
- 1 -

The Sun Network Filesystem: Design, Implementation and Experience

Russel Sandberg

Sun Microsystems, Inc.
2550 Garcia Ave.

Mountain View, CA. 94043
(415) 960–7293

Introduction

The Sun Network Filesystem (NFS) provides transparent, remote access to filesystems. Unlike many
other remote filesystem implementations under UNIX, NFS is designed to be easily portable to other
operating systems and machine architectures. It uses an External Data Representation (XDR)
specification to describe protocols in a machine and system independent way. NFS is implemented on top
of a Remote Procedure Call package (RPC) to help simplify protocol definition, implementation, and
maintenance.

In order to build NFS into the UNIX kernel in a way that is transparent to applications, we decided to add
a new interface to the kernel which separates generic filesystem operations from specific filesystem
implementations. The “filesystem interface” consists of two parts: the Virtual File System (VFS)
interface defines the operations that can be done on a filesystem, while the virtual node (vnode) interface
defines the operations that can be done on a file within that filesystem. This new interface allows us to
implement and install new filesystems in much the same way as new device drivers are added to the
kernel.

In this paper we discuss the design and implementation of the filesystem interface in the UNIX kernel and
the NFS virtual filesystem. We compare NFS to other remote filesystem implementations, and describe
some interesting NFS ports that have been done, including the IBM PC implementation under MS/DOS
and the VMS server implementation. We also describe the user-level NFS server implementation which
allows simple server ports without modification to the underlying operating system. We conclude with
some ideas for future enhancements.

In this paper we use the term server to refer to a machine that provides resources to the network; a client
is a machine that accesses resources over the network; a user is a person “logged in” at a client; an
application is a program that executes on a client; and a workstation is a client machine that typically
supports one user at a time.

Design Goals

NFS was designed to simplify the sharing of filesystem resources in a network of non-homogeneous
machines. Our goal was to provide a way of making remote files available to local programs without
having to modify, or even relink, those programs. In addition, we wanted remote file access to be
comparable in speed to local file access.

The overall design goals of NFS were:

Machine and Operating System Independence
The protocols used should be independent of UNIX so that an NFS server can supply files
to many different types of clients. The protocols should also be simple enough that they
can be implemented on low-end machines like the PC.

Crash Recovery
When clients can mount remote filesystems from many different servers it is very
important that clients and servers be able to recover easily from machine crashes and
network problems.

Transparent Access
We want to provide a system which allows programs to access remote files in exactly the
same way as local files, without special pathname parsing, libraries, or recompiling.
Programs should not need or be able to tell whether a file is remote or local.

UNIX is a registered trademark of AT&T
NFS is a trademark of Sun Microsystems.

Dropbox Exhibit 1015 - Page 1
Dropbox, Inc. v. Entangled Media, LLC

IPR2024-00285 - U.S. Patent No. 8,484,260
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

- 2 -

UNIX Semantics Maintained on UNIX Client
In order for transparent access to work on UNIX machines, UNIX filesystem semantics
have to be maintained for remote files.

Reasonable Performance
People will not use a remote filesystem if it is no faster than the existing networking
utilities, such as rcp, even if it is easier to use. Our design goal was to make NFS as fast
as a small local disk on a SCSI interface.

Basic Design

The NFS design consists of three major pieces: the protocol, the server side and the client side.

NFS Protocol

The NFS protocol uses the Sun Remote Procedure Call (RPC) mechanism 1. For the same reasons that
procedure calls simplify programs, RPC helps simplify the definition, organization, and implementation
of remote services. The NFS protocol is defined in terms of a set of procedures, their arguments and
results, and their effects. Remote procedure calls are synchronous, that is, the client application blocks
until the server has completed the call and returned the results. This makes RPC very easy to use and
understand because it behaves like a local procedure call.

NFS uses a stateless protocol. The parameters to each procedure call contain all of the information
necessary to complete the call, and the server does not keep track of any past requests. This makes crash
recovery very easy; when a server crashes, the client resends NFS requests until a response is received,
and the server does no crash recovery at all. When a client crashes, no recovery is necessary for either the
client or the server.

If state is maintained on the server, on the other hand, recovery is much harder. Both client and server need
to reliably detect crashes. The server needs to detect client crashes so that it can discard any state it is
holding for the client, and the client must detect server crashes so that it can rebuild the server’s state.

A stateless protocol avoids complex crash recovery. If a client just resends requests until a response is
received, data will never be lost due to a server crash. In fact, the client cannot tell the difference between
a server that has crashed and recovered, and a server that is slow.

Sun’s RPC package is designed to be transport independent. New transport protocols, such as ISO and
XNS, can be “plugged in” to the RPC implementation without affecting the higher level protocol code
(see appendix 3). NFS currently uses the DARPA User Datagram Protocol (UDP) and Internet Protocol
(IP) for its transport level. Since UDP is an unreliable datagram protocol, packets can get lost, but because
the NFS protocol is stateless and NFS requests are idempotent, the client can recover by retrying the call
until the packet gets through.

The most common NFS procedure parameter is a structure called a file handle (fhandle or fh) which is
provided by the server and used by the client to reference a file. The fhandle is opaque, that is, the client
never looks at the contents of the fhandle, but uses it when operations are done on that file.

An outline of the NFS protocol procedures is given below. For the complete specification see the Sun
Network Filesystem Protocol Specification 2.

null() returns ()
Do nothing procedure to ping the server and measure round trip time.

lookup(dirfh, name) returns (fh, attr)
Returns a new fhandle and attributes for the named file in a directory.

create(dirfh, name, attr) returns (newfh, attr)
 Creates a new file and returns its fhandle and attributes.

remove(dirfh, name) returns (status)
Removes a file from a directory.

getattr(fh) returns (attr)
Returns file attributes. This procedure is like a stat call.

setattr(fh, attr) returns (attr)
Sets the mode, uid, gid, size, access time, and modify time of a file. Setting the size to zero truncates
the file.

read(fh, offset, count) returns (attr, data)
Returns up to count bytes of data from a file starting offset bytes into the file. read also returns the

Dropbox Exhibit 1015 - Page 2
Dropbox, Inc. v. Entangled Media, LLC

IPR2024-00285 - U.S. Patent No. 8,484,260
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

- 3 -

attributes of the file.
write(fh, offset, count, data) returns (attr)

Writes count bytes of data to a file beginning offset bytes from the beginning of the file. Returns
the attributes of the file after the write takes place.

rename(dirfh, name, tofh, toname) returns (status)
 Renames the file name in the directory dirfh, to toname in the directory tofh.

link(dirfh, name, tofh, toname) returns (status)
Creates the file toname in the directory tofh, which is a link to the file name in the directory dirfh.

symlink(dirfh, name, string) returns (status)
Creates a symbolic link name in the directory dirfh with value string. The server does not interpret
the string argument in any way, just saves it and makes an association to the new symbolic link file.

readlink(fh) returns (string)
Returns the string which is associated with the symbolic link file.

mkdir(dirfh, name, attr) returns (fh, newattr)
Creates a new directory name in the directory dirfh and returns the new fhandle and attributes.

rmdir(dirfh, name) returns(status)
Removes the empty directory name from the parent directory dirfh.

readdir(dirfh, cookie, count) returns(entries)
Returns up to count bytes of directory entries from the directory dirfh. Each entry contains a file
name, file id, and an opaque pointer to the next directory entry called a cookie. The cookie is used
in subsequent readdir calls to start reading at a specific entry in the directory. A readdir call with
the cookie of zero returns entries starting with the first entry in the directory.

statfs(fh) returns (fsstats)
Returns filesystem information such as block size, number of free blocks, etc.

New fhandles are returned by the lookup, create, and mkdir procedures which also take an fhandle as
an argument. The first remote fhandle, for the root of a filesystem, is obtained by the client using the RPC
based MOUNT protocol. The MOUNT protocol takes a directory pathname and returns an fhandle if the
client has access permission to the filesystem which contains that directory. The reason for making this
a separate protocol is that this makes it easier to plug in new filesystem access checking methods, and it
separates out the operating system dependent aspects of the protocol. Note that the MOUNT protocol is
the only place that UNIX pathnames are passed to the server. In other operating system implementations
the MOUNT protocol can be replaced without having to change the NFS protocol.

The NFS protocol and RPC are built on top of the Sun External Data Representation (XDR) specification
3. XDR defines the size, byte order and alignment of basic data types such as string, integer, union,
boolean and array. Complex structures can be built from the basic XDR data types. Using XDR not only
makes protocols machine and language independent, it also makes them easy to define. The arguments
and results of RPC procedures are defined using an XDR data definition language that looks a lot like C
declarations. This data definition language can be used as input to an XDR protocol compiler which
produces the structures and XDR translation procedures used to interpret RPC protocols 11.

Server Side

Because the NFS server is stateless, when servicing an NFS request it must commit any modified data to
stable storage before returning results. The implication for UNIX based servers is that requests which
modify the filesystem must flush all modified data to disk before returning from the call. For example,
on a write request, not only the data block, but also any modified indirect blocks and the block containing
the inode must be flushed if they have been modified.

Another modification to UNIX necessary for our server implimentation is the addition of a generation
number in the inode, and a filesystem id in the superblock. These extra numbers make it possible for the
server to use the inode number, inode generation number, and filesystem id together as the fhandle for a
file. The inode generation number is necessary because the server may hand out an fhandle with an inode
number of a file that is later removed and the inode reused. When the original fhandle comes back, the
server must be able to tell that this inode number now refers to a different file. The generation number
has to be incremented every time the inode is freed.

Client Side

The Sun implementation of the client side provides an interface to NFS which is transparent to
applications. To make transparent access to remote files work we had to use a method of locating remote

Dropbox Exhibit 1015 - Page 3
Dropbox, Inc. v. Entangled Media, LLC

IPR2024-00285 - U.S. Patent No. 8,484,260
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

- 4 -

files that does not change the structure of path names. Some UNIX based remote file access methods use
pathnames like host:path or /../host/path to name remote files. This does not allow real transparent access
since existing programs that parse pathnames have to be modified.

Rather than doing a “late binding” of file address, we decided to do the hostname lookup and file address
binding once per filesystem by allowing the client to attach a remote filesystem to a directory with the
mount command. This method has the advantage that the client only has to deal with hostnames once, at
mount time. It also allows the server to limit access to filesystems by checking client credentials. The
disadvantage is that remote files are not available to the client until a mount is done.

Transparent access to different types of filesystems mounted on a single machine is provided by a new
filesystem interface in the kernel 13. Each “filesystem type” supports two sets of operations: the Virtual
Filesystem (VFS) interface defines the procedures that operate on the filesystem as a whole; and the
Virtual Node (vnode) interface defines the procedures that operate on an individual file within that
filesystem type. Figure 1 is a schematic diagram of the filesystem interface and how NFS uses it.

The Filesystem Interface

The VFS interface is implemented using a structure that contains the operations that can be done on a
filesystem. Likewise, the vnode interface is a structure that contains the operations that can be done on
a node (file or directory) within a filesystem. There is one VFS structure per mounted filesystem in the
kernel and one vnode structure for each active node. Using this abstract data type implementation allows
the kernel to treat all filesystems and nodes in the same way without knowing which underlying filesystem
implementation it is using.

Each vnode contains a pointer to its parent VFS and a pointer to a mounted-on VFS. This means that any
node in a filesystem tree can be a mount point for another filesystem. A root operation is provided in the
VFS to return the root vnode of a mounted filesystem. This is used by the pathname traversal routines in
the kernel to bridge mount points. The root operation is used instead of keeping a pointer so that the root
vnode for each mounted filesystem can be released. The VFS of a mounted filesystem also contains a
pointer back to the vnode on which it is mounted so that pathnames that include “..” can also be traversed
across mount points.

In addition to the VFS and vnode operations, each filesystem type must provide mount and mount_root
operations to mount normal and root filesystems. The operations defined for the filesystem interface are
given below. In the arguments and results, vp is a pointer to a vnode, dvp is a pointer to a directory vnode
and devvp is a pointer to a device vnode.

Filesystem Operations

mount(varies) System call to mount filesystem

System Calls

NFS Filesystem

VNODE/VFS

4.2 FilesystemPC Filesystem

Floppy

RPC / XDR

Network

RPC / XDR

Server Routines

VNODE/VFS

CLIENT SERVER

Figure 1

Disk

System Calls

Dropbox Exhibit 1015 - Page 4
Dropbox, Inc. v. Entangled Media, LLC

IPR2024-00285 - U.S. Patent No. 8,484,260
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

- 5 -

mount_root() Mount filesystem as root

VFS Operations

unmount(vfs) Unmount filesystem
root(vfs) returns(vnode) Return the vnode of the filesystem root
statfs(vfs) returns(statfsbuf) Return filesystem statistics
sync(vfs) Flush delayed write blocks

Vnode Operations

open(vp, flags) Mark file open
close(vp, flags) Mark file closed
rdwr(vp, uio, rwflag, flags) Read or write a file
ioctl(vp, cmd, data, rwflag) Do I/O control operation
select(vp, rwflag) Do select
getattr(vp) returns(attr) Return file attributes
setattr(vp, attr) Set file attributes
access(vp, mode) Check access permission
lookup(dvp, name) returns(vp) Look up file name in a directory
create(dvp, name, attr, excl, mode) returns(vp) Create a file
remove(dvp, name) Remove a file name from a directory
link(vp, todvp, toname) Link to a file
rename(dvp, name, todvp, toname) Rename a file
mkdir(dvp, name, attr) returns(dvp) Create a directory
rmdir(dvp, name) Remove a directory
readdir(dvp) returns(entries) Read directory entries
symlink(dvp, name, attr, toname) Create a symbolic link
readlink(vp) returns(data) Read the value of a symbolic link
fsync(vp) Flush dirty blocks of a file
inactive(vp) Mark vnode inactive and do clean up
bmap(vp, blk) returns(devp, mappedblk) Map block number
strategy(bp) Read and write filesystem blocks
bread(vp, blockno) returns(buf) Read a block
brelse(vp, bp) Release a block buffer

Notice that many of the vnode procedures map one-to-one with NFS protocol procedures, while other,
UNIX dependent procedures such as open, close, and ioctl do not. The bmap, strategy, bread, and
brelse procedures are used to do reading and writing using the buffer cache.

Pathname traversal is done in the kernel by breaking the path into directory components and doing a
lookup call through the vnode for each component. At first glance it seems like a waste of time to pass
only one component with each call instead of passing the whole path and receiving back a target vnode.
The main reason for this is that any component of the path could be a mount point for another filesystem,
and the mount information is kept above the vnode implementation level. In the NFS filesystem, passing
whole pathnames would force the server to keep track of all of the mount points of its clients in order to
determine where to break the pathname and this would violate server statelessness. The inefficiency of
looking up one component at a time can be alleviated with a cache of directory vnodes.

Implementation

Implementation of NFS started in March 1984. The first step in the implementation was modification of
the 4.2 kernel to include the filesystem interface. By June we had the first “vnode kernel” running. We
did some benchmarks to test the amount of overhead added by the extra interface. It turned out that in
most cases the difference was not measurable, and in the worst case the kernel had only slowed down by
about 2%. Most of the work in adding the new interface was in finding and fixing all of the places in the
kernel that used inodes directly, and code that contained implicit knowledge of inodes or disk layout.

Only a few of the filesystem routines in the kernel had to be completely rewritten to use vnodes. Namei,
the routine that does pathname lookup, was changed to use the vnode lookup operation, and cleaned up
so that it doesn’t use global state. The direnter routine, which adds new directory entries (used by create,
rename, etc.), was fixed because it depended on the global state from namei. Direnter was also modified

Dropbox Exhibit 1015 - Page 5
Dropbox, Inc. v. Entangled Media, LLC

IPR2024-00285 - U.S. Patent No. 8,484,260
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
 Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

 Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
 With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

 Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
 Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

 Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

