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REDUONG THE COMPUTATIONS OF THE SINGULAR VALUE 
DECOMPOSITION ARRAY GIVEN BY BRENT AND LUK* 

B. YANGt AND J. F. BOHMEt 

Abstract. A new, efficient, two-plane rotation (TPR ) method for computing two-sided rotations involved 
in singular value decomposition (SVD) is presented. It is shown that a two-sided rotation can be evaluated by 
only two plane rotations and a few additions. This leads to significantly reduced computations. Moreover, if 
coordinate rotation digital computer ( CORDIC} processors are used for realizing the processing elements ( PEs) 
of the SVD array given by Brent and Luk, the computational overhead of the diagonal PEs due to angle 
calculations can be avoided. The resulting SVD array has a homogeneous structure with identical diagonal and 
off-diagonal PEs. Similar results can also be obtained if the TPR method is applied to Luk's triangular SVD 
array and to Stewart's Schur decomposition array. 
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1. Introduction. One important problem in linear algebra and digital signal pro
cessing is the singular value decomposition (SYD). Typical applications arise in beam
forming and direction finding, spectrum analysis, digital image processing, etc. [ l}. Re
cently, there has been a massive interest in parallel architectures for computing SYD 
because of the high computational complexity of SYD, the growing importance of real
time signal processing, and the rapid advances in very large scale integration (VLSI) that 
make low-cost, high-density and fast processing memory devices available. 

There are different numerically stable methods for computing complete singular 
value and singular vector systems of dense matrices, for example, the Jacobi SYD method, 
the QR method, and the one-sided Hestenes method. For parallel implementations, the 
Jacobi SYD method is far superior in terms of simplicity, regularity, and local com
munications. Brent, Luk, and Van Loan have shown how the Jacobi SYD method with 
parallel ordering can be implemented by a two-dimensional systolic array [ 2}, [ 3}. Various 
coordinate rotation digital computer ( CORDIC) realizations of the SYD array have been 
reported by Cavallaro and Luk [ 4] and Delosme [ 5}, [ 6]. 

The Jacobi SYD method is based on, as common for aU two-sided approaches, 
applying a sequence of two-sided rotations to 2 X 2 submatrices of the original matrix. 
The computational complexity is thus determined by how to compute the two-sided 
rotations. In most previous works, a two-sided rotation is evaluated in a straightforward 
manner by four plane rotations, where two of them are applied from left to the two 
column vectors of the 2 X 2 submatrix and the other ones are applied from right to the 
row vectors, respectively. In the diagonal processing elements ( PEs), additional operations 
for calculating rotation angles are required. This leads to an inhomogeneous array ar
chitecture containing two different types of PEs. 

In this paper, we develop a two-plane rotation (TPR) method for computing two
sided rotations. We show that the above computational complexity can be reduced sig
nificantly because each two-sided rotation can be evaluated by only two plane rotations 
and a few additions. Moreover, the SYD array given by Brent and Luk becomes ho
mogeneous with identical diagonal and off-diagonal PEs when CORDIC processors are 
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714 B. YANG AND J. F. BOHME 

used. In a recent work [ 6], Delosme has also indicated this possibility in connection 
with "rough rotations" independently. He has taken, however, a different approach that 
is based on encoding the rotation angles. He has still required four plane rotations on 
the off-diagonal PEs while diagonal and off-diagonal operations can be overlapped. 

Our paper is organized as follows. In§ 2, we briefly reexamine Jacobi's SYD method 
and Brent and Luk's SYD array. Then, we develop the TPR method in§ 3. The CORDIC 
algorithm is described in§ 4, where in particular CORDIC scaling correction techniques 
are discussed and examples of scaling-corrected CORDIC sequences are given. In § 5, a 
unified CORDIC SVD module for all PEs of the SYD array is presented. This module 
is compared to those proposed by Cavallaro, Luk, and Delosme in § 6. Finally, we stress 
the applicability of the TPR method to several other problems. 

2. Jacobi SVD method. In this paper, we consider real, square, and nonsymmetric 
matrices. Let ME ~NxN be a matrix of dimension N. The SYD is given by 

( I) 

where U E ~NxN and VE ~NxN are orthogonal matrices containing the left and right 
singular vectors, and ~ E ~Nx N is a diagonal matrix of singular values, respectively. The 
superscript T denotes matrix transpose. Based on an extension of the Jacobi eigenvalue 
algorithm [ 7], Kogbetliantz [ 8] and Forsythe and Henrici [ 9] proposed to diagonalize 
M by a sequence of two-sided rotations, 

(2) Mo = M, (k= O, 1, 2, .. ·). 

Uk and Vk describe two rotations in the (i, j)-plane ( I ~ i <j ~ N ), where the rotation 
angles are chosen to annihilate the elements of M k at the positions (i, j) and (j, i). 
Usually, several sweeps are necessary to complete the SYD, where a sweep is a sequence 
of N(N - I )/2 two-sided rotations according to a special ordering of the N(N - 1 )/2 
different index pairs ( i, j). 

For sequential computing on a uniprocessor system, possibly the most frequently 
used orderings are the cyclic orderings, namely, the cyclic row ordering 

(3) (i,j) = (l ,2),(1,3), ... ,(l,N),(2,3), ... ,(2,N), ... ,(N- 1,N) 

or the equivalent cyclic column ordering. Sameh [!OJ and Schwiegelshohn and Thiele 
[ 11] have shown how to implement the cyclic row ordering on a ring-connected or a 
mesh-connected processor array. Recently, a variety of parallel orderings have been de
veloped. Luk and Park [ 12] have shown that these parallel orderings are essentially equiv
alent to the cyclic orderings and thus share the same convergence properties. 

Brent and Luk have suggested a particular parallel ordering and developed a square 
systolic array consisting off N / 21 X r N / 21 PEs for implementing the Jacobi SYD method 
( Fig. I). To do this, the matrix Mis partitioned into 2 X 2 submatrices. Each PE contains 
one submatrix and performs a two-sided rotation 

(4) 

where 

(5 ) 
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REDUCED SVD COMPUTATIONS AND HOMOGENEOUS SVD ARRAY 715 

FIG. I. The SYD array given by Brent and Luk. 

denote the submatrix before and after the two-sided rotation, respectively, and 

(6) ( 
cos O sin O) 

R(O) = 
- sin O cos 0 

describes a plane rotation through the angle 0. At first, the diagonal PEs (symbolized by 
a double square in Fig. I) generate the rotation angles to diagonalize the 2 X 2 submatrices 
(b12 = b21 = 0) stored in them. This means that 01 and 02 are first calculated from the 
elements of A and then relation ( 4) is used to compute b11 and b22. We call this the 
generation mode. Then, the rotation angles are sent to all off-diagonal PEs in the following 
way: the angles associated to the left-side rotations propagate along the rows while the 
angles associated to the right-side rotations propagate along the columns. Once these 
angles are received, the off-diagonal PEs perform the two-sided rotations ( 4) on their 
stored data. We call this the rotation mode. Clearly, if we compute the rotation mode 
straightforwardly, we require four plane rotations. For the generation mode, additional 
operations for calculating 01 and 02 are required. 

3. TPR method for computing two-sided rotations. In order to develop the TPR 
method for computing two-sided rotations more efficiently, we first discuss the com
mutative properties of two special types, the rotation-type and the reflection-type, of 
2 X 2 matrices. We define 

(7) vl{'01 ={(_; ;)jx,yE~} and Arcr ={(; _;)jx,yE~}-
The former is called rotation-type because it has the same matrix structure as a 2 X 2 
plane rotation matrix. Similarly, the latter is called reflection-type because it has the 
same matrix structure as a 2 X 2 Givens reflection matrix [ 13]. Note that x and y must 
not be normalized to x 2 + y 2 = I. Using the above definitions, the following results can 
be shown by some elementary manipulations. 

LEMMA I. If A1 EA'°' and A2 E A'°t, then A1A2 = A2A1 E A'°1
• 

LEMMA 2. If A1 E Arcr and A2 E A'0 \ then A1A2 = AfA1 E .,I/ref_ 

In particular, if we consider two plane rotations, we know the following. 
LEMMA 3. If R(01) and R(02 ) are plane rotations described by (6), then 

R(01)R(02 ) = R(01 + 02) and R(Oi) TR(02) = R(02 - 01). 
Now, we give a theorem describing the rotation mode of the TPR method. 
THEOREM. If the 2 X 2 matrix A and the two rotation angles 01 and 02 are given, 

then the two-sided rotation ( 4) can be computed by two plane rotations, ten additions, 
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716 B. YANG AND J. F. BOHME 

and/our scalings by ½: 

(8) 

(9) 

(10) 

( 11) 

Pi = (a22 + a11 )/2, 

qi =(a21 - a12)/2, 

()_ = 82-81' 

P2 = (a22 - a11 )/2, 

q2= (a21 +a12)/2, 

0+= 82+ 01, 

b21=t1+t2, b22=r1 + r2. 

Proof Using ( 8), the matrix A can be reformulated as 

(
P1 - q')+(-p2 q2). A=A1+A2= 
q, Pi Qi P2 

Clearly, R(O, ), R(82) in ( 4) and A 1 are elements of Jtro• while A 2 belongs to Jtrcr_ This 
leads to the following reformulation of the matrix B by using Lemmas 1-3: 

B = R(Oi)T AR(02) 

= R(8, )T A ,R(02) + R(8i)T A2R(02) 

= R(8i)TR(82)A, +R(8i)TR (0i)T Ai 

= R(82- 8, )A, + R(02 + 8, )T A 2 

This completes the proof. 
The generation mode of the TPR method follows directly from the above theorem. 
COROLLARY . I/the 2 X 2 matrix A is given, we can diagonalize A and calculate 

the corresponding rotation angles 81 and 82 by two Cartesian-to-polar coordinates con
versions, eight additions, and four scalings by ½: 

p, = (a22+a11)/2, Pi= (a22 - a1, )/2, 
( 12) 

q, = (a21 -a,2)/2, Qi = (a2, + a 12)/2, 

(13) 
r, = sign (P1) V PT + QT, r2 = sign (P2) V p~ + qL 

o_ = arctan (qi/ p, ), B+ = arctan (qi/Pi ) , 

(14) 81 = (8+- 8-)/2, 82=(8++ 0_)/2, 

(15) b11=r, - r2, b22=r1+r2. 

Proof. Regarding ( 11), b12 = b21 = 0 is equivalent to t, = ti = 0. Equation ( 13) 
follows then from ( 10). This completes the proof. 

In equation ( 13), we choose the rotation through the smaller angle. All vectors 
lying in the first or the fourth quadrant are rotated onto the positive x-axis, and all vectors 
lying in the second and the third quadrant are rotated onto the negative x-axis. For 
vectors on the y-axis, the rotation direction is arbitrary. Thus, the generated rotation 
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REDUCED SYD COMPUTATIONS AND HOMOGENEOUS SYD ARRAY 717 

angles e_ and 8+ satisfy 18- 1, l8+1 ~ 90°. This results in 

( 16) l81 I ~ 90° and 182I ~ 90°, 

due to ( 14 ). 
Equation ( 16) is important with respect to the convergence of the Jacobi SVD 

method. Forsythe and Henrici [9] have proven the convergence for cyclic orderings if 
the rotation angles 81 and 82 are restricted to a closed interval inside the open interval 
( - 90°, 90°). They have also demonstrated that this condition may fail to hold, i.e., 81 

and 82 may be ±90°, if the off-diagonal elements b12 and b21 in (5) have to be exactly 
annihilated. As a remedy, they suggested an under- or overrotation by computing the 
two-sided rotation ( 4) with angles ( 1 - 'Y )81 and ( 1 - 'Y )82 (-1 < 'Y < I) and proved 
its convergence. In practice, however, the finite machine accuracy in the real arithmetic 
allows only an approximative computation of the rotation angles and implies under- or 
overrotations. So the Jacobi SVD method converges without using under- or overrotations 
as shown by the experimental results of Brent, Luk, and Van Loan [3]. In case ofCORDIC 
implementations, the effect of implicit under- or overrotations is more apparent. The 
angles ±90° can never be exactly calculated because of the limited angle resolution arc
tan ( 2 -p) of the CORDIC algorithm, where p denotes the mantissa length. 

4. The CORDIC algorithm. In the previous section, we have seen that the main 
operations of the TPR-method are plane rotations and Cartesian-to-polar coordinates 
conversions. These operations can be carried out by multiplier-adder-based processors 
supported by software or special hardware units. An alternative approach is the use of 
dedicated processors that usually map algorithms more effectively to hardware. The 
CORDIC processor is such a powerful one for calculating trigonometric functions. 

The CORD IC algorithm was originally designed by Voider [ 14] as an iterative pro
cedure for computing plane rotations and Cartesian-to-polar coordinates conversions. It 
was later generalized and unified by Walther [ 15], enabling a CORD IC processor to 
calculate more functions, including hyperbolic functions, as well as multiplications and 
divisions. In the following, we consider Voider's CORDIC algorithm because only trig
onometric functions are involved in SYD applications. 

The CORDIC algorithm consists of iterative shift-add operations on a three-com
ponent vector, 

(I 7) 

( 18) 

(
X; + 1) (X; - er;o;y;) 1 ( cos (a;) - er; sin (a;) )(x;), 
Y;+1 = y;+er;O;X; = cos(a;) er;sin(a ;) cos(a;) Y; 

Z;+1 = Z; - eer;a; (0<o;< l ; er;= ±l;e = ±l;i = 0, I, ··· ,n- I), 

in which the iteration stepsize o; is defined by 

(19) 

The set of integers { S( i) } parametrizing the iterations is called CORDIC sequence. 
Equation ( 17) can be interpreted, except for a scaling factor of 

(20) k·=-
1
-= Vi +o2 

'cos(a;) ' ' 

as a rotation of(x;, y ;)T through the angle a;, where the sign er; = ± I gives the rotation 
direction. After n iterations, the results are given by 

(21) 

(22) 

(
x,, ) (cos a 
y,, =K sin a 

- sin a )(xo ) , 
cos a Yo 

z,, = z0 - ea, 
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