on the client side. On the database side, logic is often developed using
stored procedures.

Ebay Exhibit 1013, Page 1013 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Introduction to Client/Server Computing10

In the two-tier architecture, if the Client/Server application has a number of business
rules needed to be processed, then those rules can reside at either the Client or at the
Server. The Fig. 1.5 below clarifies this situation.
(a) Centralized Two-tier Representation:

GUI

Client
Database

Server

(b) Business Rules Residing on the Client:

Application Logic
DBMS Server

Business Rules

(c) Business Rules Residing on the Server:

Application Logic

DBMS Server

Business Rules

Fig.1.5: The Two-tier Approach Illustrated

The architecture of any client/server environment is by definition at least a two-tier
system, the client being the first tier and the server being the second.

The Client requests services directly from server i.e. client communicates directly with
the server without the help of another server or server process. The Fig. 1.6 (at the end of
this section) illustrates a two-tier Client/Server model.

In a typical two-tier implementation, SQL statements are issued by the application and
then handed on by the driver to the database for execution. The results are then sent back
via the same mechanism, but in the reverse direction. It is the responsibility of the driver
(ODBC) to present the SQL statement to the database in a form that the database
understands.

There are several advantages of two-tier systems:
• Availability of well-integrated PC-based tools like, Power Builder, MS Access, 4 GL

tools provided by the RDBMS manufacturer, remote SQL, ODBC.
• Tools are relatively inexpensive.
• Least complicated to implement.
• PC-based tools show Rapid Application Development (RAD) i.e., the application

can be developed in a comparatively short time.
• The 2-tier Client/Server provides much more attractive graphical user interface

(GUI) applications than was possible with earlier technology.

Ebay Exhibit 1013, Page 1014 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 Introduction 11

• Architecture maintains a persistent connection between the client and database,
thereby eliminating overhead associated with the opening and closing of connections.

• Faster than three-tier implementation.
• Offers a great deal of flexibility and simplicity in management.
Conversely, a two-tier architecture has some disadvantages:
• As the application development is done on client side, maintenance cost of application,

as well as client side tools etc. is expensive. That is why in 2-tier architecture the
client is called ‘fat client’.

• Increased network load: Since actual processing of data takes on the remote client,
the data has to be transported over the network. This leads to the increased
network stress.

• Applications are loaded on individual PC i.e. each application is bound to an
individual PC. For this reason, the application logic cannot be reused.

• Due to dynamic business scenario, business processes/logic have to be changed.
These changed processes have to be implemented in all individual PCs. Not only
that, the programs have to undergo quality control to check whether all the
programs generate the same result or not.

• Software distribution procedure is complicated in 2-tier Client/Server model. As
all the application logic is executed on the PCs, all these machine have to be updated
in case of a new release. The procedure is complicated, expensive, prone to errors
and time consuming.

• PCs are considered to be weak in terms of security i.e., they are relatively easy
to crack.

• Most currently available drivers require that native libraries be loaded on a client
machine.

• Load configurations must be maintained for native code if required by the driver.
• Problem areas are encountered upon implementing this architecture on the Internet.

Client (Tier 1)

 Application

 Driver

 Network Interface

 Network Interface

Server (Tier 2)

Database

 Network

Fig. 1.6: Two-tier Client/Server Model

Ebay Exhibit 1013, Page 1015 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Introduction to Client/Server Computing12

1.2.2 Three-tier Client/Server Model

Reusability is hard to achieve if pieces of business logic must be distributed across systems
and several databases are involved. To avoid embedding the application’s logic at both the
database side and the client side, a third software tier is inserted in between. In the three-
tier architecture, most of the business logic is located in the middle tier (here business logic
is encapsulated as a component in a separate tier). In this structure, when the business
activity or business rules change, only the middle tier must be modified.

In three-tier architecture application responsibilities are divided into three logical
categories (in other words, the business system must provide three types of main services).

• Presentation (GUI) or user services: Include maintaining the graphical user
interface and generating what users see on the monitor. Presentation Logic dealing
with:

• Screen formatting
• Windows management
• Input editing
• What-if analysis

• Application services or business rules: These include executing applications
and controlling program flow. Business logic dealing with:

• Domain and range validation
• Data dependency validation
• Request/response architecture of Inter Process Communication level

• Database services or data server: Which refers to the management of underlying
databases. Server logic deals with:

• Data access
• Data management
• Data security
• SQL parsing

Based on these three components, the three-tier architecture of Client/Server system
is shown in fig. 1.8 below. In three-tier model, a third server is employed to handle requests
from the client and then pass them off to the database server. The third server acts as
proxy for all client requests. Or, in other words we can say:

“In three-tier client/server system the client request are handled by intermediate servers
which coordinate the execution of the client request with subordinate servers.”

 All client requests for the database are routed through the proxy server, thereby
creating a more secure environment for your database.

In two-tier environment, we can say that the client uses a driver to translate the client’s
request into a database native library call. In a three-tier environment, the driver translates
the request into a “network” protocol and then makes a request via the proxy server.
Figure 1.8 represents the three-tier Client/Server model.

Ebay Exhibit 1013, Page 1016 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 Introduction 13

Business
Rules

DB 2

MS SQL Server

Oracle

Sybase

Business Logic
(Tier 2)

Presentation Logic
(Tier 3)

Database Management
(Tier 1)

Application 1
(Power Builder)

Application 2
(Visual Basic)

Application 3
(Small talk)

Application 4
Visual C++

Local
Workstation

Host/Mini,
Workstation Mainframe/

Super Server

Fig.1.7: Three-tier Architecture

Network Interface

Driver Database Libraries

Proxy Server

Application

Driver

Network Interface

Network A Network B

Network Interface

Database

Client Server

Fig.1.8: Three-tier Client/Server Model

The proxy server makes the database request on behalf of the client and passes the
results back after they have been serviced by the database. This approach eliminates the
need for DBMS to be located on the same server. There are a couple of drawbacks to this
model. One is that it requires that a small server process (listener) be set up on the middle
server. Secondly, it requires all your client requests be transmitted into a “network” protocol.

First-tier (client-tier): The main responsibility of this tier is to receive user events
and to control the user interface and presentation of data. As most of the software is
removed from the client, the client is called “Thin Client”. Mainly browser and presentation
code resides on this tier.

Second-tier (application-server-tier): The complex application logic is loaded here
and available to the client tier on request from client. This level forms the central key

Ebay Exhibit 1013, Page 1017 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Introduction to Client/Server Computing14

towards solving the 2-tier problem. This tier can protect direct access of data. Object
oriented analysis aims in this tier to record and abstract business processing in business
projects. This way it is possible to map this tier directly from the case tools that support
object oriented analysis.

Three-tier (database-server-tier): This tier is responsible for data storage. This
server mostly operates on a relational database.

The boundaries between tiers are logical. One can run 3-tiers in one and the same
machine. The important fact is that the system is neatly structured and well-planned
definitions of the software boundaries exist between the different tiers. Some of the
advantages of using three-tier model include:

• Application maintenance is centralized with the transfer of the business logic for
many end users into a single application server. This eliminates the concern of
software distribution that are problematic in the traditional two-tier Client/Server
model.

• Clear separation of user-interface-control and data presentation from application-
logic. Through this separation more clients are able to have access to a wide variety
of server applications. The two main advantages for client-applications are clear:
quicker development through the reuse of pre-built business-logic components and
a shorter test phase, because the server-components have already been tested.

• Many users are able to access a wide variety of server applications, as all application
logic are loaded in the applications server.

• As a rule servers are “trusted” systems. Their authorization is simpler than that
of thousands of “untrusted” client-PCs. Data protection and security is simpler to
obtain. Therefore, it makes sense to run critical business processes that work with
security sensitive data, on the server.

• Redefinition of the storage strategy won’t influence the clients. RDBMS’ offer a
certain independence from storage details for the clients. However, cases like
changing table attributes make it necessary to adapt the client’s application. In the
future, even radical changes, like switching from an RDBMS to an OODBMS, won’t
influence the client. In well-designed systems, the client still accesses data over a
stable and well-designed interface, which encapsulates all the storage details.

• Load balancing is easier with the separation of the core business logic from the
database server.

• Dynamic load balancing: if bottlenecks in terms of performance occur, the server
process can be moved to other servers at runtime.

• Business objects and data storage should be brought as close together as possible.
Ideally, they should be together physically on the same server. This way network
load for complex access can be reduced.

• The need for less expensive hardware because the client is ‘thin’.
• Change management is easier and faster to execute. This is because a component/

program logic/business logic is implemented on the server rather than furnishing
numerous PCs with new program versions.

Ebay Exhibit 1013, Page 1018 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 Introduction 15

• The added modularity makes it easier to modify or replace one tier without
affecting the other tier.

• Clients do not need to have native libraries loaded locally.
• Drivers can be managed centrally.
• Your database server does not have to be directly visible to the Internet.
An additional advantage is that the three-tier architecture maps quite naturally to the

Web environment, with a Web browser acting as the ‘thin’ client, and a Web server acting
as the application server. The three-tier architecture can be easily extended to N-tier, with
additional tiers added to provide more flexibility and scalability. For example, the middle
tier of the three-tier architecture could be split into two, with one tier for the Web server
and another for the application server. Some disadvantages are:

• The client does not maintain a persistent database connection.
• A separate proxy server may be required.
• The network protocol used by the driver may be proprietary.
• You may see increased network traffic if a separate proxy server is used.

1.2.2.1 Transaction Processing Monitors
It is the extension of the two-tier Client/Server architecture that splits the functionality of
the ‘fat’ client into two. In the three-tier Client/Server architecture, the ‘thin’ client handles
the user interface only whereas the middle layer handles the application logic. The third
layer is still a database server. This three-tier architecture has proved popular in more
environments, such as the Internet and company Intranets where a Web browser can be
used as a client. It is also an important architecture for TPM.

A Transaction Processing Monitor is a program that controls data transfer between client
and server in order to provide consistent environment, particularly for online transaction
processing (OLTP).

Complex applications are often built on top of several resource managers (such as
DBMS, operating system, user interface, and messaging software). A Transaction Processing
Monitor or TP Monitor is a middleware component that provides access to the services of
a number of resource managers and provides a uniform interface for programmers who
are developing transactional software. Figure 1.9 illustrates how a TP Monitor forms the
middle tier of three-tier architecture. The advantages associated with TP Monitors are as
given below:

Transaction Routing: TP monitor can increase scalability by directing transactions to
specific DBMS’s.

Managing Distributed Transaction: The TP Monitor can manage transactions that
require access to data held in multiple, possibly heterogeneous, DBMSs. For example, a
transaction may require to update data item held in an oracle DBMS at site 1, an Informix
DBMS at site 2, and an IMS DBMS at site 3. TP Monitors normally control transactions
using the X/Open Distributed transaction processing (DTP) standards. A DBMS that

Ebay Exhibit 1013, Page 1019 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Introduction to Client/Server Computing16

support this standard can function as a resource manager under the control of a TP Monitor
acting as a transaction manager.

Load balancing: The TP Monitor can balance client requests across multiple DBMS’s
on one or more computers by directing client services calls to the least loaded server. In
addition, it can dynamically bring in additional DBMSs as required to provide the necessary
performance.

Funneling: In an environment with a large number of users, it may sometimes be difficult
for all users to be logged on simultaneously to the DBMS. Instead of each user connecting
to the DBMS, the TP Monitor can establish connections with DBMS’s as and when
required, and can funnel user requests through these connections. This allows a large
number of users to access the available DBMSs with a potentially smaller number of
connections, which in turn would mean less resource usages.

Client 1

Client 2

Client 3

Service 1

Service 2

Service 3

Service 4

TPM

Application Server
with TP Monitor

Tier 2

Clients
Tier 1

Database Servers
Tier 3

Database

Database

Service Calls

Fig.1.9: Middleware Component of TPM

Increased reliability: The TP Monitor acts as transaction manager, performing the
necessary action to maintain the consistency of database, with the DBMS acting as a
resource manager. If the DBMS fails, the TP Monitor may be able to resubmit the transaction
to another DBMS or can hold the transaction until the DBMS becomes available again.

A TP Monitor is typically used in environments with a very heavy volume of transaction,
where the TP Monitor can be used to offload processes from the DBMS server. Prominent
examples of TP Monitors include CICS and Encina from IBM (which are primarily used
on IBM AIX or Windows NT and bundled now in the IBM TXSeries) and Tuxido from
BEA system.

1.2.2.2 Three-tier with Message Server
Messaging is another way to implement the three-tier architecture. Messages are prioritized
and processed asynchronously. Messages consist of headers that contain priority
information, and the address and identification number. The message server connects to

Ebay Exhibit 1013, Page 1020 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 Introduction 17

the relational DBMS and other data sources. The difference between the TP monitor
technology and the message server is that the message server architecture focuses on
intelligent messages, whereas the TP Monitor environment has the intelligence in the
monitor, and treats transactions as dumb data packets. Messaging systems are good solutions
for wireless infrastructures.

1.2.2.3 Three-tier with an Application Server
The three-tier application server architecture allocates the main body of an application to
run on a shared host rather than in the user system interface client environment. The
application server does not drive the GUIs; rather it shares business logic, computations,
and a data retrieval engine. Advantages are that with less software on the client there is
less security to worry about, applications are more scalable, and support and installation
costs are less on a single server than maintaining each on a desktop client. The application
server design should be used when security, scalability, and cost are major considerations.

1.2.2.4 Three-tier with an ORB Architecture
Currently, work is going on in the industry towards developing standards to improve
interoperability and determine what the common Object Request Broker (ORB) will be.
Developing client/server systems using technologies that support distributed objects holds
great promise, as these technologies support interoperability across languages and platforms,
as well as enhancing maintainability and adaptability of the system. There are two-
prominent distributed object technologies at present:

• Common Object Request Broker Architecture (CORBA).
• COM/DCOM (Component Object Model/Distributed Component Object Model).
 Standards are being developed to improve interoperability between CORBA and COM/

DCOM. The Object Management Group (OMG) has developed a mapping between CORBA
and COM/DCOM that is supported by several products.

Distributed/collaborative enterprise architecture: The distributed/collaborative enterprise
architecture emerged in 1993. This software architecture is based on Object Request Broker
(ORB) technology, but goes further than the Common Object Request Broker Architecture
(CORBA) by using shared, reusable business models (not just objects) on an enterprise-
wide scale. The benefit of this architectural approach is that standardized business object
models and distributed object computing are combined to give an organization flexibility
to improve effectiveness organizationally, operationally, and technologically. An enterprise
is defined here as a system comprised of multiple business systems or subsystems.
Distributed/collaborative enterprise architectures are limited by a lack of commercially-
available object orientation analysis and design method tools that focus on applications.

1.2.2.5 Three-tier Architecture and Internet
With the rapid development of Internet and web technology, Client/Server applications
running over Internets and Intranets are becoming a new type of distributed computing.
A typical web application uses the following 3-tier architecture.

Ebay Exhibit 1013, Page 1021 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Introduction to Client/Server Computing18

• The user interface runs on the desktop as client.
• The client is connected (through one or more immediate server links) to a web

server, which may be a storehouse for downloadable applets (Software components).
• This web server is, in turn, is supported by a database server which keeps track

of information specific to the client interest and history.
These web applications rely on Internet standards (HTTP, HTML, XML etc.) as well

as distributed objects programming languages.

1.2.3 N-tier Client/Server Model

N-tier computing obliges developer to design components according to a business schema
that represents entities, relationship, activities roles, and rules, thereby enabling them to
distribute functionality across logical and physical tiers, allowing better utilization of
hardware and platform resources, as well as sharing of those resources and the components
that they support to serve several large applications at the same time.

Another aspect of splitting tiers is that application developers and administrators are
able to identify bottlenecks and throw hardware at them to enable load-balancing and fail-
over of certain nodes. The splitting may be between application logic components, security
logic, and presentation logic, computational-intensive and I/O-intensive components and
so on. The most common approach used when designing N-tier system is the three-tier
architecture. Three-tier and N-tier notations are similar, although N-tier architecture
provides finer-grained layers. Architectures often decide to layout much more than three
-tiers to deploy services (An infrastructure that supports three-tier is often made of several
machines and services whose functionalities aren’t part of the three-tier design).

Figure 1.10 shown below depicts the N-tier architecture.

N-tier Servers

N-tier Server 1

N-tier Server 2

N-tier Server 3

RDBMS ServerClient

Responsible
for database
processing

Responsible
for GUI

Responsible for business
and transaction logic

Fig.1.10: N-tier Architecture

N-tier computing provides many advantages over traditional two-tier or single-tier
design, which includes the following:

• Overall performance has been improved.
• The business logic is centralized.
• Enhanced security level is attained.

Ebay Exhibit 1013, Page 1022 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 Introduction 19

An alternative to N-tier computing includes fat server/fat client. A fat server locates
business logic within the RDBMS on the server. The client issues remote procedure calls
to the server to execute the process. Fat servers are the best suited for structured and
consistent business logic, such as online transaction processing (OLTP). Modern RDBMS
products support fat servers through stored procedures, column rules, triggers, and other
methods.

A fat client embeds business logic in the application at the client level. Although a fat
client is more flexible than a fat server, it increases network traffic. The fat client approach
is used when business logic is loosely structured or when it is too complicated to implement
at the middle-tier level. Additionally, fat client development tools, such as 4GL languages,
sometimes offer more robust programming features than do middle-tier programming tools.
Decision support and ad-hoc systems are often fat client based.

1.3 CLIENTS/SERVER—ADVANTAGES AND DISADVANTAGES

1.3.1 Advantages

There are various advantages associated with Client/Server computing model.
(i) Performance and reduced workload: Processing is distributed among the client

and server unlike the traditional PC database, the speed of DBMS is not tied to
the speed of the workstation as the bulk of the database processing is done at the
back-end. The workstation only has to be capable of running the front-end software,
which extends the usable lifetime of older PC’s. This also has the effect of reducing
the load on the network that connects the workstation; instead of sending the
entire database file back and forth on the wire, the network traffic is reduced to
queries to and responses from the database server. Some database servers can even
store and run procedures and queries on the server itself, reducing the traffic even
more.

(ii) Workstation independence: Users are not limited to one type of system or platform.
In an ORACLE-based Client/Server system the workstations can be IBM – compatible
PCs, Macintoshes, UNIX workstations, or any combinations of the three. In addition,
they can run any of a number of operating systems such as MS-DOS, Windows,
IBM’s OS/2, Apple’s System 7 etc. That is, application independence is achieved
as the workstations don’t all need to use the same DBMS application software.
Users can continue to use familiar software to access the database, and developers
can design front-ends tailored to the workstation on which the software will run,
or to the needs of the users running them.

(iii) System interoperability: Client/Server computing not only allows one component
to be changed, it also makes it is possible for different type of components systems
(client, network or server) to work together.

Ebay Exhibit 1013, Page 1023 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Introduction to Client/Server Computing20

(iv) Scalability: The modular nature of the Client/Server system may be replaced
without adversely affecting the rest of the system. For example, it is possible to
upgrade the server to a more powerful machine with no visible changes to the end
user. This ability to change component system makes Client/Server systems especially
receptive to new technologies in both hardware and software.

(v) Data integrity: Client/Server system preserves the data integrity, DBMS can
provide number of services that protect data like, encrypted file storage, real time
backup (while the database is being accessed), disk mirroring (where the data is
automatically written to duplicate database on another partition of same hard disk
drive), disk duplexing (where the data is automatically written to a duplicate
database on a different hard disk drive), transaction processing that keeps the track
changes made to the database and corrects problems in case the server crashes.
(Transaction processing is a method by which the DBMS keeps a running log of
all the modifications made to the database over a period of time).

(vi) Data accessibility (enhanced data sharing): Since the server component holds
most of data in a centralized location, multiple users can access and work on the
data simultaneously.

(vii) System administration (centralized management): Client/Server environment
is very manageable. Since data is centralized, data management can be centralized.
Some of the system administration functions are security, data integrity and back
up recovery.

(viii) Integrated services: In Client/Server model all information that the client is
entitled to use is available at the desktop, through desktop interface, there is no
need to change into a terminal mode or to logon into another processor to access
information. The desktop tools – e-mail, spread sheet, presentation graphics, and
word processing are available and can be used to deal with the information provided
by application and database server’s resident on the network. Desktop user can
use their desktop tools in conjunction with information made available from the
corporate systems to produce new and useful information using the facilities
DDE/OLE, Object-oriented design.

(ix) Sharing resources among diverse platforms: Client/Server model provides
opportunities to achieve open system computing. Applications can be created and
implemented without much conversance with hardware and software. Thus, users
may obtain client services and transparent access to the services provided by
database, communications, and application servers. There are two ways for Client/
Server application operation:

• They can provide data entry, storage, and reporting by using a distributed set
of clients and servers.

• The existence of a mainframe host is totally masked from the workstation
developer by the use of standard interface such as SQL.

Ebay Exhibit 1013, Page 1024 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 Introduction 21

(x) Masked physical data access: SQL is used for data access from database stored
anywhere in the network, from the local PC, local server or WAN server, support
with the developer and user using the same data request. The only noticeable
difference may be performance degradation if the network bandwidth is inadequate.
Data may be accessed from CD-ROM, HDD, Magnetic disk, and optical disk with
same SQL statements. Logical tables can be accessed without any knowledge of
the ordering of column. Several tables may be joined to create a new logical table
for application program manipulation without regard to its physical storage format.

(xi) Location independence of data processing: Users log into an application from
the desktop with no concern for the location or technology of the processors
involved. In the current user centered word, the desktop provides the point of
access to the workgroup and enterprise services without regard to the platform
of application execution. Standard services such as login, security, navigation, help,
and error recovery are provided consistently amongst all applications. Developers
today are provided with considerable independence. Data is accessed through SQL
without regard to the hardware or OS location providing the data. The developer
of business logic deals with a standard process logic syntax without considering
the physical platform.

(xii) Reduced operating cost: Computer hardware and software costs are on a
continually downward spiral, which means that computing value is ever increasing.
Client/Server computing offers a way to cash in on this bonanza by replacing
expensive large systems with less expensive smaller ones networked together.

(xiii) Reduced hardware cost: Hardware costs may be reduced, as it is only the server
that requires storage and processing power sufficient to store and manage the
application.

(xiv) Communication costs are reduced: Applications carry out part of the operations
on the client and send only request for database access across the network,
resulting in less data being sent across the network.

1.3.2 Disadvantages

There are various disadvantages associated with the Client/Server computing model.
(i) Maintenance cost: Major disadvantages of Client/Server computing is the increased

cost of administrative and support personnel to maintain the database server. In
the case of a small network, the network administrator can usually handle the
duties of maintaining the database server, controlling the user access to it, and
supporting the front-end applications. However, the number of database server
users rises, or as the database itself grows in size, it usually becomes necessary
to hire a database administrator just to run the DBMS and support the front-ends.

(ii) Training cost: Training can also add to the start-up costs as the DBMS may run
on an operating system that the support personnel are unfamiliar with.

Ebay Exhibit 1013, Page 1025 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Introduction to Client/Server Computing22

(iii) Hardware cost: There is also an increase in hardware costs. While many of the
Client/Server database run under the common operating systems (Netware,
OS/2 and Unix) and most of the vendors claim that the DBMS can run on the
same hardware side by side with the file server software. It usually makes sense
from the performance and data integrity aspects to have the database server
running on its own dedicated machine. This usually means purchasing a
high-powered platform with a large amount of RAM and hard disk space.

(iv) Software cost: The overall cost of the software is usually higher than that of
traditional PC based multi-user DBMS.

(v) Complexity: With so many different parts comprising the entire Client/Server, i.e.,
the more are the pieces, which comprise the system the more things that can go
wrong or fail. It is also harder to pinpoint problems when the worst does occur
and the system crashes. It can take longer to get everything set up and working
in the first place. This is compounded by the general lack of experience and
expertise of potential support personnel and programmers, due to the relative
newness of the technology.

Making a change to the structure of database also has a ripple effect throughout the
different front-ends. It becomes a longer and more complex process to make the necessary
changes to the different front-end applications, and it is also harder to keep all of them in
synchronization without seriously disrupting the user’s access to the database.

1.4 MISCONCEPTIONS ABOUT CLIENT/SERVER COMPUTING

Client/Server technology can be stated to be an “architecture in which a system’s
functionality and its processing are divided between the client PC (Front-end) and database
server (back-end).” This statement restricts the functionality of Client/Server software to
mere retrieval and maintenance of data and creates many misconceptions regarding this
technology, such as:

(i) Graphical user interface is supposed to be a necessity for presentation of application
logic. As in the case of X-Windows graphical user interface, the implementation
comprises both client and server components that may run on the same and
different physical computers. An X-Windows uses Client/Server as architecture.
This however, does not imply that Client/Server must use GUI. Client/Server logic
remains independent of its presentation to the user.

(ii) Client/Server software is not always database centric. Client/Server computing
does not require a database, although in today’s computing environment Client/
Server is synonymous with databases. RDBMS packages are the most popular
Client/Server applications. A major disadvantage of Client/Server technology is
that it can be data centric and the developers can exploit these capabilities.

Ebay Exhibit 1013, Page 1026 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 Introduction 23

(iii) Client/Server technology does not provide code reuse. Tools that help create
Client/Server applications may provide this benefit. Client/Server application build
on component-based modeling enhanced code reusability.

(iv) Client/Server designing is not event-driven. Client/Server technology merges very
well with event-driven systems but the latter are not a requirement for Client/
Server. Client/Server application designing involves architecture of software that
has innate features of portability with respect to communication pattern, and a
well-build non-monolithic code with division of functionality and processing into
different components.

EXERCISE 1

1. Client server is modular infrastructure, this is intended to improve Usability,
Flexibility, Interoperability and Scalability. Explain each with an example, in each
case how it helps to improve the functionality of client server architecture.

2. Explain the following.
(a) Computing in client server architecture over Mainframe architecture has certain

advantages and disadvantages. Describe atleast two advantages and
disadvantages for each architecture.

(b) Client/Server architecture could be explained as 2-tier architecture. Explain.
(c) Explain the working of three-tier architecture with an application server.
(d) How does the client server interaction work? Explain with a sketch.
(e) Describe the server function and client responsibility in this architecture.

3. Differentiate between Stateful and Stateless servers.
4. Describe three-level schema architecture. Why do we need mapping between

schema levels?
5. Differentiate between Transaction server and Data server system with example.
6. In client server architecture, what do you mean by Availability, Reliability,

Serviceability and Security? Explain with examples.
7. How client/server computing environment is different from mainframe based

computing environment?
8. In the online transaction processing environment, discuss how transaction processing

monitor controls data transfer between client and server machines.

Ebay Exhibit 1013, Page 1027 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

This page
intentionally left

blank

Ebay Exhibit 1013, Page 1028 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 Driving Forces Behind Client/Server Computing 25

2.1 INTRODUCTION

A rapidly changing business environment generates a demand for enterprise – wide data
access, which, in turn, sets the stage for end user productivity gains. Data access
requirements have given rise to an environment in which computers work together to
form a system, often called distributed computing, cooperative computing, and the like.

To be competitive in a global economy, organizations in developed economies must
employ technology to gain the efficiency necessary to offset their higher labour costs.
Re-engineering the business process to provide information and decision-making support
at points of customer contact reduces the need for layers of decision-making management,
improves responsiveness, and enhance customer service. Empowerment means that
knowledge and responsibility are available to the employee at the point of customer contact.
Empowerment will ensure that product and services problems and opportunities are
identified and centralized. Client/Server computing is the most effective source for the
tools that empower employees with authority and responsibility.

However, Client/Server computing has become more practical and cost-effective because
of changes in computer technology that allow the use of PC-based platforms with reliability
and robustness comparable to those of traditional mainframe system. In fact, the accelerating
trend toward system development based on Internet Technologies, particularly those
supplied by Web, has extended the Client/Server model’s reach and relevance considerably.
For example, to remain competitive in a global business environment, businesses are
increasingly dependent on the Web to conduct their marketing and service operations.
Such Web-based electronic commerce, known as E-commerce, is very likely to become the
business norm for businesses of all sizes.

Even a cursory examination of Websites will demonstrate the Web’s search. Organizations
that range in size from Microsoft, IBM, GM, and Boeing to local arts/craft and flower shops

Driving Forces Behind Client/
Server Computing

22222

Ebay Exhibit 1013, Page 1029 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Introduction to Client/Server Computing26

conduct part – or even most – of their business operations via E-commerce. There are various
forces that drive the move to client/server computing. Some of them are:

(i) The changing business environment.
(ii) Globalization: The world as a market.

(iii) The growing need for enterprise data access.
(iv) The demand for end user productivity gains based on the efficient use of data

resources.
(v) Technological advances that have made client/server computing practical like

microprocessor technology, data communication and Internet, Database systems,
Operating Systems and Graphical User Interface, PC-based and end user application
software.

(vi) Growing cost and performance advantages of PC-based platforms.
(vii) Enterprise network management.

2.2 DRIVING FORCES

Forces that drives the move to Client/Server computing widely can be classified in two
general categories based on:

(i) Business perspective.
(ii) Technology perspective.

2.2.1 Business Perspective

Basically the business perspective should be kept in mind for obtaining the following
achievements through the system:

• For increased productivity.
• Superior quality.
• Improved responsiveness.
• Focus on core business.

 The effective factors that govern the driving forces are given below:
The changing business environment: Business process engineering has become necessary
for competitiveness in the market which is forcing organizations to find new ways to
manage their business, despite fewer personnel, more outsourcing, a market driven
orientation, and rapid product obsolescence.

Due to globalization of business, the organizations have to meet global competitive
pressure by streamlining their operations and by providing an ever-expanding array of
customer services. Information management has become a critical issue in this competitive
environment; marketing fast, efficient, and widespread data access has become the key to
survival. The corporate database has become a far more dynamic asset than it used to be,

Ebay Exhibit 1013, Page 1030 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 Driving Forces Behind Client/Server Computing 27

and it must be available at relatively low cost. Unfortunately, the demand for a more
accessible database is not well-served by traditional methods and platforms. The dynamic
information driven corporate worlds of today require data to be available to decision makers
on time and in an appropriate format. Because end users have become active in handling
their own basic data management and data analysis, the movement towards freedom of
data access has made Client/Server computing almost inevitable.

One might be tempted to urge that microcomputer networks constitute a sufficient
answer to the challenge of dynamic data access. Unfortunately, even the use of networks
that tie legions of PC’s together is an unsatisfactory solution if request processing overloads
the network. The Client/Server model’s ability to share resources efficiently by splitting
data processing yields a more efficient utilization of those resources. It is not surprising
that Client/Server computing has received so much attention from such a wide spectrum
of interested parties.

Globalization

Conceptually, the world has begun to be treated as a market. Information Technology
plays an important role in bringing all the trade on a single platform by eliminating the
barriers. IT helps and supports various marketing priorities like quality, cost, product
differentiation and services.
The growing need for enterprise data access: One of the major MIS functions is to
provide quick and accurate data access for decision- making at many organizational levels.
Managers and decision makers need fast on-demand data access through easy-to-use
interfaces. When corporations grow, and especially when they grow by merging with other
corporations, it is common to find a mixture of disparate data sources in their systems. For
example, data may be located in flat files, in hierarchical or network databases or in relational
databases. Given such a multiple source data environment, MIS department managers often
find it difficult to provide tools for integrating and aggregating data for decision-making
purposes, thus limiting the use of data as a company asset. Client server computing makes
it possible to mix and match data as well as hardware. In addition, given the rapidly increasing
internet-enabled access to external data through the Internet’s inherent Client/Server
architecture, corporate Client/Server computing makes it relatively easy to mix external
and internal data.
The demand for end user productivity gains based on the efficient use of data
resources: The growth of personal computers is a direct result of the productivity gains
experienced by end-users at all business levels. End user demand for better ad hoc data
access and data manipulation, better user interface, and better computer integration helped
the PC gain corporate acceptance. With sophisticated yet easy to use PCs and application
software, end user focus changed from how to access the data to how to manipulate the
data to obtain information that leads to competitive advantages.

Ebay Exhibit 1013, Page 1031 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Introduction to Client/Server Computing28

2.2.2 Technology Perspective

Technological advances that have made Client/Server computing practical by proper use
of the following:

• Intelligent desktop devices.
• Computer network architectures.
• Technical advances like microprocessor technology, data communication and

Internet Database system, operating system and graphical user interface.
• Trends in computer usage like:

(i) Standardization: Trend towards open systems and adaptation of industry standards,
which includes:

* de facto standard: protocol or interface that is made public & widely accepted.
(e.g., SNA, TCP/IP, VGA)

* de jure standard: protocol or interface specified by a formal standards
making body. (e.g., ISO’s OSI, ANSI C)

(ii) Human-Computer Interaction (HCI): trend towards GUI, user Control.
(iii) Information dissemination: trend towards data warehousing, data mining.

• PC-based end user application software together with the increasing power and
capacity of workstations.

• Growing cost and performance are advantages of PC-based platforms.
The PC platform often offers unbeatable price/performance ratio compared to mainframe

and minicomputer platforms. PC application cost, including acquisition, installation, training,
and use, are usually lower than those of similar minicomputer and mainframe applications.
New PC-based software makes use of very sophisticated technologies, such as object
orientation, messaging, and tele-communications. These new technologies make end users
more productive by enabling them to perform very sophisticated tasks easily, quickly, and
efficiently. The growing software sophistication even makes it possible to migrate many
mission-critical applications to PCs.

The pursuit of mainframe solutions typically means high acquisition and maintenance
costs, and chances are that managers are locked into services provided by single source. In
contrast, PC hardware and software costs have both declined sharply during the past few
years. PC-based solutions typically are provided by many sources, thus limiting single-
source vulnerability. However, multi-source solutions can also become a major management
headache when system problems occur.

Enterprise Computing and the Network Management

If a business is run from its distributed locations, the technology supporting these
units must be as reliable as the existing central systems. Technology for remote management
of the distributed technology is essential in order to use scarce expertise appropriately and
to reduce costs.

Ebay Exhibit 1013, Page 1032 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 Driving Forces Behind Client/Server Computing 29

All computing and communications resources are integrated functionally as a single,
seamless system. To maximize productivity by providing universal, up-to-date information
the technology requirements are that computing technology must be widely deployed. All
computers must be networked together in a consistent architecture such that computing
and networking resources must be reliable, secure, and capable of delivering accurate
information in a timely manner. Maximum capture of information relating to the business
and its customers must occur within every business process. That information must be
normalized, within reach of all users. To achieve that, mechanics employed to locate, access
the data and also for hiding the transmit data. And all the applications must be flexible to
user preferences and work styles i.e., applications must interwork with in a common
framework.

Client/server technology gives cost-effective, logical, and consistent architectural model
for networking that generalizes the typical computer model. Client/Server can simplify
network interactions that will give transparent interaction to the users. See the Fig. 2.1
illustrated below:

CPU RAM

Typical Computer Enterprise Computing

System Bus Network

Client Client

Server ServerI/O I/O

Fig. 2.1: Enterprise Computing

2.3 DEVELOPMENT OF CLIENT/SERVER SYSTEMS

The development of Client/Server systems differs greatly in process and style from the
traditional information systems development methods. For example, the systems
development approach, oriented towards the centralized mainframe environment and based
on traditional programming language, can hardly be expected to function well in a client
server environment that is based on hardware and software diversity. In addition a modern
end users are more demanding and are likely to know more about computer technology
than users did before the PC made its inroads. Then the concerning manager should pertain
their knowledge about new technologies that are based on multiple platforms, multiple
GUIs, multiple network protocols, and so on.

Ebay Exhibit 1013, Page 1033 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Introduction to Client/Server Computing30

2.3.1 Development Tools

In today’s rapid changing environment, choosing the right tools to develop Client/Server
applications is one of the most critical decisions. As a rule of thumb, managers tend to
choose a tool that has a long-term survival potential. However, the selection of a design or
application development tool must also be driven by system development requirements.
Once such requirements have been delineated, it is appropriate to determine the
characteristics of the tool that you would like to have. Client/Server tools include:

♦ GUI-based development.
♦ A GUI builder that supports multiple interfaces (Windows, OS/2, Motif, Macintosh,

and so on).
♦ Object-oriented development with a central repository for data and applications.
♦ Support for multiple database (flat file, hierarchical, networked, relational).
♦ Data access regardless of data model (using SQL or native navigational access).
♦ Seamless access to multiple databases.
♦ Complete SDLC (System Development Life Cycle) support from planning to

implementation and maintenance.
♦ Team development support.
♦ Support for third party development tools (CASE, libraries, and so on)
♦ Prototyping and Rapid Application Development (RAD) capabilities.
♦ Support for multiple platforms (OS, Hardware, and GUIs).
♦ Support for middle ware protocols (ODBC, IDAPI, APPC, and so on).
♦ Multiple network protocol support (TCP/IP, IXP/SPX, NetBIOS, and so on).
There is no single best choice for any application development tool. For one thing, not

all tools will support all the GUI’s, operating system, middleware, and databases. Managers
must choose a tool that fits the application development requirements and that matches
the available human resources, as well as the hardware infrastructure. Chances are that
the system will require multiple tools to make sure that all or most of the requirements are
met. Selecting the development tools is just one step. Making sure that the system meets its
objectives at the client, server, and network level is another issue.

2.3.2 Development Phases

It is important that a marketing plan be developed before actually starting the design and
development efforts. The objective of this plan is to build and obtain end user and managerial
support for the future Client/Server environment. Although there is no single recipe for
this process, the overall idea is to conceptualize Client/Server system in terms of their
scope, optimization of resources and managerial benefits. In short, the plan requires an
integrated effort across all the departments within an organization. There are six main
phases in Client/Server system development.

Ebay Exhibit 1013, Page 1034 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 Driving Forces Behind Client/Server Computing 31

(i) Information System Infrastructure Self-study
The objective is to determine the actual state of the available computer resources. The
self-study will generate atleast the following.

• A software and hardware inventory.
• A detailed and descriptive list of critical applications.
• A detailed human resource (personal and skills) inventory.
• A detailed list of problems and opportunities.

(ii) Client/Server Infrastructure Definition
The output of Phase One, combined with the company’s computer infrastructure goal, is
the input for the design of the basic Client/Server infrastructure blueprint. This blue print
will address the main hardware and software issues for the client, server, and networking
platforms.
(iii) Selecting a Window of Opportunity
The next stage is to find the right system on which to base the Client/Server pilot project.
After identifying the pilot project, we need to define it very carefully by concentrating on
the problem, available resources, and set of clearly defined and realistic goals. The project
is described in business terms rather than technological jargon. When defining the system,
we must make sure to plan for cost carefully. We should try to balance the cost carefully
with the effective benefits of the system. We should also make sure to select a pilot
implementation that provides immediate and tangible benefits. For example, a system that
takes two years to develop and another three to generate tangible benefits is not acceptable.
(iv) Management Commitment
Top to bottom commitment is essential when we are dealing with the introduction of new
technologies that affect the entire organization. We also need managerial commitment to
ensure that the necessary resources (people, hardware, software, money, infrastructure)
will be available and dedicated to the system. A common practice is to designate a person
to work as a guide, or an agent of change, within the organization’s departments. The main
role of this person is to ease the process that changes people’s role within the organization.
(v) Implementation

Guidelines to implementation should atleast include:
• Use “open” tools or standard-based tools.
• Foster continuing education in hardware, software, tools, and development principles.
• Look for vendors and consultants to provide specific training and implementation

of designs, hardware, application software.
(vi) Review and Evaluation
We should make sure that the system conforms to the criteria defined in Phase Three. We
should continuously measure system performance as the system load increases, because
typical Client/Server solutions tend to increase the network traffic and slow down the

Ebay Exhibit 1013, Page 1035 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Introduction to Client/Server Computing32

network. Careful network performance modelling is required to ensure that the system
performs well under heavy end user demand conditions. Such performance modeling should
be done at the server end, the client end, and the network layer.

2.4 CLIENT/SERVER STANDARDS

Standards assure that dissimilar computers, networks, and applications scan interact to
form a system. But what constitutes standards? A standard is a publicly defined method to
accomplish specific tasks or purposes within a given discipline and technology. Standards
make networks practical.

Open systems and Client-Server computing are often used as if they were synonymous.
It does not make long-term sense for users to adopt a Client/Server environment that is not
based on standards. There are currently very few Client/Server technologies based on
standards at every level. Proprietary Client/Server technologies (applications, middleware
etc.) will always lock you into a particular supplier. The existing costs are always high.
Failure to appreciate the spectrum of technologies within the Client-Server model, will
always lead to dysfunctional Client/Server solutions. This will result in compromises in
key areas of any company’s Client/Server infrastructure, such as Usability, Security, and
Performance.

There are quite a few organizations whose members work to establish the standards
that govern specific activities. For example, the Institute of Electrical and Electronics
Engineers (IEEE) are dedicated to define the standards in the network hardware
environment. Similarly, the American National Standards Institute (ANSI) has created
standards for programming languages such as COBOL and SQL. The International
Organization for Standardization (ISO) produces the Open System Interconnection (OSI)
reference model to achieve network systems communications compatibility.

Benefits of Open Standards

• Standards allow us to incorporate new products and technology with existing I.T.
investments — hardware, operating environments, and training, with minimum effort.

• Standards allow us to mix and match the ‘best of breed’ products. Thus databases
and development tools, and Connectivity software become totally independent.

• Standards allow us to develop modular applications that do not fall apart because
the network has been re-configured (e.g., change of topology, or transport protocol
etc.), or the graphical user interface standard as changed, or a component-operating
environment has changed.

• Standards maintain tighter security.
• Standards reduce the burden of overall maintenance and system administration.
• Standards provide faster execution of pre-compiled code.
• Standards prevent the database and its application and possibly others on the server

from having their response time degraded in a production environment by inefficient
queries.

Ebay Exhibit 1013, Page 1036 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 Driving Forces Behind Client/Server Computing 33

2.5 CLIENT/SERVER SECURITY

A security threat is defined as circumstance, condition, or event with the potential to
cause economic hardship to data or network resources in the form of destruction.
Disclosure, modification of data, denial of service, and/or fraud, waist and abuse. Client/
Server security issues deal with various authorization methods related to access control.
Such mechanisms include password protection, encrypted smart cards. Biometrics and
firewalls. Client/Server security problems can be due to following:

• Physical security holes: These results when any individual gains unauthorized
access to a computer by getting some user’s password.

• Software security holes: These result due to some bug in the software, due to
which the system may be compromised into giving wrong performance.

• Inconsistent usage holes: These may result when two different usages of a
systems contradict over a security point.

Of the above three, software security holes and inconsistent usage holes can be
eliminated by careful design and implementation. For the physical security holes, we can
employ various protection methods. These security methods can be classified into following
categories:

(i) Trust-based security.
(ii) Security through obscurity.

(iii) Password scheme.
(iv) Biometric system.

2.5.1 Emerging Client/Server Security Threats

We can identify emerging Client/Server security threats as:
(i) Threats to local computing environment from mobile code,

(ii) Threats to servers that include impersonation, eavesdropping, denial of service,
packet reply, and packet modification.

Software Agents and the Malicious Code Threat

Software agents or mobile code are executable programs that have ability to move from machine to
machine and also to invoke itself without external influence. Client threats mostly arise from malicious
data or code. Malicious codes refers to viruses, worms (a self-replicating program that is self-contained
and does not require a host program. The program creates a copy of itself and causes it to execute
without any user intervention, commonly utilizing network services to propagate to other host
systems.)e.g., Trojan horse, logic bomb, and other deviant software programs. Virus is a code segment
that replicates by attaching copies of itself to existing executables. The new copy of the virus is executed
when a user executes the host programs. The virus may get activated upon the fulfilment of some
specific conditions.

Ebay Exhibit 1013, Page 1037 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Introduction to Client/Server Computing34

The protection method is to scan for malicious data and program fragments that are
transferred from the server to the client, and filter out data and programs known to be
dangerous.

2.5.2 Threats to Server

Threats to server may be of the following types:
(i) Eavesdropping is the activity of silently listening to the data sent over the network.

This often allows a hacker to make complete transcript of network activity and
thus obtain sensitive information, such as password, data, and procedures for
performing functions. Encryption can prevent eavesdroppers from obtaining data
traveling over unsecured networks.

(ii) Denial of service is a situation, where a user renders the system unusable for
legitimate users by hogging or damaging a resource so that it can be used. The
common forms of this, are:

• Service overloading: A server may be rendered useless by sending it a large
amount of illegitimate service requests so as to consume up its CPU cycle
resource. In such a situation, the server may deny the service request of
legitimate requests.

• Message flooding: It is a process of increasing the number of receiving processes
running over the disk of the server by sending large files repeatedly after short
intervals. This may cause disk crash.

• Packet replay refers to the recording and retransmission of message packets
in the network. Medium tapping can do this. A checker may gain access to
a secure system by recording and later replaying a legitimate authentication
sequence message. Packet reply can also be used to distort the original message.
Using a method like packet time stamping and sequence counting can prevent
this problem.

2.6 ORGANIZATIONAL EXPECTATIONS

As we have already discussed the advantages and disadvantages associated with Client/
Server computing, from the organizational point of view the managers are looking for the
following Client/Server benefits.

• Flexibility and adaptability.
• Improved employee productivity.
• Improved company work flow and a way to re-engineering business operations.
• New opportunities to provide competitive advantages.
• Increased customer service satisfaction.

Ebay Exhibit 1013, Page 1038 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 Driving Forces Behind Client/Server Computing 35

Flexibility and Adaptability

Client/Server computing is expected to provide necessary organizational flexibility to adapt
quickly and efficiently in changing business conditions. Such changes can be driven by
technological advantages; government regulations, mergers and acquisitions, market forces
and so on. A company that can adapt quickly to changes in its market conditions is more
likely to survive than one that cannot.

Multinational companies, whose widely dispersed offices must share information across
often-disparate computer platforms, are especially well-positioned to benefit from the
flexibility and adaptability offered by the Client/Server infrastructure.

Improved Employee Productivity

Client/Server computing opens the door to previously unavailable corporate data. End
users can manipulate and analyze such data on an ad hoc basis by means of the hardware
and the software tools that are commonly available with client server environments. Quick
and reliable information access enables end users to make intelligent decisions.
Consequently, end users are more likely to perform their jobs better, provide better services,
and become more productive within the corporation.

Improved Company Work Flow and a Way to Re-engineering Business Operations

Organizations that face problems with their internal data management typically favour
the introduction of Client/Server computing. Providing data access is just the first step in
information management. Providing the right data to the right people at the right time is
the core of decision support for MIS departments. As competitive conditions change, so do
the companies’ internal structure, thus triggering demands for information systems that
reflect those changes. Client/Server tools such as Lotus Notes are designed exclusively to
provide corporations with data and forms distribution, and work group support, without
regard to geographical boundaries. These workgroup tools are used to route the forms and
data to the appropriate end users and coordinate employee work. The existence and effective
use of such tools allows companies to re-engineer their operational processes, effectively
changing the way they do the business.

New Opportunities to Provide Competitive Advantages

New strategic opportunities are likely to be identified as organizations restructure. By making
use of such opportunities, organizations enhance their ability to compete by increasing
market share through the provision of unique products or services. Proper information
management is crucial within such a dynamic competitive arena. Therefore, improved
information management provided by a Client/Server system means that such systems
could become effective corporate strategic weapons.

Increased Customer Service Satisfaction

As new and better services are provided, customer satisfaction is likely to improve. Client/
Server systems enable the corporate MIS manager to locate data closer to the source of
data demand, thus increasing the efficiency with which customer enquiries are handled.

Ebay Exhibit 1013, Page 1039 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Introduction to Client/Server Computing36

2.7 IMPROVING PERFORMANCE OF CLIENT/SERVER APPLICATIONS

Client/Server-developed applications may achieve substantially greater performance when
compared with traditional workstations or host-only applications.

(i) Offload work to server: Database and communications processing are frequently
offloaded to a faster server processor. Some applications processing also may be
offloaded, particularly for a complex process, which is required by many users. The
advantage of offloading is realized when the processing power of the server is
significantly greater than that of the client workstation. Separate processors best
support shared databases or specialized communications interfaces. Thus, the
client workstation is available to handle other client tasks. These advantages are
best realized when the client workstation supports multitasking or atleast easy and
rapid task switching.

(ii) Reduce total execution time: The server can perform database searches, extensive
calculations, and stored procedure execution in parallel while the client workstation
deals directly with the current user needs. Several servers can be used together,
each performing a specific function. Servers may be multiprocessors with shared
memory, which enables programs to overlap the LAN functions and database
search functions. In general, the increased power of the server enables it to perform
its functions faster than the client workstation. In order for this approach to reduce
the total elapsed time, the additional time required to transmit the request over the
network to the server must be less than the saving. High-speed local area network
topologies operating at 4, 10, 16, or 100Mbps (megabits per second) provide high-
speed communications to manage the extra traffic in less time than the savings
realized from the server. The time to transmit the request to the server, execute
the request, and transmit the result to the requestor, must be less than the time
to perform the entire transaction on the client workstation.

(iii) Use a multitasking client: As workstation users become more sophisticated, the
capability to be simultaneously involved in multiple processes becomes attractive.
Independent tasks can be activated to manage communications processes, such as
electronic mail, electronic feeds from news media and the stock exchange, and
remote data collection (downloading from remote servers). Personal productivity
applications, such as word processors, spreadsheets, and presentation graphics, can
be active. Several of these applications can be dynamically linked together to
provide the desktop information-processing environment. Functions such as
Dynamic Data Exchange (DDE) and Object Linking and Embedding (OLE) permit
including spreadsheets dynamically into word-processed documents. These links
can be hot so that changes in the spreadsheet cause the word-processed document
to be updated, or they can be cut and paste so that the current status of the
spreadsheet is copied into the word-processed document.

Ebay Exhibit 1013, Page 1040 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 Driving Forces Behind Client/Server Computing 37

Systems developers appreciate the capability to create, compile, link, and test programs
in parallel. The complexity introduced by the integrated CASE environment requires
multiple processes to be simultaneously active so the workstation need not be dedicated to
a single long-running function. Effective use of modern CASE tools and workstation
development products requires a client workstation that supports multitasking.

2.8 SINGLE SYSTEM IMAGE

Rapid changes have occurred in computer technology resulting in system of increased
capabilities. This indicates that maximum resources are available to accepts all these new
products. For the organizations using Client/Server systems the environment is
heterogeneous whereas the users prime concern to achieve the maximum functionality.
Every Client/Server system should give equal importance to the developers’ and users’
requirements. For the users, this means the realization of a single-system-image. “A single-
system-image is the illusion, created by software or hardware, that presents a collection of
resources as one, more powerful resource.” SSI makes the system appear like a single
machine to the user, to applications, and to the network. With it all network resources
present themselves to every user in the same way from every workstation (See the
Fig. 2.2, given below) and can be used transparently after the user has authorized himself/
herself once. The user environment with a desktop and often-used tools, such as editors
and mailer, is also organized in a uniform way. The workstation on the desk appears to
provide all these services. In such an environment the user need not to bother about how
the processors (both the client and the server) are working, where the data storage take
place and which networking scheme has been selected to build the system.

Technological
Transparency

Users

Services

Fig.2.2: Single Image System

Further desired services in single-system-image environment are:
• Single File Hierarchy; for example: xFS, AFS, Solaris MC Proxy.
• Single Control Point: Management from single GUI and access to every resource

is provided to each user as per their valid requirements.

Ebay Exhibit 1013, Page 1041 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Introduction to Client/Server Computing38

• Single virtual networking.
• Single memory space e.g. Network RAM/DSM.
• Single Job Management e.g. Glunix, Codine, LSF.
• Single User Interface: Like workstation/PC windowing environment (CDE in

Solaris/NT), Web technology can also be used.
• Standard security procedure: Access to every application is provided through a

standard security procedure by maintaining a security layer.
• Every application helps in the same way to represent the errors and also to resolve

them.
• Standard functions work in the same way so new applications can be added with

minimal training. Emphasis is given on only new business functions.
Hence, single-system-image is the only way to achieve acceptable technological

transparency.

“A single-system-image of all the organization’s data and easy management of change” are the
promises of client/server computing.

But as more companies follow the trend towards downsized Client/Server networks,
some find the promise elusive. Security, scalability and administration costs are three of
the key issues. For example, the simple addition of a new user can require the definition to
be added to every server in the network. Some of the visible benefits due to single-system-
image are as given below:

• Increase the utilization of system resources transparently.
• Facilitates process migration across workstations transparently along with load

balancing.
• Provides improved reliability and higher availability.
• Provides overall improved system response time and performance.
• Gives simplified system management.
• Reduces the risk covered due to operator errors.
• User need not be aware of the underlying system.
• Provides such architecture to use these machines effectively.

2.9 DOWNSIZING AND RIGHTSIZING

 Downsizing: The downward migrations of business applications are often from mainframes
to PCs due to low costing of workstation. And also today’s workstations are as powerful as
last decade’s mainframes. The result of that is Clients having power at the cost of less
money, provides better performance and then system offers flexibility to make other
purchase or to increase overall benefits.

Ebay Exhibit 1013, Page 1042 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 Driving Forces Behind Client/Server Computing 39

Rightsizing: Moves the Client/Server applications to the most appropriate server
platform, in that case the servers from different vendors can co-exist and the network is
known as the ‘system’. Getting the data from the system no longer refers to a single
mainframe. As a matter of fact, we probably don’t know where the server physically resides.

Upsizing: The bottom-up trend of networking all the stand alone PCs and workstations
at the department or work group level. Early LANs were implemented to share hardware
(printers, scanners, etc.). But now LANs are being implemented to share data and
applications in addition to hardware.

Mainframes are being replaced by lesser expensive PC’s on networks. This is called
computer downsizing. Companies implementing business process reengineering are
downsizing organizationally. This is called business downsizing. All this would result in
hundreds of smaller systems, all communicating to each other and serving the need of
local teams as well as individuals working in an organization. This is called cultural
downsizing. The net result is distributed computer systems that support decentralized
decision-making. This is the client/server revolution of the nineties.

2.10 CLIENT/SERVER METHODOLOGY

Many PC-based developers, particularly those who never knew of any other type of
computer, believe that today’s methodologies are not only wrong, but also unnecessary.
They believe that prototyping based on rapid application development tools make
methodologies completely unnecessary. Is this true? If yes, should the methodologies be
thrown away? The answer to all these questions depends on the scale and complexity of
the application being developed. Small applications that run on a single desktop can be
built within hours. The use of methodology in such cases can be waste of time.

However, bigger systems are qualitatively different, especially in term of their design
process. Whenever, a system, particularly one involving a database, expands to include
more than one server, with servers being located in more than one geographical location,
complexity is bound to go up. Distributed systems cross this complexity barrier rapidly.
We can say.

• Methodologies are important, and will continue to remain so for the construction
of large applications.

• Distributed systems will need these methodologies most of all.
• Today’s methodologies will have to change to meet the needs of a new generation

of developers and users, accommodate the design of distributed systems, and yield
friendly, maintainable systems.

Ebay Exhibit 1013, Page 1043 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Introduction to Client/Server Computing40

EXERCISE 2

1. Explain various Clients/Server system development tools.
2. Write short notes on the following.

(a) Single system image.
(b) Downsizing and Client/Server computing.

3. Explain Client/Server System development methodology and explain various phases
and their activities involved in System Integration Life Cycle (SILC).

4. Explain the following in detail:-
(a) Performance evaluation of Client/Server Application.
(b) Reliability and Serviceability of Client/Server Architecture.

5. Differentiate between Downsizing and Client/Server Computing.
6. Explain different ways to improve performance in Client/Server developed

applications.
7. What is client server system development methodology? Explain different phases

of System Integration Life-Cycle.
8. How are software’s distributed in client server model? In the client server

environment, what are performance- monitoring tools for different operating system?
9. What are the various ways to reduce network traffic of client server computing?

Ebay Exhibit 1013, Page 1044 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

3.1 INTRODUCTION

The term Client/Server was first used in the 1980s in reference to personal computers
(PCs) on a network. The actual Client/Server model started gaining acceptance in the late
1980s. The term Client/Server is in reality a logical concept. The client and server
components may not exist on distinct physical hardware. A single machine can be both a
client and a server depending on the software configuration. The Client/Server technology
is a model, for the interaction between simultaneously executing software processes. The
term architecture refers to the logical structure and functional characteristics of a system,
including the way they interact with each other in terms of computer hardware, software
and the links between them.

In case of Client/Server systems, the architecture means the way clients and servers
along with the requisite software are configured with each others. Client/Server architecture
is based on the hardware and the software components that interact to form a system. The
limitations of file sharing architectures led to the emergence of the Client/Server
architecture. This approach introduced a database server to replace the file server. Using a
Relational Database Management System (RDBMS), user queries could be answered
directly. The Client/Server architecture reduced network traffic by providing a query
response rather than total file transfer. It improves multi-user updating through a GUI
front-end to a shared database. In Client/Server architectures, Remote Procedure Calls
(RPCs) or Structural Query Language (SQL) statements are typically used to communicate
between the client and server.

File sharing architecture (not a Client/Server architecture):

File based database (flat-file database are very efficient to extracting information from large data
files. Each workstation on the network has access to a central file server where the data is stored.

Architectures of Client/Server
Systems

33333

Ebay Exhibit 1013, Page 1045 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Introduction to Client/Server Computing42

The data files can also reside on the workstation with the client application. Multiple workstations
will access the same file server where the data is stored. The file server is centrally located so that it can
be reached easily and efficiently by all workstations.

The original PC networks were based on file sharing architectures, where the server downloads files
form the shared location to the desktop environment. The requested user job is then run (including
logic and data) in the desktop environment.

File sharing architectures work if shared usage is low, update contention is low, and the volume of
data to be transferred is low. In the 1990s, PC LAN (Local Area Network) computing changed
because the capacity of file sharing was strained as the number of online users grew (it can only
satisfy about 12 users simultaneously) and Graphical User Interfaces (GUIs)became popular
(making mainframe and terminal displays appear out of data). PCs are now being used in Client/
Server architectures.

Mainframe architecture (not a Client/Server architecture)

With mainframe software architectures all intelligence is within the central host computer. Users
interact with the host through a terminal that captures keystrokes and sends that information to
the host. Mainframe software architectures are not tied to a hardware platform. User interaction
can be done using PCs and UNIX workstations. A limitation of mainframe software architectures is
that they do not easily support graphical user interfaces or access to multiple databases from
geographically dispersed sites. In the last few years, mainframes have found a new use as a server in
distributed Client/Server architectures.

The Client/Server software architecture is a versatile, message-based and modular
infrastructure that is intended to improve usability, flexibility, interoperability, and scalability
as compared to centralized, mainframe, time sharing computing.

3.2 COMPONENTS

Client/Server architecture is based on hardware and software components that interact to
form a system. The system includes mainly three components.

(i) Hardware (client and server).
(ii) Software (which make hardware operational).

(iii) Communication middleware. (associated with a network which are used to link
the hardware and software).

The client is any computer process that requests services from server. The client uses
the services provided by one or more server processors. The client is also known as the
front-end application, reflecting that the end user usually interacts with the client process.

The server is any computer process providing the services to the client and also supports
multiple and simultaneous clients requests. The server is also known as back-end
application, reflecting the fact that the server process provides the background services
for the client process.

Ebay Exhibit 1013, Page 1046 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 Architectures of Client/Server Systems 43

The communication middleware is any computer process through which client and
server communicate. Middleware is used to integrate application programs and other
software components in a distributed environment. Also known as communication layer.
Communication layer is made up of several layers of software that aids the transmission of
data and control information between Client and Server. Communication middleware is
usually associated with a network. The Fig. 3.1 below gives a general structure of Client/
Server System.

Now as the definition reveals, clients are treated as the front-end application and
the server as the back-end application, the Fig. 3.2 given below shows the front-end and
back-end functionality.

Client 1 Client 2 Client 3 Client N...

Server
Network

Fig.3.1: Structure of a Client/Server System

SQL user
Information

Forms
Interface

Report
Writer

Graphical
Interface

SQL Engine

Front-end

Interface
(SQL + API)

Back-end

Fig.3.2: Front-end and Back-end Functionality

3.2.1 Interaction between the Components

The interaction mechanism between the components of Client/Server architecture is clear
from the Fig. 3.3. The client process is providing the interface to the end users.
Communication middleware is providing all the possible support for the communication
taking place between the client and server processes. Communication middleware ensures
that the messages between clients and servers are properly routed and delivered. Requests
are handled by the database server, which checks the validity of the request, executes
them, and send the result back to the clients.

3.2.2 Complex Client/Server Interactions

The better understanding about the functionality of Client/Server is observed when the
clients and server interact with each other. Some noticeable facts are:

Ebay Exhibit 1013, Page 1047 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Introduction to Client/Server Computing44

A client application is not restricted to accessing a single service. The client contacts
a different server (perhaps on a different computer) for each service.
A client application is not restricted to accessing a single server for a given service.

Send SQL
request

Client
Process

Route SQL request
to Database Server
Process

Receive request,
validate it, and
execute it

Query Query

ResultResult

Network

Communication
Middleware

Database
Server

Fig.3.3: Components Interaction

A server is not restricted from performing further Client/Server interactions —
a server for one service can become a client of another.

Network

Mac System

Unix

Windows

IBM Database Server

Compaq Zeon Server

Fig.3.4: A Complex Client/Server Environment

Generally, the client and server processes reside on different computers. The Fig. 3.4
illustrates a Client/Server system with more than one server and several clients. The system
comprises of the Back-end, Front-end Processes and Middleware.

Back-end processes as: IBM Database server process and Compaq Zeon Server
Front-end as: Application client processes (Windows, Unix and Mac Systems)
Middleware as: Communication middleware (network and supporting software)
The client process runs under different Operating Systems (Windows, Unix and Mac

System), server process (IBM and Compaq computers) runs under different operating system

Ebay Exhibit 1013, Page 1048 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 Architectures of Client/Server Systems 45

(OS/2 and Unix). The communication middleware acts as the integrating platform for all
the different components. The communication can take place between client to client and
as well as server to server.

3.3 PRINCIPLES BEHIND CLIENT/SERVER SYSTEMS

The components of the Client/Server architecture must conform to some basic principles,
if they are to interact properly. These principles must be uniformly applicable to client,
server, and to communication middleware components. Generally, these principles
generating the Client/Server architecture constitute the foundation on which most current-
generation Client/Server system are built. Some of the main principles are as follows:

(i) Hardware independence.
(ii) Software independence.

(iii) Open access to services.
(iv) Process distribution.
(v) Standards.
(i) Hardware independence: The principles of hardware independence requires that

the Client, Server, and communication middleware, processes run on multiple
hardware platforms (IBM, DEC, Compaq, Apple, and so on) without any functional
differences.

(ii) Software independence: The principles of software independence requires that
the Client, Server, and communication middleware processes support multiple
operating systems (such as Windows 98, Windows NT, Apple Mac system,
OS/2, Linux, and Unix) multiple network protocols (such as IPX, and TCP/IP),
and multiple application (spreadsheet, database electronic mail and so on).

(iii) Open access to services: All client in the system must have open (unrestricted)
access to all the services provided within the network, and these services must not
be dependent on the location of the client or the server. A key issue is that the
services should be provided on demand to the client. In fact, the provision of on-
demand service is one of the main objectives of Client/Server computing model.

(iv) Process distribution: A primary identifying characteristic of Client/Server system
is that the processing of information is distributed among Clients and Servers. The
division of the application-processing load must conform to the following rules:

••••• Client and server processes must be autonomous entities with clearly defined
boundaries and functions. This property enables us to clearly define the functionality
of each side, and it enhances the modularity and flexibility of the system.

••••• Local utilization of resources (at both client and server sides) must be maximized.
The client and server process must fully utilize the processing power of the
host computers. This property enables the system to assign functionality to the

Ebay Exhibit 1013, Page 1049 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Introduction to Client/Server Computing46

computer best suited to the task. In other words, to best utilize all resources,
the server process must be shared among all client processes; that is, a server
process should service multiple requests from multiple clients.

••••• Scalability and flexibility requires that the client and server process be easily
upgradeable to run on more powerful hardware and software platforms. This
property extends the functionality of Client/Server processes when they are
called upon to provide the additional capabilities or better performance.

••••• Interoperability and integration requires that client and server processes be
seamlessly integrated to form a system. Swapping a server process must be
transparent the client process.

(v) Standards: Now, finally all the principles that are formulated must be based on
standards applied within the Client/Server architecture. For example, standard
must govern the user interface, data access, network protocols, interprocess
communications and so on. Standards ensure that all components interact in an
orderly manner to achieve the desired results. There is no universal standard for
all the components. The fact is that there are many different standards from which
to choose. For example, an application can be based on Open Database Connectivity
(ODBC) instead of Integrated Database Application Programming Interface (IDAPI)
for Data access (ODBC and IDAPI are database middleware components that
enables the system to provide a data access standard for multiple processes.) Or
the application might use Internet work Packet Exchange (IPX) instead of
Transmission Control Protocol/Internet Protocol (TCP/IP) as the network protocol.
The fact that the application does not use single standards does not mean that it
will be a Client/Server application. The point is to ensure that all components
(server, clients, and communication middleware) are able to interact as long as they
use the same standards. What really defines Client/Server computing is that the
splitting of the application processing is independent of the network protocols used.

3.4 CLIENT COMPONENTS

 As we know, the client is any process that requests services from the server process. The
client is proactive and will, therefore, always initiate the conversation with the server. The
client includes the software and hardware components. The desirable client software and
hardware feature are:

(i) Powerful hardware.
(ii) An operating system capable of multitasking.

(iii) Communication capabilities.
(iv) A graphical user interface (GUI).
(i) Powerful hardware: Because client processes typically requires a lot of hardware

resources, they should be stationed on a computer with sufficient computing
power, such as fast Pentium II, III, or RISC workstations. Such processing power

Ebay Exhibit 1013, Page 1050 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 Architectures of Client/Server Systems 47

facilitates the creation of systems with multimedia capabilities. A Multimedia
system handles multiple data types, such as voice, image, video, and so on. Client
processes also require large amount of hard disk space and physical memory, the
more such a resource is available, the better.

(ii) An operating system capable of multitasking: The client should have access
to an operating system with at least some multitasking capabilities. Microsoft
Windows 98 and XP are currently the most common client platforms. Windows
98 and XP provide access to memory, pre-emptive multitasking capabilities, and a
graphical user interface, which makes windows the platform of choice in a majority
of Client/Server implementations. However, Windows NT, Windows 2000 server,
OS/2 from IBM corporation, and the many “flavours” of UNIX, including Linux
are well-suited to handle the Client/Server processing that is largely done at the
server side of the Client/Server equation.

(iii) Communication capabilities: To interact efficiently in a Client/Server environment,
the client computer must be able to connect and communicate with the other
components in a network environment. Therefore, the combination of hardware
and operating system must also provide adequate connectivity to multiple network
operating systems. The reason for requiring a client computer to be capable of
connecting and accessing multiple network operating systems is simple services
may be located in different networks.

(iv) A graphical user interface (GUI): The client application, or front-end, runs on
top of the operating system and connects with the communication middleware to
access services available in the network. Several third generation programming
languages (3GLs) and fourth generation languages (4GLs) can be used to create
the front-end application. Most front-end applications are GUI-based to hide the
complexity of the Client/Server components from the end user. The Fig. 3.5 given
below illustrates the basic client components.

Front-end
Application

Operating
System

M
ul

tit
as

ki
ng

G
U

I s
er

vi
ce

s

Network
Software
Interface

Communication
layer components
provide access to the
network and to the
services

Memory

Hard Disk

CPU

Video

Network Card Hardware

Network Cable

Software

Computer
Fig.3.5: Client Components

Video Card

Ebay Exhibit 1013, Page 1051 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Introduction to Client/Server Computing48

3.5 SERVER COMPONENTS

As we have already discussed, the server is any process that provides services to the client
process. The server is active because it always waits for the client’s request. The services
provided by server are:

(i) File services: For a LAN environment in which a computer with a big, fast hard
disk is shared among different users, a client connected to the network can store
files on the file server as if it were another local hard disk.

(ii) Print services: For a LAN environment in which a PC with one or more printers
attached is shared among several clients, a client can access any one of the printers
as if it were directly attached to its own computer. The data to be printed travel
from the client’s PC to the server printer PC where they are temporarily stored
on the hard disk. When the client finishes the printing job, the data is moved from
the hard disk on the print server to the appropriate printer.

(iii) Fax services: This requires at least one server equipped (internally or externally)
with a fax device. The client PC need not have a fax or even a phone line
connection. Instead, the client submits the data to be faxed to the fax server with
the required information; such as the fax number or name of the receiver. The
fax server will schedule the fax, dial the fax number, and transmit the fax. The
fax server should also be able to handle any problems derived from the process.

(iv) Communication services: That let the client PCs connected to the communications
server access other host computers or services to which the client is not directly
connected. For example, a communication server allows a client PC to dial out to
access board, a remote LA location, and so on.

(v) Database services: Which constitute the most common and most successful
Client/Server implementation. Given the existence of database server, the client
sends SQL request to the server. The server receives the SLQ code, validates it,
executes it, and send only the result to the client. The data and the database engine
are located in the database server computer.

(vi) Transaction services: Which are provided by transaction servers that are connected
to the database server. A transaction server contains the database transaction code
or procedures that manipulate the data in database. A front-end application in a
client computer sends a request to the transaction server to execute a specific
procedure store on the database server. No SQL code travels through the network.
Transaction servers reduce network traffic and provide better performance than
database servers.

(vii) Groupware services: Liable to store semi-structured information like Text, image,
mail, bulletin boards, flow of work. Groupware Server provides services, which
put people in contact with other people, that is because “groupware” is an
ill-defined classification. Protocols differ from product to product. For examples:
Lotus Notes/Domino, Microsoft Exchange.

Ebay Exhibit 1013, Page 1052 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 Architectures of Client/Server Systems 49

(viii) Object application services: Communicating distributed objects reside on server.
Object server provides access to those objects from client objects. Object Application
Servers are responsible for Sharing distributed objects across the network. Object
Application Servers uses the protocols that are usually some kind of Object Request
Broker (ORB). Each distributed object can have one or more remote method. ORB
locates an instance of the object server class, invokes the requested method, and
returns the results to the client object. Object Application Server provides an ORB
and application servers to implement this.

 (ix) Web application services: Some documents, data, etc., reside on web servers.
Web application provides access to documents and other data. “Thin” clients
typically use a web browser to request those documents. Such services provide
the sharing of the documents across intranets, or across the Internet (or extranets).
The most commonly used protocol is HTTP (Hyper Text Transport Protocol). Web
application servers are now augmenting simple web servers.

(x) Miscellaneous services: These include CD-ROM, video card, backup, and so on.
Like the client, the server also has hardware and software components. The
hardware components include the computer, CPU, memory, hard disk, video card,
network card, and so on. The computer that houses the server process should be
the more powerful computer than the “average” client computer because the server
process must be able to handle concurrent requests from multiple clients. The Fig.
3.6 illustrates the components of server.
The server application, or back-end, runs on the top of the operating system and
interacts with the communication middleware components to “listen” for the client
request for the services. Unlike the front-end client processes, the server process
need not be GUI based. Keep in mind that back-end application interacts with
operating system (network or stand alone) to access local resources (hard disk,
memory, CPU cycle, and so on). The back-end server constantly “listens” for client
requests. Once a request is received the server processes it locally. The server
knows how to process the request; the client tells the server only what it needs
do, not how to do it. When the request is met, the answer is sent back to the client
through the communication middleware.
The server hardware characteristics depend upon the extent of the required
services. For example, a database is to be used in a network of fifty clients may
require a computer with the following minimum characteristic:
♦ Fast CPU (RISC, Pentium, Power PC, or multiprocessor)
♦ Fault tolerant capabilities:

• Dual power supply to prevent power supply problem.
• Standby power supply to protect against power line failure.

Ebay Exhibit 1013, Page 1053 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Introduction to Client/Server Computing50

• Error checking and correcting (ECC) memory to protect against memory
module failures.

• Redundant Array to Inexpensive Disk (RAID) to provide protection against
physical hardware failures.

Back-end
Server

Operating
System

N
et

w
or

k
St

an
da

rd
O

S

Communications
layer components
provide access to the
Network. Request
and reply travels
through the Network

Memory
Card

CPU

Hard Disk Video Card

Network

Computer

Hardware

Network
cable

Software

Network
Software
Interfaceof

Fig.3.6: Server Components

• Expandability of CPU, memory disk, and peripherals.
• Bus support for multiple add-on boards.
• Multiple communication options.

In theory, any computer process that can be clearly divided into client and server
components can be implemented through the Client/Server model. If properly implemented,
the Client/Server architectural principles for process distribution are translated into the
following server process benefits:

• Location independence. The server process can be located anywhere in the
network.

• Resource optimization. The server process may be shared.
• Scalability. The server process can be upgraded to run on more powerful

platforms.
• Interoperability and integration. The server process should be able to work

in a “Plug and Play” environment.
These benefits added to hardware and software independence principles of the Client/

Server computing model, facilitate the integration of PCs, minicomputer, and mainframes
in a nearly seamless environment.

Ebay Exhibit 1013, Page 1054 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 Architectures of Client/Server Systems 51

3.5.1 The Complexity of Servers

The server processes one request at a time; we can say servers are fairly simple because
they are sequential. After accepting a request, the server forms a reply and sends it before
requesting to see if another request has arrived. Here, the operating system plays a big role
in maintaining the request queue that arrives for a server.

Servers are usually much more difficult to build than clients because they need to
accommodate multiple concurrent requests. Typically, servers have two parts:

♦ A single master program that is responsible for accepting new requests.
♦ A set of slaves that are responsible for handling individual requests.
Further, master server performs the following five steps (Server Functions):

(i) Open port: The master opens a port at which the client request reached.
(ii) Wait for client: The master waits for a new client to send a request.

(iii) Choose port: If necessary, the master allocates new local port for this request and
informs the client.

(iv) Start slave: The master starts an independent, concurrent slave to handle this
request (for example: in UNIX, it forks a copy of the server process). Note that
the slave handles one request and then terminates–the slave does not wait for
requests from other clients.

(v) Continue: The master returns to the wait step and continues accepting new
requests while the newly created slave handles the previous request concurrently.

Because the master starts a slave for each new request, processing proceeds
concurrently. In addition to the complexity that results because the server handles
concurrent requests, complexity also arises because the server must enforce authorization
and protection rules. Server programs usually need to execute with the highest privilege
because they must read system files, keep logs, and access protected data. The operating
system will not restrict a server program if it attempts to access a user files. Thus, servers
cannot blindly honour requests from other sites. Instead, each server takes responsibility
for enforcing the system access and protection policies.

Finally, servers must protect themselves against malformed request or against request
that will cause the server program itself to abort. Often it is difficult to foresee potential
problems. Once an abort occurs, no client would be able to access files until a system
programmer restarts the server.

“Servers are usually more difficult to build than clients because, although they can be
implemented with application programs, server must enforce all the access and protection
policies of the computer system on which they run, and must protect themselves against all
possible errors.”

Ebay Exhibit 1013, Page 1055 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Introduction to Client/Server Computing52

3.6 COMMUNICATIONS MIDDLEWARE COMPONENTS

The communication middleware software provides the means through which clients and
servers communicate to perform specific actions. It also provides specialized services to
the client process that insulates the front-end applications programmer from the internal
working of the database server and network protocols. In the past, applications programmers
had to write code that would directly interface with specific database language (generally
a version of SQL) and the specific network protocol used by the database server. For
example, when writing a front-end application to access an IBM OS/2 database manager
database, the programmer had to write SQL and Net BIOS (Network Protocol) command
in the application. The Net BIOS command would allow the client process to establish a
session with the database server, send specific control information, send the request, and
so on. If the same application is to be used with a different database and network, the
application routines must be rewritten for the new database and network protocols. Clearly,
such a condition is undesirable, and this is where middleware comes in handy. The
definition of middleware is based on the intended goals and main functions of this new
software category.

Although middleware can be used in different types of scenarios, such as e-mail, fax,
or network protocol translation, most first generation middleware used in Client/Server
applications is oriented toward providing transport data access to several database servers.
The use of database middleware yields:

♦ Network independence: by allowing the front-end application to access data
without regard to the network protocols.

♦ Database server independence: by allowing the front-end application to access
data from multiple database servers without having to write code that is specific
to each database server.

The use of database middleware, make it possible for the programmer to use the generic
SQL sentences to access different and multiple database servers. The middleware layer
isolates the program from the differences among SQL dialects by transforming the generic
SQL sentences into the database server’s expected syntax. For example, a problem in
developing a front-end system for multiple database servers is that application programmers
must have in-depth knowledge of the network communications and the database access
language characteristic of each database to access remote data. The problem is aggravated
by the fact that each DBMS vendor implements its own version of SQL (with difference in
syntax, additional functions, and enhancement with respect to the SQL standard).
Furthermore, the data may reside in a non-relational DBMS (hierarchical, network or flat
files) that does not support SQL, thus making it harder for the programmers to access the
data given such cumbersome requirements, programming in Client/Server systems becomes
more difficult than programming in traditional mainframe system. Database middleware

Ebay Exhibit 1013, Page 1056 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 Architectures of Client/Server Systems 53

eases the problem of accessing resources of data in multiple networks and releases the
program from details of managing the network communications. To accomplish its functions,
the communication middleware software operates at two levels:

• The physical level deals with the communications between client and server
computers (computer to computer). In other words, it addresses how the computers
are physically linked. The physical links include the network hardware and software.
The network software includes the network protocol. Recall that network protocols
are rules that govern how computers must interact with other computers in
network, and they ensure that computers are able to send and receive signal to
and from each other. Physically, the communication middleware is, in most cases,
the network. Because the Client/Server model allows the client and server to reside
on the same computer, it may exist without the benefit of a computer network.

• The logical level deals with the communications between client and server. Process
(process to process) that is, with how the client and server process communicates.
The logical characteristics are governed by process-to-process (or interprocess)
communications protocols that give the signals meaning and purpose. It is at this
level that most of the Client/Server conversation takes place.

Although the preceding analogy helps us understand the basic Client/Server
interactions, it is required to have a better understanding of computer communication to
better understand the flow of data and control information in a client server environment.
To understand the details we will refer to Open System Interconnection (OSI) network
reference model which is an effort to standardize the diverse network systems. Figure 3.7
depicts the flow of information through each layer of OSI model.

From the figure, we can trace the data flow:
• The client application generates a SQL request.
• The SQL request is sent down to the presentation layer, where it is changed to

a format that the SQL server engine can understand.
• Now, the SQL request is handed down to session layer. This layer establishes the

connection to the client processes with the server processes. If the database server
requires user verification, the session layer generates the necessary message to log
on and verify the end user. And also this layer will identify which mesaages are
control messages and which are data messages.

• After the session is established and validated, the SQL request is sent to the
transport layer. The transport layer generates some error validation checksums and
adds some transport-layer-specific ID information.

• Once the transport layer has performed its functions, the SQL request is handed
down to the network layer. This layer takes the SQL request, identifies the address
of the next node in the path, divides the SQL request into several smaller packets,

Ebay Exhibit 1013, Page 1057 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Introduction to Client/Server Computing54

and adds a sequence number to each packet to ensure that they are assembled in the
correct order.

• Next the packet is handed to the data-link layer. This layer adds more control
information, that depends on the network and on which physical media are used.
The data-link layer sends the frame to the next node.

• When the data-link layer determines that it is safe to send a frame, it hands the
frame down to the physical layer, which transmits it into a collection of ones and
zeros(bits), and then transmit the bits through the network cable.

• The signals transmitted by the physical layer are received at the server end at the
physical layer, which passes the data to the data-link layer. The data-link layer
reconstructs the bits into frames and validates them. At this point, the data-link
layer of the client and server computer may exchange additional messages to verify
that the data were received correctly and that no retransmission is necessary. The
packet is sent up to the network layer.

• The network layer checks the packet’s destination address. If the final destination is
some other node in network, the network layer identifies it and sends the packet
down to the data-link layer for transmission to that node. If the destination is the
current node, the network layer assembles the packets and assigns appropriate
sequence numbers. Next, the network layer generates the SQL request and sends it
to the transport layer.

• Most of the Client/Server “conversation” takes place in the session layer. If the
communication between client and server process is broken, the session layer tries
to reestablish the session. The session layer identifies and validates the request, and
sends it to the presentation layer.

• The presentation layer provides additional validation and formatting.
• Finally, the SQL request is sent to the database server or application layer, where it

is executed.
Although the OSI framework helps us understand network communications, it

functions within a system that requires considerable infrastructure. The network protocols
constitute the core of network infrastructure, because all data travelling through the
network must adhere to some network protocol. In the Client/Server environment, it is
not usual to work with several different network protocols. In the previous section, we
noted that different server processes might support different network protocols to
communicate over the network.

For example, when several processes run on the client, each process may be executing
a different SQL request, or each process may access a different database server. The transport
layer ID helps the transport layer identify which data corresponds to which session.

Ebay Exhibit 1013, Page 1058 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 Architectures of Client/Server Systems 55

Application

Presentation

Session

Transport

Network

Data-link

Physical

Application

Presentation

Session

Transport

Network

Data-link

Physical

Client Server

SQL request

Formats SQL request
to server’s native SQL
format

Establish “session”
(conversation between
two proceses and
programs)

Adds checksum to
data, adds transport
layer ID

Formats data into
packets for transmission
to next node

Determines when to
transmit data frames to
next node

Transmits data through
network physical media

Receive &
execute SQL

Formats SQL

Validate
session
information

Validate
data, verifies
transport ID

Assemble
Message

Validate
data frames

Receive data
frames

Bits of data travel through network

Fig.3.7: Flow of Information through the OSI Model

3.7 ARCHITECTURE FOR BUSINESS INFORMATION SYSTEM

3.7.1 Introduction

In this section, we will discuss several patterns for distributing business information systems
that are structured according to a layered architecture. Each distribution pattern cuts the
architecture into different client and server components. All the patterns discussed give
an answer to the same question: How do I distribute a business information system?
However, the consequences of applying the patterns are very different with regards to the
forces influencing distributed systems design. Distribution brings a new design dimension
into the architecture of information systems. It offers great opportunities for good systems
design, but also complicates the development of a suitable architecture by introducing a
lot of new design aspects and trap doors compared to a centralized system. While

Ebay Exhibit 1013, Page 1059 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Introduction to Client/Server Computing56

constructing the architecture for a business information system, which will be deployed
across a set of distributed processing units (e.g., machines in a network, processes on one
machine, threads within one process), you are faced with the question:

How do I partition the business information system into a number of client and server
components, so that my users’ functional and non-functional requirements are met?

There are several answers to this question. The decision for a particular distribution
style is driven by users’ requirements. It significantly influences the software design and
requires a very careful analysis of the functional and non-functional requirements.

3.7.2 Three-Layer Architecture

A Business Information System, in which many (spatially distributed) users work in parallel
on a large amount of data. The system supports distributed business processes, which may
span a single department, a whole enterprise, or even several enterprises. Generally, the
system must support more than one type of data processing, such as On-Line Transaction
Processing (OLTP), off-line processing or batch processing. Typically, the application
architecture of the system is a Three-Layer Architecture, illustrated in Fig. 3.8.

The user interface handles presentational tasks and controls the dialogue the
application kernel performs the domain specific business tasks and the database access
layer connects the application kernel functions to a database. Our distribution view focuses
on this coarse-grain component level. In developing distributed system architecture we
mainly use the Client/Server Style. Within these model two roles, client and server classify
components of a distributed system. Clients and servers communicate via a simple request/
response protocol.

Presentation

Dialogue Control

Application Kernel

Database Access

Database

C
om

m
un

ic
at

io
n

Se
rv

ic
es User Interface

Business Logic

Data Management

Fig.3.8: Three-Layer Architecture for Business Information System

3.7.3 General Forces

• Business needs vs. construction complexity: On one hand, allocating functionality and
data to the places where it is actually needed supports distributed business processes

Ebay Exhibit 1013, Page 1060 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 Architectures of Client/Server Systems 57

very well, but on the other hand, distribution raises a system’s complexity. Client
server systems tend to be far more complex than conventional host software
architectures. To name just a few sources of complexity: GUI, middleware, and
heterogeneous operating system environments. It is clear that it often requires a lot
of compromises to reduce the complexity to a level where it can be handled properly.

• Processing style: Different processing styles require different distribution decisions.
Batch applications need processing power close to the data. Interactive processing
should be close to input/output devices. Therefore, off-line and batch processing
may conflict with transaction and on-line processing.

• Distribution vs. performance: We gain performance by distributed processing units
executing tasks in parallel, placing data close to processing, and balancing workload
between several servers. But raising the level of distribution increases the
communication overhead, the danger of bottlenecks in the communication network,
and complicates performance analysis and capacity planning. In centralized systems
the effects are much more controllable and the knowledge and experience with
the involved hardware and software allows reliable statements about the reachable
performance of a configuration.

• Distribution vs. security: The requirement for secure communications and
transactions is essential to many business domains. In a distributed environment
the number of possible security holes increases because of the greater number of
attack points. Therefore, a distributed environment might require new security
architectures, policies and mechanisms.

• Distribution vs. consistency: Abandoning a global state can introduce consistency
problems between states of distributed components. Relying on a single, centralized
database system reduces consistency problems, but legacy systems or organizational
structures (off-line processing) can force us to manage distributed data sources.

• Software distribution cost: The partitioning of system layers into client and server
processes enables distribution of the processes within the network, but the more
software we distribute the higher the distribution, configuration management, and
installation cost. The lowest software distribution and installation cost will occur
in a centralized system. This force can even impair functionality if the software
distribution problem is so big that the capacities needed exceed the capacities of
your network. The most important argument for so called diskless, Internet based
network computers is exactly software distribution and configuration management
cost.

• Reusability vs. performance vs. complexity: Placing functionality on a server enforces
code reuse and reduces client code size, but data must be shipped to the server
and the server must enable the handling of requests by multiple clients.

Ebay Exhibit 1013, Page 1061 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Introduction to Client/Server Computing58

3.7.4 Distribution Pattern

To distribute an information system by assigning client and server roles to the components
of the layered architecture we have the choice of several distribution styles. Figure 3.9
shows the styles, which build the pattern language. To take a glance at the pattern language
we give an abstract for each pattern:

• Distributed presentation: This pattern partitions the system within the presentation
component. One part of the presentation component is packaged as a distribution
unit and is processed separately from the other part of the presentation, which
can be packaged together with the other application layers. This pattern allows
of an easy implementation and very thin clients. Host systems with 3270-terminals
is a classical example for this approach. Network computers, Internet and intranet
technology are modern environments where this pattern can be applied as well.

• Remote user interface: Instead of distributing presentation functionality the whole
user interface becomes a unit of distribution and acts as a client of the application
kernel on the server side.

• Distributed application kernel: The pattern splits the application kernel into two
parts which are processed separately. This pattern becomes very challenging if
transactions span process boundaries (distributed transaction processing).

Distribution Pattern

Distributed Presentation

Remote User Interface

Distributed Application Kernel

Remote Database

Distributed Database

Presentation

Dialogue Control

Application Kernel

Database Access

Database

Fig.3.9: Pattern Resulting from Different Client/Server Cuts

• Remote database: The database is a major component of a business information
system with special requirements on the execution environment. Sometimes, several
applications work on the same database. This pattern locates the database component
on a separate node within the system’s network.

Ebay Exhibit 1013, Page 1062 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 Architectures of Client/Server Systems 59

• Distributed database: The database is decomposed into separate database components,
which interact by means of interprocess communication facilities. With a distributed
database an application can integrate data from different database systems or data
can be stored more closely to the location where it is processed.

3.8 EXISTING CLIENT/SERVER ARCHITECTURE

3.8.1 Mainframe-based Environment

In mainframe systems all the processing takes place on the mainframe and usually dumb
terminals that are known as end user platform are used to display the data on screens.

Mainframes systems are highly centralized known to be integrated systems. Where
dumb terminals do not have any autonomy. Mainframe systems have very limited data
manipulation capabilities. From the application development point of view. Mainframe
systems are over structured, time-consuming and create application backlogs. Various
computer applications were implemented on mainframe computers (from IBM and others),
with lots of attached (dumb, or semi-intelligent) terminals see the Fig. 3.10.

Terminal Terminal Terminal

Mainframe Database

Fig.3:10: Mainframe-based Environment

There are some major problems with this approach:
Very inflexible.
Mainframe system are very inflexible.
Vendor lock-in was very expensive.
Centralized DP department was unable to keep up with the demand for new
applications.

Ebay Exhibit 1013, Page 1063 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Introduction to Client/Server Computing60

3.8.2 LAN-based Environment

LAN can be configured as a Client/Server LAN in which one or more stations called
servers give services to other stations, called clients. The server version of network operating
system is installed on the server or servers; the client version of the network operating
system is installed on clients. A LAN may have a general server or several dedicated servers.
A network may have several servers; each dedicated to a particular task for example database
servers, print servers, and file servers, mail server. Each server in the Client/Server based
LAN environment provides a set of shared user services to the clients. These servers
enable many clients to share access to the same resources and enable the use of high
performance computer systems to manage the resources.

A file server allows the client to access shared data stored on the disk connected to the
file server. When a user needs data, it access the server, which then sends a copy, a print
server allows different clients to share a printer. Each client can send data to be printed to
the print server, which then spools and print them. In this environment, the file server
station server runs a server file access program, a mail server station runs a server mail
handling program, and a print server station a server print handling program, or a client
print program.

Users, applications and resources are distributed in response to business requirements
and linked by single Local Area Networks. See the Fig. 3.11 illustrated below:

Client Client Client

File Server Print Server DB Server

File Printer
Database

Fig.3.11: LAN Environment

3.8.3 Internet-based Environment

What the Internet brings to the table is a new platform, interface, and architectures. The
Internet can employ existing Client/Server applications as true Internet applications, and
integrate applications in the Web browser that would not normally work and play well
together. The Internet also means that the vast amount of information becomes available

Ebay Exhibit 1013, Page 1064 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 Architectures of Client/Server Systems 61

from the same application environment and the interface. That’s the value. See the
Fig. 3.12 given below:

Fig.3.12: Internet-based Environment

The internet also puts fat client developers on a diet. Since most internet applications
are driven from the Web server, the application processing is moving off the client and
back onto the server. This means that maintenance and application deployment become
much easier, and developers don’t have to deal with the integration hassles of traditional
Client/Server (such as loading assorted middleware and protocol stacks).

The web browsers are universal clients. A web browser is a minimalist client that
interprets information it receives from a server, and displays it graphically to a user. The
client is simply here to interpret the server’s command and render the contents of an
HTML page to the user. Web browsers-like those from Netscape and Spyglass – are primarily
interpreters of HTML commands. The browser executes the HTML commands to properly
display text and images on a specific GUI platform; it also navigates from one page to
another using the embedded hypertext links. HTTP server produce platform independent
content that clients can then request. A server does not know a PC client from a Mac
client – all web clients are created equal in the eyes of their web server. Browsers are there
to take care of all the platform-specific details.

At first, the Web was viewed as a method of publishing informaton in an attractive format that could
be accessed from any computer on the internet. But the newest generation of the Web includes
programmable clients, using such programming environments as Sun Microsystem’s Java and
Microsoft’s ActiveX. With these programming environments, the Web has become a viable and
compelling platform for developing Client/Server applications on the Internet, and also platform of
choice for Client/Server computing. The World Wide Web (WWW) information system is an excellent
example of client server “done right”. A server system supplies multimedia documents (pages), and
runs some application programs (HTML forms and CGI programs, for example) on behalf of the
client. The client takes complete responsibility for displaying the hypertext document, and for the
user’s response to it. Whilst the majority of “real world” (i.e., commercial) applications of Client/
Server are in database applications.

Client Client

Server Client

Wide Area Network
(WWW/Internet)

Ebay Exhibit 1013, Page 1065 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Introduction to Client/Server Computing62

EXERCISE 3

1. What is the role of mainframe-centric model in Client/Server computing?
2. Explain Connectivity and Communication Interface Technology in Client/Server

application. How does transmission protocol work in Client/Server application?
3. Explain Peer to Peer architecture. What is the basic difference between Client/

Server and Peer to Peer Computing?
4. Draw the block diagram of Client/Server architecture and explain the advantage

of Client/Server computing with the help of suitable diagram.
5. Explain shared tiered Client/Server architecture.
6. How are connectivity and interoperability between Client/Server achieved? Explain.
7. Explain Client/Server architecture. What is the basic difference between Client/

Server and peer to peer computing?
8. Explain the three-level architecture of database management system. Also explain

the advantages and disadvantages of DBMS.
9. Draw the block diagram of Client/Server architecture and explain the advantage

of Client/Server computing with the help of suitable example.
10. What are the various ways available to improve the performance of Client/Server

computing?

Ebay Exhibit 1013, Page 1066 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 Client/Server and Databases 63

4.1 INTRODUCTION

Storing Data and the Database

 Server translates the ink/paper storage model into an electronic/magnetic media storage
model, but the fundamental arrangement is the same. The basic building block (his computer
equivalent of information-on-paper) is called data. Data is information in its simplest form,
meaningless until related together in some fashion so as to become meaningful. Related
data is stored on server’s disk under a unique name, called file. Related file are gathered
together into directories, and related directories are gathered together into larger and larger
directories until all the required information is stored in a hierarchy of directories on the
server’s hard disk.

The server’s “filing cabinet” is a database; it offers a number of advantages over the
paper model. A particular file can be searched electronically, even if only remembering a
tiny portion of the file contains.

A database, generally defined, is a flexible, hierarchical structure for storing raw data,
which facilitates its organization into useful information. All data on computer is stored in
one kind of database or another. A spreadsheet is a database, storing data in an arrangement
of characters and formatting instructions. What a database does, then, is breakdown
information into its most fundamental components and then create meaningful relationships
between those components. We depend on databases of varying configurations and
complexity for all our computerized information need.

The Fig. 4.1 illustrates the evolution of database technology from the first computer in
late 1950’s to the object-oriented database technologies.

Client/Server and Databases

44444

Ebay Exhibit 1013, Page 1067 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Introduction to Client/Server Computing64

Database trends

OODb
RDB

Hdb

Flat files

1990’S
1980’S

1970’S

1960’S

Fig.4.1: Evolution of Database Technologies

Using a database you can tag data, relating it to other data in several different ways,
without having to replicate the data in different physical locations. This ability to access
and organize data in a flexible manner without making physical copies of it (and thus
preserving the integrity of the information at its most basic level) is what has lead to the
increasing use of client/server technology as a widespread business information model.

Database System Architectures

Before proceeding to understand the Client/Server database it is quite essentials to
have a brief introduction about the other available architecture of database systems.

Client/Server database system: The functionality is spilted between a server and multiple
client systems, i.e., networking of computers allows some task to be executed on server
system and some task to be executed on client system.

Distributed database system: Geographically or administratively distributed data spreads
across multiple database systems.

Parallel database system: Parallel processing within computer system allows database
system activities to be speeded up, allowing faster response to transaction; queries can be
preceded in a way that exploits the parallelism offered by the underlying computer system.

Centralized database system: Centralized database systems are those run on a single
system and do not interact with other computer systems. They are single user database
systems (on a PC) and high performance database system (on high end server system).

4.2 CLIENT/SERVER IN RESPECT OF DATABASES

4.2.1 Client/Server Databases

Servers exist primarily to manage databases of information in various formats. Without
the database, servers would be impractical as business tools. True, you could still use them
to share resources and facilitate communication; but, in the absence of business database,
a peer-to-peer network would be a more cost effective tool to handle these jobs. So the
question of client server becomes a question of whether or not your business needs
centralized database. Sharing and communications are built on top of that.

Ebay Exhibit 1013, Page 1068 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 Client/Server and Databases 65

A Database Management System (DBMS) lies at the center of most Client/Server
systems in use today. To function properly, the Client/Server DBMS must be able to:

• Provide transparent data access to multiple and heterogeneous clients, regardless
of the hardware, software, and network platform used by the client application.

• Allow client request to the database server (using SQL requests) over the network.
• Process client data requests at the local server.
• Send only the SQL result to the clients over the network.
A Client/Server DBMS reduces network traffic because only the rows that match the

query are returned. Therefore, the client computer resources are available to perform
other system chores such as the management of the graphical user interface. Client/Server
DBMS differ from the other DBMSs in term of where the processing take place and what
data are sent over the network to the client computer. However, Client/Server DBMSs do
not necessarily require distributed data.

Client/Server systems changes the way in which we approach data processing. Data
may be stored in one site or in multiple sites. When the data are stored in multiple sites,
Client/Server databases are closely related to distributed databases.

4.2.2 Client/Server Database Computing

Client/Server database computing evolved in response to the drawbacks of the mainframe
(very expensive operating cost because they require specialized operational facilities demand
expensive support, and do not use common computer components), and PC/file server
computing environments (the drawback of PC-based computing is that all RDBMS
processing is done on the local PC, when a query is made to the file server, the file server
does not process the query, instead, it returns the data required to process the query, this
can result in decreased performance and increased network bottlenecks). By combining
the processing power of the mainframe and the flexibility and price of the PC, Client/
Server database computing encompasses the best of both words.

 Server running RDBMS
Database Processing
Business Logic

Query

Query
Result

Client
running
application

User Interface
Business Logic

Client
running
application

Client
running
appliication

Fig. 4.2: Client/Server Database Computing

Ebay Exhibit 1013, Page 1069 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Introduction to Client/Server Computing66

Client/Server database computing can be defined as the logical partition of the user
interface, database management, and business; logic between the client computer and server
computer. The network links each of these processes. The client computer, also called
workstation, controls the user interface. The client is where text and images are displayed
to the user and where the user inputs data. The user interface can be text based or graphical
based. The server computer controls database management. The server is where data is
stored, manipulated, and stored. In the Client/Server database environment, all database
processing occurs on the server.

Business logic can be located on the server, on the client, or mixed between the two.
This type of logic governs the processing of the application.

Client/Server database computing vs. Mainframe and PC/file server computing

Client/Server database computing is preferred in comparison to other database computing. Following
are the reasons for its popularity:

Affordability: Client/Server computing can be less expensive than mainframe computing. The
underlying reason is simple: Client/Server computing is based on an open architecture, which allows
more vendors to produce competing products, which drives the cost down. This is unlike mainframe-
based systems, which typically use proprietary components available only through a single vendor.
Also, Client/Server workstations and servers are often PC based. PC prices have fallen dramatically
over the years, which has led to reduce Client/Server computing costs.

Speed: The separation of processing between the client and the server reduces the network bottlenecks,
and allows a Client/Server database system to deliver mainframe performance while exceeding PC/
file server performance.

Adaptability: The Client/Server database computing architecture is more open than the proprietary
mainframe architecture. Therefore, it is possible to build an application by selecting an RDBMS from
one vendor, hardware from another vendor. Customers can select components that best fit their needs.

Simplified data access: Client/Server database computing makes data available to the masses.
Mainframe computing was notorious for tracking huge amounts of data that could be accessed only
by developers. With Client/Server database computing, data access is not limited to those who
understand procedural programming languages (which are difficult to learn and require specialized
data access knowledge). Instead, data access is providing by common software products tools that
hide the complexities of data access. Word processing, spreadsheet, and reporting software are just a
few of the common packages that provide simplified access to Client/Server data.

4.3 CLIENT/SERVER DATABASE ARCHITECTURE

Relational database are mostly used by Client/Server application, where the server is a
database server. Interaction between client and server is in the form of transaction in
which client makes database request and receives a database response.

In the architecture of such a system, server is responsible for maintaining the database,
for that purpose a complex database management system software module is required.

Ebay Exhibit 1013, Page 1070 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 Client/Server and Databases 67

Various types of applications that make use of the database can install on client machine.
The “glue” that ties client and server together is software that enables the client to make
request for access to the server’s database, that is SQL (Structured Query Language), shown
in the Fig. 4.3 given below:

Database Logic

Communication
&

DBMS
Software

Server OS

H/w Platform

Request

Response

Protocol
Interaction

Presentation
Services

Application
Logic

Communication
S/w

Client OS

H/w Platform

Server Client Workstation

Database

Fig.4.3: Client/Server Database Architecture

According to this architecture, all the application logic (software used for data analysis)
is residing on the client side, while the server is concerned with managing the database.
Importance of such architecture depends on the nature of application, where it is going to
be implemented. And the main purpose is to provide on line access for record keeping.
Suppose a database with million of records residing on the server, server is maintaining it.
Some user wants to fetch a query that result few records only. Then it can be achieved by
number of search criteria. An initial client query may yield a server response that satisfies
the search criteria. The user then adds additional qualifiers and issues a new query. Returned
records are once again filtered. Finally, client composes next request with additional
qualifiers. The resulting search criteria yield desired match, and the record is returned to
the client. Such Client/Server architecture is well-suited for such types of applications due
to:

• Searching and sorting of large databases are a massive job; it requires large disk
space, high speed CPU along with high speed Input/Output architecture. On the
other hand, in case of single user workstations such a storage space and high power
is not required and also it will be costlier.

• Tremendous traffic burden is placed on the network in order to move the million
of records to the clients for searching, then it is not enough for the server to just
be able to retrieve records on behalf of a client; the server needs to have database
logic that enables it to perform searches on behalf of a client.

Various types of available Client/Server Database Architecture are discussed in detail;
in the section given:

Ebay Exhibit 1013, Page 1071 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Introduction to Client/Server Computing68

(i) Process-per-client architecture.
(ii) Multi-threaded architecture.

(iii) Hybrid architecture.
(i) Process-per-client architecture: As the name reveals itself server process considers

each client as a separate process and provides separate address space for each user.
Each process can be assigned to a separate CPU on a SMP machine, or can assign
processes to a pool of available CPUs. As a result, consumes more memory and
CPU resources than other schemes and slower because of process context switches
and IPC overhead but the use of a TP Monitor can overcome these disadvantages.
Performance of Process-per-client architecture is very poorly when large numbers
of users are connecting to a database server. But the architecture provides the best
protection of databases.
Examples of such architecture is DB2, Informix, and Oracle6, Fig. 4.4 illustrates
such architecture.

Clients

Process

Process

Process

Server

Database

Fig.4.4: Process-per-client Architecture

(ii) Multi-threaded architecture: Architecture supports a large numbers of clients
running a short transaction on the server database. Provide the best performance
by running all user requests in a single address space. But do not perform well with
large queries. Multi-threaded architecture conserves Memory and CPU cycles by
avoiding frequent context switches. There are more chances of portability across
the platforms.
But it suffers by some drawback first in case of any misbehaved user request can
bring down the entire process, affecting all users and their requests and second
long-duration tasks of user can hog resources, causing delays for other users. And
the architecture is not as good at protection point of view. Some of the examples
of such architecture are: Sybase, Microsoft SQL Server, and illustrated in Fig. 4.5.

Ebay Exhibit 1013, Page 1072 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 Client/Server and Databases 69

Multi-threaded
Process

Fig.4.5: Multi-threaded Architecture

(iii) Hybrid architecture: Hybrid architecture provides a protected environment for
running user requests without assigning a permanent process for each user. Also
provides the best balance between server and clients. Hybrid architecture of
Client/Server Database is basically comprised of three components:

• Multi-threaded network listener: Main task of this is to assign client connection
to a dispatcher.

• Dispatcher processes: These processes are responsible for placing the messages
on an internal message queue. And finally, send it back to client when response
returned from the database.

• Reusable, shared, worker processes: Responsible for picking work off the message
queue and execute that work and finally places the response on an output
message queue.

Hybrid architecture of Client/Server database suffer from queue latencies, which have
an adversely affect on other users. The hybrid architecture of Client/Server database is
shown in Fig. 4.6 given below. Some of the examples of such architectures are Oracle7i
and Oracle8i/9i.

Clients

Process

Process Process

Process

ProcessProcess

Listener Shared
Dispatch

Pool

Shared Server
Process Pool

D
A
T
A
B
A
S
E

Server

Fig.4.6: Hybrid Architecture

Ebay Exhibit 1013, Page 1073 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Introduction to Client/Server Computing70

4.4 DATABASE MIDDLEWARE COMPONENT

As we have already discussed in Client/Server architecture that communication middleware
software provides the means through which clients and servers communicate to perform
specific actions. This middleware software is divided into three main components. As shown
in the Fig. 4.7 given below:

Client Front-end

API

Database Translator

Network Translator

Network Protocol

Database
Middleware

Fig.4.7: Database Middleware Components

• Application programming interface.
• Database translator.
• Network translator.
These components (or their functions) are generally distributed among several software

layers that are interchangeable in a plug and play fashion.
 The application-programming interface is public to the client application. The

programmer interacts with the middleware through the APIs provided by middleware
software. The middleware API allows the programmer to write generic SQL code instead
of code specific to each database server. In other words, the middleware API allows the
client process to be database independent. Such independence means that the server can
be changed without requiring that the client applications be completely rewritten.

The database translator translates the SQL requests into the specific database server
syntax. The database translator layer takes the generic SQL request and maps it to the
database server’s SQL protocol. Because a database server might have some non-standard
features, the database translator layer may opt to translate the generic SQL request into
the specific format used by the database server.

Ebay Exhibit 1013, Page 1074 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 Client/Server and Databases 71

If the SQL request uses data from two different database servers, the database translator
layer will take care of communicating with each server, retrieving the data using the common
format expected by the client application.

The network translator manages the network communication protocols. Remember
that database server can use any of the network protocols. If a client application taps into
the two databases, one that uses TCP/IP and another that uses IPX/SPX, the network
layer handles all the communications detail of each database transparently to the client
application. Figure 4.8 illustrates the interaction between client and middleware database
components.

Existence of these three middleware components reveals some benefits of using
middleware software; according to that clients can:

• Access multiple (and quite different) databases
• Be database-server-independent
• Be network-protocol-independent

Client
front-end

Middleware

Network
Protocol

Client
front-end

Middleware

Network
Protocol

Database
Front-end application

interfaces with
middleware application

The program makes the
generic SQL requests that

are translated to the specific
database server by the

middleware layer.

The Middleware then sends
the SQL requests to the

server through the network

Fig.4.8: Interaction Between Client/Server Middleware Components

4.5 ACCESS TO MULTIPLE DATABASES

To understand how the three components of middleware database work together, lets us
see how a client accesses two different databases servers. The Fig. 4.9 shows a client
application request data from an oracle database server (Oracle Corporation) and a SQL
Server database server (Microsoft Corporation). The Oracle database server uses SQL *Net
as its communications protocol with the client; the SQL Server uses Named Pipes as the
communications protocol. SQL *Net, a proprietary solution limited to Oracle database, is
used by Oracle to send SQL request over a network. Named Pipes is a inter-process
communication (IPC) protocol common to multitasking operating systems such as UNIX
and OS/2, and it is used in SQL Server to manage both client and server communications
across the network.

Ebay Exhibit 1013, Page 1075 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Introduction to Client/Server Computing72

As per the Fig. 4.9, it is notable that the Oracle server runs under the UNIX operating
system and uses TCP/IP as its network protocol. The SQL Server runs under the Windows
NT operating system and uses NetBIOS as its network protocol. In this case, the client
application uses a generic SQL query to access data in two tables: an Oracle table and a
SQL Server table. The database translator layer of middleware software contains two
modules, one for each database server type to be accessed.

Client Application

 API

 Oracle SQL Server

 SQL * Net Named Pipes

 TCP/IP

 NetBIOS

 Oracle

 SQL * Net

 TCP/IP

 SQL Server

 Named Pipes

 NetBIOS

Unix

Windows NT

 Network

 Network

Database
Communications
Protocol

Database
 Communications

Protocol

Fig.4.9: Multiple Database Server Access Through Middleware

Each module handles the details of each database communications protocol. The network
translator layer takes care of using the correct network protocol to access each database.
When the data from the query are returned, they are presented in a format common to the
client application. The end user or programmer need not be aware of the details of data
retrieval from the servers. Actually, the end user might not even know where the data
reside or from what type of DBMS the data were retrieved.

4.6 DISTRIBUTED CLIENT/SERVER DATABASE SYSTEMS

Data Distribution
Distributed data and distributed processing are terms used widely in the word of Client/

Server computing. The differences in these two can be easily understood by the two figures
4.10(a) and 4.10(b). Distributed data refers to the basic data stored in the server, which is
distributed to different members of the work team. While distributed processing refers to
the way different tasks are organized among members of the work team. If a set of
information handling tasks is thought of as a single step-by-step process and is split among

Ebay Exhibit 1013, Page 1076 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Ebay Exhibit 1013, Page 1077 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Introduction to Client/Server Computing74

DP DP DP

A1 A1 A2 A2

Site S1 Site S2 Site S3

Fig.4.11: Data Replication

For example, suppose database A is divided into two fragments A1 and A2. Within a
replicated distributed database, the scenario depicted in figure 4.11 is possible: fragment
A1 is stored at sites S1 and S2, while fragment A2 is stored at sites S2 and S3. The network
can be a LAN, a MAN, or a WAN. The user does not need to know the data location, how
to get there, or what protocols are used to get there.

• Data can be accessed and manipulated by the end user at any time in many ways.
Data accessibility increases because end users are able to access data directly and
easily, usually by pointing and clicking in their GUI-based system. End user can
manipulate data in several ways, depending on their information needs. For example,
one user may want to have a report generated in a certain format, whereas another
user may prefer to use graphical presentations. Powerful applications stored on the
end user’s side allow access and manipulation of data in a way that were never
before available. The data request is processed on the server side; the data formatting
and presentation are done on the client side.

• The processing of data (retrieval, storage, validation, formatting, presentation and
so on) is distributed among multiple computers. For example, suppose that a
distributed Client/Server system is used to access data from three DBMSs located
at different sites. If a user requests a report, the client front-end will issue a SQL
request to the DBMS server. The database server will take care of locating the data;
retrieving it from the different locations, assembling it, and sending it back to the
client. In this scenario, the processing of the data access and retrieval.

4.7 DISTRIBUTED DBMS

Client/Server database is commonly known for having distributed database capabilities.
But is not necessarily able to fulfil the entire required Client/Server characteristics that are
in need for particular system. Client/Server architecture refers to the way in which
computers interact to form a system. The Client/Server architecture features a user of
resources, or a client, and a provider of resources, or a server. The Client/Server architecture

Ebay Exhibit 1013, Page 1078 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 Client/Server and Databases 75

can be used to implement a DBMS in which the client is Transaction Processor and the
server is the Data Processor. Client/Server interaction in a DDBMS are carefully scripted.
The client (TP) interacts with the end use and sends a request to the server (DP). The
server receives, schedules, and executes the request, selecting only those records that are
needed by the client. The server then sends the data to the client only when the client
requests the data. The database management system must be able to manage the distribution
of data among multiple nodes. The DBMS must provide distributed database transparency
features like:

• Distribution transparency.
• Transaction transparency.
• Failure transparency.
• Performance transparency.
• Heterogeneity transparency.
Number of relational DBMS, which are started as a centralized system with its

components like user interface and application programs were moved to the client side.
With standard language SQL, creates a logical dividing point between client and server.
Hence, the query and transaction functionality remained at the server side. When DBMS
access is required, the program establishes a connection to the DBMS; which is on the
server side and once the connection is created, the client program can communicate with
the DBMS.

Exactly how to divide the DBMS functionality between client and server has not yet
been established. Different approaches have been proposed. One possibility is to include
functionality of a centralized DBMS at the server level. A number of relational DBMS
concepts have taken this approach, where an SQL server is provided to the clients. Each
client must then formulate the appropriate SQL queries and provide the user interface and
programming language interface functions. Since SQL is a relational standard, various SQL
servers possibly provided by different vendors, can accept SQL commands. The client may
also refer to a data dictionary that includes information on the distribution of data among
the various SQL servers, as well as modules for decomposing a global query into a number
of local queries that can be executed at the various sites. Interaction between client and
server might proceed as follows during the processing of an SQL query:

• The client passes a user query and decomposes it into a number of independent
site queries. Each site query is sent to the appropriate server site.

• Each server process the local query and sends the resulting relation to the client
site.

• The client site combines the results of the subqueries to produce the result of the
originally submitted query.

In this approach, the SQL server has also been called a transaction server or a Database
Processor (DP) or a back-end machine, whereas the client has been called Application

Ebay Exhibit 1013, Page 1079 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Introduction to Client/Server Computing76

Processor (AP) or a front-end machine. The interaction between client and server can be
specified by the user at the client level or via a specialized DBMS client module that is part
of DBMS package. For example, the user may know what data is stored in each server,
break-down a query request into site subqueries manually, and submit individual subqueries
to the various sites. The resulting tables may be combined explicitly by a further user
query at the client level. The alternative is to have the client module undertake these
actions automatically.

In a typical DBMS, it is customary to divide the software module into three levels:
L1: The server software is responsible for local data management at site, much like

centralized DBMS software.
L2: The client software is responsible for most of the distributions; it access data

distribution information from the DBMS catalog and process all request that
requires access to more than one site. It also handles all user interfaces.

L3: The communication software (sometimes in conjunction with a distributed
operating system) provides the communication primitives that are used by the
client to transmit commands and data among the various sites as needed. This
is not strictly part of the DBMS, but it provides essential communication
primitives and services.

The client is responsible for generating a distributed execution plan for a multisite
query or transaction and for supervising distributed execution by sending commands to
servers. These commands include local queries and transaction to be executed, as well as
commands to transmit data to other clients or servers. Hence, client software should be
included at any site where multisite queries are submitted. Another function controlled
by the client (or coordinator) is that of ensuring consistency of replicated copies of a data
item by employing distributed (or global) concurrency control techniques. The client must
also ensure the atomicity of global transaction by performing global recovery when certain
sites fail. One possible function of the client is to hide the details of data distribution from
the user; that is, it enables the user to write global queries and transactions as through the
database were centralized, without having to specify the sites at which the data references
in the query or transaction resides. This property is called distributed transparency. Some
DDBMSs do not provide distribution transparency, instead requiring that users beware of
the details of data distribution. In fact, there is some resemblance in between Client/Server
and DDBMS. The Client/Server system distributes data processing among several sites,
whether as the DDBMS distributes the data at different locations, involving some
complimentary and overlapping functions. DDBMS use distributed processing to access
data at multiple sites.

4.8 WEB/DATABASE SYSTEM FOR CLIENT/SERVER APPLICATIONS

Nowadays, almost all the MNC’s providing information and performing all their activities
online through internet or intranet. In this way, the information retrieval becomes quick

Ebay Exhibit 1013, Page 1080 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 Client/Server and Databases 77

and easier. It is obvious that all kinds of information the corporate world is providing
through web pages. Also through links on home page they provides the facilities to enter
into the corporate intranet, whether it is finance, human resource, sales, manufacturing
or the marketing department. Departmental information as well as services can be accessed
from web pages Even the web is powerful and flexible tool for supporting corporate
requirements but they provides a limited capability for maintaining a large, change base of
data. To get effectiveness on Intranet/Internet the organizations are connecting the web
services to a database with its own database management systems.

Web-database integration has been illustrated in Fig. 4.12 shown below; a client machine
that runs a web browser issues a request for information in the form of a URL (Uniform
Resource Locator) reference. This reference triggers a program at the web server that
issues the correct database command to a database server. The output returned to the web
server is converted into a HTML format and returned to the web browser.

Fig.4.12: Web Database System Integration

4.8.1 Web/Database vs. Traditional Database

The section given below lists the advantages of a web/database system compared to a more
traditional database approach.

• Administration: The only connection to the database server is the web server. The
addition of a new type of database server does not require configuration of all the
requisite drivers and interfaces at each type of client machine. Instead, it is only
necessary for the web server to be able to convert between HTML and the database
interface.

• Deployment: Browsers are already available across almost all platforms. Which
relieves the developer of the need to implement graphical user interface across
multiple customer machines and operating systems? In addition, developers can
assume that customers already have and will be able to use browsers as soon as
the internet web server is available. Avoiding deployment issues such as installation
and synchronized activation.

User submits a
URL request to
the Web Server

Send data to
the client

Client Web Server
Database

Server

Executes the
request

Retrieve data
from database

Ebay Exhibit 1013, Page 1081 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Introduction to Client/Server Computing78

• Speed: Large portion of the normal development cycle, such as development and
client design, do not apply to web-based projects. In addition, the text based tags
of HTML allow for rapid modification, making it easy to continually improve the
look and feel of the application based on the ser feedback. By contrast, changing
form or content of a typical graphical-based application can be a substantial task.

• Information presentation: Hypermedia base of the web enables the application
developers to employ whatever information structure is best for given application,
including the use of hierarchical formats in which progressive levels of detail are
available to the user.

The section follows lists the disadvantages of a web/database system compared to a
more traditional database approach.

• Functionality: Compared to the functionality available with a sophisticated graphical
ser interface, a typical web browser interface is limited.

• Operations: The nature of the HTTP is such that each interaction between a
browser and a server is a separate transaction, independent of prior or future
exchanges. Typically, the web server keeps no information between transactions
to track the states of the user.

EXERCISE 4

1. Explain the DBMS concept in Client/Server architecture in brief.
2. Is the structure of the data important to consider for processing environments?

Discuss.
3. If the two servers process the same database, can it be called a Client/Server system?

Explain with example.
4. One disadvantage of Client/Server system concerns control in a Database

Management environment – explain the disadvantages with an example.
5. “Resource sharing architecture is not suitable for transaction processing in Client/

Server environment.” Discuss.
6. Compare the object-oriented and relational database management system.
7. Discuss some types of database utilities, tools and their functions.
8. What are the responsibilities of the DBA and the database designers? Also discuss

the capabilities that should be provided by a DBMS.

Ebay Exhibit 1013, Page 1082 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 Client/Server Application Components 79

5.1 INTRODUCTION

A Client/Server application stand at a new threshold brought on by the exponential increase
of low cost bandwidth on Wide Area Networks, for example, the Internet and CompuServe;
and shows a new generation of network enabled, multi-threaded desktop operating systems,
for example, OS/2 Warp Connect and Windows 95. This new threshold marks the beginning
of a transition from Ethernet Client/Server to intergalactic Client/Server that will result in
the irrelevance of proximity. The center of gravity is shifting from single server, two tiers;
LAN based departmental Client/Server to a post scarcity form of Client/Server where
every machine on the global information highway can be both a client and a server. When
it comes to intergalactic Client/Server applications, the imagination is at the controls. The
promise of high bandwidth at very low cost has conjured visions of an information highway
that turns into the world’s largest shopping mall. The predominant vision is that of an
electronic bazaar of planetary proportions replete with boutiques, department stores,
bookstores, brokerage services, banks, and travel agencies. Like a Club Med, the mall will
issue its own electronic currency to facilitate round the clock shopping and business to
business transactions. Electronic agents of all kinds will be roaming around the network
looking for bargains and conducting negotiations with other agents. Billions of electronic
business transactions will be generated on a daily basis. Massive amounts of multimedia
data will also be generated, moved, and stored on the network.

5.2 TECHNOLOGIES FOR CLIENT/SERVER APPLICATION

Some key technologies are needed at the Client/Server application level to make all this
happen, including:

Client/Server Application
Components

55555

Ebay Exhibit 1013, Page 1083 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Introduction to Client/Server Computing80

• Rich transaction processing: In addition to supporting the venerable flat
transaction, the new environment requires nested transactions that can span
across multiple servers, long-lived transactions that execute over long periods of
time as they travel from server to server, and queued transactions that can be used
in secure business-to-business dealings. Most nodes on the network should be able
to participate in a secured transaction; super server nodes will handle the massive
transaction loads.

• Roaming agents: The new environment will be populated with electronic agents
of all types. Consumers will have personal agents that look after their interests;
businesses will deploy agents to sell their wares on the network; and sniffer agents
will be sitting on the network, at all times, collecting information to do system
management or simply looking for trends. Agent technology includes cross-platform
scripting engines, workflow, and Java-like mobile code environments that allow
agents to live on any machine on the network.

• Rich data management: This includes active multimedia compound documents
that you can move, store, view, and edit in-place anywhere on the network. Again,
most nodes on the network should provide compound document technology —
for example, OLE or OpenDoc – for doing mobile document management. Of
course, this environment must also be able to support existing record-based
structured data including SQL databases.

• Intelligent self-managing entities: With the introduction of new multi-threaded,
high-volume, network-ready desktop operating systems; we anticipate a world
where millions of machines can be both clients and servers. However, we can’t
afford to ship a system administrator with every $99 operating system. To avoid
doing this, we need distributed software that knows how to manage and configure
itself and protect itself against threats.

• Intelligent middleware: The distributed environment must provide the semblance
of a single-system-image across potentially millions of hybrid Client/Server machines.
The middleware must create this Houdini-sized illusion by making all servers on
the global network appear to behave like a single computer system. Users and
programs should be able to dynamically join and leave the network, and then
discover each other. You should be able to use the same naming conventions to
locate any resource on the network.

5.3 SERVICE OF A CLIENT/SERVER APPLICATION

In this section, the discussion is about most widely used five types of Client/Server
applications. In no way is this meant to cover all Client/Server applications available today.
The truth, there is no agreement within the computer industry as to what constitutes
Client/Server and therefore, what one expect or vendor may claim to be Client/Server
may not necessarily fit the definition of others.

Ebay Exhibit 1013, Page 1084 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 Client/Server Application Components 81

In general, Client/Server is a system. It is not just hardware or software. It is not
necessarily a program that comes in a box to be installed onto your computer’s hard drive
(although many software manufacturers are seeing the potential market for Client/Server
products, and therefore are anxious to develop and sell such programs). Client/Server is a
conglomeration of computer equipment, infrastructure, and software programs working
together to accomplish computing tasks which enable their users to be more efficient and
productive. Client/Server applications can be distinguished by the nature of the service or
type of solutions they provide. Among them five common types of solutions are as given
below.

••••• File sharing.
••••• Database centered systems.
••••• Groupware.
••••• Transactional processing.
••••• Distributed objects.

••••• File sharing: File sharing is Client/Server in its most primitive form. It is the
earliest form of computing over a network. Some purists would deny that file
sharing is Client/Server technology. In file sharing, a client computer simply sends
a request for a file or records to a file server. The server, in turn, searches its
database and fills the request. Usually, in a file sharing environment, the users of
the information have little need for control over the data or rarely have to make
modifications to the files or records. File sharing is ideal for organizations that
have shared repositories of documents, images, large data objects, read-only files,
etc.

••••• Database centered systems: The most common use of Client/Server technology
is to provide access to a commonly shared database to users (clients) on a network.
This differs from simple file sharing in that a database centered system not only
allows clients to request data and data-related services, but it also enables them
to modify the information on file in the database. In such systems, the database
server not only houses the database itself; it helps to manage the data by providing
secured access and access by multiple users at the same time. Database-centered
systems utilize SQL, a simple computer language which enables data request and
fulfillment messages to be understood by both clients and servers. Database-centered
Client/Server applications generally fall into one of two categories:
(i) Decision-Support Systems (DSS) or

(ii) Online Transaction Processing (OLTP).
Both provide data on request but differ in the kinds of information needs they fulfill.

(i) Decision-support systems (DSS): Decision-Support Systems (DSS) are used
when clients on the system frequently do analysis of the data or use the data to
create reports and other documents. DSS provides a “snapshot” of data at a

Ebay Exhibit 1013, Page 1085 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Introduction to Client/Server Computing82

particular point in time. Typically, DSS might be utilized for a library catalog,
WWW pages, or patient records in a doctor’s office.

(ii) Online transaction processing: Online Transaction Processing (OLTP) provides
current, up-to-the-minute information reflecting changes and continuous updates.
Users of an OLTP system typically require mission-critical applications that perform
data access functions and other transactions with a one to two seconds response
time.
Airline reservations systems, point-of-sale tracking systems (i.e., “cash registers” in
large department stores or super markets), and a stockbroker’s workstation are
OLTP applications.

Structured Query Language (SQL): SQL, pronounced “sequel”, stands for Structured
Query Language. It is a simple set of commands which allows users to control sets of data.
Originally developed by IBM, it is now the predominant database language of mainframes,
minicomputers, and LAN servers. It tells the server what data the client is looking for,
retrieves it, and then figures out how to get it back to the client.

SQL has become the industry standard for creating shared databases having received
the “stamp of approval” from the ISO and ANSI. That’s important since prior to this, there
was no one commonly agreed upon way to create Client/Server database applications.
With standardization, SQL has become more universal which makes it easier to set up
Client/Server database systems in multi-platform/multi-NOS environments.

* Groupware
Groupware brings together five basic technologies multimedia document management,

workflow, scheduling, conferencing, and electronic mail, in order to facilitate work activities.
One author defines groupware as “software that supports creation, flow, and tracking of
non-structured information in direct support of collaborative group activity.” Groupware
removes control over documents from the server and distributes it over a network, thus
enabling collaboration on specific tasks and projects. The collaborative activity is virtually
concurrent meaning that clients on the network, wherever they may be, can contribute,
produce, and modify documents, and in the end, using the management and tracking
features, synchronizes everything and produces a collective group product.

Multimedia Document Managements (MMDM)

With groupware, clients can have access to documents and images as needed. Multimedia
document management (MMDM) allows them to take those documents and modify them.
The modifications can take place in real time with several clients making changes and
modifications simultaneously, or they can be modified, stored on the server for review or
future action by other clients. MMDM is, in essence, an electronic filing cabinet that holds
documents in the form of text, images, graphics, voice clips, video, and other media.

Ebay Exhibit 1013, Page 1086 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 Client/Server Application Components 83

Workflow

Workflow refers to technologies which automatically route events (work) from one
program to the next in a Client/Server groupware environment. It determines what needs
to be done to complete a task or project, then merges, transforms, and routes the work
item through the collaborative process.

Workflow is especially applicable to routine tasks such as processing insurance claims
or income tax return preparation.

Scheduling (or Calendaring)

Scheduling or calendaring is native to groupware technology. It electronically schedules
things like meetings and creates shared calendars and “to do” lists for all users on client
workstations. It can work with the workflow function to monitor progress on a project
(i.e., monitoring the project completion timeline), schedule a meeting or conference among
key persons if needed, and notify them by automatic e-mail.

Conferencing

Conferencing is another native groupware application. This allows users at different
client workstations to hold “electronic meetings.” These meetings can be either “real time”
or “anytime.” In real time conferencing clients are interacting simultaneously. With
“anytime” conferencing, documents and messages are posted to bulletin boards and clients
can add their “two cents” in the form of comments, messages, or modifications.

Electronic Mail (E-mail)

E-mail is an essential element of groupware technology. It facilitates communication
among clients on a network. In a groupware environment, the e-mail can be integrated
with the multimedia document management, workflow, scheduling/calendaring, and
conferencing features.

••••• Transactional Processing
To create truly effective Client/Server solutions, the various components within the

system (the application software, the network operating system, utilities, and other programs)
need to work together in unison. If infrastructure and software which enable Client/Server
computing are musicians in a symphony, transaction processing would be the conductor.

••••• Distributed Objects
A distributed object is a vague term used to describe the technologies which allow

clients and servers from different technologies from different environments and platforms
to work seamlessly together. Its goal is to provide users with single-image, easy-to-use,
virtually transparent applications.

Distributed object technology is still in its infancy and has yet to fulfill its promise of
making Client/Server into the flexible, robust, intelligent, and self-managing systems that
most users want and expect. Distributed objects technology has great “potential” but at
this point in time, it remains just that potential.

Ebay Exhibit 1013, Page 1087 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Introduction to Client/Server Computing84

5.4 CATEGORIES OF CLIENT/SERVER APPLICATIONS

There are variety of ways to divide the processing between client and server. But the exact
distribution of data and application programming depends on the nature of the database,
the type of application supported, the availability of interoperable vendor equipment, and
the usage patterns within an organization. Depending on the database applications various
classes of Client/Server Application has been characterized.

(i) Host-based processing.
(ii) Server-based processing.

(iii) Client-based processing.
(iv) Cooperative processing.

(i) Host-based processing: Virtually all the processing is done on a central host,
often user interface is via a dumb terminal. It is mainly mainframe environment,
not true Client/Server computing. In such a processing’s workstations have very
limited role as shown in Fig. 5.1 given below:

Server Client

Presentation Logic
Application Logic
Database Logic

DBMS

Fig.5.1: Host-base Processing

(ii) Server-based processing: All the processing is done on the server, and server
is responsible for providing graphical user interface. A considerable fraction of the
load is on the server, so this is also called fat server model shown in Fig. 5.2 given
below:

Server Client

Application Logic
Database Logic

DBMS

Presentation Logic

Fig.5.2: Server-base Processing

Ebay Exhibit 1013, Page 1088 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 Client/Server Application Components 85

(iii) Client-based processing: Virtually all application processing may be done at the
client, with the exception of data validation routines and other database logic
functions that are best performed at the server. Some of the sophisticated database
logic functions residing on the client side. This architecture is the most common
Client/Server approach in current use. It enables the user to employ applications
tailored to local need shown in Fig 5.3 given below:

Server Client

Database Logic
DBMS

Presentation Logic
Application Logic

Database Logic

Fig. 5.3: Client-base Processing

(iv) Cooperative processing: Taking the advantage of the strengths of both client
and server machine and of the distribution of data, the application processing is
performed in an optimized fashion. Such a configuration of Client/Server approach
is more complex to set up and maintain. But in the long run, this configuration
may offer greater user productivity gain and greater network efficiency than others
Client/Server approaches. A considerable fraction of the load is on the client, so
this is also called fat client model. In case of some application development tools
this model is very popular shown in Fig. 5.4 given below:

Server Client

Application Logic
Database Logic

DBMS

Presentation Logic
Application Logic

Fig. 5.4: Cooperative Processing

5.5 CLIENT SERVICES

Any workstation that is used by a single user is a client, it has been noticed during last
decade the workstations are improving their performance surprisingly. Having same cost
you can purchase CPU that can perform more than 50 times, main memory approximately

Ebay Exhibit 1013, Page 1089 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Introduction to Client/Server Computing86

30 times and Hard Disk up to 40 times. These are considered as power factor of computer,
hence, as a result, more sophisticated applications can be run from the workstations. To
run various applications workstation uses the available operating systems like DOS, Windows
(98, 2000, NT) and UNIX or Linux, Mac, OS/2. In case of, network environment (LAN,
WAN) workstations also avails the services provided by the network operating systems.
Client workstations request services from the attached server. Whether this server is in
fact the same processor or a network processor, the application format of the request is the
same. Network operating system translates or adds the specifics required by the targeted
requester to the application request. Communication between all these running processes
are better described by Inter Process Communication (IPC), these processes might be on
the same computer, across the LAN, or WAN.

 Some of the main services that client performs (role of client) are listed below:
• Responsible for managing the user interface.
• Provides presentation services.
• Accepts and checks the syntax of user inputs. User input and final output, if any,

are presented at the client workstation.
• Acts as a consumer of services provided by one or more server processors.
• Processes application logic.
• The role of the client process can be further extended at the client by adding logic

that is not implemented in the host server application. Local editing, automatic data
entry, help capabilities, and other logic processes can be added in front of the
existing host server application.

• Generates database request and transmits to server.
• Passes response back to server.

But in client server model one thing is very obvious that the services are provided by
combination of resources using both the client workstation processor and the server
processor. For an example, let us take very common example of client server application, a
database server provides data in response to an SQL request issued by the workstation
application. Local processing by the workstation might calculate the invoice amount and
format the response to the workstation screen. Now, it is important to understand that a
workstation can operate as a client in some instances while acting as a server in other
instances. For example, in a LAN Manager environment, a workstation might act as a
client for one user while simultaneously acting as a print server for many users. In other
words we can say “the client workstation can be both client and server when all information
and logic pertinent to a request is resident and operates within the client workstation.”

Apart from these services discussed above some of the other important services that
are directly or indirectly attached with the client services are given below:

(a) Inter process communication.
(b) Remote services.
(c) Window services.

Ebay Exhibit 1013, Page 1090 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 Client/Server Application Components 87

(d) Dynamic data exchange.
(e) Object linking and embedding.
(f) Common object request broker architecture (CORBA).
(g) Print/Fax services.
(h) Database services.

5.5.1 Inter Process Communication
 The communication between two processes take place via buffer. The alternative way of
communication is the process of the interprocess communication. The simple mechanism
of this is synchronizing their action and without sharing the same address space. This play
an important role in the distribute processing environment.

While signals, pipes and names pipes are ways by which processes can communicate.
The more redefined method of inter process communication are message queues,
semaphores and shared memory. There are four types of mechanisms, involved for such a
communications:-

(i) Message passing.
(ii) Direct communication.

(iii) Indirect communication.
(iv) Remote procedures call.
(i) Message passing: This mechanism allows process to communicate without restoring

the shared data, for example in micro kernel, message is passed to communicate
in which services acts as an ordinary user where these services act outside the
kernel. At least, there are two processes involved in an IPC. See the Fig. 5.5 given
below:

P Q

QP

Send (Q, msg)

Send (P, msg)

Send (Q, msg)

Received (P, msg)

Fig.5.5: Message Passing

• Sending process for sending the message.
• Receiving process for receiving the message.

Messages sent by the processes are of two types, fixed and variable. For the
communication to be taking place, a link is to be set in between the two processes.

Ebay Exhibit 1013, Page 1091 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Introduction to Client/Server Computing88

(ii) Direct communication: In this mechanism of communication processes have to
specify the name of sender and recipient process name. This type of communication
has the following features:

• A link is established in between the sender and receiver along with full known
information of their names and addresses.

• One link must be established in between the processes.
• There is symmetry in between the communication of the processes.

(iii) Indirect communication: In indirect communication, messages are sending to the
mail box and then they are retrieved from mailbox, see the Fig 5.6 given below:

P Q
Sending Sending

Receiving

Mail Box/
Port

Receiving

Fig. 5.6: Indirect Communication

The role of the mailbox is quite similar to the role of the postman. The indirect
communication can also communicate with other processes via one or more mailbox.
The following features are associated with indirect communication:

• A link is established between a pair of process, if they share a mailbox.
• A link is established between more than one processes.
• Different number of links can be established in between the two communicating

processes.
Communication between the processes takes place by executing calls to the send and

receive primitive. Now there is several different ways to implement these primitives, they
can be “blocking” and “non-blocking”. The different possible combinations are:

• Blocking send: Sending the process is blocked until the message is received.
• Non-blocking send: In it process sends the message and then it resumes the

operation.
• Blocking receive: Receiver is blocked until the message is available.
• Non-blocking receive: The receiver receives either a valid message or a null.

(iv) Remote procedures call: RPC is a powerful technique for constructing distributed,
client-server based applications. The essence of the technology is to allow programs
on different machines to interact using simple procedure call or return semantics,
just as if the two programs were on the same machine. It is based on extending
the notion of conventional or local procedure calling, so that the called procedure
need not exist in the same address space as the calling procedure. The two processes
may be on the same system, or they may be on different systems with a network
connecting them. That is, the procedure call is used for access to remote services.

Ebay Exhibit 1013, Page 1092 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 Client/Server Application Components 89

In client-server based applications a binding is formed when two applications have
made a logical connection and are prepared to exchange commands and data. This
client server binding specifies how the relationship between a remote procedure
and the calling program will be established. By using RPC, programmers of distributed
applications avoid the details of the interface with the network. The transport
independence of RPC isolates the application from the physical and logical elements
of the data communications mechanism and allows the application to use a variety
of transports.

How RPC Works: An RPC mechanism is analogous to a function call. Like a function
call, when an RPC is made, the calling arguments are passed to the remote procedure and
the caller waits for a response to be returned from the remote procedure. Figure 5.7
illustrates the general architecture of remote procedure call mechanism that takes place
during an RPC call between two networked systems. The client makes a procedure call
that sends a request to the server and waits. The thread is blocked from processing until
either a reply is received, or it times out. When the request arrives, the server calls a
dispatch routine that performs the requested service, and sends the reply to the client.
After the RPC call is completed, the client program continues. RPC specifically supports
network applications.

Local
Application

RPC
Module

Stub

RPC
Module

Local
Procedure

Calls
Local

Response Local
Response

Client Application Remote Server Application

RPC

RPC

Stub

Client Application

Fig. 5.7: RPC Mechanism

A remote procedure is uniquely identified by the triple: (program number, version
number, procedure number), the program number identifies a group of related remote
procedures, each of which has a unique procedure number. A program may consist of one
or more versions. Each version consists of a collection of procedures which are available
to be called remotely. Version numbers enable multiple versions of an RPC protocol to be
available simultaneously. Each version contains a number of procedures that can be called
remotely. Each procedure has a procedure number. Procedure may or may not be transparent
to the user that the intention is to invoke a remote procedure on the same machine.

Ebay Exhibit 1013, Page 1093 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Introduction to Client/Server Computing90

A stub procedure is added in the callers users address space (or dynamically linked to it at
call time). This stub procedure creates a message that identifies the procedure being called
and includes the parameters. Stub procedure provides a perfectly local procedure call
abstraction by concealing from PROM programs the interface to the underlying RPC system.

RPC provides method for communication between processes residing over a distributed
system. Procedure call is used for access to remote services. Basic concepts about this
technique is that allowing programs residing on different machines to interact using simple
procedures in a similar way like two programs running on the same machine. That is
programmers feels an isolation from the network intricacies and got easy access to network
functions by using RPC systems services.

RPCs, are APIs, layered on top of a network IPC mechanism, allows users to
communicate users directly with each others. They allows individual processing
components of an application to run other nodes in the network. Distributed file systems,
system management, security and application programming depend on the capabilities of
the underlying RPC mechanisms. Server access control and use of a directory service are
common needs that can be met with RPCs. RPCs also manage the network interface and
handle security and directory services. Tools of RPC comprises of:

• A language and a compiler to produce portable source code.
• Some run time facilities to make the system architecture and network protocols

transparent to the application procedure.
The mechanism of RPC can be considered as a refinement of reliable, blocking message

passing. Figure 5.8 given below, illustrates the general architecture understanding.

Client Client

Application Application

RPC
Stub

Program

RPC
Stub

Program
Transport
Network

Transport
Network

Procedure

Invocation and return

Fig. 5.8: General Architecture

Here, the structure of RPC allows a client to invoke a procedure on the remote host
locally, which is done with the help of “stub” which is provided by the client. Thus, when
the client invokes the remote procedure RPC calls the appropriate stub, passes the parameters
to it, which are then provided, to remote procedure. This stub locates the port on the
server and marshalling involves packaging the parameter into a form, which may be
transmitted over network. The stub then transmits a message to server using message
passing. Now the message sent by the host is received at the client side with the help of
similar type of stub.

Ebay Exhibit 1013, Page 1094 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 Client/Server Application Components 91

Limitation of RPC: There are number of limitations associated with RPC given below.
1. RPC requires synchronous connections. If an application uses an RPC to link to

a server that is busy that time then application will have to wait for the data rather
than switching to other task.

2. Local procedure call fails under the circumstances where RPC can be duplicated
under and executed more than one, which is due to unreliable communication.

3. The communication in between the client and server is done with help of the
standard procedure calls; therefore some binding must take place during the link
load and execution, such that the process is replaced by the address. The RPC binds
the same thing to the client and server. A general problem that exists is that there
is no shared memory in between them so how they can come to know about the
address of the other system.

4. The binding information may be predetermined in the form of the port address,
at the compile time, a RPC call, that has a fix port number is associated with it.
Once a program is compiled, it then cannot change its port number.

5. Binding can be done dynamically by rendezvous mechanism. Typically an operating
system provides rendezvous demon requesting the port address of RPC, it needed
to execute. The port address is then returned and the RPC call may be sent to
the port until the process terminates.

5.5.2 Remote Services

In client server model applications can be invoked directly from the client to execute remotely
on a server. The workstation is responsible to provide various remote services. Among them
some services like remote login, remote command execution, remote backup services, remote
tape drive access and remote boot services, and remote data access are important. Software
available with Network Operating System is responsible to run on the client workstation to
initiate all these remote services. Client server technology supports full-powered workstations
with the capability for GUI applications consistent with the desktop implementation. Remote
command execution is when a process on a host cause a program to be executed on another
host, usually the invoking process wants to pass data to the remote program, and capture its
output also. From a client workstation backup services may be invoked remotely. Some of
the business functions such as downloading data from a host or checking a list of stock
prices might also be invoked locally to run remotely. To run the application, some of the
workstation clients (like X-terminals) do not have the local storage facility. In such scenario,
client provides appropriate software’s that are burned into E-PROM (Erasable Programmable
Read-Only Memory) to start the initial program load (IPL)that is known as Boot Process. If
E-PROM is inbuilt with X-terminals to hold the Basic Input/Output System services. Then
partial operating system will be able to load the remote software’s that provides the remaining
services and applications functions to the client workstation. This is known as remote boot
service provided by client workstation and X-terminals.

Ebay Exhibit 1013, Page 1095 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Introduction to Client/Server Computing92

Remote data access is one of the ISO multi-site transaction processing and
communication protocol used for heterogeneous data access. Using RDA technology, any
client running an application will be able to access more than one database residing at the
different servers.

5.5.3 Window Services

In client server application, operating system at the client workstation provides some
windows services, these services are capable of to move, view, activate, hide, or size a
particular window. This is very helpful in implementation of several applications because
a client workstation may have several windows open on-screen at a time. And also, all
these applications interact with message services provided to notify the user of events that
occur on a server. Application programs running on workstations have been written with
no windowing sensitivity. These application programs are written under virtual screen
assumptions, that virtual screens are generally dissimilar to the actual available physical
screens. Now with the help of interface software client application places data into virtual
screen, and then the windows services handles manipulation and placement of application
windows. Thus, pursuing that way application development has been enhanced
tremendously due to developers less involvement in managing or building the windowing
services. The client user is fully in grip of his desktop and can give priority to the most
important tasks at hand simply by positioning the window of interest to the workstation.

The NOS provides some software’s on the client workstation which is able to manage
the creation of pop-up windows that display alerts generated from remote servers. Print
complete, E-mail receipt, Fax available, and application termination are examples of alerts
that might generate a pop-up window to notify the client user.

5.5.4 Dynamic Data Exchange (DDE)

DDE is usually described as a conversation between two applications, a client application
and a server application. As we know that the client program is on that requests (receives)
the information, and the server is the one that response (supplies) it. DDE is a feature of
some operating systems (like Windows 98, OS/2) presentation manager that enable users
to pass data between applications to application. For an example, if an application wants to
connect a Microsoft Excel spreadsheet with Microsoft Word for windows report in such a
way that changes to the spreadsheet are reflected automatically in the report, in that case
Microsoft Word for windows is the client and Microsoft Excel is the server. A DDE
conversation always concerns a particular topic and a particular item. The topic and item
spell out the nature of the information that the client is requesting from the server. For an
example, if the Word for Windows document is to receive data automatically from a range
named IBM in a Microsoft Excel worksheet, named STOCKS.XLS then STOCKS.XLS is
the topic and IBM is the item. With most of the programs, a simplest way to set up a DDE
link is to copy a block of data from the server application to the clipboard, activate the
client application, move the insertion point to the location in the receiving document where

Ebay Exhibit 1013, Page 1096 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 Client/Server Application Components 93

you want the information to go, and then use a Paste Link command. With most server
programs, some times it requires to save data in a disk file before to paste it into a client
programs. Using Paste Link is the easiest way to establish a DDE link, but it’s not the only
way. Some programs that act as DDE clients have commands that allow you to set up a
DDE connection without first putting the source data on the clipboard. Many DDE
supporting applications also have macro language that you can use to establish DDE links.
This is true with MS Excel, Word, Powerpoint, dynacomm, and many other advanced
windows applications. A DDE link may be automatic or manual. An automatic link is
refreshed whenever the source data changes, provided both the client and server
applications are running. A manual link is refreshed only when you issue a command in
the client application.

5.5.5 Object Linking and Embedding (OLE)

Object Linking and Embedding two services collectively called as a single one, carried out
with simple edit menu procedures. OLE is a software package accesses data created from
another through the use of a viewer or launcher. These viewers and launchers must be
custom built for every application. With the viewer, users can see data from one software
package while they are running another package. Launchers invoke the software package
that created the data and thus provide the full functionality of the launched software. To
link with OLE copy data from OLE supporting program to the Clipboard. Then use the
paste link command in another OLE supporting program. To embed, follow the same
procedure but use Paste instead of Paste Link. Both programs must support OLE, the
program that supplies the data must support OLE as a server application, and the one that
receives the data must support as a client application. Some program may support OLE in
one mode or the other, (it means either as a server or as client only). For an example,
Paintbrush can act only as a server. Write and Card file can act only as OLE clients. Some
other programs are also available which support OLE in both modes. Most of the Windows
applications support OLE, and also the Microsoft has released its OLE 2.0 Software
Development Kit (SDK). The toolkit greatly simplifies OLE integration into third-party,
developed applications. Organizations wanting to create a consistent desktop are beginning
to use the OLE SDK as part of custom applications. OLE 2.0 extends OLE capabilities to
enable a group of data to be defined as an object and saved into a database. This object can
then be dragged and dropped into other applications and edited without the need to switch
back to the application which created it. This provides a more seamless interface for the
user. In OLE 2.0, the active window menu and toolbar change to that of 1-2-3. The user
deals only with the object, with no need to be aware of the multiple software being loaded.
Generally, the OLE is known as an extension to DDE that enables objects to be created
with the object components software aware (a reference to the object or one of its
components automatically launches the appropriate software to manipulate the data). Both
the techniques (OLE and DDE) require the user to be aware of the difference between

Ebay Exhibit 1013, Page 1097 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Ebay Exhibit 1013, Page 1098 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 Client/Server Application Components 95

Furthermore, any component that provides an implementation for an object is
considered as a server, at least where that object is concerned. If a component creates an
object and provides other components with visibility to that object (i.e., allows other
components to obtain references to that object), that components acts as server for that
object; any requests made on that object by other components will be processed by the
components that creates the object. Thus, a CORBA server means the components execute
methods for a particular object on behalf of other components (Clients). An application
component can provide services to other application components while accessing services
from other components. In that scenario, the components is acting as a client of one
component and as a server to the other components i.e., two components can simultaneously
act as client and server to each other, illustrated in Fig. 5.10, shown below. CORBA concepts
and its role in Client/Server architecture is discussed in more detail in Chapter 9.

Component X
(Client)

Component Y
(Client +Server)

Component Z1
(Server)

Component Z2
(Server)

Fig. 5.10: Acting as a Client and a Server

 5.5.7 Print/Fax Services

Client generates print/fax requests to the printer/fax machine without knowing
whether they are free or busy. In that task network operating system helps the client to
generate the requests. These requests are redirected by the NOS redirector software and
managed by the print/fax server queue manager. The users at the client workstation can
view the status of the print/fax queues at any time. And also some of the print/fax servers
acknowledge the client workstation when the print/fax request is completed.

 5.5.8 Database Services

Client/Server model provides integration of data and services allow clients to be isolated
from inherent complexities such as communication protocols. The simplicity of client server
architecture allows clients to make request that are routed to the database server (These
requests are made in the form of transactions). In other words, client application submit
database request to the server using SQL statements. Once received the server processes
the SQL statement and the request are returned to the client application. That is illustrated
in Fig. 5.11.

Ebay Exhibit 1013, Page 1099 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Introduction to Client/Server Computing96

Client Server

Query Result

Query

Fig. 5.11: Execution of SQL

 Hence, most of the database requests are made using the SQL syntax. Now, the SQL’s
have became the industry standard language supported by many vendors. Because the
language uses a standard form, the same application may be run on multiple platforms.
Client application can concentrate on requesting input from users, requesting desired data
from server, and then analyzing and presenting this data using the display capabilities of
the client workstation. Furthermore, client applications can be designed with no dependence
on the physical location of the data. If the data is moved or distributed to the other database
servers, the application continues to function with little or no modification. Client
applications can be optimized for the presentation of data and server can be optimized for
the processing and storage of data. Application development tools are used to construct
the user interfaces (interface of clients with server and also interface of front-end user to
the back-end server); they provide graphical tools that can be used to construct interfaces
without any programming. Examples of such tools are Visual Basic, Borland Delphi, Magic,
and Power Builder. Some application programs (spreadsheet and statistical–analysis
packages) uses the client server interface directly to access data from back-end server.

5.6 SERVER SERVICES

The server is responsible for controlling and providing shared access to available server
resources. Remote workgroups have needed to share these resources when they are
connected with server station through a well-managed network. The applications on a
server must be isolated from each other so that an error in one application cannot damage
another application. Furthermore, the server is responsible for managing the server-
requester interface so that an individual client request response is synchronized and directed
back only to the client requester. This implies both security when authorizing access to a
service and integrity of the response to the request. For a Client/Server applications servers
performs well when they are configured with an operating system that supports shared
memory, application isolation, and preemptive multitasking (an operating system with
preemptive multitasking enables a higher priority task to preempt or take control of the
processor from a currently executing, lower priority task). These preemptive multitasking
ensures that no single task can take overall the resources of the server and prevent other

Ebay Exhibit 1013, Page 1100 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 Client/Server Application Components 97

tasks from providing service. There must be a means of defining the relative priority of the
tasks on the server. These are specific requirements to the Client/Server implementation.

One of the prime server characteristic is that it must support for multiple simultaneous
client request for service. So that, the server must provide shared memory services and
multitasking support. In that respect, the following server platform provides best processors
for client server implementation are IBM System/370, DEC VAX , Intel and RISC (Reduced
Instruction Set Computers like Sun SPARC, IBM/Motorola PowerPC, HP PA RISC, SGI
MIPS, and DEC Alpha). Some of the main operations that server perform are listed below:

• Accepts and processes database requests from client.
• Checks authorization.
• Ensure that integrity constraints are not violated.
• Performs query/update processing and transmits response to client.
• Maintains system catalog.
• Provide concurrent database access.
• Provides recovery control.
Apart from these services discussed above some of the other important services that

are directly or indirectly attached with the server services in a network operating system
environment are given below:

(i) Application services.
(ii) File services.

(iii) Database services.
(iv) Print/fax/image services.
(v) Communications services.

(vi) Security systems services.
(vii) Network management services.
(viii) Server operating system services.

(i) Application services: Application servers provide business services to support the
operation of the client workstation. In the Client/Server model these services can
be provided for entire partial business functions that are invoked by IPC (Inter
Process Communication) or RPCs request for service. A collection of application
servers may work in concert to provide an entire business function. For an example,
in a inventory control system the stock information may be managed by one
application server, sales information are maintained by another application server,
and purchase information are maintained by a third application server. On larger
and more complicated systems, server responsibility may be distributed among
several different types of servers. All these servers are running at different operating
systems on various hardware platforms and may use different database servers. The

Ebay Exhibit 1013, Page 1101 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Introduction to Client/Server Computing98

client application invokes these services without consideration of the technology
or geographic location of the various servers.

(ii) File services: A file server can store any type of data, and so on simpler systems,
may be the only server necessary. Space for storage is allocated, and free space is
managed by the file server. Catalog functions are also provided by the file server
to support file naming and directory structure.
File services are responsible to handle access to the virtual directories and files
located on the client workstation and to the server’s permanent storage. Redirection
software provides these services which are installed as part of client workstation
operating system. Finally, all clients’ workstation requests are mapped into the
virtual pool of resources and redirected as necessary to the appropriate local or
remote server. The file services provide this support at the remote server processor.
File server manages databases, software’s, shared data, and backups that are stored
on tape, disk, and optical storage devices. In order to minimize the installation and
maintenance effort of software, software should be loaded directly from the server
for execution on the client workstations. New versions of any application software
can be updated on the server and made immediately available to all users.

(iii) Database services: Early database servers were actually file servers with a different
interface. Products such as dBASE, Clipper, FoxPro, and Paradox execute the
database engine primarily on the client machine and use the file services provided
by the file server for record access and free space management. These are new
and more powerful implementations of the original flat-file models with extracted
indexes for direct record access. Currency control is managed by the application
program, which issues lock requests and lock checks, and by the database server,
which creates a lock table that is interrogated whenever a record access lock check
is generated. Because access is at the record level, all records satisfying the primary
key must be returned to the client workstation for filtering. There are no facilities
to execute procedural code at the server, to execute joins, or to filter rows prior
to returning them to the workstation. This lack of capability dramatically increases
the likelihood of records being locked when several clients are accessing the same
database and increases network traffic when many unnecessary rows are returned
to the workstation only to be rejected.
The lack of server execution logic prevents these products from providing automatic
partial update backout and recovery after an application, system, or hardware
failure. For this reason, systems that operate in this environment require an
experienced system support programmer to assist in the recovery after a failure.
When the applications are very straight forward and require only a single row to
be updated in each interaction, this recovery issue does not arise. However, many
Client/Server applications are required to update more than a single row as part
of one logical unit of work.

Ebay Exhibit 1013, Page 1102 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 Client/Server Application Components 99

Client/Server database engines such as Sybase, IBM’s Database Manager, Ingres, Oracle,
and Informix provide support at the server to execute SQL requests issued from the client
workstation. The file services are still used for space allocation and basic directory services,
but all other services are provided directly by the database server. Relational database
management systems are the current technology for data management. Figure 4.1 charts
the evolution of database technology from the first computers in the late 1950s to the
object-oriented database technologies that are becoming prevalent in the mid-1990s.The
following DBMS features must be included in the database engine:

• Performance optimization tools.
• Dynamic transaction backout.
• Roll back from, roll forward to last backup.
• Audit file recovery.
• Automatic error detection and recovery.
• File reclamation and repair tools.
• Support for mirrored databases.
• Capability to split database between physical disk drives.
• Remote distributed database management features.
• Maintenance of accurate and duplicate audit files on any LAN node.
In the Client/Server implementation, database processing should offload to the server.

Therefore, the database engine should accept SQL requests from the client and execute
them totally on the server, returning only the answer set to the client requestor. The
database engine should provide support for stored procedures or triggers that run on the
server.

The Client/Server model implies that there will be multiple concurrent user access.
The database engine must be able to manage this access without requiring every developer
to write well-behaved applications. The following features must be part of the database
engine:

• Locking mechanisms to guarantee data integrity.
• Deadlock detection and prevention.
• Multithreaded application processing
• User access to multiple databases on multiple servers.

(iv) Print/fax/image services: High-quality printers, workstation-generated faxes,
and plotters are natural candidates for support from a shared server. The server
can accept input from many clients, queue it according to the priority of the request
and handle it when the device is available. Many organizations realize substantial
savings by enabling users to generate fax output from their workstations and queue
it at a fax server for transmission when the communication costs are lower.
Incoming faxes can be queued at the server and transmitted to the appropriate
client either on receipt or on request. In concert with workflow management
techniques, images can be captured and distributed to the appropriate client

Ebay Exhibit 1013, Page 1103 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Introduction to Client/Server Computing100

workstation from the image server. In the Client/Server model, work queues are
maintained at the server by a supervisor in concert with default algorithms that
determine how to distribute the queued work.
Incoming paper mail can be converted to image form in the mail room and sent
to the appropriate client through the LAN rather than through interoffice mail.
Centralized capture and distribution enable images to be centrally indexed. This
index can be maintained by the database services for all authorized users to query.
In this way, images are captured once and are available for distribution immediately
to all authorized users. Well-defined standards for electronic document management
will allow this technology to become fully integrated into the desktop work
environment. There are dramatic opportunities for cost savings and improvements
in efficiency, if this technology is properly implemented and used. Chapter 9
discusses in more detail the issues of electronic document management.

(v) Communications services: Client/server applications require LAN and WAN
communication services. Basic LAN services are integral to the NOS. WAN services
are provided by various communications server products. Chapter 5 provides a
complete discussion of connectivity issues in the Client/Server model.

(vi) Security systems services: Client/server applications require similar security
services to those provided by host environments. Every user should be required
to log in with a user ID and password. If passwords might become visible to
unauthorized users, the security server should insist that passwords be changed
regularly. The enterprise on the desk implies that a single logon ID and logon
sequence is used to gain the authority once to access all information and process
for the user has a need and right of access. Because data may be stored in a less
physically secure area, the option should exist to store data in an encrypted form.
A combination of the user ID and password should be required to decrypt the data.
New options, such as floppy less workstation with integrated Data Encryption
Standard (DES) coprocessors, are available from vendors such as Beaver Computer
Company. These products automatically encrypt or decrypt data written or read
to disk or a communication line. The encryption and decryption are done using
the DES algorithm and the user password. This ensures that no unauthorized user
can access stored data or communications data. This type of security is particularly
useful for laptop computers participating in Client/Server applications, because
laptops do not operate in surroundings with the same physical security of an office.
To be able to access the system from a laptop without properly utilizing an ID
number and password would be courting disaster.

5.7 CLIENT/SERVER APPLICATION: CONNECTIVITY

The communication middleware software provides the means through which clients and
servers communicate to perform specific actions. It also provides specialized services to

Ebay Exhibit 1013, Page 1104 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 Client/Server Application Components 101

the client process that insulate the front-end applications programmer from the internal
working of the database server and network protocols. In the past, applications programmers
had to write code that would directly interface with specific database language (generally
a version of SQL) and the specific network protocol used by the database server. For
example, when writing a front-end application to access an IBM OS/2 database manager
database, the programmer had to write SQL and Net BIOS (Network Protocol) command
in the application. The Net BIOS command would allow the client process to establish a
session with the database server, send specific control information, send the request, and
so on. If the same application is to be use with a different database and network, the
application’s routines must be rewritten for the new database and network protocols. Clearly
such a condition is undesirable, and this is where middleware comes in handy. Here
definition of middleware is based on the intended goals and main functions of this new
software category. In chapter three communication middleware is also discussed, further
role and mechanism of middleware is discussed in this section.

5.7.1 Role and Mechanism of Middleware

Role of middleware component can be exactly understand by the way in which Client/
Server computing being used , we know that there are number of approaches are there like
host-based processing, server based processing, cooperative processing and client based
processing. And all these depend on application functionality being used in Client/Server
architecture. A Middleware component resides on both Client/Server machine enabling
an application or user at a client to access a variety of services provided by server.

In other words, we can say middleware provides basis for logical view of Client/Server
architecture. Morever, middleware enables the realization of the promises of distributed Client/
Server computing concepts. See the Fig. 5.12 (a) and (b) that depicts the role and logical
view of middleware in Client/Server architecture. The entire system of the architecture
represents a view of a set of applications and resources available to clients. Any client need
not be concerned with the location of data or indeed the location of the application.

Client Server

Middleware Interaction

Protocol Interaction

Middleware

Hardware
Operating System
Application Logic

Presentation Services

Hardware
Operating System

Application Services

Communication
s/w

Middleware

Communication
s/w

Fig. 5.12(a): Middleware Role in Client/Server Architecture

Ebay Exhibit 1013, Page 1105 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Introduction to Client/Server Computing102

Operating System
Hardware

Operating System
Hardware

Platform Interface

Middleware

Application Programming
Interface

Application Application

Fig. 5.12(b): Middleware Role in Client/Server Architecture

All applications operate over a uniform application programming interface. The
middleware is responsible for routing client requests to the appropriate server. Also
middleware used to overcome operating system as well as network incompatibility. This
middleware running on each network component ensures that all network users have
transparent access to applications and resources of any networks.

5.8 CLIENT/SERVER APPLICATION: LAYERED ARCHITECTURE

An essential factor in the success of a client/server environment is the way in which the
user interacts with the system as a whole. Thus the design of the user interface to the
client machine is critical. In most client/server systems, there is heavy emphasis on providing
a graphical user interface that is easy to use, easy to learn, yet powerful and flexible. Section
follow covers the design issues of client/server architecture. And also designing issues
associated with layered application architecture with their interfaces in the three-layered
application architecture.

5.8.1 Design Approach

In client/server architecture as a design approach, the functional components of an
application are partitioned in a manner that allows them to be spread and executed across
different computing platforms, and share access to one or more common repositories. Client/
server architecture is therefore a design approach that distributes the functional processing
of an application across two or more different processing platforms. The phrase ‘client/
server’ reflects the role played by an application’s functions as they interact with one
another. One or more of these functions is to provide a service, typically in the form of a
database server that is commonly used by other functions across the application(s). In this
regard, it is important to discuss the concept of ‘layered application architecture’ .

Application design architecture plays a crucial role in aiding development of robust
applications. Figure. 5.13 given below shows the three layers of any fairly large business

Ebay Exhibit 1013, Page 1106 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 Client/Server Application Components 103

application. The most detailed layer is the database layer, the centre of an application. The
next higher layer is the business rule layer. Finally, the highest level of abstraction is the
document layer. This is the layer visible to users of the application.

Fig. 5.13: Three-layered Application Architecture

Designing a client/server application offers challenges not normally faced by developers
of mainframe-oriented multiuser applications. To realize full benefits of client/server
architecture, developers need to incorporate a greater potential for functionality and data
distribution in the fundamental design of their applications.

A client/server application operates across multiple platforms, i.e. a server platform for
the database, and a client platform for the application. At this minimum level of utilization,
the design of client/server does not differ much from its mainframe counterpart, and the
physical issues faced by developers on both the platforms are primarily those of packaging.
But to take full advantage of client/server paradigm, developers need to address issues of
functional distribution for their applications, not just across client and server platform but
also across all nodes of the network. Issues surrounding functional distribution constitute
the single biggest difference between physical designs of multiuser and client/server
application.

5.8.2 Interface in Three Layers

The key to use a three-layered application architecture is to understand the interfaces
used in all its three layers. Figure 5.14 illustrates these interfaces. They are:

• Graphical user interface.
• Process request interface.
• Transaction and query manager interface.
An interface enables a component in one layer to communicate with a component in

another layer; it also enables a component to interact with another component in the same
layer. In Fig. 5.14 communication between components in the same layer is indicated by a
semicircular arrow. Moreover, we can say that this describes a collection of mutually
cooperating components that make request to each other, both within and across layers,
with its components working together thus, and processing various requests—wherever
they comes from; a business application comes to life.

Rules

DocumentDatabase

Business

Ebay Exhibit 1013, Page 1107 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Introduction to Client/Server Computing104

Fig. 5.14: Interface in a Three-layered Application Architecture

Cooperating components in a layered application design provide the following:
• A framework for building highly flexible applications that can be changed

easily to meet the changing needs of business.
• A high level of software reuse.
• Easier development of large, complex applications that can sustain high

throughput levels in both decision support and transaction environments.
• Easier development of distributed applications that support centrally and

self-managed teams.

EXERCISE 5

1. In Client/Server computing, explain the following with example in detail
(a) Dynamic Data Exchange
(b) RPC, Remote Procedure Call
(c) Remote Boot Service
(d) Diskless Computer
(e) Object-linking and embedding

2. Explain the role of client in Client/Server computing and also explain the various
services provide by client.

3. Explain the server functionality, in detail, for Client/Server computing.
4. What is Interring Process Communication (IPC) and what are services provided

by IPC? Also explain various protocol used for IPC.
5. What was the primary motivation behind the development of the RPC facility?

How does a RPC facility make the job of distributed applications programmers
simpler?

6. Explain basic Interprocess Communication Mechanism. Explain Port Management
and Message Passing in IPC.

7. What are the main similarities and differences between the RPC model and the
ordinary procedure call model?

8. Why do most RPC system support call by value semantics for parameter passing?
9. Explain the difference between the terms service and server.

10. Explain the role of server in Client/Server computing and also explain the various
services provided by server.

GUI and OLE
Transactions & Queries

Process request

Desktop
Application

Business
Rules Database

Ebay Exhibit 1013, Page 1108 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 System Development 105

6.1 HARDWARE REQUIREMENTS

6.1.1 PC Level Processing Units

UNIX Workstations

The user running Client/Server applications form DOS or Windows typically run only a
single business process at a time. And also UNIX has locked the familiar personal productivity
tools such as word processors, e-mail, spreadsheet, presentation graphics and database
management system, but recently few personal productivity applications were in place,
user needs have increased with providing reliability with multitasking. Many Unix
implementation with application execution offers the best of all words for the desktop
user reliability and functionality. Nowadays Unix supports many of the most familiar
personal computer applications like WordPerfect, DBASE IV, Lotus 1-2-3. Unix has become
the workstation of choice for Client/Server environment on the basis of cost performance
rather than functionality.

X-Window System

The X-Window System is an open, cross-platform, Client/Server system for managing
a windowed graphical user interface in a distributed network. In X-Window, the Client/
Server relationship is reversed from the usual. Remote computers contain applications
that make client requests for display management services in each PC or workstation. X-
Window is primarily used in networks of interconnected mainframes, minicomputers, and
workstations. It is also used on the X-terminal, which is essentially a workstation with
display management capabilities but without its own applications. (The X-terminal can be
seen as a predecessor of the network PC or thin client computer).

System Development

66666

Ebay Exhibit 1013, Page 1109 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Introduction to Client/Server Computing106

X-Window System (commonly X11 or X) is a windowing system for bitmap displays. It
provides the standard toolkit and protocol to build graphical user interfaces on Unix, Unix-
like operating systems, and OpenVMS; and almost all modern operating systems support
it. X provides the basic framework for a GUI environment to do drawing and moving
windows on the screen and interacting with a mouse and keyboard. X does not mandate
the user interface, individual client programs handle this. As such, the visual styling of X-
based environments varies greatly; different programs may present radically different
interfaces. X provides network transparency in which the machine where application
programs (the client applications) run can differ from the user’s local machine (the display
server).

X-Terminal

An X-terminal is typically a diskless terminal especially designed to provide a low-cost
user interface for applications that run in a network X-server as part of a distributed X-
Window System. Typically, X-terminals are connected to a server running a UNIX-based
operating system in a mainframe, minicomputer, or workstation. A terminal specially
designed to run an X-server which allows users to display the output of programs running
on another computer using the X-protocol over a network.

The X-terminal concept is essentially like tel-neting into a machine and then running
some application there. All the working is done on the machine that you are connecting to
but the display is shown on your machine. That just gives you access to console mode text
applications, whereas an X-terminal setup will give you access to the entire range of GUI
applications. All applications will be run on the server but the display will be exported to
your computer. The machine that you setup as the X-terminal just serves as a display. This
setup works very well with diskless workstations and older computers. An X-terminal is
a great way to expand the computing presence in a home or office.

An X-terminal consists of a piece of dedicated hardware running an X-server as a thin
client. This architecture became popular for building inexpensive terminal parks for many
users to simultaneously use the same large server. X-terminals can explore the network
(the local broadcast domain) using the X-Display Manager Control Protocol to generate a
list of available hosts that they can run clients from. The initial host needs to run an X-
display manager. Dedicated (hardware) X-terminals have become less common; a PC with
an X-server typically provides the same functionality at a lower cost.

X-Server

 An X-server is a server of connections to X-terminal in a distributed network that
uses the X-Window System. From the terminal user’s point-of-view, the X-server may
seem like a server of applications in multiple windows. Actually, the applications in the
remote computer with the X-server are making client request for the services of a windows
manager that runs in each terminal. X-servers (as part of the X-Window System) typically
are installed in a UNIX-based operating system in a mainframe, minicomputer, or
workstation.

Ebay Exhibit 1013, Page 1110 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 System Development 107

The X-server is the software that handles all the interactions between the GUI and
hardware used. Windows equivalent would be the graphics card driver. But X is a lot more
than that. Here it becomes a server with whom clients get connected. Clients would be the
various GUI applications like GNOME, KDE etc. communicating through network
protocols. This architecture allows a lot of flexibility. The clients can be run on any machine
but the display can be routed to another machine. The X-server provides the following
services.

• Window services: Clients ask the server to create or destroy windows, to change
their attributes, to request information about them, etc.

• Input handling: Keyboard and mouse input are detected by the server and sent to
clients.

• Graphic operations: Clients ask the server to draw pixels, lines, strings, etc. The
client can ask information about fonts (size, etc.) and can ask transfer of graphic
content.

• Resource management: The X-resource manager provides a content addressable
database for clients. Clients can be implemented so they are customizable on a
system and user basis.

The X-Client/Server model and network transparency

In X-Client/Server model, an X-server communicates with various client programs. The
server accepts requests for graphical output (windows) and sends back user input (from
keyboard, mouse, or touchscreen). The server may function as any one of the following:

• an application displaying to a window of another display system.
• a system program controlling the video output of a PC.
• a dedicated piece of hardware.
This Client/Server terminology the user’s terminal as the “server”, the remote

applications as the “clients” often confuses new X users, because the terms appear reversed.
But X takes the perspective of the program, rather than the end-user or the hardware. The
local X display provides display services to programs, so it is acting as a server; the remote
program uses these services, thus it acts as a client.

In above example, the X-server takes input from a keyboard and mouse and displays to
a screen. A web browser and a terminal emulator run on the user’s workstation, and a
system updater runs on a remote server but is controlled from the user’s machine. Note
that the remote application runs just as it would locally.

The communication protocol between server and client operates network-transparently.
The client and server may run on the same machine or on different ones, possibly with
different architectures and operating systems, but they run the same in either case. A
client and server can even communicate securely over the Internet by tunneling the
connection over an encrypted connection. To start a remote client program displaying to a
local server, the user will typically open a terminal window and telnet or ssh to the remote

Ebay Exhibit 1013, Page 1111 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Introduction to Client/Server Computing108

machine, tell it to display to the user’s machine (e.g., export DISPLAY=[user’s machine]:0
on a remote machine running bash), then start the client. The client will then connect to
the local server and the remote application will display to the local screen and accept input
from the local input devices. Alternately, the local machine may run a small helper program
to connect to a remote machine and start the desired client application there. Practical
examples of remote clients include:

• administering a remote machine graphically.
• running a computationally-intensive simulation on a remote Unix machine and

displaying the results on a local Windows desktop machine.
• running graphical software on several machines at once, controlled by a single

display, keyboard and mouse.

 Keyboard Mouse Screen

User Workstations

Remote Machine X-Server

 X-Client

(Browser)

 X-Client

(X-Terminal)
Network

 X-Client

Fig. 6.1: X-Client-Server Model

Light Pen
Light Pen is an input device that utilizes a light-sensitive detector to select objects on a

display screen. It is similar to a mouse, except that with a light pen you can move the
pointer and select objects on the display screen by directly pointing to the objects with the
pen. A light pen is pointing device that can be used to select an option by simply pointing
at it, drawing figures directly on the screen. It has a photo-detector at its tip. This detector
can detect changes in brightness of the screen. When the pen is pointed at a particular spot
on the screen, it records change in brightness instantly and inform the computer about
this. The computer can find out the exact spot with this information. Thus, the computer
can identify where you are pointing on the screen.

Light pen is useful for menu-based applications. Instead of moving the mouse around
or using a keyboard, the user can select an option by pointing at it. A light pen is also
useful for drawing graphics in CAD.

Ebay Exhibit 1013, Page 1112 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 System Development 109

Fig. 6.2: Light Pen

Digital Pen

A digital pen writes on paper like any normal pen. The difference is that it captures
everything you write. The digital pens include a tiny camera, some memory, a CPU and a
communications unit. The paper is also special in that it needs to have an almost invisible
dot pattern printed on it. You could use your laser to print this or get a specialist stationery
printer to do it. Many paper products from 3M yellow sticky notes to black n’ red notebooks
are already available with the pattern pre-printed on them. The pen senses the pattern and
this is how it knows where on the page you are writing. Most importantly using the digital
pen is as easy as a normal pen with the quite significant benefit that a digital record is
simultaneously created as you write.

They are available with desktop software applications integrating the pen with Microsoft
Word and Outlook as well as a searchable notebook application. The pen is able to sent
what you have written to a computer for storage and processing, or as an e-mail or fax.
Applications range from: removing the need to re-key forms, to automatically storing and
indexing pages written in a notebook. You can even send faxes and emails by simply writing
them with a pen. Example of digital pens is Logitech io2 or a Nokia SU-1B pen.

Notebook Computers

If the portable computers are classified, they are of three types: laptops, notebooks and
palmtops. Notebook computers are about the size of a notebook (approx. 21* 29.7 cm) and
weight about 3 to 4 kg. Notebooks also offer the same power as a desktop PC. Notebooks
have been designed to overcome the disadvantage of laptops that is they are bulky.
Notebook/Portable computers are productivity-enhancement tools that allow busy
execution to carry their office work with them. They are smaller in size. Several innovative
techniques are being used to reduce size. Like VDU is compact, light, and usesless power,
LCD (liquid crystal display that are light and consume very little power are used. Further

Ebay Exhibit 1013, Page 1113 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Introduction to Client/Server Computing110

numbers of keys on keyboard are reduced and also they are made to perform multiple
functions. The size of hard disk is reduced is of 2.5" in diameter but capable of storing
large quantities of data with weight only 300 gms. Examples of notebooks are Conture 3/
20 from Compaq, and AcerAnyWhere from Zenith Computers.

6.1.2 Storage Devices
Storage refers to the media and methods used to keep information available for later use.
Some things will be needed right away while other won’t be needed for extended periods
of time. So different methods are appropriate for different uses. Auxiliary Storage that is
Secondary Storage holds what is not currently being processed. This is the stuff that is
“filed away”, but is ready to be pulled out when needed. It is non-volatile, meaning that
turning the power off does not erase it. Auxiliary Storage is used for:

• Input—data and programs.
• Output—saving the results of processing.
So, Auxiliary Storage is where you put last year’s tax info, addresses for old customers,

programs you may or may not ever use, data you entered yesterday - everything that is not
being used right now.

• Magnetic tape.
• Magnetic disks.
• Optical disks.
• Other storage devices—flash drives.

Magnetic Tape
Magnetic tape is a secondary storage device, generally used for backup purposes. They

are permanent and not volatile by nature. The speed of access can be quite slow, however,
when the tape is long and what you want is not near the start. So this method is used
primarily for major backups of large amounts of data. Method used to store data on magnetic
tape is similar to that of VCR tape. The magnetic tape is made up of mylar (plastic material)
coated only on one side of the tape with magnetic material (Iron oxide). There are various
types of magnetic tapes are available. But each different tape storage system has its own
requirements as to the size, the container type, and the magnetic characteristics of the
tape. Older systems designed for networks use reel-to-reel tapes. Newer systems use cassettes.
Some of these are even smaller than an audio cassette but hold more data that the huge
reels. Even if they look alike, the magnetic characteristics of tapes can vary. It is important
to use the tape that is right for the system. Just as floppy disks and hard disks have several
different formats, so do magnetic tapes. The format method will determine the some
important characteristics like

Density: Higher density means more data on shorter tape that is measured as bpi (bits
per inch that ranges from 800 bpi up to 6250 bpi.

Block: The tape is divided into logical blocks, as a floppy is divided into tracks and
sectors. One file could take up many logical blocks, but must take up one whole block at
least. So smaller blocks would result in more room for data.

Ebay Exhibit 1013, Page 1114 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 System Development 111

Gap: Two kinds of blank spots, called gaps, are set on the tape. Interblock gap, which
separates logical blocks. Interrecord gap, which is wider and separates records. Notice the
two size lines cutting across the tape in the Fig. 6.3 below. Smaller gaps would allow more
data to be stored on the same size tape.

Record Record Record Record

 Interblock
 gap

 Interrecord
 gap

 One block

Fig. 6.3: Magnetic Tape

Magnetic Disks

There are various types of auxiliary storage; all of them involve some type of magnetic
disk. These come in various sizes and materials, as we shall see. This method uses magnetism
to store the data on a magnetic surface. The advantages associated with such type of storage
media is they are of high storage capacity, reliable and provides direct access to the data. A
drive spins the disk very quickly underneath a read/write head, which does what its name
says. It reads data from a disk and writes data to a disk.

There are various types of auxiliary storage; all of them involve some type of magnetic
disk. These come in various sizes and materials. This method uses magnetism to store the
data on a magnetic surface. The advantages associated with such type of storage media is
they are of high storage capacity, reliable and provides direct access to the data. A drive
spins the disk very quickly underneath a read/write head, which does what its name says.
It reads data from a disk and writes data to a disk. The available magnetic disks are Diskette/
Floppy disk and Hard disk.

All the magnetic disks are similarly formatted, or divided into areas that are tracks
sectors and cylinders. The formatting process sets up a method of assigning addresses to
the different areas. It also sets up an area for keeping the list of addresses. Without formatting
there would be no way to know what data went with what. It would be like a library
where the pages were not in books, but were scattered around on the shelves and tables
and floors.

All the magnetic disks contain a track that is a circular ring on one side of the disk.
Each track has a number. A disk sector is a wedge-shape piece of the disk. Each sector is
numbered. Generally on a 5¼″ disk there are 40 tracks with 9 sectors each and on a 3½″
disk there are 80 tracks with 9 sectors each. Further a track sector is the area of intersection
of a track and a sector. A cluster is a set of track sectors, ranging from 2 to 32 or more,
depending on the formatting scheme in use.

Ebay Exhibit 1013, Page 1115 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Introduction to Client/Server Computing112

The most common formatting scheme for PCs sets the number of track sectors in a
cluster based on the capacity of the disk. A 1.2 giga hard drive will have clusters twice as
large as a 500 MB hard drive. One cluster is the minimum space used by any read or write.
So there is often a lot of slack space, unused space, in the cluster beyond the data stored
there. The only way to reduce the amount of slack space is to reduce the size of a cluster
by changing the method of formatting. You could have more tracks on the disk, or else
more sectors on a track, or you could reduce the number of track sectors in a cluster.

A cylinder is a set of matched tracks on a double-sided floppy, a track from the top
surface and the same number of track from the bottom surface of the disk make up a
cylinder. The concept is not particularly useful for floppies. On a hard disk, a cylinder is
made of all the tracks of the same number from all the metal disks that make up the “hard
disk.” If all these are putted together on the top of each others. It will looks like a tin can
with no top or bottom forming a cylinder.

What happens when a disk is formatted?

Whether all data is erased? Surfaces are checked for physical and magnetic defects. A
root directory is created to list where things are on the disk.

The capacity of a magnetic disk depends on several factors.

 Optical Disk

The disk is made up of a resin (such as polycarbonate) coated with a highly reflective
material (Aluminium and also silicon, silver, or gold in double-layered DVDs). The data is
stored on a layer inside the polycarbonate. A metal layer reflects the laser light back to a
sensor. Information is written to read from an optical disk using laser beam. Only one
surface of an optical disk is used to store data. The coating will change when a high intensity
laser beam is focused on it. The high intensity laser beam forms a tiny pit along a trace to
represent 1 for reading the data laser beam of less intensity is employed (normally it is
25mW for writing and 5mW for reading). Optical disks are inexpensive and have long life
up to 100 years. The data layer is physically molded into the polycarbonate. Pits (depressions)
and lands (surfaces) form the digital data. A metal coating (usually aluminium) reflects the
laser light back to the sensor. Oxygen can seep into the disk, especially in high temperatures
and high humidity. This corrodes the aluminium, making it too dull to reflect the laser
correctly. There are three types of optical disk are available:

• Compact Disk Read Only Memory (CD-ROM)
• Write Once Read Many (WORM)
• Erasable Optical Disk
• Digital Video Device (DVD)
All these optical disk are of similar characteristics like formed layers, organization of

data in a spiral groove on starting form the center of the disk and finally nature of stored
data is digital. 1’s and 0’s are formed by how the disk absorbs or reflects light from a tiny
laser. An option for backup storage of changing data is rewritable disks, CD-RW, DVD-

Ebay Exhibit 1013, Page 1116 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 System Development 113

RW, DVD+RW, and DVD+RAM. The data layer for these disks uses a phase-changing
metal alloy film. This film can be melted by the laser’s heat to level out the marks made by
the laser and then lasered again to record new data. In theory you can erase and write on
these disks as many as 1000 times, for CD-RW, and even 100,000 times for the DVD-RW
types.

In case of WORM, the user can write data on WORM and read the written data as
many times desired. Its tracks are concentric circles. Each track is divided into a number of
sectors. Its disk controller is somewhat more expensive than that required for reading.
The advantages of WORM are its high capacity, longer life and better reliability.

The Erasable optical disk is read/write optical memory. The disk contents can be erased
and new data can be rewritten to it. It is also used as secondary memory of computer. The
tracks are concentric circle. The coating of an erasable optical disk is done by a magnetic
material, which does not lost its magnetic properties at the room temperature. The reading
and writing operations are performed using magneto-optical system. In which a laser beam
is employed together with a magnetic field to read/write operations.

Working mechanism of Optical disks in case of CD vs. DVD

As it has been discussed above that an optical disc is made mainly of polycarbonate
(a plastic) see the Fig. 6.4 given below. The data is stored on a layer inside the polycarbonate.
A metal layer reflects the laser light back to a sensor. And to read the data on a disk, laser
light shines through the polycarbonate and hits the data layer. How the laser light is reflected
or absorbed is read as a 1 or a 0 by the computer.

Edge–on View

CD–ROM DVD–ROM
Label surface
Data layer

Data layer
Polycarbonate

Reflection of laser light Reflection of laser light

Fig. 6.4: Optical Disks (CD vs. DVD)

In a CD, the data layer is near the top of the disk, the label side. In a DVD the data layer
is in the middle of the disk. A DVD can actually have data in two layers. It can access the
data from 1 side or from both sides. This is how a double-sided, double-layered DVD can
hold 4 times the data that a single-sided, single-layered DVD can. The CDs and DVDs that
are commercially produced are of the Write Once Read Many (WORM) variety. They
can’t be changed once they are created.

Ebay Exhibit 1013, Page 1117 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Introduction to Client/Server Computing114

Other Storage Devices—Flash Drives
Pen Drives

Also known as USB Flash Drive, USB Thumb Drive, Flash Drives. A thumb drive is
portable memory storage. It is rewritable and holds its memory without a power supply,
unlike RAM. Thumb drives will fit into any USB port on a computer. They will also “hot
swap,” which means a user can plug the drive into a computer and will not have to restart
it to access the thumb drive. The drives are small, about the size of a human thumb hence,
their name and are very stable memory storage devices. The thumb drive is available in
storage sizes of up to 8 gigabytes (starting from 128MB, 256MB, 512MB, 1GB, 2GB, 4GB,
8GB). They are stable, versatile, durable and portable data storage devices. As such they
are ideal for almost any computer user who wants safe, long-term storage for a low price.
USB flash drives may have different design, different capacity and different price and some
USB flash drives feature add-on functions such as MP3 players. But they do share some
other characteristics:

USB flash drives are lightweight. Most USB flash drives are as light as a car key.
USB flash drives are small. Can be kept in your or attached with key chain.
USB flash drives carry large capacity of data, up to 8GB USB flash drives.
USB flash drives are helpful to store personal information without saving them in

computer hard drive in case of sharing of a computer with other peoples at work place.

Tape Drives
A device, like a tape recorder, that reads data from and writes it onto a tape. Tape drives

have data capacities of anywhere from a few hundred kilobytes to several gigabytes of
information without having to spend large sums of money on disks. Their transfer speeds
also vary considerably. Fast tape drives can transfer as much as 20MB (megabytes) per
second. Tape Drives software is generally easy to use and can usually be ran without
supervision. While Tape Drives are cost efficient and easy to use one major disadvantage.
Tape Drives have the speed which they backup and recover information. Tape drives are
a sequential access device, which means to read any data on the Tape Drive; the Tape
Drive must read all preceding data. Tape drives are available in various design and shape
like 8mm tape drive similar to what are used in camcorder with the transfer rate up to 6M/
Sec. Other is DLT (Digital Linear Tape) drive that is a robust and durable medium. The
DLT segments the tape into parallel horizontal tracks and records data by streaming the
tape across a single stationary head. Some other examples are DAT (Digital Audio Tape),
QIC Standard. The disadvantage of tape drives is that they are sequential-access devices,
which means that to read any particular block of data, it requires to read all the preceding
blocks. This makes them much too slow for general-purpose storage operations. However,
they are the least expensive media for making backups.

Zip Drives
Zip disks are high capacity(up to 100MB), removable, magnetic disks. ZIP disks are

similar to floppy disks, except that they are much faster, and have a much greater capacity.

Ebay Exhibit 1013, Page 1118 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 System Development 115

While floppy disks typically hold 1.44 megabytes, ZIP disks are available in two sizes,
namely 100 megabytes and 250 megabytes. ZIP drives should not be confused with the
super-floppy, a 120 megabyte floppy drive which also handles traditional 1.44 megabyte
floppies. ZIP drives are available as internal or external units, using one of three interfaces:

• Small Computer Standard Interface (SCSI): Interface is the fastest, most sophisticated,
most expandable, and most expensive interface. The SCSI interface is used by all
types of computers from PC’s to RISC workstations to minicomputers, to connect
all types of peripherals such as disk drives, tape drives, scanners, and so on. SCSI
ZIP drives may be internal or external, assuming your host adapter has an external
connector.

• Integrated Drive Electronics (IDE): Interface is a low-cost disk drive interface used
by many desktop PC’s. Most IDE devices are strictly internal.

• The parallel port interface is popular for portable external devices such as external
ZIP drives and scanners, because virtually every computer has a standard parallel
port (usually used for printers). This makes things easy for people to transfer data
between multiple computers by toting around their ZIP drive.

Zip disks can be used to store, backup, and move basic office application files, digital
music, presentations, digital photos, digital video, etc. On the other hand, in spite of Iomega’s
claims that this drives “meet high capacity storage needs” for PC users, these products
belong to the mobile storage rather than to the back-up category.

 6.1.3 Network Protection Devices

System and network security is the term used to describe the methods and tools employed
to prevent unauthorized and malicious access or modification of data on a system or during
data transmission over network. Network security is not just for big corporations and
government organizations only. The new breed of viruses, worms, and deceptive software
that can infect computer or allow malicious hackers to unauthorized use of computers
from any type of network interconnects. A bigger question arises what to protect on the
network? The protection involves the following:

• Intrusion prevention.
• Intrusion detection.
• Web filtering.
• E-mail security.
• Security management.
• Integrated security appliance.
• Vulnerability assessment.
Network protection devices are used to preemptively protect computer network from

viruses, worms and other Internet attacks. Intrusion detection and prevention, firewalls,
vulnerability assessment, integrated security appliances, web filtering, mail security and a

Ebay Exhibit 1013, Page 1119 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Introduction to Client/Server Computing116

centralized management system, all work to maximize your network uptime and minimize
the need for active administrator involvement.

Firewall used for all these provides only one entry point to your network. And if the
modems are allowed to answer incoming calls, can provide an easy means for an attacker
to sneak around the firewall. Just as castles weren’t built with moats only in the front,
then network needs to be protected at all of its entry points.

Secure Modems; Dial-Back Systems: If modem access is to be provided, this should be
guarded carefully. The terminal server, or network device that provides dial-up access to
your network needs to be actively administered, and its logs need to be examined for
strange behaviour. Its password need to be strong. Accounts that are not actively used
should be disabled. In short, it is the easiest way to get into your network from remote:
guard it carefully. There are some remote access systems that have the feature of a two-
part procedure to establish a connection. The first part is the remote user dialing into the
system, and providing the correct user-Id and password. The system will then drop the
connection, and call the authenticated user back at a known telephone number. Once the
remote user’s system answers that call, the connection is established, and the user is on
the network. This works well for folks working at home, but can be problematic for users
wishing to dial in from hotel rooms and such when on business trips. Other possibilities
include one-time password schemes, where the user enters his user-Id, and is presented
with a “challenge,” a string of between six and eight numbers.

Crypto-Capable Routers: A feature that is being built into some routers is the ability to
session encryption between specified routers. Because traffic travelling across the Internet
can be seen by people in the middle, who have the resources (and time) to snoop around,
these are advantageous for providing connectivity between two sites, such that there can
be secure routes.

Virtual Private Networks

Given the ubiquity of the Internet, and the considerable expense in private leased
lines, many organizations have been building VPNs (Virtual Private Networks).
Traditionally, for an organization to provide connectivity between a main office and a
satellite one, an expensive data line had to be leased in order to provide direct connectivity
between the two offices. Now, a solution that is often more economical is to provide both
offices connectivity to the Internet. Then, using the Internet as the medium, the two
offices can communicate. The danger in doing this, of course, is that there is no privacy on
this channel, and it’s difficult to provide the other office access to “internal” resources
without providing those resources to everyone on the Internet. VPNs provide the ability
for two offices to communicate with each other in such a way that it looks like they’re
directly connected over a private leased line. The session between them, although going
over the Internet, is private (because the link is encrypted), and the link is convenient,
because each can see each other’s internal resources without showing them off to the
entire world.

Ebay Exhibit 1013, Page 1120 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 System Development 117

Wireless Network Protection

In case of wireless network, it requires to take an additional security steps when wireless
access point is set up first. Wireless networks are protected by something called Wired
Equivalent Privacy (WEP) encryption. There are two steps to enabling WEP:

Step-1 is the configuring the wireless access point: The wireless access point is the
device that is probably connected to cable or DSL modem. Instructions for configuration
will vary slightly for wireless access points from different manufacturers.

Step-2 is the configuring the wireless network adapter: The wireless network adapter
is either plugged into computer, or that is built-in to computer. In case of an older wireless
network adapter, it requires check with the manufacturer to find out which WEP key
lengths it supports.

6.1.4 Surge Protectors

A surge is defined as a voltage increase that lasts for as little as three nanoseconds (one
nanosecond is one billionth of a second), and significant damage can be done in that
miniscule amount of time, if the voltage surge is strong enough. A spike, which lasts for
only one or two nanoseconds, can also do its share of damage, especially when several
spikes occur repeatedly over an extended period. Voltage surges and spikes occur for a
number of reasons. Perhaps the most common is the sudden jump in voltage that occurs
when high-power appliances such as refrigerators and air conditioners first start up. The
appliances need quite a bit of electrical energy to activate compressors, and that sudden
and sharp increase in flow through the lines will be felt by the electronics. A surge protector
is necessary to protect electronics against “dirty” electricity. Electrical power has a standard
voltage for most residential uses of 120 volts to 240 volts, and it remains relatively steady.
But when that power makes a sharp and brief jump for any of a variety of reasons, the
resulting sudden alteration in voltage can seriously damage delicate circuits.

Electricity is your computer’s lifeblood. Power anomalies and surges also pose a big
threat to computer equipment. But the power line that supplies your computer with
electricity also carries the seeds of your computer’s destruction. Surges that are brief pulses
of high voltage they sneak down the power line and, in an instant, can destroy the circuits
inside computer. The way to protect your computer from lightning and power surges is to
use a good surge protector. A power strip, which is a simple strip of outlets, is not necessarily
a surge protector. A surge protector may look like a power strip, but it has built-in protection
against power surges. Surge protectors are simple to install, maintenance free and have
become much more affordable. Surge protection units are available that offer four to six
protected outlets in one protection “center,” which makes it easy and convenient to protect
not only the computer but the printer, fax, external modem, scanner and other home
office components. Many of these units also offer surge protection for one or more phone
lines. A good surge protector should offer four features.

• The surge protector should cover lightning strikes. Some do not.

Ebay Exhibit 1013, Page 1121 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Introduction to Client/Server Computing118

• The surge protector should offer insurance to cover the loss of properly attached
equipment.

• For a regular modem, get a surge protector with an R-11 telephone jack where it
can be hooked up with telephone line.

• With a cable modem, use a surge protector which will also accommodate the
television/Internet cable.

The performance of surge protectors is rated three ways that are clamping voltage,
response time and energy absorption. The first, clamping voltage, tells what level of voltage
surge has to occur before the surge protector activates and diverts the excess voltage to
ground. With this rating, the lower the voltage number is the better the surge protector
will perform. It takes less of a surge to activate. For good protection, especially for computers,
a protector with a clamping voltage of less than 400 volts will be preferred. Response time
is the amount of time it takes for the surge protector to respond to the surge. Obviously, a
fast response time is important, so look for a unit that will respond in one nanosecond or
less. Surge protectors are not made to last forever, so the third rating, energy absorption,
indicates how much energy the unit will absorb before it fails. For this rating, look for a
unit rated at 300 joules or better, up to around 600 joules for even better performance.

A surge protection strip or center is also well-suited for home entertainment components
like TV, VCR, stereo, etc. While not as delicate as computers, providing good surge protection
will certainly help extend the useful life of any of these components. Entertainment center
surge protectors may also contain protection for a phone line and a cable TV line, and typically
cost a little less than the ones designed for computer protection. Example of some most
commonly used surge protectors are ISP3 Inline Surge Protector with audible alarm, ISP 4
(Inline Surge Protector), ISP 5-perfect protection, ISP6 (Inline Surge Protector) ‘cloverleaf’.

 UPS (Uninterruptible Power Supply)

A UPS (Uninterruptible Power Supply) is basically a battery back-up system to maintain
power in the event of a power outage for computer. UPS provides power for a short time
(usually 10 or 15 minutes) to the computer or other critical hardware when its primary
power source is unavailable. A UPS keeps a computer running for several minutes after a
power outage, enabling you to save data that is in RAM and shutdown the computer
gracefully. Power spikes, sags, and outages can not only cause lose of unsaved work and
precious data, they can also damage valuable hardware and network infrastructure.

It acts as a surge suppressor, filtering line noise and providing protection against spikes.
But, in the event of a power outage it keeps your computer up and running, sounding an
alarm and allowing you to close any running programs and shutdown your computer
safely. There are various common power problems that UPS units are used to correct.
They are as follows:

Power failure: Total loss of utility power, causes electrical equipment to stop working.
Voltage sag: Transient (short term) under-voltage that causes flickering of lights.

Ebay Exhibit 1013, Page 1122 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 System Development 119

Voltage spike: Transient (short term) over-voltage i.e., spike or peak that causes wear
or acute damage to electronic equipment.

Under-voltage (brownout): Low line voltage for an extended period of time that causes
overheating in motors.

 Over-voltage: Increased voltage for an extended period of time that causes light bulbs
to fail.

Line noise: Distortions superimposed on the power waveform that causes electro-
magnetic interference.

Frequency variation: Deviation from the nominal frequency (50 or 60 Hz) that causes
motors to increase or decrease speed and line-driven clocks and timing devices to gain or
lose time.

Switching transient: Instantaneous undervoltage (notch) in the range of nanoseconds.
May cause erratic behaviour in some equipment, memory loss, data error, data loss and
component stress.

Harmonic distortion: Multiples of power frequency superimposed on the power
waveform that causes excess heating in wiring and fuses.

There are two basic types of UPS systems available in the market one is on-line UPS
systems. And other one is off-line UPS systems (also known as standby power systems.
An on-line UPS always powers the load from its own internal energy supply, which is in
turn continuously charged by the input power. An SPS monitors the power line and
switches to battery power as soon as it detects a problem. The switch to battery, however,
can require several milliseconds, during which time the computer is not receiving any
power. Standby Power Systems are sometimes called Line-interactive UPSs. An on-line
UPS avoids these momentary power lapses by constantly providing power from its own
inverter, even when the power line is functioning properly. In general, on-line UPSs are
much more expensive than SPSs. In a standby (off-line) system the load is powered directly
by the input power and the backup power circuitry is only invoked when the utility power
fails.

Most UPS below 1 kVA are of the standby variety which are cheaper, though inferior
to on-line systems which have no delay between a power failure and backup power being
supplied. A true ‘uninterruptible’ system is a double-conversion system. In a double-
conversion system alternating current (AC) comes from the power grid, goes to the battery
(direct current or DC), then is converted back to AC power. Most systems sold for the
general market, however, are of the “standby” type where the output power only draws
from the battery, if the AC power fails or weakens. For large power units, Dynamic
Uninterruptible Power Supply are sometimes used. A synchronous motor/alternator is
connected on the mains via a choke. Energy is stored in a flywheel. When the mains fails,
an Eddy-current regulation maintains the power on the load. DUPS are sometimes combined
or integrated with a diesel-genset. In recent years, Fuel cell UPS have been developed that
uses hydrogen and a fuel cell as a power source potentially providing long run times in a
small space. A fuel cell replaces the batteries as energy storage used in all UPS design.

Ebay Exhibit 1013, Page 1123 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Introduction to Client/Server Computing120

6.1.5 RAID Technology

RAID is also known as redundant array of independent disks or often incorrectly known
as redundant array of inexpensive disks. RAID is a system of using multiple hard drives
for sharing or replicating data among the drives. Depending on the version chosen, the
benefit of RAID is one or more of increased data integrity, fault-tolerance, throughput or
capacity compared to single drives. In its original implementations its key advantage is the
ability to combine multiple low-cost devices using older technology into an array that
offeres greater capacity, reliability, or speed, or a combination of these things, than affordably
available in a single device using the newest technology.

At the very simplest level, RAID combines multiple hard drives into one single logical
unit. Thus, instead of seeing several different hard drives, the operating system sees only
one. RAID is typically used on server computers, and is usually implemented with
identically-sized disk drives. With decreases in hard drive prices and wider availability of
RAID options built into motherboard chipsets. RAID is also being found and offered as an
option in more advanced end user computers. This is especially true in computers dedicated
to storage-intensive tasks, such as video and audio editing.

The RAID specification suggests a number of prototype “RAID levels”, or
combinations of disks. Each had theoretical advantages and disadvantages. Over the years,
different implementations of the RAID concept have appeared. Most differ substantially
from the original idealized RAID levels, but the numbered names have remained. The
very definition of RAID has been argued over the years. The use of the term redundant
leads many to split hairs over whether RAID 0 is a “real” RAID type. Similarly, the change
from inexpensive to independent confuses many as to the intended purpose of RAID. There
are even some single-disk implementations of the RAID concept. For the purpose of this
article, we will say that any system which employs the basic RAID concepts to recombine
physical disk space for purposes of reliability, capacity, or performance is a RAID system.
There are number of different RAID levels:

Level 0—RAID (Striped Disk Array without fault tolerance)
Level 1—RAID (Mirroring and Duplexing)
Level 2—RAID (Error-Correcting Coding)
Level 3—RAID (Bit-Interleaved Parity)
Level 4—RAID (Dedicated Parity Drive)
Level 5—RAID (Block Interleaved Distributed Parity)
Level 6—RAID (Independent Data Disks with Double Parity)
Nested RAID levels: Many storage controllers allow RAID levels to be nested. That is,

one RAID can use another as its basic element, instead of using physical disks.

Hardware and Software of RAID

RAID can be implemented either in dedicated hardware or custom software running
on standard hardware. Additionally, there are hybrid RAIDs that are partly software and

Ebay Exhibit 1013, Page 1124 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 System Development 121

partly hardware-based solutions. With a software implementation, the operating system
manages the disks of the array through the normal drive controllers like IDE (Integrated
Drive Electronics)/ATA (Advanced Technology Attachment), SCSI (Small Computer
System Interface) and Fibre Channel or any other. With present CPU speeds, software
RAID can be faster than hardware RAID, though at the cost of using CPU power which
might be best used for other tasks. One major exception is where the hardware
implementation of RAID incorporates a battery backed-up write cache and an application,
like a database server. In this case, the hardware RAID implementation flushes the write
cache to a secure storage to preserve data at a known point if there is a crash. The hardware
approach is faster and limited instead by RAM speeds, the amount of cache and how fast
it can flush the cache to disk. For this reason, battery-backed caching disk controllers are
often recommended for high transaction rate database servers. In the same situation, the
software solution is limited to no more flushes than the number of rotations or seeks per
second of the drives. Another disadvantage of a pure software RAID is that, depending on
the disk that fails and the boot arrangements in use, the computer may not be able to be
rebooted until the array has been rebuilt.

A hardware implementation of RAID requires (at a minimum) a special-purpose RAID
controller. On a desktop system, this may be a PCI (Peripheral Component Interconnect)
expansion card, or might be a capability built in to the motherboard. In larger RAIDs, the
controller and disks are usually housed in an external multi-bay enclosure. The disks may
be IDE, ATA, SATA, SCSI, Fibre Channel, or any combination thereof. The controller
links to the host computer(s) with one or more high-speed SCSI, Fibre Channel or ISCSI
(Internet SCSI) connections, either directly, or through a fabric, or is accessed as network
attached storage. This controller handles the management of the disks, and performs parity
{In computing and telecommunication, a parity bit is a binary digit that takes on the value
zero or one to satisfy a constraint on the overall parity of a binary number. The parity
scheme in use must be specified as even or odd (also called even parity and odd parity,
respectively). Parity is even if there are an even number of ‘1’ bits, and odd otherwise}
calculations (needed for many RAID levels). This option tends to provide better
performance, and makes operating system support easier. Hardware implementations also
typically support hot swapping, allowing failed drives to be replaced while the system is
running. In rare cases hardware controllers have become faulty, which can result in data
loss. Because of this drawback, software RAID is a slightly more reliable and safer option.

Hybrid RAIDs have become very popular with the introduction of very cheap hardware
RAID controllers. The hardware is just a normal disk controller that has no RAID features,
but there is a boot-time set-up application that allows users to set up RAIDs that are
controlled via the BIOS(Basic input output systems) . When any modern operating systems
are used, they will need specialized RAID drivers that will make the array look like a single
block device. Since these controllers actually do all the calculations in software, not
hardware, they are often called “fakeraids”. Unlike software RAID, these “fakeraids”
typically cannot span multiple controllers.

Ebay Exhibit 1013, Page 1125 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Introduction to Client/Server Computing122

Both hardware and software versions may support the use of a hot spare (A hot spare
is a disk or group of disk used to automatically or manually, depending on the Hot spare
policy, replace a failing disk in a RAID), a preinstalled drive which is used to immediately
(and almost always automatically) replace a failed drive. This cuts down the time period in
which a second failure can take out the array. Some software RAID systems allow building
arrays from partitions instead of whole disks. Unlike Matrix RAID they are not limited to
just RAID 0 and RAID 1 and not all partitions have to be RAID.

Reliability Factors of RAID

There are some important factors affecting the relaibility of RAID configuration like
failure rate of disk, mean time of data loss and mean time of recovery.

Failure rate: A failure rate is the average frequency with which something fails. Failure
rate can be defined as “ The total number of failures within an item population, divided by
the total time expended by that population, during a particular measurement interval under
stated conditions. (MacDiarmid, et al.)” The meantime to failure of a given RAID may be
lower or higher than those of its constituent hard drives, depending on what type of RAID
is employed.

Mean Time to Data Loss (MTTDL): In this context, the meantime to elapse before a
loss of user data in a given array, usually measured in hours.

Mean Time to Recovery (MTTR): Meantime to recovery is the average time that a device
will take to recover from a non-terminal failure. Examples of such devices range from self-
resetting fuses (where the MTTR would be very short, probably seconds), up to whole
systems which have to be replaced. In arrays that include redundancy for reliability, this is
the time following a failure to restore an array to its normal failure-tolerant mode of operation.
This includes time to replace a failed disk mechanism as well as time to rebuild the array
(i.e., to replicate data for redundancy).

6.1.6 Server Specific Jargon

In the client/server environment servers are also computers like other workstations
with some configurational differences where processing speed is measured megahertz
(MHz), hard disk capacity measured in gigabytes (GB), data transfer rates measured in
milliseconds (MS); apart from these, there are some server specific jargon that are useful
to know like EDC Memory, Memory Cache, Rack Mounting, Power Protection, RAID and
Symmetrical Multiprocessing.

EDC Memory

Error Detection and Correction (EDC) such type of memory is configured at the hardware
level with special circuitry that verifies RAM output and resends output whenever the
memory errors occur. This type of memory is used to boost overall reliability of servers
and tending to become standard equipment.

Ebay Exhibit 1013, Page 1126 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 System Development 123

Memory Cache

Memory cache sets aside a portion of the server RAM to store the most frequently used
network instructions so that these instructions can be accessed as soon as possible. While
the server is in operation cache storage is being constantly updated. While network
processing, less frequently accessed instructions are pushed out of cache, replaced by
instructions that are accessed more frequently. The larger the size of the memory cache,
the more instructions the server can keep on hand for fast access.

Rack Mounting

A rack mount server usually refers to multiple servers stacked on top of one another in a
single cabinet to save space. In case of very large client/server a system that requires more
than a single file server rack mount can be used, where the system is complex and highly
centralized.

Power Protection

Power supply is a unit that distributes electricity within the server. A RDS redundant
power supply is a backup power supply that takes over in the event that the main power
supply fails. This feature is different from an UPS (uninterruptible power supply) an external
device that provides continuous electrical power to the server, usually for a short time, in
the event of an electrical power failure. Details of UPS has already discussed in Section
6.1.4, i.e. surge protectors, RDS keeps the network running indefinitely, as long as electricity
is being fed to it on other hand UPS keeps the network running just long enough after a
power failure to store and protect data before shuting down. A line conditioner that is
another form of power protectors can be used to monitor the electrical current and
compensates for extreme fluctuations (i.e. spikes, burst of too much voltage or brownouts,
sudden drop in voltage).

Symmetrical Multiprocessing

Symmetrical Multiprocessing (SMP) technology is used to integrate the power of more
than one central processor into a single file server, along with necessary additional hardware
and software to divide processing chores between them. There is a drastic effect on the
server speed by using multiple processors, although it is not as simple as doubling speed
with two processors or tripling speed with three. SMP involves additional processing
overhead to manage the distribution of processing among those multiple processors. In
case of big client/server systems where a large scale networks is involved the features of
SMP are used.

Ebay Exhibit 1013, Page 1127 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Introduction to Client/Server Computing124

6.2 SOFTWARE REQUIREMENTS

6.2.1 Client OS

The client always provides presentation services, all the user Input and Output are presented
at client workstation. Software to support specific functions like field edits, context-sensitive
help, navigation, training, personal data storage, and manipulation frequently get executes
on the client workstation. All these functions use the GUI and windowing functionality.
Additional business logic for calculations, selection, and analysis can reside on the client
workstation. A client workstation uses a local operating system to host both basic services
and the network operating system interfaces. This operating system may be the same or
different from that of the server. Numbers of OS are installed depending upon the
application and user requirement running on Client/Server environment. There are various
OS are in use as a client platform like DOS, Windows 3.1, OS/2, UNIX, Windows NT
(New Technology), AIX and Mc systems 7. The client workstation frequently provides
personal productivity functions, such as word processing, which use only the hardware
and software resident right on the workstation. When the client workstation is connected
to a LAN, it has access to the services provided by the network operating system (NOS) in
addition to those provided by the client workstation. The workstation may load software
and save word-processed documents from a server and therefore use the file server functions
provided through the NOS. It also can print to a remote printer through the NOS. The
client workstation may be used as a terminal to access applications resident on a host
minicomputer or mainframe processor. This enables the single workstation to replace the
terminal, as well as provide client workstation functionality.

6.2.2 Server OS

Servers provide the platform for application, database, and communication services also
the server provides and controls shared access to server resources. Applications on a server
must be isolated from each other so that an error in one cannot damage another.
Preemptive multitasking ensures that no single task can take overall the resources of the
server and prevent other tasks from providing service. There must be a means of defining
the relative priority of the tasks on the server. These requirements are specific to the
Client/Server implementation and not to the file server implementation. Because file servers
execute only the single task of file service, they can operate in a more limited operating
environment without the need for application isolation and preemptive multitasking.

The server is a multiuser computer. There is no special hardware requirement that
turns a computer into a server. The hardware platform should be selected based on
application demands and economics. There is no pre-eminent hardware technology for
the server. The primary characteristic of the server is its support for multiple simultaneous
client requests for service. Therefore, the server must provide multitasking support and

Ebay Exhibit 1013, Page 1128 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 System Development 125

shared memory services. Servers for Client/Server applications work best when they are
configured with an operating system that supports shared memory, application isolation,
and preemptive multitasking. High-end Intel, RISC (including Sun SPARC, IBM/Motorola
PowerPC, HP PA RISC, SGI MIPS, and DEC Alpha), IBM System/370, and DEC VAX
processors are all candidates for the server platform. The server is responsible for managing
the server-requester interface so that an individual client request response is synchronized
and directed back only to the client requester. This implies both security when authorizing
access to a service and integrity of the response to the request. Some of the operating
system dominating the server word nowadays are NetWare, Windows NT, OS/2, MVS,
VMS, and UNIX.

NetWare

In 2003, Novell announced the successor product to NetWare (Open Enterprise Server
OES). Later on completes the separation of the services traditionally associated with NetWare
like directory services, file, and printer from the platform underlying the delivery of those
services. OES is essentially a set of applications (eDirectory, NetWare Core Protocol services,
iPrint, etc.) that can run a top either a Linux or a NetWare kernel platform. Also known as
self-contained operating system so does not requires separate operating system to run.

OS/2

The last released version was 4.0 in 1996. Early versions found their way into embedded
systems and still, as of mid-2003, run inside many of the world’s automated teller machines.
Like Unix, OS/2 was built to be preemptively multitasking and would not run on a machine
without an MMU (early versions simulated an MMU using the 286’s memory segmentation).
Unlike Unix, OS/2 was never built to be a multiuser system. Process-spawning was relatively
cheap, but IPC was difficult and brittle. Networking was initially focused on LAN protocols,
but a TCP/IP stack was added in later versions. There were no programs analogous to
Unix service daemons, so OS/2 never handled multi-function networking very well. OS/2
had both a CLI and GUI. Most of the positive legendary around OS/2 was about the
Workplace Shell (WPS), the OS/2 desktop. The combination of Novell with an OS/2
database and application servers can provide the necessary environment for a production-
quality Client/Server implementation.

Windows NT

Windows NT (New Technology) is Microsoft’s operating system released in september
1993, for high-end personal and server use. Microsoft staked its unique position with a
server operating system. Microsoft’s previous development of OS/2 with IBM did not create
the single standard UNIX alternative that was hoped for. NT provides the preemptive
multitasking services required for a functional server. It provides excellent support for
Windows clients and incorporates the necessary storage protection services required for a
reliable server operating system.

Ebay Exhibit 1013, Page 1129 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Introduction to Client/Server Computing126

NT has file attributes in some of its file system types. They are used in a restricted way,
to implement access-control lists on some file systems, and do not affect development style
very much. It also has a record-type distinction, between text and binary files, that produces
occasional annoyances (both NT and OS/2 inherited this misfeature from DOS).

NT systems on the Internet are notoriously vulnerable to worms, viruses, defacements,
and cracks of all kinds. There are many reasons for this, some more fundamental than
others. The most fundamental is that NT’s internal boundaries are extremely porous.
Because Windows does not handle library versioning properly, it suffers from a chronic
configuration problem called “DLL hell”, in which installing new programs can randomly
upgrade (or even downgrade!) the libraries on which existing programs depend. This applies
to the vendor-supplied system libraries as well as to application-specific ones: it is not
uncommon for an application to ship with specific versions of system libraries, and break
silently when it does not have them. On the bright side, NT provides sufficient facilities to
host Cygwin, which is a compatibility layer implementing Unix at both the utilities and the
API level, with remarkably few compromises. Cygwin permits C programs to make use of
both the Unix and the native APIs, and is the first thing many Unix hackers install on such
Windows systems as they are compelled by circumstances to make use of. The intended
audience for the NT operating systems is primarily nontechnical end users, implying a
very low tolerance for interface complexity. It is used in both client and server roles. Early
in its history Microsoft relied on third-party development to supply applications. They
originally published full documentation for the Windows APIs, and kept the price of
development tools low. But over time, and as competitors collapsed, Microsoft’s strategy
shifted to favor in-house development, they began hiding APIs from the outside world,
and development tools grew more expensive.

MVS

MVS (Multiple Virtual Storage) is IBM’s flagship operating system for its mainframe
computers as a platform for large applications. MVS is the only one OS that could be
considered older than Unix. It is also the least influenced by Unix concepts and technology,
and represents the strongest design contrast with Unix. The unifying idea of MVS is that
all work is batch; the system is designed to make the most efficient possible use of the
machine for batch processing of huge amounts of data, with minimal concessions to
interaction with human users. MVS uses the machine MMU; processes have separate
address spaces. Interprocess communication is supported only through shared memory.
There are facilities for threading (which MVS calls “subtasking”), but they are lightly
used, mainly because the facility is only easily accessible from programs written in assembler.
Instead, the typical batch application is a short series of heavyweight program invocations
glued together by JCL (Job Control Language) which provides scripting, though in a
notoriously difficult and inflexible way. Programs in a job communicate through temporary
files; filters and the like are nearly impossible to do in a usable manner. The intended role
of MVS has always been in the back office. Like VMS and Unix itself, MVS predates the
server/client distinction. Interface complexity for back-office users is not only tolerated

Ebay Exhibit 1013, Page 1130 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 System Development 127

but expected, in the name of making the computer spend fewer expensive resources on
interfaces and more on the work it’s there to get done.

VMS

OpenVMS is a multi-user, multiprocessing virtual memory-based operating system (OS)
designed for use in time sharing, batch processing, real time (process priorities can be set
higher than OS kernel jobs) and transaction processing. It offers high system availability
through clustering, or the ability to distribute the system over multiple physical machines.
This allows the system to be “disaster-tolerant” against natural disasters that may disable
individual data-processing facilities. VMS also includes a process priority system that allows
for real-time process to run unhindered, while user processes get temporary priority “boosts”
if necessary Open VMS commercialized many features that are now considered standard
requirements for any high-end server operating system. OpenVMS commercialized many
features that are now considered standard requirements for any high-end server operating
system. These include Integrated computer networking, a distributed file system , Integrated
database features and layered databases including relational database, Support for multiple
computer programming languages, Hardware partitioning of multiprocessors, High level
of security. Enterprise class environments typically select and use OpenVMS for various
purposes including as a mail server, network services, manufacturing or transportation
control and monitoring, critical applications and databases, and particularly environments
where system uptime and data access is critical.

UNIX
Unix operating system developed in 1969 by a group of AT&T employees at Bell Labs

including Ken Thompson, Dennis Ritchie and Douglas McIlroy. During the late 1970s
and early 1980s, Unix’s influence in academic circles led to large-scale adoption of Unix by
commercial startups, the most notable of which is Sun Microsystems. Today, in addition to
certified Unix systems, Unix-like operating systems such as Linux and BSD derivatives are
commonly encountered. Sometimes, “traditional Unix” may be used to describe a Unix or
an operating system that has the characteristics of either Version 7 Unix or UNIX System V.

Unix operating systems are widely used in both servers and workstations. The Unix
environment and the Client/Server program model were essential elements in the development
of the Internet and the reshaping of computing as centered in networks rather than in
individual computers. Unix was designed to be portable, multi-tasking and multi-user in a
time-sharing configuration. Unix systems are characterized by various concepts like the use
of plain text for storing data, a hierarchical file system, treating devices and certain types of
inter-process communication (IPC) as files and the use of a large number of small programs
that can be strung together through a command line interpreter using pipes, as opposed to
using a single monolithic program that includes all of the same functionality. Unix operating
system consists of many of these utilities along with the master control program, the kernel.
The kernel provides services to start and stop programs, handle the file system and other
common “low level” tasks that most programs share, and, perhaps most importantly, schedules

Ebay Exhibit 1013, Page 1131 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Introduction to Client/Server Computing128

access to hardware to avoid conflicts if two programs try to access the same resource or
device simultaneously. To mediate such access, the kernel was given special rights on the
system, leading to the division between user-space and kernel-space.

 6.2.3 Network OS

A Network Operating System (NOS) is a systen software that controls a network and its
message (e.g., packet) traffic and queues, controls access by multiple users to network
resources such as files, and provides for certain administrative functions, including security.
Also includes special functions for connecting computers and devices into a local-area
network (LAN) or Inter-networking. A Network Operating System (NOS) is an operating
system that has been specifically written to keep networks running at optimal performance
with a native structure for use in a network environment. Some of the important features
of Network Operating System includes:

• Provide file, print, web services, back-up and replication services.
• Provide basic operating system features such as support for processors, protocols,

automatic hardware detection and support multi-processing of applications.
• Security features such as authentication, authorization, logon restrictions and

access control.
• Provide name and directory services.
• User management and support for logon and logoff, remote access, system

management, administration and auditing tools with graphic interfaces.
• Support Internetworking such as routing and WAN ports.

Some of the components that an NOS usually has built in that a normal operating
system might not have are built in NIC (network interface card) support, file sharing,
server log on, drive mapping, and native protocol support. Most operating systems can
support all of these components with add-on either by the original manufacture of the
operating system or from a third party vendor. Some of the operating system dominating
the networking OS are Novell NetWare, LAN Manager, IBM LAN Server, Banyan VINES
etc.

Novell NetWare

NetWare is a network operating system developed by Novell, Inc. The latest version of
NetWare is v6.5 Support Pack 7, which is identical to OES 2, NetWare Kernel. It initially
used cooperative multitasking to run various services on a PC, and the network protocols
were based on the archetypal Xerox XNS stack. NetWare has been superseded by Open
Enterprise Server (OES). With Novell NetWare, disk space was shared in the form of
NetWare volumes, comparable to DOS volumes. Clients running MS-DOS would run a
special Terminate and Stay Resident (TSR) program that allowed them to map a local
drive letter to a NetWare volume. Clients had to log in to a server in order to be allowed to
map volumes, and access could be restricted according to the login name. Similarly, they
could connect to the shared printers on the dedicated server, and print as if the printer was
connected locally.

Ebay Exhibit 1013, Page 1132 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 System Development 129

Novell had introduced limited TCP/IP support in NetWare v3.x (circa 1992) and
v4.x (circa 1995), consisting mainly of FTP services and UNIX-style LPR/LPD printing
(available in NetWare v3.x), and a Novell-developed webserver (in NetWare v4.x). Native
TCP/IP support for the client file and print services normally associated with NetWare
was introduced in NetWare v5.0. Most network protocols in use at the time NetWare was
developed didn’t trust the network to deliver messages. A typical client file read would
work something like this:

• Client sends read request to server.
• Server acknowledges request.
• Client acknowledges acknowledgement.
• Server sends requested data to client.
• Client acknowledges data.
• Server acknowledges acknowledgement.
In contrast, NCP was based on the idea that networks worked perfectly most of the

time, so the reply to a request served as the acknowledgement. Here is an example of a
client read request using this model:

• Client sends read request to server.
• Server sends requested data to client.
All requests contained a sequence number, so if the client didn’t receive a response

within an appropriate amount of time it would re-send the request with the same sequence
number. If the server had already processed the request it would re-send the cached response,
if it had not yet had time to process the request it would send a ‘positive acknowledgement’
which meant, “I received your request but I haven’t gotten to it yet so don’t bug me.” The
bottom line to this ‘trust the network’ approach was a 2/3 reduction in network traffic and
the associated latency. In 4.x and earlier versions, NetWare did not support preemption,
virtual memory, graphical user interfaces etc. Processes and services running under the
NetWare OS were expected to be cooperative, that is to process a request and return control
to the OS in a timely fashion. On the down side, this trust of application processes to
manage themselves could lead to a misbehaving application bringing down the server.

LAN Manager

LAN Manager is a network operating system developed by Microsoft developed in
cooperation with 3Com (Computers, Communication and Compatibility) that runs as a
server application under OS/2. It supports DOS, Windows and OS/2 clients. LAN Manager
provides client support for DOS, Windows, Windows NT, OS/2, and Mac System 7. Server
support extends to NetWare, AppleTalk, UNIX, Windows NT, and OS/2. Client workstations
can access data from both NetWare and LAN Manager Servers at the same time. LAN
Manager supports NetBIOS and Named Pipes LAN communications between clients and
OS/2 servers. Redirection services are provided to map files and printers from remote
workstations for client use. LAN Manager was superseded by Windows NT Server, and
many parts of LAN Manager are used in Windows NT and 2000.

Ebay Exhibit 1013, Page 1133 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Introduction to Client/Server Computing130

IBM LAN Server

A network operating system developed by IBM that runs as a server application under
OS/2 and supports DOS, Windows and OS/2 clients. Originally based on LAN Manager
when OS/2 was jointly developed by IBM and Microsoft, starting with LAN Server 3.0, it
runs only under IBM’s version of OS/2. Short term LAN Server refers to the IBM OS/2 LAN
Server product. There were also LAN Server products for other operating systems, notably
AIX (now called Fast Connect) and OS/400. LAN server is a file server in a network. LAN
Server provides disk mirroring, CID capability and Network Transport Services/2 (NTS/2)
for concurrent access to NetWare servers. Options are LAN Server for the Macintosh for
Mac client access and System Performance/2 (SP/2), a series of network management utilities.
LAN Server, are the standard products for use in Client/Server implementations using OS/2
as the server operating system. LAN Manager/X is the standard product for Client/Server
implementations using UNIX System V as the server operating system.

Banyan VINES

Banyan VINES (Virtual Integrated Network Service) is developed during 1980. Banyan
VINES is a computer network operating system and set of computer network protocols, it
used to talk to client machines on the network. In other words Banyan VINES is a network
operating system with a UNIX kernel that allows clients operating systems such as DOS,
OS/2, Windows, and those for Macintosh systems to share information and resources
with each other and with host computing systems. VINES provide full UNIX NFS (Network
File System) support in its core services and the Transmission Control Protocol/Internet
Protocol (TCP/IP) for transport, it also includes Banyan’s StreetTalk Directory Services,
one of the first viable directory services to appear in a network operating system.

VINES ran on a low-level protocol known as VIP (VINES Internetwork Protocol)
essentially identical to the lower layers of XNS), addresses consisted of a 32-bit address
and a 16-bit subnet, which mapped onto the 48-bit Ethernet address in order to route to
machines. This meant that, like other XNS-based systems, VINES could only support a
two-level internet. However, a set of routing algorithms set VINES apart from other XNS
systems at this level. The key differentiator, ARP (Address Resolution Protocol), allowed
VINES clients to automatically set up their own network addresses. When a client first
booted up it broadcast a request on the subnet asking for servers, which would respond
with suggested addresses. The client would use the first to respond, although the servers
could hand off better routing instructions to the client if the network changed. The
overall concept very much resembled AppleTalk’s AARP system, with the exception that
VINES required at least one server, whereas AARP functioned completely headlessly.
Like AARP, VINES required an inherently chatty network, sending updates about the
status of clients to other servers on the internetwork. At the topmost layer, VINES provided
the standard file and print services, as well as the unique StreetTalk, likely the first truly
practical globally consistent name service for an entire internetwork. Using a globally
distributed, partially replicated database, StreetTalk could meld multiple widely separated
networks into a single network that allowed seamless resource sharing. It accomplished

Ebay Exhibit 1013, Page 1134 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 System Development 131

this through its rigidly hierarchical naming scheme; entries in the directory always had the
form item@group@organization. This applied to user accounts as well as to resources like
printers and file servers. VINES client software ran on most PC-based operating systems,
including MS-DOS and earlier versions of Microsoft Windows. It was fairly light weight
on the client, and hence remained in use during the later half of the 1990s, when many
machines not up to the task of running other networking stacks then in widespread use.
This occurred on the server side as well, as VINES generally offered good performance
even from mediocre hardware.

6.3 COMMUNICATION INTERFACE TECHNOLOGY

For the data communication to be taking place on a network, four basic elements are
involved there:

Sender: the device that creates and transmits the data.
Message: the data to be sent. It could be a spreadsheet, database, or document, converted

to digital form.
Medium: the physical material that connects the devices and carries the data from the

sender to the receiver. The medium may consist of an electrical wire or airwaves.
Receiver: the destination device for the data.
To communicate with other devices, a sending device must know and follow the rules

for sending data to receiving devices on the network. These rules for communication
between devices are called protocols. Numerous standards have been developed to provide
common foundations for data transmission. The International Standards Organization (ISO)
has divided the required communication functions into seven levels to form the Open
Systems Interconnections (OSI) model. Each layer in the OSI model specifies a group of
functions and associated protocols used at that level in the source device to communicate
with the corresponding level in the destination device.

Connectivity and interoperability between the client and the server are achieved
through a combination of physical cables and devices and software that implements
communication protocols. To communicate on a network the following components are
required:

• A network interface card (NIC) or network adapter.
• Software driver.
• Communication protocol stack.
Computer networks may be implemented using a variety of protocol stack architectures,

computer buses or combinations of media and protocol layers, incorporating one or more
of among the LAN Cabling, WAN, Ethernet, IEEE NIC, Token Ring, Ethernet and FDDI.

6.3.1 Network Interface Card

The physical connection from the computer to the network is made by putting a network
interface card (NIC) inside the computer and connecting it to the shared cable. A network

Ebay Exhibit 1013, Page 1135 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Introduction to Client/Server Computing132

interface card is a device that physically connects each computer to a network. This card
controls the flow of information between the network and the computer. The circuit board
needed to provide network access to a computer or other device, such as a printer. Network
interface cards, or NICs, mediate between the computer and the physical media, such as
cabling, over which transmissions travel. NIC is an adapter card that is installed in the
controller that allows it to connect to a network (for example, Ethernet and Token Ring
etc. The card contains both the hardware to accommodate the cables and the software to
use the network’s protocols. The NIC is also called a network adapter card.

6.3.2 LAN Cabling

LAN is data communication network, which connects many computers or client
workstations and permits exchange of data and information among them within a localized
area (2 to 5 Km). Where all connected devices share transmission media (cable) and also
each connection device can work either stand alone or in the network. Each device
connected in the network can communicate with any other device with a very high data
transmission rate that is of 1Mbps to 100Mbps. Due to rapid change in technology, design
and commercial applications for the LANs the number of approaches has emerged like
High speed wireless LAN fast Ethernet. At the result, in many applications the volume of
data handled over the LAN has been increased. For example in case of centralized server
farms there is need for higher speed LAN. There is a need for client system to be able to
draw huge amount of data from multiple centralized servers.

6.3.3 WAN

WAN (Wide area network) is a data communications network that covers a large geographical
area such as cities, states or countries. WAN technologies generally function at the lower
three layers of the OSI reference model, the physical layer, the data-link layer, and the
network layer. WAN consists of a number of interconnected switching nodes via telephone
line, satellite or microwaves links. A transmission form any one device is routed through
internal nodes to the specific destination device. In WAN two computing device are not
connected directly, a network of ‘switching nodes’ provides a transfer path and the process
of transferring data block from one node to another is called data switching. Further this
switching technique utilizes the routing technology for data transfer. Whereas the routing
is responsible for searching a path between source and destination nodes. Earlier WAN
have been implemented using circuit or packet switching technology, but now frame relay,
ATM and wireless networks are dominating the technology.

WANs use numerous types of devices that are specific to WAN environments. WAN
switches, access servers, bridge, gateway, repeater, brouter, modems, CSU/DSUs and ISDN
terminal adapters. Other devices found in WAN environments that are used in WAN
implementations include routers, ATM switches, and multiplexers.

Ebay Exhibit 1013, Page 1136 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 System Development 133

6.3.4 ATM

Asynchronous Transfer Mode (ATM) is a connection-oriented technology, in which a
logical connection is established between the two end points before the actual data exchange
begins. ATM has proved very successful in the WAN scenario and numerous
telecommunication providers have implemented ATM in their wide-area network cores
ATM is a cell relay, packet switching network and data link layer protocol which encodes
data traffic into small (53 bytes; 48 bytes of data and 5 bytes of header information) fixed-
sized cells. ATM provides data link layer services that run over Layer 1 links. This differs
from other technologies based on packet-switched networks (such as the Internet Protocol
or Ethernet), in which variable sized packets (known as frames when referencing layer 2)
are used. The motivation for the use of small data cells was the reduction of jitter (delay
variance, in this case) in the multiplexing of data streams; reduction of this (and also end-
to-end round-trip delays) is particularly important when carrying voice traffic. An ATM
network is designed to be able to transfer many different types of traffic simultaneously,
including real time flows such as video, voice and bursty TCP flows. ATM services are
categorised into mainly two categories one is Real-Time Services and other one is Non-
real-Time Services which are used by an end system to identify the type of service required.
RTS concerns the delay and the variability of delay, referred to as jitter, that the application
can tolerate. Real time applications typically involve a flow of information to a user that is
intended to reduce that flow at a source. Constant Bit Rate services are the simplest real
time services. CBR are used by the applications that requires a fixed data rate that is
continuously available during the connections lifetime and a relatively tight upper bound
on transfer delay. CBR applications are used mostly in video conferencing, interaction
audio and audio/video retrieval and distribution. Real time variable bit rate (rtVB) are
another real-time services that allows the network more flexibility than CBR. The network
is able to statistically multiplex a number of connections over the same dedicated capacity
and still provide the required service to each connection.

6.3.5 Ethernet

Ethernet is a family of frame-based computer networking technologies for Local Area
Networks (LANs) that is also based on the idea of computers communicating over a shared
coaxial cable acting as a broadcast transmission medium. The name comes from the physical
concept of the ether. It defines a number of wiring and signaling standards for the physical
layer, through means of network access. The communication methods used shows some
similarities to radio systems, although there are fundamental differences, such as the fact
that it is much easier to detect collisions in a cable broadcast system than a radio broadcast.
The coaxial cable was replaced with point-to-point links connected by hubs and/or switches
to reduce installation costs, increase reliability, and enable point-to-point management and
troubleshooting. StarLAN was the first step in the evolution of Ethernet from a coaxial
cable bus to a hub-managed, twisted-pair network.

Ebay Exhibit 1013, Page 1137 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Introduction to Client/Server Computing134

Eathernet is most widely used LAN technology to get connected PCs and workstations
more than 84% world wide due to its protocol that has following characteristics:

• Is easy to understand, implement, manage, and maintain.
• Allows low-cost network implementations.
• Provides extensive topological flexibility for network installation.
• Guarantees successful interconnection and operation of standards.
• Compliant products, regardless of manufacturer.
Ethernet LANs consist of network nodes and interconnecting media. The network

nodes fall into two major classes:
• Data Terminal Equipment (DTE)—Devices that are either the source or the

destination of data frames. DTEs are typically devices such as PCs, workstations,
file servers, or print servers that, as a group, are all often referred to as end stations.

• Data Communication Equipment (DCE)—Intermediate network devices that receive
and forward frames across the network. DCEs may be either stand alone devices
such as repeaters, network switches, and routers, or communications interface
units such as interface cards and modems.

6.3.6 Token Ring

Token-Ring was developed and promoted by IBM in the early 1980s and standardized as
IEEE 802.5. Physically, a token ring network is wired as a star, with ‘hubs’ and arms out to
each station and the loop going out-and-back through each. Stations on a token ring LAN
are logically organized in a ring topology with data being transmitted sequentially from
one ring station to the next with a control token circulating around the ring controlling
access. Token ring is a local area network protocol which resides at the Data Link Layer
(DLL) of the OSI model. It uses a special three-byte frame called a token that travels around
the ring. Token ring frames travel completely around the loop.

Token-passing networks move a small frame, called a token, around the network.
Possession of the token grants the right to transmit. If a node receiving the token has no
information to send, it passes the token to the next end station. Each station can hold the
token for a maximum period of time. If a station possessing the token does have information
to transmit, it seizes the token, alters 1 bit of the token (which turns the token into a start-
of-frame sequence), appends the information that it wants to transmit, and sends this
information to the next station on the ring. While the information frame is circling the
ring, no token is on the network (unless the ring supports early token release), which
means that other stations wanting to transmit must wait. Therefore, collisions cannot
occur in Token Ring networks. Token ring networks had significantly superior performance
and reliability compared to early shared-media implementations of Ethernet (IEEE 802.3),
and were widely adopted as a higher-performance alternative to the shared-media Ethernet.

Ebay Exhibit 1013, Page 1138 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 System Development 135

6.3.7 FDDI

FDDI (Fiber Distributed Data Interface), as a product of American National Standards
Institute X3T9.5 (now X3T12), conforms to the Open Systems Interconnection (OSI)
model of functional layering of LANs using other protocols.

FDDI provides a standard for data transmission in a local area network that can extend
in range up to 200 kilometers. In addition to covering large geographical areas, FDDI local
area networks can support thousands of users. As a standard underlying medium, it uses
optical fiber (though it can use copper cable, in which case one can refer to CDDI). A
FDDI network contains two token rings (dual-ring architecture) with traffic on each ring
flowing in opposite directions (called counter-rotating). The dual rings consist of a primary
and a secondary ring. During normal operation, the primary ring is used for data transmission,
and the secondary ring remains idle. Secondary ring also provides possible backup in case
the primary ring fails. The primary ring offers up to 100 Mbit/s capacity. When a network
has no requirement for the secondary ring to do backup, it can also carry data, extending
capacity to 200 Mbit/s. The single ring can extend the maximum distance; a dual ring can
extend 100 km. FDDI has a larger maximum-frame size than standard 100 Mbit/s ethernet,
allowing better throughput. The primary purpose of the dual rings is to provide superior
reliability and robustness.

6.3.8 TCP/IP

The Internet protocol suite is the set of communications protocols that implement the
protocol stack on which the Internet and most commercial networks run. It has also been
referred to as the TCP/IP protocol suite, which is named after two of the most important
protocols in it: the Transmission Control Protocol (TCP) and the Internet Protocol (IP).
TCP/IP is referred as protocol suite because it contains many different protocols and
therefore many different ways for computers to talk to each other. TCP/IP is not the only
protocol suite, although TCP/IP has gained wide acceptance and is commonly used. TCP/
IP also defines conventions by connecting different networks, and routing traffic through
routers, bridges, and other types of connections. The TCP/IP suite is result of a Defence
Advanced Research Projects Agency (DARPA) research project about network
connectivity, and its availability has made it the most commonly installed network software.

6.3.9 SNMP

The Simple Network Management Protocol (SNMP) forms part of the internet protocol
suite as defined by the Internet Engineering Task Force (IETF). SNMP is used in network
management systems to monitor network-attached devices for conditions that warrant
administrative attention. It consists of a set of standards for network management, including
an Application Layer protocol, a database schema, and a set of data objects.

SNMP exposes management data in the form of variables on the managed systems,
which describe the system configuration. These variables can then be queried (and
sometimes set) by managing applications. In typical SNMP usage, there are a number of

Ebay Exhibit 1013, Page 1139 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Introduction to Client/Server Computing136

systems to be managed, and one or more systems managing them. A software component
called an agent runs on each managed system and reports information via SNMP to the
managing systems. An SNMP-managed network consists of three basic key components:

• Managed devices
• Agents
• Network-Management Systems (NMSs)
A managed device is a network node that contains an SNMP agent and that resides on

a managed network. Managed devices collect and store management information and make
this information available to NMSs using SNMP. Managed devices, sometimes called network
elements, can be any type of device including, but not limited to, routers and access servers,
switches and bridges, hubs, IP telephones, computer hosts, or printers.

An agent is a network-management software module that resides in a managed device.
An agent has local knowledge of management information and translates that information
into a form compatible with SNMP.

An NMS executes applications that monitor and control managed devices. NMSs provide
the bulk of the processing and memory resources required for network management. One
or more NMSs may exist on any managed network.

6.3.10 NFS

Network File System (NFS) is a network file system protocol originally developed by Sun
Microsystems in 1984, allowing a user on a client computer to access files over a network
as easily as if the network devices were attached to its local disks. NFS, like many other
protocols, builds on the Open Network Computing Remote Procedure Call (ONC RPC)
system. Assuming a Unix-style scenario in which one machine (the client) requires access
data, stored on another machine (the NFS server).

The server implements NFS daemon processes (running by default as NFSD) in order
to make its data generically available to clients. The server administrator determines what
to make available, exporting the names and parameters of directories (typically using
the/etc./exports configuration file and the exports command).

The server security-administration ensures that it can recognize and approve validated
clients. The server network configuration ensures that appropriate clients can negotiate
with it through any firewall system. The client machine requests access to exported data,
typically by issuing a mount command. If all goes well, users on the client machine can
then view and interact with mounted file systems on the server within the parameters
permitted.

6.3.11 SMTP

Simple Mail Transfer Protocol (SMTP) is the standard for e-mail transmissions across the
Internet developed during 1970’s. SMTP is a relatively simple, text-based protocol, in which
one or more recipients of a message are specified (and in most cases verified to exist) and

Ebay Exhibit 1013, Page 1140 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 System Development 137

then the message text is transferred. It is a Client/Server protocol, whereby a client transmits
an e-mail message to a server. Either an end-user’s e-mail client, a.k.a. MUA (Mail User
Agent), or a relaying server’s MTA (Mail Transfer Agents) can act as an SMTP client. An
email client knows the outgoing mail SMTP server from its configuration. A relaying server
typically determines which SMTP server to connect to by looking up the MX (Mail
eXchange) DNS record for each recipient’s domain name (the part of the e-mail address to
the right of the at (@) sign). Conformant MTAs (not all) fall back to a simple A record in
the case of no MX. Some current mail transfer agents will also use SRV records, a more
general form of MX, though these are not widely adopted. (Relaying servers can also be
configured to use a smart host. SMTP is a “push” protocol that does not allow one to
“pull” messages from a remote server on demand. To do this a mail client must use POP3
or IMAP. Another SMTP server can trigger a delivery in SMTP using ETRN.

An e-mail client requires the name or the IP address of an SMTP server as part of its
configuration. The server will deliver messages on behalf of the user. This setting allows
for various policies and network designs. End users connected to the Internet can use the
services of an e-mail provider that is not necessarily the same as their connection provider.
Network topology, or the location of a client within a network or outside of a network, is
no longer a limiting factor for e-mail submission or delivery. Modern SMTP servers typically
use a client’s credentials (authentication) rather than a client’s location (IP address), to
determine whether it is eligible to relay e-mail.

One of the limitations of the original SMTP is that it has no facility for authentication
of senders. Therefore, the SMTP-AUTH extension was defined. However, the
impracticalities of widespread SMTP-AUTH implementation and management means that
E-mail spamming is not and cannot be addressed by it.

EXERCISE 6

1. In a typical Client/Server under Network environment, explain the following in
details:

(a) What are the Server requirements?
(b) What are the H/W requirements?
(c) What are the Client requirements?
(d) What are the Network requirements?
(e) What do you mean by a thin client network?
(f) List some advantages of Thin Client Network system.

2. Microsoft Windows NT Server provides various network services to support
specific requirements of the users on the network. All network services impact
the capacity of a network. Some of the services are:

Ebay Exhibit 1013, Page 1141 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Introduction to Client/Server Computing138

(a) Net Logon
(b) Computer Browser
(c) DHCP
(d) Internet Explorer
(e) Workstation
(f) Server
Explain the above part in brief in a Client/Server environment.

3. In Client/Server architecture in a network environment, explain the following
phenomena examples:–

(a) UPS
(b) Surge Protector
(c) Optical Disk
(d) CDDI

4. Explain the functions and features of Network Operating System.
5. Explain the working principal of following:

(a) CDROM
(b) WORM
(c) Mirror disk
(d) Tape optical disk
(e) UNIX Workstation
(f) Notebooks

6. In design a network operating system; discuss the relative advantages and
disadvantages of using a single server and multiple servers for implementing a
service.

7. Write short notes on the following:
(a) X-Terminals
(b) RAID Array Disk
(c) FDDI
(d) Power Protection Devices
(e) Network Interface Cards
(f) Network Operating System
(g) Fax Print Services

8. Explain how microkernels can be used to organize an operating system in a Client/
Server fashion.

9. What are different client hardware and software for end users? Explain them.

Ebay Exhibit 1013, Page 1142 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 Training and Testing 139

7.1 INTRODUCTION

In addition to being an important factor in the successful implementation of a Client/
Server system, training makes employees aware of security concerns. It also educates
employees for needed behavioural changes to comply with internal controls. Additionally,
it provides employees with the basic knowledge to operate well in a new system
environment.

User training for a Client/Server system is complicated by the interface of multiple
front-end systems with servers. The user-friendly design provides users with a variety of
options for their applications. As front-end applications vary, so do the training and technical
support needs. Training of programming and support personnel is also complicated because
the underlying system is more complex than traditional systems.

To teach the fundamental technologies involved in a modern Client/Server system in
an easy manner, so that one can understand the business requirements, design issues,
scalability and security issues in an enterprise system. Teaching style is explanation of
concepts, supported by hands on examples. Apart from this required training, it needs
training for system administrator, database administrator training, end user training. Existing
training delivery vehicles are being revolutionized using new information and
telecommunication systems. Classroom delivery can now take place in a synchronous mode
across the entire planet. Trainees can participate in learning activities at any time and
location using Internet and satellite technologies. These vehicles are breaking the boundaries
of space and time, offering unlimited learning possibilities to organizations and those who
work for them.

The effectiveness of training in Client/Server computer application development
depends on the combination of instructor-led and team-based learning methods. Ten persons
familiar with the course content generated 90 statements and each subsequently, completed

Training and Testing

77777

Ebay Exhibit 1013, Page 1143 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Introduction to Client/Server Computing140

a similarity sort of the statements. The concept map showed eleven clusters ranging from
contextual supports and general methodology on the top and left, to more specific Client/
Server concepts on the right and bottom. The cluster describing the actual coding and
testing of Client/Server applications are very important for training. The Fig. 7.1 given
below shows the concept map for training in Client/Server computer application
development.

One consistent pattern that emerged is that the highest achievement tended to be
evidenced in clusters most related to the way the course was taught, a combination of
instructor-led and team-based learning. The clusters related to communication, teaming
and coaching consistently placed in the top five across all administrations. One implication
may be that the training methods used may have been more salient than the content.

 Teaming

Communication, Time
Management, Research, Quality

Foundation Concepts

Coaching

Methodology

Client/Server
Architecture

Client/Server Application
development tools

Foundation as a
case tools

Coding &
Testing Client/Server Applications

Standard

GUI programming

Fig. 7.1: Concept Map for Training in Client/Server Computer Application Development

7.2 TECHNOLOGY BEHIND TRAINING DELIVERY

7.2.1 Traditional Classroom

Most of you are familiar with the traditional face-to-face method of training and learning,
given in a classroom or seminar. It is the oldest method for delivering training, and it can
still get the job done effectively. In classical training delivery, learners and the instructor
are present at the same time. Therefore, classroom training is defined as a synchronous
training delivery vehicle. Face-to-face experience provides the trainer and participant with

Ebay Exhibit 1013, Page 1144 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 Training and Testing 141

immediate feedback. It enables participants to discuss and share ideas with others in the
classroom or seminar. The trainer presents materials, manages and guides discussion;
responsibly ensuring that learning is constructive and positive. Traditional classroom
delivery is thus termed teacher centric. The time commitment needed for traditional
classroom delivery is increasingly considered a drawback in this kind of approach. With
downsizing, rightsizing and outsourcing, there are fewer people with time to sit in a
classroom. In addition, staff scheduling is often a nightmare when attendance is low or if
the training must be scheduled according to employee commitments.

7.2.2 On-the-Job Training (OTJ)

On-the-job training is also a classical training delivery approach, dating back to the middle
ages, when apprenticeship was dominant as a learning form, and little formal training
existed. Often one of the most popular training delivery vehicles, OTJ training is frequently
confused with informal office discussions, round table exchanges and brainstorming
sessions. It is sometimes difficult to precisely define what makes up OTJ training. Frequently
your coach, mentor, or trainer has a checklist of items which they must demonstrate to the
learner, and validate learner’s comprehension. Alternatively, informal styles consist of asking
a learner to repeat an activity until the coach, mentor, or trainer is satisfied with the learner’s
performance.

7.2.3 Video Conferencing

There are many conferencing and virtual meeting tools, but most can be placed in one of
two distinct categories: Conference room video conferencing, where two or more groups
exchange information using one or two-way visual (image) and two-way audio (voice)
transmission. Typically, wired conference rooms are voice activated. The person speaking
dominates the audio lines. Students can see the instructor, and the instructor can often
view the class groupings, sometimes with the capacity to focus in on the person speaking.
Computer conferencing, where exchange information using one way visual (image) and
two way (voice) transmission is employed. If all computers are equipped with cameras,
peer to peer exchange—such as instructor to student and student to student allows both
image and voice exchange. Streaming media technology will increasingly be used internally
at companies and in business-to-business ventures and that will drive up corporate spending
on the technology. This training delivery vehicle offers a live, immediate and synchronous
experience, presenting a good discussion format in real time, with equipment that is relatively
easy to operate.

7.2.4 Collaborative Tools

A host of conferencing tools can streamline and enrich a virtual business meeting experience,
including, but not limited to, digital video, program and document sharing, and
whiteboarding. These tools help the staff to find new ways to learn and collaborate online
in real time. Digital whiteboards employ a board, a pen and an eraser to store every word,

Ebay Exhibit 1013, Page 1145 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Introduction to Client/Server Computing142

line and color on the computer. Using an Electronic Projection System (EPS), trainer can
share this information electronically over the network with learners, creating an electronic
flipchart in real time. In collaborative systems, learners can add comments to the flipchart
that are visible to all session participants.

7.2.5 Virtual Groups and Event Calls

Computer technology allows training by using virtual groups in a cheap, accessible and
easy-to-use fashion. Set up chat rooms where learning groups can discuss, debate and
share information after training content has been distributed. Chat groups lack the face-to-
face element and can be asynchronous if members are not asked to be simultaneously
available. Voice intonation and body language cannot guide the learners. Virtual groups
should be managed, focused and kept small, since superficial treatment of materials can be
frustrating to learners. Some computers may be slower than others, so delays in
communication should be expected. Other virtual groups include virtual office sites, where
members of a company can interact using a computer, Web cam and modem to conduct
meetings from any geographical location in the world. Event call training involves use of
the telephone only rather than the computer. Training materials are often sent to event
call locations in advance, and are delivered one-way by the instructor. Participants in many
locations, connected via telephone conference, can ask questions. Again, telephone event
calling offers no face-to-face element. However, it serves as an inexpensive, quick way to
diffuse a uniform message to staff in different locations.

7.2.6 E-Learning

E-learning is the hot word on the block in training and investment circles. The term is
elusive, and means something a little different to everyone. In terms of learning delivery
approach e-learning is asynchronous: the learner does not receive instruction in the presence
of an instructor or other students. The learner can repeat a lesson as many times as he
needs, extracting the parts of the course he requires without wasting time going through
material he has already mastered. Learners can proceed through an electronic program at
their own pace, stopping and starting as desired. E-learning can be designed to offer different
levels of complexity, targeting a wider training audience and customizing training
accordingly. E-learning encompasses Computer Based Training (CBT), using a computer
in combination with Compact Disks with Read-Only Memory (CD-ROMs), Digital Video
Disks (DVDs) or browser driven, Web-Based Training (WBT). E-learning can be networked
or single user based. E-learning vehicles depend on the technology available and bandwidth
capacity. Lower bandwidth means that fewer graphic, animation, sound and video elements
are possible.

7.2.7 Web-based Training

Web-based training is browser driven. For this reason, it is more accessible to many, but
expensive for some because the Internet access is charged by the minute.

Ebay Exhibit 1013, Page 1146 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 Training and Testing 143

Accessibility to e-learning “is not currently as integral as an employee manual, a college
syllabus or a 9th grade math textbook. Most industry observers and education practitioners
believe that one day soon, it will be. Web-based content can be easily changed or updated
so that learners receive the most recent version. When training is complete, feedback in
the form of test or quiz results can be given online and stored in databases or Learning
Management Systems. Instructor feedback and follow-up can take the form of online chat
rooms or e-mail. Universal accessibility to the Web might require using limited bandwidth,
which results in slower performance for sound and images. Avoid long downloading delays,
since this can be a source of frustration for users. This module is a sample of low bandwidth,
interactive, Web-based solution.

7.2.8 Learning Management Systems (LMS)

Learning Management Systems have been developed to record learner progress in computer
and Web-based training. Some systems incorporate both asynchronous and synchronous
training. Features generally include coordinating course registration, scheduling, tracking,
assessment and testing learners while reporting to managers. Many systems interface with
human resource development and enterprise wide systems. Learning Management Systems
track and manage the learning process for each user. Some contain course and knowledge
management modules. These are termed learning course management systems. There are
approximately 600 currently on the market. Learning Management Systems can consume
much of an infrastructure budget, so careful consideration should be given before selecting
one. Another negative impact of implementing an LMS is that learners may feel policed.
This may reduce learners’ willingness to use this type of e-learning product.

7.2.9 Electronic Performance Support Systems (EPSS)

An Electronic Performance Support System provides task specific information, training,
coaching, and monitoring to enhance job performance. The key to good EPSS tools is their
simplicity and accuracy. An EPSS can be in the form of help files, glossary items, and task
tools available on the Internet, or in print. EPSSs are concise, efficient to use, and provide
clarification on tasks and procedures. An EPSS is part online help, part online tutorial,
part database, part application program, and part expert system. In short, an EPSS is an
integrated version of a lot of products that technical communicators produce. It is “an
electronic system that directly supports a worker’s performance when, how, and where
the support is needed.”

7.3 TO WHOM TRAINING IS REQUIRED?

7.3.1 System Administrator Training

System administrator is the person in Client/Server environment, who understands the
availability of resources desired by client. He must understand the level of system

Ebay Exhibit 1013, Page 1147 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Introduction to Client/Server Computing144

performance and ease of use their users requirement. System Administrator concentrates
on tasks that are independent of the applications running on adaptive server; he or she is
likely to be the person with the best overview of all the applications. System administrator
is responsible for managing server, client and as well as about all the applications running
in the environment. Some of the important system administrator’s tasks on that management
must concentrate to prove sufficient training to system administrator.

1. Setting up and managing client server database, managing and monitoring the use
of disk space, memory, and connections, backing up and restoring databases server,
integration with back-end databases.

2. Setting up and managing user accounts, granting roles and permissions to Adaptive
Server users and managing remote access.

3. Working with various control panels and hosting automation software and also day-
to-day management of the equipment.

4. Diagnosing system problems along with fault management and performance
management.

7.3.2 DBA Training

Client/Server environment consists of centralized or distributed data, so database
administrator requires additional responsibilities. He must perform skilled operations with
the help of technical staff while operating the application running on client server model.
The additional complexity of the new environment requires some new training for database
administration staff in that case design of Client/Server environment plays an important
role in effecting the performance due to location of data. Here, Database Administrator
(DBA) is an experienced senior member(s) of the computing staff who plan and co-ordinate
the development and daily maintenance of the entire database environment. He has an
extensive working knowledge of Client/Server environment. Usually the role of DBA is
shared between 2 or 3 such employees for security purposes. A typical DBA’s duties include:

• Installing and configuring the DBMS.
• Assisting in the implementation of information systems.
• Monitoring the performance of the database and tuning the DBMS for optimal

performance.
• Ensuring data integrity is maintained and appropriate backups are made.
• Resource usage monitoring.
• Setting standards for system documentation.
• Facilitating end-users with required database facilities.
• Overseeing new database developments, database re-organisation.
• Maintaining an acceptable level of technical performance for database utilities.
• Educating the organization in the use, capabilities and availability of the database.

Ebay Exhibit 1013, Page 1148 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 Training and Testing 145

In other words, DBA prime basic duties are to manage administrative procedures like
installation and configuration, backup, recovery, security administration and performance
tuning that covers application, database, Client/Server, parallel, restructuring, crisis
management, corruption repairs, long running and platform specific tuning.

7.3.3 Network Administrator Training

Network administrators training program specifically focuses on the design, installation,
maintenance and management as well as implementation, and operating network services
on LAN (Local-Area Network), WAN (Wide-Area Network), network segment, Internet,
intranet of Client/Server system. The increasing decentralizes activities of network services
makes coordinated network management difficult. To mange a network, let us see what
the basic fundamentals are associated with a network management system. Basically,
network management system is a collection of application, software, hardware and some
tools for monitoring and controlling the system integration as shown in Fig. 7.2 given
below. Then training of Network System Administrator requires training of following
important areas like:

• Configuration management.
• Performance management.
• Accounting management.
• Security management.
• Fault management.

Server
Router

Client

 Network Management
 Activity

Application

 Network
 Management
 Activity

Communication
Software

 OS

 OS

Communication
 Software

Network

Application

 Network
 Management
 Activity

OS

Communication
 Software

Fig. 7.2: Network System Elements

We can say, Network Systems Administrator are responsible for ensuring an
organization’s networks are used efficiently under the Client/Server environment. They

Ebay Exhibit 1013, Page 1149 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Introduction to Client/Server Computing146

provide day-to-day administrative support, monitor systems and make adjustments as
necessary, and trouble-shoot problems reported by client and automated monitoring systems.
They also gather data regarding customer needs, and then evaluate their systems based on
those needs. In addition, they may also be involved in the planning and implementation of
network security systems.

7.3.4 End-User and Technical Staff Training

End user’s are the user’s of Client/Server environment those how are already having sufficient
knowledge about application running on the system. They are not technical persons but
having enough function knowledge of system. They need to train about some new standards
and functionality and technology of the applications being implemented in the system.

Technological component constituting the Client/Server system must be completely
known to the supporting staff. There must a interface between high level administration
and technical staff so that database access and communication technologies can be used in
maximum potential by any client. Technical staff must be trained to respect the technological
knowledge of user who is already familiar with existing system. The technical staff is the
middle level of user of client server applications, then their corporate experience counts
while a major fault occurs with system.

7.3.5 GUI Applications Training

Most clients in Client/Server systems deliver system functionality using a Graphical User
Interface (GUI). When testing complete systems, the tester must grapple with the additional
functionality provided by the GUI. GUIs have become the established alternative to
traditional forms-based user interfaces. GUIs are the assumed user interface for virtually
all systems development using modern technologies. There are several reasons why GUIs
have become so popular that includes:

••••• GUIs provide the standard look and feel of a client operating system.
 ••••• GUIs are so flexible that they can be used in most application areas.
 ••••• The GUI provides seamless integration of custom and package applications.
 ••••• The user has a choice of using the keyboard or a mouse device.
 ••••• The user has a more natural interface to applications: multiple windows can be

visible simultaneously, so user understanding is improved.
 ••••• The user is in control: screens can be accessed in the sequence the user wants

at will.
 ••••• The most obvious characteristic of GUI applications is the fact that the GUI allows

multiple windows to be displayed at the same time. Displayed windows are ‘owned’
by applications and of course, there may be more than one application active at
the same time.

 Windows provide forms-like functionality with fields in which text or numeric data
can be entered. But GUIs introduce additional objects such as radio buttons, scrolling lists,

Ebay Exhibit 1013, Page 1150 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 Training and Testing 147

check boxes and other graphics that may be displayed or directly manipulated. The GUI
itself manages the simultaneous presentation of multiple applications and windows. Hidden
windows in the same or different applications may be brought forward and used. There
are few, if any, constraints on the order in which users access GUI windows so users are
free to use the features of the system in the way they prefer, rather than the way the
developers architected it. However, the sophistication and simplicity of a GUI hides the
complexity from the user and where development frameworks are used, the programmers
too. When trainers are presented with a GUI application to train, the hidden complexities
become all too obvious. Consequently, training GUIs is made considerably more difficult.
There are some key points that must be taken care while providing training to the various
applications on Client/Server environment, in fact, these are the difficulties associated
with GUI training.

••••• Event-driven nature: The event-driven nature of GUIs presents the first serious
training difficulty. Because users may click on any pixel on the screen, there are
many, many more possible user inputs that can occur. The user has an extremely
wide choice of actions. At any point in the application, the users may click on any
field or object within a window. They may bring another window in the same
application to the front and access that. The window may be owned by another
application. The user may choose to access an operating system component directly
e.g., a system configuration control panel.

••••• Unsolicited events: Unsolicited events cause problems for trainers. A trivial example
would be when a local printer goes off-line, and the operating system puts up a
dialog box inviting the user to feed more paper into the printer. A more complicated
situation arises where message-oriented middleware might dispatch a message (an
event) to remind the client application to redraw a diagram on screen, or refresh
a display of records from a database that has changed. Unsolicited events may occur
at any time, so again, the number of different situations that the code must
accommodate is extremely high. Training of unsolicited events is difficult.

••••• Hidden synchronization and dependencies: It is common for window objects to
have some form of synchronization implemented. For example, if a check box is
set to true, a text box intended to accept a numeric value elsewhere in the window
may be made inactive or invisible. If a particular radio button is clicked, a different
validation rule might be used for a data field elsewhere on the window.
Synchronization between objects need not be restricted to object in the same
window and its training must be done carefully.

••••• ‘Infinite’ input domain: On any GUI application, the user has complete freedom
to click with the mouse-pointing device anywhere on the window that has the
focus. Although objects in windows have a default tab order, the user may choose
to enter data values by clicking on an object and then entering data.

Ebay Exhibit 1013, Page 1151 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Introduction to Client/Server Computing148

••••• Many ways in, many ways out: An obvious consequence of the event-driven
nature of GUIs is that for most situations in the application, there may be ‘many
ways in’ by which the user reached that point in the application. As many as
possible, the ways must be known to the user.

••••• Window management: In a GUI environment, users take the standard features
of window management and control for granted. These features include window
movement, resizing, maximization, minimization and closure. These are usually
implemented by standard buttons and keyboard commands available on every
window. The trainer has control over which standard window controls are available,
but although the operating system handles the window’s behavior, the trainer must
handle the impact on the application.

7.3.6 LAN/WAN Administration and Training Issues

For LAN administration there are various products available such as Network General
Sniffer that enables administrator to monitor the network for capacity and problems without
the need for detail knowledge of the applications. The biggest advantage of using such
software is that they can be used to monitor LAN traffic, analyzing the data, and then to
recommend actions based on data assessment. The software interpreter internal LAN
message formats for LAN administrator to take action based on recommendations without
the need for detailed knowledge of such message formats.

Before starting the training of any client/server system, the environment of system
must be clearly known to administrator. Administrator must understand naming, security,
help procedure etc., and able to implement them uniformly between applications and
procedures. In case of large systems that are located in wide areas it requires administrator
training as well as user training. Such training ensures that each of the installation operates
in the same ways and also the support personal at remote can communicate with local
administrator. All the software products should be installed on the entire client with uniform
default setting and also the administrator should be an expert in the use of the product.
Training document of product usage also revels that the administrator must understand,
what the product requirements are? And arrange to have temporary and backup files
created on volumes that can be cleaned up regularly.

WAN administrator must be trained in such a way that he can use and manage the
remote management tools. Such tools enables administrator to remotely manage the LAN
to WAN environment needed for many client/server applications. All the WAN network
issues associated with remote terminal access to host system exist in the client/server to
WAN access. Complexities arise when data is distributed to the remote LAN. The distributed
application programs to remote servers present many of the same problems as do distributed
databases. Then, the administrator must be trained in the software and in procedures to
handle network definition, network management and remote backup and recovery. Due
to wide impact of the WAN on communication issues, training developers in WAN issues
becomes critical. And also due to availability of many optional configuration WAN’s are

Ebay Exhibit 1013, Page 1152 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 Training and Testing 149

complex to understand and optimized. Then the training of WAN administrators to
understand all of the options available to establish an optional topology becomes more
expensive.

In client/server application administrator must be expert in the operating system used
by clients and servers. The network used in client/server implementations frequently runs
several operating systems. Such diversity of platforms changes the administrator to have
expertise not only in the particular of a single operating system but also in the interaction
of the various operating systems. While designing and planning for a new client/server
application, the training requirements should be considered carefully before an organization
establishes too many operating systems on the network. The cost and implications of training
in this area must not be overlooked.

7.4 IMPACT OF TECHNOLOGY ON TRAINING

Client/Server Systems were initially developed as a cost-effective alternative to hosting
business applications on Mainframes. Client/Server Systems offer many advantages over
traditional systems such as low cost, increased performance and reliability due to a
distributed design, and easier interoperability with other systems etc. Over the last decade,
the second generation of Client/Server Systems has seen a major technological evolution.
The earlier Client/Server Systems based on the two-tier database centric design have evolved
to incorporate middleware technologies (for application logic) such as CORBA, COM+
and EJBs in an N-tier architecture. These technologies provide enhanced scalability and
robustness to the business application. In the last few years, the Client/Server applications
have been web-enabled for easier access and manageability. The integration of web and
Client/Server technologies has given rise to important applications such as Data
Warehousing, Online Analytical Processing (OLAP) and Data Mining. The necessities to
integrate and exchange information with other business systems have led to the recent
development of “Web Services” using XML and SOAP protocols. And of course, with web
enabling, the security issues with Client/Server computing have become more important
than ever. There are a number of factors driving the education and training markets to
increase the use of technology for learning delivery:

Technical obstacles in adoption are falling: Network and system infrastructures, hardware
access, and limited bandwidth are rapidly becoming non-factors.

Penetration of the Internet: The pervasiveness and familiarity of the Internet and its
related technologies is the number one driver behind the growth of e-learning.

Market consolidation and one-stop shopping: Corporations, educational institutions and
students are increasingly demanding more of their educational providers.

Traditional players looking to get on the scene: Many big industries and technology players
are watching and waiting for market opportunities.

Ebay Exhibit 1013, Page 1153 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Introduction to Client/Server Computing150

Knowledge is the competitive weapon of the 21st century: Knowledge is now the asset
that will make or break a company. To remain competitive, corporations and individuals
themselves–are expected to increase the amount spent on education to increase the value
of their human capital.

7.4.1 Client/Server Administration and Management

Administration and management of Client/Server environments is an important and
challenging area. Client/Server administration includes a range of activities: software
distribution and version management, resource utilization monitoring, maintaining system
security, reliability, and availability. Centralized mainframe environments are relatively
easy to manage and are typically associated with high-level of security, data integrity, and
good overall system availability. The present lack of administrative control over Client/
Server environments is a major de-motivating factor for many organizations, who are
considering migration from mainframe based systems. Personal Computer based networks
are particularly difficult to administer and significant resources are needed to maintain
Personal Computer environments in operation.

Client/Server administrators need to continuously monitor and pro-actively manage
the system to ensure system availability. The key to effective Client/Server administration
is fast identification of problem areas and fast failure recovery. Ideally, administrators should
be able to anticipate critical situations using information derived by monitoring important
resources. This allows intervention before the problems escalate and affect users of the
system. Because of the complexity of distributed environments and the interaction between
various system components, it is no longer possible to rely on traditional techniques, where
the administrator interacts directly with the system using operating system commands.
Automation of systems administration is an essential pre-requisite for the successful
implementation of Client/Server systems.

7.5 CLIENT/SERVER TESTING TECHNOLOGY

7.5.1 Client/Server Software

Client/Server Software requires specific forms of testing to prevent or predict catastrophic
errors. Servers go down, records lock, Input/Output errors and lost messages can really
cut into the benefits of adopting this network technology. Testing addresses system
performance and scalability by understanding how systems respond to increased workloads
and what causes them to fail. Software testing is more than just review. It involves the
dynamic analysis of the software being tested. It instructs the software to perform tasks
and functions in a virtual environment. This examines compatibility, capability, efficiency,
reliability, maintainability, and portability. A certain amount of faults will probably exist in
any software. However, faults do not necessarily equal failures. Rather, they are areas of
slight unpredictability that will not cause significant damage or shutdown. They are more

Ebay Exhibit 1013, Page 1154 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 Training and Testing 151

errors of semantics. Therefore, testing usually occurs until a company reaches an acceptable
defect rate that doesn’t affect the running of the program or at least won’t until an updated
version has been tested to correct the defects. Since Client/Server technology relies so
heavily on application software and networking, testing is an important part of technology
and product development. There are two distinct approaches when creating software tests.
There is black box testing and white or glass box testing. Black box testing is also referred
to as functional testing. It focuses on testing the internal machinations of whatever is
being tested, in our case, a client or server program. When testing software, for example,
black box tests focus on Input/Output. The testers know the input and predicted output,
but they do not know how the program arrives at its conclusions. Code is not examined,
only specifications are examined. Black box testing does not require special knowledge of
specific languages from the tester. The tests are unbiased because designers and testers are
independent of each other. They are primarily conducted from the user perspective to
ensure usability. However, there are also some disadvantages to black box testing. The
tests are difficult to design and can be redundant.

Also, many program paths go uncovered since it is realistically impossible to test all
input streams. It would simply take too long. White box testing is also sometimes referred
to as glass box testing. It is a form of structural testing that is also called clear box testing or
open box testing. As expected, it is the opposite of black box testing. It focuses on the
internal workings of the program and uses programming code to examine outputs.
Furthermore, the tester must know what the program is supposed to do and how it’s
supposed to do it. Then, the tester can see if the program strays from its proposed goal. For
software testing to be complete both functional/black and structural/white/glass box testing
must be conducted.

7.5.2 Client/Server Testing Techniques

There are a variety of testing techniques that are particularly useful when testing client
and server programs. Among them Risk Driven Testing and Performance Testing are most
important.
(a) Risk Driven Testing: Risk driven testing is time sensitive, which is important in

finding the most important bugs early on. It also helps because testing is never
allocated enough time or resources. Companies want to get their products out as
soon as possible. The prioritization of risks or potential errors is the engine behind
risk driven testing. In risk driven testing the tester takes the system parts he/she
wants to test, modules or functions, for example, and examines the categories of
error impact and likelihood. Impact, the first category, examines what would
happen in the event of a break-down. For example, would entire databases be wiped
out or would the formatting just be a little off? Likelihood estimates the probability
of this failure in the element being tested. Risk driven testing prioritizes the most
catastrophic potential errors in the service of time efficiency.

Ebay Exhibit 1013, Page 1155 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Introduction to Client/Server Computing152

(b) Performance Testing: Performance testing is another strategy for testing client
and server programs. It is also called load testing or stress testing. Performance
testing evaluates system components, such as software, around specific performance
parameters, such as resource utilization, response time, and transaction rates. In
order to performance test a client-server application, several key pieces of information
must be known. For example, the average number of users working simultaneously
on a system must be quantified, since performance testing most commonly tests
performance under workload stress. Testers should also determine maximum or
peak user performance or how the system operates under maximum workloads.
Bandwidth is another necessary bit of information, as is most users’ most frequent
actions. Performance testing also validates and verifies other performance parameters
such as reliability and scalability. Performance testing can establish that a product
lives up to performance standards necessary for commercial release. It can compare
two systems to determine which one performs better. Or they can use profilers
to determine the program’s behavior as it runs. This determines which parts of
the program might cause the most trouble and it establishes thresholds of acceptable
response times.

7.5.3 Testing Aspects

There are different types of software testing that focus on different aspects of IT
architecture. Three-testing are particularly relevant to Client/Server applications. These
are unit testing, integration testing, and system testing. A unit is the smallest testable
component of a program. In object-oriented programming, which is increasingly influencing
Client/Server applications. The smallest unit is a class. Modules are made up of units. Unit
testing isolates small sections of a program (units) and tests the individual parts to prove
they work correctly. They make strict demands on the piece of code they are testing. Unit
testing documentation provides records of test cases that are designed to incorporate the
characteristics that will make the unit successful. This documentation also contains positive
and negative uses for the unit as well as what negative behaviors the unit will trap. However,
unit testing won’t catch all errors. It must be used with other testing techniques. It is only
a phase of three-layer testing, of which unit testing is the first. Integration testing, sometimes
called I&T (Integration and Testing), combines individual modules and tests them as a
group. These test cases take modules that have been unit tested, they test this input with
a test plan. The output is the integrated system, which is then ready for the final layer of
testing, system testing. The purpose of integration testing is to verify functionality,
performance, and reliability. There are different types of integration testing models. For
example, the Big Bang model is a time saver by combining unit-tested modules to form an
entire software program (or a significant part of one). This is the ‘design entity’ that will
be tested for integration.

Ebay Exhibit 1013, Page 1156 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 Training and Testing 153

However, record of test case results is of the essence, otherwise further testing will be
very complicated. Bottom up integrated testing tests all the low, user level modules, functions
and procedures. Once these have been integrated and tested, the next level of modules can
be integrated and tested. All modules at each level must be operating at the same level for
this type of testing to be worthwhile. In object-oriented programming, of which client
server applications increasingly are, classes are encapsulations of data attributes and
functions. Classes require the integration of methods. Ultimately, integration testing reveals
any inconsistencies within or between assemblages or the groupings of modules that are
integrated through testing plans and outputs.

System testing is the final layer of software testing. It is conducted once the system has
been integrated. Like integration testing, it falls within the category of black box testing.
Its input is the integrated software elements that have passed integration testing and the
integration of the software system with any hardware systems it may apply to. System
testing detects inconsistencies between assemblages (thereby testing integration) and in
the system as its own entity. System testing is the final testing front and therefore the most
aggressive. It runs the system to the point of failure and is characterized as destructive
testing. Here are some of the areas systems testing covers: usability, reliability, maintenance,
recover, compatibility, and performance.

7.5.4 Measures of Completeness

In software testing, there are two measures of completeness, code coverage and path
coverage. Code coverage is a white box testing technique to determine how much of a
program’s source code has been tested. There are several fronts on which code coverage is
measured. For example, statement coverage determines whether each line of code has
been executed and tested. Condition coverage checks the same for each evaluation point.
Path coverage establishes whether every potential route through a segment of code has
been executed and tested. Entry/Exit coverage executes and tests every possible call to a
function and return of a response. Code coverage provides a final layer of testing because
it searches for the errors that were missed by the other test cases. It determines what areas
have not been executed and tested and creates new test cases to analyze these areas. In
addition, it identifies redundant test cases that won’t increase coverage.

7.6 TESTING CLIENT/SERVER APPLICATION

The structure of Client/Server Systems requires new approaches to testing them. A system
can go wrong due to input/output errors, server down, records locked, lost messages and
many more and then it requires to test the system response for these events. Performance
and scalability testing is done to get valid results based on an insightful analysis of how
systems respond to increasing load, and what makes them fail in various ways. With these
information loads, testing is performed. Testing Client/Server applications requires some
additional techniques to handle the new effects introduced by the Client/Server

Ebay Exhibit 1013, Page 1157 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Introduction to Client/Server Computing154

architecture. Testing Client/Server Systems is entirely different; still the testing of software
is there, see Fig. 7.3 given below.

 Client/Server Application
Testing

Traditional
Testing

Fig. 7.3: Client/Server Testing

Such testing includes all the core testing techniques that are required to test any system,
including systems that have a Client/Server design, plus the special techniques needed for
Client/Server. Testing Client/Server applications is more challenging than testing traditional
systems due to the following reasons:

••••• New kinds of things can go wrong: for example: Data and messages can get lost
in the network.

••••• It’s harder to set up, execute, and check the test cases: for example: Testing for
proper responses to timeouts.

••••• Regression testing is harder to automate: for example: It’s not easy to create an
automated ‘server is busy’ condition.

••••• Predicting performance and scalability become critical: for example: It seems to
work fine with 10 users. But what about with 1,000 users or 10,000 users?

Obviously, some new techniques are needed to test Client/Server systems. Most of
these apply to distributed systems of all kinds, not just the special case of Client/Server
architecture. The key to understanding how to test these systems is to understand exactly
how and why each type of potential problem arises. With this insight, the testing solution
will usually be obvious. For example, suppose Program A, (a client program, because it
makes a request) asks Program B, a server program, to update some fields in a database.

Program B is on another computer. Program A expects Program B to report that either
the operation was successfully completed or the operation was unsuccessful (for example,
because the requested record was locked.). However, time passes and A hears nothing.
What should A do? Depending on the speed and reliability of the network connecting A
and B, there comes a time when A must conclude that something has probably gone wrong.
Then, some possibilities are given as follow:

Ebay Exhibit 1013, Page 1158 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 Training and Testing 155

••••• The request got lost and it never reached B.
••••• B received the request, but is too busy to respond yet.
••••• B got the request, but crashed before it could begin processing it.

B may or may not have been able to store the request before it crashed.
If B did store the request, it might try to service it upon awakening.

••••• B started to process the request, but crashed while processing it.
••••• B finished processing the request (successfully or not), but crashed before it could

report the result.
••••• B reported the result, but the result got lost and was never received by A.
There are more possibilities, but you get the idea. So what should A do?
Here the problem is that A can’t tell the difference between any of the above cases

(without taking some further action). Dealing with this problem involves complex schemes
such as the Two Phases Commit. When to test the client program A, its needed to see
whether it’s robust enough to at least do something intelligent for each of the above
scenarios. This example illustrates one new type of testing that have been done for Client/
Server systems. Testing the client program for correct behavior in the face of uncertainty.
Now, let’s look at the other new type of testing, this time on the server side with
consideration of performance testing and scalability issues. There are some major reasons
why Client/Server systems cause new effects:

(i) Most of these systems are event-driven: Basically, this means: “Nothing Happens
Until Something Happens”. Most program action is triggered by an event, such as
the user hitting a key, some Input/Output being completed, or a clock timer
expiring. The event is intercepted by an “event handler” or “interrupt handler”
piece of code, which generates an internal message (or lots of messages) about what
it detected. This means that it’s harder to set up test cases than it is, say, to define
a test case for a traditional system that prints a check. To set up a test case it requires
to create events, or to simulate them. That is not always easy, especially, because
it needed to generate these events when the system is in the proper state; but there
are ways to do it.

(ii) The systems never stop: Many Client Server/Systems are set up to never stop
running unless something goes really wrong. It is true for the servers, and in many
cases, it is also true for the client machines. Traditional systems complete an action,
such as printing a report, and then turn in for the night. When user restarts the
program it is a whole fresh new day for it. In systems that don’t stop (on purpose),
things are different. Errors accumulate. As someone put it, sludge builds up on
the walls of the operating system. So things like memory leaks that are wrong,
but that probably would not affect the most traditional systems, will eventually
bring non-stop systems down if they are not detected and corrected. One good way
to minimize these effects is to use something called SOW and HILT variables in
testing.

Ebay Exhibit 1013, Page 1159 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Introduction to Client/Server Computing156

The system contains multiple computers and processors which can act (and fail)
independently. Worse, they communicate with each other over less than perfectly
reliable communication lines. These two factors are the root cause of the problem
detailed above, where Program A makes a request of Program B, but gets no
response.

EXERCISE 7

1. In Client/Server architecture, you are appointed as a system administrator. You
have about 500 users and it is a mix of WinNT machine, Macintosh machine, and
a very few DOS machine. Describe all the part given below with example, wherever
necessary.

(a) What all will you do so network runs smoothly?
(b) What all will you do to make sure that data is secure?
(c) What will be your Network Operating Systems for this particular configuration?
(d) In a network arrangement, when you have several different machines, such

as system in question, you need to watch for certain factors to keep network
trouble-free. What are these factors?

(e) Resource sharing architecture is not suitable for transaction processing in a
Client/Server environment. Discuss.

2. What do you understand by Network Management and Remote System
Management? How can security be provided to Network?

3. Explain System Administrator in Client/Server Application in detail.
4. Explain in detail, with help of suitable examples, the training advantages of GUI

application.
5. Compare and contrast the system administrator training, database administrator

training and end user training.
6. What are the responsibilities of the DBA? Also, discuss the capabilities that should

be provided by a DBMS.
7. What are different LAN and Network Management issues? Explain with example.
8. Explain the term remote monitoring. What are different network management

tools?

Ebay Exhibit 1013, Page 1160 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 Client/Server Technology and Web Services 157

8.1 INTRODUCTION

The Internet and expanded network connectivity established Client/Server models as the
preferred form of distributed computing. When talking about Client/Server models of
network communication using web services the broadest components of this paradigm
become the web browser (functioning as the client) and web server. So, by introducing
web services into the equation, Client/Server models become browser/server models. These
models are Server-Centric, which make applications easy to load and install, but reduces
rich user interaction. Server-Centric applications are currently available from standard
browsers, making them convenient and popular with developers. Therefore, a way of
enriching user experience is an essential frontier that must be developed for using browser/
server models of distributed computing. One of the revolutions of the personal computer
was usability or the ease with which humans could communicate with and configure their
computers. This usually occurred through individual configuration and the User Interface
(UI). Administratively, this was a nightmare because administrators had to install and
maintain applications one machine at a time and manage multiple platforms. Individual
installation and maintenance across platforms made web services seem like a good solution.
Using HTML tools, developers moved toward giving applications global potential and a
uniform protocol for management and deployment. The evolving trend was for developers
to create applications that run on the server side, while web browsers became, for all
intents and purposes, the standard client interface. Client processing power atrophied as
execution of programs took place on central servers and output or responses were
transmitted back to the browser through standard IP (Internet Protocols). This improved
installation, administration, and maintenance. However, to be intelligible to the wide-array
of platforms being targeted, web developers had to write in the lowest common denominator
or the most widely accepted standards. This affected user experience negatively, while
ensuring that applications could be deployed to the most users.

Client/Server Technology and
Web Services

88888

Ebay Exhibit 1013, Page 1161 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Introduction to Client/Server Computing158

8.2 WHAT ARE WEB SERVICES?

8.2.1 Web Services History

The World Wide Web was developed by Tim Berners-Lee for his employer CERN or the
European Organization for Nuclear Research between 1989-1991. In 1990, he wrote the
program for the World Wide Web. This program created the first web browser and HTML
editor. It was the first program to use both FTP and HTTP.

FTP (File Transfer Protocol) is used to transfer data over a network. Protocol is the
set of standards that defines and controls connection, communication, and the transfer of
data between two computer endpoints. It determines the format and defines the terms of
transmission. HTTP is the protocol that supports hyper-text documents. Both of these
protocols are necessary for communication over the Internet or World Wide Web. The
source code for the World Wide Web was made public in 1993, making it available to
everyone with a computer. The technology continued to develop and between 1991-1994,
extended from communication only between scientific organizations, to universities and,
finally, to industry. By 1994, computers could transfer data between each other through a
cable linking ports across various operating systems.

The first web server, also written by Berners-Lee, ran on NeXTSTEP, the operating
system for NeXT computers. The other technology authored by Berners-Lee that is required
for Web communication is URLs (Universal Resource Locators). These are the uniform
global identifiers for documents on the Web allowing for easily locating them on the Web.
Berners-Lee is also responsible for writing the initial specifications for HTML. The first
web server was installed in the United States on December 12, 1991 and at SLAC (Stanford
Linear Accelerator Center), which is a U.S. Department of Energy laboratory. In 1994,
Berners-Lee created the World Wide Web Consortium (WWC) to regulate and standardize
the various technologies required for Web construction and communication. It was created
to ensure compatibility between vendors or industry members by having them agree on
certain core standards. This ensures the ability for web pages to be intelligible between
different operating systems and software packages. After 2000, the web exploded. Till
date, there exist more than 110 million web sites on the World Wide Web.

8.2.2 Web Server Technology

At the most basic level, the process for web communication works as follows: a computer
runs a web browser that allows it to request, communicate and display HTML documents
(web pages). Web browsers are the software applications that allow users to access and
view these web pages and they run on individual computers. The most popular web
browsers are Internet Explorer, Mozilla, Firefox, and Safari (for Mac). After typing in the
URL (or address) and pressing return, the request is sent to a server machine that runs the
web server. The web server is the program that delivers the files that make up web pages.
Every web site or computer that creates a web site requires a web server. The most popular

Ebay Exhibit 1013, Page 1162 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 Client/Server Technology and Web Services 159

web server program is Apache. The server machine then returns the requested web page.
See the Fig. 8.1(a) and 8.1(b), depicting the Web Technology yesterday and today.

 Internet

HTML

HTTP Request

Browser
 Web
Server

 File
System

Fig. 8.1(a): Web Technology Yesterday

 Internet

Static / Dynamic
Web Pages

HTTP Request

Browser
 Web
Server

Database
CGI Program

&
CGI Scripts

Fig. 8.1(b): Web Technology Today

Communication over the Internet can be broken down into two interested parties:
clients and servers. The machines providing services are servers. Clients are the machines
used to connect to those services. For example, the personal computer requesting web
pages according to search parameters (defined by key words) does not provide any services
to other computers. This is the client. If the client requests a search from, for example, the
search engine Yahoo!. Yahoo! is the server, providing the hardware machinery to service
the request. As previously mentioned, each computer requesting information over the
Internet requires a web server program like Apache to render the search result intelligible
in HTML.

Web servers translate URL path components in local file systems. The URL path is
dependent on the server’s root directory. The root directory is the top directory of a file
system that usually exists hierarchically as an inverted tree. URL paths are similar to UNIX-
like operating systems.

The typical client request reads, for example, “http://www.example.com/path/file.html”.
This client web browser translates this request through an HTTP request and by connecting
to “www.example.com”, in this case. The web server will then add the requested path to
its root directory path. The result is located in the server’s local file system or hierarchy of
directories. The server reads the file and responds to the browser’s request. The response
contains the requested documents, in this case, web sites and the constituent pages.

Ebay Exhibit 1013, Page 1163 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Introduction to Client/Server Computing160

Web Browser (Web Client)

A browser is a software (the most popular web browsers are Internet Explorer, Mozilla
Firefox, Safari, Opera, and Netscape) that acts as an interface between the user and the
inner workings of the internet, specifically the Word Wide Web Browsers are also referred
to as web clients, or Universal Clients, because in the Client/Server model, the browser
functions as the client program. The browser acts on behalf of the user. The browser:

• Contacts a web server and sends a request for information.
• Receives the information and then displays it on the user’s computer.
A browser can be text-based or graphical and can make the internet easier to use and

more intuitive. A graphical browser allows the user to view images on their computer,
“point-and-click” with a mouse to select hypertext links, and uses drop-down menus and
toolbar buttons to navigate and access recourses on Internet. The WWW incorporates
hypertext, photographs, sound, video, etc. that can be fully experienced through a graphical
browser. Browser often includes “helper application” which are actually software programs
that are needed to display images, hear sounds or run animation sequences. The browser
automatically invokes these helper applications when a user selects a link to a resource
that requires them.

Accessing Database on the Web Page

Generally, it has been observed that a remote user’s web browser cannot get connected
directly with database system. But in most of the cases, the browsers are a program running
on the web server that is an intermediary to the database. This program can be a common
Gateway Interface (CGI) script, a Java servlet, or some code that lives inside an Active
Server Page (ASP) or Java Server Page (JSP) document. The program retrieves the
information from the page is an ordinary HTML document or the output of some script
that Web-based database system. All these activities happen in number of steps explained
below and also shown in figure 8.2:

Step1: The user types in a URL or fills out a form or submits a search on a Web page
and clicks the Submit button.

Step 2: The browser sends the user’s query from the browser to the Web server, which
passes it on to a CGI script.

Step 3: The CGI script loads a library that lets it talk to an SQL database server, and
it uses that library to send SQL commands to the database server.

Step 4: The database server executes the SQL commands and sends the request
information to the CGI script.

Step 5: The CGI script generates an HTML document and writes the HTML document
to the Web server.

Step 6: The Web server sends the HTML page back to the remote user.

Ebay Exhibit 1013, Page 1164 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 Client/Server Technology and Web Services 161

 1

 User submits a
 query using the
 Web Browser to
 the Web Server

 2
 Web Server
 sends the query
 Variable to the
 CGI script

User

 3
 Web Server
 sends the query
 Variable to the
 CGI script

 Web Server

CGI Script

Database

 6
The Web Server
 sends the

 HTML
 document to
 the user

 4
 The Database

 server executes
 the SQL

 commands and
passes the results
to the CGI Script

 5
The CGI script

 generates an
 HTML

 document and
 sends it to the
 Web server

Fig. 8.2: Information Exchange between User and a Web-based Database

If the user has send some information to update a database. Then the CGI Script will
generate the appropriate SQL commands and send it to the database server. The database
server will execute the SQL commands and then inform the user about the result of
execution. A typical example of a database query is search that you perform using a search
engine. An example for an insert operation will be filled up a form on your browser to do
an online registration for seminar. An example for an update operation will be updating
your profile on a portal like naukari.com. In many web sites, even when you type a URL,
web pages are generated for you using the information retrieved from a database.

Ebay Exhibit 1013, Page 1165 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Introduction to Client/Server Computing162

For example, when you browse an online bookshop for a book. There are many details
that are dynamic details like price, sales rank, shipping charges, availability, etc. So, it is
easy to keep the details about all the books in the shop in a database and generate the web
pages as and when requested by the user. The advantage of this is that the changes can be
applied to the database and the users always get the up-to-date information.

8.2.3 Web Server

A computer that runs a computer program that is responsible for accepting HTTP requests
from clients, which are known as web browsers, and serving them HTTP responses along
with optional data contents, which usually are web pages such as HTML documents and
linked objects (images, etc.). Although web server programs differ in detail, they all share
some basic common features like HTTP and Logging, discussed below.

HTTP: Every web server program operates by accepting HTTP requests from the client,
and providing an HTTP response to the client. The HTTP response usually consists of an
HTML document, but can also be a raw file, an image, or some other type of document
(defined by MIME-types); if some error is found in client request or while trying to serve
the request, a web server has to send an error response which may include some custom
HTML or text messages to better explain the problem to end users.

Logging: Usually web servers have also the capability of logging some detailed
information, about client requests and server responses, to log files; this allows the
webmaster to collect statistics by running log analyzers on log files.

In practice many web servers implement the following features also:
• Authentication, optional authorization request (request of user name and password)

before allowing access to some or all kind of resources.
• Handling of not only static content (file content recorded in server’s filesystem(s))

but of dynamic content too by supporting one or more related interfaces (SSI, CGI,
SCGI, FastCGI, JSP, PHP, ASP, ASP.NET, Server API such as NSAPI, ISAPI, etc.).

• HTTPS support (by SSL or TLS) to allow secure (encrypted) connections to the
server on the standard port 443 instead of usual port 80.

• Content compression (i.e., by gzip encoding) to reduce the size of the responses
(to lower bandwidth usage, etc.).

• Virtual hosting to serve many web sites using one IP address.
• Large file support to be able to serve files whose size is greater than 2 GB on 32

bit OS.
• Bandwidth throttling to limit the speed of responses in order to not saturate the

network and to be able to serve more clients.
Although web servers differ in specifics there are certain basic characteristics shared

by all web servers. These basic characteristics include HTTP and logging. As previously,
mentioned HTTP is the standard communications protocol for processing requests between

Ebay Exhibit 1013, Page 1166 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 Client/Server Technology and Web Services 163

client browsers and web servers. This protocol provides the standardized rules for
representing data, authenticating requests, and detecting errors.

The purpose of protocols is to make data transfer and services user-friendly. In
computing, the protocols determine the nature of the connection between two
communicating endpoints (wired or wireless) and verify the existence of the other endpoints
being communicated with. It also negotiates the various characteristics of the connection.
It determines how to begin, end, and format a request. It also signals any errors or
corruptions in files and alerts the user as to the appropriate steps to take. HTTP is the
request/response protocol used specifically for communicating. HTML documents which
is the language hypertext or web pages are written in. However, responses can also return
in the form of raw text, images or other types of documents. The other basic web server
characteristic is logging. This is a feature that allows the program to automatically record
events. This record can then be used as an audit trail to diagnose problems. Web servers
log detailed information recording client requests and server responses. This information
is stored in log files and can be analyzed to better understand user behavior, such as key
word preferences, generate statistics, and run a more efficient web site.

There are many other practical features common to a variety of web sites. Configuration
files or external user interfaces help determine how much and to what level of sophistication
users can interact with the server. This establishes the configurability of the server. Some
servers also provide authentication features that require users to register with the server
through a username and password before being allowed access to resources or the execution
of requests. Web servers must also be able to manage static and dynamic content. Static
content exists as a file in a file system. Dynamic content is content (text, images, form
fields) on a web page that changes according to specific contexts or conditions. Dynamic
content is produced by some other program or script (a user-friendly programming language
that connects existing components to execute a specific task) or API (Application
Programming Interface the web server calls upon). It is much slower to load than static
content since it often has to be pulled from a remote database. It provides a greater degree
of user interactivity and tailor responses to user requests. To handle dynamic content,
web servers must support at least any one of interface like JSP (Java Server Pages), PHP
(a programming language that creates dynamic web pages), ASP (Active Server Pages) or
ASP.NET (it is the successor of ASP).

8.2.4 Web Server Communication

Web servers are one of the end points in communication through the World Wide Web.
According to its inventor, Tim Berner-Lee, the World Wide Web is “the universe of network-
accessible information, an embodiment of human knowledge.” The World Wide Web is the
global structure of electronically connected information. It refers to the global connections
between computers that allow users to search for documents or web pages by requesting
results from a web server. These documents are hyper-text based (written in HTML-
Hypertext Markup Language), allowing users to travel to other pages and extend their

Ebay Exhibit 1013, Page 1167 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Introduction to Client/Server Computing164

research through links. They are delivered in a standardized protocol, HTTP (Hypertext
Transfer Protocol, usually written in lower case letters), making HTML documents
intelligible across hardware and software variations.

This information travels through web servers and web browsers. The communication
initiates from a user request through a web browser. The request is delivered to a web
server in ‘HTTP’ format. The server then processes the request, which can be anything
from a general search to a specific task, and returns the results in the same format. The
results are written in HTML, which is the language web pages are written in that supports
high-speed travel between web pages. HTML is also essential for displaying many of the
interactive features on web pages, such as linking web pages to other objects, like images.
An important distinction when defining web servers is between hardware and software. A
web server is also a computer program (software) that performs the functions outlined
above.

8.3 ROLE OF JAVA FOR CLIENT/SERVER ON WEB

Client server models provide the essential mechanisms for working with the Internet.
In fact, most of the World Wide Web is built according to this paradigm. In client server
models the web browsers run by millions of users are the clients. On the other side of the
equation, is the web hosting systems that run at host sites and provide access to processes
and data requested by the client. In this case, these hosting systems are the server. This
definition is based on software programs, where the client is a program running on a
remote machine that communicates with a server, a program running at a single site and
providing responses to client requests, such as web pages or data.

Java is a programming language that has been developed specifically for the distributed
environment of the Internet. It resembles C++ language, but is easier to use. C++ is a high
level programming language that performs low level functions. In computing, low level
functions are those that focus on individual components and the interaction between them
as opposed to abstracted and systemic features (high level). Java, like C++, is a language that
is multi-paradigm and supports object-oriented programming (OOP), procedural programming,
and data abstraction. Object-oriented programming is increasingly being used in client server
technology. It refers to a programming language model that is organized by objects rather
than actions, data rather than logic. OOP identifies objects (sets of data) and defines their
relationship to each other. These objects are then generalized into a class. Methods or
sequences of logic are applied to classes of objects. Methods provide computational instructions
and class object features provide the data that is acted upon. Users communicate with objects
and objects with each other through specifically defined interfaces called messages. Java can
create applications that are distributed between clients and servers in a network. Java source
code (signaled by .java extension) is compiled (source code transformed into object code)
into byte code (signaled by .class extension). A Java interpreter then executes this byte code
format. Java interpreters and runtime environment run on Java Virtual Machines (JVMs).

Ebay Exhibit 1013, Page 1168 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 Client/Server Technology and Web Services 165

The portability and usability that characterizes Java stems from the fact that JVMs exist for
most operating systems, from UNIX, to Windows, to Mac OS.

Java is one of the most well-suited languages for working on the World Wide Web and
the client server model is the primary models for working on distributed networks, of
which the World Wide Web is just one. There is natural affinity between the two and this
article will discuss some major characteristics of Java and how it can be utilized in building
client server systems.

To understand how Java is used in client server systems it becomes essential to
understand the major characteristics of Java. Syntactic of Java are similarity to C and
C++ languages, Java is simple, simpler, in fact, than the languages it emulates. Java is also
a robust programming language, which means it creates software that will identify and
correct errors and handle abnormal conditions intelligently. Another major characteristic
of Java is that it is object oriented programming, which was described above. OOP is
characterized by three properties also present in Java programming: inheritance,
encapsulation, and polymorphism. Inheritance is a major component in OOP which defines
a general class and then specializes these classes by adding additional details in the already
written class. Programmers only have to write the new features since the specialized class
inherits all the features of the generalized class.

In OOP, encapsulation is the inclusion of all methods and data required for an object to
function. Objects publish their interfaces and other objects communicate with these object
interfaces to use them without having to understand how the encapsulated object performs
its functions. It is the separation of interface and implementation. Polymorphism in OOP
in general and Java specifically, is the ability to assign a different set of behaviors to an
object in a subclass from the methods describe in the more general class. Therefore,
subclasses can behave differently from the parent class without the parent class having to
understand why for change itself. Multi threading is also an important characteristic of
Java that increases interactive responsiveness and real time performance. Threading is the
way a program splits or forks itself into two or more tasks running simultaneously. This
allows for thread based multi tasking. Multi threading creates the effect of multiple threads
running in parallel on different machines simultaneously.

Socket-based Client Server Systems in Java

Java builds client server systems with sockets. Sockets are the endpoints of two-way
communication between programs running in a network. They are software objects that
connect applications to network protocols, so they become intelligible. For example, in
UNIX a program opens a socket that enables it to send and receive messages from the
socket. This simplifies software development because programmers only have to change
or specify the socket, while the operating system is left intact. In client/server models, the
server contains sockets bound to specific port numbers. Port numbers identify specific
processes that are to be forwarded over a network, like the Internet, in the form of messages
to the server. The server only has to monitor the socket and respond when a client requests

Ebay Exhibit 1013, Page 1169 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Introduction to Client/Server Computing166

a connection. Once connections have been made and bound to port numbers, the two
endpoints, client and server, can communicate through the socket. Java sockets are client
side sockets, known simply as sockets and server side sockets known as server sockets.
Each belong to their own class within a Java package. The client initiates the socket, which
contains a host name and port number, by requesting connections.

The server socket class in Java allows for servers to monitor requests for connections.
As the socket communicates over the network, Java’s server socket class assigns a one
port number to each client in the server and creates a socket object or instance. This
server socket instance creates a connection and produces a thread or string of processes
through which the server can communicate with the client through the socket. Java web
servers are built according to this model. TCP (Transmission Control Protocol) works in
conjunction with IP (Internet Protocol) to send messages between computers over the
Internet. When communicating over the Internet, the client program and the server program
each attach a socket to their end of the connection. Then the client and server can read
from and write to the socket. Java provides operating system sockets that allow two or
more processes to send and receive data, regardless of computer location.

Java’s RMI System

The other method for using Java to build client server systems is RMI. RMI stands for
Remote Method Invocation. By using Java language and functions, programmers write
object oriented programming, so that objects that are distributed over a network can interact
with each other. RMI allows for client objects in JVMs to request services through a network
from another computer (host or server). Client objects included with the request may call
upon methods in the remote computer that change the results. Methods are programmed
procedures attributed to a class that are contained in each of its objects (or instances). It is
a characteristic of object-oriented programming.

Classes and, therefore, objects can have more than one method and methods can be
used for more than one object. Responses then run as if they were local (on the same
computer.) This passing back and forth of objects and methods attached to objects is called
‘object serializations’. Simply put, RMI requests call upon the method of a remote object.
As previously stated, it uses the same syntax it would locally. To make this intelligible to
the servers or sites being called upon requires three layers: a client side stub program, a
remote reference layer, and a transport connection layer. Each request travels down the
layers of the client computer and up the layers of the server. The client side stub program
initiates the request. Stub programs are small sections of programs containing routines
from larger programs. It is a substitute for programs that may take too long to load or are
located remotely on a network. They are provided by the server at the client’s request.
Stubs accept client requests and communicate requested procedures (through another
program) to remote applications. They also return the results to the client or requesting
program. These stubs mimic the program being called for service.

In Java, stub programs are also referred to as ‘proxy’. Remote reference layers manage
reference variables for remote objects, using the transport layer’s TCP (Transmission

Ebay Exhibit 1013, Page 1170 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 Client/Server Technology and Web Services 167

Control Protocol) connection to the server. Reference variables contain class data and
therefore include methods. The transport layer protects and maintains end to end
communication through a network. The most used transport layer is TCP. After the client
requests pass through the transport layer, they pass through another remote reference
layer before requesting implementation of the request by the server from a skeleton. These
skeletons are written in high level IDL (Interface Definition Language). The server receives
the request and sends the response along the same channels, but in the other direction.

8.4 WEB SERVICES AND CLIENT/SEVER/BROWSER—SERVER TECHNOLOGY

Web services and Client/Server technology made it possible for applications to integrate of
separate components. These components might exist on separate machines, but they work
together through network (Internet) communication. Applications using web services
demonstrate the integration of components coming from multiple sources. This makes
version management important. One of the benefits of having to focus on version
management is to make developers aware of component dependencies and specific areas
that require maintenance in each version. This allows developers to customize maintenance
for application deployment. These distributed application components use universal formats
provided by such programming languages as XML (Extensible Markup Language) and
WSDL (Web Standard Description Language).

XML is the W3C standardized language that allows information and services to be
written in a structurally and semantically intelligible way that both humans and machine
on different platforms can understand. It can be customized with user or industry tags.
WSDL uses an XML format to describe network services. These services are described as
endpoints that use messages to transmit documents or procedure-oriented information.
These operations and messages are abstract, but then they are attached to specific network
protocols and message formats to enable communication. Distributed application
components also use universal protocols like HTTP (Hypertext Transfer Protocol) and
SOAP (Simple Object Access Protocol).

HTTP is the standard protocol for transmitting HTML files or documents. SOAP is a
message-based protocol formatted in XML and using HTTP. It is a way for a program
running in one operating system to communicate with a program running in another. For
the purposes of this discussion, applications that take advantage of web services will be
understood as ‘balanced computing model’ because these applications are designed to take
the fullest advantage of both client and server capabilities in the most efficient way. This
model of balanced computing improves traditional Client/Server model by not stressing
one part of the system and ignoring the capabilities of other parts.

For example, traditional browser-server models were Server-Centric. They could handle
user demands but did not take advantage of client-side processing that could predict user
behaviour. To predict the behaviour from a diverse customer base requires headroom.
Headroom is also known as the attenuation crosstalk ratio. It ensures the network

Ebay Exhibit 1013, Page 1171 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Introduction to Client/Server Computing168

connections are strong and that signals on the receiving end of a communication are strong
enough to overcome any interference. This provides a consistent and customized user
experience regardless of unpredictable behaviour in the network.

8.5 CLIENT/SERVER TECHNOLOGY AND WEB APPLICATIONS

There is a gap in user experience between desktop applications and web applications.
Desktop applications run on a single computer, while web applications run on the Internet.
Since the invention of the Web, developers have been trying to design web applications
that demonstrate the speed and interactivity of applications running on the client machine
of a LAN (Local Area Network). Despite the explosion of web based applications in the
1990’s (and continuing today), many users still prefer desktop applications. Like web sites,
desktop applications access up to date information by connecting to the Web through the
Internet.

However, desktop applications are designed with a much more refined sensibility and
use PC power to customize requests from information stored on the desktop. This user
experience is significantly better than when using remote web sites. Many are arguing that
desktop applications will be the next wave in the Internet revolution.

So, with desktop applications breathing down their necks, web applications need to
keep up the pace. Web applications are accessed by web browsers and run over a network,
like the Internet. They are popular because of the power dominance of web browsers
serving as thin clients.Thin clients are client applications or devices that simply initiate
requests and provide input. They do very little of the processing, letting the server handle
the heavy lifting by forwarding requests and contacting different nodes and networks.
Web applications are responsible for web based e-mail applications like Hotmail, online
shopping sites, online auction sites, wikis, and blogs. In traditional client server computing,
every application contained a client program that provided the User Interface (UI) through
which users would interact with/make requests from the applications. Each client program
had to be installed individually on each user workstation. Web applications are different.

Web applications dynamically generate web documents. These are HTML/XHTML
(Hypertext Markup Language/Extensible Hypertext Markup Language) documents
transmitted over the Internet through HTTP (Hypertext Transfer Protocol). These
documents or pages make up the web site. Using a standard server side scripting language
like JavaScript allows for more interactive features in the user interface. Usually, each page
is delivered as a static document, but the sequence in which they are presented is interactive.
User web forms are embedded in the page markup, customizing responses. The web browser,
acting as “universal client”, interprets and displays the dynamic web pages. Web application
UIs offer a variety of features. For example, the drag and drop feature allows for virtual
objects to be moved from location through the mouse. This can create all sorts of actions,
from copying to associating two objects to create a new action. By using application specific
technologies like Java, JavaScript, DHTML (Dynamic HTML), and Flash, all sorts of graphic

Ebay Exhibit 1013, Page 1172 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 Client/Server Technology and Web Services 169

and audio interactive features may be added to a UI. As previously stated, web developers
are currently looking for ways to improve user experiences with web applications so they
may closely resemble the performance of desktop applications. Remember, the user
experience is the most often gauged by the usability of the UI or GUI (Graphic User
Interface).

1st Generation Web Applications

The applications that are available now are typified by the technology used/presented in
the 1st Generation Web Application; see the Fig. 8.3 shown. This might be characterized
as a new form of electronic publishing, but it’s richer in some ways than books because it’s
multimedia publishing. Today most home pages consist of text, photos, and graphics. By
early 1997, however, it’s likely that animation and 3D applications will be available. This
technology is already very useful in information dissemination. Companies are replacing
human resources manuals and maintenance manuals with browsers connected over
intranets or the Internet to a server which contains the latest information sought.

A primary limitation of first generation applications is that there is no database
management system, connected to the web server and the software does not keep the
track of who is requesting information or of the last request from that user. It is a stateless
connection. The addition of DBMS capabilities to the HTML processes on the server will
allow HTML servers to have memory. As the leading DBMS vendors add connections for
Web servers, it becomes possible for that server to remember who you are and what you
have done from page to page and from visit to visit. The interaction, then, becomes a lot
more intelligent and useful.

* Web Server
* HTTP Lister
* HTML Life System
* URL Index

HTML - - - - - - -
Pages - - - - - --- -
- - - ----------------
_ _ _ _ _ _ _

Browser

* Remote Maintenance
* Corporate Houses
* Publishing

Fig. 8.3: Architecture of Ist Generation Web Application

Ebay Exhibit 1013, Page 1173 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Introduction to Client/Server Computing170

2nd Generation Web Applications

First Generation Web Applications are quickly going to be joined by newer more capable
environments that perhaps we can call the second generation. Several things will define
this newer generation that are given as below:

• Support for active clients via downloadable applets (software components),
• Live DBMS links that enable the server to know who you are from page to page,

and visit to visit, and
• True interactivity between the client and server (indicated by the two-headed

arrow).
2nd generation Web applications have live DBMS connections on the server. Today

what is mostly available for such support are SQL DBMS engines from companies like
Sybase, Informix, IBM and Oracle. A problem with these engines is that SQL supports
traditional business data types such as alphanumeric, date and time. No major SQL product
supports extended and complex data types such as voice, maps or video at this time. That
is a defect that will be remedied (probably) in the 1997 timeframe. All of the major DBMS
vendors are making important strides in this direction.

This software component type of operation will be the first example of widespread use
for distributed object computing. Sun’s Java technology is the best known example of this
approach. Sun describes its Hot-Java browser/Java language technology as “simple, object-
oriented, distributed, interpreted, robust, secure, architecture-neutral, portable, high
performance, multi-threaded and dynamic.” The way this will work is for your browser on
the client to have a Java (or ActiveX or C++) interpreter that can activate a component
that has been downloaded to your client from the Web server. Your browser, then, becomes
event driven and can exhibit various types of behavior.

From a software point of view, we will see both “inside/out” and “outside/in” approaches
to write the code to mix applets and normal programming environments. BASIC compilers,
for example, will be extended to support embedded HTML code. And, HTML will be
extended to handle embedded Java, ActiveX and other component technologies.

In the Java environment pointers are not supported and that makes it impossible for
any downloaded applet to address segments of memory outside the virtual Java machine
that has been created inside your browser. This enforces security for your client and
makes sure that any downloaded applets don’t behave in a malicious fashion.

While talking heads and multimedia demos have been used to illustrate the operation
of the Java/Hot Java environment, the real benefit to corporate users will come from a
new type of application that hasn’t been possible before–collaborative computing among
strangers. Your server based applications are now available to everyone in the world; your
programs can execute on their clients. If you want to do group scheduling, for example,
until now everyone in the effort had to have the same client, something like Lotus Notes.
With this new environment, it will be easy to accomplish wide area, multi-platform group
scheduling via the Internet. The scheduling applet can be downloaded and executed in the
component enabled browser.

Ebay Exhibit 1013, Page 1174 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 Client/Server Technology and Web Services 171

8.6 BALANCED COMPUTING AND THE SERVER’S CHANGING ROLE

In balanced computing, processing is shared between clients, servers, and any other devices
connected via a network. This distribution is inherent in the design since applications are
already spread out on different machines and connected through web services. In balancing,
the processing required by each new use is often shifted back to the user’s system, thereby
taking fuller advantage of client-side processing power. This allows for improved scalability,
since the processing load is increased insignificantly by the addition of users.

Load balancing can also be achieved by building Service-Oriented Applications (SOAs)
where components run on different nodes in multiple locations duplicate services on
multiple nodes. This duplicating of services on multiple nodes also improves reliability
since there is no single point of failure that will topple the entire application. Through
balanced computing, platforms can take maximum advantage of computing and display
capabilities on each platform. The virtual application which is balanced across multiple
nodes remains transparent (its complex functions hidden) while the user utilizes his or
her own collection of devices to run and view the application on the user end.

Balanced computing not only distributes the processing load, but changes the role of
the server as well. Instead of computing so heavily, the server primarily directs traffic.
Given rich clients and decent Internet connectivity, users directly contact databases instead
of requiring server intervention. Rich clients are applicants in user computers that retrieve
data through the Internet. As previously discussed, the proliferation of web-based
applications replaced the user interface with the web browser. Scripting languages, like
JavaScript or VBScript, were embedded into HTML to improve user interfaces (among
other things). Java applets were also added. But nothing could compete with the user
experience of using an application built from its local environment. Developing technologies
like improved web-page scripting languages and AJAX (Asynchronous JavaScript and
XML), made web browsers function more like rich client applications.

Another method used to reduce demands on the server uses a connecting device to re-
direct previously server-side processing to the client. This depends on the client device
capability and Internet connectivity. If these are weak, the server picks up the slack, making
application performance consistent on both the client and server ends.

User Experience and Development

Balanced distributed computing models improve user experience and expand
development. Developers can focus on user experience by examining devices and
customizing features. For example, different user interfaces can be customized for different
departments that require different resources to perform their function. Different roles
would have their own user interface. Well-defined user roles and profiles that are stored
on user machines make more efficient use of server computation. It allows the server to
pull customized responses based on the identity/role of the user. To further reduce server
demand, clients can communicate directly with databases by requesting information for

Ebay Exhibit 1013, Page 1175 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Introduction to Client/Server Computing172

the user role profile. This eliminates the web server as middleman for the request and
computation on the output side.

Data integration on user platforms offers new opportunities to build applications that
draw data from a variety of sources and can add different contexts. In a balanced distributed
computing model, web services send information that is usually stored on databases or
servers (like financial information) to the user’s machine. It accomplishes this by using the
client-side’s processing power. These responses are formatted in the increasingly popular,
universal XML. Desktop applications (on the user’s system) can take that information and
analyze it in different contexts.

The decentralization of distributed browser-server models also improves security and
protects privacy. For example, data repositories are often located in a different location
from the server. This makes it more difficult for external attackers to find. It also makes it
less accessible to internal attackers. Also, it is safer for user profiles to be stored on individual
machines, rather than on a central database.

Distributed computing models address the future of IT architecture and application.
Organization must aim to create independent and flexible applications that can respond
quickly to a variety of contexts. Connections must be agile. Loosely coupled applications,
characteristic of distributed computing models, withstand broken connections and slow
Internet performance. This protects core technologies from customer demands and lack of
Internet bandwidth.

EXERCISE 8

1. Explain an object web model based on java client and CORBA ORB’s on the basis
of following points:
(i) Web client

(ii) Protocol used
(iii) Web server

2. Explain end-to-end working of Client/Server web model. (Hint: Use CGI, GET,
POST, Web browser and Web server)

3. Explain, with the help of block diagram and example, the Common Object Request
Broker Architecture.

4. Discuss the role of traditional and web databases in handling Client/Server based
applications.

5. Discuss the role of web browser for providing web service in Client/Server
environment.

6. Explain how the Database is being accessed on the Web. Or how the information
exchange take place between User and a Web-based Database.

7. Discuss the development of Client/Server Technology based web applications.

Ebay Exhibit 1013, Page 1176 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 Future of the Client/Server Computing 173

9.1 INTRODUCTION

Development of Client/Server technologies is still evolving. From year to year, project-to-
project, technocrats are not doing anything the same way twice. Today, we are busy moving
our Client/Server assets to the intranet. In a few years, who knows where we’ll take
Client/Server and distributed development? Spotting trends is not only a nice thing to do,
it’s a career skill. For instance, those who saw the rise of the intranet early on, and obtained
the skills they needed to leverage the technology, were the same people who cashed in
when the Web took off. The same can be said about three-tier Client/Server, and now
about the rise of distributed objects. We may also see the rise of user agents, or point-to-
point networking.

In this chapter, we shall discuss the bright future of Client/Server technologies,
including technology that will be seen in the near and distant future. Furthermore, we will
discuss about some of the trends that you can latch on today, and where to catch the next
wave of Client/Server technology.

9.2 TECHNOLOGY OF THE NEXT GENERATION

Predicting technology is like predicting the weather. While it’s safe to say that processors
will be faster and disk space cheaper, it’s much more difficult to predict the way we’ll use
and develop software. Developers don’t create the trends, they follow them. For example,
the interest in the intranet came from the millions of users who found a friendly home in
their Web browser, and wanted a way to run their business applications with the Disney
and CNN Home Pages. The same could be said about traditional Client/Server computing
a few years ago. Users wanted to run business applications with their new GUI desktop
applications.

Future of the Client/Server
Computing

99999

Ebay Exhibit 1013, Page 1177 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Introduction to Client/Server Computing174

Using the past as our guide, we can make an intelligent gives about the future of Client/
Server computing. The predictions can be broken up into a few categories: networking,
development tools, processors and servers, paradigms, and enabling technologies.

9.2.1 Networking

The pipe between the client and server is still too narrow, and bandwidth has not kept up
with the development of technology and modern architecture. With the advent of ATM
and switched networks, we can finally count on a pipe wide enough to push tons of data
through. It will take a few years before we bring this wide pipe down to the desktop.

Client/Server developers must become networking gurus as well. The performance of
the network dictates the performance of the Client/Server system. What’s more, with the
advent of application-partitioning technology (such as application-partitioning tools and
distributed objects), the network not only links the client to the server, but links all the
application objects together to form the virtual (partitioned) application. Clearly, the network
is the infrastructure of the distributed application.

In addition to upgrading the speed and reliability of enterprise network technology, we
are looking for ways to upgrade the speed of WAN technology. Frame relay and other
global networking solutions will create high-performance virtual systems, available
throughout the world. Let us hope this technology will extend to the Internet. If you
haven’t noticed, it’s creaking under the strain of thousands of additional users, who start
surfing every day.

9.2.2 Development Tools

Client/Server development tools are finally delivering on promises made initially, but there
is a lot of room for improvement. Some of the areas where tools can be made to perform
better include:

• Use of true compilers.
• Native links to the distributed objects and TP monitors.
• Better component development capabilities.
• Use of standards.
• Consistent language support.
• True application-partitioning capabilities.
• Consistent approach to the intranet.
Use of true compilers: With the advent of Delphi, developers saw the benefit of a

specialized development tool that cannot only do RAD, but create small, efficient, and
speedy applications. The use of a true compiler allows developers to create native executables
and avoid the overhead of dealing with an interpreter.

In the past, specialized Client/Server development tools counted on the fact that
processors increased in speed every year to mask the inefficiencies of their deployment
mechanisms. But users did notice, and they labeled PowerBuilder, Visual Basic, and other

Ebay Exhibit 1013, Page 1178 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 Future of the Client/Server Computing 175

specialized development tool applications “dogs” on low-end PCs. Upgrading the hardware
in the entire company to run a single application costs millions, and there is something to
be said about efficient application development (such as is offered by most C++
development environments).

Today we see a trend in specialized Client/Server development tools that offers a true
compiler. Besides Delphi, PowerBuilder runs close to native, and Visual Basic (version 5)
will also provide a true compiler. Other specialized tool vendors are bound to head in that
direction. Tool vendors should have done this from the start, and it’s about time they got
their act together.

Native links to the distributed objects and transaction processing monitors:
Despite the fact that distributed objects and TP monitors are key enablers for multi-tier
Client/Server development, few Client/Server tools exist that can easily use them. For
instance, if we want to use a specialized Client/Server tool with a TP monitor, we have to
load and invoke the services of a DLL (in most cases), or limit the selection of tools to
those few that support TP monitors (e.g., Prolific, EncinaBuilder). The same can be said
about distributed objects.

As mentioned above, the number of multi-tiered Client/Server applications keep growing,
and so will the need for Client/Server tools that can access the services of TP monitors and
distributed objects. With demand comes innovation, and most tool vendors plan to provide
links to the distributed objects and TP monitors. With the advent of Transaction Server,
for example, TP monitors come as close to a DCOM connection as any COM-enabled
Client/Server development tools.

As IIOP makes intranet development easier, we’ll see a rise in the number of tools that
support traditional Client/Server development and integration with distributed objects.
Thus, as a byproduct of links to Web technology, we’ll see the use of CORBA-compliant
distributed objects as a part of most Client/Server development tools. Already, any Windows-
based Client/Server development tool that does OLE automation can also link to DCOM,
and thus, COM-enabled ORBs. The movement toward the use of distributed objects will
continue.

Better component development capabilities: The other side of distributed objects
is the ability to assemble Client/Server applications from rebuilt components. While most
Client/Server tools support the integration of components (e.g., ActiveX or Java), they
don’t support them well. Many components don’t work and play well with others, and
don’t provide developers with enough granularity.

If component development is to work, tool vendors must provide consistent support
for components that will allow developers to modify the interfaces, and easily link
components together to create an application. What’s more, the same tools should create
components. We have many examples of tools today (such as Visual Basic and PowerBuilder)
that can both create and use components. The future lies in tools that can easily create
and share components, as well as mix and match tools to construct an application from a
very low level (e.g., middleware) to a very high level.

Ebay Exhibit 1013, Page 1179 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Introduction to Client/Server Computing176

If current indicators continue to hold true, ActiveX will provide the component
standards we need for Windows, while OpenDoc will have limited success on non-Windows
platforms. A lot will depend on Microsoft’s ability to parlay ActiveX into a legitimate open
standard. Right now, developers view ActiveX as a proprietary standard, still bound to
Windows. They are right.

Use of standards: Of course, the use of distributed objects, TP monitors, and
components leads to a discussion of standards. While many standards and standards
organizations exist today, standards are only as good as the number of developers who use
them.

Key Client/Server standards include CORBA, COM, and SQL92, but many others run
with the wolves. A common problem in the industry is our failure to use and enforce
standards. The tradeoff is the exclusive advantage that vendors enjoy while they employ
proprietary features versus the benefits they could reap if they would provide developers
with standards they support in other tools. While many Client/Server technology vendors
give lip service to the idea, standards are not yet a priority.

The movement toward standards really depends on the users/developers. If we demand
that tool and technology vendors employ standards, and agree that interoperability is of
great value, the vendors will respond. The standards organizations (such as OMG) also
need to work harder to bring standards to the technology. It took five years before the
OMG had a standard that actually spelled out a way for CORBA-based distributed objects
to work together. That’s just too long for this business.

Despite the slow movement, I think we’ll continue to move toward a standard
technology that will let everyone and everything work together. The trick now is to pick
the standard(s) you think will win.

Consistent language support: Until recently, the mantra of Client/Server tool vendors
was ‘build a tool, build a proprietary language.’ Fact is, we have more development languages
today than ever before, with languages proprietary to particular tools. The reasons are the
same as with our previous standards discussion.

The most recent trend is for Client/Server tool vendors to employ non-proprietary
languages in their tool, or to use the same language throughout a product line. For example,
Delphi is based on Pascal, rather than a proprietary scripting language like PowerBuilder.
Optima++ and VisualAge C++, use C++ as their native language. Visual Basic shares
VBA with Access, Microsoft Office products, and even third-party tools such as Oracle’s
PowerObjects. VBA is licensed by Microsoft to over forty vendors. This trend will continue.
While developers are happy to learn a new IDE, they aren’t nearly as thrilled when they
must learn a new programming language.

True application-partitioning capabilities: Along with links to the distributed
objects, tools will continue to provide more sophisticated proprietary application-partitioning
capabilities. Many traditional two-tier tools, such as Power Builder and Unify, are heading
in this direction (albeit slowly), while Forte, Dynasty, and IBI’s Cactus are learning to do a
better job with their existing partitioning tools.

Ebay Exhibit 1013, Page 1180 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 Future of the Client/Server Computing 177

There is also a movement in the application-partitioning world toward the use of open
technologies. For instance, distributed objects and TP monitors now work with the
proprietary ORBs of application-partitioning tools. Proprietary ORBs are not a long-term
solution, and the opening of these environments to non-proprietary technology will only
increase their value to developers.

Consistent approach to the intranet: The enabling technology of the intranet must
settle down to a few consistent approaches. For example, now we have HTML, SGML,
VRML, CGI, NSAPI, ISAPI, Java, JavaScript, VBScript, ActiveX, Java, IIOP, and the list
goes on. Although this provides developers with an arsenal of technologies and techniques,
it results in a few too many standards to follow, and confusing for developers.

Over the next year, we’ll see the list of intranet-enabling technologies shorten, as the
market naturally removes the technologies that do not capture the hearts and minds of the
developers and that offer redundant technologies. Redundant technologies include Java
and ActiveX, JavaScript and VBScript. We’ll also see a movement toward ISAPI and NSAPI,
or back to CGI. Finally, we need to go with a single HTML standard, and move away from
the proprietary extensions of Netscape and Microsoft.

9.2.3 Processors and Servers

We can expect processing power to increase; without any slowdown in that area. The
power of servers will be keeping up increase in future, up with the requirements of your
application, and we can now run mainframe class systems on commodity hardware.

We’ll also see the rise of symmetric multi-processing computers and operating systems
for use as clients as well as servers. When Windows 95 and Windows NT merge, clients
will have a powerful operating system that can make the most of this new hardware. Clients
can once again become a location for application processing.

Servers will become more component-based. Architects will be better able to customize
servers around particular application server and database server requirements, adjusting
the cache, memory, processors, and disk size to the exact specifications of the application.
The operating system that will run these servers will have to keep up. Advanced multi-
processing operating systems (such as Windows NT and Unix) will provide better load
balancing and fault-tolerant capabilities, including, for instance, the ability to better work
through memory, disk, and processor failures without service interruptions.

Despite the religious implications of operating systems and an anti-Microsoft sentiment,
Windows NT will take more market share away from the traditional server operating system
for Client/Server: Unix. Windows NT is almost as powerful, supports multi-processing,
and can run on a number of processors. What really drives the movement toward Windows
NT is the ease of use it offers, as well as its ability to support the majority of off-the-shelf
software. While Sun servers will run Oracle, they won’t run Word for Windows as a native
application. Web servers for use on intranets or the Internet will become the domain of
NT as well as Microsoft is giving its Web server away with NT, which is a convenient
situation.

Ebay Exhibit 1013, Page 1181 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Introduction to Client/Server Computing178

9.2.4 Paradigms

Today we are well into the object-oriented development paradigm, and this will remain
true. In fact, as we become better at using object Client/Server tools, we will dig deeper
into their support for the object-oriented development model.

The use of components will become more of an issue too. We really can’t build an
application by mixing and matching today’s components. However, as component standards
finally take off, we’ll be able to snap in many application components, and even mix and
match components with the native objects of the tools.

9.3 ENABLING TECHNOLOGY

We must consider the evolution of the enabling technologies of Client/Server. Enabling
technologies are the combinations of hardware and software that can be used to assist in
creating a particular kind of application system. These technologies include TP monitors,
databases, and middleware, Expert systems, Point-of-Services (POS), imaging, intranet and
extranet.

Transaction-processing monitors: As we move headlong into large-scale, mission-
critical distributed computing, we need an “ace in the hole.” TP monitors are that ace.
Now developers have begun to understand the benefits of the TP monitors with other
alternatives (such as proprietary application-partitioning tools) proved themselves to be a
bit less popular. With the advent of Microsoft’s Transaction Server, we now have a TP
monitor that fits easily into commodity Windows environments, built from the ground up
for ActiveX and the intranet. With the success of Transaction Server, We may see more
TP monitors heading into the market.

Databases: Databases will continue to dazzle us with better performance and new
features. The big three players (Oracle, Sybase, and Informix) will continue to dominate
share, and the relational database model will remain. The concept of the universal server
will enlarge the database market by allowing databases to be a “jack of all trades” for
developers (object-oriented, relational, Web, binary, etc.). Databases vendors will find, as
Oracle is finding now, that working with distributed objects provides a competitive
advantage as the rest of the world moves there.

Middleware: Finally, middleware will evolve too. While middleware is powerful and
necessary, it’s difficult to use and deploy. In the next few years, we’ll see a rise of middleware
solutions—both message and RPC-based—that provide “snap-in” functionality and
consistent interfaces. Microsoft’s Falcon message-oriented middleware will once again prove
that Microsoft can turn a high-end product into a consumer commodity, and other, more
aggressive vendors will have to keep up.

9.3.1 Expert Systems

Expert system is a branch of artificial intelligence that makes extensive use of specialized
knowledge to solve problem at the level of human expert. Expert systems are intelligent

Ebay Exhibit 1013, Page 1182 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 Future of the Client/Server Computing 179

computer programs that use knowledge and inference process to solve problems that are
difficult enough to require significant human expertise for their solution. That is, an expert
system is a computer system that emulates the decision-making ability of a human expert.
The term expert system is often applied today to any system that uses expert system
technology that includes special expert system languages, programs and hardware design
to aid in the development and execution of expert systems. The knowledge in expert systems
may be either expertise or knowledge that is generally available from books, magazines,
and knowledgeable persons. The terms expert system, knowledge based system, or
knowledge based expert system are often used synonymously. Fig. 9.1 given below, illustrates
the basic concepts and the architecture of knowledge based expert system that consists of
two main components internally. The knowledge base contains the knowledge based on
which the inference engine draws conclusion.

Expert System

Inference Engine
Development
Environment

System-System
 Interface

Knowledge Base

 Database

U
se

r I
nt

er
fa

ce

U
se

r

Fig.9.1: Basic Concept of Expert System

Applications of expert system are widely accepted and well-suited for the Client/Server
models. The user interface provides some rule based advantages related with the processing
power and some of the benefits at the workstations. Mostly the rules are managed by
knowledgeable user and not by a professional programmer, because the user only knows
how his job works (a job the expert system emulates). The inference engine, a CPU-intensive
process that takes advantage of low-cost processing and RAM available with Client/Server
technology, enforces the rules. Most applications will be implemented using existing
databases on host-based DBMS’s. The Client/Server model provides the necessary
connectivity and services to support access to this information.

Expert system provides an advantage in business world by encapsulating the rules and
object of the trade. Objects are created by expert knowledge hence can be reused throughout
the organization. The outcomes of the expert system can frequently be used in integrated
business systems.

Ebay Exhibit 1013, Page 1183 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Introduction to Client/Server Computing180

9.3.2 Imaging

Widely used digital documents are imaging, structured documents, and distributed hypertext,
active or compound. Fig. 9.2 given below, illustrates the various forms of existing digital
documents).

Scanning documents for
storage and fixing

Structuring and encoding

-
information using document
encoding structure

Structuring interlinked textual
and multimedia information
for distributed network access

 Structuring informati
document interface

on around a Active or
 Compound

 Distributed
 Hypertext

Structured
Document

 Imaging

Technical
Complexity

Fig. 9.2: Types of Digital Documents

Scanner

 Index Management

 Other Applications

 Other Database

 Central

Computer/Server

User Workstation

User Workstation
Network

Index

Fig. 9.3: Imaging System

Ebay Exhibit 1013, Page 1184 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 Future of the Client/Server Computing 181

Now, imaging is the method of getting digital documents from physical ones. An imaging
system passes a paper document through a scanner that renders it digital and then stores
the digital data as a bit mapped image of the document. Fig. 9.3 illustrates the imaging
system. This image is stored on a permanent medium (magnetic tape, disk or optical disk).
The keyword for each document that helps in indexing and retrieval are entered during
scanning. The index usually is stored in a relational database on a high-speed magnetic
disk. Access to stored image is always initiated by an index search. These image documents
can be accessed by any workstation, which accesses the image server.

9.3.3 Point-of-Service

POS is one of the most widely installed examples of Client/Server technology, also known
as Point of Sale. POS’s represents the best model for the implementation of Client/Server
applications by combining information technology, management information and trade
processes on a single platform. For product distribution, inventory control, pricing,
accounting, staff management, the POS’s are used everywhere at the supermarket, hotel,
restaurants, stores and auto-service stations. POS systems record each sale in a central
database (server), using a scanner which reads the bar code on the products, so that retailers
no longer have to wait for a periodic inventory check to find out what they need to reorder.
Centralized buying ensures price through volume purchasing and efficient distribution
chains.

Point-of-sale scanning is the starting point in the EDI chain that allows the retailer to
track merchandise at the item level and provides detail information for demand forecasting.
This way of managing inventory can eliminate the need to remark merchandise for discount
and promotions to reduce inventory levels. POS systems feed data to automatic
replenishment systems that constantly monitor inventory levels and trigger EDI
transactions. These systems support smaller, more frequent deliveries, which improve in-
stock positions and reduce on-hand inventory. Scanning is a valuable part of warehouse
operations, as this expedites the rapid flow of goods through the distribution center by
reducing manual receiving and checking procedures.

9.4 CLIENT/SERVER COMPUTING AND THE INTRANET

9.4.1 Intranet

Due to sheer numbers, the intranet will continue to be the main area of interest for Client/
Server development. Intranet is a term used to refer to the implementation of Internet
technologies within a corporate organization, rather than for external connection to the
global Internet. Or in other words, the term Intranet refer to the whole range of internet
base applications, including network news, gopher, web technology. An intranet-based
approach to corporate computing includes the following advantages:

Ebay Exhibit 1013, Page 1185 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Introduction to Client/Server Computing182

• Supports a range of distributed computing architecture (few central server or many
distributed servers).

• Open architecture means large number of add-on applications available across many
platforms.

• Can be implemented on virtually all platforms with complete interoperability.
• Rapid prototyping and deployment of new services.
• Structure to support integration of “legacy” information sources.
• Support a range of media types (Audio, video, interactive applications).
• Inexpensive to start, requires little investment either in new software or

infrastructure.
• Virtually no training required on the part of users and little training required to

developers, because the user services and user interfaces are familiar from the
Internet.

9.4.2 Is the Intranet Killing Client/Server?

 Some people think that there is so much interest in the intranet that Client/Server will fall
by the wayside. Actually, the opposite is true. The intranet and Client/Server complement
rather than compete. In fact, the migration to the intranet is actually a process of simply
deploy Client/Server technology using the commodity Web technology. What the intranet
brings to the table is a new platform, interface, and architectures. The intranet can employ
existing Client/Server applications as true intranet applications, and integrate applications
in the Web browser that would not normally work and play well together. The intranet
also means that the vast amount of information on the Internet becomes available from the
same application environment and the interface which is a valuable advantage. The intranet
also puts fat client developers on a diet. Since most intranet applications are driven from
the Web server, the application processing is moving off the client and back onto the server.
This means that maintenance and application deployment become much easier, and
developers don’t have to deal with the integration hassles of traditional Client/Server (such
as loading assorted middleware and protocol stacks).

There is a drawback to the intranet movement. The interest in the Web has taken most
R&D funds away from traditional Client/Server. In many respects, the evolution of
traditional Client/Server technology (middleware, databases, and front-end development
tools) remained static while the technology vendors moved their products to the Web.

Moving to Proprietary Complexity: While the sheer simplicity of the intranet has driven its
success, we are now in danger of driving this technology the same way we are driving client
servers: to proprietary complexity. Where HTML and CGI were once commoly held standards,
we now have proprietary APIs such as NSAPI and ISAPI that are pushing CGI aside. Java was
considered the only way to program dynamic web applications, but now we have ActiveX as an
alternative. Even Netscape now touts the standard HTTP as “legacy technology.”

Ebay Exhibit 1013, Page 1186 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 Future of the Client/Server Computing 183

It’s difficult at this time to determine if this movement to proprietary technology is a good
thing. One thing for sure is that the simple architecture of just a few years ago is gradually
disappearing. In many respects, intranet development is becoming as complex as Client/Server
development. The trend is going to continue. We could see even more complexity in the world
of Web development than we ever saw with Client/Server.

As interest in the Web shifts towards creating successful applications, we’ll see more
links between the intranet and traditional Client/Server. Right now, the tool vendors’ fear
that they will miss a large portion of the market puts them in a reactive rather than a
proactive mode.

9.4.3 Extranet

Extranet is the similar concept to the intranet, using TCP/IP protocols and applications,
especially the Web. The distinguished feature of the extranet is that it provides the access
to corporate resources by outside clients (suppliers and customers of the organization).
This outside access can be through the Internet or through other data communication
networks. An extranet provides a simpler Web access and more extensive access to corporate
resources, enforcing some security policies becomes a necessity. As with the intranet, the
typical model of operation for the extranet is Client/Server. Some of the communication
options available for operating intranet to outsiders to create an extranet.

• Long distance dialup access.
• Internet access to intranet with security.
• Internet access to an external server that duplicates some of a company’s intranet

data.
• Internet access to an external server that originate database queries to internal

servers.
• Virtual private network.

9.5 FUTURE PERSPECTIVES

9.5.1 Job Security

Client/Server developers and application architects have a bright future. IDC (International
Data Corporation) says that 33 per cent of organizations are already committed to Client/
Server computing, despite the long break-in period. The Strategic Focus reports that three-
tier Client/Server applications will grow from 4.9 per cent to 18.7 per cent in just two
years. This growth will also fuel the rise of three-tier and n-tier Client/Server technology
(such as TP monitors and distributed objects). Forrester Research estimates that the Client/
Server market place will rise to $7.5 billion in 1996. Finally, the Gartner Group predicts
that 65 per cent of all applications created in the next five years will employ Client/Server
technology.

Ebay Exhibit 1013, Page 1187 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Introduction to Client/Server Computing184

Clearly, the growth of Client/Server is steady, and as time goes on, the vast majority of
applications we build for businesses will employ Client/Server technology. We still have a
way to go, and many problems to solve, but it is certain that the Client/Server development
game will always have room for talented people.

Look around today’s “corporate downsized” job market. Those in Client/Server
development have little reason to worry. There are more job openings than candidates,
and that’s been a pretty steady trend for several years.

9.5.2 Future Planning

Planning for the future is simply a matter of establishing the strategy and the tactics of our
application development environment. From time to time, we need to consider the following:

• Re-evaluate our business objectives.
• Re-evaluate the current technology infrastructure.
• Determine the differences (what’s missing?).
• Adjust our technology infrastructure to meet your objectives.
In most cases, this is a process of looking at new enabling technologies and paradigms

that will better serve our needs. For example, if we need access to many applications for a
single multi-platform user interface, then we may want to set a course for the intranet. Or,
if we need to access a number of legacy resources as a single virtual system, then TP
monitors and DCE are worth using. Of course, we would need to consider which enabling
technology to employ, and then select the tools that support the enabling technology of
choice.

While working out the plan for enabling technologies it is worth remembering that
Vendors usually deliver 80 per cent of their promises up front, and the other 20 per cent
shows up a few years later. For example, while Visual Basic and Power Builder offer
proprietary application-partitioning mechanisms, they were so difficult to set up and so
limited in what they could do that many development organizations abandoned them in
their search for a quicker, easier way to move to n-tier. Visual Basic is fixing its limitations
with DCOM and integration with Falcon and Transaction Server, but it took a few years.

It is always safer to follow the technology curve. While distributed objects were new
and unproven a few years ago, they are proven today. DCOM is not yet proven, and
proprietary application-partitioning tools such as Forte or Dynasty are almost there.

9.5.3 Conclusion

We can conclude some key features about client/server computing that are:
• Client/server distributes processing among computers on a network.
• In client/server environment most of the client provides GUI’s facilities.
• Most of the servers provide SQL processing.
• Business rules can run either on the client or the server.
• Clients are typically programmed with a visual programming tool.

Ebay Exhibit 1013, Page 1188 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 Future of the Client/Server Computing 185

• Transaction processing is on of the biggest challenges of client/server computing.
• Middleware is the layer between clients and servers.
• Client/server standards are emerging.
In near future, cheap and powerful workstation technologies will be available to all

with truly distributed applications using processing power where available, and providing
information where required. Also information will be available for use to owners and
authorized users without a constant need for system development by professional and
their complex programming languages. The future will see information being captured at
its source, and made available immediately to authorized users. Users will be able to avail
information in original forms of data, such as image, video, audio, graphics, documents and
spreadsheet without the need to be aware of various software requirements for information
presentation. Successful organizations of the future, that those are market driven and
competitive will be the ones that use client/server as an enabling technology to add
recognized value to their products and services.

9.6 TRANSFORMATIONAL SYSTEM

The working environment of many of the organizations has been greatly affected by
applications of Client/Server technologies. Following are the examples of technologies that
have changed the trade processes.

(i) Electronic mail.
(ii) Client/server and user security.

(iii) Object oriented technology: CORBA.
(iv) Electronic data interchange.

9.6.1 Electronic Mail

Electronic mail is already the most heavily used network application in the corporate world.
It is a facility that allows users at workstations and terminals to compose and exchange
messages. However, the traditional e-mail is generally limited and inflexible. Intranet mail
products provide standards, simple methods for attaching documents, sound, images, and
other multimedia to mail messages.

The simplest form of electronic mail is the single system facility allowing the users of a
shared computer system to exchange messages (see the Fig. 9.4 (a) given). The electronic
mail facility is an application program available to any user logged onto the system. A user
may invoke the electronic mail facility, prepare a message, and “send” it to any other user
on the system. The act of sending simply involves putting the message in the recipient’s
mailbox. Mailbox is actually an entity maintained by the file management system and is in
nature of a file directory. Any incoming mail is simply stored as a file under that user’s
mailbox directory. One mailbox is associated with each user.

Ebay Exhibit 1013, Page 1189 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Introduction to Client/Server Computing186

With a single system electronic mail facility, messages can only be exchanged among
users of that particular system. For a distributed mail system, a number of mail handlers
(mail servers) connect over a network facility (e.g., WAN or internet) and exchange mail.
That is illustrated in Fig. 9.4(b) given below:

Workstations

Mail Server

Mail Box

Network

() a Single System

() b Networks of Mail System

Fig. 9.4: Electronic Mail Configurations

Intranet mail system creates and manages an electronic mailing list that is an alias to
multiple destinations. Mailing list is usually created to discuss specific topics. Any one
interested in that topic may join that list, once a client has been added to the list. A user
can ask question or respond to some one else’s question by sending a message to the list
address.

9.6.2 Client/Server and User Security

However, the very characteristic that make Client/Server popular are also what make it
the most vulnerable to breaches in security. It is precisely the distribution of services
between client and server that open them up to damage, fraud, and misuse. Security
consideration must include the host systems, personal computers (PCs), Local Area
Networks (LANs), Global Wide Area Networks (WANs), and users. Because security
investments don’t produce immediately visible returns and Client/Server buyers sometimes
don’t educate themselves about security, this area of development is often overlooked
until a problem occurs.

Desktops are the front-end system devices, the ones that deal most directly with user
input. They are also the least secure environments in Client/Server models. Clients connect
to servers and these connections, if left open or not secured, provide entry points for

Ebay Exhibit 1013, Page 1190 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 Future of the Client/Server Computing 187

hackers and other intruders that may use data for nefarious purposes. Aside from physical
client security in the form of disk drive locks or diskless workstations that prohibit the
loading of unauthorized software or viruses, accessibility to all files stored on a workstation
operating system is the other gaping security hole in clients. For example, the machine
assumes that whoever turns on the computer is the owner of all the files stored on it.
They even have access to configuration files. This could result in sabotage or the leaking
of sensitive data. The transmission of corrupted data may also occur on the level of the
operating system, outside the realm of Client/Server application security, as data is
transferred to different tiers of the architecture.

However, the primary culprits of breaching client security are not hackers or viruses,
but the users themselves. The front-line of defense in client security is user identification
and authentication. The easiest way to gain illegal access to computers is to get users’ login
ID and passwords. Sometimes users pick short or easily guessed passwords or share their
passwords with others. Password management provides a security measurement for this
by requiring a minimum amount of characters to be used in passwords checking passwords
for guess ability, and regularly asking users to change their passwords. For example, more
organizations are adopting policies of ‘pass phrases’ rather than passwords that are more
complicated and harder to identify or guess. The system contains a scheme (minimalist,
multi-paradigm programming language) that proactively detects and blocks spyware. It
also updates daily. Gateways are nodes on a network that create entrances to other networks.
It routes traffic from workstations to broader networks. Therefore, securing the gateways
will prevent malware from ever reaching the client.

 Using Client/Server computing some of the secure systems can also be implemented,
having a goal to provide secure services to clients with maximum possible performance.
Emergency response vehicle can be quickly dispatched by dispatch operator to an incident
and at the same time dealing can also be reported over the phone. This functionality can
be provided 24 hours. It is now possible to duplicate all of the functionality of such an
existing traditional design with the additional advantages of better performance, a Graphical
User Interface (GUI), a single point of contact, higher reliability, and lower costs. With the
help of a Client/Server-based system, the dispatch operator is empowered to oversee how
staff and equipment are allocated to each incident. The operator uses a GUI to dynamically
alter vehicle selection and routing. Maps may be displayed that show the location of all
incidents, emergency response centers, and vehicles. Vehicles are tracked using Automatic
Vehicle Locator (AVL) technology. Obstacles, such as traffic congestion, construction,
and environmental damage (such as earthquakes) are shown on the map so the dispatcher
can see potential problems at a glance. Workstation technology provides the dispatcher
with a less stressful and more functional user interface. The dispatcher can respond quickly
to changes in the environment and communicate this information immediately to the vehicle
operator. The system is remarkably fault-tolerant. If a single workstation is operating, the
dispatcher can continue to send emergency vehicles to the incident.

Ebay Exhibit 1013, Page 1191 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Introduction to Client/Server Computing188

9.6.3 Object-oriented Technology: CORBA

As object oriented technology becomes more prevalent in operating system design; Client/
Server designers have begun to embrace this approach. Here client and servers ship messages
back and forth between objects. Object communication may rely on an underlying message
or Remote Procedure Call (RPC) structure or be developed directly on top of object oriented
capabilities in the operating system. Clients that need a service send a request to an object
request broker, which acts as a directory of all the remote services available on the network.
The broker calls the appropriate object and passes along any relevant data. Then the remote
object services the request and replies to the broker, which returns the response to the
client. There are several object oriented approach for standardization of these object
mechanism are COM (Common Object Model), OLE (Object Linking and Embedding),
Common Object Request Broker Architecture (CORBA, see the Fig. 9.5).

Client Server

requests
response

 Object
 request
 broker

Transport

Network

 Object
 Server

Remote
Object
Requester

Object

Application

Tr
an

sp
or

t

N
et

w
or

k

requests
response

Object Tr
an

sp
or

t

N
et

w
or

k

Fig. 9.5: Object Request Broker

An Overview of CORBA

The Object Management Group (OMG) was created in 1989. The OMG solicited input
from all segments of the industry and eventually defined the CORBA standards.

CORBA specification has been implemented by numerous hardware and system software
manufacturers, provides a rich and robust framework that operates across the heterogeneous
computing platform. CORBA is a specification for an emerging technology known as
distributed object management (DOM). DOM technology provides a higher level, object
oriented interface on top of the basic distributed computing services.

At its most basic level, CORBA defines a standard framework from which an information
system implementer or software developer can easily and quickly integrate network resident
software modules and applications to create new, more powerful applications. It combines
object technology with a Client/Server model to provide a uniform view of an enterprise
computing system-everything on the network is an object. The highest level specification
is referred to as the object management architecture (OMA), which addresses four
architectural elements (ORB, CORBA services, CORBA facilities and CORBA domains are

Ebay Exhibit 1013, Page 1192 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 Future of the Client/Server Computing 189

also defined as a part of specifications. The term CORBA is often used to refer to the object
request broker itself, as well as to the entire OMG architecture.

The role of ORB is to route request among the other architectural components. CORBA
services, CORBA facilities and CORBA domains are also defined as a part of specifications.
The key to integrating application object is the specification of standard interfaces using
the interface definition language (IDL). Once all applications and data have an IDL-compliant
interface, communication is independent of physical location, platform type, networking
protocol, and programming language. An information system is created by using CORBA
to mediate the flow of control and information among these software objects.

CORBA an Introduction

Mechanism that allows various clients to share/call the object (applications) over a
mixed network, more specifically CORBA is a process of moving objects over network
providing cross platform for data transfer.

CORBA compliance provides a high degree of portability. Within CORBA, objects are
an identifiable entity which provides one or more services to clients. CORBA manages the
identity and location of the objects, transport the request to the target object, and confirms
that the request is carried out. A client that needs a service sends a request to an object
request broker (which acts as a directory) of all the remote services available on the network,
illustrated in Fig. 9.6.

The broker calls the appropriate object and passes along any relevant data, and then
the remote object services the request and replies to the broker, which returns to the
client. The object communication may rely on an underlying message or RPC structure or
be developed directly on top of object-oriented capability in the operating system.

Client Client

Application Application

Transport

Network

Transport

Network

RPC
Stub

Program

RPC
Stub

Program Object
request
and
response

Object
request
and
response

ORB

Transport

Network

Fig. 9.6: CORBA Remote Services

CORBA Client and Servers

Like the Client/Server architecture, CORBA maintains the notions of Client and Server.
In CORBA, a component can act as a client and as a server. Morever a component is considered
a server if it contains CORBA objects whose services are accessible to other objects. Similarly,
a component is considered a client if it accesses services from some other CORBA object.

Ebay Exhibit 1013, Page 1193 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Introduction to Client/Server Computing190

Thus, a component can simultaneously provide and use various services, and so a component
can be considered as a client or a server depending on the way.

More specifically, in CORBA application, any component that provides an
implementation for an object is considered as a server, at least where that objects are
concerned. If a component creates an object and provides others components with visibility
to that object (or in other words, allows other components to obtain references to that
object), that component acts as a server for that object; any requests made on that object
by other components will be processed by the component that created the object. Being a
CORBA server means that the component (the server) executes methods for a particular
object on behalf of other components (the clients).

An application component can provide services to other application components while
accessing services from other components. Here, the component is acting as a client of one
component and as a server to the other components; see the Fig. 9.7 given below, illustrating
those two components can simultaneously act as clients and servers to each other. In a
CORBA application, the term client and server might depends on the context of the method
being called and in which component that method’s object resides. Although an application
component can function as both a client and a server.

Component A
(Client)

Component B
(Client +Server)

Client of

Client of

Client of

Component C
(Server)

Component D
(Server)

Fig. 9.7: Acting as a Client and a Server

CORBA Concepts

The basic idea is distributed computing, nowadays, most of the application are across
the open environment, based on the connection of heterogeneous platforms. All modern
business systems employ a network to connect a variety of computers, facilitating among
applications. In the future, there will be continued evolution toward applications that
exist as components across a network, which can be rapidly migrated and combined without
significant effort. This is where CORBA shines, by providing unified access to applications,
independent of the location of each application on network, also it provides:-

• Uniform access to services.
• Uniform discovery of resource/object.
• Uniform error handling methods.
• Uniform security policies.

Ebay Exhibit 1013, Page 1194 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 Future of the Client/Server Computing 191

These capabilities facilitate the integration and reuse of systems and system components,
independent of network location and the details of underlying implementation technology.
CORBA can be theoretically described based on the following three important concepts:

(i) Object-oriented model.
(ii) Open distributed computing environment.

(iii) Component integration and reuse.

(i) Object-oriented model: CORBA’s object model is based on complete object
approach in which a client sends a message to an object. The message identifies
an object, and one or more parameters are included. The first parameter defines
the operation to be performed, although the specific method used is determined
by the receiving object. The CORBA object model comprises of:

Objects: An encapsulated entity that provides services to a client.
Request: An action created by a client directed to a target object that includes information

on the operation to be performed and zero or more actual parameters.
Object creation and destruction: Based on the state of request, objects are created or

deleted.
Types: An identifiable entity defined over values.
Interfaces: The specification of operations that a client can request from an object.
Operations: An identifiable entity that defines what a client can request from an object.
Object implementation in CORBA can be constituted in two parts, illustrated in the

Fig. 9.8, first one is construction part and second one is execution part.

Client

Exception values

Object
Perform services

EncapsulationRequest

Fig. 9.8: Object Implementation

(ii) Open distributed computing environment: As we have earlier discussed that
CORBA is based on a client server model of distributed computing. Within the
Client/Server model, requests for services are made from one software component
to another on a network. CORBA adds an additional dimension to this model by
inserting a broker between the client and server components. The main objective
of the broker is to reduce the complexity of implementing the interaction between
the client and server. The broker plays two major roles. Primarily, it provides
common services, including basic messaging and communication between client

Ebay Exhibit 1013, Page 1195 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Introduction to Client/Server Computing192

and server, directory services, meta-data description, security services, and location
transparency. Secondly, it insulates the application from the specifics of the system
configuration, such as hardware platform and operating system, network protocol,
and implementation languages.

(iii) Component integration and reuse: The integration is the combination of two
or more existing components. With a good integration techniques and tools, reuse
can be achieved up to significant degree. Broker defines custom interfaces for each
interaction between components. Each interface is defined just once and subsequent
interactions are handled by the broker. With CORBA IDL, these interfaces can be
defined in a standardized, platform independent fashion.

9.6.4 Electronic Data Interchange

Electronic data Interchanged uses direct link between computers, even computers on
different sites, to transmit data to eliminate data sent in printed form. It is a controlled
transfer of data between business and organizations via established security standards.
One of the examples of EDI is shown in Fig. 9.9.

EDI is generally thought of as replacing standardized documents such as order forms,
purchase orders, delivery notes, receiving advices and invoices in a standardized electronic
message format. EDI documents are electronically exchanged over communication networks
which connect trading partners to one another. These documents are stored in user
mailboxes on the networks’ EDI server from where they can be downloaded/uploaded at
the user is convenience from any one of the workstations. But it differs from electronic
mail in that it transmits an actual structured transaction (with field such as the transition
date, transaction amount, senders name and recipient name) as opposed to unstructured
text message such as a letter.

The main purpose of EDI is cost reduction by eliminating paper document handling.
Faster electronic document transmission further saves time and man power by avoiding
the need to re-key data. And the data arrival rate is much faster that mail.

SELLER BUYER

Order
Department

Shipping
Department

Account
Receivable
Department

Purchase
Department

Receiving
Department

Account
Payable
Department

Receiving
Report

Payments

Fig. 9.9: EDI as an Example

Ebay Exhibit 1013, Page 1196 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 Future of the Client/Server Computing 193

EXERCISE 9

1. What is the future of Client/Server computing in the following technologies:-
(i) Geographic Information System (GIS).

(ii) Point of Service Technology (POS).
(iii) Electronic Data Interface Technology (EDI).
(iv) Multimedia.

2. What is the future of Client/Server computing in the following technologies?
(i) Electronic Document Management.

(ii) Full Text Retrieval.
(iii) Geographic Information System.

3. What are different enabling technologies? Explain Expert System, Imaging and
Electronic Document Management.

4. Discuss the changing role of Server’s to provide the balance computing in Client/
Server environment.

Ebay Exhibit 1013, Page 1197 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

This page
intentionally left

blank

Ebay Exhibit 1013, Page 1198 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 References 195

Alapali, Sam. R. Expert Oracle Database 10g Administration, A Press Burkeley, USA.
Bhattacharjee, Satyapriya. A Textbook of Client/Server Computing.
Comer, Douglas. E. Computer Networks and Internets.
Comer, Douglas. E. Internetworking with TCP/IP.
Coronel, R. Database System, Pearson Education, New Delhi.
Coulouris, George, et al. Distributed System : Concepts and Design
Crowley, Charles. Operating System a Design Oriented Approach, Tata McGraw-Hill Pub.,

New Delhi.
CSI Communications, A Comparative Study on 2-tier and 3- tier Client/Server Architecture,

September, 2001.
CSI Communications, Client/Server Technology, A Polymorphic Visage, June, 2002.
Date, C. J. An Introduction to Database Systems, Pearson Education, New Delhi.
Desai, Bipin C. An Introduction to Database Systems, Galgotia Pub., New Delhi.
Dhamdhere, D. M. Operating Systems , Tata McGraw-Hill Pub., New Delhi.
Edward and Jerry. 3-Tier Client/Server at Work.
Elmarsi, Ramez and Navathe, Shamkant. B. Fundamentals of Database System.
Eversest, Gordon C. Database Management, Tata McGraw-Hill Pub., New Delhi.
Forouzan, Behrouz A. Data Communication and Networking, Tata McGraw-Hill Pub.,

New Delhi.
Gallo, Michael. A. and Hancock, William. M. Computer Communications and Networking

Technology, Books/Cole Pub. Company, Singapore.
Godbole, Achynt S. Operating Systems, Tata McGraw-Hill Pub., New Delhi.
Greenwald, Rick. et al. Oracle Essantials.

References

Ebay Exhibit 1013, Page 1199 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Introduction to Client/Server Computing196

Haecke, Bernard Van. Java-Database Connectivity.
Hahn, Harley. The Internet Complete Reference, Tata McGraw-Hill Pub., New Delhi.
Halsall, Fred and Kulkarni, Lingana. Computer Networking and the Internet, Pearson

Education, New Delhi.
Halsall, Fred. Data Communication, Computer Networks & Open Systems.
Harvey, Dennis and Beitler, Steve. The Developer’s Guide to Oracle Web Application Server 3.
Hutehinson, Sarah, E. and Sawyer, Stcey. C. Computer Communications, Information,Tata

McGraw-Hill Pub., New Delhi.
Jani, Madhulika and Jain , Satish. Data Communication and Networking, BPB Publications,

New Delhi.
Kalakota, Ravi and Whinston, Andrew B. Frontiers of Electronic Commerce.
Kurose, James. F. and Ross, Keith. W. Computer Networking, Pearson Education,

New Delhi.
Leon Alexis & Leon Mathews. Data Base Management System.
Majumdar, Arun K. and Bhattacharyya, Pritimoy. Database Management Systems, Tata

McGraw-Hill Pub., New Delhi.
Martin, James. Principles of Database Management, PHI, New Delhi.
Milenkovic, Milan. Operating System: Concepts and Design, Tata McGraw-Hill Pub.,

New Delhi.
Miller, Michael A. Data and Network Communications, Thomson Asia Pvt. Ltd, Singapore.
Nutt, Gary. Operating System: A Modern Perspective, PHI, New Delhi.
Powell, Gavin. Beginning Database Design, Wiley Publishing Inc., USA.
Prabhu C. S. R. Object-oriented Database Systems, PHI, New Delhi.
Ramakrishnan, Raghu and Gehrke, Johannes. Database Management Systems, McGraw-

Hill, Boston.
Ritchie, Colin. Operating Systems in Corporating Unix and Windows, PBP Publication,

New Delhi.

Rosenberger, Jeremy.: Teach Yourself CORBA, Techmedia, New Delhi.
Scqnk, Jeffrey D. Novell’s Guide to C/S Design and Implementation.
Silberchatz, Abraham, et al. Operating System Principles, John Wiley & Sons, Singapore.
Silberchatz, Abraham. et al. Database System Concepts.
Sinha, Pradeep K. Distributed Operating System Concepts and Design, PHI Pub., New Delhi.
Smith, Pattric N. and Ganguarich, Evan. Client Server Computing, PHI, New Delhi.
Perry, James T. and Laler Joseph G. Understanding ORACLE.
Sperik, Mark and Sledge, Orryn. SQL-Server 7.0 DBA Survival Guide.
Stalling, William. Business Data Communication.

Ebay Exhibit 1013, Page 1200 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

 References 197

Stalling, William. Operating Systems, PHI, New Delhi.
Tanenbaum, Andrew S. and Woodhull, Albert S. Modern Operating System, PHI,

New Delhi.
Tanenbaum, Andrew S. and Woodhull, Albert S. The MINIX book Operating System Design

and Implementation, Pearson Education, New Delhi.
Tanenbaum, Andrew S. Computer Networks, Pearson Education, New Delhi.
Shay, William A. Understanding Data Communications and Networks, Books/Cole Pub.

Company, Singapore.
Thomas, Robert. M. Introduction to Local Area Network.
Travis, Dawna D. Client/Server Computing.

Vaskevitch, David. Client/Server Unleashed.

URLS

http://www.ssuet.edu.pk/taimoor/books/0-672-30473-2/csc09.htm
http:/www.ssuet.edu.pk/taimoor/books/0-672-30473-2/index.htm
http:/www.corba.ch/e/3tier.html
http:/www.acs.ncsu.edu/∼nacsrjm/cs_stnd/cs_stnd.html
http://www-bfs.ucsd.edu/systems/cs/standrd.htm
http://www.sei.cmu.edu/str/descriptions/clientserver_body.html
http://www.softis.is
http://www.dciexpo.com/geos/
http://www.byte.com/art/9504/sec11/art4.htm
http://www.iterrasoft.com/ClientServer.htm
http://www.dpu.se/CTR/ctrcli_e.htm
http://www.tietovayla.fi/borland/techlib/delvpowr.html
http://www.opengroup.org/dce/successes/case_kredbank.htm
http://linuxtoday.com/developer/2001120600920OSSW
http://www.freeos.com/articles/2531/
http://www.linuxgazette.com/issue68/swieskowski.html
http://www.hrmanagement.gc.ca/gol/learning/interface.nsf/engdocBasic/1.html
http://www.conceptsystems.com
http://www-staff.it.uts.edu.au/∼chin/dbms/cs.htm
http://www.exforsys.com
http://www.testingcenter.com/oviewtc.html
http://www.education-online earch.com
http://orca.st.usm.edu/∼seyfarth/network_pgm/net-6-3-3.html
http://www.se.cuhk.edu.hk
http://www.gerrardconsulting.com/GUI/TestGui.html

Ebay Exhibit 1013, Page 1201 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

This page
intentionally left

blank

Ebay Exhibit 1013, Page 1202 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Index

A
A graphical User Interface (GUI)

47
Application Processor (AP)

75-76
Application server 2, 17
Application services 97
Application-programming

interface 70
Asynchronous Transfer Mode

(ATM) 133

B
Balanced computing 171
Banyan VINES 130
Browser/server models 157
Business information system 55

C
Client/server application 79, 80
Client/server computing 1
Client-based processing 85
Client 3
Clients/server 19
Communication services 48
Cooperative processing 85
CORBA 4, 17, 188

CORBA an introduction 189
CORBA client and servers 189
CORBA’s object model 191
Crypto-capable routers 116

D
Data distribution 72
Data Terminal Equipment (DTE)

134
Database centered systems 81
Database middleware

component 70
Database Processor (DP) 75
Database server 3, 48
Database services 48, 95, 98
Database translator 70
Decision-Support Systems (DSS)

81
Development of client/server

systems 29
Digital pen 109
Direct communication 88
Directory services server 3
Distributed computing 8
Distributed database 59
Distributed DBMS 74
Distributed objects 83

Downsizing 38

E
Electronic mail (E-mail) 83
Enterprise computing 28
Event handler 155
Event-driven 155

F
Fat client 19
Fat client 85
Fat clients 4
Fat server 19
Fat servers 4
Fax server 2
Fax services 48
FDDI (Fiber Distributed Data

Interface) 135
File server 2
File services 48, 98
File sharing 81
File transfer protocol 158
First-tier (client-tier) 13

G
Groupware 82
Groupware servers 3
Groupware services 48

Ebay Exhibit 1013, Page 1203 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

Introduction to Client/server Computing200 Introduction to Client/Server Computing200

H
Host-based processing 84
Hybrid architecture 69

I
IBM LAN server 130
Indirect communication 88
Internet protocols 157
Interrupt handler 155

L
LAN manager 129
Light pen 108

M
Magnetic disks 111
Magnetic tape 110
Mail server 2
Marshalling 90
Memory leaks 155
Message flooding 34
Message passing 87
Message server 16
Middleware 44, 178
Middleware 44
middleware components 52
Miscellaneous services 49
Misconceptions 22
Multimedia Document

Managements (MMDM)
82

Multi-threaded architecture 68
MVS 126

N
NetWare 125
Network File System (NFS) 136
Network interface card 131
Network management 28
Network translator 71
Network transparency 107
Notebook computers 109
Novell NetWare 128
N-Tier 9

O
Object application servers 4

Object application services 49
Online 3
Online transaction processing

3, 82
 Optical disk 112
ORB 17
ORB architecture 17
OS/2 125
Overview of CORBA 188

P
Packet replay 34
Pen drives 114
Performance testing 152
Print server 2
Print services 48
Print/fax services 95
Processors and servers 177
Process-per-client architecture

68

R
Remote database 58
Remote procedures call 88
Remote user interface 58
Rightsizing 38, 39
Risk driven testing 151
RMI system 166

S
Second-tier (application-server-

tier) 13
Service overloading 34
Simple Mail Transfer Protocol

(SMTP) 136
Simple Network Management

Protocol (SNMP) 135-36
Stateful server 5
Stateless server 4
Stateless vs stateful servers 5

T
Tape drives 114
Terminal server 116
Thin 3
Thin client 4
Three-tier 9

Three-tier (database-server-tier)
14

Transaction processing monitors
15

Transaction servers 3
Transaction services 48
Transactional processing 83
Transaction-processing monitors

178
Two-tier 9

U
UNIX 127
UNIX workstations 105
UPS (Uninterruptible Power

Supply) 118
Upsizing 39

V
Virtual groups 142
Virtual private networks 116
VMS 127
Voltage sag 118
Voltage spike 119

W
Web application services 49
Web applications 168, 170
Web client 160
Web server 3
Web services 158
Windows NT 125
Wired Equivalent Privacy (WEP)

117
Wireless Network Protection

117

X
X-server 106, 107
X-terminal 106
X-terminals 91
X-window system 105

Z
Zip drives 114

Ebay Exhibit 1013, Page 1204 of 1204
Ebay, Inc. v. Lexos Media IP, LLC

IPR2024-00337

	Appx C - Microsoft_WindowsGuidelines - no highlighting.pdf
	Contents
	Introduction
	01 Design Principles and Methodology
	02 Basic Concepts
	03 The Windows Environment
	04 Input Basics
	05 General Interaction Techniques
	06 Windows
	07 Menus, Controls, and Toolbars
	08 Secondary Windows
	09 Window Management
	10 Integrating with the System
	11 Working with OLE Embedded and OLE Linked Objects
	12 User Assistance
	13 Visual Design
	14 Special Design Considerations
	Appendix A: Mouse Interface Summary
	Appendix B: Keyboard Interface Summary
	Appendix C: Guidelines Summary
	Appendix D: Supporting Windows 95
	Appendix E: Localization Word Lists
	Bibliography
	Glossary

	Appx H - client-server-computing.pdf
	Cover
	Preface
	Contents
	Chapter 1. Introduction
	1.1 What is Client/server Computing?

	1.1.1 A Server for Every Client
	1.1.2 Client/Server: Fat or Thin
	1.1.3 Client/Server: Stateless or Stateful
	1.1.4 Servers and Mainframes
	1.1.5 Client/Server Functions
	1.1.6 Client/Server Topologies
	1.1.7 Integration with Distributed Computing
	1.1.8 Alternatives to Client/Server Systems

	1.2 Classification of Client/Server Systems

	1.2.1 Two-tier Client/Server Model
	1.2.2 Three-tier Client/Server Model
	1.2.2.1 Transaction Processing Monitors
	1.2.2.2 Three-tier with Message Server
	1.2.2.3 Three-tier with an Application Server
	1.2.2.4 Three-tier with an ORB Architecture
	1.2.2.5 Three-tier Architecture and Internet

	1.2.3 N-tier Client/Server Model

	1.3 Clients/Server—Advantages and Disadvantages
	1.3.1 Advantages
	1.3.2 Disadvantages

	1.4 Misconceptions About Client/Server Computing

	Exercise 1

	Chapter 2. Driving Forces Behind Client/Server Computing
	2.1 Introduction

	2.2 Driving Forces

	2.2.1 Business Perspective
	2.2.2 Technology Perspective

	2.3 Development of Client/Server Systems

	2.3.1 Development Tools
	2.3.2 Development Phases

	2.4 Client/Server Standards

	2.5 Client/Server Security

	2.5.1 Emerging Client/Server Security Threats
	2.5.2 Threats to Server

	2.6 Organizational Expectations

	2.7 Improving Performance of Client/Server Applications

	2.8 Single System Image

	2.9 Downsizing and Rightsizing

	2.10 Client/Server Methodology

	Exercise 2

	Chapter 3. Architectures of Client/Server Systems

	3.1 Introduction

	3.2 Components

	3.2.1 Interaction between the Components
	3.2.2 Complex Client/Server Interactions

	3.3 Principles Behind Client/Server Systems
	3.4 Client Components
	3.5 Server Components
	3.5.1 The Complexity of Servers

	3.6 Communications Middleware Components

	3.7 Architecture for Business Information System

	3.7.1 Introduction
	3.7.2 Three-Layer Architecture
	3.7.3 General Forces
	3.7.4 Distribution Pattern

	3.8 Existing Client/Server Architecture

	3.8.1 Mainframe-based Environment
	3.8.2 LAN-based Environment
	3.8.3 Internet-based Environment

	Exercise 3

	Chapter 4. Client/Server and Databases
	4.1 Introduction

	4.2 Client/Server in Respect of Databases
	4.2.1 Client/Server Databases
	4.2.2 Client/Server Database Computing

	4.3 Client/Server Database Architecture

	4.4 Database Middleware Component

	4.5 Access to Multiple Databases

	4.6 Distributed Client/Server Database Systems

	4.7 Distributed DBMS

	4.8 Web/Database System for Client/Server Applications

	4.8.1 Web/Database vs. Traditional Database

	Exercise 4

	Chapter 5. Client/Server Application Components
	5.1 Introduction

	5.2 Technologies for Client/Server Application

	5.3 Service of a Client/Server Application

	5.4 Categories of Client/Server Applications

	5.5 Client Services

	5.5.1 Inter Process Communication
	5.5.2 Remote Services
	5.5.3 Window Services
	5.5.4 Dynamic Data Exchange (DDE)
	5.5.5 Object Linking and Embedding (OLE)
	5.5.6 Common Object Request Broker Architecture (CORBA)
	5.5.7 Print/Fax Services
	5.5.8 Database Services

	5.6 Server Services
	5.7 Client/Server Application: Connectivity
	5.7.1 Role and Mechanism of Middleware

	5.8 Client/Server Application : Layered Architecture
	5.8.1 Design Approach
	5.8.2 Interface in Three Layers

	Exercise 5

	Chapter 6. System Development
	6.1 Hardware Requirements
	6.1.1 PC Level Processing Units
	6.1.2 Storage Devices
	6.1.3 Network Protection Devices
	6.1.4 Surge Protectors
	6.1.5 RAID Technology
	6.1.6 Server Specific Jargon

	6.2 Software Requirements
	6.2.1 Client OS
	6.2.2 Server OS
	6.2.3 Network OS

	6.3 Communication Interface Technology
	6.3.1 Network Interface Card
	6.3.2 LAN Cabling
	6.3.3 WAN
	6.3.4 ATM
	6.3.5 Ethernet
	6.3.6 Token Ring
	6.3.7 FDDI
	6.3.8 TCP/IP
	6.3.9 SNMP
	6.3.10 NFS
	6.3.11 SMTP

	Exercise 6

	Chapter 7. Training and Testing
	7.1 Introduction

	7.2 Technology Behind Training Delivery

	7.2.1 Traditional Classroom
	7.2.2 On-the-Job Training (OTJ)
	7.2.3 Video Conferencing
	7.2.4 Collaborative Tools
	7.2.5 Virtual Groups and Event Calls
	7.2.6 E-Learning
	7.2.7 Web-based Training
	7.2.8 Learning Management Systems (LMS)
	7.2.9 Electronic Performance Support Systems (EPSS)

	7.3 To Whom Training is Required?
	7.3.1 System Administrator Training
	7.3.2 DBA Training
	7.3.3 Network Administrator Training
	7.3.4 End-User and Technical Staff Training
	7.3.5 GUI Applications Training
	7.3.6 LAN/WAN Administration and Training Issues

	7.4 Impact to Technology on Training
	7.4.1 Client/Server Administration and Management

	7.5 Client/Server Testing Technology
	7.5.1 Client/Server Software
	7.5.2 Client/Server Testing Techniques
	7.5.3 Testing Aspects
	7.5.4 Measures of Completeness
	7.6 Testing Client/Server Application

	Exercise 7

	Chapter 8. Client/Server Technology and Web Services
	8.1 Introduction
	8.2 What are Web Services ?
	8.2.1 Web Services History
	8.2.2 Web Server Technology
	8.2.3 Web Server
	8.2.4 Web Server Communication

	8.3 Role of Java for Client/Server on Web
	8.4 Web Services and Client/Server Browser-Server Technology
	8.5 Client/Server Technology and Web Application
	8.6 Balanced Computing and the Server's Changing Role
	Exercise 8

	Chapter 9. Future of the Client/Server Computing
	Introduction
	9.2 Technology of the Next Generation
	9.2.1 Networking
	9.2.2 Development Tools
	9.2.3 Processors and Servers
	9.2.4 Paradigms

	9.3 Enabling Technology
	9.3.1 Expert Systems
	9.3.2 Imaging
	9.3.3 Point-of-Service

	9.4 Client Server Computing and the Intranet
	9.4.1 Intranet
	9.4.2 Is the Intranet Killing Client/Server?
	9.4.3 Extranet

	9.5 Future Perspectives
	9.5.1 Job Security
	9.5.2 Future Planning
	9.5.3 Conclusion

	9.6 Transformatinal System
	9.6.1 Electronic Mail
	9.6.2 Client/Server and User Security
	9.6.3 Object-oriented Technology: CORBA
	9.6.4 Electronic Data Interchange
	Exercise 9

	References
	Index

