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ABSTRACT 

This paper tackles the problem of detecting the swinging action of 
an electronic handbell. It describes a threshold based algorithm 
that is able to detect an orientation free swinging motion using 
only the X and Y axis signals of an accelerometer that is mounted 
at the end of a handle. Equations governing the accelerations of the 
accelerometer are defined. The equations are used to select the 
appropriate accelerometer axis for swing motion detection, which 
were X axis and Y axis. The characteristics of the swing motion 
are identified empirically and incorporated to the swing detection 
algorithm. The experimental results for swinging motion 
performed by 4 users on the electronic bell show that the accuracy 
of swing motion detection is 95.3%. 

1. INTRODUCTION 

Handbells are often use by pre-school educators to teach 
children musical concepts such as rhythm, note sequences 
and timing. Figure l a shows a physical handbell, which is 
usually one of a set of many; each carefully tuned to ring at 
a specific frequency so that it plays a particular note when 
swung. They are generally costly and can only ring out the 
sound of one specific note. We are interested in developing 
an electronic equivalent of such handbells, which can be 
easily reprogrammed to ring a synthetic bell sound of any 
note of choice when swung in the same physical manner. 
Figure 1 b shows the physical construction of such a device 
and a schematic block diagram of its major components, 
which consist of a MCU, audio module and motion sensing 
module, which comprises of a 3-axis accelerometer. The 
main issue addressed by this paper is the development of an 
appropriate algorithm that would allow this swinging 
motion gesture to be detected in an orientation free manner 
using appropriate signals from the single 3-axis 
accelerometer. 

Accelerometer 

Handle 

(a) (b) 

Figure 1. (a) A physical handbell. (b) The electronic 
handbell and its various component modules 
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Gestures are expressive means of communicating between 
consumer devices and human. Gesture recognition is 
performed using video [1, 2, 3], touch screen [4] or by using 
micro electro mechanical systems (MEMS) such as 
accelerometers [5]. Accelerometers are devices which 
measures acceleration along a predefined axis. It is capable 
of measuring static (acceleration created by gravity) and 
dynamic acceleration (acceleration created by movement). 
Static acceleration is used to calculate the tilt or orientation 
of a device, while dynamic acceleration is used for gesture 
recognition and fall down detection. The advantage of using 
video based systems for gesture recognition is that the user 
does not need to wear any sensors or hold any device. 
However, vision based gesture recognition are complicated 
and prone to the problem of self-occlusion and fast gesture 
speeds due to the limited frame rates of the video camera. 

Wearable devices for gesture recognition are easier to 
implement because the orientation of device can fixed by 
the way it is secured on the human body, for example with 
the use of gloves or strap-on embedded sensors. Near 
symmetrical hand held devices such as that shown in Figure 
1 b are more problematic for accelerometer-based gesture 
recognition since the orientation of the device can be rather 
arbitrary during motion execution. One way to avoid this 
problem is to define the physical dimensions of the hand 
held device in a manner that allows human ergonomics or 
device function to persuade the user to hold it in a consistent 
orientation. Some examples include gesture-capable devices 
such as the iPhone [6] from Apple and the Wii remote [7] 
from Nintendo. Phones have a screen and are usually 
designed to be flat, which guide users to instinctively hold 
them in a specific orientation that is comfortable and permit 
good view of the screen. Similarly, the Wii remote models 
after typical remote controller-type interfaces, which have 
buttons on only one face of an elongated device, which 
encourage handling in a pre-deterministic orientation. In our 
case, in mimicking the symmetrical form factor of typical 
handbells, the orientation constraint required to make 
accelerometer-based gesture recognition easier has been 
compromised. This paper presents an algorithm that is able 
to overcome this limitation. 

2. EXISTING APPROACHES 

Existing gesture recognition algorithms using signals from 
accelerometer-based motion sensors can be categorized 
based on the following gesture classification methods: 

• Hidden Markov Models (HMM) 
• Dynamic Time Warping (DTW) 
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• Support Vector Machine (SVM) 
• Machine Learning Algorithms (Fuzzy logic and 

Artificial Neural Networks) 
• Threshold-based 

Hidden Markov Models (HMM) 
Joselli and Clua [8] presented a HMM based gesture 
recognition method for mobile phones. The authors propose 
that the 3–axis accelerometer values to be processed in 5 
stages. The initial stage will find the start and the end of the 
motion. The second stage is used to reduce noise via a low 
pass filter. The third stage reduces the amount of data sent 
to the HMM by using a k-mean algorithm. The fourth stage 
uses an existing proven 8 states HMM for gesture 
identification. In the final stage a Bayesian classifier is used 
to remove non gesture movements. Dictionary of 10 
gestures are created by the authors and the gesture 
recognition accuracy for the set of gestures are between 
75% - 97.5%. If the HMM parameters; the number of states 
of HMM, number of distinct observation symbols per state, 
state transition probability, observation symbol probability 
distribution in a state and initial state distribution is known, 
then a gesture could be modeled by HMM. Kong et al. [12] 
proposes an algorithm to capture these parameters, allowing 
to model gestures using HMM. The authors however have 
not determined the gesture recognition accuracy of the 
proposed gesture model.    

Dynamic Time Warping (DTW) 
The same gesture performed by various users is not exactly 
same. Hence gesture recognition algorithms should be 
capable of detecting gestures with minimal user 
dependence. In order to tackle this issue Akl and Valaee [9] 
proposed a gesture recognition method based on DTW. The 
Wii remote is used as the hardware platform and the authors 
have created a dictionary of 18 gestures. The 
experimentation results show that the gesture recognition 
accuracy of the proposed method is between 90% - 99.79%. 
Same gesture performed by the same user on different days 
tends to change. In order to tackle this problem Liu et al. 
[10] proposed user personalized gesture recognition method 
based on DTW called μwave. For the same gesture the 
proposed method in contrast to [9] uses different gesture 
templates for each user, which changes daily. A dictionary 
of 8 gestures has been defined. They implemented the 
algorithm using Wii remote and the gesture recognition 
accuracy is between 98.6%-98.9%. 

Support Vector Machine (SVM) 
The effectiveness of any gesture recognition method 
depends upon the features extracted. He et al. [11] proposed 
3 methods for feature extraction namely, discrete cosine 
transform (DCT), Fast Fourier Transform (FFT) and a 
hybrid method which uses wavelet packet decomposition 
(WPD) with FFT. Gesture recognition is performed by 
using SVM in all 3 cases. A dictionary of 17 gestures is 
defined and a mobile phone with a 3-axis accelerometer is 
used for implementation. DCT, FFT and the hybrid method 

respectively produces gesture recognition accuracy of 
64.51% - 95.49%, 70.44% - 94.29% and 71.98% - 95.49%.  

Machine Learning Algorithms 
Gesture is nebulous by nature hence gesture recognition can 
be based on highly adaptable algorithms such as fuzzy logic 
and artificial neural networks. Helmi and Helmi [13] 
propose a gesture recognition method based on fuzzy logic 
and neural networks. Dictionary of 25 gestures are defined 
and implemented on a wireless accelerometer device which 
transmits the acceleration data to a computer. The authors 
showed that machine learning algorithms are the ideal 
solution for gesture detection because the gesture 
recognition accuracy is 100%. But the drawback is the 
required huge computational resources to perform gesture 
detection, which is not appropriate in an embedded 
processing situation like the electronic bell. Bailador et al. 
[14] used a Continuous Time Recurrent Neural Network 
(CRTNN) for gesture recognition. As CRTNN is 
computationally less expensive, it can perform gesture 
recognition in real-time. Dictionary of 8 gestures are 
defined and gesture recognition accuracy is 64%. But when 
the gestures are done in controlled manner (user sitting 
while performing gestures, gestures are performed non-
continuously) recognition accuracy of up to 94% could be 
obtained.  

Threshold based 
Parsani and Singh [15] proposed using the running variance 
to find activity in the accelerometer. Once the running 
variance is higher than a predetermined threshold, a sub 
gesture detection algorithm is executed to find the specific 
gesture. Dictionary of 6 gestures are defined by the authors 
and implemented on a programmable system on chip which 
communicates with a PC using Bluetooth. However the 
authors haven’t performed any experiments to determined 
the gesture recognition accuracy of their propose method.   

Many of the gesture recognition methods reviewed require 
training phase in which templates of gestures to be 
classified are generated when sufficient exemplar gestures 
are supplied. The requirement of training can make the 
method somewhat inconvenient.   Most importantly, of the 
methods reviewed, the threshold-based method requires the 
least computational resources such as memory and 
processing power, making it an ideal approach for an 
embedded solution which has constrained resources. In this 
paper we propose a novel threshold-based gesture detection 
algorithm to detect the orientation-free swinging gestures on 
a physical construction such as that shown in Figure 1b.          

3. SWINGING MOTION 
The physical construction of the electronic bell and the 
respective three axes of the embedded accelerometer are 
shown in Figure 2. For the ease of discussion, 3 
perpendicular reference axes called X, Y and Z are created 
with respect to the user. Any forward-backward movement 
performed by the user is called X-axis movement, left-right 
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movement performed by the user is called Y-axis movement 
and any up-down or rotation movement performed by the 
user is called Z-axis movement. The red dot shown in 
Figure 2 describes the orientation of the accelerometer X, Y, 
Z axis. If the user holds the electronic bell as shown in 
figure 2 where the red dot is in the upper right corner, then 
the accelerometer axes and reference axes coincide and 
called as the ideal position. Because X, Y, Z acceleration 
created by movement correlates to the X, Y, Z accelerations 
measured by the accelerometer. 

X,YandZ 
Accelerometer 
Axes 

X,YandZ 
Reference Axes 

Figure 2. Physical construction of the electronic bell and the 
directions of the various accelerometer axes. 

When the electronic bell is rotated around the Z reference 
axis, angle µ defines the rotation from the ideal position as 
show in figure 4a. The swing angle a defines the movement 
of the electronic bell when swinging motion is performed 
from the pivot point as shown in Figure 4b. This electronic 
bell is used to analyze the static and dynamic acceleration 
created along the 3 reference axis when a swinging motion 
is performed. The swinging motion is essentially an X axis 
and/or Y axis movement, but not a Z axis movement due to 
the physical characteristics of the electronic bell as shown in 
Figure 3. 

Z axis Movement (not a swing motion) 

X axis Movement (swing motion) 

Y axis Movement (swing motion) 

Figure 3. Valid swinging motions in the X and Y directions 

The user can perform the swing motion by using the wrist or 
the elbow and the pivot point will be respectively wrist or 
elbow. It is most unlikely that a person will use both the 
elbow and wrist simultaneously to perform a swing motion. 
Hence the person will create a graceful arc when the swing 
motion is performed. 

The instantaneous tangential acceleration of a circular 
motion can be described by using equation 1. 
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Where, 
a; is the instantaneous linear tangential acceleration, 
r is the radius of the swing motion and 
Bis the instantaneous angular acceleration. 

(1) 

The instantaneous linear tangential acceleration is equivalent 
to the dynamic acceleration detected by the accelerometer 
when a swinging motion is performed. 

(a) (b) 

Figure 4. (a) Rotation along the Z axis given byµ and (b) 
the swing angle a when a swinging motion performed 

The total accelerations detected by the accelerometer along 
the 3 axes X, Y, Z are respectively described by equations 
2, 3 and 4. 

arx = adY sinµ+ a5y sinµ + adx cos µ + a5x cos µ (2) 

ary = adX sinµ + a5x sin µ + adY cos µ + a5 y cosµ (3) 

Where, 
arx :- Total acceleration detected by the accelerometer along 
the accelerometer X axis. 
ary :- Total acceleration detected by the accelerometer along 
the accelerometer Y axis. 
arz :- Total acceleration detected by the accelerometer along 
the accelerometer Z axis. 
adx:- Dynamic acceleration along the reference X axis. 
ady:- Dynamic acceleration along the reference Y axis. 
a5x:- Static acceleration along the reference X axis. 
a5y:- Static acceleration along the reference Y axis. 
a5z:- Static acceleration along the reference Z axis. 
a:- The angle of the swing motion performed. 
µ:- The angle rotated along the Z axis of the reference axis 

By analyzing equations 2, 3 and 4, it can be inferred that the 
easiest way to detect a swinging motion is to use equation 4. 
According to equation 4, when the electronic bell is kept in 
the upright position (as shown in Figure 2), the Z axis of the 
accelerometer will detect - 1 g and when horizontal, it will 
measure Og. When a forward-backward swinging is 
performed with a less than ,r/18 radians (10 degrees) andµ 
equal to O radians, the acceleration generated in the Z axis 
of the accelerometer will be insignificant compared to the X 
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axis accelerometer values as shown in Figure 5. This is 
because according to equation 2, the X axis accelerometer 
output is affected by dynamic acceleration unlike the Z axis. 
Hence the solution is to use X axis and Y axis accelerometer 
values to detect the swinging motion instead of the Z axis 
accelerometer values. 

"' QI 
::s 
ni 
> 
QI) 

Forward-backward movement when µ=O a 
<n/18 

1.5 

1 

0.5 

0 - X-axis 

-0.5 - z-axis 

-1 

-1.5 
Seconds 

Figure 5. Z axis and X axis accelerometer g values when 
forward-backward swing is performed 

3.1. CHARACTERISTICS OF SWING MOTION 

The developed algorithm utilizes the following basic 
characteristics of the swinging motion for identification. 

Accelerometer Signal Noise 

The augmented signal of the X and Y axis accelerometer 
will be twice as noisy as the original individual signals, 
because the accelerometer is not noise free. Hence the X 
and Y axis of the accelerometer must be evaluated 
individually. Figure 6 shows X axis and Y axis 
accelerometer g values when forward-backward swing 
motion is performed with µ equal to O radians and a is less 
than 1t/2 radians (90 degrees). 

1.5 

1 

-0.5 

-1 

Y axis noise when forward-backward 

movement is performed 

- X-axis 

- Y-axis 

Seconds 

Figure 6. Noise generated when forward-backward 
movement swing motion with µ equal to O radians and a less 

than 1t/2 radians. 
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As illustrated in Figure 6, even though the Y axis of the 
accelerometer must be Og, the values are observed to be 
fluctuating. 

Swinging Motion Characteristics 

A breakdown of the forward-backward swinging motion 
(with µ equal to O radians and a is less than 1t/2 radians) 
signal is show in Figure 7. 

Break down of non·continuous forward-backward 

motion 

2.5 ~--------------

1.5 
Ill 
Ill 
J 

iii 
) 0.5 
00 

0 

-0.5 

·1 

Wave motion 
performed 

Idle 

- X-axis 

Wave motion 
performed, opposite to 
the previous motion. 

Figure 7. Break down of a non-continuous forward
backward swing motion with µ equal to O radians and a less 

than 1t/2. 

According to Figure 7, the circled acclivity shows the swing 
motion occurring to one side while the circled declivity 
shows the swing motion occurring to the opposite side of 
the initial swing motion. When µ is between O and 21t, X 
and Y axis signal values can merely infer the direction of 
the swinging motion relative to the previous swing. 

Continuous forward-backward movment 
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Figure 8. Continuous forward-backward swing motion with 
µ equal to O radians and a less than 1t/2. 

In order to find the exact direction of the swinging motion, 
the relationship between the reference axes and the 
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accelerometer axes must be established by using the value µ 
and the starting position of the electronic bell. When the 
swinging motion is performed continuously, the circled 
acclivity and circled declivity in Figure 7 merges together to 
create a sinusoidal swing as shown in Figure 8. 

Different values ofµ (rotation around reference Z) 

When the value of µ is not 0, 1t/2, 1t and 31t/2 accelerations 
are measured in both X and Y accelerometer axes. In this 
case the axis which produces the largest acceleration values 
is used to decide the swinging motion, as shown in Figure 9. 

Continuous forward-backward µ=n/18 a<n/2 
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Figure 9. Continuous forward-backward swing motion with 
µ equal to 1t/18 radians and a less than 1t/2. 

But when µ is 1t/4, 31t/4, 51t/4 and 71t/4 both X and Y 
accelerometer axes will generate acceleration values which 
are equal. In this case the signal of the X axis is used to 
decide the swing motion as shown in Figure 10. 
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Figure 10. Continuous forward-backward swing motion 
with µ equal to 1t/4 radians and a less than 1t/2. 
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3.2. SWING DETECTION ALGORITHM 

The algorithm developed is capable of detecting swinging 
motion when µ is between 0 and 21t radians (rotation along 
the reference Z axis from the ideal position). 

Pseudo Code 

1. Perform median filtering (windows size is 3) on X and 
Y axis accelerometer values. 

2. ls Acclivity or declivity detected on X or Y axis? lf yes 
go to step 3 else go to step 5. 

3. ls the acclivity or declivity detected on X and/or Y axis 
larger than threshold? If yes got to step 4 else go to step 
5. 

4. ls the amplitude of the acclivity or declivity detected on 
X and/or Y axis not twice smaller than the amplitude of 
the previous acclivity or declivity in the respective 
axis? lf yes go to step 5 else go to step 5. 

5. Record the activity (acclivity, declivity or no activity) 
occurred in X and Y axis. 

6. Cross compare the amplitude of the acclivity or 
declivity occurred in X and Y axis. Choose the axis 
showing the highest amplitude to decide the swing 
motion. 

Median filtering is used to reduce the noise generated by the 
accelerometer and also to remove noise due to slight 
unconscious hand movements. Acclivity or declivity 
generated on an axis means a swinging motion has 
occurred. Intra axis amplitude comparison in step 4 of the 
pseudo code is done to reduce false triggers. Finally a cross 
axis amplitude comparison of the acclivity or declivity 
generated is performed in order to negate the effects caused 
by rotation along the Z reference axis (µ is not equal to 0). 

4. EXPERIMENTATION RESULTS 

The recognition accuracy of the proposed swinging motion 
detection algorithm was tested on an embedded processor 
system consisting of a microcontroller (Texas Instrument 
CC2510 (16]) powered by a 7. 7V Lithium-ion battery that is 
voltage regulated to 3.3V operating voltage. The embedded 
processor system was used to build a wireless portable 
interactive device (PID) featuring various input and output 
modalities. The input peripherals include a 3-axis 
accelerometer (MMA7260 from Freescale) and a serial
accessed micro-SD memory card. The output peripherals 
include six tri-color LEDs and a mini vibration speaker. The 
PID activates these peripherals when required by enabling 
the appropriate CC2510 component (USART, DSM, ADC). 
The hardware components of the PID were fitted to the 
cuboid acrylic housing section (see Figure 2) of the 
electronic bell. 

Four users tested the swing motion recognition accuracy 
when µ is 0, 1t/4, 1t/2, 31t/4, 1t, 51t/4, 31t/2 and 71t/4. The PIO 
was programmed to generate a sound and light up the LEDs 
when swing motion performed. According to the direction 
of the swinging motion (relative to the previous swing 
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