

3-Axis, $\pm 2 g/\pm 4 g/\pm 8 g/\pm 16 g$ Digital Accelerometer

ADXL345

FEATURES

Ultralow power: as low as 23 µA in measurement mode and 0.1 μ A in standby mode at V_s = 2.5 V (typical) Power consumption scales automatically with bandwidth **User-selectable resolution Fixed 10-bit resolution** Full resolution, where resolution increases with g range, up to 13-bit resolution at ±16 g (maintaining 4 mg/LSB scale factor in all g ranges) Patent pending, embedded memory management system with FIFO technology minimizes host processor load Single tap/double tap detection Activity/inactivity monitoring Free-fall detection Supply voltage range: 2.0 V to 3.6 V I/O voltage range: 1.7 V to Vs SPI (3- and 4-wire) and I²C digital interfaces Flexible interrupt modes mappable to either interrupt pin Measurement ranges selectable via serial command Bandwidth selectable via serial command Wide temperature range (-40°C to +85°C) 10,000 g shock survival Pb free/RoHS compliant Small and thin: 3 mm \times 5 mm \times 1 mm LGA package

APPLICATIONS

Handsets Medical instrumentation Gaming and pointing devices Industrial instrumentation Personal navigation devices Hard disk drive (HDD) protection

GENERAL DESCRIPTION

The ADXL345 is a small, thin, ultralow power, 3-axis accelerometer with high resolution (13-bit) measurement at up to ± 16 g. Digital output data is formatted as 16-bit twos complement and is accessible through either a SPI (3- or 4-wire) or I²C digital interface.

The ADXL345 is well suited for mobile device applications. It measures the static acceleration of gravity in tilt-sensing applications, as well as dynamic acceleration resulting from motion or shock. Its high resolution (3.9 mg/LSB) enables measurement of inclination changes less than 1.0°.

Several special sensing functions are provided. Activity and inactivity sensing detect the presence or lack of motion by comparing the acceleration on any axis with user-set thresholds. Tap sensing detects single and double taps in any direction. Freefall sensing detects if the device is falling. These functions can be mapped individually to either of two interrupt output pins. An integrated, patent pending memory management system with a 32-level first in, first out (FIFO) buffer can be used to store data to minimize host processor activity and lower overall system power consumption.

Low power modes enable intelligent motion-based power management with threshold sensing and active acceleration measurement at extremely low power dissipation.

The ADXL345 is supplied in a small, thin, 3 mm \times 5 mm \times 1 mm, 14-lead, plastic package.

FUNCTIONAL BLOCK DIAGRAM

Rev. C Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other

ADXL345

TABLE OF CONTENTS

DOCKET

Features 1
Applications1
General Description 1
Functional Block Diagram 1
Revision History
Specifications
Absolute Maximum Ratings
Thermal Resistance 6
Package Information 6
ESD Caution 6
Pin Configuration and Function Descriptions7
Pin Configuration and Function Descriptions

Register Map23Register Definitions24Applications Information28Power Supply Decoupling28Mechanical Considerations for Mounting28Tap Detection28Threshold29Link Mode29Sleep Mode vs. Low Power Mode30Offset Calibration30Using Self-Test31Data Formatting of Upper Data Rates32Noise Performance33Operation at Voltages Other Than 2.5 V33Offset Performance at Lowest Data Rates34	Self-Test	. 22
Register Definitions24Applications Information28Power Supply Decoupling28Mechanical Considerations for Mounting28Tap Detection28Threshold29Link Mode29Sleep Mode vs. Low Power Mode30Offset Calibration30Using Self-Test31Data Formatting of Upper Data Rates32Noise Performance33Operation at Voltages Other Than 2.5 V33Offset Performance at Lowest Data Rates34	Register Map	. 23
Applications Information28Power Supply Decoupling28Mechanical Considerations for Mounting28Tap Detection28Threshold29Link Mode29Sleep Mode vs. Low Power Mode30Offset Calibration30Using Self-Test31Data Formatting of Upper Data Rates32Noise Performance33Operation at Voltages Other Than 2.5 V33Offset Performance at Lowest Data Rates34	Register Definitions	. 24
Power Supply Decoupling28Mechanical Considerations for Mounting28Tap Detection28Threshold29Link Mode29Sleep Mode vs. Low Power Mode30Offset Calibration30Using Self-Test31Data Formatting of Upper Data Rates32Noise Performance33Operation at Voltages Other Than 2.5 V33Offset Performance at Lowest Data Rates34	Applications Information	. 28
Mechanical Considerations for Mounting.28Tap Detection28Threshold29Link Mode29Sleep Mode vs. Low Power Mode.30Offset Calibration30Using Self-Test31Data Formatting of Upper Data Rates32Noise Performance33Operation at Voltages Other Than 2.5 V33Offset Performance at Lowest Data Rates34	Power Supply Decoupling	. 28
Tap Detection28Threshold29Link Mode29Sleep Mode vs. Low Power Mode30Offset Calibration30Using Self-Test31Data Formatting of Upper Data Rates32Noise Performance33Operation at Voltages Other Than 2.5 V33Offset Performance at Lowest Data Rates34	Mechanical Considerations for Mounting	. 28
Threshold29Link Mode29Sleep Mode vs. Low Power Mode30Offset Calibration30Using Self-Test31Data Formatting of Upper Data Rates32Noise Performance33Operation at Voltages Other Than 2.5 V33Offset Performance at Lowest Data Rates34	Tap Detection	. 28
Link Mode29Sleep Mode vs. Low Power Mode30Offset Calibration30Using Self-Test31Data Formatting of Upper Data Rates32Noise Performance33Operation at Voltages Other Than 2.5 V33Offset Performance at Lowest Data Rates34	Threshold	. 29
Sleep Mode vs. Low Power Mode	Link Mode	. 29
Offset Calibration30Using Self-Test31Data Formatting of Upper Data Rates32Noise Performance33Operation at Voltages Other Than 2.5 V33Offset Performance at Lowest Data Rates34	Sleep Mode vs. Low Power Mode	. 30
Using Self-Test31Data Formatting of Upper Data Rates32Noise Performance33Operation at Voltages Other Than 2.5 V33Offset Performance at Lowest Data Rates34	Offset Calibration	. 30
Data Formatting of Upper Data Rates32Noise Performance33Operation at Voltages Other Than 2.5 V33Offset Performance at Lowest Data Rates34	Using Self-Test	. 31
Noise Performance33Operation at Voltages Other Than 2.5 V33Offset Performance at Lowest Data Rates34	Data Formatting of Upper Data Rates	. 32
Operation at Voltages Other Than 2.5 V	Noise Performance	. 33
Offset Performance at Lowest Data Rates	Operation at Voltages Other Than 2.5 V	. 33
	Offset Performance at Lowest Data Rates	. 34
Axes of Acceleration Sensitivity 35	Axes of Acceleration Sensitivity	. 35
Layout and Design Recommendations	Layout and Design Recommendations	. 36
	Outline Dimensions	. 37
Jutline Dimensions	Ordering Guide	. 37
Jutline Dimensions	Ordering Guide	. 37

REVISION HISTORY

5/11—Rev. B to Rev. C	
Added Preventing Bus Traffic Errors Section	15
Changes to Figure 37, Figure 38, Figure 39	16
Changes to Table 12	19
Changes to Using Self-Test Section	31
Changes to Axes of Acceleration Sensitivity Section	35

11/10—Rev. A to Rev. B

Change to 0 g Offset vs. Temperature for Z-Axis Parameter,	
Table 1	4
Changes to Figure 10 to Figure 15	9
Changes to Ordering Guide	.37

4/10—Rev. 0 to Rev. A

Added Table 13 1	9
Changes to FIFO Section2	20
Changes to Self-Test Section and Table 15 to Table 182	21
Added Figures 42 and Table 142	21
Changes to Table 192	22
Changes to Register 0x1D—THRESH_TAP (Read/Write)	
Section, Register 0x1E, Register 0x1F, Register 0x20—OFSX,	
OFSY, OSXZ (Read/Write) Section, Register 0x21—DUR	
(Read/Write) Section, Register 0x22—Latent (Read/Write)	
Section, and Register 0x23—Window (Read/Write) Section2	23
Changes to ACT_X Enable Bits and INACT_X Enable Bit	
Section, Register 0x28—THRESH_FF (Read/Write) Section,	
Register 0x29—TIME_FF (Read/Write) Section, Asleep Bit	
Section, and AUTO_SLEEP Bit Section2	24
Changes to Sleep Bit Section2	25
Changes to Power Supply Decoupling Section, Mechanical	
Considerations for Mounting Section, and Tap Detection	
Section2	27
Changes to Threshold Section2	28
Changes to Sleep Mode vs. Low Power Mode Section2	29
Added Offset Calibration Section2	29
Changes to Using Self-Test Section3	30
Added Data Formatting of Upper Data Rates Section, Figure 44	8,
and Figure 493	\$1
Added Noise Performance Section, Figure 50 to Figure 52, and	
Operation at Voltages Other Than 2.5 V Section	\$2
Added Offset Performance at Lowest Data Rates Section and	
Figure 53 to Figure 55	\$3

6/09—Revision 0: Initial Version

ADXL345

SPECIFICATIONS

DOCKET

Α

 $T_A = 25^{\circ}$ C, $V_S = 2.5$ V, $V_{DD I/O} = 1.8$ V, acceleration = 0 g, $C_S = 10 \mu$ F tantalum, $C_{I/O} = 0.1 \mu$ F, output data rate (ODR) = 800 Hz, unless otherwise noted. All minimum and maximum specifications are guaranteed. Typical specifications are not guaranteed.

Table 1.					
Parameter	Test Conditions	Min	Тур¹	Max	Unit
SENSOR INPUT	Each axis				
Measurement Range	User selectable		±2, ±4, ±8, ±16		g
Nonlinearity	Percentage of full scale		±0.5		%
Inter-Axis Alignment Error			±0.1		Degrees
Cross-Axis Sensitivity ²			±1		%
OUTPUT RESOLUTION	Each axis				
All <i>g</i> Ranges	10-bit resolution		10		Bits
$\pm 2g$ Range	Full resolution		10		Bits
$\pm 4 q$ Range	Full resolution		11		Bits
±8 g Range	Full resolution		12		Bits
±16 g Range	Full resolution		13		Bits
SENSITIVITY	Each axis				
Sensitivity at Xour, Your, Zour	All <i>g</i> -ranges, full resolution	230	256	282	LSB/g
	$\pm 2 q$, 10-bit resolution	230	256	282	LSB/g
	$\pm 4 q$, 10-bit resolution	115	128	141	LSB/g
	$\pm 8 q$, 10-bit resolution	57	64	71	LSB/g
	$\pm 16 a$, 10-bit resolution	29	32	35	LSB/a
Sensitivity Deviation from Ideal	All <i>g</i> -ranges	-	±1.0		%
Scale Factor at Xout, Yout, Zout	All <i>g</i> -ranges, full resolution	3.5	3.9	4.3	m <i>q/</i> LSB
	$\pm 2 a$, 10-bit resolution	3.5	3.9	4.3	ma/LSB
	$\pm 4 a$, 10-bit resolution	7.1	7.8	8.7	ma/LSB
	$\pm 8 a$, 10-bit resolution	14.1	15.6	17.5	ma/LSB
	$\pm 16 a$, 10-bit resolution	28.6	31.2	34.5	ma/LSB
Sensitivity Change Due to Temperature			±0.01		%/°C
0 a OFFSET	Each axis				
0 a Output for Xout, Yout		-150	0	+150	ma
$0 a$ Output for Z_{OUT}		-250	0	+250	ma
0 a Output Deviation from Ideal, Xour, Your			±35		ma
0 q Output Deviation from Ideal, Z _{OUT}			±40		m <i>q</i>
0 g Offset vs. Temperature for X-, Y-Axes			±0.4		m <i>q/</i> °C
0 g Offset vs. Temperature for Z-Axis			±1.2		m <i>q/</i> °C
NOISE					
X-, Y-Axes	ODR = 100 Hz for $\pm 2 g$, 10-bit resolution or		0.75		LSB rms
Z-Axis	ODR = 100 Hz for $\pm 2g$, 10-bit resolution or		1.1		LSB rms
	all g-ranges, full resolution				
OUTPUT DATA RATE AND BANDWIDTH	User selectable				
Output Data Rate (ODR) ^{3, 4, 5}		0.1		3200	Hz
SELF-IESI®		0.20		2.10	_
Output Change In X-Axis		0.20		2.10	g
Output Change in Y-Axis		-2.10		-0.20	9
		0.30		3.40	g
Operating Voltage Range (Va)		2.0	2.5	3.6	V
Interface Voltage Range (Vorue)		2.0	1.9	5.0 Vc	V
Supply Current	ODR > 100 Hz	1.7	1.0	v 5	ν
Supply Current	$ODR > 10 H_{\tau}$		30		μ Λ
Standby Mode Leakage Current			01		μA
standy more concern			~ • • •		1 Pro 1

ADXL345

Parameter	Test Conditions	Min	Тур¹	Max	Unit
TEMPERATURE					
Operating Temperature Range		-40		+85	°C
WEIGHT					
Device Weight			30		mg

¹ The typical specifications shown are for at least 68% of the population of parts and are based on the worst case of mean ± 1 σ , except for 0 g output and sensitivity, which represents the target value. For 0 g offset and sensitivity, the deviation from the ideal describes the worst case of mean ±1 o.

² Cross-axis sensitivity is defined as coupling between any two axes.

 ³ Bandwidth is the –3 dB frequency and is half the output data rate, bandwidth = ODR/2.
⁴ The output format for the 3200 Hz and 1600 Hz ODRs is different than the output format for the remaining ODRs. This difference is described in the Data Formatting of Upper Data Rates section.

⁵ Output data rates below 6.25 Hz exhibit additional offset shift with increased temperature, depending on selected output data rate. Refer to the Offset Performance at Lowest Data Rates section for details.

⁶ Self-test change is defined as the output (g) when the SELF_TEST bit = 1 (in the DATA_FORMAT register, Address 0x31) minus the output (g) when the SELF_TEST bit = 0. Due to device filtering, the output reaches its final value after 4 × τ when enabling or disabling self-test, where τ = 1/(data rate). The part must be in normal power operation (LOW_POWER bit = 0 in the BW_RATE register, Address 0x2C) for self-test to operate correctly.

⁷ Turn-on and wake-up times are determined by the user-defined bandwidth. At a 100 Hz data rate, the turn-on and wake-up times are each approximately 11.1 ms. For other data rates, the turn-on and wake-up times are each approximately $\tau + 1.1$ in milliseconds, where $\tau = 1/(data rate)$.

DOCKET

Explore Litigation Insights

Docket Alarm provides insights to develop a more informed litigation strategy and the peace of mind of knowing you're on top of things.

Real-Time Litigation Alerts

Keep your litigation team up-to-date with **real-time** alerts and advanced team management tools built for the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal, State, and Administrative courts across the country.

Advanced Docket Research

With over 230 million records, Docket Alarm's cloud-native docket research platform finds what other services can't. Coverage includes Federal, State, plus PTAB, TTAB, ITC and NLRB decisions, all in one place.

Identify arguments that have been successful in the past with full text, pinpoint searching. Link to case law cited within any court document via Fastcase.

Analytics At Your Fingertips

Learn what happened the last time a particular judge, opposing counsel or company faced cases similar to yours.

Advanced out-of-the-box PTAB and TTAB analytics are always at your fingertips.

API

Docket Alarm offers a powerful API (application programming interface) to developers that want to integrate case filings into their apps.

LAW FIRMS

Build custom dashboards for your attorneys and clients with live data direct from the court.

Automate many repetitive legal tasks like conflict checks, document management, and marketing.

FINANCIAL INSTITUTIONS

Litigation and bankruptcy checks for companies and debtors.

E-DISCOVERY AND LEGAL VENDORS

Sync your system to PACER to automate legal marketing.

